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Abstract. Cryptographic schemes are often designed as a combination of multiple component
cryptographic modules. Such a combiner design is robust for a (security) specification if it meets
the specification, provided that a sufficient subset of the components meet their specifications.
A folklore combiner for encryption is cascade, i.e. c = E ′′e′′(E ′e′(m)). We show that cascade is
a robust combiner for cryptosystems, under three important indistinguishability specifications:
chosen plaintext attack (IND-CPA), non-adaptive chosen ciphertext attack (IND-CCA1), and
replayable chosen ciphertext attack (IND-rCCA). We also show that cascade is not robust for the
important specifications adaptive CCA (IND-CCA2) and generalized CCA (IND-gCCA). The
IND-rCCA and IND-gCCA specifications are closely related, and this is an interesting difference
between them. All specifications are defined within.
We also analyze few other basic and folklore combiners. In particular, we show that the following
are robust combiners: the parallel combiner f(x) = f ′′(x)||f ′(x) for one-way functions , the XOR-
Input combiner c = (E ′′e′′(m ⊕ r), E ′e′(r)) for cryptosystems, and the copy combiner fk′′,k′(m) =
f ′′k′′(m)||f ′k′(m) for integrity tasks such as Message Authentication Codes (MAC) and signature
schemes. Cascade is also robust for the hiding property of commitment schemes, and the copy
combiner is robust for the binding property, but neither is a robust combiner for both properties.
We present (new) robust combiners for commitment schemes; these new combiners can be viewed
as a composition of the cascade and the copy combiners. Our combiners are simple, efficient and
practical.

Keywords: applied cryptography, robust combiners, foundations of cryptography, encryp-
tion schemes, cascade ciphers, hash functions, commitment schemes

1 Introduction

The security of a cryptographic scheme is often established by the accumulated evidence of
failure of experts to cryptanalyze the scheme, i.e. to find vulnerabilities of the scheme. How-
ever, cryptanalysis is an expensive, time-consuming and fallible process. In particular, since
a seemingly-minor change in a cryptographic function may allow an attack which was previ-
ously impossible, cryptanalysis allows only validation of specific functions and development
of engineering principles and attack methodologies and tools, but does not provide a solid
theory for designing cryptographic functions. Indeed, estimating the rate of future cryptan-
alytical successes is difficult, see e.g. [LV01]. Prudent designers use safety margins to allow
for unexpected breakthroughs; however, there is often resistance to replace widely deployed
standards which were not broken yet, ‘just’ since the safety margins were eroded.

This motivates the usage, and study, of robust combiners for cryptographic mechanisms.
A robust combiner1 combines several cryptographic modules, such that the combined mecha-
nisms is secure even if some of the modules turn out to be insecure. In particular, the robust
1 In earlier versions of this document [Her02], we used the term tolerant design instead of robust combiner. In

this version, we adopted robust combiner, coined by Harnik et al. in [HKN+05].



combiner remains secure following successful cryptanalysis of some of its modules, refutation
of one or few of the assumptions underlying its security (e.g. the assumption that factoring
is a hard problem), or attempts to exploit a vulnerability in some of the modules, due to
implementation error, design errors, or even an intentional trapdoor in the design or imple-
mentation. Using a robust-combiner does not guarantee security; however, it would hopefully
provide sufficient advance-warning time to replace the broken cryptographic modules.

Many cryptographic systems combine redundant components in hope of achieving robust-
ness (tolerance). There are several known (often folklore) combiners of cryptographic modules,
often with the stated or implicit goal of achieving robustness (tolerance) or even improving
security. Possibly the most well known combiner is the cascade combiner, applied e.g. to block
ciphers and encryption schemes. Cascading of cryptosystems and ciphers has been a common
practice in cryptography for hundreds of years.

However, there were not many publications, prior to this work, analyzing robust cryp-
tographic combiners. We believe the earliest paper proposing a robust combiner is [AB81],
where Asmuth and Blakely present the simple ‘XOR-Input’ combiner of two cryptosystems,
c =

(
E ′′e′′(m⊕ r), E ′e′(r)

)
. In section 5.3, we show that this combiner is robust for the IND-CPA

and IND-CCA1 specifications, but not for the IND-CCA2 specification.
Even before [AB81], cascade was known and used, as ‘folklore’, with the hope of creating

more secure cryptosystems. Cascade encryption refers to the sequential application of two
cryptosystems E ′′ and E ′ as in c = E ′′e′′(E ′e′(m)). Cascade was also studied in several works,
however mostly for block ciphers rather than for a ‘complete’ cryptosystem. Even and Gol-
dreich [EG85] showed that cascade of block ciphers is a robust combiner for security against
message recovery attacks. Damgard and Knudsen [DK94] proved that cascade of block ciphers
is also a robust combiner for security against chosen-plaintext key-recovery attack. Maurer
and Massey [MM93] showed that, in a weaker attack model, cascade of block ciphers is at
least as strong as the first cipher in the cascade. They also demonstrate that in their (weaker)
attack model, cascade is not robust combiner of block ciphers, by demonstrating a cascade
which is weaker than the second cipher; we show that cascade is a robust combiner, but
for encryption schemes rather than block ciphers, and using the standard indistinguishability
specifications. Other works investigated and showed improvement in security due to cascading
of block ciphers; in particular Bellare and Rogaway [BR06] showed that in the ideal-cipher
model, cascading of three block cipers (‘triple encryption’) significantly improves security.

We return to the ‘folklore’ cascade of cryptosystems, rather than of block ciphers. We show
that cascade is a robust combiner of cryptosystems, for a wide range of indistinguishability
(confidentiality) specifications, including indistinguishability under chosen-plaintext attack
(IND-CPA), non-adaptive chosen ciphertext attack (IND-CCA1), and Replayable CCA attack
(IND-rCCA2) [CKN03]. This confirms the folklore belief, that cascade is a robust combiner
for encryption.

On the other hand, we observe that cascade of cryptosystems is not a robust combiner for
indistinguishability under adaptive chosen ciphertext attack (IND-CCA2). Furthermore, we
show that cascade is not a robust combiner also for indistinguishability under the generalized
CCA (IND-gCCA) [ADR02], which, like IND-rCCA, is weaker than IND-CCA2 but arguably
sufficient for most applications. This is an interesting difference between the IND-rCCA and
IND-gCCA specifications, which have similar motivations.

2 IND-rCCA is weaker than IND-CCA2, but it is arguably a sufficient requirement for most applications. In
particular it allows the practical ‘feedback only CCA’ attacks of [Ble98,Kra01].
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Other robust combiners for cryptosystems are known. Dodis and Katz [DK05] showed
a combiner for cryptosystems, which is robust for the IND-CCA2 specification. Note also
that Shoup presented in [Sho00] a cryptosystem, which is secure as long as one of a pair
of assumptions hold; this is an alternative approach to gain confidence in a cryptographic
scheme, via redundancy of assumptions (rather than redundancy of schemes, as with robust
combiners).

Cascade and other combiners for encryption were also studied by Zhang et al. [ZHSI04].
Instead of using the general definition of a robust combiner, they considered the combined
encryption schemes as implementations of a new cryptographic primitive they defined, multi-
ple encryption. Cascade of IND-CCA2 cryptosystems is not necessarily ‘multiple-encryption
CCA2-secure’; however, cascade of IND-gCCA cryptosystems is ‘multiple-encryption gCCA-
secure’, as defined in [ZHSI04]. However, we show that cascade is not a robust combiner
for IND-gCCA. This is an interesting difference between the approach of using the robust
combiner definition, and the approach of adapting the security definition as in the multiple-
encryption specifications of [ZHSI04].

Robust combiners are useful for any cryptographic scheme, not just for block ciphers and
encryption. In particular, we show that the ‘folklore’ copy combiner g(x)‖f(x), using the same
input x to both functions, is robust for several integrity properties, such as (several variants
of) collision-resistant hashing, Message Authentication Codes (MAC) and digital signatures.
The copy combiner is also used, as ‘folklore’, in practical designs and standards, e.g. in the
W3C XML-DSIG specifications and in the TLS protocol [DA99].

Efficiency is critical for practical robust combiners; implementors will rarely be willing to
tolerate significant performance loss, ‘just’ in order to tolerate potential vulnerabilities in a
cryptographic function. Most combiners we present and analyze are efficient and practical.

Ignoring efficiency, there is a simple robust combiner for many cryptographic schemes, by
using provable combiners of cryptographic mechanisms from few ‘basic’ cryptographic mech-
anisms such as one-way function, which have simple robust designs. Specifically, the simple
parallel combiner f ||f ′(< x, x′ >) = f(x)||f ′(x′) is robust for the one-way function specifica-
tion. Namely, it is sufficient that one of {f, f ′} is a one-way function, to ensure that f ||f ′ is
also a one-way function. Furthermore, there are reductions, provably secure under asymptotic
(poly-time) definitions, of many cryptographic mechanisms from one-way functions and vice
versa, e.g. pseudo-random generators [Gol01,HILL99] and signature schemes [Rom90,NY89].
It follows that there are robust combiners for all of these tasks. However, these combiners
are robust only for asymptotic (poly-time) definitions, and involve substantial degradation in
efficiency and security parameters, e.g., require absurd key and/or block sizes [Gol01,HL92].

Subsequent work. Following earlier versions of this work [Her02], robust combiners were
found for IND-CCA2 encryption in [DK05]. Also, robust combiners were found for other tasks,
including oblivious transfer (OT) and key agreement by Harnik et al. [HKN+05]. Meier et al.
present an improved robust combiner for OT in [MPW07]. In [MP06], Meier and Przydatek
presented robust combiners for private information retrieval (PIR), and for PIR-to-OT and
PIR-to-BC (bit commitment). Boneh and Boyen [BB06] showed that non-trivial black-box
robust combiners for collision-resistant hash functions (CRHF) do not exist; this was improved
by Pietrzak [Pie07]. Robust combiners for commitment schemes, OT and interactive proof
systems were also studied by Sommer [Som06].

Our contributions. We identify and define cryptographic tolerance as a criteria for cryp-
tographic specifications, and define robust combiners. We analyze the security of several
‘folklore’ combiners for several basic cryptographic primitives, including encryption, signa-
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tures, MAC, hash functions and commitment schemes. Finally, we present efficient, practical
combiners for commitment schemes.

2 Robust Combiners: Definitions

Let P denote the set of all programs, with a fixed encoding and machine model, e.g. Turing
machines. A combiner (of plurality n) is an algorithm c, whose input is a set of n programs
P1, . . . , Pn ∈ Pn , and whose output is a single program c(P1, . . . , Pn). We say that c : Pn → P
is a (k, n)-robust combiner of P for specification (predicate) s : P→ {0, 1}, if:

n∑
i=1

s(Pi) ≥ k ⇒ s(c(P1, . . . , Pn)) = 1

When c is a (n − 1, n)-robust combiner for s, we say that c is a robust combiner for s.
When c is a (n, n)-robust combiner for specification s, we say that c is a preserving combiner
for s; this can be useful property, e.g. we use it in Section 6.2 to build a robust combiner for
both the hiding and the binding specifications of commitment schemes (out of one combiner
that is robust for hiding and preserves binding, and another that is robust for binding and
preserves hiding).

Harnik et al. [HKN+05] define black-box robust combiners, to exclude designs which ig-
nore the underlying schemes and directly implement the required functionality. All of our
constructions are black-box combiners, however, since we only present positive results, we do
not present definition and analysis of the black-box property. There are additional possible
extensions of the robustness concept, e.g. to consider side channels (e.g. timing, power), to
allow a mix of different specifications for the components, or to support a general access
structure (rather than threshold as above). We do not discuss such extensions in this paper.

3 Cascade Encryption

A triple Π = (K, E ,D) of polynomial-time algorithms (for key generation, encryption and
decryption, respectively) is an encryption scheme, if for every pair (e, d) ← K(1k) and every
m in the domain of E holds: m = Dd(Ee(m)). For simplicity, restrict D to be deterministic,
while K and E are probabilistic polynomial time (PPT) algorithms.

In this section, we investigate the tolerance of cascade encryption. Cascade encryption
is an ancient, widely-deployed technique. Let Π ′′ = (K′′, E ′′,D′′), Π ′ = (K′, E ′,D′) be two
encryption schemes, s.t. the domain of E ′′ contains the range of E ′. Without loss of generality,
split the random bits evenly between Π ′′ and Π ′.

The cascade of (K′′, E ′′,D′′) and (K′, E ′,D′), denoted (K, E ,D) = (K′′, E ′′,D′′)◦(K′, E ′,D′),
is defined as:

– Given 1k and r′′, r′ ∈ {0, 1}ρ(k) for some ρ(k) ∈ N, let (e′, d′) = K′(1k; r′), (e′′, d′′) =
K′′(1k; r′′). Then K(1k; r′′||r′) = ((e′′, e′), (d′′, d′)).

– For r′′, r′ ∈ {0, 1}ρ(k), let Ee′′,e′ (m; r′′||r′) = E ′′e′′ (E ′e′(m; r′); r′′)
– Dd′′,d′ (c) = D′d′ (D′′d′′(c))

Above and throughout, we indicate random coins used by a probabilistic algorithm only when
relevant to the discussion, by listing them following the ‘regular inputs’, as in Ee(m; r). We
use a||b to denote the concatenation of a and b.
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Intuitively, cascading may seem to improve the secrecy of encryption schemes, or at least
to ensure robustness (protect confidentiality as the more secure of the cascaded schemes). Is
cascading really a robust combiner for encryption schemes? We show that this depends on
the security specifications, and mainly the adversary capabilities (‘attack model’).

In particular, cascade encryption E ′′e′′(E ′e′(m)), is not robust for adaptive chosen cipher-
text attacks (CCA2). This follows from the following simple example, given by An, Dodis and
Rabin [ADR02]: let E ′′e′′(m) R← {m||0,m||1}. The cascade of any encryption scheme E ′ with
this E ′′, is not secure against CCA2, since given ciphertext c∗ = E ′′e′′(E ′e′(m)) = E ′e′(m)||β
of plaintext message m, where β ∈ {0, 1}, attacker can find m via the legitimate query
D′d′ (D′′d′′(c)), where c = E ′e′(m)||β; this query clearly returns m.

An et al. argued in [ADR02], that this example indicates that CCA2 is overly restric-
tive. Intuitively, encrypting the ciphertext again, even with a weak scheme, cannot expose it.
Hence, they defined generalized CCA (gCCA), which is weaker than CCA2 (but is satisfied
by E ′′e′′(E ′e′(m)) as in the example above). Other ‘relaxed’ forms of adaptive chosen cipher-
text attacks were proposed, most notably, the weaker notion of replayable CCA (rCCA), by
Canetti, Krawczyk and Nielsen [CKN03]. The differences between gCCA and rCCA are some-
what subtle. In this section we show an interesting difference: cascade is a robust combiner
for rCCA, but not for gCCA.

Trivially, the cascade Π = Π ′′ ◦ Π ′ of two encryption schemes Π ′′ = (K′′, E ′′,D′′),Π ′ =
(K′, E ′,D′) does not satisfy even the (weak) IND-CPA specification, as defined later, if Π ′

may leak information about the plaintext via the length of the ciphertext. Suppose, for ex-
ample, that for every key e′ holds |E ′e′(0)| 6= |E ′e′(1)|. Assume that for every k, m, e′′ holds
|E ′′e′′(m)| = |m|+ α(k), namely the length of the ciphertext is the same as the length of the
plaintext, plus a number of bits which depends only on the security parameter k; this holds
for most encryption schemes. Clearly, Π does not satisfy IND-CPA. To eliminate this form of
‘side channel’, we focus on cascade of length-uniform encryption schemes (K, E ,D), where for
every security parameter k, keys (e, d) ∈ K(1k) and messages m0,m1 s.t. |m0| = |m1|, holds:
|Ee(m0)| = |Ee(m1)|.

In the first subsection below, we unify and extend the game-based definitions of [KY06,BDPR98],
in particular extending them to cover the rCCA and gCCA specifications. In the second sub-
section, we investigate the tolerance of cascade encryption.

3.1 Indistinguishability experiment and specifications

We defined encryption schemes without distinguishing between shared (private) key schemes
and public key schemes. In fact, most of our results hold for both types of schemes. The
difference between the two, is only in the indistinguishability specifications they satisfy. Es-
sentially, public-key encryption should satisfy indistinguishability, even when the encryption
key is given to the attacker. We present a single definition of indistinguishability specifica-
tions, which covers both public key and shared key specifications. Our definition combines,
therefore, the indistinguishability definitions of [KY06] and [BDPR98].

Specifically, we extend the definition of [KY06]. They already allowed substantial flexibil-
ity, by defining the attack as IND-Px-Cy, where x, y ∈ {0, 1, 2} signal the phases at which
the attacker is allowed an encryption (plaintext) query, for x, or a decryption (ciphertext)
query, for y. We add the value x = K, to signal public-key encryption, which simply means
that the adversary is given the encryption key e. Using x = K, gives attack values of IND-
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PK-Cy, for y = 0, 1 and 2, corresponding to the public-key indistinguishability specifications
of IND-CPA, IND-CCA1 and IND-CCA2, respectively.

We further extend the definition, adding more possible values to y, to include two other
specifications, which were proposed as alternatives to CCA2. The first is replayable CCA
(rCCA) [CKN03], which we identify by y = R.

The second CCA2-alternative specification that we consider is generalized CCA (gCCA)
[ADR02], which is called benign malleability in [Sho01]. For gCCA, we use y = (G, r), where
re(c, c′) is an efficient, keyed relation, which is decryption-preserving for (K, E ,D). Namely,
for every pair of ciphertexts c, c′ and every key pair (e, d)← K(·), holds

re(c, c′) = TRUE⇒ Dd(c) = Dd(c′)

Let R(Π) denote the set of efficiently computable (PPT), keyed decryption-preserving
relations re(c, c′), for Π = (K, E ,D). This definition of gCCA and R(Π) makes sense only for
public-key cryptosystems. We extend it, to cover also symmetric (shared-key) cryptosystems,
by using r(c, c′) instead of re(c, c′). For simplicity, we abuse notations and use R(Π) to refer
both to the asymmetric (public-key) variant, as defined above, and to the symmetric (shared-
key) variant, where the relation r(c, c′) does not depend on the encryption key. Krawczyk
[Kra01] defined this symmetric-key variant, referring to it as loose ciphertext unforgeability.

Like [KY06,BDPR98], we state the definition with respect to an adversary A which is
a pair of PPT algorithms, A = (A1, A2). We use DOi and EOi, for i ∈ {1, 2}, to denote
the decryption and the encryption oracle functions, respectively, for the two phases of the
experiment (select phase and guess phase) . When DOi = ε or EOi = ε, the corresponding
function returns an empty string ε on any input.

Definition 1 (Indistinguishability experiment and security specifications). Let Π =
(K, E ,D) be an encryption scheme and let A = (A1, A2) be a pair of PPT algorithms. For
x ∈ {0, 1, 2,K} and y ∈ {0, 1, 2,R} ∪ {G×R(Π)} and k ∈ N, let

AdvIND−Px−Cy
Π,A (k) ≡ 2 ·Pr

[
ExpIND−Px−Cy−b

Π,A (k) = b
]
− 1

where the probability is over a random choice of b ∈ {0, 1} and a random choice of coins in
the following experiment:

Experiment ExpIND−Px−Cy−b
Π,A (k)

(e, d) R← K(1k)
(m0,m1, s)← A

DO1(·),EO1(·)
1 (x, y, 1k) s.t. |m0| = |m1|

c∗ ← Ee(mb)
Return A

DO2(·),EO2(·)
2 (s, c∗)

Where we implement the oracles EOi,DOi as follows, using the state variables of the experi-
ment x, y, e, d, c∗:

EO1(m) =


ε if x = 0
Ee(m) if x ∈ {1, 2}
e if x = K

EO2(m) =


ε if x ∈ {0, 1}
Ee(m) if x = 2
e if x = K
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DO1(c) =
{

ε if y = 0
Dd(c) otherwise

DO2(c) =


Dd(c) if


(y = 2 ∧ c 6= c∗)
∨ (y = R ∧ Dd(c) /∈ {m0,m1})
∨ (x 6= K ∧ y = (G, r) ∧ r(c, c∗) 6= TRUE)
∨ (x = K ∧ y = (G, r) ∧ re(c, c∗) 6= TRUE)


ε Otherwise

We say that Π is IND− Px−Cy-Secure, if AdvIND−Px−Cy
Π,A (·) is a negligible function.

We can map the IND− Px−Cy specification, to the well-known IND-CPA, IND-CCA1,
IND-CCA2, IND-rCCA and IND-gCCA specifications. Let φ = public if x =K, otherwise let
φ = private. We say that Π is an IND-CPA (IND-CCA1, IND-CCA2, IND-rCCA) secure
φ key cryptosystem, if it is IND− PK− Cy-Secure, for y = 0, y = 1, y = 2 or y = R,
respectively.

The IND-gCCA mapping is slightly more complex. We say that Π is IND− Px − CG-
Secure, if for some r ∈ R(Π), the function AdvIND−Px−C(G,r)

Π,A (·) is negligible, for any polynomial-
time A. We say that Π is IND-gCCA-secure public key cryptosystem, if Π is IND− PK−CG-
Secure.

3.2 Cascade Encryption is not Robust for CCA2 and gCCA

The following theorem shows that cascade of encryption schemes is not robust combiner, for
the IND-gCCA and IND-CCA2 specifications. On the other hand, in the next subsection we
show that cascade of encryption schemes is (1, 2)−robust combiner for specifications IND-
Px-Cy, for x ∈ {0, 1, 2,K} and y ∈ {0, 1,R}, and in particular for IND-CPA, IND-CCA1,
IND-rCCA. This is an interesting difference between gCCA and rCCA.

Theorem 1. Cascade of encryption schemes is not a robust combiner, for specifications IND-
Px-Cy, for x ∈ {0, 1, 2,K} and y ∈ {2,G}, and specifically for IND-CCA2 and IND-gCCA.

Proof: The example from [ADR02] presented above, shows that the claim holds for IND-Px-
C2, for x ∈ {0, 1, 2,K}, since the example did not require any chosen plaintext queries.

We now show a (slightly more complex) counterexample encryption scheme Π ′′ = (K′′, E ′′,D′′),
s.t. for any encryption scheme Π ′ = (K′, E ′,D′), the cascade Π = Π ′′ ◦ Π ′ does not satisfy
IND-Px-CG, for x ∈ {0, 1, 2,K}. This proves the rest of the theorem.

To avoid clutter, we make the following (avoidable) simplifications:

1. x = K, i.e. we prove for asymmetric (public-key) encryption.
2. (K′, E ′,D′) is an asymmetric encryption scheme that satisfies IND-gCCA.

3. For every (e′, d′) R← K′(1k) holds |d′| = k.
4. The single bits 0 and 1 are legitimate plaintext messages.

7



The idea of the attack is that we design our counterexample Π ′′ = (K′′, E ′′,D′′) to allow
A1 to expose its key d′′, by some queries; then we use this key to ‘transform’ the challenge
ciphertext c∗ (of the cascade) to another ciphertext c̃ s.t. with high probability re(c̃, c∗) =
false, and in particular c̃ 6= c∗.

An initial idea might be that E ′′ will simply expose its key on some special input, e.g.
E ′′e′′(m) =< 0, E ′e′′(m) > and D′′d′′(< b, c >) = {D′d′′(c0) if b = 0 , d′′ if b = 1}. However, if
the adversary gives < 1, c > to the decryption oracle of the cascade, it will receive back D′d′(c),
which does not seem to help. We therefore designed a slightly more complex counterexample,
where the adversary exposes d′′ by a sequence of decryption oracle queries, one bit at a time.

Specifically, we define Π ′′ = (K′′, E ′′,D′′) as follows:

K′′(1k) = K′(1k)
E ′′e′′(m) = < 0, E ′e′′(m),⊥,⊥ >

D′′d′′(< b, c0, c1, j >) =
{
D′d′′(c0) if b = 0
D′d′′(cd′′[j]) if b = 1

We now present a poly-time adversary (A1, A2), achieving significant advantage in the
IND− PK− C(G,r) experiment, against the cascade Π = Π ′′ ◦Π ′, for every r ∈ R(Π); this
shows that Π is not IND-gCCA secure. In the first phase, A1 finds the decryption key d′′. In
the second phase, A2 receives ‘challenge ciphertext’ c∗, and uses d′′ to modify it into ciphertext
c̃ 6= c∗, which decrypts to the same message as c∗; A2 then uses the oracle to find the message.
Since we focus (for simplicity) on x = K, i.e. these are asymmetric encryption experiments,
we assume that the public key is returned by the encryption oracle (i.e., is known to the
adversary). The adversary just needs to encrypt two arbitrary (same length) messages; for
simplicity we use the two single-bit messages 0 and 1. Namely:

Algorithm A
DO1(·),EO1(·)
1 (x, y, 1k):

(e′′, e′)← EO1(0); (get public key (e′′, e′) from oracle)
For b = 0, 1 let < 0, cb,⊥,⊥ >← E ′′e′′(E ′e′(b))
For j = 1 to k do: d′′[j]← DO1(< 1, c0, c1, j >)
Return (0, 1, ((e′′, e′), d′′))

Algorithm A
DO2(·),EO2(·)
2 (((e′′, e′), d′′), c∗):

c̃← E ′′e′′ (D′′d′′(c∗))
Return (DO2(c̃))

Trivially from its design, Π ′′ is IND-CPA secure. Hence, for every efficient (PPT) keyed
decryption-preserving relation r ∈ R(Π) for the cascade Π = (K, E ,D) = (K′′, E ′′,D′′) ◦
(K′, E ′,D′), with high probability, re(c̃, c∗) = false, and in particular c̃ 6= c∗. (Otherwise, we
can use the relation r to identify two random encryptions of the same message). Therefore,
the DO2 oracle, will always output Dd(·). This shows that the cascade Π is not an IND-gCCA
secure encryption scheme. ut

Note that this proof is essentially an extension of the example from [ADR02], mentioned
before, showing that cascade is not robust for IND-CCA2.

3.3 Cascade Encryption is Robust for CPA, CCA1 and rCCA

The following Theorem shows, that cascade is a robust combiner of encryption schemes, for
specifications IND-Px-Cy, where x ∈ {0, 1, 2,K} and y ∈ {0, 1,R}, and in particular for
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IND-CPA, IND-CCA1, IND-rCCA. This shows an interesting difference between gCCA and
rCCA.

Theorem 2. A cascade of length-uniform encryption schemes is a robust combiner for spec-
ifications IND-Px-Cy, for x ∈ {0, 1, 2,K} and y ∈ {0, 1,R}, and in particular for IND-CPA,
IND-CCA1 and IND-rCCA.

Proof: The proof focuses on the cascade of two encryption schemes, extension to arbitrary
number of schemes is trivial.

Let Π = Π ′′ ◦ Π ′ where Π = (K, E ,D) and Π ′′ = (K′′, E ′′,D′′), Π ′ = (K′, E ′,D′) are
encryption schemes, and Π ′ is length-uniform. Consider any efficient adversary, i.e. pair of
PPT algorithms A = (A1, A2). The following two lemmas, use A to construct efficient (PPT)
adversaries, A′′ = (A′′1, A

′′
2) and A′ = (A′1, A

′
2), against Π ′′ and Π ′ respectively, s.t.:

Adv′IND−Px−Cy
Π′,A′ (k) = AdvIND−Px−Cy

Π,A (k) (1)

and
Adv′′IND−Px−Cy

Π′′,A′′ (k) = AdvIND−Px−Cy
Π,A (k) (2)

Intuitively, to win its distinguishability game, A′ (A′′) generates keys for Π ′′ (respectively,
Π ′), and use the choices of A when playing against the cascade; see the proofs of the lemmas
for details. The two lemmas show that if Π is not IND-Px-Cy secure, then both Π ′′ and Π ′

are not IND-Px-Cy secure, which completes the proof. ut
We now present and prove the two lemmas. The first lemma shows a PPT adversary A′′,

s.t. equation 2 holds. This lemma holds also for the case y = 2 (i.e. CCA2 specification).

Lemma 1. Let Π = Π ′′ ◦Π ′ where Π = (K, E ,D) and Π ′′ = (K′′, E ′′,D′′), Π ′ = (K′, E ′,D′)
are encryption schemes, and Π ′ is length-uniform. For any pair of PPT algorithms A =
(A1, A2), there exists an efficient adversary A′′ = (A′′1, A

′′
2), s.t. equation 2 holds, for any

x ∈ {0, 1, 2,K} and any y ∈ {0, 1, 2,R}.

Proof: Implement A′′ = (A′′1, A
′′
2) using A and Π ′′ as a ‘black boxes’, as follows:

Algorithm A′′1(x, y, 1k), with oracles DO′′1(·), EO′′1(·):
(e′, d′)← K′(1k)
(m0,m1, s)← A

DP1[d′,y](·),EP1[e′,x](·)
1 (x, y, 1k)

Return (E ′e′(m0), E ′e′(m1), (e′, d′, x, y,m0,m1, s))

Algorithm A′′2((e
′, d′, x, y,m0,m1, s), c∗), with oracles DO′′2(·), EO′′2(·):

Return A
DP2[d′,y,m0,m1,c∗](·),EP2[e′,x](·)
2 (s, c∗)

The implementation also includes procedures DP1,DP2 and EP i (for i = 1, 2), which are
provided as oracles to A:

Procedure DP1[d′, y](c) =
{

ε if (y = 0)
D′d′(DO′′1(c)) otherwise

Procedure DP2[d′, y,m0,m1, c
∗](c) =


ε if (y ∈ {0, 1})
ε if (y = R) ∧ (D′d′(DO′′2(c)) ∈ {m0,m1})
ε if (y = 2) ∧ (c = c∗)
D′d′(DO′′2(c)) otherwise
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Procedure EP i[e′, x](m; r′′||r′) =


ε if (x = 0) ∨ ((x = 1) ∧ (i = 2))
EO′′i(E ′e′(m; r′); r′′) if (x = 1) ∧ (i = 1)
(EO′′i(m; r′′), e′) if (x = K)

Notice that for x = K, i.e. public key, holds: EP i(m) = (EO′′i(m), e′) = (e′′, e′). Also, recall
that we assumed, for simplicity, that the random bits input to EO, are split evenly between
EO′′ and EO′.

Let ExpIND−Px−Cy−b
Π,A (k; r) be the result of the experiment using random coins r. By the

design of the experiment and of A′′, and since Π ′ is length-uniform, we have:

ExpIND−Px−Cy−b
Π′′,A′′ (k; r) = ExpIND−Px−Cy−b

Π,A (k; r)

The claim follows. ut
To complete the proof of Theorem 2, the following lemma shows a PPT adversary A′ s.t.

equation 1 holds. The proof and constructions are similar to the previous lemma. Notice that
here we do not require Π ′ (or Π ′′) to be length-uniform.

Lemma 2. Let Π = Π ′′ ◦Π ′ where Π = (K, E ,D) and Π ′′ = (K′′, E ′′,D′′), Π ′ = (K′, E ′,D′)
are encryption schemes. For any pair of PPT algorithms A = (A1, A2), there exists another
pair of PPT algorithms A′ = (A′1, A

′
2), s.t. equation 1 holds, for any x ∈ {0, 1, 2,K} and any

y ∈ {0, 1,R}.

Proof: Implement A′ = (A′1, A
′
2) using A and Π ′ as a ‘black boxes’, as follows.

Algorithm A′1(x, y, 1k), with oracles DO′1(·), EO′1(·):
(e′′, d′′)← K′′(1k)
(m0,m1, s)← A

DP1[d′′,y](·),EP1[e′′,x](·)
1 (x, y, 1k)

Return (m0,m1, (e′′, d′′, x, y,m0,m1, s))

Algorithm A′2((e
′′, d′′, x, y,m0,m1, s), c∗), with oracles DO′2(·), EO′2(·):

Return A
DP2[d′′,y,m0,m1,c∗](·),EP2[e′′,x](·)
2 (s, E ′′e′′(c∗))

The implementation also includes procedures DP1,DP2 and EP i (for i = 1, 2), which are
provided as oracles to A:

Procedure DP1[d′′, y](c) =
{

ε if (y = 0)
DO′1(D′′d′′(c)) otherwise

Procedure DP2[d′′, y,m0,m1, c
∗](c) =

{
DO′2(D′′d′′(c)) if (y = R) ∧ (DO′2(D′′d′′(c)) 6∈ {m0,m1})
ε otherwise

Procedure EP i[e′′, x](m; r′′||r′) =


E ′′e′′(EO′i(m; r′); r′′) if (x = 1) ∧ (i = 1)
(e′′, EO′i(m; r′)) if (x = K)
ε otherwise

Notice that for x = K, i.e. public key, holds: EP i(m) = (e′′, EO′i(m)) = (e′′, e′).
For simplicity, we assume that K′ and K′′ use the same number of random bits ρ(k), which

may depend only on the security parameter k. Let r ∈ {0, 1}∗, and let r = r′′||r′||r∗, where
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|r′′| = |r′| = ρ(k). Since the first step of ExpIND−Px−Cy−b
Π,A (k; r) is to apply K to generate keys,

then the keys generated at that step would be (e′′, d′′)← K′′(1k; r′′) and (e′, d′)← K′(1k; r′).
Similarly, let r̂ ∈ {0, 1}∗, and let r̂ = r̂′||r̂′′||r̂∗, where |r̂′′| = |r̂′| = ρ(k). The first step of

ExpIND−Px−Cy−b
Π′,A′ (k; r̂) is to apply K′ to generate keys for Π ′, and the next step is to invoke

A′1 which immediately applies K′′ to generate keys for Π ′′. Hence, the keys generated in this
experiment would be (e′, d′)← K′(1k; r̂′) and (e′′, d′′)← K′′(1k; r̂′′). Notice that here the first
ρ(k) bits are used to generate (e′, d′), and second ρ(k) bits used to generate (e′′, d′′), while
the reverse order was used in ExpIND−Px−Cy−b

Π,A (k; r). This is one subtelty making this proof
a bit harder (which is the reason we preferred to present the lemmas in this order).

Therefore, to ensure that the same keys are generated in both experiments, for a given
r = r′′||r′||r∗ we set r̂ = r′||r′′||r∗ (i.e., r̂′ = r′′, r̂′′ = r′ and r̂∗ = r∗). By the design of the
experiment and of A′, we have:

ExpIND−Px−Cy−b
Π′,A′ (k; r̂) = ExpIND−Px−Cy−b

Π,A (k; r)

If r is uniformly distributed, than so is r̂. The claim follows. ut

4 Cascading Other Cryptographic Schemes

Cascading is a natural method to combine schemes. In this section, we study cascade com-
biners of other cryptographic schemes, beyond encryption.

We begin by discussing cascading of functions with a single input and output, such as
one-way functions and (key-less) hash functions, namely f ◦ g(x) = f(g(x)). In the following
subsections we discuss cascading of keyed schemes.

4.1 Cascade of One Way Functions

Consider two functions g :Mg → Yg, f :Mf → Yf s.t. Yg ⊆ Mf . The cascade of f and g,
denoted f ◦ g, is defined as f ◦ g(x) ≡ f(g(x)).

Unfortunately, cascade is not even a preserving combiner for one way functions. However,
it is a robust combiner for one-way functions, if the component functions are length-preserving
permutations (defined below). We first recap the relevant specifications.

Definition 2 (OWF). Function f : M → Y, s.t. for all sufficiently large l holds {0, 1}l ⊆
M, is a one way function (OWF) if AdvOWF

f,A (k) ≡ Pr
x

R←{0,1}k
[
f(A(f(x), 1k)) = f(x)

]
is a

negligible function (in k), for every PPT adversary A.

We first show that cascade is not even a preserving ((n, n)-robust) combiner, for one way
functions.

Proposition 1. Cascade is not a preserving combiner for one way functions.

Proof: let h be a OWF . Let g(x) = h(x)||0|h(x)| and f(x) =
{

0 if x = y0|y|

h(x) otherwise
Trivially, both f and g are one-way functions, yet f ◦ g is not a OWF; in fact, f ◦ g(x) =

f(g(x)) = 0 for every x. ut
We next show that, on the contrary, cascade is robust for the OWF specification, if the

functions are guaranteed to be length-preserving permutations. A function f : M → Y is
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length-preserving permutation, if for every sufficiently large k, the function f is a permutation
over {0, 1}k. See also Levin [Lev87], for a notion of one-way functions that remain one-way
when iterated.

Proposition 2. Cascade of length-preserving permutations, is a robust combiner for the
OWF specification.

Proof: Let h = f ◦ g, where f and g are length-preserving permutations; namely, h(x) =
f(g(x)). Trivially, h is also a length-preserving permutation. Suppose that h is not a OWF,
namely there is some PPT adversary Ah s.t. Prxh∈{0,1}k

[
h(Ah(h(xh), 1k)) = h(xh)

]
is not a

negligible function. Let Ag(yg, 1k) = Ah(f(yg), 1k) and Af (yf , 1k) = g(Ah(yf , 1k)). Since both
g and f are length-preserving permutations, it follows that for sufficiently large k:

Pr
xg∈{0,1}k

[
g(Ag(g(xg), 1k)) = g(xg)

]
= Pr

xh∈{0,1}k

[
h(Ah(h(xh), 1k)) = h(xh)

]
and

Pr
xf∈{0,1}k

[
f(A(f(xf ), 1k)) = f(xf )

]
= Pr

xh∈{0,1}k

[
h(Ah(h(xh), 1k)) = h(xh)

]
where the probabilities are also over the coin tosses of the algorithms. ut

4.2 Cascading of Cryptographic Hash Functions

We next study the tolerance of the cascade of cryptographic keyed hash functions. We use
K(1k) to denote the (finite) set of keys for (unary) security parameter 1k. Namely, a cryp-
tographic hash function family is a function h : K(1k) × M → Y. Usually, we write the
first argument to h as subscript, i.e. as hK(m), where K ∈ K(1k). For simplicity we insist
that there is some polynomial l(·) (hash length) such that {hK(m)|m ∈ M} = {0, 1}l(k) for
K ∈ K(1k). These assumptions are convenient for defining cascading, and hold for reasonable
hash functions.

We define the cascade h = f ◦g of cryptographic hash function families f : Kf×Mf → Yf

and g : Kg ×Mg → Yg, where Yg ⊆ Mf , as h(Kf ,Kg)(m) = fKf
(gKg(m)). Clearly h is a

cryptographic hash function family, h : (Kf ×Kg)×Mg → Yf .
There are many different (and not equivalent) definitions of cryptographic hash function

families, see e.g. [RS04]. We focus on four definitions: Coll (‘strong collision resistance’), ePre
(find pre-image with random key, to an adversary-chosen challenge), Pre[l] (find pre-image
with random key and random challenge) and aSec[l] (find second preimage to a random
challenge, using adversary-chosen key). Pre[l] is implied by all the other definitions in [RS04].
We show that cascade is not (even) preserving for Pre[l] and aSec[l], and is preserving (but
not robust) for Coll and ePre.

The fact that cascade is not robust for Coll also follows as a trivial special case of the
results of [BB06,Pie07], which show that any (black box) combiner for strong collision resistant
hash functions (Coll) must, essentially, double the hash length.

We next present asymptotic versions of the specifications of cryptographic hash function
families from [RS04]:

Definition 3 (Cryptographic hash functions). Let h : K ×M → Y be a cryptographic
hash function family. Let A = (A1, A2) be a pair of PPT algorithms. Define:

AdvColl
h,A (k) = Pr

[
K

R← K(1k); (m,m′) R← A1(K) : (m 6= m′) ∧
(
hK(m) = hK(m′)

)]
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AdvPre[l]
h,A (k) = Pr

[
K

R← K(1k);m R← {0, 1}l; y ← hK(m);m′ R← A1(K, y) : hK(m′) = y
]

AdvePre
h,A (k) = Pr

[
(y, s) R← A1(1k);K R← K(1k);m R← A2(K, s) : hK(m) = y

]
AdvaSec[l]

h,A (k) = Pr
[
(K, s) R← A1(1k);m R← {0, 1}l;m′ R← A2(m, s) : (m 6= m′) ∧

(
hK(m) = hK(m′)

)]

For φ ∈ {Coll,Pre[l], ePre, aSec[l]}, let Advφ
h(k) = maxA∈PPT Advφ

h,A(k). We say that h

(asymptotically) satisfies specifications φ, if Advφ
h(k) is a negligible function.

Theorem 3 (Cascade of crypto-hash). Cascade is a preserving, but not robust, combiner
of cryptographic hash function families, for specifications Coll and ePre. Cascade is not pre-
serving for specifications Pre[l] and aSec[l].

Proof: We first demonstrate that cascade is not robust for each of the specifications. This is
trivial. Consider the cascade h ≡ f ◦ g. For Coll, Pre[l] and aSec[l], let gK(m) = 0; for ePre,
let fK(m) = 0.

The fact that cascade is not (even) preserving for specifications Pre[l] and aSec[l], follows
from a similar argument to the one in Proposition 1, as follows. For simplicity, assume that
all hash functions in this argument has the domain of all strings, i.e. M = {0, 1}∗; also
ignore the (technical) requirement that {hK(m)|m ∈ M} = {0, 1}l(k) for K ∈ K(1k), for
some polynomial l. Given a cryptographic hash function family uK(m) that satisfies Pre[l]
(or aSec[l]), it is trivial that the following f and g also satisfy Pre[l] (respectively aSec[l]),
but their cascade h = f ◦ g does not satisfy Pre[l] or aSec[l], where:

gK(m) ≡ uK(m)||0|uK(m)|

fK(m) =
{

0 if m = y0|y|

uK(m) otherwise

It remains to show that cascade is preserving for the Coll and ePre specifications. Consider
first the Coll specification, and a collision for h, i.e. fKf

(gKg(m)) = fKf
(gKg(m′)) for m 6= m′.

Let y = gKg(m) and y′ = gKg(m′). If y = y′, then this is a collision for gKg ; otherwise, y and
y′ are a collision for fKf

. Hence, if h fails to fulfill Coll, then either f or g (or both) also fails
to fulfill Coll.

Finally, consider the ePre specification, and let Ah = (Ah,1, Ah,2) be an adversary which
achieves significant advantage against h = f ◦ g in the ePre game, i.e. AdvePre

h,Ah
(k) is signifi-

cant (not negligible). The following adversary, Af = (Af,1, Af,2), trivially achieves significant
advantage against f in the ePre game:

Algorithm Af,1(1k):
{ (y, s)← Ah,1(1k);

Kg
R← Kg(1k);

return (y, (Kg, s)) }
Algorithm Af,2(Kf , (Kg, s)):

{ m = Ah,2((Kf ,Kg), s);
return gKg(m) }

We conclude that if f satisfies ePre, then h also satisfies ePre, i.e. cascade is preserving for
ePre. This concludes the proof. ut
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4.3 Cascading Preserves Unforgeability

We next study cascading of signature and MAC (Message Authentication Code) schemes.
Formally, we define both signature and MAC schemes as three efficient (polynomial-time)
algorithms, (K,S,V), for key-generation, signing/authenticating and verifying, respectively,
s.t. for every (s, v)← K(1k) and every m in the domain of S, holds: Vv(m,Ss(m)) = true. The
key-generation and the signature/authentication algorithms are probabilistic; for simplicity,
assume a deterministic verifying algorithm.

Let Π ′′ = (K′′,S ′′,V ′′) and Π ′ = (K′,S ′,V ′) be two signature/MAC schemes. Without
loss of generality, assume that the two schemes use the same number of random bits ρ(k) ∈ N
for given security parameter k. We define their cascade Π = Π ′′ ◦Π ′, where Π = (K,S,V),
as follows:

– For any k ∈ N and any r′′, r′ ∈ {0, 1}ρ(k), let (v′, s′)← K′(1k; r′) and (v′′, s′′)← K′′(1k; r′′).
Then let K(1k; r′′||r′) = ((v′′, v′), (s′′, s′)).

– Ss′′,s′(m; r′′||r′) = S′′s′′(S
′
s′(m; r′); r′′)

– Vv′′,v′(m, (σ′′, σ′)) = V ′′v′′(σ′, σ′′) ∧ V ′v′(m,σ′)

We define unforgeability of signature/authentication schemes as follows. For φ ∈ { MAC,
Signature }, scheme (K,S,V) is an unforgeable φ scheme if for every A ∈ PPT :

Pr
[
ExpForge,φ

(K,S,V),A(1k) = 1
]

poly
≈ 0

Where ExpForge,φ
(K,S,V),A is the following experiment:

Experiment ExpForge,φ
(K,S,V),A(k):

(s, v) R← K(1k)
If φ =Signature then ν = v else ν = ⊥
(m,σ) R← ASs(·),Vv(·)(1n, ν)

Let Q = {x|A made query Ss(x)}
Return 1 if m 6∈ Q and Vv(m,σ) =‘OK’

Proposition 3. Cascade of MAC and signature schemes is a preserving combiner, but is
not a robust combiner, for the unforgeable MAC scheme and unforgeable signature scheme
specifications.

Proof: Trivial. ut

4.4 Cascading Commitment Schemes

We conclude our study of cascading, by investigating cascading of single-round commitment
schemes. In a single-round commitment scheme, the recipient sends to the sender some (ran-
dom) binding key K, which the the sender should use to compute commitments. Single-round
commitment schemes are common in practice, often using heuristics (e.g., using the binding
key as the key of HMAC [BCK96]).
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We define single-round commitment schemes as three algorithms, Π = (C,D,V), for Com-
mit, Decommit and Validate, respectively3. The commit and decommit functions C,D have
three inputs each: a message m ∈ {0, 1}∗, a public binding key K ∈ {0, 1}k and random-
ness r ∈ {0, 1}k, and their respective outputs are: a commitment tag c = CK(m; r) and a
decommitment tag d = DK(m; r). The validate function V has four inputs: the message m,
the public binding key K, and the commitment and decommitment tags (c, d respectively).
The validation function outputs 1 if only if c, d are a correct commitment and decommitment
values for m. The definition follows.

Definition 4 (Single round commitment scheme). A single round commitment scheme
consists of three PPT algorithms, Π = (C,D,V), s.t. for every m ∈ {0, 1}∗, K ∈ {0, 1}k, r ∈
{0, 1}k holds: VK(m,CK(m; r), DK(m; r)) = 1. We say that Π is length-uniform, if for every
m0,m1, r0, r1,K s.t. |m0| = |m1|, holds: |CK(m0; r0)| = |CK(m1; r1)|.

Commitment schemes should satisfy a confidentiality (indistinguishability) specification,
called hiding, and an integrity specification, called binding. We present computational, as-
ymptotic definitions for both specifications.

We first define the hiding specifications for commitment schemes, which is rather similar to
the indistinguishability specifications presented earlier for encryption schemes. Intuitively, the
(polytime) hiding specification is that no probabilistic polynomial time (PPT) adversary can
distinguish between the commitments of any two messages of its choice. However notice that,
we allow the adversary to choose the public commitment key (but not the public encryption
key). In single round commitment schemes, confidentiality is protected by the choice of the
random input bits at the commit phase; the binding key K cannot be relied upon, since it is
received from the recipient (the binding key is crucial for the binding property).

Definition 5 (Hiding specification for single round commitment schemes). Let Π =
(C,D,V) be a single round commitment scheme. Let A = (A1, A2) be a pair of PPT algorithms,
and:

AdvHide
Π,A (k) = Pr

[
(K, m0,m1, s)

R← A1(1k); b R← {0, 1}; b′ R← A2(CK(mb; r), s) :
(b′ = b) ∧ (|m0| = |m1|)

]
We say that Π is (computationally) hiding, if AdvHide

Π,A (k) is negligible for every PPT adversary
A.

We now define the binding (integrity) specification for single round commitment schemes.
Here, we use the public binding key K. The binding key K is picked by the ‘recipient’ of the
commitment, and therefore the adversary, acting now as a potentially malicious ‘sender’ of
the commitment, has to use a random public binding key K, rather than choosing the worst
possible key.

Intuitively, given (random) public binding key K, every (PPT) adversary A has negligible
probability of finding a collision, i.e. values c, d, d′,m, m′ s.t. VK(m, c, d) = VK(m′, c, d′) = 1
(notice the commitment c is the same!). The definition follows.
3 In most existing definitions of commitment schemes, e.g. in [Gol01], the decommit function returns the

message (often limited to single bit), and there is no Validate function. However, this requires long commit-
ment and/or decommitment strings (since they must contain the input). When combining such schemes,
this may result in long commitment and/or decommitment strings. Our definition avoids this. Also notice
that, for simplicity, our definition uses a random key, without explicit key generation function as in some
other definitions.
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Definition 6 (Binding specification for single round commitment schemes). Let
Π = (C,D,V) be a single round commitment scheme. Let A be a PPT algorithm, and:

AdvBinding
Π,A (k) = Pr

[
K

R← {0, 1}k; (m0,m1, c, d0, d1, r)← A(K) :
(m0 6= m1) ∧ (VK(m0, c, d0) = 1) ∧ (VK(m1, c, d1) = 1)

]

We say that Π is (computationally) binding, if AdvBinding
Π,A (k) is negligible, for every PPT

adversary A.

Let Π ′′ = (C′′,D′′,V ′′) and Π ′ = (C′,D′,V ′) be two single round commitment schemes.
The cascade of Π ′′ and Π ′, denoted Π = Π ′′ ◦Π ′, is defined as Π = (C,D,V) where:

CK(m; r) = C′′K′′(C′K′(m; r′)||D′K′(m; r′); r′′) where K = K ′′||K ′, r = r′′||r′ and
|K ′′| = |K ′| = |r′′| = |r′| =

⌊
k
2

⌋
.

DK(m; r) =
(
D′′K′′(C′K′(m; r′)||D′K′(m; r′); r′′),D′K′(m; r′), C′K′(m′; r′)

)
VK(m, c, (d′′, d′, c′)) =

[
V ′′K′′(c′||d′, c, d′′)

]
∧

[
V ′K′(m, c′, d′)

]
Lemma 3. Cascade of single round, length-uniform commitment schemes, is a robust com-
biner for hiding, and a preserving combiner for binding.

Proof: The robustness for hiding follows exactly as in Theorem 2. The fact the cascade pre-
serves binding, is trivial. ut

There exist commitment schemes which were proved to be binding, therefore such schemes
can be combined using cascade to ensure that they are also (computationally) hiding. However,
such schemes are rarely used in practice, due to their large overhead. Therefore, for practical
applications, we need an efficient combiner for commitment schemes, which is robust for both
hiding and binding. We present such combiner later on.

5 Simple Robust Combiners: Parallel, Copy and XOR-Input

In the previous sections, we found that cascade is a robust combiner for important confiden-
tiality specifications (e.g. IND-CPA, IND-CCA1, IND-rCCA and Hiding), but is not robust
for many other specifications. In this section, we discuss three additional simple, ‘folklore’
combiners, which are (often trivially) robust for important specifications. Specifically, we
show such simple robust combiners for one-way functions, MAC and signature schemes, the
binding and hiding specifications of commitment schemes, and encryption schemes.

5.1 Parallel Combiner: Robust for OWF

The parallel combiner ‘splits’ the input among several functions, and concatenates the re-
sult. In particular, let the parallel combiner for two keyless functions f ′′, f ′ be f ′′||f ′(x) =<

f ′′(x′′), f ′(x′) >, where x′′ = x
[
1, . . . ,

⌊
|x|
2

⌋]
, x′ = x

[⌊
|x|
2

⌋
+ 1, . . . , |x|

]
. This trivial combiner

is robust for the one-way functions specifications.

Lemma 4. The parallel combiner f ≡ f ′′||f ′ is robust for the OWF specifications.

Proof: Let A′′(y′′, 1k′′) = A(y′′||f ′(x′), 12k′′)[1 . . . k′′], where x′
R← {0, 1}k′′ . If f

(
A(y′′||f ′(x′), 12k′′)

)
=

f(x′′||x′), then y′′ = f ′′(A(y′′||f ′(x′), 12k′′)[1 . . . k′′]). Hence, ADVOWF
f,A (2k′′) ≤ ADVOWF

f ′′,A′′(k′′).
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Similarly, ADVOWF
f,A (2k′′ + 1) ≤ ADVOWF

f ′′,A′′(k′′). We conclude that if ADVOWF
f,A (k) is signifi-

cant (non-negligible), then ADVOWF
f ′′,A′′(k′′) is also significant. Hence, if f is not a OWF, then

f ′′ is also not a OWF. The proof for f ′ follows by symmetry. ut
This simple combiner is of limited practical value, since the parallel combiner doubles the

input and output length of the candidate functions. Furthermore, one-way functions are rarely
used directly in practice. The importance of the combiner (and lemma) is due to the fact that
many primitives are equivalent to one way functions, for asymptotic, computational-security
primitives; one example is commitment schemes. The lemma provides a (often wasteful) robust
combiner for such primitives, in the following three steps. First, reduce (to OWF) each of the
(say two) candidate schemes, resulting in (say two) candidate one-way functions. Second, use
the parallel combiner on the two candidate one-way functions, resulting in a function which is
OWF if at least one of the two candidates is a OWF. Finally, use the known construction of
the primitive from a OWF. For example, this gives a combiner for single-round commitment
schemes, which is robust for the (computational) hiding and binding specifications. Notice,
however, that such combiners result in schemes with extremely high, often impractical, key
and/or block lengths and complexities (see [Gol01,HL92]).

5.2 Copy Combiner: Robust for Unforgeablility, Collision-Resistance and
Binding

Another folklore combiner is copy, which applies both candidates to the same input (and
output the concatenated result, like the parallel combiner). The copy combiner for hash
functions was first proposed by Preneel in [Pre93]. Preneel (and others) use the term ‘cascade’
for this combiner, but we will use here the term copy combiner, to avoid confusion with cascade
combiners investigated earlier.

The copy combiner was intuitively expected to improve security compared to each of
its component hash functions. This was recently contradicted by Joux [Jou04]. However, we
observe that the copy combiner is, at least, robust, for the collision-resistant specifications of
cryptographic hash functions, the unforgeability specifications of signature and MAC schemes,
and the binding specifications of single round commitment schemes.

Formally, we define the copy combiner as follows:

– We define the copy combiner h = h′′||h′ of two keyed (cryptographic hash) functions h′′

and h′ as: hK′′||K′(x) = h′′K′′(x)||h′K′(x). For simplicity, assume |K ′′| = |K ′|.
– Let Π ′′ = (K′′,S ′′,V ′′) and Π ′ = (K′,S ′,V ′) be two signature/MAC schemes. We define

their copy combiner Π = Π ′′||Π ′, where Π = (K,S,V), as follows:
• For any r′, r′′ ∈ {0, 1}∗ and k ∈ N, let (v′, s′) ← K′(1k; r′) and (v′′, s′′) ← K′′(1k; r′′).

Then let K(1k; (r′′||r′)) = ((v′′, v′), (s′′, s′)).
• Ss′′,s′(m; r′′||r′) = S′′s′′(m; r′′)||S′s′(m; r′), where |r′′| = |r′|.
• Vv′′,v′(m, (σ′′, σ′)) = V ′′v′′(m,σ′′) ∧ V ′v′(m,σ′)

– Let Π ′′ = (C′′,D′′,V ′′) and Π ′ = (C′,D′,V ′) be two single round commitment schemes.
The copy of Π ′′ and Π ′, denoted Π = Π ′′||Π ′, is defined as Π = (C,D,V) where:
CK′′||K′(m; r) =

(
C′′K′′(m; r′′), C′K′(m; r′)

)
where K = K ′′||K ′, r = r′′||r′ and |K ′′| =

|K ′| = |r′′| = |r′| =
⌊

k
2

⌋
.

DK′′||K′(m; r) =
(
D′′K′′(m; r′′),D′K′(m; r′)

)
VK′′||K′(m, (c′′, c′), (d′′, d′)) =

[
V ′′K′′(m, c′′, d′′)

]
∧

[
V ′K′(m, c′, d′)

]
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We now state some properties of the copy combiner.

Proposition 4. The copy combiner as defined above is:

1. Robust for the Coll and aSec[l] specifications of cryptographic hash functions.
2. Robust for the unforgeability specification of MAC/Signature schemes.
3. Robust for the binding specifications of single round commitment schemes.
4. Preserving, but not robust, for the hiding specifications of single round commitment schemes.

Proof: Trivial. ut

5.3 XOR-Input Combiner is Robust for Encryption

XOR-Input is our term for another classical robust combiner, originally proposed in [AB81]
for (probabilistic) encryption schemes. We present the XOR-Input combiner for encryption
schemes.

Let Π ′′ = (K′′, E ′′,D′′), Π ′ = (K′, E ′,D′) be two encryption schemes. The XOR-Input of
Π ′′ and Π ′, denoted Π = (K, E ,D) = Π ′′ ⊕Π ′, is defined as:

– Let (e′, d′) = K′(1k; r′), (e′′, d′′) = K′′(1k; r′′). Given r′′, r′ ∈ {0, 1}ρ, for some ρ ∈ N, let
K(1k; (r′′||r′)) = ((e′′, e′), (d′′, d′)).

– Let e = (e′′, e′), r = r′′||r′||r̂; assume for simplicity known length of r′′, r′, r̂. Then Ee(m; r) =(
E ′′e′′(m⊕ r; r′′), E ′e′(r; r′)

)
– Let c = (c′′, c′), d = (d′′, d′). Then Dd(c) = D′d′(c′)⊕D′′d′′(c′′)

The XOR-Input combiner is robust for the (relatively weak) notions of CPA and CCA1,
but is not even preserving for the (stronger) notions of CCA2, gCCA and rCCA.

Theorem 4. The XOR-Input combiner of public-key encryption schemes is robust for speci-
fications IND-CPA and IND-CCA1, but not preserving for specifications IND-CCA2, IND-gCCA
and IND-rCCA.

Proof: First, we show a simple counterexample showing that XOR-Input is not even pre-
serving, for the IND-rCCA specification; a trivial modification to the counterexample ap-
plies for IND-gCCA and IND-CCA2. Without loss of generality, assume that the plaintext
messages domain contains the set of two-bit messages {0, 1}2. The adversary first asks (at
‘select phase’) for encryption of the message 00; it receives the ciphertext (c′′0, c

′
0), where

c′′0 = E ′′e′′(00 ⊕ r0) and c′0 = E ′e′(r0), for some two-bit r0
R← {0, 1}2. The adversary now se-

lects the challenge plaintexts m0 = 10 and m1 = 11, and receives the challenge ciphertext
(c′′c , c

′
c). Here, c′′c = E ′′e′′(mb ⊕ rc) and c′c = E ′e′(rc), and b

R← {0, 1}, rc
R← {0, 1}2. Now the

adversary invokes the decryption oracle, over (c′′c , c
′
0), and then over (c′′0, c

′
c). For simplicity,

assume neither oracle call returns ε (or trivially extend the proof to deal with or avoid this
case, e.g. by using longer plaintexts). Hence, the oracle calls should return y = mb ⊕ rc ⊕ r0

and z = m0 ⊕ r0 ⊕ rc = r0 ⊕ rc (since m0 = 00). Clearly, mb = y ⊕ z, showing that although
both encryption systems could have satisfied the IND-rCCA specifications, their XOR-Input
combination does not satisfy IND-rCCA.

It remains to show the positive claim. For simplicity, we prove only for IND-CCA1;
the proof for IND-CPA is essentially a subset of this proof. Let Π ′′ = (K′′, E ′′,D′′),Π ′ =
(K′, E ′,D′) be two encryption schemes; without loss of generality, assume that the domain of
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both is the set {0, 1}∗ (all binary strings). Let Π = Π ′′ ⊕ Π ′ be the XOR-Input combiner
applied to Π ′′,Π ′. Assume that Π is not an IND-CCA1 secure public key cryptosystem; we
will show that Π ′ is also not IND-CCA1 secure. The proof for Π ′′ is symmetric.

Let A⊕ be an adversary s.t. AdvIND−PK−C1(k)
Π,A⊕ is significant (not negligible). We construct

adversary A′ s.t. AdvIND−PK−C1
Π′,A′ (k) is also significant. The design of A′ is simple, since we

deal with only CCA1 experiment; namely, decryption is only done before the messages m0, m1

are selected. Therefore, at the select phase, A′ can easily answer all the queries of A⊕, by
selecting keys for Π ′′.

When A⊕ selects the messages m0, m1, the adversary A′ provides the same messages in
its experiment. When A′ receives ciphertext c∗ to distinguish in its experiment, it gives to
A⊕ the ciphertext < E ′′e′′(0|m0|), c∗ >. Next, A′ simply outputs the same guess as it receives
from A⊕. Trivially, A′ has the same chance of winning as A⊕. ut

6 Robust Combiners for Single Round Commitment Schemes

The combiners we presented so far for commitment schemes, were robust for either binding
or hiding - but not for both properties. One exception is the highly-inefficient transformation
to and from one way functions; this transformation requires at least one of the candidates to
be both hiding and binding.

In this section, we present two (2, 3)−robust combiners for single round commitment
schemes, which ensure robustness for both binding and hiding separately (i.e., it is enough
that two of the inputs are binding and two - possibly other - are hiding). Note that it is
impossible to make a combiner, which is (n, 2n)-robust for both binding and hiding separately;
this observation is due to Unruh [Unr06].

The techniques of both subsections, seem likely to be applicable to design of combiners
for other tasks.

6.1 Input-Sharing Combiner: Robust for Hiding and Binding

We now present the input-sharing combiner for single round commitment schemes. This com-
biner essentially generalizes - and merges - the copy combiner and the XOR-Input combiner.
The Input-sharing combiner is based on a secret-sharing scheme, e.g. Shamir’s [Sha79]. Secret
sharing schemes consist of two functions: a share generation function G, and a secret recov-
ery function R. The share generation algorithm G accepts input (secret), and outputs m

shares; let G(s)[i] denote the ith share of secret s. The secret recovery algorithm R accepts
t ≤ m shares, and outputs the secret. Secret-sharing schemes must further satisfy the secrecy
condition, which essentially says that any subset of less than t shares, does not provide any
information on the secret (even against computationally unbounded adversary). We call such
schemes t-out-of-m secret sharing schemes; see definition, e.g. in [Gol04].

For simplicity, we focus on a 2-out-of-3 secret sharing scheme (G, R), and apply it to
define the (2-out-of-3) Input-sharing combiner for single round commitment schemes. . In
this combiner, the inputs to each of the three component commitment scheme, are shares of
the input to the combined scheme.

For i ∈ {1, 2, 3}, let Πi =
(
C(i),D(i),V(i)

)
be a single round commitment scheme. The

2-out-of-3 secret sharing combiner of {Πi}i∈{1,2,3}, denoted Π =
⊗

i∈{1,2,3}Πi, is defined as
Π = (C,D,V) where:
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C{Ki}i∈{1,2,3}(m) =
〈
C(i)

Ki
(G(m)[i])

〉
i=1,2,3

D{Ki}i∈{1,2,3}(m) =
〈(
D(i)

Ki
(si) , si

)〉
i=1,2,3

where si = G(m)[i]

V{Ki}i∈{1,2,3}(m, {cj , (dj , sj)}j=1,2,3) = True if and only if:

((∀i 6= j ∈ {1, 2, 3})m = R({si, sj})) ∧
(
(∀i ∈ {1, 2, 3})V(i)

Ki
(si, ci, di) = 1

)
The robustness of the sharing combiner Π =

⊗
i∈{1,2,3}Πi follows easily from the proper-

ties of secret sharing schemes.

Proposition 5. The input-sharing combiner (
⊗

) of 3 single round commitment schemes,
as defined above, is robust for both the Binding specification and the Hiding specification of
single round commitment schemes.

Proof: Trivial from the properties of secret-sharing schemes (see e.g. [Gol04]), and arguments
as in Theorem 4.

Comment. In practical commitment schemes the additional decommitment strings di are
often quite short, compared to the message (e.g. using HMAC [BCK96], the decommitment
string is simply a short random string appended to the message before applying HMAC).
However, the decommitment strings of the input-sharing combiner, as defined above, include
the three shares. Most definitions and constructions of secret-sharing schemes were proved
secure, without computational assumptions; for such schemes, the length of each share must
be as long as the message. Krawczyk [Kra93] defined computationally-secure secret sharing,
and presents a scheme where the length of all shares is as long as the message. For applications
where the share-size can be a significant resource, e.g. as described in [Kra93], it is preferable to
use such a computationally-secure, short-shares scheme. An alternative is to use the combiner
in the next subsection, which requires short decommitment strings.

Comment. A similar input-sharing combiner was shown to be robust for CCA2-secure
encryption in [DK05]. Other applications are likely.

6.2 Composing Combiners: the E and D robust combiners

Often, we may want to combine multiple combiners, e.g. to create a robust combiner for
multiple specifications. We restrict our attention to simple compositions of two combiners,
and focus on combiners for commitment schemes, although the ideas and techniques can be
applied to other multiple-specifications primitives. Specifically, we show how to compose the
cascade combiner (robust for hiding) and the copy combiner (robust for binding), resulting
in efficient robust combiners for commitment schemes (ensuring both hiding and binding
specifications).

The D combiner uses four candidate commitment schemes, C11, C12, C21, and C22, cascading
C11 and C12 and connecting this in parallel to the cascade of C21 and C22. We call the result
the D combiner, after its ‘shape’. Namely:

D(C11, C12, C21, C22) = (C11 ◦ C12)||(C21 ◦ C22)

The D combiner is efficient in computation times (each operation requires one operation
from each of the four candidate commitment schemes), and in the size of the commit and
decommit strings (commit size is twice that of the candidate commitment schemes, and
decommit size consist of four decommitments plus two commitments).
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However, the D combiner has one significant drawback: it is (3, 4)-robust, while the sharing
combiner is (2, 3)-robust. We can fix this by using only three commitment schemes, but using
each of them twice, by connecting in parallel three cascades of two schemes each; we call this
the E combiner.

The E combiner uses three candidate commitment schemes, C0, C1 and C2. Specifically,
the E combiner is the copy combiner applied to three cascades of pairs of candidate schemes:

E(C0, C1, C2) = (C0 ◦ C1)||(C1 ◦ C2)||(C2 ◦ C0)

Theorem 5. The D and E combiners are robust for the Binding and Hiding specifications
of single round, length-uniform commitment schemes.

Proof: Cascade is a robust combiner of single round, length-uniform commitment schemes,
for the hiding specification, and preserves binding (Lemma 3). The copy combiner is robust
for binding and preserves hiding (Lemma 4). ut

The E combiner extends to a (k, 2k− 1)-robust combiner, for any k ≥ 2, by applying the
copy combiner over all cascades of k different schemes (out of the set of 2k − 1 schemes);
however, the overhead may be excessive.

While we discussed the E combiner only for commitment schemes, it seems easy to de-
fine similar combiners for other schemes, e.g. for SignCryption [ADR02] and authenticated-
encryption [RBB03] schemes. We do not include the details as they are essentially the same as
presented above, and furthermore the resulting constructions do not seem to have any special
advantages.

7 Conclusions

We presented simple and efficient robust combiners for several basic cryptographic schemes;
some of these combiners were ‘folklore’, for many years. We believe that efficient robust com-
biners are an important requirement from practical cryptographic primitives; put differently,
we should prefer specifications with an efficient robust combiner. Additional research may find
robust combiners for other schemes, or prove that some schemes cannot be combined (in effi-
cient and robust manner). Extensions to the robust combiner concept are also of interest, such
as handling schemes with side channels (e.g. computational time and power requirements).
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