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Abstract

Recently there has been an interest in zero-knowledge protocols with stronger properties, such
as concurrency, unbounded simulation soundness, non-malleability, and universal composability.
In this paper, we show a novel technique to convert a large class of existing honest-verifier zero-
knowledge protocols into ones with these stronger properties in the common reference string model.
More precisely, our technique utilizes a signature scheme existentially unforgeable against adaptive
chosen-message attacks, and transforms any Y-protocol (which is honest-verifier zero-knowledge)
into an unbounded simulation sound concurrent zero-knowledge protocol. We also introduce 2-
protocols, a variant of X-protocols for which our technique further achieves the properties of non-
malleability and/or universal composability.

In addition to its conceptual simplicity, a main advantage of this new technique over previous
ones is that it avoids the Cook-Levin theorem, which tends to be rather inefficient. Indeed, our
technique allows for very efficient instantiation based on the security of some efficient signature
schemes and standard number-theoretic assumptions. For instance, one instantiation of our tech-
nique yields a universally composable zero-knowledge protocol under the Strong RSA assumption,
incurring an overhead of a small constant number of exponentiations, plus the generation of two
signatures.

1 Introduction

The concept of a zero-knowledge (ZK) proof, as defined by Goldwasser, Micali, and Rackoff [32], has
become a fundamental tool in cryptography. Informally, if a prover proves a statement to a verifier in
7K, then the verifier gains no information except for being convinced of the veracity of that statement.
In particular, whatever the verifier could do after the ZK proof, it could have done before the ZK
proof, in some sense because it can “simulate” the proof itself. In early work, Goldreich, Micali and
Wigderson [31] showed that any NP statement could be proven in (computational) ZK. In another
early work, Goldreich, Micali and Wigderson [30] showed the usefulness of ZK proofs in multiparty
protocols, in particular, in having the parties prove the correctness of their computations. There has
been a great deal of work since then on all properties of ZK proofs. Here we focus on a few such
properties, namely, concurrency, non-malleability, simulation soundness, and universal composability,
with our main goal being to construct efficient protocols that achieve these properties.

The problem of concurrency was first discussed in Dwork, Naor and Sahai [21]. Informally, the
problem arises when many verifiers are interacting with a prover. An adversary controlling all the
verifiers may coordinate the timing of their messages so that a simulator would not be able to simulate
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the execution of the prover in polynomial time. Canetti et al. [11] showed that without additional
assumptions, such as timing constraints or a common reference string, logarithmic rounds are necessary
to achieve concurrent (black-box) ZK. Prabhakaran, Rosen, and Sahai [47] showed that logarithmic
rounds suffice. On the other hand, Damgard [17] showed that concurrent, constant-round ZK protocols
can be achieved in the common reference string model. Furthermore, Barak [1] showed that by using a
non black-box simulator, constant-round, concurrent protocols can be constructed in the plain model.!

The problem of malleability was first pointed out by Dolev, Dwork and Naor [20]. Roughly
speaking, the problem is that an adversary may be able to play a “man-in-the-middle” attack on a ZK
protocol, playing the role of the verifier in a first protocol, and that of the prover in a second protocol,
and such that using information from the first protocol he is able to prove something in the second
protocol that he could not prove without that information. A ZK protocol that does not suffer from
this problem is said to achieve one-time non-malleability (since the adversary only interacts with one
prover). Dolev, Dwork and Naor give a construction of a one-time non-malleable ZK protocol that
uses a polylogarithmic number of communication rounds. Katz [36] describes efficient protocols for
one-time non-malleable proofs of plaintext knowledge for several encryption schemes. His protocols
work in the common reference string model, and consist of three rounds and constant number of
exponentiations. However, since the witness extractor uses “rewinding,” the resulting protocols were
only proven secure in a concurrent setting with the introduction of timing constraints. Barak [2]
gives a construction of constant-round, one-time non-malleable ZK protocols in the plain model. His
construction uses a non-blackbox proof of security and is not very efficient. Sahai [50] provides a
definition for one-time non-malleability in the case of non-interactive ZK (NIZK) proofs. De Santis
et al. [19] generalize this to unbounded non-malleability of NIZK proofs, where even any polynomial
number of simulator-constructed proofs does not help an adversary to construct any new proof. (As
they do, for the remainder of this paper we will simply refer to this property as non-malleability,
leaving off the “unbounded” modifier.) Their definition is very strong in that (in some sense) it
requires a witness to be extractable from the adversary. Further, they introduce the notion of a
robust NIZK argument, which in addition to being non-malleable, requires the so-called “simulator”
of the zero-knowledge property to use a common reference string with the same distribution (uniform)
as the one used by the real prover. (Following [19], we call this the same-string ZK property.) Finally,
they give two constructions of non-malleable (and robust) ZK proofs for any NP language. In fact,
these proofs are non-interactive, and thus achieve concurrent (constant-round) ZK.

The notion of simulation soundness for NIZK proofs was introduced by Sahai [50] in the context
of chosen-ciphertext security of the Naor-Yung [42] encryption scheme. Informally, an NIZK proof
is one-time simulation sound if even after seeing a “simulated proof” (which could be of a false
statement) generated by the simulator, the adversary cannot generate a proof for a false statement.
Sahai notes that the Naor-Yung encryption scheme would be adaptive chosen-ciphertext secure if it
used a one-time simulation-sound NIZK proof. De Santis et al. [19] further generalized this notion
to unbounded simulation soundness. An NIZK proof is unbounded simulation sound if even after
seeing any polynomial number of simulated proofs, the adversary cannot generate a proof of a false
statement. The non-malleable NIZK protocols given in [19] are also unbounded simulation sound.

The notions of unbounded simulation soundness, non-malleability, and robustness extend naturally
to the case of interactive proof systems; we do this in Section 2. Informally, we say an interactive ZK
protocol is unbounded simulation-sound if the adversary cannot generate a proof of a false statement,
even after interacting with any number of (simulated) provers. (See MacKenzie et al. [41] for an
application of unbounded simulation sound ZK protocols in a threshold password-authenticated key
exchange protocol.) We say a ZK protocol is non-malleable, if there exists an efficient witness extractor

'His construction, however, only admits bounded concurrency, meaning that the number of sessions that the protocol
can execute concurrently and still retain its zero-knowledge property is at most a fized polynomial in the security
parameter.



that successfully extracts a witness from an adversary if the adversary would cause the verifier to
accept, even when the adversary is also allowed to interact with any number of (simulated) provers.
We note that this definition of non-malleability implies that the ZK protocol is a proof of knowledge,
and also that it satisfies the notion of “witness-extended emulation” from Barak and Lindell [3].
Naturally, a non-malleable zero knowledge protocol is also unbounded simulation-sound. Finally, we
call a ZK protocol that is non-malleable and same-string, a robust ZK protocol.

Universal composability is a notion proposed by Canetti [9] to describe protocols that behave
like ideal functionalities, and can be composed in arbitrary ways. Universal composability can be
defined in either the adaptive model or the static model, denoting whether the adversary is allowed
to adaptively corrupt parties, or must decide which parties to corrupt before the protocol starts,
respectively. Universal composability is a very strong notion. For example, a universally composable
ZK (UCZK) protocol is both non-malleable (at least in an intuitive sense) and concurrent.

Canetti [9] proved that UCZK protocols do not exist in the “plain” model, where there is no
assumption about the system set-up. On the other hand, UCZK is possible in the common reference
string model, which is the model we focus on in this paper. As pointed out by Canetti et al. [12],
the non-malleable NIZK protocols of [19] are also UCZK protocols in the static corruption model.
Since they use non-interactive proof techniques and general NP reductions, these protocols are not
very efficient. Canetti and Fischlin [10] give a construction of a UCZK protocol for any NP language
secure in the adaptive model. Basically, they use a standard three-round ZK protocol for Hamiltonian
Cycle, except that they use universally composable commitments as a building block. Damgard and
Nielsen [18] use the same general ZK protocol construction as Canetti and Fischlin, but with a more
efficient UC commitment scheme.? Specifically, for a security parameter k, their UC commitment
scheme allows commitment to k£ bits using a constant number of exponentiations and O(k) bits of
communication. Their most efficient UC commitment schemes are based on the p-subgroup assump-
tion [43] or the decisional composite residuosity assumption (DCRA) [44]. Note that even with the
more efficient UC commitment scheme, this approach to constructing UCZK protocols tends to be
fairly inefficient, since a general NP reduction to Hamiltonian Cycle or SAT is used.

Our results. We show a new technique that allows us to convert certain types of honest-verifier ZK

protocols into ZK protocols with the stronger properties described above, i.e., concurrency, unbounded

simulation-soundness, non-malleability, robustness, and/or universal composability, in the common

reference string model. More precisely, we can

1. transform any X-protocol [15] (which are special three-round, honest-verifier protocols where the
verifier only sends random bits) into an unbounded simulation-sound ZK protocol; and

2. transform any Q-protocol (which we introduce in this paper as a variant of X-protocols) into a
non-malleable ZK protocol, and further into a universally-composable ZK protocol.
The main transformations (sufficient to achieve all results except for UCZK protocols secure in the
adaptive model) use a signature scheme that is existentially unforgeable against adaptive chosen-
message attacks [32], which exists if one-way functions exist [49], as well as a X-protocol to prove
knowledge of a signature. Note that one-way functions can be used to construct commitments, and
thus if one-way functions exist, 3-protocols exist for any NP statement (say, through a Cook-Levin
reduction, and a standard X-protocol for Hamiltonian Cycle). Hence the requirement of our main
transformations is the existence of one-way functions. On the other hand, certain signature schemes,
such as the Cramer-Shoup [16] scheme and the DSA scheme [38], admit very efficient X-protocols.
Using these schemes (and at the price of specific number-theoretic assumptions), we are able to
construct strengthened ZK protocols that are more efficient than all previously known constructions,
since we can completely avoid the Cook-Levin theorem [14, 39]. To further achieve a UCZK protocol

’In a later version of their paper, Damgard and Nielsen use SAT instead of Hamiltonian Cycle [18].



that is secure in the adaptive model, we also require a simulation-sound trapdoor commitment scheme,
a new type of commitment scheme that we introduce and which may be of independent interest. This
may be based on trapdoor permutations, but we show a more efficient version based on DSA.

We now sketch the intuition behind our technique. We first select two signature schemes, the
second of which being a one-time signature scheme [24].> The common reference string will contain
a randomly generated verification key vk for the first signature scheme, and hence neither the prover
nor the verifier will know the corresponding signing key. We then take an HVZK protocol II for an
NP statement ¢, and we modify it to IT*, which consists of (1) a witness indistinguishable (WI) proof
for the statement

“Either ¢ is true, or I know the signature for the message vk’ w.r.t. verification key vk,”

where vk’ is a freshly generated verification key for the one-time signature scheme that is also sent to
the verifier, and (2) a signature on the transcript of the WI proof using the secret key corresponding
to vk’. Informally, IT* is the “OR” of II and a proof of knowledge of a signature on vk’. It turns
out that if both IT and the proof of knowledge of the signature are so-called X-protocols [15] (see
Section 2.2), then IT* can be constructed from II very efficiently [15]. Furthermore, if the signature
scheme admits a very efficient proof, then the total overhead is very small. In particular, we show
that if the Cramer-Shoup signature scheme [16] or the DSA signature scheme [38] is used, then the
total overhead is only constant number of exponentiations plus the generation of two signatures.

After the transformation, the completeness of protocol II is obviously preserved. Protocol IT* is
also zero-knowledge, since a simulator generating the verification key in the common reference string
can simultaneously generate the corresponding signing key, and thus has no problem simulating IT*,
by the witness indistinguishability of II*. Furthermore, we show that II* is unbounded simulation
sound: If an adversary A is able to cause the verifier to accept a false statement after interacting with
a polynomial number of (simulated) prover instances, then we show how to construct a machine M,
which, having access to the signing oracle and interacting with A, manages to forge a signature.

In order to achieve non-malleability (and also robustness and universal composability) in this paper
we introduce Q-protocols, a variant of 3-protocols that may be of independent interest. In a nutshell,
an ()-protocol is similar to a Y-protocol but it assumes the existence of a common reference string
and allows for the extraction of a witness from a single execution of the protocol without rewinding.
As one example, we present an efficient (2-protocol for the discrete logarithm relation based on the
strong RSA assumption [4] and DCRA [44]. As another example, we present a “partial-extracting”
Q2-protocol for proving knowledge of the plaintext of an ElGamal ciphertext [23] based on the Decision
Diffie-Hellman assumption [5]. We show that if the original protocol II is an Q2-protocol, then the
transformed protocol IT* is non-malleable, basically by noting that if one could not extract a witness
for TI, then one could extract (and thus forge) a signature. Furthermore, the distribution of reference
strings output by the simulator in our construction is identical to the distribution of reference strings
in the real protocol. Therefore our construction is also robust ZK.

We then show that a non-malleable ZK protocol can be easily augmented to obtain a universally-
composable ZK protocol in the static model. Invoking this result, we show as a corollary that (an
“augmented” version of) IT* is also a universally-composable ZK protocol in the static model. Finally,
we show that we can further modify II* to be a universally composable ZK protocol in the adaptive
model (with erasures), while still maintaining efficiency. To achieve this we follow the approach of
Damgard [17] and Jarecki and Lysyanskaya [35] of using a trapdoor commitment to commit to the
first message of a Y-protocol, which is then opened when sending the last message. However, it turns
out that a “plain” trapdoor commitment scheme does not provide the properties we need to deal
with adaptive corruptions. We thus introduce a stronger type of trapdoor commitment scheme, which

3The second signature scheme may be the same as the first, although for greater efficiency, a signature scheme that
is specifically designed for one-time use may be employed.



we call a simulation-sound trapdoor commitment (SSTC) scheme. Furthermore, we demonstrate an
efficient construction of an SSTC scheme under the DSA assumption.

Organization of the paper. In Section 2 we present formulations of the various notions of in-
teractive ZK protocols in the common reference string setting, together with some of the building
blocks that we will be using in our protocols. In Section 3 we present the construction of unbounded
simulation-sound ZK protocols. In Section 4 we introduce §2-protocols and present the construction of
non-malleable (and robust) ZK protocols. In Section 5, we first show that non-malleable ZK implies
universally composable ZK assuming static corruptions, and then we demonstrate how to achieve
universally composable ZK in the adaptive model with erasures using an SSTC scheme. Finally,
in Section 6 we present some efficient instantiations of the constructions above. They include us-
ing the Cramer-Shoup signature scheme and/or the DSA signature scheme to construct unbounded
simulation-sound ZK protocols and non-malleable ZK protocols; an SSTC scheme based on DSA; an
efficient 2-protocol for the discrete logarithm relation (implying efficient non-malleable ZK and UCZK
protocols for discrete logarithm); and a generalized Q-protocol for proving knowledge of the plaintext
of an ElGamal ciphertext (implying an efficient non-malleable ZK protocol for ElGamal plaintext
knowledge).

2 Preliminaries and Definitions

All our results will be in the common reference string (CRS) model, which assumes that there is
a string uniformly generated from some distribution and is available to all parties at the start of
a protocol. Note that this is a generalization of the public random string model, where a uniform
distribution over fixed-length bit strings is assumed.

For a distribution A, we say a € A to denote any element that has non-zero probability in A,
i.e., any element in the support of A. We say a & A to denote a is randomly chosen according to
distribution A. For a set S, we say a & S to denote that a is uniformly drawn from S.

2.1 Zero-knowledge proofs and proofs of knowledge

Here we provide definitions related to zero-knowledge proofs and proofs of knowledge. They are based
on definitions of NIZK proofs from [19], but modified to allow interaction.

For a relation R, let Lgr = {z : (z,w) € R} be the language defined by the relation. For any
NP language L, note that there is a natural witness relation R containing pairs (z,w) where w is the
witness for the membership of z in L, and that Lr = L. We will use k as the security parameter.

For two interactive machines A and B, we define (4, B)(,)(z) as the local output of B after an
interactive execution with A using CRS o, and common input z. The transcript of a machine is simply
the messages on its input and output communication tapes. Two transcripts match if the ordered
input messages of one are equivalent to the ordered output messages of the other, and vice-versa. We
use the notation ¢r > tr’ to indicate tr matches tr'.

For some definitions below, we need to define security when an adversary is allowed to interact
with more than one instance of a machine. Therefore it will be convenient to define a common wrapper
machine that handles this “multi-session” type of interaction.* For an interactive machine A, we define
to be a protocol wrapper for A, that takes two types of inputs on its communication tape:

— (START, 7, z,w): For this message starts a new interactive machine A with label 7, common
input z, private input w, a freshly generated random input r, and using the CRS of .

“This is similar to the “multi-session extension” concept in Canetti and Rabin [13].



— (Ms@G,m,m): For this message sends the message m to the interactive machine with label 7 (if
it exists), and returns the output message of that machine.

We define the output of to be a tuple (z,tr,v), where x is the common input (from the START

message), tr is the transcript (the input and output messages A) and v is the output of A. (In

particular, if A is a verifier in a zero-knowledge protocol, this output will be 1 for accept, and 0 for

reject.) We say 1 is the wrapper of A that ignores all the subsequent START messages after seeing

the first one. Effectively, 1 is a “single-session” version of A.

We say two interactive machines B and C are coordinated if they have a single control, but two
distinct sets of input/output communication tapes. For four interactive machines A, B, C, and D we
define ({4, B),(C, D))[4] as the local output of D after an interactive execution with C and after an
interactive execution of A and B, all using CRS o. Note that we will only be concerned with this if
B and C are coordinated.

We note that all our ZK definitions use black-box, non-rewinding simulators, and our proofs of
knowledge use non-rewinding extractors.

Definition 2.1 [Unbounded ZK Proof] Il = (D,P,V,S = (S1,82)) is an unbounded ZK proof

(resp., argument) system for an NP language L with witness relation R if D is an ensemble of

polynomial-time samplable distributions, P, V, and Sy are probabilistic polynomial-time interactive

machines, and S1 is a probabilistic polynomial-time machine, such that there exist negligible functions

a and B (the simulation error), such that for all k,

Completeness For all z € L of length k, all w such that R(xz,w) = 1, and all o € Dy, the probability
that (P(w), V)[s)(z) = 0 is less than a(k).

Soundness For all unbounded (resp., polynomial-time) adversaries A, if o & Dy, then for all v ¢ L,
the probability that (A,V)[,1(z) = 1 is less than a(k).

Unbounded ZK For all non-uniform probabilistic polynomial-time interactive machines A, we have
that | Pr[Expt 4(k) = 1] — Pr[Expt§ (k) = 1]| < B(k), where the experiments Expt 4(k) and ExptS (k)
are defined as follows:

Expt 4 (k) : Expt5, (k) :
o & Dy (0,7) < S (1F)
Return <, Alo] Return (| S'(7) |, A)[+]
where 8'(1) runs as follows on common reference string o, common input = and private input w:
if R(z,w) =1, 8'(7) runs Sa(7) on common reference string o and common input x; otherwise
S'(1) runs Suun, where Spun s an interactive machine that simply aborts.>

We point out that this definition only requires the simulator to simulate a valid proof, which
is implemented by having S’ have access to the witness w and only invoking S, when w is valid.%
However, Sy does not access the witness and will simulate a proof from the input z only.

Definition 2.2 [Same-String Unbounded ZK] II = (D,P,V,S = (51,82)) is a same-string un-
bounded ZK argument system for an NP language L with witness relation R if Il is an unbounded ZK
argument system for L with the additional property that the distribution of the reference string output
by S1(1%) is ezactly Dy.

We only define same-string unbounded ZK arguments since, as shown in [19], any protocol that is
same-string unbounded ZK must be an argument, and not a proof.

SWithout loss of generality, we assume that if the input to P is not a witness for the common input, P simply aborts.

5 A must supply a witness, since P is restricted to polynomial time, and thus may not be able to generate a witness
itself. This may seem odd compared to definitions of standard ZK that assume an unbounded prover, but it does seem to
capture the correct notion of unbounded ZK, and in particular does not allow A to test membership in L. See Sahai [50]
for more discussion.



The following defines unbounded simulation-sound zero-knowledge (USSZK). This has been useful
in applications. In particular, as shown in [50], the one-time version suffices for the security of a (non-
interactive) ZK protocol in the construction of adaptive chosen-ciphertext secure cryptosystems using
the Naor-Yung [42] paradigm. We directly define the unbounded version, needed in other applications
such as threshold password-authenticated key exchange [41].

Definition 2.3 [Unbounded Simulation-Sound ZK]
II=(D,P,V,S =(51,82)) is an unbounded simulation-sound ZK proof (resp., argument ) system for
an NP language L if 11 is an unbounded ZK proof (resp., argument) system for L and furthermore,
there exists a negligible function o such that for all k,
Unbounded Simulation Soundness
For all non-uniform probabilistic polynomial-time adversaries A = (A1, As), where Ay and As are
coordinated, we have that Pr[Expt 4(k) = 1] < a(k), where Expt4(k) is defined as follows:
Expt 4 (k) :
(0,7) < S (1F)
(2, tr,0)  ((S" (1) } Ar), (A2, [V] )iy
Let @ be the set of transcripts of machines in
Return 1iff b=1, ¢ ¢ L, and for all tr' € Q, tr A tr'
where 8"(7) runs as follows on CRS o, common input x and private input w: S"(7) runs So(7)
on CRS o and common input .

In the above definition, we emphasize that So may be asked to simulate false proofs for z & Lg,
since §” does not check whether (z,w) € R. The idea is that even if the adversary is able to obtain
acceptable proofs on false statements, it will not be able to produce any new acceptable proof on a
false statement.

The following defines non-malleable zero-knowledge (NMZK) proofs (resp., arguments) of knowl-
edge. If a protocol is NMZK according to our definition, then this implies the protocol is also a NMZK
in the explicit witness sense (as defined in [19]). Moreover, we show that the protocol is also UCZK
in the model of static corruptions. Also note that simulation soundness is implied by this definition.

Definition 2.4 [Non-malleable ZK Proof/Argument of Knowledge] Il = (D, P, V,S = (51, 82),
& = (&1,&2)) is a non-malleable ZK proof (resp., argument) of knowledge system for an NP language
L with witness relation R if II is an unbounded ZK proof (resp., argument) system for L and further-
more, &1 and &y are probabilistic polynomial-time machines such that there exists a negligible function
a (the knowledge error) such that for all k,

Reference String Indistinguishability The distribution of the first output of Si(1%) is identical

to the distribution of the first output of £1(1%).
Extractor Indistinguishability For any 7 € {0,1}*, the distribution of the output of 1 is iden-

tical to the distribution of the restricted output of 1, where the restricted output of 1
does not include the extracted value.

Extraction For all non-uniform probabilistic polynomial-time adversaries A = (A1, A2), where Ay
and Ay are coordinated machines, we have that |Pr[Expt§(k) = 1] — Pr[Expt4(k) = 1]| < a(k),
where the experiments Expt 4(k) and Expt§(k) are defined as follows:

Expt 4 (k) : Expt5 (k) -
(0,7) < S (1F) (0,71, 12) < & (1F)
(2, tr,0) = ((S"(1) [ A, (A2, V] i | (@t (b,w)) = ((S" (1) | Av), Az, [ E2(72) | D)o
Let @ be the set of transcripts Let @ be the set of transcripts
of machines in . of machines in .
Return 1 iff b =1 and Return 1iff b =1, (z,w) € R, and
for all tr' € Q, tr vk tr' for all tr' € Q, tr thtr'




where 8"(7) runs as follows on CRS o, common input x and private input w: S"(7) runs So(7)
on CRS o and common input .

In the above definition, as in the definition of USSZK protocols, we emphasize that So may be
asked to simulate false proofs for z ¢ L, since §” does not check whether (z,w) € R. The idea is
that even if the adversary is able to obtain acceptable proofs on false statements, it will not be able
to produce any new acceptable proof for which a witness cannot be extracted.

To conclude with the ZK definitions, we generalize the notion of robust NIZK in [19] to the
interactive setting.

Definition 2.5 [Robust ZK] II is a robust ZK argument of knowledge system for an NP language L
with witness relation R if 11 is a non-malleable and same-string unbounded ZK argument of knowledge
system for L.

2.2 -protocols

Here we overview the basic definitions and properties of X-protocols [15]

First we start with some definitions and notation. Let R = {(z,w)} be a binary relation and
assume that for some given polynomial p(-) it holds that |w| < p(|z|) for all (z,w) € R. Furthermore,
let R be testable in polynomial time. Let Lp = {z : (z,w) € R} be the language defined by the
relation, and for all x € Lg, let Wgr(z) = {w : (z,w) € R} be the witness set for z. For any NP
language L, note that there is a natural witness relation R containing pairs (z,w) where w is the
witness for the membership of z in L, and that Lp = L.

Now we define a ¥-protocol (A, B) to be a three move interactive protocol between a probabilistic
polynomial-time prover A and a probabilistic polynomial-time verifier B, where the prover acts first.
The verifier is only required to send random bits as a challenge to the prover. For some (z,w) € R, the
common input to both players is  while w is private input to the prover. For such given z, let (a,c, 2)
denote the conversation between the prover and the verifier. To compute the first and final messages,
the prover invokes efficient algorithms a(-) and z(-), respectively, using (z,w) and random bits as
input. Using an efficient predicate ¢(-), the verifier decides whether the conversation is accepting
with respect to z. The relation R, the algorithms a(-), z(-) and ¢(-) are public. The length of the
challenges is denoted tp, and we assume that tp only depends on the length of the common string z.

We will need to broaden this definition slightly, to deal with cheating provers. We will define Lp
to be the input language, with the property that Lr C L R, and membership in Ly may be tested in

polynomial time. We implicitly assume B only executes the protocol if the common input z € Lg.

All X-protocols presented here will satisfy the following security properties:

o Weak special soundness: Let (a,c,z) and (a,c,2') be two conversations, that are accepting for
some given z € Lg. If ¢ # ¢, then z € Li. The pair of accepting conversations (a,c, z) and
(a,d,2") with ¢ # ¢ is called a collision.

e Special honest verifier zero knowledge (SHVZK): There is a (probabilistic polynomial time)
simulator M that on input x € Lg generates accepting conversations with a distribution that is
indistinguishable” from when A and B execute the protocol on common input z (and A is given
a witness w for z), and B indeed honestly chooses its challenges uniformly at random.  The
simulator is special in the sense that it can additionally take a random string ¢ as input, and
output an accepting conversation for « where c¢ is the challenge. In fact, we will assume the
simulator has this special property for not only z € L, but also any = € Lg.

TOften this is required to be perfectly indistinguishable, but we generalize the definition slightly to only require
computational indistinguishability.



Specifically, there is a negligible function (k) such that for all non-uniform probabilistic polynomial-

time adversaries A = (Aj,A2), we have that | Pr[Expt 4(k) = 1] — Pr[Expt¥ (k) = 1]| < a(k),
where the experiments Expt 4(k) and Expt% (k) are defined as follows:

Expt 4 (k) : Expt’y (k) :
(.CL',U],S) <_-’41(116) (x7w7s) (_'Al(]-k)
If (z,w) & R return 0 If (z,w) ¢ R return 0
r & 40,1} c& {0,1}*
a <+ a(z,w,r) Return A (s, M(z,c))
c&{0,1}F
Return Az (s, (a, ¢, z(z,w,7,¢)))

Some of the ¥-protocols also satisfy the following property.

e Special soundness: Let (a,c,z) and (a,c,2') be two conversations, that are accepting for some
given z, with ¢ # ¢/. Then given z and those two conversations, a witness w such that (z,w) € R
can be computed efficiently.

A simple but important fact (see [15]) is that if a X-protocol is HVZK, the protocol is witness
indistinguishable (WI) [25]. Although HVZK by itself is defined with respect to a very much restricted
verifier, i.e. an honest one, this means that if for a given instance z there are at least two witnesses
w, then even a malicious verifier cannot distinguish which witness the prover uses.

In our results to follow, we need a particular, simple instance of the main theorem from [15]. Specif-
ically, we use a slight generalization of a corollary in [15] which enables a prover, given two relations
(Ry1, Ry), values (z1,29) € Lg, X Lg,, and corresponding 3-move -protocols ((41, B1), (Az, By)), to
present a 3-move X-protocol (A,y, Byr) for proving the existence of a w such that either (z1,w) € Ry
or (z2,w) € Ry. We call this the “OR” protocol for ((A1, By), (A2, B2)),

We will describe the protocol assuming the challenges from (A;, B1) and (Ag, Be) are of the same
length. This can easily be generalized, as long as the challenge length in the combined protocol is at
least as long as the challenges from either protocol. The protocol consists of (A1, B1) and (Asg, Bs)
running in parallel, but with the verifier’s challenge ¢ split into ¢ = ¢; @ c2, with ¢; as the challenge
for (A1, B1), and co as the challenge for (Ag, Bo).

The protocol for A,, is as follows: Without loss of generality, say A,, knows w such that (z,,w) €
R;. Let My be the simulator for Sy. Then A, runs Ms(z2) to generate (m,e,z). It sends the first
message of (A1, By), along with m as the first message of (Ag, By). On challenge ¢, it chooses ¢2 = e,
and ¢; = ¢ ® cy. It is able to provide the final response in (A, B1) because it knows w, and the final
response in (Asg, Bo) is simply z. The final message of A, includes c; along with the final responses
for (Al,Bl) and (AQ,BQ).

We note that if (Ao, Bo) satisfies special soundness, then (A,,, B,,) satisfies the following property.

e Half-weak special soundness: Let (a,c,z) and (a,c’,2') be two conversations, that are accepting
for some given (z1,3), with ¢ # ¢’. Then either there exists a w; such that (z1,w;) € Ry or
given z and those two conversations, a witness wy such that (z2,ws) € Re can be computed
efficiently.

For two X-protocols, (A1, By) and (Ag, Bs), let (A1, B;) V (A, By) denote the “OR” protocol for
((A1, B1), (A2, Bp)).
2.3 Signature schemes
A signature scheme SIG is a triple (sig-gen, sig_sign, sig_verify) of algorithms, the first two being prob-

abilistic, and all running in polynomial time (with a negligible probability of failing). sig_gen takes as
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prover verifier

(vk!, sk') < sig_gen, (1¥) vk’ R

SR (z) v SRk (uk')

S

s « sig_sign, (sk’, transcript) . sig-verify, (vk', transcript) 21

Figure 1: USS[R;,C] (z): An unbounded simulation-sound ZK protocol for relationship R with CRS vk

(drawn from the distribution sig_geny(1¥)), and common input z. The prover also knows the witness
w such that R(z,w) = 1.

input 1% and outputs a public key pair (sk,vk), i.e., (sk,vk) < sig_gen(1*). sig_sign takes a message m
and a secret key sk as input and outputs a signature o for m, i.e., o < sig_sign(sk, m). sig_verify takes
a message m, a public key vk, and a candidate signature o’ for m as input and returns the bit b =1
if o’ is a valid signature for m for the corresponding private key, and otherwise returns the bit b = 0.
That is, b < sig_verify(vk,m,c’). Naturally, if o < sig_sign(sk,m), then sig verify(vk,m,c) = 1.

Security for signature schemes We specify existential unforgeability against adaptive chosen-
message attacks [33] for a signature scheme SIG = (sig_gen, sig_sign, sig_verify). A forger is given vk,
where (sk,vk) < sig_gen(1*), and tries to forge signatures with respect to vk. It is allowed to query a
signature oracle (with respect to sk) on messages of its choice. It succeeds if after this it can output a
valid forgery (m, o), where sig_verify(vk,m,o) = 1, but m was not one of the messages signed by the
signature oracle. We say a forger (,q,€)-breaks a scheme if the forger runs in time #(k) makes g(k)
queries to the signature oracle, and succeeds with probability at least (k). A signature scheme SIG is
existentially unforgeable against adaptive chosen-message attacks if for all ¢ and ¢ polynomial in k, if
a forger (t,q, €)-breaks SIG, then € is negligible in k.

In a one-time signature scheme, security is formulated as above except that the adversary may
only query the signature oracle once, and we call it “existential unforgeability against chosen-message
attacks,” since the term “adaptive” only makes sense with multiple queries. We note that one-
time signatures scheme can be made very efficient since they don’t need public-key cryptographic
operations [24].

3 Unbounded Simulation-Sound ZK

We are now ready to present the first result achieved with our technique: An unbounded simulation-
sound zero-knowledge protocol for a relation R = {(z,w)}. We assume that we have the following
building blocks:

1. %R a B-protocol for the binary relation R.

2. SIGy = (sig_gen,, sig_sign, sig_verify,): a signature scheme secure against adaptive chosen-message
attack.

Ry = {(m, s) | sig_verifyy(vk, m,s) = 1}: a binary relation of message-signature pairs.
4. XFuk: 3 M-protocol with the special soundness property for the binary relation R,.

5. SIG; = (sig_gen,, sig_sign,, sig_verify;): a one-time signature scheme secure against chosen-message
attack.
The protocol USS[RUk] (z) is shown in Figure 1. It assumes the prover and verifier share a common

input z to a X-protocol £, and the prover knows w such that (z,w) € R. The CRS ¢ is the verification
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key vk of a signature scheme that is existentially unforgeable against adaptive chosen-message attacks.
The prover generates a pair (vk', sk’) for a one-time signature scheme, and sends vk’ to the verifier.
After this, vk’ is the common input to a Z-protocol X+ satisfying special soundness. Then the prover
uses the OR construction for X-protocols to prove that either z € Ly or it knows a signature for vk’
under verification key vk. (Note that since %+ satisfies special soundness, intuitively it is a proof of
knowledge.) Finally, the prover signs the transcript with sk’, and sends the resulting signature to the
verifier.
Now we must describe § = (51, Sa) for USS[RU,C] (z). S1(1%) first generates signature keys

(vk, sk) « sig_geny(1¥) and outputs (o, 7) = (vk, sk). Sa(sk) first checks that common input z € Lp.
If not, it aborts. Otherwise it runs the protocol as normal, except generating s’ < sig_sign,(sk, vk’),
and using knowledge of s’ to complete the X-protocol L%(z) v L8k (vE').

Theorem 3.1 The protocol USS[R;,C] () is a USSZK argument.

Proof: Completeness: Straightforward.

Unbounded ZK: By inspection, S;(1¥) produces exactly the same distribution as the real protocol.
Then by the fact that §'(7) runs Sy(7) only when (z,w) € Lg, and by the fact that $f(z) v Xk (vk!)
is a Y-protocol, and thus witness indistinguishable, unbounded ZK follows by a straightforward hybrid
argument.

Unbounded simulation soundness: For an adversary A = (A;, A2), recall the experiment Expt 4 (k)
in the definition of unbounded simulation sound ZK. Let p = Pr[Expt 4(k) = 1]. Our goal is to show
that p is negligible.

Say a forgery occurs if V accepts, and the one-time verification key vk’ in that session was used
by S2(7), but on a different transcript. Let Expt)(k) be Expt 4(k) except that if a forgery occurs, the
experiment halts and fails. Let p’ = Pr[Exptl (k) = 1].

First, by the existential unforgeability property of SIG;, we show that the difference between p and
p' is negligible. We do this by constructing a non-uniform probabilistic polynomial-time attacker By
that can break SIG; with probability €; = %(p —p'), where c is the number of sessions As starts with
the simulator in Expt 4(k). The input to B; is a verification key vk’ and a one-time signature oracle
OSign,.. By chooses d & {1,...,c}, and then runs the experiment Expt 4(k), running the simulator
and verifier as normal, except for inserting vk’ into the dth instance of Sa(7) and using OSign,;s to
perform the signature operation for vk’ in that instance. If a forgery occurs with verification key vk,
B halts and outputs the forgery, i.e., the transcript and signature provided by A5 for its session with
V. The view of A in this slightly modified experiment is the same as the view of A in Expt 4(k) until
a forgery occurs. Thus, since a forgery occurs with probability p — p’, and since if a forgery occurs,
B; will break the SIG; on vk’ with probability %, B breaks SIG; with probability e; = %(p —p).

Now by the existential unforgeability property of SIG;, we show that p’ is negligible. We do this
by constructing a non-uniform probabilistic polynomial-time attacker By that can break SIGy with at
most 2c¢ signature oracle queries (again, where ¢ is the number of sessions Ag starts with the simulator
in Expt 4(k)), and with probability at least ey = (p)2 —27%.8 The input to By is a verification key vk
and a signature oracle OSign,;. By runs experiment Expt}4(k), running the simulator and verifier as
normal, except for inserting vk into the CRS and using OSign,,;, to perform all signature operations
with respect to vk. Also, before V sends a challenge to As, By forks the experiment and continues
independently in each sub-experiment (thus giving independent random challenges to A3). By then
examines the output (z,%r1,b1) and (z,trq,be) in each sub-experiment. If by = by = 1 and z ¢ Lg

8The following argument is a simple version of the Forking Lemma, [46], although it does not follow directly, since we
are using a signature oracle, and the adversary’s output is not actually a signature from that scheme, but a 3-protocol
of knowledge of the signature. Consequently, rather than trying to force our results into the notation of [46] and prove
why the Forking Lemma should hold in our situation, we simply prove our result directly.
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(call this a successful sub-experiment), and also the challenges in each sub-experiment are distinct,
then since ©%(z) v ©fv* (vk') satisfies half-weak special soundness, By can generate a signature s on
vk’ with respect to key vk using the two transcripts ¢r; and tro. (Here vk’ is the one-time verification
key sent in the first message of both ¢r; and tro. By the definition of Expt}4(k), vk’ could not have
been used in any instance of Sy in either sub-experiment.) Thus By generates a signature (on a new
message vk') with respect to vk, and breaks SIGy. By inspection, By makes at most 2c calls to the
signature oracle.

Now we determine the success probability of By. First note that for each sub-experiment, the
view of A is perfectly indistinguishable from the view of A in ExptY(k), and thus the probability of
success in each sub-experiment is p’. Second, note that the probability of a random collision on k-bit
challenges is 27%. Then we can determine the success probability of By using Lemma A.1, as follows.
A is a random variable denoting possible runs of experiments up to the challenge from V. B, is a
random variable denoting the remainder of a run of an experiment after initial part a in the support of
A. For any a in the support of A, and for any by and bs in the support of By, the predicate Coll, (b1, b2)
is defined to be true if the challenges from V are equal in b; and bs. Thus a pair (a,b) indicates a
full run of the experiment, the predicate ¢(a,b) indicates success in the experiment, and the predicate
¢(a, by, be) indicates success in each sub-experiment corresponding to runs (a,b;) and (a, be), with the
challenges from V in b; and by being distinct. Therefore ¢(a, by, bs) indicates that By succeeds, and
hence by Lemma A.1, we see that By succeeds with probability at least eg = (p)? — 2k, 0

4 Non-malleable ZK

Our general NMZK construction will be similar to the USSZK construction above, but with a -
protocol replaced by an Q-protocol, defined here.

4.1 Q-protocols

An Q-protocol (A, B)[y) for a relation R = {(z,w)} and CRS o, is a ¥-protocol for relation R with

the following additional properties.

1. For a given distribution ensemble D, a common reference string ¢ is drawn from Dy and each
function a(-), z(-), and ¢(-) takes o as an additional input. (Naturally, the simulator M in the
definition of Y-protocols may also take o as an additional input.)

2. There exists a polynomial-time extractor & = (£1,&>) such that the reference string output by
£1(1%) is statistically indistinguishable from Dj. Furthermore, given (o, 7) < £1(1¥), if there
exists two accepting conversations (a, ¢, z) and (a,c,z') with ¢ # ¢ for some given z € Lg, then
& (z, T, (a,c,z)) outputs w such that (z,w) € R.°

Informally, one way to construct Q2-protocols is as follows. Our common reference string will consist

of a random public key pk for a semantically-secure encryption scheme. Then for a given (z,w) € R,

we will construct an encryption e of w under key pk, and then construct a ¥-protocol to prove that

there is a w such that (z,w) € R and that e is an encryption of w.

As with X-protocols, we will use the V notation to denote an “OR” protocol, even if one or both
of these protocols are {2-protocols.

9Notice that this extraction property is similar to that of weak special soundness of S-protocols, where there exists
an accepting conversation even for an invalid proof, but two accepting conversations guarantees that the proof is valid.
Here, the extractor can always extract something from any conversation, but it might not be the witness if there is
only one accepting conversation. However, having two accepting conversations sharing the same a guarantees that the
extracted information is indeed a witness.
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prover verifier

vk
Qfg,] (z) Vv Dok (vk!)

(vk', sk') « sig_gen; (1%)

S

s < sig_sign, (sk', transcript) . sig_verify; (vk', transcript) 2

Figure 2: NM[R;,C, o] (z): A non-malleable ZK protocol for relationship R with common reference string
vk,o') where ¢’ is drawn from the distribution associated with Q£ and common input z.
a

4.2 NMZK protocol
Let QF

[of
z. Let NMﬁk’Uq(z) be the USS[R;,C] (x) protocol with Xf(z) replaced by Q[Ifr,](:v). (For every o', the
resultant protocol is also a ¥-protocol.) Let £q = (£n,1,€0,2) be the extractor for Qf{f_,] (z). The

protocol NM[R;,C’U,] (z) is shown in Figure 2.

](m) be an Q-protocol for a relation R with common reference string ¢’ and common input

We now describe § = (81, Sz) for NM[%,C,U,]. S1(1%) generates signature keys (vk, sk) < sig_geny(1¥)
and then sets o’ & Dy, where D is the distribution ensemble for Q[Iff,}. Next, S1(1%) outputs ((vk, o), sk).

Sy(sk) first checks that common input z € Lg. If not, it aborts. Otherwise it runs the protocol as
normal, except generating s’ < sig_sign,(sk,vk’), and using knowledge of s’ to complete the protocol
Qf}f,] (z) v SRk (vE!).

Finally, we must describe £ = (&1,&2) for NM[}fjk,U,] (z). &1(1%) first generates signatures keys
(vk, sk) < sig_geng(1¥), first generates (o', 7') + £q,1(1%), and then outputs ((vk,o’), sk, 7'). Ea(7')
simply runs as V until V outputs a bit b. If b = 1, & (') takes the conversation (a,c,z) produced
by Q[Iff,] (z), and generates w < Eqo(z, 7, (a,c, 2)). If b =0, E(7') sets w « L. Then E(7') outputs
(b, w).

Theorem 4.1 The protocol NM[}f}k,U,] (z) is an NMZK argument of knowledge for the relation R.

Proof: Completeness: Straightforward.

Reference string indistinguishability: Straightforward.

Extractor indistinguishability: It follows from the extractor indistinguishability of Qf}r,] (z).
Unbounded ZK: By inspection, S;(1*) produces exactly the same distribution as the real protocol.
Then by the fact that S'(7) runs So(7) only when (z,w) € Lg, and by the fact that for every o’,
Q[Ii,] (z) V LBk (vE') is a S-protocol, and thus witness indistinguishable, unbounded ZK follows by a
straightforward hybrid argument.

Extraction: For an adversary A = (A;, As), recall the experiments Expt 4(k) and Expt§(k) in the
definition of non-malleable ZK. Let p; = Pr[Expt 4(k) = 1] and py = Pr[Expt§(k) = 1]. Our goal is to
show that |ps — p1| is negligible.

Say a forgery occurs if V or £ accepts, and the one-time verification key vk’ in that session was
used by S(7), but on a different transcript. Let Expty(k) be Expt 4(k) except that if a forgery occurs,
the experiment halts and fails. Let p| = Pr[Expty(k) = 1]. Similar to the proof of Theorem 3.1,
we can show that p| = p; — ce1, where ¢ is the number of sessions As starts with the simulator in
Expt 4(k), and €; is negligible.

Now let Expti‘(k) be Expti(k) except that if a forgery occurs, the experiment halts and fails. As
above, we can show that pf, = py — cea, where €3 is negligible. (Here we use the fact that by extractor
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indistinguishability, the number of sessions Ay starts with the simulator in Expt (k) is equal to the
number of sessions Ajg starts with the simulator in Expt 4(k).)

Let p" be the probability in Expt% (k) that £(7) outputs (1,w) for a session with common input
z, and (z,w) ¢ R. Using the extraction property of fo,}(m), as in the proof of Theorem 3.1 one
can show that there is a non-uniform probabilistic polynomial-time breaker By that makes at most
2¢ oracle queries and breaks SIGy with probability at least ¢y = (p”)? — 2¥. Thus by the existential
unforgeability of SIGg, p” is negligible.

By extractor indistinguishability again, the probability of producing output b = 1 with a unique
transcript in Exptl (k) and Expt%(k) is the same, so p, = p| — p".

Then p; = p) + ce1 = ph + p" + ce1 = pa — cea + cer + p", s0 |pa — p1| < cer + cez + p”, which is
negligible. 0

We observe that the construction for protocol NM[R;,C, a,}(m) is in fact same-string unbounded ZK,

and thus we have the following.

Corollary 4.2 The protocol NMﬁ}k,U,] (z) is a robust ZK argument of knowledge for the relation R.

5 Universally Composable ZK

First we review the framework of universal composability [9]. Then we prove that any NMZK protocol
with certain simple properties can be augmented to be UCZK in the model of static corruptions. This
result implies as a corollary that a slight generalization of our protocol from the previous section can
be augmented to be UCZK in this model. Then we give a new construction that is UCZK in the
model of adaptive corruptions.

5.1 The universal composability framework

This framework was suggested by Canetti for defining the security and composition of protocols [9].
To define security in this framework, one first specifies an ideal functionality, describing the desired
behavior of the protocol using a trusted-party. Then one proves that a particular protocol operating
in the real world securely realizes this ideal functionality, as defined below. We briefly summarize this
framework: 10

e Communication model: We assume an asynchronous network, without guaranteed delivery
of messages. Further, we assume that the messages are authenticated, since authentication can
be added in standard ways (i.e., the Fayrg model in [9]).

e Entities: The basic entities involved are n parties P, ..., P,, an adversary A, and an environ-
ment Z. All the entities are modeled as probabilistic interactive Turing Machines.

e Corruptions: We will specify either static or adaptive corruptions, as in [9]. In the static
case, the adversary corrupts parties only at the onset of the computation; in the adaptive
case, the adversary chooses which parties to corrupt as the computation evolves. Once the
adversary corrupts a party, it learns all its internal information, including the private input, the
communication history, and the random bits used, ezcept the information explicitly erased by
the party before the corruption. Once they are corrupted, the behavior of the parties is arbitrary,
or malicious.

e Real-life execution: At a high level, the execution of a protocol 7, run by the parties in
the presence of A and an environment machine Z, with input z, is modeled as a sequence of

10The material in this section is taken from [9, 12, 13]; refer to these references for further detail.
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activations of the entities, with Z activated first. When Z is activated, it may write messages
on the other entities input tapes (and thus activate it next), and read messages from the other
entities output tapes. When A is activated, it may read messages from a party’s outgoing
communication tapes, and write a message to a party’s incoming communication tapes, thus
activating the party. It may also corrupt parties, as discussed above. When a party is activated,
it runs the protocol m. (See [9] for more detail on the exact description of all the activations.)
Finally, the environment outputs one bit, which is the output of the protocol.

For security parameter ¥ € N and input z € {0,1}*, let REAL, 4z denote the distribution
ensemble of random variables describing Z’s output when interacting with adversary A and
parties running protocol 7, with input z, security parameter k, and uniformly-chosen random
tapes for all the entities.

Ideal process: The security of the protocols is defined by comparing the real execution of
the protocol (as described above) to an ideal process in which an additional entity, the ideal
functionality F, is introduced; essentially, F is an incorruptible trusted party that is programmed
to produce the desired functionality of the given task. Additionally, the parties are replaced by
dummy parties, who do not communicate with each other, but instead have access to F. In this
idealized execution, again the environment is activated first, generating the inputs. Whenever
a dummy party is activated, it forwards its input to F. Let & denote the adversary in this
idealized execution. S can see the destinations of the messages between the parties and F, but
not the contents. (Again, see [9] for the exact description of the activations.) As in the real-life
execution, the output of the protocol execution is the one-bit output of Z.

Let IDEALF s z denote the distribution ensemble of random variables describing Z’s output
after interacting with adversary S in the ideal process for F, with input z, security parameter
k, and uniformly-chosen random tapes for all the participating entities (Z, S, and F).

Security: In this framework, a protocol w securely realizes an ideal functionality F if for any real-
life adversary A there exists an ideal-process adversary S such that no environment Z, on any
input, can tell with non-negligible probability whether it is interacting with A and parties running
7 in the real-life execution, or with § in the ideal process for . More precisely, two corresponding
binary distribution ensembles are indistinguishable, denoted REAL; 4 z ~ IDEALf s z in [9]
(meaning that for any d € N there exists kg € N such that for all ¥ > k¢ and for all inputs z,
|Pr[REAL, 4 z(k,2) ] — Pr[IDEALF s z(k,2) ]| < k~9).

The hybrid model: Protocols typically would invoke other sub-protocols. The hybrid model
is like a real-life execution, except that some invocations of the sub-protocols are replaced by
the invocation of an instance of an ideal functionality F; this is called the “F-hybrid model.”
Specifically, the model is identical to the real-life model, with the addition that besides sending
messages to each other, the parties may exchange messages with an unbounded number of copies
of F, where each copy is identified via a unique session identifier (sid). The communication
between the parties and each one of these copies mimics the ideal execution.

Let HYBf’ 4,z denote the distribution ensemble of random variables describing the output of Z,
after interacting with A and parties running protocol 7 in the F-hybrid model. Now let p be a
protocol that secures realizes F. The composed protocol 7 is constructed by replacing the first
message to F in 7w by an invocation of a new copy of p, with fresh random input, the same sid,
and with the contents of that message as input; each subsequent message to that copy of F is
replaced with an activation of the corresponding copy of p, with the contents of that message as
new input to p.
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Functionality F%,
fézK proceeds as follows, running with security parameter k, a prover P, a verifier VV, and an

adversary S:

e Upon receiving (zk-prover, sid, z,w) from P: If R(z,w) then send (ZK-PROOF, sid, z)
to V and S and halt. Otherwise, ignore.

Figure 3: The zero-knowledge functionality (for relation R)

e The composition theorem: The composition theorem basically says that if p secure realizes
F in the G-hybrid model, for some functionality G, then an execution of the composed protocol
7P, running in the G-hybrid model, “emulates” an execution of protocol 7 in the F-hybrid model.
That is, no environment machine Z can distinguish whether it is interacting with A and 7 in
the G-hybrid model, or it is interacting with S and 7 in the F-hybrid model. In other words,
HYBY, , ; ~ HYBZ ¢ ;.

The zero-knowledge functionality. We now recall the ideal ZK functionality [9]. As a convention,
all the messages from the parties to the ideal functionality take form (action, sid, ...), where action is in
lower case, and all messages from the ideal functionality take form (OBJECT, sid, ...), where OBJECT
is in upper case. The functionality is given in Figure 3. In the functionality, parameterized by
a relation R, the prover sends to the functionality the input = together with a witness w. If R(z,w)
holds, then the functionality forwards z to the verifier.!!  As pointed out in [9], this is actually a
proof of knowledge in that the verifier is assured that the prover actually knows w.

One shortcoming of the above formulation is that we will be designing and analyzing protocols in
the common reference string model, and so they will be operating in the ngS—hybrid model, where
«7:(7:)113 is the functionality that, for a given security parameter k, chooses a string from distribution
Dy and hands it to all parties. However, directly realizing FézK in the ngS—hybrid model and using
the universal composition theorem would result in a composed protocol where a new instance of the
reference string is needed for each proof, which 1) is extremely inefficient, and 2) does not reflect the
notion of the CRS model, where an unbounded number of protocol instances would use the same copy
of the string. Canetti and Rabin [13] suggested the following notion to cope with this problem:

e Universal composition with joint state: Let F and G be ideal functionalities, and let F
denote the “multi-session extension of F,” in that F will run multiple copies of F, where each
copy is identified by a special sub-session identifier (ssid). Now let m be a protocol in the F-
hybrid model, and let p be a protocol that securely realizes F in the G-hybrid model. Then
construct the composed protocol 77! by replacing all the copies of F in 7 by a single copy of
p- The universal composition with joint state theorem states that lPl, running in the G-hybrid
model, correctly emulates 7 in the F-hybrid model.

The definition of ﬁ{zK, the multi-session extension of FZ, is shown in Figure 4. Note the two
types of indices: the sid, which, as before, differentiates messages to fézK from messages sent to other
functionalities, and ssid, the sub-session ID, which is unique per input message (or proof).

' As in [12], we assume there is a symbol | such that for any relation R and any string z, (z, 1) ¢ R.
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Functionality F2

ﬁézK proceeds as follows, running with security parameter k, parties Pi,..., P,, and an ad-
versary S:

e Upon receiving (zk-prover, sid,ssid, P;, Pj,z,w) from P;: If R(z,w) then send
(ZK-PROOF, sid, ssid, P;, P;,z) to P; and S and halt. Otherwise, ignore.

Figure 4: The multi-session zero-knowledge functionality (for relation R)

5.2 NMZK implies UCZK

Let II be an NMZK protocol between a prover and verifier. We say Il is augmentable if the prover
sends the first message, and this message contains the common input z, along with auxiliary data
aux that may contain any arbitrary public values. (The reason for aux is discussed below.) We will
show how to augment II with additional information in each message to allow it to be used between
two parties in the universal composability framework. This augmented protocol is denoted II, and is
constructed as follows.

For an instance of IT run between parties P; and P, set aux to (ssid, P;, P;), where ssid is defined
in the previous section, F; is the identity of the prover, and P; is the identity of the verifier.'? Then
the Zth prover message is formatted as (prv,, sid, ssid, P;, prv-data,), where prv, is the label for the
¢th prover message, and prv-data, is the data field containing the /th message sent by the prover in
II. Analogously, the /th verifier message is formatted as (very, sid, ssid, P;, ver-datay), where ver, is
the label for the £th verifier message, and ver-datay is the data field containing the £th message sent
by the verifier in II. Finally, before accepting, the verifier checks that aux corresponds to the values
(ssid, P;, Pj) outside the prover data field, and that aux was not used previously.

Theorem 5.1 Let IT = (D,P,V,Sn = (Su,1,Sn2),én = (€m1,€n2)) be an augmentable NMZK
protocol for a relation R. Then the augmented protocol 11 securely realizes functionality FLZ. in the
ngS—hybm'd model, assuming static corruptions.

Proof: Let A be an adversary that operates against protocol II in the ngS-hybrid model. We
construct an ideal process adversary (i.e., a simulator) S such that no environment Z can tell whether
it is interacting with A and II in the F8z5-hybrid model, or with S in the ideal process for F.

For simplicity, we will assume only one copy of ﬁézK is accessed by Z. Obviously we could duplicate
the actions of S for each copy of ﬁfK (differentiated by the sid value).

Simulator S generates (o, 71, 72) < €m,1(1¥), uses o as the common reference string for F&;4, and
stores 71 and T9.

Simulator S runs a simulated copy of A. Messages received from Z are forwarded to the simulated
A, and messages sent by the simulated A to its environment are forwarded to Z.

If S receives a message (ZK-PROOF, sid, ssid, P;, Pj, z) from ﬁgK, i.e., P; is uncorrupted and
wishes to perform a ZK proof for common input z, then § simulates P; in II. In particular, S sets
the prover data field in the messages of P; using protocol Syo(7i). If P; is also uncorrupted, then
S simulates P; in I, setting the verifier data field in the messages of P; using the actual verifier

12This auxiliary data aux is necessary since NMZK allows copying proofs exactly, but the ZK functionality does not,
and thus we need some way to make every proof distinct.
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protocol. In this case, when the simulated P; receives the final message from the simulated P;, S
forwards (ZK-PROOF, sid, ssid, P;, P;, z) to the actual uncorrupted P;.

If A, controlling a corrupted party P;, starts an interaction as a prover with an uncorrupted party
P;j using ssid, then S learns common input z (since it is included in the first message) and simulates
P; in I1. In particular, it sets the verifier data field in the messages of P; using protocol Ema(m2). At
the end of the interaction &y 2(72) will output (b, w). If b =1, S sends (zk-prover, sid, ssid, P;, P;, z, w)
to ng; otherwise, it sends nothing. Then it forwards any response from ﬁfK to P;.

Now we show that HYB %SZ ~IDEALgp s 2

First we define a new experiment Mix4 z(k). The new experiment runs simulated copies of Z
and A. Messages received from Z are forwarded to the simulated A, and messages sent by the
simulated A to its environment are forwarded to Z. The simulator for II, S ;(1¥) is run to pro-
duce (o,7), and queries to ngs are answered with . If an uncorrupted party P; receives input
(zk-prover, sid, ssid, P;, Pj, z,w) from Z with (z,w) € R it sets the prover data field of its messages
by running protocol Sm2(7) with reference string o, and common input . An uncorrupted party P;
responds to a prover as in the actual verifier protocol in II. The output of each experiment is the
output of Z.

Let MIX 4,z denote the distribution ensemble of random variable describing the outputs of Mix 4 z (k).

D
By the unbounded ZK property, we have HYB;:CESZ ~ MIX 4,z- To see this, note that we could

[iad)

construct an adversary A’ that takes a reference string and runs the protocol I, except that A’ calls

a protocol wrapper with label aux = (ssid, P;, P;) when simulating uncorrupted parties acting as

provers. If the wrapper contains an actual prover, then the distribution of outputs of A’ will be the
D

same as HYBngSZ, and if the wrapper contains a simulator, then the distribution will be the same as
Mix 4.z (k).
Now we must show that MIX 4 z ~ IDEAL FR S 2 This will follow from the unbounded extraction
ZK©>»

property (see Lemma 5.3). Say that the two distributions can be distinguished with probability (k).
Since both Mix 4 z(k) and S run the same simulation for the prover, and the output messages of the
extractor run by S are perfectly indistinguishable from the output messages of the verifier, the only
difference comes from when the extractor outputs an incorrect witness for a session started by A, and
thus Z receives an output message (indicating a correct proof) in Mix4 z (k) but not when interacting
with S. (Note that the transcripts of corrupted prover/uncorrupted verifier sessions will never be the
same as transcripts of uncorrupted prover/corrupted verifier sessions because of the auxiliary data
aux.) Let b be the vector corresponding to simulated verifier sessions, with b = 1 corresponding to
whether Z receives an output message. Then the statistical difference between the distribution of
vectors b resulting from Mix 4,z (k) and vectors b resulting from S is at least v(k).

Now we construct an adversary A’ that takes a reference string and runs Mix 4, z(k) except that
it uses the given reference string instead of generating a new one, and that it calls a “simulator”
protocol wrapper when simulating uncorrupted parties acting as provers with corrupted verifiers, and
a “verifier” protocol wrapper when simulating uncorrupted parties acting as verifiers with corrupted
provers. Then in Expt 4 (k), the vector b will have the same distribution as the one resulting from
Mix 4. z(k). On the other hand, in Exptil} (k), the vector b will have the same distribution as the one
resulting from S, up until Z receives an output message in Mix 4 z (k) that would not have appeared in
S. Tt should be clear that the distributions of b in the two experiments are statistically distinguishable
with the same probability as the distributions of b resulting from Mix 4 z(k) and S, i.e., y(k). By the
unbounded extraction property, y(k) is negligible. 0

Definition 5.2 [Unbounded-Extraction NMZK Proof/Argument of Knowledge]
= (D,P,V,8 = (81,8), = (£1,&)) is an unbounded-extraction non-malleable ZK proof (resp.,
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argument) of knowledge system for an NP language L with witness relation R if I is an NMZK proof
(resp. argument) system for L and furthermore, there exists a negligible function (k) such that for
all k,

Unbounded Extraction For all non-uniform probabilistic polynomial-time adversaries A = (A1, A2),
where Ay and Ay are coordinated machines, we have that 3, 1o 11+ | Pr[Expt (k) = v]—Pr[Expt 4(k) =

v]| < B(k), where the experiments Expt 4(k) and Expt§ (k) are defined as follows:

Expt 4 (k) : Expt5 (k) :

J(—Sl(lk) (U,Tl,’l'g)(—gl(].k)
@, 67,8) « ((S"(r) b A (Ao [V Do) | @7, (B,8) = (8" (1) | Av), (o, [ E2(m2) iy
Let @@ be the set of transcripts Let @Q be the set of transcripts

of machines in . of machines in .
For all i, For all 7,

if r' € Q, tr[i] satr’ if (z[i],w[i]) € R or Itr' € Q, tr[i] va tr'

then b[{] + 0 then b[i] « 0

Return b Return b

where we use the vector output notation to denote that the ith instance started in a wrapper
protocol returns (x[i],tr(i],v[i]), where v[i] is the output of A, and where 8"(7) runs as
follows on common reference string o, common input x and private input w: 8" (1) runs So(7)
on common reference string o and common input T.

Lemma 5.3 Let IT = (D,P,V,S = (51,82),€ = (€1,&2)) be an NMZK protocol for a relation R.
Then II is an unbounded extraction NMZK protocol for R.

Proof: First notice that since V and &;(72) have exactly the same behavior, there will be an exact
correspondence of vectors returned in the two experiments, except that in some cases, some bits that
were 1 in Expt 4 (k) would be 0 in Expt& (k). Let Ba(k) = > vefo} | Pr[Expt (k) = v] —Pr[Expt 4 (k) =
o]l |

Now we perform a hybrid argument. Let Expti’] (k) be the same as Expt§(k) except that “For
all 7”7 is replaced with “For all i < j.” Let £ denote the maximum number of sessions of £3(72)
started by Ag, and notice that ¢ is polynomial in k. Then Expti’o(k) is the same as Expt4(k) and
Expti’é(k) is the same as Expt5(k). By a telescoping argument, 25:1 > ve{0,1}* |Pr[Expti’J(k) =
v] — Pr[Expti’j_l(k) =v]| > Ba(k). Now let Expti’j’l(k) be the same as Expt5 (k) except that “For all
i” is replaced with “For ¢ = j.” Because V and &£3(72) have exactly the same behavior, it is easy to

. ;1 Ej—1,1
verify that Z§:1 > vef0,1}r | Pr[Expt” (k) = v] — Pr[Expt;’ ™ (k) = v]| > Ba(k).

Now consider a new adversary A’ = (A1, A}) that chooses j € {1,...,¢} randomly, where A} runs
Az but simulates V in all but the jth session. In the jth session it calls the one-time wrapper given to
it. From the definition of NMZK, | Pr[Expt% (k) = 1] — Pr[Expt 4 (k) = 1]| < a(k), and by the analysis
above,

| Pr{ExptSy (k) = 1] - PrlExpt 4 (k) = 1]

L
1 . -
= 5> > | PrExpti (k) = o] - PriBxptl M (k) =]

Jj=1ve{0,1}*
S ﬁA(k),
- ¢
s0 Ba(k) < £-a(k). The theorem follows. 0
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We say a protocol IT is a UCZK protocol for R if it securely realizes functionality .7:";3}{ in the
F&:s-hybrid model, for some D.

Corollary 5.4 Let II be protocol NM[R;k,U,}(x) from Figure 2 with the addition of the common input x

and aux = (ssid, P;, Pj) in the first message. Then the augmented protocol Il is a« UCZK protocol for
R, assuming static corruptions.

5.3 UCZK: Adaptive corruptions

To deal with adaptive corruption, we apply a technique proposed by Damgard [17] and Jarecki and
Lysyanskaya [35] in which a trapdoor commitment is used to commit to the first message of a X-
protocol, and then this commitment is opened when sending the third message. Informally, a trapdoor
commitment is a commitment scheme with the additional property that there is a secret trapdoor such
that knowing the trapdoor allows a committer to decommit to an arbitrary value. More precisely,
TC = (TCgen, TCcom, TCver, TCkeyver, TCfake) is a trapdoor commitment scheme if it satisfies the
properties of completeness, binding, perfect secrecy, and trapdoorness. The first three properties
are the same as in any unconditionally-hiding commitment scheme. The trapdoor property says
(informally) that TCgen(1¥) outputs a secret key (the trapdoor) along with the public key, and that
using this secret key and a commitment/decommitment pair (c,d) associated with a value v, (i.e.,
(c,d) < TCcom(pk,v)), the function TCfake can for any value v’ output a decommitment d’ that is a
valid decommitment of ¢ resulting in v’ (i.e., TCver(pk,c,v',d’) = 1).

However, this technique alone does not seem to yield a UCZK protocol for adaptive corruption.
There are two problems remaining. First, it doesn’t yield a non-rewinding witness extractor, which
is needed for UCZK. Second, in the setting of UCZK, an ideal adversary & might use the trapdoor
to “cheat”, i.e., to decommit to arbitrary values, while at the same time it still needs the binding
property for the real-life adversary A. A “plain” trapdoor commitment scheme doesn’t provide such
a guarantee.

We solve these two problems by 1) using an Q-protocol in the place of the X-protocol; recall that
Q-protocols allow for non-rewinding extractors, and 2) introducing a stronger type of trapdoor com-
mitment scheme, which we call a simulation-sound trapdoor commitment (SSTC) scheme.'®> Roughly
speaking, an SSTC scheme is a trapdoor commitment scheme with an extra input id to the commit-
ment protocol, which guarantees that a commitment made by the adversary using input ¢d is binding,
even if the adversary has seen any commitment using input id opened (using a simulator that knows
a trapdoor) once to any arbitrary value, and moreover, any commitment using id’ # id opened (again
using the simulator) an unbounded number of times to any arbitrary values. Such a trapdoor com-
mitment scheme enables an ideal adversary to “cheat” while maintaining the binding property for
the real-life adversary. We shall see that when we apply these two solutions, the protocol becomes
universally composable with respect to adaptive corruption.

Here we formally define an SSTC scheme, building on the formalization for trapdoor commitment
schemes by Reyzin [48].

Definition 5.5 [Simulation-Sound Trapdoor Commitment (SSTC) Scheme| TC = (TCgen,
TCcom, TCver, TCkeyver, TCfake) is an SSTC scheme if TCgen, TCcom, TCver, TCkeyver, and TCfake
are probabilistic polynomial-time algorithms such that

13Universally-composable commitments [10, 12] would also suffice, and can be constructed using trapdoor permutations.
However, this construction is not as efficient as the SSTC scheme in this paper.

1 As a technical note, we comment that on the face, this construction doesn’t use the technique of adding a proof of
knowledge of signature, as in previous constructions. However, such a technique will be used in the construction of the
SSTC schemes.

20



Completeness For all id and for all values v,

Pr[(pk, sk) & TCgen(1*); (¢, d) & TCcom(pk, v, id) :
TCkeyver(pk, 1¥) = TCver(pk, ¢, v, id,d) = 1] = 1.

Simulation-Sound Binding There is a negligible function a(k) such that for all non-uniform prob-
abilistic polynomial-time adversaries A,

Pr[(pk, sk) & TCgen(1¥); (c, id, vy, va, d1, do) & (S(sk), A)(pk) :
(TCver(pk, c,v1,1id,d1) = TCver(pk, c,ve,id,ds) = 1) A (v1 # v2) A id € Q] < a(k),

where S(sk) operates as follows, with Q initially set to ():

e On input (commit, v, id):
compute (c,d) < TCcom(pk,v,id), store (c,v,id,d), and return c.

e On input (decommit, c,v’):
if for some v,id,d a tuple (c,v,id,d) is stored, compute d' < TCfake(pk, sk,c,v,id,d,v").
If some previous (decommit, c, *) has been input, add id to Q). Return d'.

Hiding For all pk such that TCkeyver(pk,1¥) = 1, for all id, and for all vi,vo of equal length, the
following probability distributions are identical:

{(c1,d1) & TCcom(pk,vy,id) : e1} and {(cz,d2) & TCcom(pk, vy, id) : ca}.

Trapdoor Property For all (pk,sk) generated with non-zero probability by TCgen(1%), for all id,
and for all v1,v9 of equal length, the following probability distributions are identical:

{(c, d1) & TCcom(pk, vy, id); df & TCfake(pk, sk, c,v1,id, d1,v2) : (c,dy)}

and
{(c, dy) & TCcom(pk, vo, id) : (c,do)}.

(In particular, faked commitments are correct.)

Now, let II be an augmentable 2-protocol with common input z, auxiliary input aux, prover
random bits r, and common reference string o. As for ¥-protocols, we use the notation ar(-), 21 (-),
and verifyr(-) to denote the algorithms for computing the two messages of the prover, and for verifying
the proof, respectively. Using this notation, the protocol UC[I;,C*, o] (z;aux) is shown in Figure 5.

Theorem 5.6 Let IT be the protocol Q[};k* o] (z;aux), where aux = (ssid, P;, Pj). Then the augmented
protocol I securely realizes functionality ﬁg}{ in the FgRS—hybrz'd model where erasing is allowed,

assuming adaptive corruptions.

Proof: Let A be an adversary that operates against protocol IT in the ]:gRS—hybrid model. We
construct an ideal process adversary S such that no environment Z can tell whether it is interacting
with A and IT in the ngS-hybrid model, or with § in the ideal process for .ﬁézK

For simplicity, we will assume only one copy of ﬁézK is accessed by Z. Obviously we could duplicate
the actions of S for each copy of ﬁg}( (differentiated by the sid value).

Formally, let IT be an Q-protocol with simulator Si and extractor &n = (€m,1, Emy2)-

At the beginning of the ideal process, the ideal adversary S generates (o, 7) +— 1,1 (1¥), generates

(pk*, sk*) <~ TCgen(1¥), uses (pk*,0) as the common reference string for FZgs, and stores sk* and 7.
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prover verifier
(z,aux, a) < ar(z,aux,w,r, o)
*
(a*,d*) <~ TCcom(pk*, a, aux) rawx.a |
c&{0,1}k

z < zn(z, aux, w,r, ¢, o)
%
erase(r, w) %,6,d , TCkeyver(pk*,1¥)
TCver(pk*, a*, a, aux, d*)
verifyr (z, aux, a, ¢, z, o)

Figure 5: UC[Rpk*, +](@; aux): A UCZK protocol for R with common reference string (pk*, o) drawn from
Dypi(TC) x Dy (2F), common input z, and auxiliary input aux where IT = Q£ (z; aux).

During the ideal process, S runs a simulated copy of A. Messages received from Z are forwarded
to the simulated A, and messages sent by the simulated A to its environment are forwarded to Z.

If S receives a message (ZK-PROOF, sid, ssid, P;, P;, z) from ﬁézK, i.e., P; is uncorrupted and has
given a witness w to .7:'%21( such that (z,w) € R, then S simulates P; in II. In particular, S sets
the prover data field in the first message of P; by generating a commitment (as in the actual prover
protocol) to an arbitrary string & with appropriate length (say, @ = 0', where [ is the size of field “a”
in the output of ar(-)). More precisely, S invokes (&*,d*) < TCcom(pk*, &, aux) and sends (z, aux, &*)
to P; as the first message. After receiving the challenge (as the second message) ¢ from P;, S invokes
the simulator Sy and obtains (a, ¢, 2) = My (z,0,¢). Then, S fakes a decommitment for a by invoking
d* = TCfake(pk*, sk*,a*, a, aux, d*, a), and sends (z, a,d*) to P; as the final message. If P; is corrupted
before receiving a challenge, then the witness w is revealed. In this case, S invokes the actual first-
message function ar; to produce the first message a, instead of using the simulator Sir. Again, S fakes
a decommitment in this case.

If P; is also uncorrupted, then S simulates P; in f[, setting the verifier data field in the message of P;
(in particular, the random challenge) using the actual verifier protocol. In this case, when the simulated
Pj receives the final message from the simulated P;, S forwards (ZK-PROOF, sid, ssid, P;, Pj, x) to the
actual uncorrupted P;.

If A, controlling a corrupted party P;, starts an interaction as a prover with an uncorrupted party
Pj using ssid, then S learns common input z (since it is included in the first message) and simulates P;
(as the verifier) in I1.More precisely, it fills the verifier data field with a random challenge ¢, receives
as the final message (z,a,d*) from A, and verifies the messages. At the end of the interaction, if
all the verifications pass, the extractor &mo(z, 7, (a,c, z)) will be invoked and output a witness w. If
R(z,w) = 1, S sends (zk-prover, sid, ssid, P;, P;, z,w) to ﬁgK; otherwise, it sends nothing. Then it
forwards any response from F2 to P;.

Now we show that

HYB s £ IDEAL
,4,2 ~ ﬁgK,S,Z’

which implies our theorem.

First we define a new experiment Mix 4 z(k). Intuitively, this new experiment is a “mixture” of
the hybrid model and the ideal process, in that an uncorrupted party acting as a prover is handled
as in the ideal process (i.e., S will use the trapdoor to simulate a proof), but an uncorrupted party
acting as a verifier is handled as in the hybrid model (i.e., no extraction takes place). More precisely,
the new experiment runs simulated copies of Z and .A. Messages received from Z are forwarded to the
simulated A, and messages sent by the simulated A to its environment are forwarded to Z. 511,1(1’“) is
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run to produce (o, 7), then (pk*, sk*) & TCgen(1¥) are generated. Just as in the case of IDEALzr g 5
ZK >

(pk*, o) is used as the common reference string for ngs, and sk* and 7 are stored. If an uncorrupted
party P; receives input (zk-prover, sid, ssid, P;, Pj, z,w) from Z with (z,w) € R, it sets the prover
data field of its messages in the same way as S above. Corruptions are handled in the same way as
S above. An uncorrupted party P; responds to a prover as in the actual verifier protocol in II. The
output of each experiment (hybrid model, ideal process, and Mix4 z(k)) is the output of Z.

Let MIX 4 z denote the distribution ensemble of random variable describing the outputs of Mix 4 z (k).

D
First, we can show that HYBﬁC:SZ ~ MIX A4,z- In fact, it comes from the fact that the SSTC scheme

is perfectly hiding and a straightforward hybrid reduction to the simulator Sy of the Q-protocol II.15

Now we must show that MIX 4 z ~ IDEAL FR 5,20 which will finish the proof to our theorem. This
will follow similar to the proof of Theorem 5.1, but also using the simulation-sound binding property
of the trapdoor commitment scheme.

Let p = Pr[IDEALﬁégK,S,Z(k)] and p’ = Pr[Mixy z(k)]. Similar to the proof of Theorem 5.1,
the only difference between Mixy z(k) and S comes from when the extractor in S outputs an in-
correct witness for a session started by A, and thus Z receives an output message (indicating a
correct proof) in Mixy4 z(k) but not when interacting with S. (Note that the transcripts of cor-
rupted prover/uncorrupted verifier sessions will never be the same as transcripts of uncorrupted
prover/corrupted verifier sessions because of the auxiliary data aux.) Let b be the vector corre-
sponding to simulated verifier or extractor sessions, with b = 1 corresponding to whether Z receives
an output message. Let p be the statistical difference between the distribution of vectors b resulting
from Mix4 z(k) and vectors b resulting from S. (Note that p > |p — p”|.) Let u be an upper bound
on the number of verifier sessions. Then the average probability of a difference in a given bit position
is at least p/u.

To complete the proof, we simply need to show that p is negligible. Let C' be the number of times
Z sends zk-prover messages to the parties. Now we construct an adversary B that breaks the SSTC
scheme TC with probability $((p/u)? —27%) and with at most 2C calls to the commitment revealing
oracle. Therefore, it will follow that p is negligible.

We describe the adversary B. Let B take a public key pk of TC along with a TC simulator. First B
chooses a random £ € {1,...,u}, and then it runs as S, except for (1) changing the common reference
string from (x,0) to (pk,o), (2) using the TC simulator to fake commitments. Also, before sending a
challenge (as the second message) in session £ w, B forks the experiment and continues independently
in each sub-experiment (thus giving random independent challenges to .A). Then, B examines the
output (z,tr1,b1) and (x,tre,by) in each sub-experiment. If by = bo = 1 and z ¢ Lg (call this a
successful sub-experiment), and also the challenges in each sub-experiment are distinct, then we know
that A has decommitted differently in two sub-experiment. This is because of the property of the
Q-protocol; if A had decommitted in the same way, then there exist two accepting conversations with
the same first-message, and then a witness should be extracted, indicating that x € Lgr. But now
B has obtained two different decommitments, successfully breaking TC. By Lemma A.1, a successful
sub-experiment occurs with probability at least (p/u)? — 2%, and thus either B will break the SSTC
scheme TC with probability 1((p/u)? —27%), as claimed above. 0

6 Efficient Instantiations

Here we briefly describe some efficient instantiations of our constructions. First, we discuss two efficient
signature schemes (namely, the Cramer-Shoup signature scheme and the DSA signature scheme) and

15Note that if a corruption occurs between the first and second messages to the wrapper machine for the simulation,
it will be just as if the simulation never received the second message.
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two associated efficient X-protocols that can be plugged into our constructions of USSZK, NMZK,
and UCZK protocols. Second, we construct an efficient SSTC scheme based on DSA that can be
used in our construction of a UCZK protocol. Third, we give an example of an efficient Q2-protocol
for the discrete logarithm relation, thus implying efficient NMZK and UCZK protocols for discrete
logarithm. Finally, we describe a generalized definition of {2-protocols, which can replace 2-protocols
in an appropriately generalized definition of NMZK protocols.'® Then we present a very efficient!”
generalized 2-protocol for proving knowledge of the plaintext of an ElGamal ciphertext, thus implying
an efficient NMZK protocol for ElGamal plaintext knowledge.

6.1 Signature schemes

First we note that for our constructions we can use a more general version of the »-protocol for proving
knowledge of signatures, as follows. Consider the binary relation R, = {(m, s)} for a signature scheme
SIG. We say a polynomial-time computable function f is a partial knowledge function of SIG, if there
exists a probabilistic polynomial-time machine M such that every m and vk, {s1 : s1 « M (m,vk)} and
{s1: s « sig_sign(vk,m); s1 < f(m,vk,s)} have the same distribution. Intuitively, a partial knowledge
function carries part of the information about the signature, yet can be efficiently sampled without
even knowing one. If a signature scheme SIG has a partial knowledge function f, then the relation
R!, ={((m,s1),s) : (m,s) € Ryp A s1 = f(m,vk,s)} can replace R, in the constructions for USS[Iik],
NMka’U,] (z), and UC{;k*,Uk’U/](iL‘), with P sending a randomly sampled s; (partial knowledge) before

running the X-protocol L(z) V SFuk (vk!, s1). We say R!, is a partial signature relation for SIG.

Here we show that the Cramer-Shoup signature scheme [16] and the DSA signature scheme [38]
both admit efficient ¥-protocols for proving knowledge of signatures using this more general definition,
and thus can be plugged into our constructions.

The Cramer-Shoup Signature Scheme Cramer and Shoup [16] presented an efficient signature
scheme that is existentially unforgeable against adaptive chosen-message attacks under the Strong RSA
Assumption, formally defined in Appendix B. In addition to the main security parameter k, they use
a secondary security parameter k' for public key modulus size.'® The value &' is dependent on k and
is set so that known attacks on public key systems with modulus size k' are at least as hard as known
attacks on hash functions and other brute-force attacks on systems with main security parameter k.
Here we describe their scheme, which we denote SIGcs = (sig_gencs, sig_signcs, sig_verifycs).'

e sig_gencs(1¥):
p,q ¢ SAFEPRIME(1¥'/2); N < pg; z,h & QRy; € & PRIME(151);
H & Hasu(1%); sk « (p,q); vk « (N, h,z,€', H);
return (sk,vk).

e sig signcs(sk, m):

v £ QRy; 2’ + ()¢ - b~ mod N; e & PRIME(1FH1)\{e'};
,\\ e~ mod ¢(N)
Y (:vh_H(x)> mod N;

return (e, y,y');

16We note that this generalization is not applicable to UCZK protocols.

"In particular, this protocol is more efficient than the best (strict) Q-protocol that we have found.

8For today’s technology, reasonable values may be k = 256 and &' = 1024.

19Some technical notations: a prime number p is a safe prime, if (p — 1)/2 is also a prime number. SAFEPRIME(1") is
the set of all n-bit safe prime numbers; PRIME(1") is the set of all n-bit prime numbers; QRy is the set of all quadratic
residues in ZYy, and HASH(1™) is a set of efficient hash functions that maps strings of arbitrary length to an n-bit string.
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o sig verifycs(vk,m, (e, y,y')):
if e is not an odd k£ + 1 bit number, or e = €', return 0;
' ()¢ - h=H(m) mod N;
if z = yeh" (@) mod N return 1, else return 0.

As a technical note, instead of an expected polynomial-time algorithm for prime generation, we
assume a probabilistic strict polynomial-time algorithm that has a negligible probability of failing.
This has no effect on the following security result.

Theorem 6.1 ([16]) The Cramer-Shoup signature scheme is secure against adaptive chosen-message
attack, under the Strong RSA Assumption and the assumption that H is collision-resistant.

Note that from a public key vk, a message m and a signature (e, y,y') on m, one can extract the pair
(e,9"). Also note that for a randomly generated signature, this pair (e, y’) is random, i.e., e is a random
k-bit prime not equal to €', ' is a random element of QRy,?° and they are independent. Therefore,
function f(m, vk, {e,y,y’)) = (e,y’) is a partial knowledge function for Cramer-Shoup. Furthermore,
given vk, m, and (e,y'), one can compute z’ < (/)¢ - h=2(™) mod N, and then y is simply a root of
a known element, i.e., y is the e-th root of = - B (*') mod N. Guillou and Quisquater [34] presented
a Y-protocol for proving knowledge of roots that has the special soundness property. Their protocol
can be directly adopted here for proving the partial signature relation R, .

DSA The Digital Signature Algorithm [38] was proposed by NIST in April 1991, and in May 1994
was adopted as a standard digital signature scheme in the U.S. [27]. It is a variant of the ElGamal
signature scheme [23], and is defined as follows, with two security parameters k¥ and k' as in the
Cramer-Shoup signature scheme.?!

* sig genpsa(1”):
g 1(1%); p & PRIME(lk'), where ¢|(p —1); ¢ & Z, where order(g) = g;
z & Zg; y  g" mod p; sk < (g,p,q,x); vk < (9,p,4,9);
return (sk,vk).

e sig_signpsa(sk,m):
v & Ly v < g¥ mod p; s < v~ (H(m) + zr) mod g;
return (r mod g, s).

o sig_verifypsa(vk, m, (r', s)):
IfO<r <gq0<s<gq,andr = ((g7myr")s™  modd mod p) mod g, return 1, else return 0.

The security of DSA intuitively rests on the hardness of computing discrete logarithms, but there
is no known security reduction that proves this. However, it is often simply assumed that DSA is
existentially unforgeable against adaptive chosen-message attack.

Note that from a public key vk, a message m and a signature (r’, s), one can efficiently compute
a value r « g (m)“”_lflfl“”_1 mod p. Also note that for a randomly generated signature, the value r
is a random element generated by g. Therefore, f(m,vk, (r',s)) = r is a partial knowledge function
for DSA. Furthermore, given vk, m, and r, s is simply a discrete log base r of the known element
gl (m)yT' mod p. Schnorr [51] presents a ¥-protocol for proving knowledge of a discrete log, which
satisfies the special soundness property. This protocol can be used to prove the partial signature
relation R), .

20We assume that e’ is not a factor of ¢(IN), which is false with only negligible probability.

2In the DSA standard, k, k', and H are fixed in the following way: k = 160, k' is set to a multiple of 64 between
512 and 1024, inclusive, and hash function H is defined as SHA-1 [26]. However, we will use these parameters as if they
could be varied according to the security level desired.
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6.2 SSTC scheme

Here we present an efficient SSTC scheme TC based on DSA. First, though, we describe a slightly
simpler scheme TC' for weak simulation-sound trapdoor commitments, when id is always the empty
string (and thus, in essence, no double reveal queries to the trapdoor commitment simulator are
allowed). We can implement this simpler scheme over elements from a group (G,+) by using a
technique similar to that in Damgard and Nielsen [18] that involves two trapdoor commitment schemes
TCy and TC; that commit to elements in G. The trapdoor in TC' is the trapdoor of one of TCqy or
TC; along with a bit indicating which. To commit to a message m, generate random mg € G, set
m1 < m—my, and commit to mg and m; using TCy and TC;, respectively, i.e., generating commitment
(co,c1)- To open a commitment (cg, ¢1), open each commitment, say to (mg, m1). Then m = my+my
is the decommitted value. To open a commitment of (cp,c1), say of (mg,m1), to an arbitrary value
m' using trapdoor (b, sky), i.e., trapdoor sk; of TCy, open commitment ¢;_p normally, and use sky to
open commitment ¢, to m' —my_,. (A proof that this satisfies the weak simulation-sound binding
property follows closely from Damgard and Nielsen [18].) This scheme does not satisfy the full notion
of simulation-sound binding, since after revealing a commitment in two different ways (even one with
an arbitrary id), the adversary can determine which trapdoor is used, and this would cause the proof
from [18] to fail.??

Our scheme TC that satisfies simulation-sound binding uses the same technique as above of being
built over two commitment schemes TCy and TCy, but each of those will be built over DSA as follows.
Given a DSA public key (g,p,q,y), a commitment to a message m using id is generated as follows.
First compute a & Zg, ¢’ < ¢g* mod p, and h = g7 y9" mod p. (Note that if s is the discrete log of
h over ¢', then (¢’ mod ¢, s) is the DSA signature for id.) Then use a Pedersen commitment [45] over
bases (g, h) to commit to m, i.e., choose 8 & Z, and compute commitment (g',¢) where ¢ < (g')™hP.
To open this commitment, output (m, 3).

To show the simulation-sound binding property, we show that if an adversary can break this
property, we can break DSA as follows. (We assume that DSA is existentially unforgeable against a
adaptive chosen-message attack.) Given a DSA key vky and signature oracle, we generate another
DSA key pair (vki, ski), choose a bit b, and say (vky,vk; ) is the public key for our commitment
scheme.

Now say we know which id the adversary is going to use in its commitment with double opening.
To commit to a value v using id, we compute an actual signature for id using ski, and then commit
to some value using that signature. Then we we use the knowledge of the signature to decommit to an
arbitrary value m. To commit to a value v using id’ # id, we choose a bit b’ to decide which scheme
to compute a signature (and thus which scheme will be used in fake decommitments). If b’ = 0, we
compute a signature using the DSA signature oracle on id’, and if ' = 1 we compute a signature using
8]{,‘1.

Now the adversary’s view is independent of b, and thus if the adversary gives a double opening
with id, then with probability at least %, there will be different openings (mg, ) and (myg, 3y) of
(95, ¢0), so (gp mod g, (By — Bo)/(mo — my) mod q) is a signature on id, breaking DSA. Note that if
we do not know which id will be used by the adversary, we would have to guess this, reducing the
probability of breaking DSA by a polynomial factor.

6.3 An efficient (2-protocol

We describe an efficient )-protocol for proving knowledge of a discrete logarithm. This protocol is
based on the Decisional Composite Residuosity assumption and the Strong RSA assumption, formally

220ne could use this scheme with weak simulation soundness in our UCZK adaptive protocol, but it would require the
common reference string to contain one trapdoor commitment public key for each party.
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defined in Appendix B.

Let (g,p,q) be public parameters, where ¢ and p are primes with ¢|(p — 1), and g € Z; with
order(g) = ¢q. Let R be the discrete logarithm relation: R = {(y,z) : y = ¢® mod p}. Our Q-protocol
for R is constructed as follows: The common reference string consists of two parts: (1) a Paillier public
key pk = (N,h) where N is an RSA modulus and h € Z},, with Nlorder(h), and (2) another RSA
modulus with 2 generators (]\7 ,h1,ha). The prover and the verifier share a common input y, while the
prover also knows z, such that ¢° = y. In the first message, the prover sends an encryption of z using
the Paillier encryption key pk. Then a »-protocol is used to prove that the plaintext in the Paillier
encryption is indeed the discrete log of y. A technical difficulty is that the discrete logarithm and the
Paillier encryption work in different moduli. To overcome this we use the known technique of adding
a commitment to z using two generators (hi,h2) over a third modulus N of unknown factorization
[6, 7, 8, 28, 40]. The detailed construction is presented in Appendix C.

6.4 An efficient generalized (2-protocol

For an NP relation R = {(z,w)} and a polynomial-time computable function f, let Ry = {(z, f(w)) :
(z,w) € R}. (Note that R; may not itself be an NP relation.) Then we define an f-extracting
Q-protocol for R as an Q-protocol for R except that the extractor & outputs f(w), instead of w.
Similarly, we can define an f-extracting NMZK protocol in which the extractor & outputs f(w),
instead of w, and the extraction condition is changed appropriately.?® It is easy to see that if we
replace the Q-protocol in our construction of NMZK protocols with an f-extracting (2-protocol, our
construction yields an f-extracting NMZK protocol. Note that the prover in both Q-protocols and
NMZK protocols still receives the “full” witness w. Also note that if f is the identity function, we
have the normal definitions of an Q2-protocol and an NMZK protocol.

One application of these generalized definitions is in proving plaintext knowledge. See [36] for
some applications of proof of plaintext knowledge. Consider a semantically secure encryption scheme.
This scheme naturally induces a relation R = {(e, (z,7))}, where e is the encryption of plaintext z
using random bits 7. Then consider a function f defined as z < f(z,r). It is easy to see that an
f-extracting Q2-protocol for R is essentially a proof of plaintext knowledge, so we will call this function
f a plaintext knowledge function.

We now present a very efficient f-extracting Q-protocol for ElGamal encryption, where f is a
plaintext knowledge function. Let (g,p,q) be public parameters, where ¢ and p are primes with
ql(p—1), and g € Z;, with order(g) = ¢g. Then the ElGamal encryption scheme can be formally defined
as follows, with the message space being the subgroup generated by g.

e enc_gengg(g, P, q):
& ¢ Lg y < 9" mod p; sk ¢ x; pk < y;
return (sk, pk).

e encrypteg (vk,m):
T&Zq; a < g" mod p; b < my" mod p;
return (a, b).

b decryptEG (Ska (G,, b))
return b/a”®

The relation for the ElGamal system is R = {((a, b), (m,r)) : (¢ = ¢" mod p) A (b = my" mod p)},
and f is defined such that m < f(m,r). The f-restricted Q-protocol is constructed as follows. The

%Note that the resulting NMZK protocols can not necessarily be used to construct UCZK protocols (even with static
corruptions), since UCZK protocols are, by definition, proofs of knowledge.
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common reference string is a new public key 3’ for the ElGamal system, which is generated by running
(z',y") < enc_gengg (g, p, q) using fresh random bits. The corresponding decryption key z’ is discarded.
The prover takes (a,b) = (¢",my"), which is an encryption of a message m (using random bits
r), and then constructs a new encryption using the encryption key in the common reference string
(a',b) < (¢" ,m(y')"), where r' & Z,. The prover then sends (a’,¥) to the verifier, and performs
a X-protocol proving that the two ElGamal encryptions have the same plaintext. The Y-protocol
proceeds as follows. The prover picks w,w' « Z,, computes d < g¥, d' < g*', and e+ y*/(y")*,
and outputs (d,d’,e) as the first message. On challenge ¢, the prover computes s < r¢+ w mod g and
§' < r'c+w' mod ¢, and outputs (s, s’) as the third message. Finally the verifier verifies that ¢* = a“d,
g* = (@)°d’, and v /(') = (b/V)’e.

SHVZK is satisfied since given input (a,b) € Lg and a challenge ¢, a simulator can generate an
encryption (a’,b') of an arbitrary value, and then use the perfect SHVZK property of the X-protocol
to generate an accepting conversation. By the semantic security of ElGamal, the simulator is still
computationally indistinguishable from that of an actual prover. Now we show the f-extraction prop-
erty is satisfied. Let £, (1*) generate a fresh ElGamal key pair (sk/,vk') < enc_gengg(g,p, q), putting
vk’ in the common reference string, and passing the decryption key sk’ to £, which then interacts
with prover and obtains an accepting transcript ¢tr. Finally & outputs m’ < decrypteg(sk’, (a', b))
where (a',b') is the encryption in the transcript ¢r. By the weak soundness property of the 3-protocol,
the probability that m’ is not the plaintext in the encryption (a,b) is at most 27* (assuming k-bit
challenges).
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A The Exclusive Collision Lemma
We prove the lemma used in the proof of Theorem 3.1.

Lemma A.1 (The Exclusive Collision Lemma) Let A be a random variable and B, a random
variable whose distribution is parameterized by a value a in the support of A. For every a in the
support of A, and for every by and be in the support of B, let Colly(b1,b2) be a predicate defining
a collision. Let q be the mazimum (over all a in the support of A) probability of a collision of two
independent random variables Bl and B2, i.e., ¢ = max,{Prob[Coll (B}, B2)]}. Let ¢(a,b) be a
predicate, and let p = Prob[¢(A, Ba)]. Let ¢'(a,by,bs) = $(a,br) A d(a,bz) A (=Colly(by,b2)). Then we
have Prob[¢'(A, By, B%)] > p? — q, where B and B? are independent conditioned on A.

Proof: We define a new predicate ¢"(a,b1,b2) = ¢(a,b1) A ¢(a,be), which is essentially predicate ¢’
without the requirement that —Coll,(b1,b2). For every a in the support of A, let p, = Prob[¢(a, By)]-
Let p4 be the function of random variable A taking value p, when A = a. Then we have p =
Prob[¢(A, Ba)] = E[pa] and Prob[¢" (A, B}, B})] = El(pa)?] > (Elpa])* = p*.

Finally we have

Prob[¢' (A, BY, B4)] > Prob[¢" (A, BY, B%)] — Prob[Colla(BY, B3)] > p* —¢q .

0

We remark that, using a tighter analysis, the lower bound on Prob[¢'(A, B}, B%)] in Lemma A.1 can
be improved to p? — pgq.

B Number-Theoretic Assumptions

We review some of the number-theoretic assumptions used in this paper.

The Strong RSA assumption. The Strong RSA assumption is a generalization of the standard
RSA assumption which (informally) states that given an RSA modulus N and an exponent e, it is
computationally infeasible to find the e-th root of a random z. Informally, the strong-RSA assumption
states that it is infeasible to find an arbitrary non-trivial root of a random z.

More formally, we say that p is a safe prime if both p and (p—1)/2 are prime. Then let RSA-Gen(1%)
be a probabilistic polynomial-time algorithm that generates two random k/2-bit safe primes p and g,
and outputs N < pgq.

Assumption B.1 (Strong-RSA) For any non-uniform probabilistic polynomial-size circuit A, the
following probability is negligible in k:

Pr[N + RSA-Gen(1%); z < Z%; (y,€) + A(1¥,2,N) : y* = z mod N A e > 2]

The Strong RSA assumption was introduced by Bari¢ and Pfitzmann [4], and has been used in
several applications (see [28, 29, 16]). It is a stronger assumption than the “standard” RSA assumption,
yet no method is known for breaking it other than factoring N.

The Paillier cryptosystem and the Decision Composite Residuosity assumption. The

Paillier encryption scheme [44] is defined as follows, where A(N) is the Carmichael function of N,

and L is a function that takes input elements from the set {u < N?|u = 1 mod N} and returns
u—1

L(u) = %5=. This definition differs from that in [44] only in that we define the message space for

31



prover verifier

o, 3E T,
r &qu
R
a;— ZqN
b+ Zq3N
y' < g" mod p
e + h*aN mod N2
¢ < h" BN mod N?
s < (h1)®(he)® mod N
" (h1)"(h2)? mod N

/! ! !
y767e’578
>

R
cZLyg
c
- -
Z1¢cx+r
2o + a8 mod N
234 ca+b
21,22, %3
?
z1 EZq3

C

y°y' = g* mod p
h#(22)N mod N2
(h1)?*hZ> mod N

eCe!

- 1l

co!

§°S

Figure 6: Q-protocol for the discrete log relation {(y,z) : y = g® mod p}. Common reference string is
a Paillier public key and a Strong RSA modulus along with two generators ((N,h), (N, hi,hs)).

public key pk = (N, g) as [-(N —1)/2,(N — 1)/2] (versus Zy in [44]), and we restrict h to be 1 + N.
The security of this cryptosystem relies on the Decision Composite Residuosity Assumption, DCRA.

For key generation, choose random k/2-bit primes p, ¢, set N = pg, and set h <~ 1+ N. The public
key is (N,h) and the private key is (N, h, \(N)). To encrypt a message m with public key (N, h),
select a random « € Z% and compute ¢ + g™aN mod N2. To decrypt a ciphertext ¢ with secret key

(N,h, \(N)), compute m = % mod N, and the decryption is m if m < (N — 1)/2, and
otherwise the decryption is m — N. Paillier [44] shows that both ¢M™) mod N? and g*"¥) mod N2
are elements of the form (1 + N)¢ =52 1 + dN, and thus the L function can be easily computed for

decryption.

C An Efficient Q2-protocol for Proving Knowledge of Discrete Log

The detailed construction of the Q-protocol for proving knowledge of discrete logarithm is given in
Figure 6.
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