
Domain Extender for Collision Resistant Hash Functions: Improving

Upon Merkle-Damg̊ard Iteration

Palash Sarkar
Cryptology Research Group

Applied Statistics Unit
Indian Statistical Institute
203, B.T. Road, Kolkata

India 700108
palash@isical.ac.in

Abstract

We study the problem of securely extending the domain of a collision resistant compression function.
A new construction based on directed acyclic graphs is described. This generalizes the usual iterated
hashing constructions. Our main contribution is to introduce a new technique for hashing arbitrary
length strings. Combined with DAG based hashing, this technique gives a new hashing algorithm. The
amount of padding and the number of invocations of the compression function required by the new
algorithm is smaller than the general Merkle-Damg̊ard algorithm. Lastly, we describe the design of a
new parallel hash algorithm.
Keywords : hash function, compression function, composition principle, collision resistance, directed
acyclic graph.

1 Introduction

Hash functions are a basic cryptographic primitive and are used extensively in digital signature protocols.
For such applications, a hash function must satisfy certain necessary properties including collision resistance
and pre-image resistance. Collision resistance implies that it should be computationally intractable to find
two elements in the domain which are mapped to the same element in the range. On the other hand,
pre-image resistance means that given an element of the range, it should be computationally intractable
to find its pre-image.

Construction of collision resistant and pre-image resistant hash functions are of both practical and
theoretical interest. Most practical hash functions are designed from scratch. The advantage of designing
a hash function from scratch is that one can use simple logical/arithmetic operations to design the algorithm
and hence achieve very high speeds. The disadvantage is that we obtain no proof of collision resistance.
Hence a user has to assume that the function is collision resistant. A well accepted intuition in this area is
that it is more plausible to assume a function to be collision resistant when the domain is fixed (and small)
rather than when it is infinite (or very large). A fixed domain function which is assumed to be collision
resistant is often called a compression function.

For practical use, it is required to hash messages of arbitrary lengths. Hence one must look for methods
which extend the domain of a compression function in a “secure” manner, i.e., the extended domain hash
function is collision resistant provided the compression function is collision resistant. Any method which
achieves this is often called a composition principle.

1

Composition principles based on iterated applications of the compression function are known and these
are called variants of the Merkle-Damg̊ard algorithm [2, 4]. The most general of these algorithms can
hash arbitrarily long messages and assumes the compression function to be only collision resistant. Other
variants can hash messages of a maximum possible length or assumes the compression function to be
both collision resistant and one-way. See Section 3 for a detailed discussion of several variants of the
Merkle-Damg̊ard algorithm.
Our Contributions: In this paper, we are concerned with the problem of constructing a hash function
which can hash arbitrarily long messages and which can be proved to be collision resistant under the
assumption that the compression function is collision resistant. To justify the non-triviality of the problem
we describe a construction which can be proved to be secure if the compression function is both collision
resistant and one-way while it is insecure if the compression function is only collision resistant.

The first step in our construction is to consider a very general class of domain extending algorithms.
The structure of any algorithm in the class that we consider can be described using a directed acyclic graph
(DAG). In Section 5, we provide a construction of a secure domain extending algorithm using an arbitrary
DAG. The Merkle-Damg̊ard algorithm uses a dipath and is a special case of DAG based algorithms.

Our main contribution (in Section 6) is to provide a solution to the problem of hashing arbitrary length
strings for DAG based algorithms. Our algorithm improves upon the (general) Merkle-Damg̊ard algorithm
both in terms of padding length and number of invocations. Our construction can be proved to be collision
resistant under the assumption that the compression function is only collision resistant.

In Section 8, we provide some concrete examples of hashing structures and show that these can be
combined nicely to design a parallel hash function. We note, however, that we do not provide a detailed
specification of an actual hash function. Such a specification will necessarily involve many practical and
implementation issues which are not really within the scope of the current work.

A theoretical justification of our work is provided by the fact that our results improve upon a fifteen
year old classical work. Since our work improves upon the Merkle-Damg̊ard algorithm, a natural question
is whether further improvements are possible. This naturally leads to the problem of obtaining non-trivial
lower bounds (and optimal algorithms) on padding lengths and number of invocations. These problems
can provide motivation for future research.

2 Preliminaries

We write |x| for the length of a string and x1||x2 for the concatenation of two strings x1 and x2. The
reverse of the string x will be denoted by xr. By an (n, m) function we will mean a function which maps
{0, 1}n to {0, 1}m. All logarithms in the paper are in base two.

For n > m, let h be an (n, m) function. Two n-bit strings x and x′ in X are said to collide for h, if
x 6= x′ but h(x) = h(x′). A hash function h : X → Y is said to be collision resistant if it is computationally
intractable to find collisions for h. A formal definition of this concept requires the consideration of a family
of functions (see [2, 5]).

In this paper, we are interested in “securely” extending the domain of a hash function. More precisely,
given an (n, m) function h : {0, 1}n → {0, 1}m, with n > m+1, we construct a function h∞ : ∪i≥1{0, 1}i →
{0, 1}m, such that one can prove the following: Given any collision for h∞, it is possible to obtain a
collision for h. The last statement is formalized in terms of a Turing reduction between two suitably
defined problems (see below). The advantage of this method is that we only prove a reduction and at no
point are we required to use a formal definition of collision resistance. This approach has been previously
used in the study of hash functions [6].

2

We now turn to the task of defining our approach to reducibilities between different problems related
to the property of collision resistance. Consider the following problem as defined in [6].

Problem : Collision Col(n, m)
Instance : An (n, m) hash function h.
Find : x, x′ ∈ {0, 1}n such that x 6= x′ and h(x) = h(x′).

By an (ε, q) (probabilistic) algorithm for Collision we mean an algorithm which invokes the hash function
h at most q times and solves Col(n, m) with probability of success at least ε.

The domain of h is the set of all n-bit strings. We would like to extend the domain to the set of all
nonempty binary strings, i.e., to construct a function h∞ : ∪i≥1{0, 1}i → {0, 1}m. We would like to relate
the difficulty of finding collisions for h∞ to that of finding collisions for h. Thus, we consider the following
problem.

Problem : Arbitrary length collision ALC(n, m,L)
Instance : An (n, m) hash function h and an integer L ≥ 1.
Find : x, x′ ∈ ∪L

i=1{0, 1}i such that x 6= x′ and h∞(x) = h∞(x′).

By an (ε, q, L) (probabilistic) algorithm A for Arbitrary length collision we will mean an algorithm that
makes at most q invocations of the function h and solves ALC(n, m,L) with probability of success at least
ε.

Later we show Turing reductions from Collision to Arbitrary Length Collision. Informally, this means
that given oracle access to an algorithm for solving ALC(n, m,L) for h∞ it is possible to construct an
algorithm to solve Col(n, m) for h. These will show that our constructions preserve the intractibility of
finding collisions.

Pre-image resistance: This is an important property for cryptographic hash functions. Informally, this
means that given y ∈ {0, 1}m, it is computationally infeasible to find an x, such that f(x) = y. Pre-image
resistance (or one-wayness) is a crucially important property on its own. On the other hand, this property
is sometimes used to prove security of domain extending techniques for collision resistant hash functions.
Suppose the domain of an (n, m) hash function h is extended to obtain the hash function H(). For certain
constructions [2], one can show that h∞ is collision resistant if h is both collision resistant and one-way.
We would like to emphasize that this is not the approach we will take in this paper. In our constructions,
we will assume h to be only collision resistant.

3 Iterated Hashing

In this section, we briefly review iterative techniques for extending the domain of a collision resistant
compression function. These techniques are attributed to [4, 2] and are commonly called the Merkle-
Damg̊ard constructions.

Let h be an (n, m) compression function and IV be an m-bit string. Each of the domain extending
methods described below use IV and h to construct a new function which can hash “long” strings to obtain
m-bit digest. The IV can be chosen randomly, but once chosen it cannot be changed and becomes part of
the specification for the extended domain hash function.

3

3.1 Construction I: Basic Iteration

We define a hash function H(I) whose domain consists of all binary strings whose length is a multiple of
(n − m). Let x be a message whose length is i(n − m) for some i ≥ 1. We write x = x1|| · · · ||xi, where
each xj is a string of length (n − m). Define z1 = h(IV||x1) and for j > 1, define zj = h(zj−1||xj). The
digest of x under H(I) is defined to be zi, i.e., H(I) = zi.

The function H(I) can be proved to be collision resistant. Briefly, the argument proceeds as follows.
Suppose x and x′ are two strings such that x 6= x′ and H(I)(x) = H(I)(x′). If we have |x| = |x′|, then an
easy backward induction shows that there must be a collision for the function h. On the other hand, if
|x| 6= |x′|, then it can be argued that the collision for H(I) either leads to a collision for h or a pre-image
of IV under h. Thus, if we assume that h is both collision resistant and pre-image resistant, then H(I) is
collision resistant.

3.2 Construction II: General Construction

Our description of the general version (which appears in [2]) is from [7] for the case n−m > 1. (The case
n−m = 1 is a little more complicated. We do not mention it here since we will not consider such values
of n and m for our constructions.)

Let H(II) be the extended domain hash function which is to be defined. Let x be a message to be
hashed and we have to define the digest H(II)(x). Write x = x1||x2|| . . . ||xk, where |x1| = |x2| = · · · =
|xk−1| = n − m − 1 and |xk| = n − m − 1 − d with 0 ≤ d ≤ n − m − 2. For 1 ≤ i ≤ k − 1, let yi = xi;
yk = xk||0d and yk+1 is the (n − m − 1)-bit binary representation of d. Define z1 = h(IV||0||y1) and for
1 ≤ i ≤ k, define zi+1 = h(zi||1||yi+1). The digest of x under H(II) is zk+1, i.e., H(II)(x) = zk+1.

Note that the domain consists of all possible binary strings, i.e., there is no length restriction on the
input message x. It can be shown that H(II) is collision resistant assuming h to be only collision resistant.
(See [7] for a proof.)

3.3 Construction III: SHA Family Construction

The specification of the SHA family of constructions uses a variant of the iterative hashing technique. We
denote this variant by H(III).

Let x be the message to be hashed. First we form the string: pad(x) = x||1||0k||binc(|x|), where c is a
constant such that c < n−m, binc(|x|) is the c-bit binary representation of x and k is the least non-negative
integer such that |x|+ 1 + k ≡ (n−m− c) mod (n−m), or equivalently x + c + 1 + k ≡ 0 mod (n−m).
The length of pad(x) is equal to l(n − m) for some l ≥ 1. (For SHA-256, n = 768, m = 256 and c = 64.)
The message digest is defined to be H(III)(x) = H(I)(pad(x)).

This construction can only handle messages of lengths less than 2c. Putting c = 64 (as in SHA-256) is
usually sufficient for all practical purposes. The maximum amount of padding is n−m which is a constant,
i.e., independent of the message length.

3.4 Construction IV: Another Length Bounded Construction

We define a function H(IV) which like H(III) can also hash all binary strings of a maximum possible length.
Let the message be x. Append the minimum number of zeros to x so as to make the length a multiple

of (n−m). Now divide x into l blocks x0, . . . , xl−1 of lengths (n−m) bits each. Define y0 = h(IV||x0) and
for 1 ≤ i ≤ l − 1, define yi = h(yi−1||xi). Finally define z = h(yl−1||w), where w is the (n−m)-bit binary

4

Table 1: Comparison of features of different constructions for a message x.

Cons. domain sz. length res. padding # invoc. assumption on h()

I infinite |x| = i(n−m), none |x|
n−m c.r. and

i ≥ 1 one-way
II infinite none 2n−m− 2 c.r.

+
⌈

|x|
n−m−1

⌉
1 +

⌈
|x|

n−m−1

⌉
III 2c, |x| < 2c, m a +

⌈
|x|

n−m

⌉
, c.r.

c < n−m c < n−m a ∈ {0, 1}
IV < 2n−m |x| < 2n−m 2n−m− 1 1 +

⌈
|x|

n−m

⌉
c.r.

representation of |x|, i.e. w = binn−m(|x|). The digest of x is z. Clearly, this algorithm can be applied only
when the length of x is less than 2n−m. Again, this construction can be proved to be collision resistant
assuming h to be only collision resistant.

3.5 Role of IV

Each of the constructions described above use an m-bit string as an IV. The IV is essential in Construction I,
since in this construction we require h to be such that it is infeasible to find a pre-image of IV under h. On
the other hand, for Constructions II to IV, we can replace IV by the initial m bits of the message without
affecting the collision resistance of the extended domain hash function. If we do this, then in certain cases,
we can hash an extra m bits without increasing the number of invocations of h. In general, this is not
a significant gain, though it may become significant if we repeatedly hash short messages such as digital
certificates.

3.6 Discussion

In Table 1, we compare the properties of the different constructions. For each construction, we provide
the size of the extended domain; the restriction on the lengths of messages to be hashed; the maximum
amount of padding; the maximum number of invocations of h() that are made while extending the domain;
and the security assumption made on h(). (In our count of the number of padded bits, we also include the
IV.) The first construction is proved to be collision resistant under the assumption that h() is both collision
resistant and one-way, while the other three constructions can be proved to be collision resistant under the
assumption that h() is only collision resistant. Construction II can handle arbitrary length strings, while
the Constructions III and IV can handle bounded length strings. On the other hand, Constructions III
and IV are more efficient than Construction II.

Question: The theoretical question that now arises is whether it is possible to obtain a construction which
can handle arbitrary length strings, whose collision resistance is based only on the collision resistance of h
and which is more efficient than Construction II?

5

4 Difficulty of Domain Extension

We would like to provide some evidence that it is non-trivial to obtain an answer to the question raised in
Section 3.6. It is often believed that “padding with the length at the end is sufficient to ensure collision
resistance”. Investigating such a claim in full generality is difficult. Instead, we consider a “natural”
extension of Construction III (the SHA family construction) to arbitrary length strings and show the
following two facts.

• It is correct if we assume h to be both collision resistant and one-way on IV but

• It is incorrect when we assume h to be only collision resistant.

For an integer i, let bin(i) denote the minimum length binary representation of i and for a binary string
x, let χ(x) denote the minimum length binary representation of the length of x, i.e., χ(x) = bin(|x|).

Construction V: We want to define a function H(V) which can handle arbitrary length strings. As in
Construction III, define

pad(x) = x||1||0k||bin(|x|)
= x||1||0k||χ(x)

where k is the minimum non-negative integer which satisfies the equation |x|+|χ(x)|+1+k ≡ 0 mod (n−m).
This ensures that the length of pad(x) is equal to l(n − m) for some l ≥ 1 and hence we can apply the
iterative technique as in Construction III to compute the message digest. (The exact Construction III is
obtained by substituting binc(|x|) for bin(x).)

The digest of x under H(V) is defined to be H(I)(pad(x)), i.e., H(V)(x) = H(I)(pad(x)). Since we do
not put any bound on the length of bin(|x|), this construction can handle arbitrary length strings. Let us
now consider the correctness of Construction V.

Condition 1: Suppose h is both collision resistant and it is infeasible to find a pre-image of IV. Then,
using an argument as in the case of Construction I, it is possible to show by a backward induction that a
collision for H(V) either provides a collision for h or a pre-image of IV under h.

Condition 2: Suppose that we want to assume h to be only collision resistant. We show that assuming h
to be only collision resistant is not sufficient to show the correctness of Construction V. Let us consider the
meaning of this statement in more details. Suppose that there is some element in the range of h which has
a unique pre-image. Then the ability to find this pre-image (or even knowing it a priori) does not violate
the collision resistance of h. On the other hand, the knowledge of this pre-image can make it possible to
construct a collision for H(V). This is the approach that we take below.

Our first task is to choose a suitable collision resistant h. For this, we must assume that some function
h′() with suitable parameters is collision resistant, as otherwise the question is moot. (See [1] for a similar
situation in regard to universal one-way hash functions.)

Suppose h′() is an (n, m′) collision resistant function, with m′ = m− 1 and n−m = 2τ ≥ 16. Further,
let IV and σ be arbitrary m-bit and (n−m)-bit strings respectively. Using h′, we define an (n, m) function h
for which it is infeasible to find collisions and for which IV||σ is the only pre-image of IV. Write IV = IV′||b,

6

where |IV′| = m− 1 and b is a bit. For any n-bit string x, define

h(x) = IV if x = IV||σ;
= IV′||(1− b) if h′(x) = IV′ and x 6= IV||σ;
= h′(x)||0 if h′(x) 6= IV′.

 (1)

Clearly, IV has the unique pre-image IV||σ under h. On the other hand, any collision for h yields a collision
for h′. Hence, h is collision resistant if h′ is collision resistant. (Note that h is not surjective, but that is
not relevant to the assumption that h is collision resistant.) Note that if we use Construction I to extend
the domain of h, then we get a function H(I) with the following property: H(I)(σi) = IV for all i ≥ 1, where
σi denotes i many repetitions of σ.

The conversion from h′ to h works for any IV and σ. Choose IV to be an arbitrary m-bit string; and
σ = y′||1||0τ−1||1, where y′ is an arbitrary string of length (n−m−1−τ). Then we can define the function
h as above. (The justification for choosing σ as above will become clear later.)

Consider the function H(V). This function is defined for any h and IV and hence also for h and IV
defined as above. We show that for such h and IV it is possible to exhibit a collision for H(V).

We define two strings x and x′ in the following manner. String x is a “short” string, while string x′ is
a “long” string. Define x = 0n−m−1−τ and then χ(x) = dlog(n−m− 1− τ)e = τ and hence

pad(x) = 0n−m−1−τ ||1||χ(x).

Note that in this case k = 0 and |pad(x)| = n−m.
We now define the string x′. First we set the length of x′ by defining χ(x′) = 1||pad(x) and hence

|χ(x′)| = n − m + 1. This sets the length of x′ to be 2n−m + (n − m) + |x|. At this point, we know
pad(x′) = x′||1||0τ−1||χ(x′). This sets the length of pad(x′) to be 2n−m + 3(n − m). We write x′ = z′||y′
where |z′| = 2n−m+n−m. (Note |y′| = |x|, and we could, if we like, choose y′ = x.) Recall σ = y′||1||0τ−1||1
and is of length (n−m). We define z′ to be i many repetitions of σ, i.e., z′ = σi, where i = 1 + 2n−m−τ .
Thus, we can write

pad(x′) = σ2+2n−m−τ ||pad(x)

i.e., 2 + 2n−m−τ repetitions of σ followed by pad(x). Now,

H(V)(x′) = H(I)(pad(x′))

= H(I)(σ2+2n−m−τ ||pad(x))

= h(H(I)(σ2+2n−m−τ
), pad(x))

= h(IV, pad(x))
= H(I)(pad(x))
= H(V)(x).

Clearly, x 6= x′ and hence we obtain a collision for H(V). Thus, H(V) is not collision resistant, even though
h is collision resistant. In fact, in the proof we have used the fact that IV has a unique and known pre-image
under h.

In view of this, we consider the problem of extending the domain of a collision resistant hash function
to be a non-trivial problem.

5 DAG Hashing

So far, we have considered iterated hashing. Our main task will be to provide a new construction for
securely extending the domain of a collision resistant hash function. We actually do this for a general class

7

of hashing algorithms whose structure can be described using a directed acyclic graph (DAG).
A DAG D is defined as D = (V,A) where V is a finite non empty set of nodes and A is a set of arcs

such that D contains no directed cycles. For any node v of D, we will denote by Γ(v) (resp. ∆(v)) the
set of all arcs coming into (resp. going out of) v. It is well known (and easy to prove) that any DAG
contains at least one node of indegree zero and at least one node of outdegree zero. We make the following
definition.

Definition 1 Let D = (V,A) be a DAG. A node with indegree zero will be called an exposed node; a node
with outdegree zero will be called an output node and all other nodes will be called internal nodes.

If v is an exposed node and u is an output node, we have Γ(v) = ∆(u) = ∅. Given a DAG D, let l(D) be the
maximum number of nodes on any path from an exposed node to an output node (counting both the start
and the end nodes). We will call l(D) to be the depth of D. To each node v, of D we assign a non negative
integer called its level in the following manner. For each output node v of D, set level(v) = l(D)− 1; drop
all the output nodes from D to get a new DAG D1. For each output node of v of D1, set level(v) = l(D)−2;
again drop all the output nodes from D1 to get a new DAG D2. Continue this process until all nodes of
D have been assigned level numbers. The level numbers of the nodes partition V into l disjoint subsets
S0, . . . , Sl−1, where l = l(D) and Si = {v : level(v) = i}. Note that all output nodes are at the same level,
but the exposed nodes can be at different levels. However, all nodes at level zero are necessarily exposed
nodes.

An assignment α on D = (V,A) is a function α : A → N which assigns a positive integer to each arc
of D. Let n and m be two positive integers with n > m and D be a DAG. An assignment α is said to be
proper with respect to (n, m,D) if the following condition holds.

For any node v of D, (a)
∑

e∈∆(v) α(e) = m and (b)
∑

e∈Γ(v) α(e) ≤ n.

For any node v, we define the fan-in of v to be µ(v) =
∑

e∈Γ(v) α(e). Thus, for a proper assignment α on
(n, m,D) and any node v, we have µ(v) ≤ n. For any exposed node v, we have µ(v) = 0.

A structure is a tuple S = (n, m,D = (V,A), α) where α is a proper assignment on (n, m,D). By an
exposed or output node of a structure S we will mean an exposed or output node of the underlying DAG
D. Similarly, by the depth of a structure we will mean the depth of the underlying DAG.

5.1 Construction

Given a structure S and an (n, m) compression function h, we can define a hash function hS in the following
manner. The hash function takes as input a message x (whose length we specify later) and produces as
output a digest y = h(x). The basic idea is to invoke the hash function h for each node v of D. The
function h takes n bits as input and produces m bits as output. To ensure this we have to parse (or
format) the message x properly. We first describe this formatting procedure. For any node v, the input
to v will be written as z(v) and the output of v will be written as y(v). The input z(v) is formed by
concatenating a part of the message x and some portions of the outputs of previous invocations of h as is
made precise below. The substring of the message which is provided as input to v is denoted by x(v) and
is of length |x(v)| = n − µ(v). As a notational convenience, we will assume V = {v1, . . . , vt} and write
xi = x(vi), zi = z(vi) and yi = y(vi).

We associate a non empty string β(e) of length at most m to each arc e of D in the following manner.
Let ∆(vi) = {ei,1, . . . , ei,ki

} and write yi = yi,1|| . . . ||yi,ki
, where |yi,j | = α(ei,j) for 1 ≤ j ≤ ki. Then

β(ei,j) = yi,j . For any node vi write Γ(vi) = {ei,1, . . . , ei,ri}. Then the input zi to vi is formed by
concatenating xi and β(ei,1), . . . , β(ei,ri), i.e., zi = xi||β(ei,1)|| . . . ||β(ei,ri). For any exposed node v, we

8

have Γ(v) = ∅ and consequently z(v) = x(v) and |x(v)| = n. Given a message x, the computation of hS (x)
is described as follows.
Computation of hS (x)

1. For i = 0 to l(D)− 1 do
2. For vj ∈ Si

3. set yj = h(zj).
4. End do.
5. End do.
6. z = λ (the empty string).
7. For v ∈ Sl(D)−1 set z = z||y(v).
8. output z.

We say that the hash function hS is associated to the structure S and the compression function h.
Remark : The loop in Steps 2 to 4 involves the invocation of h for each node in Si. These invocations can
be carried out in parallel and hence a parallel execution of the algorithm will require exactly l(D) parallel
rounds. Thus, the depth of a struture determines the number of parallel rounds required to compute the
output of the associated hash function.

5.2 Properties of hS
The following result describes the lengths of the input and output strings of the hash function hS .

Proposition 2 Let S = (n, m,D = (V,A), α) be a structure and h : {0, 1}n → {0, 1}m be a compression
function. Then hS : {0, 1}N → {0, 1}M where N = t(n − m) + sm and M = sm, where t = |V | and s is
the number of output nodes in D.

Proof. The outputs of all the output nodes are concatenated and provided as output of hS . The length
of the output of each node is m bits, hence the length of the output of hS is sm bits.

The calculation of the input size is as follows. There are t nodes in D. The function h is invoked once
for each of these nodes and hence h is invoked a total of t times. Each invocation of h requires an n-bit
input. Thus, a total of tn bits are required as input to all the invocations. An input to an invocation
of h either comes directly from the message x or is a part of the intermediate output of some previous
invocation of h. There are (t− s) intermediate outputs which provide a total of (t− s)m bits. Hence the
message x has to provide a total of exactly tn− (t− s)m = t(n−m) + sm bits.

The next result shows that the construction described above preserves the property of collision resis-
tance.

Theorem 3 Let hS be a hash function constructed from a structure S = (n, m,D, α) and a compression
function h described as above. Then, it is possible to find a collision for hS if and only if it is possible to
find a collision for h.

Proof. If: We have to show that any collision for h can be extended to a collision for hS . Let x1 and x′1
be distinct n-bit strings which collide for h. Let v be an exposed node of the structure S. We now define
two strings x and x′ in the domain of hS such that x 6= x′ and hS (x) = hS (x′). Note that to define x
and x′ it is enough to define the corresponding inputs x(u) and x′(u) to each node u of S. We do this as
follows: Set x(v) = x1, x′(v) = x′1 and for any u 6= v, set x(u) and x′(u) both to be equal to an arbitrary
binary string of appropriate length. Then it is clear that x 6= x′. Moreover, hS (x) = hS (x′) since the

9

outputs of the invocation of h at node v are equal and the inputs to all other nodes are equal. Thus, x
and x′ provide a collision for h.
Only If: For 0 ≤ i ≤ l(D)− 1, we define three sequences of sets ZListi,XListi and YListi, where

XListi = {x(v) : level(v) = i}, ZListi = {z(v) : level(v) = i} and YListi = {y(v) : level(v) = i}.

Note that the message x can be written as a concatenation (in an appropriate order) of the strings in XListi
for 0 ≤ i ≤ l(D)− 1.

For the proof, assume that there are two messages x and x′ such that x 6= x′ but hS (x) = hS (x′).
We show that it is possible to find a collision for h. In the following, we will use primed and unprimed
notations to denote quantities corresponding to x′ and x respectively.

Our proof technique is the following. Assume that there is no collision for any of the invocations of
h. We show that this implies x = x′ which contradicts the hypothesis that x 6= x′. Hence, there must be
a collision for some invocation of h. We now turn to the proof of the fact that if there is no collision for
h, then x = x′. This is proved by backward induction on i. More precisely, we show that if there is no
collision for h, then for each i, we have XListi = XList′i. Consequently, x = x′. We now turn to the actual
proof.

We are given that hS (x) = hS (x′). This implies that YListl(D)−1(x) = YList′l(D)−1(x
′) and consequently

for each v ∈ Sl(D)−1, we have h(z(v)) = y(v) = y′(v) = h(z′(v)). Since there is no collision for h, we must
have z(v) = z′(v) and consequently ZListl(D)−1 = ZList′l(D)−1. This in turn implies that for each v ∈ Sl(D)−1

we have x(v) = x′(v) and for each u ∈ Sl(D)−2 we have y(u) = y′(u). Hence XListl(D)−1 = XList′l(D)−1 and
YListl(D)−2 = YList′l(D)−2.

For the induction step assume that we have shown XListi+1 = XList′i+1 and YListi = YList′i for all
i ≥ k + 1. Then using an argument similar to the one given above it follows that XListi = XList′i and
YListi−1 = YList′i−1. This shows that XListi = XList′i for 1 ≤ i ≤ l(D)−1. Now one more application of the
previous argument shows that XList0 = XList′0. Hence XListi = XList′i for all 0 ≤ i ≤ l(D)− 1 as desired.

6 Hashing Arbitrary Length Strings

The hash function hS can handle only strings of one particular length. We would like to obtain a function
which can handle strings of any length. Techniques to handle arbitrary length strings have been introduced
before by Damg̊ard [2] (see Construction II in Section 3.2) for the special case of structures where the
underlying DAG is a directed path. It does not seem to be easy to adapt the technique of [2] to the more
general case of DAG that we consider here. Thus, we present a new method for handling arbitrary length
strings, which is also of independent interest. To describe the construction of hash function which can
handle arbitrary length strings we need to introduce an infinite family of DAGs. To keep the description
reasonably simple, we assume that each DAG in the family has a single output node. The precise definition
of the family that we consider is given below.

Let {Dk}k≥1 be a family of DAGs where Dk = (Vk, Ak) is such that |Vk| = k and Dk has exactly
one output node. Given positive integers n and m with n > m, a family of structures F is defined as
F = {Sk}k≥1 where Sk = (n, m,Dk, αk), where αk is a proper assignment on Dk. Given a compression
function h : {0, 1}n → {0, 1}m, and a family of structures F , we define a family of hash functions {hk}k≥1,
where hk = hSk

. From Proposition 2, we have

hk : {0, 1}k(n−m)+m → {0, 1}m.

10

Note that h1 = h. From Theorem 3, we know that the ability to find a collision for any hk implies the
ability to find a collision for h.

We want to define a hash function which can handle strings of any length. Each hk can handle only
fixed length strings. More precisely, h1 can handle strings of length n, h2 can handle strings of length
2n−m, h3 can handle strings of length 3n− 2m and so on. First we need to “fill the gaps” in the lengths.
For this we define a function h∗ : ∪i≥1{0, 1}i → {0, 1}m in the following manner.

h∗(x) = h1(x||0n−|x|) if 1 ≤ |x| ≤ n;
= hk+1(x||0(k+1)(n−m)+m−|x|) if k(n−m) + m < |x| ≤ (k + 1)(n−m) + m.

}
(2)

Note that the amount of padding done to x in the definition of h∗ is at most (n− 1) in the first case and
at most (n − m − 1) in the second case. The function h∗(x) is not collision resistant. For example, the
images of the strings 1 and 10n−1 are same, since h∗(1) = h(10n−1) = h∗(10n−1). We modify the function
h∗(x) to a function h∞(x) : ∪i≥1{0, 1}i → {0, 1}m which is collision resistant (assuming that h is collision
resistant). To do this we first need to introduce a length extracting function.

Given a binary string x, recall that χ(x) denotes the minimum length binary representation of the
length of x. For example, if x = 110001101010, then χ(x) = 1100, since the length of x is 12. The iterates
of χ() are defined as usual: χ0(x) = x and for i > 0, χi(x) = χ(χi−1(x)). The following result states some
simple properties of the function χ(). Recall that the reverse of a binary string y is denoted by yr.

Proposition 4 Let x be a binary string. Then

1. The first bit of y = χ(x) is 1 and hence the last bit of yr is also 1.
2. χ(x) = x if and only if x = 1 or x = 10.
3. |χ(x)| = 1 + blog |x|c = dlog(|x|+ 1)e.
4. If |x| > 1, then there is a positive integer j, such that χj(x) = 10.

Remark : For the construction of h∞ given below to work, there must exist a j such that |Xj | ≤ n−m.
If n−m = 1 and |x| > 1, then this cannot be achieved. Thus, henceforth we will assume n−m ≥ 2. From
a practical point of view, this is not really a constraint since all known practical compression functions
satisfy this condition.

Now we are in a position to define the function h∞. Recall that xr denotes the reverse of the string x.
Let IV be an initialization vector, i.e., a string of length m.
Computation of h∞(x).
1. Define X0 = x and for i > 0, define Xi = χi(X0) = χ(Xi−1).
2. Let j be the least positive integer such that |Xj | ≤ n−m.
3. Define Y0 = h∗(IV||0||X0).
4. For 1 ≤ i ≤ j − 1, define Yi = h∗(Yi−1||1||Xi).
5. Yj = h∗(Yj−1||Xr

j).
6. Output Yj .

Remark : The value of j in the above algorithm will be more than one only if the length of the message is
greater than 2n−m. For practical compression functions (such as SHA, RIPEMD, etc.) the value of (n−m)
is at least 128. Thus, for all practical compression functions and practical sized messages the value of j
will be equal to one.

We next prove that h∞ is collision resistant if h is collision resistant.

Theorem 5 If there is an (ε, q, L)-algorithm to solve ALC(n, m,L) for h∞, then there is an (ε, q + 2η)-
algorithm to solve Col(n, m) for h, where η is the number of invocations of h made by h∞ in hashing a
message of length L.

11

Proof. Given any message x, the computation of the digest involves several invocations of the function
h∗. At each stage, the function h∗ in turn invokes hk on a suitably padded string. There are (j + 1)
invocations of h∗. Suppose that at the ith (0 ≤ i ≤ j) invocation of h∗, the function hki

is invoked.
Also denote the padded input to hki

by Wi. Thus, Y0 = h∗(IV||0||X0) = hk0(W0), for 1 ≤ i ≤ j − 1,
Yi = h∗(Yi−1||1||Xi) = hki

(Wi) and Yj = h∗(Yj−1||Xr
j) = hkj

(Wj). Further, we have |Wi| = ki(n−m) + m
and for 0 ≤ i ≤ j, |Yi| = m.

Assume h∞(x) = h∞(x′) and x 6= x′. We show that this implies that there is a collision for h. The
proof is by backward induction. We will use primed and unprimed notation to denote the quantities
corresponding to x and x′ respectively.

By hypothesis, we have h∞(x) = Yj = Y ′
j′ = h∞(x′). From the definition of h∞ we have

h∗(Yj−1||Xr
j) = hkj

(Wj) = Yj = Y ′
j′ = hk′

j′
(W ′

j′) = h∗(Y ′
j′−1||X ′r

j′).

By definition of j and j′, we have |Xj |, |X ′
j′ | ≤ n − m and hence |Yj−1||Xj |, |Y ′

j′−1||X ′
j′ | ≤ n. From the

definition of h∗ it follows that kj = k′j′ = 1 and |Wj | = |W ′
j′ | = n. If Wj 6= W ′

j′ then we obtain a collision
for h1 and hence for h (since h = h1) and we are done. On the other hand, if there is no collision for h, we
must have Wj = W ′

j′ . Hence

Wj = Yj−1||Xr
j ||0n−m−|Xj | = Y ′

j′−1||X ′r
j′ ||0

n−m−|X′
j′ | = W ′

j′ .

Since both the strings Xr
j and X ′r

j′ end with a 1, by the above condition we must have |Xr
j | = |X ′r

j′ |. This
implies Yj−1 = Y ′

j′−1 and Xj = X ′
j′ . Now there are two cases to consider.

Case j = j′: We have χ(Xj−1) = Xj = X ′
j′ = χ(X ′

j′−1) and hence |Xj−1| = |X ′
j′−1|. Thus, |Wj−1| =

|W ′
j′−1| and consequently kj−1 = k′j′−1. Also we have

hkj−1
(Wj−1) = Yj−1 = Y ′

j′−1 = hk′
j′−1

(W ′
j′−1).

Using Theorem 3, we obtain that either Wj−1 = W ′
j′−1 or we obtain a collision for h. In the second case, we

are done and in the first case we obtain Wj−1 = W ′
j′−1 and consequently Yj−2 = Y ′

j′−2 and Xj−1 = X ′
j′−1.

Repeating the above argument for i = j − 2, . . . , 1, we obtain that Wj−2 = W ′
j′−2, Wj−3 = W ′

j′−3, . . .,
W1 = W ′

1 and consequently Yj−3 = Y ′
j′−3 and Xj−2 = X ′

j′−2, Yj−4 = Y ′
j′−4 and Xj−3 = X ′

j′−3, . . ., Y0 = Y ′
0

and X1 = X ′
1. Now we have

χ(X0) = X1 = X ′
1 = χ(X ′

0).

Consequently, |X0| = |X ′
0| and so |W0| = |W ′

0|. This forces k0 = k′0. Thus, we have

hk0(W0) = Y0 = Y ′
0 = hk0(W

′
0).

Again using Theorem 3, we have that either there is a collision for h or W0 = W ′
0. In the first case we

are done and in the second case, we have W0 = W ′
0 and hence x = X0 = X ′

0 = x′ which contradicts the
hypothesis. Hence there is a collision for h.
Case j 6= j′: Without loss of generality assume j′ > j and j′− j = l > 0. Proceeding as in the above case,
we have Y0 = Y ′

l and X1 = X ′
l+1. Again χ(X0) = X1 = X ′

l+1 = χ(X ′
l) and hence |X0| = |X ′

l | which implies
|W0| = |W ′

l |. This forces k0 = k′l. Thus, we have

hk0(W0) = Y0 = Y ′
l = hk′l

(W ′
l).

The string W0 is formed by (possibly) padding 0’s to the end of IV||0||X0 and the string W ′
l is formed by

(possibly) padding 0’s to the end of Y ′
l−1||1||X ′

l . Thus, W0 and W ′
l differ in the (m + 1)th bit position and

hence W0 6= W ′
l . Hence by Theorem 3 there must be a collision for h.

12

Let A be an (ε, q, L)-algorithm to solve ALC(n, m,L) for h∞. Then A is successful with probability ε
and in this case let (x, x′) be the output of A. Thus, |x|, |x′| ≤ L and so h∞ invokes h at most η times for
hashing either x or x′. The algorithm B to solve Col(n, m) for h is as follows. B first executes A. If A
fails, then B also fails. If A succeeds and returns (x, x′), then B invokes h∞ on both x and x′ and “scans
backwards” until a collision for h is found. By the above discussion, if (x, x′) is a collision for h∞, then
with probability one, the backward scan will produce a collision for h. Thus, the success probability of
B is also ε. Further, the number of invocations of h made by B is found as follows: q times during the
execution of A and at most η times each on x and x′, giving a total of at most q + 2η invocations.

7 Comparison to Iterated Hashing

In this section, we perform a comparison of the new construction to the several variations of the Merkle-
Damg̊ard constructions. Before getting into the details, we would like to point a few things.

• Our construction is more general in the sense that it works over an arbitrary DAG, whereas the
variations of the Merkle-Damg̊ard algorithm works only with dipaths. Also, we would like to point
out that the mechanism in Merkle-Damg̊ard algorithm for handling arbitrary length strings and the
associated argument does not carry over to the case of arbitrary DAGs.

• The detailed comparison that we present below is only to Construction II, since this is the algorithm
which can hash arbitrary length strings and assumes h to be only collision resistant.

• From a practical point of view, in general, we do not expect our algorithm to replace the Construc-
tion III. For most cryptographic purposes, computation of the hash function requires a very small
fraction of the total time. Hence, parallel hash computation algorithms (and consequently DAGs)
would be required only for special purpose applications. On the other hand, we believe that the
issue of obtaining an efficient parallel hash algorithm which can handle arbitrary length strings is of
significant theoretical interest.

7.1 Padding Efficiency

The function h∞ performs some amount of padding to the string x before hashing it. We determine the
maximum amount of padding that is done and show that this is (asymptotically) less than the amount of
padding performed in Construction II. Given integer i, we define log∗(i) to be the least integer k such that

log(log(. . . (log(︸ ︷︷ ︸
k

|x|) . . .)) ≤ 1.

Note that the parameters n and m of the compression function h are independent of the message length
|x| and can be assumed to be constant in an asymptotic analysis.

Proposition 6 Let x be a binary string with |x| > n. Then the maximum amount of padding done to the
string x in the computation of h∞(x) is

n + j(n−m) + |χ(x)|+ |χ2(x)|+ · · ·+ |χj−1(x)|

where j is the minimum positive integer such that |χj(x)| ≤ n−m.

13

Proof. The maximum amount of padding in Step 3 is m + 1 + (n−m− 1). In Step 4, there is a loop; for
each value of i (1 ≤ i ≤ j−1) the maximum amount of padding is 1+ |Xi|+(n−m−1) = (n−m)+ |χi(x)|.
The padding in Step 5 is equal to (n−m). Adding up all these gives the required result.

The maximum amount of padding done to x in Construction II is 2n−m− 2 +
⌈

|x|
n−m−1

⌉
(see [7]). As-

suming n and m to be constants, the amount of padding is O(|x|). On the other hand, assuming n and m to
be constants, the maximum amount of padding in our algorithm is bounded above by O((log∗ |x|)(log |x|)).
Hence, in an asymptotic sense our padding scheme is more efficient than the Merkle-Damg̊ard padding
scheme. The asymptotic inefficiency in the Merkle-Damg̊ard construction arises due to the fact that one
bit of padding is done to each message block.

7.2 Invocation Efficiency

We compare the invocation efficiency of our algorithm to Construction II, i.e., we compare the number of
invocations of the compression function h for a message x made by Construction II and our algorithm.

We first compute the number of invocations of h made by our algorithm. The algorithm to compute
h∞ invokes h∗ exacty j + 1 times, i.e., for i = 0, . . . , j. Suppose as in the proof of Theorem 5 that the
ith invocation of h∗ is made on the string Wi which is obtained by possibly padding 0s to IV||0||X0 if
i = 0; to Yi−1||1||Xi if 1 ≤ i ≤ j − 1; and to Yj−1||Xj if i = j. Then from Proposition 2, it follows that
|Wi| = (n−m)(ki − 1) + n. Now |Wi| = m + 1 + |Xi|+ |αi| for 0 ≤ i ≤ j − 1 and |Wj | = m + |Xj |+ |αj |,
where αis are the all zero strings which are used as pads to obtain the Wis. Further, |αi| ≤ n−m− 1 for
all 0 ≤ i ≤ j. Thus, we obtain ki =

⌈
|Xi|+1
(n−m)

⌉
if 0 ≤ i ≤ j − 1; and ki =

⌈
|Xi|

(n−m)

⌉
if i = j. The value of ki is

the number of invocations of h made by hki
. Note that kj = 1. Hence the total number of invocations of

h made in the computation of h∞ is obtained by adding all the kis and is given in the following result.

Proposition 7 The total number B of invocations of h made in the computation of h∞ is equal to

B =
⌈
|x|+ 1
n−m

⌉
+

⌈
|χ(x)|+ 1

n−m

⌉
+ · · ·+

⌈
|χj−1(x)|+ 1

n−m

⌉
+ 1

In Construction II, the number of invocations A of the compression function h is equal to A = 1+
⌈

|x|
n−m−1

⌉
.

On the other hand, the number B of invocations of h in our algorithm is given by Proposition 7. Note
that j ≤ log∗ |x|. Using this fact and some simple algebraic simplification we obtain

A−B >
|x|

(n−m)(n−m− 1)
− n−m + 1 + log∗ |x|(n−m + 2 + log |x|)

n−m

> 0

for sufficiently large |x|. Thus, in an asymptotic sense, our algorithm is more efficient than the Merkle-
Damg̊ard algorithm.

7.3 Optimal Construction?

Consider the problem of secure domain extension to arbitrary length strings. Both Construction II and
our algorithm perform this task. We have shown that our algorithm improves upon the Merkle-Damg̊ard
algorithm both in terms of reducing the amount of padding and the number of invocations. This suggests
the following two problems.

14

Lower Bound: Let A be an algorithm which securely extends the domain of a compression function
h to arbitrary length strings. What is the minimum amount of padding and minimum number of
invocations of h that A has to make on an input x of length |x|?

Construction: Is there a construction which improves upon our algorithm?

At this point, we do not know the answer to either of these two question. In particular, for the first question,
we have not even been able to prove that the amount of padding cannot be constant (i.e. independent
of the length of x). On the other hand, for the second question, it might seem that a padding of length
proportional to log |x| might be sufficient. However, actually obtaining such a construction along with a
correctness proof does not seem to be easy. We believe that the resolution of these questions can form
tasks of future research and the answers will be important for the understanding of collision resistant hash
functions.

8 Concrete Examples

In this section, we provide some examples of DAGs which can be used to extend the domain of a collision
resistant compression function. To do this it will be easier to define a notion of composition of structures
in the following manner.

Let S1 = (n, m,D1 = (V1, A1), α1) and S2 = (n, m,D2 = (V2, A2), α2) be two structures such that the
number of output nodes of D1 is at most equal to the number of exposed nodes of D2. Let {u1, . . . , ur} be
the output nodes of D1 and {v1, . . . , vs} (r ≤ s) be the exposed nodes of D2. Define a DAG D = (V,A),
where V = V1 ∪ V2 and A = A1 ∪ A2 ∪ {(u1, v1), . . . , (ur, vr)}. Define a proper assignment α on D in the
following manner: α(e) = αi(e) if e ∈ Ai, i = 1, 2 and α(e) = m otherwise. We define S = S1 • S2 to be
the partial composition of S1 and S2 where S = (n, m,D, α). In case r = s, i.e., the number of output
nodes of D1 is equal to the number of exposed nodes of D2 we will say that S is the total composition or
simply the composition of S1 and S2. Also we will denote the total composition by the symbol ◦. Note
that ◦ is an associative operation while • is not and neither of the two operations are commutative.

From now on we will explicitly write a structure as S = (n, m, r1, r2, D, α) where r1 (resp. r2) is the
number of exposed (resp. output) nodes of D. Thus, we can compose S1 = (n, m, r1, r2, D1, α1) and
S2 = (n, m, r2, r3, D2, α2) to obtain S = S1 ◦ S2 = (n, m, r1, r3, D, α). Let hS1

, hS2
and hS be the hash

functions associated with the structures S1,S2 and S respectively. Then hS1
is an (t1(n−m) + r2m, r2m)

function, hS2
is an (t2(n−m) + r3m, r3m) function and hS is an ((t1 + t2)(n−m) + r3m, r3m) function

where t1 and t2 are the numbers of nodes in D1 and D2 respectively.
We now provide some examples of structures. In each of the cases below we assume the existence of a

suitable (n, m) compression function h.
Example 1 (isolated nodes): For i ≥ 1, define Ki = (n, m, i, i,D = ({1, . . . , i}, ∅), α) to be the structure
corresponding to the digraph consisting of i nodes and no arcs. Hence each node is both an exposed and
an output node. The depth of Ki is one. The associated hash function hKi

is an (in, im) function.

Example 2 (dipath): For r ≥ 1, define P (r) to be the directed path on r nodes and α assigns m to each
arc of P (r). This defines a structure P(r) = (n, m, 1, 1, P (r), α). The depth of P(r) is r. The associated
hash function hP (r) is an (r(n − m) + m,m) function. A variation of this structure (which includes an
initialization vector) is used in the Merkle-Damg̊ard construction [2, 4].

Example 3 (parallel dipaths): For r, q ≥ 1, define P
(r)
q to be the union of q copies of P (r) and the

corresponding structure is denoted by P(r)
q = (n, m, q, q, P (r), α), where α again assigns m to each arc of

15

P
(r)
q . The depth of P(r)

q is r and also note that Ki = P(1)
i . The associated hash function hP (r)

q

is an

(rq(n−m) + qm, qm) function.
Example 4 (contracting binary tree): For t ≥ 1, let Tt be the binary tree with t levels and 2t − 1
nodes defined by Tt = ({1, . . . , 2t − 1}, {(i, bi/2c) : 2 ≤ i ≤ 2t − 1}). We define an assignment α which
assigns m to each arc of Tt. Then the fan-in of any non exposed node is 2m and since α is proper we must
have n ≥ 2m. We denote the corresponding structure by T t = (n, m, 2t−1, 1, Tt, α). The depth of T t is t.
The associated hash function hT t

is a ((2t − 1)(n−m) + m, m) hash function.
Example 5 (expanding binary tree): For t ≥ 1, let It be the inverted binary tree of t levels: It =
({1, . . . , 2t − 1}, {(i, 2i), (i, 2i + 1) : 1 ≤ i ≤ 2t−1 − 1}). The assignment α assigns (m/2) to each arc of It.
We denote the corresponding structure by It = (n, m, 1, 2t−1, It, α). The depth of It is t. The associated
hash function hIt

is a ((2t − 1)(n−m) + 2t−1m, 2t−1m) function.

Example 6 (parallel structure): For t ≥ 1 and r ≥ 0, define S(r)
t = It ◦ P(r)

2t−1 ◦ T t. The numbers of

exposed and output nodes of S(r)
t are both one and its depth is 2t + r. The associated hash function hS(r)

t

is a ((2t(r + 2)− 2)(n−m) + m,m) function.
Example 7 (incremental parallel structure): For r ≥ 0, t ≥ 1 and 1 ≤ s ≤ 2t−1 define the structure

S(r,s)
t = (It ◦ P(r)

2t−1) ◦ (Ks • T t). (3)

The numbers of exposed and output nodes of S(r,s)
t are both one and its depth is 2t + r + 1. The hash

function hS(r,s)
t

associated to the structure S(r,s)
t is an ((2t+1 + r2t−1 + s− 2)(n−m) + m,m) function.

Remark : We note that the basic idea behind Example 7 is already present in Damg̊ard [2]. However, we
provide much more details.

8.1 A Parallelizable Hash Algorithm

We build on Example 7 above to obtain a parallel algorithm for extending the domain of a collision resistant
hash function. The algorithm will use 2t−1 processors and its structure will be S(r,s)

t for some r and s which
are determined by the length of the message x in the following manner. Define λ(t) = (2t+1−2)(n−m)+m
and δ(t) = 2t−1(n−m). Let x be the string which is to be hashed.

1. Write |x| − λ(t) = rδ(t) + γ1, where γ1 is a unique integer from the set {1, . . . , δ(t)}.
2. Write γ1 = γ2(n−m) + γ3, where γ3 is a unique integer from the set {1, . . . , n−m}.
3. Set x = x||0n−m−γ3 . Note that the amount of padding is at most (n−m− 1).

Note that 1 ≤ γ2 < 2t. The above steps define the parameters r, γ1, γ2 and γ3. We further define s = γ2+1.
For t ≥ 1, we define the function g∗t : ∪i≥λ(t){0, 1}i → {0, 1}m by

g∗t (x) = hS(r,s)
t

(x||0n−m−γ3) (4)

where hS(r,s)
t

is the hash function associated with the structure S(r,s)
t . Note that the amount of padding

done to the string x is at most n−m− 1.
Remark : One constraint for using the structure T t is that the (n, m) compression function h must
satisfy n ≥ 2m. The structure S(r,s)

t contains the structure T t and hence this constraint also holds for
S(r,s)

t . However, from a practical point of view this is not really a constraint, since all known practical
compression functions satisfy this condition.

16

We now define H∗
t : ∪i≥1{0, 1}i → {0, 1}m in the following manner. First, for the sake of convenience,

we need to define a function g0 : ∪2n−m−1
i=n+1 {0, 1}i → {0, 1}m in the following manner. Let x be a string with

n < |x| < 2n − m and w = x||02n−m−|x|. Write w = w1||w2 where |w1| = n and |w2| = n − m. We define
g0(x) = h(h(w1)||w2).

H∗
t (x) = h(x||0n−|x|) if |x| ≤ n;

= g0(x) if n < |x| < 2n−m;
= g∗i (x) if λ(i) ≤ |x| < λ(i + 1) and 1 ≤ i < t;
= g∗t (x) if |x| ≥ λ(t).

 (5)

The desired function H∞
t is obtained from the function H∗

t using the construction of Section 6.
Computation of H∞

t (x)

1. Let X0 = x and for i ≥ 1, Xi = χ(Xi−1) = χi(X0).
2. Let j be the least positive integer such that |Xj | ≤ n−m.
3. Set Y0 = H∗

t (IV||0||X0).
4. For i = 1 to j − 1 set Yi = H∗

t (Yi−1||1||Xi).
5. Yj = H∗

t (Yj−1||Xr
j).

6. Output Yj .

The collision resistance of H∞
t is proved in a manner similar to that of Theorem 5 and this gives us the

following result.

Theorem 8 Let H∞
t be the hash function defined as above. Then, a collision for H∞

t yields a collision
for h.

9 Conclusion

We have considered the problem of securely extending the domain of a collision resistant hash function
using an arbitrary DAG. A new efficient construction has been presented. This construction improves upon
the general Merkle-Damg̊ard algorithm both in the amount of padded bits and the number of invocations
of the compression function. The proof of collision resistance of our construction requires the compression
function to only collision resistant (one-wayness is not used in the proof). In this paper, we have entirely
concentrated on the property of collision resistance. In fact, all the domain extending techniques considered
here also preserve the property of pre-image resistance.

Acknowledgement: The construction in Section 6 was incorrect in an earlier version of the paper. The
error was discovered while discussing the paper with several other people. We would like to thank Rana
Barua, Mridul Nandi and Bimal Roy for this.

References

[1] M. Bellare and P. Rogaway, Collision-resistant hashing: towards making UOWHFs practical, in:
Proceedings of Crypto 1997, Lecture Notes in Computer Science, volume 1294, Springer, 1997, pp.
470-484.

17

[2] I. B. Damg̊ard, A design principle for hash functions, in: Proceedings of Crypto 1989, Lecture Notes
in Computer Science, volume 435, Springer, 1990, pp. 416-427.

[3] W. Diffie and Martin E. Hellman. New Directions in Cryptography. IEEE Transactions on Information
Theory, volume IT-22, number 6, pages 644–654, year 1976.

[4] R. C. Merkle, One way hash functions and DES, in: Proceedings of Crypto 1989, Lecture Notes in
Computer Science, volume 435, Springer, 1990, pp. 428-446.

[5] B. Preneel, The state of cryptographic hash functions, in: Lectures on Data Security: Modern Cryp-
tology in Theory and Practice, Lecture Notes in Computer Science, volume 1561, Springer 1999, pp.
158-182.

[6] D. R. Stinson, Some observations on the theory of cryptographic hash functions, Designs, Codes and
Cryptography, to appear.

[7] D. R. Stinson. Cryptography: Theory and Practice, CRC Press, second edition, 2002.

18

