
Elastic AES

Debra L. Cook, Moti Yung, Angelos D. Keromytis
Department of Computer Science

Columbia University�
dcook,moti,angelos � @cs.columbia.edu

June 6, 2004

Abstract. Recently an algorithmic schema was proposed for converting any ex-
isting block cipher into one which excepts variable length inputs with the compu-
tational workload increasing in proportion to the block size. The resulting cipher
is referred to as an elastic block cipher. The initial work presented immunity to
certain key recovery attacks, and left open further analysis of the method and its
possible instantiations. In order to provide a concrete example of an elastic block
cipher, we design and implement an elastic version of the Advanced Encryption
Standard (AES) cipher which accepts all block sizes in the range 128 to 255 bits.
To validate the design we perform differential cryptanalysis on elastic AES which
confirms that the cipher does not introduce potential differential attacks as a re-
sult of a subset of bits being omitted from each round (which is at the heart of the
elastic design). We also compare the performance of software implementations
of elastic AES and regular AES on variable size inputs, as a step in determining
the practicality of the elastic version.

Keywords: Block Cipher Design, Elastic Block Cipher, Variable Length Block Cipher,
Differential Cryptanalysis.

1 Introduction

The concept of an elastic block cipher was introduced in [3] and provides a method
by which an existing block cipher can be modified to create a variable length block
cipher accepting all block lengths between one and two times its original block size. We
use this method to create an elastic version of AES [1] in order to provide a concrete
example of an elastic block cipher. In [3], Cook, et al. define the general construction
of an elastic block cipher and generically relate the security of the elastic version to
the security of the original cipher, proving the existence of any attack recovering key
material for the elastic version implies a similar security weakness in the original cipher.
However, specific examples of elastic ciphers are not discussed and many issues such
as concrete design and cryptanalysis are left as open issues.

The manner in which the main idea behind the elastic block cipher, that of inter-
leaving the bits between rounds, is precisely incorporated into a cipher depends on the
specific cipher. In the elastic version of a block cipher, bits beyond the normal block
size are left out of the round function then XORed and swapped with bits output from

the round function in order to become part of the input to the next round. The bits out-
put from the round function involved in the XOR become the set left out in the next
round. The number of rounds are increased such that the round function is applied to
each bit position the same number of times as in the original block cipher. However, the
general algorithmic schema does not specify exactly how to select the bits to involve
in the XOR and omit from the next round. Instead, it allows the selection to depend on
the particular cipher (which it must, as mentioned in [3], due to the fact that a cipher’s
round function may process subsets of input bits differently).

In this work we design a specific elastic version of AES and perform differential
cryptanalysis on it to confirm that the swapping can be implemented in a manner which
does not introduce the potential for differential attacks as a result of a subset of bits be-
ing omitted from each round. This result validates the strength of elastic ciphers design
against differential attacks.

Elastic ciphers do not increase the size of the cleartext, since no padding techniques
are needed. We also compare the time performance of software implementations of
elastic AES and a regular AES when encrypting increased size blocks. This is a step in
determining the practicality of the elastic version. Specifically, we show that the amount
of overhead added to AES to create the elastic version is small. This allows the elastic
version to offer a substantial performance benefit when encrypting plaintext that is only
slightly longer than AES’s normal block size of 128 bits compared to padding the plain-
text to two full blocks. Naturally, as the length of the plaintext increases towards twice
the block size, the speedup of the elastic AES decreases relative to two applications of
regular AES (using plaintext-padding to encrypt two full blocks). This demonstrates the
proportionality of the increase of work in the elastic version which was a design goal of
the schema.

The remainder of this paper is organized as follows. In Section 2 we step through
the algorithm for constructing an elastic version of a block cipher and explain how each
step is implemented in the elastic version of AES. We provide a brief overview of the
security of elastic AES and a derivation of upper bounds for differentials in Section 3.
In Section 4 we compare the performance of elastic AES to the performance of AES.
Section 5 concludes the paper.

2 Elastic AES

In [3], Cook et al. presented an algorithm for modifying the encryption and decryption
functions of existing block ciphers to accept blocks of size � to ������� , where � is the
block size of the original block cipher. We apply this algorithm to AES to create an
elastic version of AES accepting block sizes of 128 to 255 bits. Figure 1 illustrates the
general structure elastic AES. We recall that the algorithm in [3] was designed such
that it neither modifies the round function of the block cipher nor changes the number
of rounds applied to each bit, but rather creates a method by which bits beyond the
supported block size can be interleaved with bits in the supported block size. In order
to clearly explain how the algorithm from [3] is applied to AES, we list the steps of
the algorithm and indicate for each step how we applied it to AES. We will use the
following notation:

2

– � denotes any existing block cipher that is structured as a sequence of rounds.
– � denotes the number of rounds in � .
– � denotes the block length of the input to � in bits.
– � denotes a single block of plaintext.
– � denotes a single block of ciphertext.
– � is an integer in the range � ��� � � �
	 .
– ��� denotes the modified � with ���� bit input for any valid value of � . ��� will be

referred to as the elastic version of � .
– � � ����� denotes � � for a specific value of � .
– ��� denotes the number of rounds in ��� .
– � denotes a key.
– ��� denotes a set of round keys resulting from the key expansion.
– ��� and ����� will refer to � with the round keys resulting from expanding key � ,

and to � with the round keys ��� , respectively.

We call a bit (position) input to a block cipher active in a round if the bit is input to
the round function. In AES all bits are active in each round.

128 bits y bits

AddRoundKey

Plaintext 128+y bits, 0 ≤ y < 128 bits

S-Box
Shiftrows
MixColumns

AddRoundKey

⊕

AES round, except last

Addition to round to swap y bits.
XOR y bits left out of round with
y bits that were in the round, and
swap the two segments

Total # of rounds = ! 10(128+y)/128"

S-Box
Shiftrows

AddRoundKey

128+y bit ciphertext

last round

Key Dependent Mixing

Key Dependent MixingOptional

Optional

Fig. 1. Elastic Version of AES

Given � and a plaintext � of length ���� bits, where ��� �"! � , the following
modifications to � ’s encryption function are made to create the encryption function of
�#� . In our case, � is AES and � is � ��$.

3

1. Set the number of rounds, ��� , such that each of the �� � bits is input to and active in
the same number of rounds in � � as each of the � bits is in � . ��� � � � � ������� . For
elastic AES, � � � � and � � ranges from 10 (when � � �) to 20 (when � �����
	�).

2. XOR all �� � bits with key material as the first step. This requires including � extra
bits in AES’s AddRoundKey step.

3. (Optional) Add a simple key dependent mixing step that permutes or mixes the bits
in a manner that any individual bit is not guaranteed to be in the rightmost � bits
with a probability of 1. Similarly, a key dependent mixing step may be added as a
final step. We implemented these by using a simple key dependent rotation. After
the rotation we also XOR the rightmost � bits with the leftmost � bits so that every
bit has some influence in the first round. The mixing steps are included in order to
avoid a one round differential that occurs with a probability of 1.

4. Input the leftmost � bits output from the mixing step into the round function.
5. At the end of each round, whitening is applied to all �� � bits by XORing all �� �

bits with key material. In the case of AES, this requires including the extra � bits in
the AddRoundKey step after each round.

6. Alternate which � bits are left out of the round by XORing the � bits left out of the
previous round with � bits from the round’s output then swap the result with the
� bits left out of the previous round. This step is referred to as ”swapping” or the
”swap step”. Specifically:
(a) Let � denote the � bits that were left out of the round.
(b) Let � denote some subset of � bits from the round’s output of � bits. A different

set of � bits (in terms of position) is selected in each round. The general elastic
block cipher algorithm does not specify exactly how to select � but allows the
selection to depend on the specific block cipher.

(c) Set � ����� .
(d) Swap and � to form the input to the next round.
We implement this swap step by selecting � sequential bits from the leftmost � bits,
wrapping around from the right end to the left as needed. The starting position is
varied by moving one byte to the right each round to avoid the same bit positions
from being used in each swap. This avoids any complex selection process for choos-
ing the � bits that would decrease performance. Due to the nature of AES’s round
function involving all bits equally (in contrast consider a Feistel network where
only half the bits may be acted upon in a given round and RC6 [7] where bits are
acted upon differently in a round) and the XOR operation in the swap step allowing
bits swapped out to still impact the round, it is permissible to use sequential bits.
We also note that the security analysis of the general elastic block cipher algorithm
in [3] and our differential analysis in Section 3 are independent of the exact method
for selecting the bits to swap and apply even to the most trivial means of selection.

In elastic AES, the decryption function consists of the same steps with the round
keys applied in the reverse order and the round function replaced by its inverse.

The elastic version of AES requires additional key bits for each whitening step com-
pared to AES. It also requires key bits for the two mixing steps. Instead of modifying
the key expansion to produce � ��$� � bit keys for the initial whitening and round keys,
all of the key material was generated by a stream cipher, with the 128-bit key used as the

4

key for the stream cipher. Specifically, we used RC4 with the first 512 bytes discarded
[6, 8]. This allows us to produce a more random set of round keys than if the AES key
schedule was used.

3 Differential Cryptanalysis of Elastic AES

We briefly discuss the security of elastic AES then provide a detailed 3 round differ-
ential cryptanalysis to obtain upper bounds on differentials. As was shown in [3], any
attack on � � which produces the round keys for � � implies an attack on � exists and
can be used to find the round keys for � . This is due to the ability to convert the round
keys for � � corresponding to a set, � , of plaintext, ciphertext pairs into a set of round
keys for � corresponding to a set of plaintext, ciphertext pairs formed from a subset of
� . In the case of our elastic version of AES, the round keys produced by such an attack
are used only for whitening, since there are no key bits used internally in the round
function. When the round keys for � � are converted into round keys for � , the results
correspond to solutions for a version of AES with pseudo-random round keys (since we
replace the AES key schedule with a stream cipher when creating the elastic version).
We can easily prune the sets of round keys of keys that do not adhere to AES’s key
schedule.

We also note that with respect to linear cryptanalysis [5], if a set of equations exist
relating the round key, plaintext and round output bits for � rounds of � � , the equations
may be modified in two ways to create a set of equations corresponding to � . The first
possibility is to replace variables representing any of the first � bits which are swapped
in a round with the XOR of the variables which are XORed in the swap step, and discard
any variables representing the last � bits of whitening in the last round key and of the
last � bits of the ciphertext to obtain a set of equations relating the round key bits,
plaintext and round outputs for � . The second possibility is to replace the variables
representing the key bits used for the rightmost � bits of whitening in each round with
the variables representing the rightmost � bits of input to the round (i.e. the � bits left
out of the round function). Again discard any variables representing the last � bits of
whitening in the last round key and the last � bits of the ciphertext.

To gain an understanding of the potential for differential cryptanalysis [2], the im-
pact of a differential that is � except for 1 byte was traced through 3 rounds of the
elastic version. A 1-byte differential was used because it has the greatest single round
probability of ����� for AES (refer to pages 205-206 of [4]) and thus also has the great-
est single round probability for elastic AES since the round function is unmodified. The
analysis excludes the optional key dependent mixing steps. Determing the bounds with-
out this step allows us to determine the extent of mixing required. Including a simple
key dependent rotation for both the initial and final mixing steps will decrease the upper
bound by �� . The analysis was performed in a manner that applies to � ��$ � bits for any
��� � � � � �
	 	 . By the 	
�� round of the elastic version, at least 12 of the 16 bytes input to
the round function will differ. We note that in AES complete diffusion occurs by the end
of the second round, meaning every output bit of the second round has been affected
by every input bit to the first round (refer to page 41 of [4]). In the elastic version of
AES without the initial key dependent mixing step, if ���#� , three rounds are required

5

before every bit has affected every other bit. (When including an initial mixing step, at
most three rounds are required to obtain complete complete diffusion.) Resulting from
the analysis is the following theorem:

Theorem 1: A 3-round differential for the elastic version of AES (with neither an initial
nor final key dependent mixing step) accepting input blocks of 128 to 255 bits occurs
with probability � � ��� � .
Proof:

The following is the analysis resulting in the upper bound for the probability of a
differential for �#� when � is AES and the swapping step in � � does not break up byte
boundaries. A bound will be established on a 3 round differential and used to obtain an
upper bound on 11 and 20 round differentials.

For a non-zero differential, the highest single round probability in AES is � ��� and is
achieved by a one byte difference in the input. This is due to the S-Box in the SubBytes
step of the round. Two single byte differences achieve a probability of � � � ; each of
the other 126 possible one byte differences produce a specific output difference with
probability ���

�
(refer to page 205 in [4]). The only point in the AES round function in

which a byte impacts other bytes is the MixColumns step, thus if a certain output of the
round is desired that requires more than one specific input byte to the MixColumns step
to take on a certain value then each byte can be set with probability at most � � � and
there are at most 128 possible pairs of deltas that produce the result. Thus, in AES the
highest probability differential for the round occurs if only one byte differs in the input
and the output from the S-Box, and it is one of the cases that occurs with probability
� � � .

Estimating an upper bound on the probability for a differential over multiple rounds
by computing the product of the differentials for individual rounds, based on the S-Box
alone, the maximum probability possible is

�
� ����� � . However, this rough estimate is

higher than the actual upper bound. In AES, the probability after 4 rounds is � � ��� �
(refer to page 205 in [4]). By following how a single byte difference in inputs to a round
propagates through the subsequent round in the elastic version of AES, it will be shown
the resulting probability is small enough to indicate a differential attack is not feasible.

Terminology:

– � indicates the difference between two bit strings.
– Encryption instance refers to the encryption of a particular plaintext. When two

plaintexts satisfying a particular � are encrypted, the two encryptions will be re-
ferred to as two instances.

– Round input and output refers to the entire � ��$ �� bits entering and leaving a
round, respectively. The round consists of the AES round function as well as the
XOR and swapping of � bits.

– � output refers to the difference between the round’s output for the two instances
of encryption.

– � input refers to the difference between the round’s input for the two instances of
the encryption.

– 	�
����
 denotes the input to round i. 	�
 is 128 bits and ��
 is � bits.
– ��	
 ��� �
 denotes the difference between two inputs to round � . This also equals

the difference between the outputs of round � � � .

6

– ��	���� � � denotes the difference between two outputs of the round function in round
� .

– 0 denotes a string of bits that are all 0.
– Controlling a byte in � refers to being able to predict what the � in the SubBytes

outputs for the two instances will be for the particular byte.
– The 128 bits input to the AES round function are treated as a 4 x 4 byte matrix.

Rows and columns will refer to the rows and columns of this 4 x 4 matrix.

Before beginning the analysis, a few facts should be mentioned.
Fact 1: In AES, a one-byte difference between two inputs to a round will produce

a 4 byte difference in the outputs, and these 4 bytes will correspond to a single column
in the 4 x 4 byte matrix. When input to the next round, ShiftRows will result in each
column having one of the 4 bytes, thus all 16 bytes are impacted after the MixColumns
step occurs. Thus, a one byte � between two inputs into round � affects the � in all 16
bytes of the outputs from round � � .

Fact 2: In the elastic version of AES, once a non-zero � occurs in a round’s input
it is impossible to return to a state where � input = 0 for a subsequent round.

Case 1: Suppose � 	 is non-zero for a round, then there is a non-zero � in the input
to the AES round function and a non-zero � in the output of the AES round function.
If the byte(s) involved in the non-zero � are not part of the � bits left out for the next
round, there is a non-zero � in the input to the next round and it occurs within the first
128 bits. If these bits are part of the � bits left out of the next round, there is a non-zero
� in the input to the next round and it occurs within the last � bits. There may also be
a non-zero � in the first 128 bits depending on the result of the XOR.

Case 2: Suppose � � is non-zero for a round. When the � bits in � are XORed with
� bits from the 128 bit output of the AES round function, two general scenarios occur:

	�� There is a non-zero � in the 128 bits of the AES round function output which
results in ��	 = 0 into the next round. Then � b is non-zero for the next round.

��� There is a zero � in the 128 bits of the AES round function output. Then the
current � � results in a non-zero ��	 for the next round after the XOR step.

Fact 3: If two plaintexts differ in at least one byte then in the first and/or second
round the input to the AES round function must differ in at least one byte.

Fact 4: A non-zero differential with probability of 1 exists for a round of the mod-
ified AES. If ��	 � � � � �

� � � � for �
	� � , then the difference between the outputs
of the first round after the swap is ��	�� � � where ��	�� contains the bits from � � � . In
this case, the first round does not assist in preventing a differential attack. As mentioned
in Section 2, a key dependent mixing step prior to the first round will help avoid this
case and thus will be useful if there is a need to decrease the probability of a specific
differential occurring by a means other than adding an additional round.

Now we proceed with the proof of the theorem. Given that a one byte non-zero �
in the input to the AES round will result in a 4 byte non-zero � in the output, the one
byte � may result in a 0 to 4 byte non-zero � in the � bits that remain out of the next
round. Let � � refer to the 4 non-zero bytes in ��	��� � � .Consider what happens in each
case of 0 to 4 bytes being swapped into the � bits for round � � .

Case 1: None of the four non-zero bytes in ��	���� � � are involved in the XOR and
swap step. The following will result:

7

AES
Round

Function

∆ar = 0|| ∆z || 0

∆ar+1 ∆br+1

∆br = 0

∆br = 0∆a_outr = 0|| ∆x || 0

∆z ≠ 0
|∆z| =1 byte

∆x ≠ 0
|∆x| =4 bytes

Fig. 2. Elastic AES Round Differential

– � ��
 � � contains � bytes of � � and thus is ��
– ��	
 � � contains � � .
– ��	 ��� � ����� will be non-zero in all 16 bytes.
– Since � �
 � � is ��� � 	���� � ����� will carry forth into ��	
 � � .

Multiplying the probabilities from rounds � (� � �) and � � (
�
��� � � �) results in an

upper bound of ��� � � that a specific differential occurs. Furthermore, ��	
 � � will be
non-zero in every byte.

Case 2: Exactly one of the 	 non-zero bytes is involved in the XOR and swap step.
The following will result:

– � ��
 � � contains � byte of � � and is � in all other bytes.
– ��	
 � � contains � � .

�
bytes of � � are not involved in the XOR and swap, and

thus remain unchanged when entering the next round. The 	 �� byte depends on the
result of the XOR with � �
 . However, since � �
 is � , this byte will also enter the
next round unchanged.

– ��	���� � ����� will be non-zero in all ��� bytes.

8

Multiplying the probabilities from round � (� � �) and � � (
�
��� � � �) results in an

upper bound of ��� � � that a specific differential occurs. Furthermore, ��	
 � � will be
non-zero in at least ��� bytes because the XOR with � �
 � � can result in at most one
byte becoming ���

Case 3: Exactly two of the 	 non-zero bytes is involved in the XOR and swap step.
The following will result:

– � ��
 � � contains � bytes of � � and is � in all other bytes.
– ��	
 � � contains � � .
– ��	���� � ����� will be non-zero in all ��� bytes.

Multiplying the probabilities from round � (� � �) and � � (
�
��� � � �) results in an

upper bound of ��� � � that a specific differential occurs. Furthermore, ��	
 � � will contain
at least � 	 non-zero bytes.

Case 4: Exactly three of the 	 non-zero bytes is involved in the XOR and swap step.
The following will result:

– � �
 � � contains
�

bytes of � � and is � in all other bytes.
– ��	
 � � contains � � .
– ��	���� � ����� will be non-zero in all ��� bytes.

As before, � bytes must be controlled across the � for the two rounds so there is
an upper bound of ��� � � that a specific differential occurs. Furthermore, ��	
 � � will
contain at least � � non-zero bytes.

Case 5: All of the 	 non-zero bytes is involved in the XOR and swap step. The
following will result:

– � ��
 � � contains � � and is � in all other bytes.
– ��	
 � � contains � � .
– ��	���� � ����� will be non-zero in all ��� bytes.

As before, � bytes must be controlled across the � for the two rounds so there is
an upper bound of ��� � � that a specific differential occurs. Furthermore, ��	
 � � will
contain at least � � non-zero bytes.

The single byte difference in the inputs to the round must occur by round 2 per
Fact 3. Given that the probability a specific differential occurring has an upper bound of
� ��� � for three rounds and ��� � for one round, and the modified AES requires at least 11
rounds, then calculating the probability for all rounds by multiplying the probabilities
for individual rounds, using ����� for round 11 and � for round 1, results in an upper
bound of

�
� � � ����� � � � � � � � � � � � � � . Extending this to 20 rounds results in an upper

bound of
�
� � � ����� � � � � ��� � � � ��� ��� � . However, notice that in each of the 5 cases, the

difference in inputs to the 	 �� round in the series involves at least 12 non-zero bytes,
indicating the probability a specific differential holds for any 3 consecutive rounds after
the first 4 rounds will be ! � ��� � .

Using the upper bound of � ��� � for the 3 rounds and a bound of � � � for one round,
the probability of an 11-round differential is � � ��� � and the probability of a 20-round
differential is � ��� ��� � . We note that the number of rounds in elastic AES ranges from
10 to 20, with 10 rounds required only when � = 0. Block sizes of 129 to 136 bits require

9

11 rounds and block sizes of 244 to 255 bits require 20 rounds. Compared to the bounds
across the total number of rounds determined by the three round bound, the number of
plaintexts for each block size is large enough so as not to preclude the possibility of
a differential occurring across all rounds with non-negligible probability. However, the
bounds across all rounds can be lowered by calculating the probability for four rounds.

4 Performance

b+y Elastic AES’s b+y Elastic AES’s
129 to 136 190 193 to 200 121
137 to 144 182 201 to 208 106
145 to 152 154 209 to 216 101
153 to 160 153 217 to 224 101
161 to 168 143 225 to 232 100
169 to 176 125 233 to 240 88
177 to 184 125 241 to 248 88
185 to 192 122 249 to 255 83

Table 1. Normalized Number of Blocks Encrypted by Elastic AES in Unit Time (Regular
AES = 100)

We implemented the elastic version of AES in � and compared the performance of
Elastic AES to that of AES. The number of rounds in elastic AES will range from � �
when � � � to � � when � � ��� � . The modifications to the encryption and decryption
process consist of an additional � bits in the initial whitening and per-round whitening,
key dependent mixing steps, and the XORing and swapping of � bits between each
round. The elastic version increases the number of operations beyond the 128 bit version
of AES due to the swapping step and the two key dependent rotations. However, by
avoiding the need to pad the data to two full blocks, the elastic version saves processing
time in those cases where padding would normally be required for most or all data
blocks.

Both the elastic version and regular 128 bit version of AES were run on several
processors in Linux and Windows environments to compare their performance. In the
tests, the data to be encrypted was viewed as individual � #� bit blocks. The elastic
version of AES encrypted each block individually with no padding. To encrypt the
data with regular AES, the ��#� bits were padded to ��� bits and encrypted as two �
bit blocks. When measuring encryption performance (in terms of blocks per second),
AES’s performance for a single block was based on the time to encrypt 32 bytes, to
represent the padding required when using AES for � � bit blocks. We measured the
time to encrypt one million � � $ � bit blocks (for all values of � from 0 to 127) using the
elastic version and two million � ��$ bit blocks using the original version of AES. When
measuring the time for the original version of AES, we exclude the time to pad the
� � bits to ��� bits. The performance ratios of the two algorithms were similar for each

10

platform tested. Table 1 summarizes the results from a � implementation compiled with
Visual C++ 6.0 on a 1.3 Ghz Pentium 4 processor running Windows XP. and indicates
how the elastic version compares to the original version for 8 bit intervals of �� � . The
number of � � bit blocks the elastic version can encrypt per second ranges from 190%
of the number of ��� blocks AES can encrypt per second when � � � to 100% when
� ��� 	 . The elastic version of AES’s performance decreased gradually to a low of 83%
of AES’s rate when � � � �
	 . Thus, for applications where significant data padding is
needed, elastic AES can almost double performance.

5 Conclusions

We described an elastic version of AES. We derived upper bounds for differentials in
elastic AES, showing it withstands differential attacks, a fact that validates our design.
Due to the nature of AES’s round function, the additional operations required for the
elastic version add only minor overhead. Our implementation of elastic AES can even
exhibit a performance improvement of up to 190% compared with regular AES when
applied to data blocks that are only slightly longer than one block. Thus, this first im-
plementation of the elastic block cipher concept shows its potential in applications that
offers inputs of variable size.

References

1. FIPS 197 Advanced Encryption Standard (AES), 2001.
2. E. Biham and A. Shamir. Differential Cryptanalysis of the Data Encryption Standard.

Springer-Verlag, New York, 1993.
3. D. Cook, M. Yung, and A. Keromytis. Elastic Block Ciphers. Cryptology ePrint Archive,

Report 2004/128, 2004. http://eprint.iacr.org/.
4. J. Daemon and V. Rijmen. The Design of Rijndael: AES the Advanced Encryption Standard.

Springer-Verlag, Berlin, 2002.
5. Matsui. Linear Cryptanalysis Method for DES Cipher. In Proceedings of Advances in Cryp-

tology - Eurocrypt ’93, LNCS 0765, Springer-Verlag, 1993.
6. I. Mironov. (Not So) Random Shuffles of RC4. In Proceedings of Advances in Cryptology -

Crypto 2002, LNCS 2442, Springer-Verlag, 2002.
7. Rivest, Robshaw, Sidney, and Yin. RC6 Block Cipher. http://www.rsa.security.

com/rsalabs/rc6, 1998.
8. B. Schneier. Applied Cryptography. John Wiley and Sons, New York, 1996.

11

