
An Efficient Solution to The Millionaires’ Problem
Based on Homomorphic Encryption � ��

Hsiao-Ying Lin and Wen-Guey Tzeng
Department of Computer and Information Science

National Chiao Tung University
Hsinchu, Taiwan 30050

Email:lrain.cis92g@nctu.edu.tw,tzeng@cis.nctu.edu.tw

Abstract. We proposed a two-round protocol for solving the Millionaires’ Prob-
lem in the setting of semi-honest parties. Our protocol uses either multiplicative or
additive homomorphic encryptions. Previously proposed protocols used additive
or XOR homomorphic encryption schemes only. The computation and commu-
nication costs of our protocol are in the same asymptotic order as those of the
other efficient protocols. Nevertheless, since multiplicative homomorphic encryp-
tion scheme is more efficient than an additive one practically, our construction
saves computation time and communication bandwidth in practicality.

Keywords: secure computation, the greater than problem, the socialist million-
aires’ problem, homomorphic encryption

1 Introduction

Yao’s Millionaires’ (”greater than” or ”GT”) problem is to determine who is richer
between two parties such that no information about a party’s amount of assets is
leaked to the other party. Yao [Yao82] first proposed a solution for the problem.
Thereafter, many other protocols with great improvement are proposed. Some
protocols [BK04,IG03,Fis01] solve the problem directly by analyzing the special
properties of the problem. Some others [ST04] solve it in the content of secure
multiparty computation in which the problem is represented as secure evaluation
of the ”greater than” boolean circuit with encrypted inputs. The former solutions
are more efficient, while the later ones are more general. The GT protocol has
many applications, such as in private bidding [Cac99].

In this paper, we analyze the special properties of the GT problem. We find
that the GT problem can be reduced to the intersection problem of two sets
by a special coding for the private inputs. We could tackle the set intersection
problem by the method in [FNP04]. Nevertheless, the protocol for the GT prob-
lem by using the set intersection protocol in [FNP04] directly is less efficient
� Research supported in part by National Science Council grants NSC-93-2213-E-009-008 and

NSC 93-2213-E-009-009
�� This version appears in ACNS 2005.

in both computation and communication. We solve the GT problem by further
probing the property of our coding method. Our protocol can be based on either
an additive or a multiplicative homomorphic encryption scheme, while most pre-
vious protocols [BK04,Fis01] are based on additive or XOR encryption schemes
only. The computation and communication costs of our protocol are in the same
asymptotic order as those of the other efficient protocols. Nevertheless, since mul-
tiplicative homomorphic encryption scheme is more efficient than an additive one
practically, our construction saves computation time in practicality.

1.1 Related Work

Secure multiparty computation (or secure function evaluation) is to compute a
public function with each party’s private inputs such that in the end only the
evaluation result is known and the private inputs are not exposed except those
derived from the result. Yao [Yao82] first proposed such a protocol for the GT
problem, which is an instantiation of secure multiparty computation. Neverthe-
less, the cost of the protocol is exponential in both time and space. Later one,
Yao [Yao86] and Goldreich, etc [GMW87] used the technique of scrambled circuits
to solve the general multiparty computation problem. By applying this technique
to the GT problem, the cost of the resulting protocol in computation and com-
munication is linear. Recently, Schoenmakers and Tuyls [ST04] used threshold
homomorphic encryption schemes as a tool to solve the multiparty computation
problem. Applying to the concrete GT problem, it provides a threshold GT proto-
col, in which the private inputs are shared among a group of parties. The protocol
takes O(n) rounds.

On the other hand, protocols for solving the GT problem directly are more
efficient. These protocols usually take a constant number of rounds. Ioannidis and
Grama [IG03] used 1-out-of-2 oblivious transfer scheme to construct the GT pro-
tocol that runs n copies of the OT scheme in parallel, where n is the length of the
private inputs. However, the length of the private inputs is restricted by the secure
parameter of the based OT schemes. Fischlin [Fis01] used the Goldwasser-Micali
encryption scheme (GM-encryption) to construct a two-round GT protocol. The
GM encryption scheme has the XOR, NOT and re-randomization properties.
They modified the scheme to get an AND property, which can be performed once
only. The computation cost is O(λn) modular multiplication which is very effi-
cient, where λ is the security parameter. Nevertheless, the communication cost
is O(λn log N) is less efficient, where N is the modulus. In [BK04], Blake and
Kolesnikov used the additive homomorphic Paillier cryptosystem to construct a
two-round GT protocol. The computation cost is O(n log N) and the communi-
cation cost is O(n log N).

2

2 Preliminaries and Definitions

The GT problem is a two-party secure computation problem of securely evaluat-
ing a predicate f such that f(x, y) = 1 if and only if x > y, where x is Alice’s
private input and y is Bob’s private input. A solution protocol Π for the GT
problem should meet the following requirements.

1. The involved parties Alice and Bob are both polynomial-time bounded proba-
bilistic Turing machines. We assume that Alice and Bob are semi-honest. That
is, they shall follow the protocol step by step, but try to get extra information
by more computation.

2. Correctness: After execution of Π, Alice returns 1 if and only if x > y.
3. Alice’s privacy: Holdings of x or x′ (x′ �= x) are not computationally distin-

guishable by Bob. Let V iewΠ
B be the real view of Bob when interacting with

Alice with private input x. We say that Alice’s privacy is guaranteed if there
exists a simulator SimB such that for any x, SimB(y) can generate a view
indistinguishable from the view of Bob in the execution of the real protocol,
that is,

SimB(y) ≡c V IEW Π
B (A(x), y)

4. Bob’s privacy: Alice cannot get extra information except those derived from x
and b = f(x, y). Bob’s privacy is guaranteed if there exists a simulator SimA,
such that for any y′ with f(x, y′) = b and f(x, y), SimA(x, b) can generate a
view indistinguishable from the view of Alice in the real execution, that is

SimA(x, f(x, y)) ≡c V IEW Π
A (x,B(y′))

2.1 Homomorphic encryption with scalaring

We review multiplicative and additive homomorphic encryption schemes with
the property of scalaring. Multiplicative homomorphic encryption schemes are
usually more efficient than additive homomorphic encryption schemes,

An encryption scheme is multiplicative homomorphic if and only if

E(m1) � E(m2) = E(m1 × m2),

where � is an operator. An encryption scheme is additive homomorphic if and
only if

E(m1) � E(m2) = E(m1 + m2).

An encryption is scalarable if c = E(m) can be mapped randomly to a ciphertext
c′ = E(mk) or E(km) for a random k.

The ElGamal encryption scheme is a multiplicative homomorphic encryption
scheme with the scalaring property. For efficiency of computation, we modify the

3

scheme so that each decryption takes 1 modular exponentiation. This modifica-
tion does not affect the security of the scheme. Let r ∈R S denote that r is chosen
from S uniformly and independently.

- Key generation: Let p = 2q +1, where p and q are both primes. Let Gq be the
subgroup QRp and g is a generator of Gq. The public key is h = g−α, where
α ∈ Zq is the corresponding private key.

- Encryption: The encryption of message m ∈ Gq is a pair E(m) = (a, b) =
(gr,mhr), where r ∈R Zq.

- Decryption: For a ciphertext c = (a, b), the message is computed from D(c) =
b × aα = m.

- Scalaring: We can scalarize a ciphertext c = E(m) = (a, b) by computing
c′ = E(mk) = (ak, bk) for k ∈R Zq. If m = 1, the scalaring operation does not
change the content of encryption. Scalaring makes c′ indistinguishable from a
random pair due to the DDH assumption (below).

The ElGamal encryption scheme is multiplicative homomorphic since

E(m1) � E(m2) = (gr1 ,m1h
r1) � (gr2 ,m2h

r2)
= (gr1+r2 , (m1 × m2)hr1+r2)
= E(m1 × m2)

The security of ElGamal scheme is based on the DDH assumption, which
states that it is computationally infeasible to distinguish the following two dis-
tribution ensembles:

- D = (ga, gb, gab), where a, b ∈R Zq.
- R = (ga, gb, gc), where a, b, c ∈R Zq.

If we only need an encryption of a random number, we need not choose a
random number and encrypt it. This costs an encryption time. Instead, we choose
a random pair c = (a, b) ∈R G2

q , which is an encryption of some random number.
By this technique, we save the encryption cost, which is crucial to the efficiency
of our GT protocol.

The Paillier encryption scheme is additive homomorphic, which is as follows:

- Key generation: Let N = pq be the RSA-modulus and g be an integer of order
αN modulo N2 for some integer α. The public key is (N, g) and the private
key is λ(N) = lcm((p − 1), (q − 1)).

- Encryption: The encryption of message m ∈ ZN is E(m) = gmrN mod N2,
where r ∈R Z∗

N .
- Decryption: For ciphertext c, the message is computed from

m =
L(cλ(N) mod N2)
L(gλ(N) mod N2)

,

where L(u) = u−1
N .

4

- Scalaring: For ciphertext c = E(m), the scalaring is done by computing c′ =
E(km) = ck for k ∈ Z∗

N . If m = 0, the scalaring operation does not change
the content of encryption.

The security of the scheme is based on the CRA (Composite Residuosity as-
sumption, which states that it is computationally infeasible to distinguish whether
an element z ∈ Z∗

N2 is an n-residue or not.
The scheme is additive homomorphic since

E(m1) � E(m2) = (gm1rN
1) · (gm2r2

N)
= gm1+m2(r1r2)N

= E(m1 + m2).

2.2 0-encoding and 1-encoding

The main idea of out construction is to reduce the GT problem to the set inter-
section problem. We use two special encodings, 0-encoding and 1-encoding.

Let s = snsn−1...s1 ∈ {0, 1}n be a binary string of length n. The 0-encoding
of s is the set S0

s of binary strings such that

S0
s = {snsn−1...si+11|si = 0, 1 ≤ i ≤ n}

The 1-encoding of s is the set S1
s of binary strings such that

S1
s = {snsn−1...si|si = 1, 1 ≤ i ≤ n}

Both S1
s and S0

s have at most n elements.
If we encode x into its 1-encoding S1

x and y into its 0-encoding S0
y , we can see

that

x > y if and only if S1
x and S0

y has a common element.

We give an example. Let x = 6 = 1102 and y = 2 = 0102 of length 3 (we fill in
the leading zeros.) We have S1

x = {1, 11} and S0
y = {1, 011}. Since S1

x ∩ S0
y �= ∅,

we have x > y indeed. If x = 2 = 0102 and y = 6 = 1102, we have S1
x = {01} and

S0
y = {111}. Since S1

x ∩ S0
y = ∅, we have x ≤ y.

We note that the strings in S1
x have a prefix relation and the strings in S0

y

also have a prefix relation when removing the last bit. Our protocol exploits this
relation.

Theorem 1. x is greater than y if and only if S1
x and S0

y have a common element.

Proof. Let x = xnxn−1...x1 ∈ {0, 1}n and y = ynyn−1...y1 ∈ {0, 1}n. For the
forward direction, we can see that if x > y, there is a position i such that xi = 1
and yi = 0, and for all j, n ≥ j > i, xj = yj. We have xnxn−1 . . . xi ∈ S1

x by

5

1-encoding and ynyn−1 · · · yi+11 ∈ S0
y by 0-encoding. Thus, S1

x and S0
y have a

common element.
For the backward direction, let t = tntn−1...ti ∈ S1

x ∩ S0
y for some ti = 1.

Since t ∈ S1
x, xnxn−1 . . . xi = tntn−1 . . . ti, and since t ∈ S0

y , ynyn−1 . . . yi+1ȳi =
tntn−1 . . . ti. We can see that x > y.

3 Our Protocols

If Alice and Bob compare the elements in S1
x and S0

y one by one, it would
need O(n2) comparisons. Nevertheless, they can only compare the corresponding
strings of the same length (if both of them exist) in S1

x and S0
y . This reduces the

number of comparison to O(n).
Let (G,E,D) be a multiplicative homomorphic encryption scheme. Alice uses

a 2 × n-table T [i, j], i ∈ {0, 1}, 1 ≤ j ≤ n, to denote its input x = xnxn−1 · · · x1

with
T [xj , j] = E(1) and T [x̄j, j] = E(r) for some random r ∈ Gq.

Since Alice need not know r (each entry uses a distinct r), she randomly selects
(a, b) ∈ G2

q for E(r). When Bob wants to compare a string t = tntn−1 · · · ti in S0
y

with the corresponding string of the same length in S1
x, he computes

ct = T [tn, n] � T [tn−1, n − 1] · · · � T [ti, i].

We can see that ct is an encryption of 1 if and only if t ∈ S1
x except with a

negligible probability of incorrectness. Furthermore, since strings in S0
y have some

sort of prefix relations, Bob can compute all ct’s in at most 2n homomorphic
operations, instead of n2 homomorphic operation.

Based on the previous discussion, our GT protocol is as follows:

1. Alice with private input x = xnxn−1 · · · x1 does the following:
– run G to choose a key pair (pk, sk) for (E,D).
– prepare a 2 × n-table T [i, j], i ∈ {0, 1}, 1 ≤ j ≤ n, such that

T [xi, i] = E(1) and T [x̄i, i] = E(ri) for some random ri ∈ Gq

– send T to Bob.
2. Bob with private input y = ynyn−1 · · · y1 does the following:

– for each t = tntn−1 · · · ti ∈ S0
y , compute

ct = T [tn, n] � T [tn−1, n − 1] · · · � T [ti, i].

– prepare l = n − |S0
y | random encryptions zj = (aj , bj) ∈ G2

q , 1 ≤ j ≤ l.
– scalarize ct’s and permutate ct’s and zj’s randomly as c1, c2, . . . , cn.
– send c1, c2, . . . , cn to Alice.

6

3. Alice decrypts D(ci) = mi, 1 ≤ i ≤ n, and determine x > y if and only if
some mi = 1.

When x ≤ y, there is a negligible probability that our GT protocol returns a
wrong answer due to randomization.

Our GT protocol can use additive homomorphic encryption. We only replace
E(1) by E(0) in setting up the table T . In the end, Alice determines x > y if and
only if some mi = 0.

3.1 Correctness and Security

Theorem 2. The protocol constructed as above is a solution to the GT problem.

Proof. We can verify correctness easily. The 1-encoding set of x is embedded
into the table T . The 0-encoding set of y is computed by Bob directly. If there
is a common element in both sets, some ci = E(1) by the previous discussion.
Otherwise, no such ci = E(1) exists.

For Alice’s privacy, we construct a simulator SimB which simulates the proto-
col by selecting randomly x′ as input of Alice, and letting y as input of Bob. The
view generated by SimB is (y, Tx′) and the view in the real execution is (y, Tx).
Due to the security of the ElGamal encryption, Tx and T ′

x are indistinguishable.
Thus SimB(y) and the real view V iewΠ

B (A(x), y) are indistinguishable.
For Bob’s privacy, we construct a simulator SimA to simulate the view of Alice

without the private input of Bob. We need the view generated by SimA being
indistinguishable from the view of Alice in the real execution. SimA simulates
as follows. The input of SimA are the comparison result b ∈ {0, 1} and Alice’s
private input x. SimA uses x to construct the table T for the first step. For the
second step, SimA generates the sequence c1, c2, . . . , cn according to the result
value b. If b = 1, SimA generates n − 1 random encryptions and one encryption
of 1, then SimB randomly permutates them as c1, c2, . . . , cn. If b = 0, SimA

generates n random encryptions as c1, c2, . . . , cn. The view generated by SimA is
(x, Tx, c1, c2, . . . , cn, b).

Since Tx is constructed by using the value x, the distribution is identical to
that in the real execution. For fixed output b, the sequence of the ciphertexts are
computationally indistinguishable from the sequence in the real execution due to
the scalaring property. Thus, Alice cannot compute Bob’s private input y except
knowing its relation with x.

3.2 Efficiency

In this analysis, the base encryption scheme is the ElGamal scheme. Let p be the
modulus.

7

Computation Complexity. Let n be the length of the private inputs. We neglect
the cost of choosing random numbers. The cost of choosing a public key pair for
Alice is neglected also since this can be done in the setup stage. We don’t count
the cost of selecting keys in other protocols, either.

In Step 1, Alice encrypts n 1′s. In Step 2, Bob computes ct, t ∈ S0
y , by reusing

intermediate values. This takes (2n − 3) multiplications of ciphertexts at most.
Step 2 uses n scalaring operations at most. In Step 3, Alice decrypts n ciphertexts.

To compare fairly, we convert all operations to the number of modular multi-
plications. For the ElGamal scheme, each encryption takes 2 log p modular multi-
plications, each decryption takes log p modular multiplications, and each scalaring
operation takes 2 log p modular multiplications. Overall, our GT protocol needs
5n log p + 4n − 6 (= n × 2 log p + 2 × (2n − 3) + n × 2 log p + n × log p) modular
multiplications.

Communication complexity. The size of exchanged messages between Alice
and Bob is the size of T and c1, c2, . . . , cn, which is 6n log p (= 3n × 2 log p) bits.

3.3 Extensions

We can use the hash function to construct a simpler protocol. The protocol costs
less communication bit.

The protocol is as follows: Let h be a public collision-free hash function.

1. Alice encodes x as S1
x and lets hl be the hash value of the length-l string t in

S1
x if t exists.

2. Alice encrypts hl as cl for existent hl’s and randomly selects cl′ for missing
hl′ , 1 ≤ l′ ≤ n.

3. Alice sends c1, c2, . . . , cn to Bob.
4. Bob encodes y as S0

y and computes the hash value h′
l for the length-l string t

in S0
y if t exists.

5. Bob computes zl = (al, bl/h
′
l) for existent h′

l and zl = cl for inexistent h′
l,

where cl = (al, bl), 1 ≤ l ≤ n.
6. Bob scalarizes and permutates z1, z2, . . . , zn and sends them to Alice.
7. Alice decrypts z1, z2, . . . , zl and outputs 1 if and only if some message is 1.

In the protocol, the computation of Bob for each value from Alice can be com-
pleted by inversion of the hash value, a multiplication and a scalaring of the
ciphertext. Thus the computation cost in the protocol of Bob is 2n log p + 2n
modular multiplications. The computation cost of Alice is 3n log p modular mul-
tiplications. The communication cost of the protocol is 4n log p bits.

4 Other protocols

For readability, we review the protocols in [BK04,Fis01].

8

Fischlin’s GT protocol Fischlin’s GT protocol [Fis01] uses the GM-encryption
scheme and a modified GM-encryption. The GM-encryption scheme is as follows:

- Key generation: Let N = pq be the RSA-modulus and z be a quadratic non-
residue of Z∗

n with Jacobi symbol +1. The public key is (N, z) and the secret
key is (p, q).

- Encryption: For a bit b, the encryption is E(b) = zbr2 mod N , where r ∈R Z∗
N .

- Decryption: For a ciphertext c, its plaintext is 1 if and only if c is a quadratic
non-residue. If c is a quadratic residue in ZN , c is a quadratic residue in both
Z∗

p and Z∗
q .

- xor-property: E(b1)E(b2) = E(b1 ⊕ b2)
- not-property: E(b) × z = E(b ⊕ 1) = E(b̄)
- re-randomization: we can re-randomize a ciphertext c by multiplying an en-

crytion of 0.

Modified GM-encryption. To get the AND-homomorphic property, we need
modify the GM encryption:

- Encryption: For encrypt a bit b = 1, XE(b) is a sequence of quadratic residues.
If b = 0, XE(b) is a sequence of quadratic residues and non-residues. The
length of the sequence is determined by a parameter λ.

- Decryption: For decrypting a ciphertext, we need check quadratic residusoity
of all elements in the ciphertext.

- AND-property: For two ciphertext XE(b1) and XE(b2), their product XE(b1)�
XE(b2) is computed by multiplying elements pairwisely. The product of two
ciphertexts is an encryption of b1 AND b2.

Protocol and Efficiency. The protocol in [Fis01] uses the properties of the GM-
and modified-GM-encrytion schemes.

We use our notation to represent the (optimized) protocol in [Fis01] as follows:

1. Alice with private input x = xnxn−1 · · · x1 does the following:
- generate GM-instance N, z.
- encrypt each bit of x and get Xi = E(xi) for i = 1, . . . , n
- send N, z,X1, . . . ,Xn to Bob

2. Bob with private input y = ynyn−1 · · · y1 and messages N, z,X1, · · · ,Xn from
Alice does the following:

- encrypt y by the extended encryption and get the result Yi = (Yi,1, . . . , Yi,λ) =
XE(yi), where Yi,j = E(z1−yi) or E(0) randomly.

- embed [xi = yi]=[¬(xi ⊕ yi)] into extended encryption Ei for i = 1, . . . , n.
Ei = (Ei,1, . . . , Ei,λ) = XE(¬(xi ⊕ yi)), where Ei,j = Xj · zyi mod N or
1 ∈ QRN randomly.

- compute extended encryptions Pi = Pi+1 ·Ei+1 mod N = XE(pi), where
Pn = (1, . . . , 1) and pi =

∧n
j=i+1[xj = yj] for i = n − 1, . . . , 1.

9

- embed ¬xi into extended encryption X̄i for i = 1, . . . , n. X̄i = (X̄i,1, X̄i,λ) =
XE(¬xi), where X̄i,j = Xi or 1 ∈ QRN randomly.

- compute terms ti = yi ∧ x̄i
∧n

j=i+1[xj = yj] in the extended encryption
form: For i = 1, . . . , n, Ti = Yi · X̄i · Pi mod N = XE(ti).

- randomly permute T1, . . . ,Tn and send to Alice
3. Alice receives n sequences of λ elements from Bob and does the following:

- If there exists a sequence of λ quadratic residues then output y > x, else
output y ≤ x.

For computation, the protocol needs n GM-encryptions and n modified GM-
decryptions in the client side (Alice in our protocol).1 The server side (Bob in
our protocol) needs n modified GM-encryptions and 4nλ modular multiplications
only.

The exchanged messages are n GM-ciphertexts and n modified GM-ciphertexts.
Overall, the size is (1 + λ)n log N (= n log N + nλ log N) bits.

4.1 Blake and Kolesnikov’s GT protocol

The GT protocol in [BK04] is based on the Paillier’s encryption scheme. The
additive homomorphic property is essential to their construction. Their protocol
can be summarized as follows: Let Enc(m) be the encryption of the message m.

1. Alice with private input x = xnxn−1 · · · x1 does the following:
(a) runs key generation phase
(b) encrypts x bit-wise and sends pk,Enc(xn), . . . , Enc(x1) to Bob.

2. Bob with private input y = ynyn−1 · · · y1 does the following for each i =
1, . . . , n:
(a) computes Enc(di) = Enc(xi − yi)
(b) computes Enc(fi) = Enc(xi − 2xiyi + yi)
(c) computes Enc(γi) = Enc(2γi−1 + fi) where γ0 = 0
(d) computes Enc(δi) = Enc(di + ri(γi − 1)) where ri ∈R ZN

(e) randomly permutates Enc(δi) and sends to Alice
3. Alice obtains Enc(δi) from Bob, then decrypts. If there exists a value v ∈

{+1,−1} and output v.

In the protocol, if x > y, the output value v = +1; if x < y , v = −1.
For computation, the receiver (Alice) needs n encryptions and n decryptions.

The sender (Bob) needs n modular multiplications in the 2a step, n modular
multiplications and n inversions in the 2b step, 2n modular multiplications in
the 2c step, and (2 + log N)n modular multiplications in the 2d step. Each in-
version takes 1 modular multiplications. Overall, the protocol needs 4n modular
exponentiations (modN2) and 7n modular multiplication (modN2)

The communication cost is n ciphertexts for the receiver and n ciphertexts
for the sender. The overall communication cost is 4n log N bits
1 In [Fis01], the computation cost of the client side is neglected.

10

5 Comparison

Now, we compare our GT protocol with those in [Fis01,BK04] in computation
and communication cost. We summarize the cost of operations for the protocols:

- Each GM-encryption needs 2 modular multiplications (modN).
- Each modified GM-encryption needs 2λ modular multiplication (mod N) since

each encryption contains λ GM-encryptions.
- Each modified GM-decryption needs λ modular multiplications (mod N), since

there λ elements in a modified GM-ciphertext and quadratic residuosity can
be checked in equivalent one modular mulltiplication.

- Each Paillier’s encryption requires 2 log N modular multiplications (mod N2).
In [BK04], they encrypt 0 or 1 only, the encryption for m ∈ {0, 1} needs log N
modular multiplications (modN2).

- Each Paillier’s decryption requires 2 log N modular multiplications (mod N2).
- Each Paillier’s inversion requires one modular multiplications (mod N2),

where the inversion is done by the extended Euclidean algorithm.
- For Paillier’s encryption, each modular multiplication (mod N2) needs 4 mod-

ular multiplication (modN).

Based on the above discussion, we summarize the comparison in Table 1. In
the table, the modular multiplication for the protocols in [Fis01,BK04] is modN
and ours is modp.

computation of Alice computation of Bob total computation communication

Ours 3n log p 2n log p + 4n − 6 5n log p + 4n − 6 6n log p

Ours with hash 3n log p 2n log p + 2n 5n log p + 2n 4n log p

[Fis01] λn + 2n 6nλ 7nλ + 2n (1 + λ)n log N

[BK04] 12n log N 4n log N + 28n 16n log N + 28n 4n log N

*computation cost is measured in the number of modular multiplication
*communication cost is measured in bits
*Alice is called ”receiver” in [BK04] and ”client” in [Fis01].
*λ is set to 40 ∼ 50 in [Fis01]

Table 1. Comparison in computation cost and communication cost.

6 Remarks

Our construction is secure in the semi-honest setting. In the malicious setting,
each round requires additional messages to assure legality of the sent messages.
The techniques are mostly based on non-interactive zero-knowledge proof of
knowledge.

11

References

[BK04] Ian F. Blake and Vladimir Kolesnikov. Strong conditional oblivious transfer and
computing on intervals. In Proceedings of Advances in Cryptology - ASIACRYPT
’04, volume 3329 of LNCS, pages 515–529. Springer-Verlag, 2004.

[Cac99] Christian Cachin. Efficient private bidding and auctions with an oblivious third party.
In Proceedings of the 6th ACM conference on Computer and communications security
- CCS ’99, pages 120–127. ACM Press, 1999.

[Fis01] Marc Fischlin. A cost-effective pay-per-multiplication comparison method for mil-
lionaires. In Proceedings of the 2001 Conference on Topics in Cryptology: The Cryp-
tographer’s Track at RSA, volume 2020 of LNCS, pages 457–472. Springer-Verlag,
2001.

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching
and set intersection. In Proceedings of Advances in Cryptology - EUROCRYPT ’04,
volume 3027 of LNCS, pages 1–19. Springer-Verlag, 2004.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play and mental game. In
Proceedings of the 16th Annual ACM Symposium on the Theory of Computing (STOC
’87), pages 218–229. ACM, 1987.

[IG03] Ioannis Ioannidis and Ananth Grama. An efficient protocol for yao’s millionaires’
problem. In Proceedings of the 36th Hawaii Internatinal Conference on System Sci-
ences 2003, 2003.

[ST04] Berry Schoenmakers and Pim Tuyls. Pratical two-party computation based on the
conditional gate. In Proceedings of Advances in Cryptology - ASIACRYPT ’04, volume
3329 of LNCS, pages 119–136. Springer-Verlag, 2004.

[Yao82] A. C. Yao. Protocols for secure computations. In Proceedings of 23th Annual Sympo-
sium on Foundations of Computer Science (FOCS ’82), pages 160–164. IEEE, 1982.

[Yao86] A. C. Yao. How to generate and exchange secrets. In Proceedings of 27th Annual
Symposium on Foundations of Computer Science (FOCS ’86), pages 162–167. IEEE,
1986.

12

