Perfect Non-Interactive Zero Knowledge for NP
Jens Groth Rafail Ostrovsky Amit Sahat

U.C.L.A.
Department of Computer Science
{jg,rafail,sahai }@cs.ucla.edu

August 31, 2005

Abstract

Non-interactive zero-knowledge (NIZK) systems are fundamental cryptographic primitives used
in many constructions, including CCA2-secure cryptosystems, digital signatures, and various crypto-
graphic protocols. What makes them especially attractive, is that they work equally well in a concur-
rent setting, which is notoriously hard for interactive zero-knowledge protocols. However, while for
interactive zero-knowledge we know how to construct statistical zero-knowledge argument systems for
all NP languages, for non-interactive zero-knowledge, this problem remained open since the inception
of NIZK in the late 1980’s. Here we resolve two problems regarding NIZK:

e we construct the first perfect NIZK argument system for any NP language.

e we construct the first UC-secure NIZK protocols for any NP language in the presence of a dy-
namic/adaptive adversary.

While it was already known how to construct efficient prover computational NIZK proofs for any
NP language, the known techniques yield large common reference strings and large NIZK proofs.
As an additional implication of our techniques, we considerably reduce both the size of the common
reference string and the size of the proofs.

Keywords: Non-interactive zero-knowledge, universal composability, non-malleability.

1 Introduction

In this paper, we resolve a central open problem concerning Non-Interactive Zero-Knowledge (NIZK)
protocols: how to construatatisticalNIZK arguments for any NP language. While foteractivezero

*Supported by NSF grant No. 0456717, and NSF Cybertrust grant.

fSupported in part by a gift from Teradata, Intel equipment grant, NSF Cybertrust grant No. 0430254, OKAWA research
award, B. John Garrick Foundation and Xerox Innovation group Award.

iSupported by grant No. 0456717 from the NSF ITR and Cybertrust programs, an equipment grant from Intel, and ar
Alfred P. Sloan Foundation Research Fellowship.

knowledge (ZK), it has long been known how to construct statistical zero-knowledge argument system:
for all NP languages [BCC88], for NIZK this question has remained open for nearly two decades.

IN CONTEXT WITH PREVIOUS WORK— STATISTICAL ZERO KNOWLEDGE Blum, Feldman, and Micali
[BFM88] introduced the notion of NIZK in the common random string model and showed how to con-
structcomputationaNIZK proof systems for proving a single statement about any NP language. The first
computational NIZK proof system for multiple theorems was constructed by Blum, De Santis, Micali,
and Persiano [BDMP91]. Both [BFM88] and [BDMP91] based their NIZK systems on certain number-
theoretic assumptions (specifically, the hardness of deciding quadratic residues modulo a composite nul
ber). Feige, Lapidot, and Shamir [FLS90] showed how to construct computational NIZK proofs based or
any trapdoor permutation.

The above work, and the plethora of research on NIZK that followed, mainly considered NIZK where
the zero-knowledge property was only tie@mputationallythat is, a computationally bounded party can-
not extract any information beyond the correctness of the theorem being proven. In theiogés@ctive
zero knowledge, it has long been known that all NP statements can in fact be proverstasistgcal
(in fact, perfect) zero knowledge arguments [BC86, BCC88]J; that is, even a computationally unboundec
party would not learn anything beyond the correctness of the theorem being proven, though we mus
assume that the provesnly during the execution of the protocad computationally bounded to ensure
soundness

Achieving statistical NIZK has been an elusive goal. The original work of [BFM88] showed how
an computationally unbounded prover can prove to a polynomially bounded verifier that a number is
a quadratic-residue, where the zero-knowledge property is perfect. Statistical ZK (including statistica
NIZK?) for any non-trivial language for both proofs and arguments were shown to imply the existence
of a one-way function by Ostrovsky [Ost91]. Statistical NIZK proof systems were further explored by
De Santis, Di Crescenzo, Persiano, and Yung [DDPY98] and Goldreich, Sahai, and Vadhan [GSV99]
who gave complete problems for the complexity class associated with statistical NIZK proofs. How-
ever, these works came far short of working for all NP languages, and in fact NP-complete language
cannot have (even interactive) statistical zero-knowledge proof systems unless the polynomial hierarct
collapses [For87, AH8?] Unless our computational complexity beliefs are wrong, this leaves open only
the possibility of argument systems.

Do there exisstatisticalNIZK arguments for all NP languages? Despite nearly two decades of re-
search on NIZK, the answer to this question was not known. In this paper, we answer this question in th
affirmative, based on a number-theoretic complexity assumption introduced in [BGNO5].

OUR RESULTS Our main results, which we describe in more detail below, are:

- Perfect NIZK arguments for any NP language.

- UC-secure perfect NIZK arguments for any NP language, secure against adaptive/dynamic adve
saries.

As a building block we start by constructing a simple and efficient computational NIZK proof of
knowledge for circuit satisfiability, based on the subgroup decision problem introduced in [BGNO5]. To

1Such systems where the soundness holds computationally have come to be kravgunasnt systemss opposed to
proof systemsvhere the soundness condition must hold unconditionally.

2We note that the result of [Ost91] is ftwonest-verifielSZK, and does not require the simulator to produce Verifier's
random tape, and therefore it includes NIZK, even for the common reference string which is not uniform. See also [PS05] fol
an alternative proof.

3see also [GOP98] appendix regarding subtleties of this proof, and [SV03] for an alternative proof.

2

the best of our knowledge, our techniques are completely different from all previous constructions of
NIZK proofs. In this NIZK proof system, the size of the common reference stridif kg, wheref is the
security parameter; thus it is independent of the size of the NP statements. The NIZK proofs have siz
O(k|C1), where|C| is the size of the circuit. We point out that this is a significant result in its own right;
the most efficient NIZK proof systems for an NP-complete problem with efficient provers previously
known [KP98] required a reference string of size at lgast®) and the NIZK proofs of size at least
O(|C|k?*). For comparison with the most efficient previous work, please see Table 1.

Reference | CRS size| Proof Size Assumption
Kilian-Petrank| O(|Ck?) | O(|Ck?) Trapdoor Permutations
Kilian-Petrank| O(k%) | O(|C]k?) Trapdoor Permutations

| Thispaper | O(k) | O(|C|k) | Specific Number-Theoretic [BGNO3]

Table 1: Comparison of CRS size and NIZK Proof Size for Efficient-Prover NIZK Proof systems for
NP-complete language

The NIZK proofs we construct are built using encryptions of the bits in the circuit. However, by a slight
modification to only the reference string, we effectively transform the cryptosystem into a perfectly hiding
commitment scheme. With this transformation, we obtain a perfect NIZK argument for NP statements
The result comes in two flavors:

- Perfect NIZK arguments for circuit satisfiability with “ordinary” soundness.

- Perfect NIZK arguments for circuit satisfiability with adaptive soundness, but for circuits of limited
size.

By “ordinary” soundness we mean: for any NP statement, it is infeasible to make a valid NIZK argument
for that statement given a random common reference string. However, in real life we can of course imagin
an adversary that first sees the common reference string, and then chooses the false statement on wt
he will attempt to cheat. This is normally handled by an adaptive definition of soundness (e.g. [FLS90]).
We make two observations regarding adaptive soundness:

First, we note that we can obtain full adaptive soundness if we restrict the size of statements to b
proven. Letvgp(k) be the advantage of an adversary trying to decide the subgroup decision problem
of [BGNO5]. We can construct NIZK arguments with adaptive soundness by limiting the adversary to
picking circuits of size/(k) such that'(k)‘*vgp (k) is negligible

Second, we observe that our construction of perfect NIZK arguments (with only “ordinary” soundness)
already achieves a weaker, but sufficient, form of adaptive soundness. It turns out, informally speaking
that if an adversary succeeds in producing an NIZK argument for a false statement, it cannot “know’
that it has done so. In other words, if the adversary can efficiently recognize when it has succeeded |
specifying a false statement, therc&nnotproduce a valid proof of that statement.

We are able to formalize the second observation and illustrate its utility by constructing perfect NIZK
arguments that satisfy Canetti's UC definition of security. Canetti introduced the universal composability
(UC) framework [Can01] as a general method to argue security of protocols in an arbitrary environment
It is a strong security definition; in particular it implies non-malleability and security when arbitrary
protocols are executed concurrently. The notion of non-malleability was introduced by Dolev, Dwork and

4For instance, it(k) = k¢, then we assume thagp (k) = 27" 8y (k), wherev is negligible.

3

Naor [DDNOQ] in the interactive setting for Zero-Knowedlge and Commitment protocols. In the non-

interactive setting, the first non-malleable commitment protocol was given by Di Crescenzo, Ishai anc
Ostrovsky [DIO98]. Sahai introduced the first non-malleable NIZK proof system, for a single theorem
[Sah99]. De Santis, Di Crescenzo, Ostrovsky, Persiano and Sahai showed how to construct non-malleat
NIZK proofs for polynomially-many theorems. As mentioned above, the UC framework guarantees a
strong form of non-malleability, and in [CLOS02], it was observed that [DD{ achieves UC-security,

but only for the setting witlstaticadvrsaries.

We define NIZK arguments in the UC framework and construct a NIZK argument (without any re-
strictions on the size of the NP statements that we prove) that satisfies the UC security definition. Fror
the theory behind the UC framework, this means that we can plug in our NIZK argument in arbitrary
settings and maintain security (includisgundneds. At the same time, we can prove that our UC NIZK
argument enjoys a perfect zero-knowledge property.

We stress that our result holds even in the setting of dynamic/adaptive adversaries without erasure
where the adversary can corrupt parties adaptively, and upon corruption of a party, it learns the entir
history of the internal state of this party. Prior to our result, no NIZK protocol was known to be UC-
secure against dynamic/adaptive adversaries.

1.1 Notation

We model adversarial behavior as non-uniform interactive probabilistic polynomial time algorithms. Un-
less otherwise specified all other algorithms are uniform probabilistic polynomial time algorithms. A
functionv : N — [0;1] is negligible if for allVe > 03KVk > K : v(k) < 4. For two functions

f1, f2 : N — [0; 1] we write f1 (k) = fo(k) if |f1(k) — f2(k)| is negligible. We writeoutput — A(input)

for the process of selecting randomnessd settingutput = A(input;r).

2 Non-interactive Zero-Knowledge

Let R be an efficiently computable binary relation. For pdirsw) € R we callz the statement and
the witness. LeL be the language consisting of statement&in

A proof system for a relatiof® consists of a key generation algorithi a proverP and a verifief//.
The key generation algorithm produces a common reference strifige prover takes as inp(, =, w)
and checks whethdrr, w) € R. In that case, it produces a proof or argumenbtherwise it outputs
failure . The verifier takes as input, =, 7) and outputs 1 if the proof is acceptable and 0 if rejecting
the proof. We cal(K, P, V') an argument or a proof system fiif it has the completeness and soundness
properties described below.

COMPLETENESS For all adversariegl we have
Pr [a — K(1%); (z,w) « A(0);7 «— P(o,z,w) : V(o,z,m) = 1if (z,w) € R} ~ 1.
SOUNDNESS For all adversariesl we have
Pr |:0' — K(1"); (z,7) < A(0) : V(o,z,7) = 0if z ¢ L] ~ 1.

We call (K, P, V') an argument for? if soundness holds for polynomial time adversaries and a proof
system forR if soundness also holds for computationally unbounded adversaries.

4

KNOWLEDGE EXTRACTION. We call (K, P, V') an argument of knowledge or a proof of knowledge for
R if there exists a knowledge extractbr= (FE,, E») with the properties described below.
For all adversariegl we have

Pr o — K(1%): A(0) = 1] ~ Pr [(o—, 7) — Ey(1¥) : Afo) = 1}
For all adversariegl we have

Pr [(o,) — By(1%); (z,7) « A(0o);w « Ey(o,7,2,7) : V(o,z,m) = 00r (z,w) € R} ~ 1.

ZERO-KNOWLEDGE. We call(K, P,V') a NIZK argument or NIZK proof forR if there exists a simulator
S = (54, .S2) with the following zero-knowledge property. For all adversariese have

Pr [a — K(1%) : APO) (o) = 1] ~ Pr [(a,) e S (1K) : A5 @) (o) = 1},

whereS’(o, 7, z,w) = Sy(o, 7, x) for (x,w) € R and outputdailure if (z,w) ¢ R.
HONEST PROVER STATE RECONSTRUCTIONN modeling adaptive security without erasures, the prover
may be corrupted at some time. To handle such cases, we want to extend the zero-knowledge propel
such that not only can we simulate an honest party making a proof, we also want to be able to simulate ho
it constructed the proof. In other words, once the party is corrupted the adversary will learn the witnes:
and the randomness used, we want to create convincing randomness so that it looks like the simulat
proof was constructed by an honest prover using this randomness.

We say a NIZK argument or proof fak has honest prover state reconstruction if there exists a simu-
lator S = (51, 52, S3) so for all.4 we have

Pr [0 — K(1%) : APRE) (o) = 1} ~ Pr {(0, 7) = Sy (1%) : AR (6) = 1],

where PR(o, z,w) runsr « {0,1}*®). 7 « P(o,z,w;r) and returnst,r, and whereSR runs

p— {0, 1}s®): 1« Sy(o, 7,25 p); 7 + S3(0, 7,2, w, p) and returnsr, r, both of the oracles outputting
failure if (z,w) ¢ R.

PERFECT COMPLETENESSSOUNDNESS KNOWLEDGE EXTRACTION AND ZEROKNOWLEDGE. We

speak of perfect completeness, perfect soundness, perfect knowledge extraction, perfect zero-knowled
and perfect honest prover state reconstruction if for sufficiently large security parameters we have equal
ties in the respective definitions.

Remark. Inthe paper, we will construct protocols with perfect completeness, perfect soundness, perfec
zero-knowledge, etc. In doing so we assume the ability to pick elements from certain setss-e.4g;,

If we consider the more strict setting, where the parties only have access to a source of unbiased coin-flig
we can still pick such elements from these sets in expected polynomial time. Alternatively, we can simply
truncate the algorithms, in which case we do not get perfect completeness, perfect soundness, etc., but
get statistical completeness, statistical soundness, etc.

3 The Boneh-Goh-Nissim Cryptosystem

Boneh, Goh and Nissim [BGNO5] suggest a cryptosystem with interesting homomorphic properties. The
BGN-cryptosystem is the main building block in the paper.

5

BILINEAR GROUPS We use two cyclic group&, G, of ordern, wheren = pg andp, ¢ are primes. We
make use of a bilinear map: G x G — G;. l.e., for allu,v € G anda,b € Z we havee(u®, %) =
e(u,v)®. We require that(g, g) is a generator ofs, if ¢ is a generator ofs. We also require that group
operations, group membership, sampling of a random generatGr &md the bilinear map be efficiently
computable.

[BGNO5] suggest the following example. Pick large prinpeg and letn = pg. Find the smallest
soP = /n — 1 is prime and equal to 2 modulo 3. Consider the points on the elliptic gufrve 2® + 1
overFp. This curve has’ + 1 = ¢n points, so it has a subgrodp of ordern. We letG; be the orden
subgroup off;,, ande : G x G — G, be the modified Weil-pairing.

THE SUBGROUP DECISION PROBLEMLetG be an algorithm that takes a security parameter as input and
outputs(p, ¢, G, Gy, e) such thap, ¢ are primesn = pq andG, G, are descriptions of groups of order
ande : G x G — Gy is a bilinear map.

Let G, be the subgroup d of orderq. The subgroup decision problem is to distinguish elements of
G from elements ofz,. LetG,.,, be the generators @ and letA be an adversary. Define

SD-AdVA(1k> = Pr |:(p7Q7G7 G1,€> — g(lk)7n =Prq; 9, h — Ggen : A(n7GaGlaevgv h) = 1:|
—Pr [(p,q,G, Gi,e) — G(1%);n=pg; g — Gyep, h — G, \ {1} :
An,G,Gy,e,g,h) = 1].

Definition 1 The subgroup decision assumption holds for gener@tibthere exists a negligible function
vsp : N — [0; 1] so for any adversaryl we have SD-Adv(1%) < vsp (k) for sufficiently largek.

We remark that we have changed the wording of the subgroup decision problem slightly in comparisot
with [BGNOS5], but the definitions are equivalent.

THE BGN-CRYPTOSYSTEM We generate a public key by runniig, ¢, G, G, e) «— G(1%), setting
n = pq, selectingg as a random generator 6f and/ as a random generator &f,. The public key is
(n, G, Gy, e, g, h) while the decryption key ig, g.
To encrypt a message of length O(log k) using randomness < Z we compute the ciphertext
c = g™h". To decrypt we computel = g™?h™1 = (¢g7)™ and exhaustively search for.
By the subgroup decision assumption, we could indistinguishably setedie a random generator of
G as well. In this case, we do not have a cryptosystem but rather a perfectly hiding commitment scheme

4 Non-interactive Zero-Knowledge Proof

4.1 NIZK Proof that ¢ Encrypts O or 1

We will construct a NIZK proof of knowledge for circuit satisfiability in Section 4.2. As a building block
in this NIZK proof, we will encrypt the truth-values of the wires in the circuit. We need to convince
the verifier that these ciphertexts have been correctly formed. We therefore start by constructing a NIZk
proof that a BGN-ciphertext has either O or 1 as plaintext.

We observe that if a ciphertextcontains 0 or 1, then eithere G, or cg™! € G,, soe(c,cg™') has
orderg. Write c = g%, thene(c, cg™!) = e(g, g)*“~ Y. If e(c, cg~!) has order;, theny(y — 1) = 0 mod p,
soy = 0 mod p ory = 1 mod p. Our strategy is to show thafc, cg~') has ordey.

If we know m,w soc = ¢g"h* thenm = 0 impliese(c,cg™) = e(h*, g 'h*) = e(h, (g h*)?)
and if m = 1 we havee(c,cg™) = e(gh®, h*”) = e(h, (gh*)”). So in both cases we getc,cg™!) =
e(h, (g*™~'h™*)¥). Revealing the two components will immediately convince the verifierdhatg—!)
has ordey, however may not be zero-knowledge.

Instead, we make a NIZK proof felc, cg~!) having order; as follows. We choose a random exponent
r and compute (¢, cg~t) = e(h”, (¢*"~'h*)*"). We reveal these two components, and must convince
the verifier that the first element, = A" has ordelg. For this purpose, we show him the elemegnt
Sincee(my,g) = e(h”, g) = e(h, g") the verifier can now tell that, has orde,.

To argue zero-knowledge we change the public key. Instead of hawhgrderq, we useh of order
n and selecy so we know the discrete logarithm. Now all ciphertexts are perfectly hiding commitments
so we can create all of them as encryptions of 0. We can simulate the revelatibhefause we know
the discrete logarithm.

Common reference string:

1. (p,q,G,Gy,e) — G(1%)

2. n=pq

3. g random generator @&

4. h random generator df,

5. Returno = (n,G, Gy, e, g,h).

Statement: The statement is an elemen& G. The claim is that there exists a péin, w) € Z* so
m € {0,1} andc = g™h".

Proof: Input (o, ¢, (m,w)).

1. Checke € G,m € {0,1} andc = ¢g"h™. Returnfailure if check fails.

N

r <« 2L

2m—1hw>wr’ g

3. m=h,m=(g " m=g

4. Returnt = (7'('1,71'2,71'3)
Verification: Input (o, c, m = (my, 72, T3)).
1. Checke € G andr € G*
2. Checke(c,cg™!) = e(m, m2) ande(ry, g) = e(h, 73)
3. Return 1 if both checks pass, else return 0

Figure 1: NIZK proof of plaintext being zero or one.
Theorem 2 The protocol in Figure 1 is a NIZK proof that € G has plaintexin € {0, 1} with honest

prover state reconstru ction.

Proof. PERFECT COMPLETENESS Let z be the secret discrete logarithm g0 = g¢*. We
know thatc = ¢™h“, wherem € {0,1}. This gives use(c,cg™') = e(gmT@w, gm—1Taw) =

7

e(g, g)mim—Dtzwm=ltzw) e(g,g)”"(27”*H“"’“’)“”"f1 =e(h", (ng*lhw)“’Fl) = e(my, my). Furthermore,
e(m, g) = e(h",g) = e(h,g") = e(h, 7).

PERFECT SOUNDNESS Let againx be the secret discrete logarithm 8o= ¢*. Considerc, w SO
e(c,cg™) = e(my, m) ande(my, g) = e(h, m3). There exist < m < pandw € Z soc = g™h".

We havee(n?, g) = e(m1, 9)? = e(h, m3)? = e(h4,3) = e(1,m3) = 1. Therefore;sr; must have order
1 or ¢. This means there exists somson; = h'.

As before we have(c, cg™!) = e(g, g)™(m—DHaw(@m=Dtaw) At the same time we havéc, cg™') =
e(my, m) = e(h”, m5) and therefore(c, cg™1)? = e(h™, my) = e(1, 1) = 1. Som(m — 1) + zw((2m —

1) + zw) = 0 mod n, andp|z tells usm(m — 1) = 0 mod p. Sinced < m < p this impliesm € {0, 1}.

So there does indeed existe {0, 1} andw soc = g™h".

COMPUTATIONAL ZERO-KNOWLEDGE AND HONEST PROVER STATE RECONSTRUCTIQNFirst, we de-
scribe the simulatof = (.51, Sz, S3). S; runs the algorithm for generating the common reference string
with the following modification. It selecté to be a random generator fé and setsy = h”, where

v « Z;,. During the generation of the common reference string the simulator also fegrns, outputs
(0,7) = ((n,G,G1,g,h), (p,q,7)).

S, on input(o, 7, ¢) simulates a proof as follows. Eitheycg~!, or both are generators fé. The
simulator picksr < Z*. If ¢ is a generator it sets; = ¢,y = (cg~')" andm; = «}. If cis not a
generator for the group, then the simulator sets- (cg™!)", 7 = Ty = 7.

Ss is given the witnesgm,w) soc = ¢™h* andm € {0,1} and wishes to reconstruct how the
prover could have come up with the proof Since it knowsy it can writec = hY™**, Consider first
the case where is a generator fofz, then we havescd(n, ym + w) = 1. So we can write the proof
asm; = hOmtw) gy = (g2molpwyetrhmiw) ™ po — grlmitw) \We returnr(ym + w) mod n as the
prover’s simulated randomness that would cause it to produbrecase: is not a generator, we know that
cg~' is a generator and we write the proofras= h"(1(n=D+w) g, — (g2m-1pwywlrOm=-Dtw) ™" o —

g 0m=D+w) and returne(y(m — 1) + w) mod n as the prover’s simulated randomness.

To argue computational zero-knowledge we consider a hybrid experiment, where $igogenerate
the common reference striag but implement the simulation oracle using the real praveWe first show
that for all adversariegl we have

| Pr o« K(lk) : .APR(U"")(J) = 1] — Pr |:(0', T) Sl(lk) : .APR(U"")(U) =1|| < vgp(k),

where PR(c, (0,¢), (m,w)) runsr «— Z:;7 «— P(o,(0,c),(m,w);r) and returnsr, r, and outputs
failure if m ¢ {0,1} orc # g™h".

The only difference between the two experiments is the choick. ofn one case} is a random
generator ofG in the other case it is a generator @. We do not use the knowledge pfq or the
discrete logarithm of with respect ta: in either experiment. Consider now a subgroup decision problem
challenge(n, G, Gy, e, g, h). The challenges correspond exactly to common reference strings produced
by respectivelyx” andS;. The advantage ofl is therefore bounded bys (k).

Next, we go from the hybrid experiment to the simulation. Fordle have

Pr [(a,) « Sy(1%) : APRO) () = 1] = Pr [(U,) = Sy (1%) : ASRET) (0) =1,
where SR runsp «— Z*;m «— Sy(o,7,(0,¢);p);r «— Si(o,7,(0,c),(m,w), p) and returnsr,r, or
failure if m ¢ {0,1} orc # g™h™.

A simulated proofr = (m, 72, m3) uniquely defines the randomness: Z! somr; = A", and it is
indeed this randomness outputs. We therefore just need to argue that simulated proofs have the same

8

distribution as real proofs in the hybrid experiment. In case a generator fofz, S, selectsr — Z}
at random and set; = ¢", which gives us a random generator®f In a real prover’s proofr, is also
a random generator @& whenh has ordem. Sincer; uniquely definesr, andns, we see that the two
distributions are identical. I is not a generator fa&, thencg—! and since a simulated, = (cg~!)" for
r « 7 is arandom generator &f, we can use a similar argument to show that also in this case we get a
perfect simulation.

O

4.2 NIZK Proof of Knowledge for Circuit Satisfiability

Suppose we have a circditand want to prove that there existssoC'(w) = 1. Since any circuit can be
linearly reduced to a circuit built only from NAND-gates, we will without loss of generality focus on this
simpler case.

To prove satisfiability of” we encrypt the bit value of each wire, when the circuit is evaluated on the
input bits inw. Using the NIZK proof in Figure 1 it is straightforward to prove that all ciphertexts contain
a plaintext in{0,1}. We form the output ciphertext with randomnésso it is straightforward for the
verifier to check that the output of the circuit is 1.

The only thing left is to prove that all the encrypted output wires do indeed evaluate the NAND-gates
correctly. We make the following observation, leaving the proof to the reader.

Lemma 3 Letby, by, by € {0,1}.
b[) + by +2by —2 € {O, 1} if and Only if by = bo NAND b;.

Given ciphertexts:, c1, co containing plaintextd,, b;, b, we can use the homomorphic properties to
form the ciphertexicycicig=2. A NIZK proof that cocicig—2 contains a plaintext if0,1} implies
by = by NAND by, as required. We make such a NIZK proof for each NAND-gate in the circuit.

Theorem 4 The protocol in Figure 2 is a NIZK proof of knowledge of circuit satisfiability with honest
prover state reconstruction.

Proof. PERFECT COMPLETENESS Knowing a satisfying assignmeat for C, we can compute truth-

values for all wires that are consistent with the NAND-gates and make the circuit have 1 as output. Perfec
completeness follows from the perfect completeness of the NIZK proofs of plaintexts being either 0 or 1.

PERFECT SOUNDNESSSince we prove for each wire that the encrypted plaintext is either 0 or 1, we have
made a perfectly binding commitment to a bit for each wire. By Lemma 3, the NIZK proofs for the gates
imply that all encrypted wire-bits respect the NAND-gates. Finally, we know that the output ciphertext is
g, S0 the output bit is 1.

PERFECT KNOWLEDGE EXTRACTION The extractor sets up the common reference string by running the
key generator for the NIZK proof. In the process it leapng. This allows it to decrypt the ciphertexts
containing the input-bits. Since the NIZK proof has perfect soundness, these input bits must correspon
to a witnessv soC'(w) = 1.

COMPUTATIONAL ZERO-KNOWLEDGE AND HONEST PROVER STATE RECONSTRUCTIQN_et S; be the
simulator of the NIZK proof for a ciphertext having 0 or 1 as plaintext. We use the same algorithm to
create the common reference string for simulation of circuit satisfiability NIZK proofs. In other words,
bothg, h are random generators @fand the simulator knows € Z? sog = h".

9

Common reference string:

1. (p,¢,G,Gy,e) g(lk)

2. n=pq

3. g random generator d&

4. h random generator df,

5. Returno = (n,G, Gy, e, g, h).

Statement: The statement is a circuif built from NAND-gates. The claim is that there exist input
bitsw soC'(w) = 1.

Proof: The prover has a witness consisting of input bits s¢'(w) = 1.

1. Extendw to contain the bits of all wires in the circuit.

N

Encrypt each bit; asc; = g“*h", with r; — Z.
For allc; make a NIZK proof of existence af;, r; sow; = {0,1} and¢; = g“h'".

For the output of the circuit we let the ciphertextdg,.. = g, i.e., an easily verifiable
encryption of 1.
5. For all NAND-gates, we do the following. We have input ciphertexts; and output

ciphertexts:;. We wish to prove the existence @f, w,, ws € {0,1} andrg, 1,75 SO
wy = wo NAND w; andc; = g*7h"7. To do so we make a NIZK proof that there exist

m,r with m € {0,1} socoeic3g™2 = g"h'.
6. Returnrt consisting of all the ciphertexts and NIZK proofs.

o

Verification: The verifier given a circui€ and a proofr.
1. Check that all wires have a corresponding ciphertext and that the output wire’s ciphertext
isg.
2. Check that all ciphertexts have a NIZK proof of the plaintext being O or 1.
3. Check that all NAND-gates have a valid NIZK proof of compliance.
4. Return 1 if all checks pass, else return O.

Figure 2: NIZK proof for circuit satisfiability.

S, starts by choosing the ciphertexts for the wires: The output wire gets the cipheriextall other
wires, it selects a ciphertext = 1" with r; < Z*. Later, whenS; learns a witness, it can compute the
corresponding messages € {0, 1} for all these ciphertexts, and open thenras gmiprimm T

For all these ciphertextS, simulates a NIZK proof that they contain O or 1 as the plaintext. Also
for all NAND-gates with input wires,, i; and output wire, it simulates a NIZK proof that;, c;, ¢, g
contains a plaintext that is O or 1. Later, upon learning the witngs knows the plaintexts);, € {0, 1}
and randomizers;, — w; 7' that constitute a satisfactory encryption of the wires of a satisfied circuit.
For each NIZK proof of a plaintext being 0 or $3 can run the honest prover state reconstructor to get
convincing randomness that would make the prover produce this proof.

10

To prove that this is a good simulation, we first consider a hybrid experiment where we use the simu
lator to create the common reference string, but use the real prover to create the NIZK proofs. As in thi
proof of Theorem 2, we can argue that for all adversadasge have

|Pr|o «— K(1%) : APE@)(g) = 1] —Pr [(a,) = Sy (1%) : APRE) (o) = 1|| < vgp(k),

wherePR(o,C,w) runst < P(o,C,w;r) and returnsr, r.

Next, we modify the way we create proofs. Instead of running the real prover, we create the encryp
tions of the wires; as the real prover, but simulate the NIZK proofs of 0 or 1 being the plaintext and
simulate the NIZK proofs for the NAND-gates as well. ¢From the proof of Theorem 2 we get that this
modification does not increas€s probability of outputting 1. We have

Pr [(@) S (1F) : APR@) (5) = 1} — Pr [(a, 7) — Sy (1F) : APSRET) (5) = 1],

wherePSR(o, 1,C,w) creates ciphertexts correctly but simulates NIZK proofs for 0- or 1-plaintexts
and the randomness involved, and outgailsire if C'(w) # 1.
Finally, we go to the full simulation. For all we have

Pr [(O’, 7) — Sy (1F) : APSE@T) (6) = 1} =Pr [(0, 7) — S1(1%) : AR () = 1},

where SR runst «— Sy(o,7,C;p);r «— Ss(o,7,C,w, p) and returnsr, r, and outputdailure if
C(w) # 1. The only difference here is in the way we create the ciphertexts, but since they are perfectly
hiding, we cannot distinguish the two experiments.

U

5 Non-interactive Statistical Zero-Knowledge Argument

In this section, we construct a NIZK argument of circuit satisfiability with perfect zero-knowledge. The
main idea is a simple modification of the NIZK proof for circuit satisfiability in Figure 2. Instead of
choosingh of orderq, we leth be a random generator 6f. This wayg™h" is no longer an encryption

of m, but a perfectly hiding commitment te. It corresponds to using§; restricted to the first half of its
outputs as key generator. Completeness is obvious and the proof of Theorem 4 reveals that the argume
is perfect zero-knowledge.

Soundness is trickier though. Sing&h" is not statistically binding, we cannot prove soundness as
we did in Theorem 4. Suppose we have cireuit# L generated independently of the common reference
string. We can argue that no adversary can distinguish@arordern from anh of orderq, and therefore
has negligible probability of making an acceptable NIZK argument.

However, if the common reference string is chosen first, then the adversary may choose &'circuit
that depends on the common reference string. For instance, we cannot exclude the possibility that it cou
create an acceptable NIZK argument fohaving order smaller than. This is a false statement, since
h has ordemn. However, if we try to argue soundness by switching the reference string to cantaih
ordergq, then the statement is suddenly true and it might be possible to create such a NIZK argument.

In order to overcome this problem we tighten the subgroup decision assumption. We show that if al
adversaries have less théfk)~“*®v (k) chance of distinguishing generating eithet or G,, then all
adversaries have less tha(k) chance of making an acceptable argument for an unsatisfiable circuit of
size/(k). This limits the size of the circuits for which we can prove soundness.

11

Let S, be the simulatorS; from the proof of Theorem 4 restricted to its first output. We have the
following theorem

Theorem 5 (S,, P,V) is a NIZK argument for circuit satisfiability for circuits of size at mdsk) if
vsp(k) < £(k)~"®v (k) for some negligible function.

Proof. As in the proof of Theorem 4, we can show that the protocol has perfect completeness. Perfec
zero-knowledge and honest prover state reconstruction follows from the proof of Theorem 4. This leave
us with the question of soundness.

NON-ADAPTIVE COMPUTATIONAL SOUNDNESS We first demonstrate that the NIZK argument has non-
adaptive soundness, i.e., all adversaries have negligible probability of proving a false statement if the
choose this statement independently of the common reference string.

Consider any circui€ with no satisfying witness and a polynomial time adversdrat with proba-
bility So-Adv 4(1%) breaks the soundness property. In other wartlis given a common reference string
and proceeds to output a valid argumentWe will construct an adversaiy that decides the subgroup
decision problem with probability SD-Agv¥1*) =So-Adv,(1%).

B gets a challengé, G, G4, ¢, g, h) and has to decide whetheihas order or not. This corresponds
to a common reference string generated by either S,. So we can give it tod and output 1 if and only
if A forms a valid argument faf' being true.

In caseh has ordem, the common reference string produced®ys distributed exactly as in a real
argument. The adversary therefore has probability So-Ath) of generating an acceptable argument.

On the other hand, in cagehas order; the common reference string produced®is distributed as
the reference string in the previously described NIZK proof. Since the NIZK proof has perfect soundness
the probability ofA producing a valid argument is 0.

COMPUTATIONAL SOUNDNESS Consider now an adversad/with probability So-Ady, (1) for break-
ing the soundness property. L@tbe the unsatisfiable circuit of size at mdst) that is most likely to
be used byA in a valid NIZK argument. As argued in the previous paragraph, the probability s-
lecting this circuit when it sees the reference string and making an acceptable NIZK argument is at mos
SD-Adv(1¥). There are at mogt(k)“®) circuits of size/(k). Summing over all possible circuits we have
So-Advy(1%) < 0(k) P ugp(k) < v(k).

0

6 Universally Composable Non-interactive Zero-Knowledge

6.1 Modeling Non-interactive Zero-Knowledge Arguments

The universal composability (UC) framework (see [Can01] for a detailed description) is a strong security
model capturing security of a protocol under concurrent execution of arbitrary protocols. We model all
other things not directly related to the protocol through a polynomial time environment. The environment
can at its own choosing give inputs to the parties running the protocol, and according to the protoco
specification the parties can give outputs to the environment. In addition, there is an advetbaty
attacks the protocol.4 can communicate freely with the environment. It can also corrupt parties, in
which case it learns the entire history of that party and gains complete control over the actions of thi:
party.

To model security we use a simulation paradigm. We specify the functiors@lityat the protocol
should realize. The functionalitf can be seen as a trusted party that handles the entire protocol execution

12

and tells the parties what they would output if they executed the protocol correctly. In the ideal process
the parties simply pass on inputs from environmengtand whenever receiving a message frgthey

output it to the environment. In the ideal process, we have an ideal process ad¥erSatges not learn

the content of messages sent frd@nto the parties, but is in control of when, if ever, a message ffom

is delivered to the designated parycan corrupt parties, at the time of corruption it will learn all inputs
the party has received and all outputs it has sent to the environment. As the real world ad$ecsary,
freely communicate with the environment.

We now compare these two models and say that it is secure if no environment can distinguish betwee
the two worlds. This means, the protocol is secure, if for danyinning in the real world, there exists an
S running in the ideal process with so no environment can distinguish between the two worlds.

The standard zero-knowledge functionalify,; as defined in [Can01] goes as follows: On input
(prove,P,V, sid, z,w) from P the functionality 7, checks thafx,w) € R and in that case sends
(proof,P, V, sid, z) to V. It is thus part of the model that the prover will send the proof to a particular
receiver and that this receiver will learn who the prover is. This is a very reasonable model when we tall
about interactive NIZK proofs of knowledge. We remark that with only small modifications in the UC
NIZK argument that we are about to suggest we could securely realize this functionality.

However, when we talk about NIZK arguments we do not always know who is going to receive the
NIZK argument. We simply create a string which is the NIZK argument. We may create this string in
advance and later decide to whom to send it. Furthermore, anybody who intercepts the stnmegrify
the truth of the statement and can use the string to convince others about the truth of the statement. T
NIZK argument is not deniable; quite on the contrary it is transferable. For this reason, and because th
protocol and the security proof becomes a little simpler, we suggest a different functighality; to
capture the essence of NIZK arguments.

Parameterized with relatioR and running with partie®, . .., P, and adversang.

Proof: On input prove,sid, ssid, x,w) from party P ignore if (x,w) ¢ R. Send prove,z) to S and
wait for answer groof, 7). Upon receiving the answer stofe, 7) and send
(proof, sid, ssid,) to P.

Verification: On input {erify, sid, ssid, z, 7) from V' check whethe(z, 7) is stored. If not send
(verify,xz, 7) to S and wait for an answem(tnessw). Upon receiving of the answer, check
whether(z,w) € R and in that case, stofe,). If (z, 7) has been stored return
(verification,sid, ssid,1) toV, else return\erification,sid, ssid,0).

Figure 3: NIZK functionalityFy;z k.

6.2 Tools

We will need a few cryptographic tools to securely realfze 7 .

PERFECTLY HIDING COMMITMENT SCHEME WITH EXTRACTION A perfectly hiding commitment
scheme with extraction (first used in [CKOSO01] in the setting of perfectly hiding non-malleable com-
mitment) has the following property. We can run a key generation algorithm- K stat(1*) to get a
hiding keyhk, or we can alternatively run a key generation algoriftti, k) « Kextract(1*) in which

case we get both a hiding kéyt and an extraction keyk. (K stat,com) constitute a perfectly hiding

13

commitment scheme. On the other haf¥deztract, com, dec) constitute a public key cryptosystem with
errorless decryption, i.e.,

Pr [(hk, zk) — Kextract(1%) : ¥(m,r) : decgr(compg(m;r)) = m] ~ 1.

We demand that no adversa#dycan distinguish between the two key generation algorithms. This implies
that the cryptosystem is semantically secure against chosen plaintext attack since the perfectly hidir
commitment does not reveal what the message is.

We have already seen one example of a perfectly hiding commitment scheme with extraction. We ca
set up the BGN-cryptosystem with a public key, whérkeas full ordern. In this case the cryptosystem
is a perfectly hiding commitment scheme. We can also set it up kvliaving orderg, in this case the
cryptosystem has errorless decryption. The subgroup decisional assumption implies that no adversary ¢
distinguish commitment keys from cryptosystem keys.

PSEUDORANDOM CRYPTOSYSTEM A cryptosystem{ K pseudo, E, D) has pseudorandom ciphertexts of
length/z (k) if for all adversaries4 we have

Pr [(pk, dk) — Kpseudo(1¥) : AP0 (pk) = 1}

~ Pr [(pk, dk) «— Kpseudo(1%) : ARPk(')(pk) cA(e) = 1],

where R,;(m) runsc « {0,1}*=®) and returnse. We require that the cryptosystem have errorless
decryption as defined earlier.

The BGN-cryptosystem serves as an example of a pseudorandom cryptosystem. It is also known th
trapdoor permutations imply pseudorandom cryptosystems, we can use the Goldreich-Levin hard-core &
[GL89] of a trapdoor permutation to make a one-time pad.

TAG-BASED SIMULATION-SOUND TRAPDOOR COMMITMENTA tag-based commitment scheme has four
algorithms. The key generation algorithiirom produces a commitment key as well as a trapdoor key
tk. There is a commitment algorithm that takes as input the commitmenttkey message: and any
tagtag and outputs a commitment= commit.,(m, tag;r). To open a commitmentwe revealn, tag
and the randomness Anybody can now verify whether indeed= commit,(m, tag;). As usual, the
commitment scheme must be both hiding and binding.

In addition, to these two algorithms there are also a couple of trapdoor algofittems, Topen that
allow us to create an equivocal commitment and later open this commitment to any value we prefer. Wi
create an equivocal commitment and an equivocation key.a$) <« Tcom. 4 (tag). Later we can
open it to any message asr « Topen,, (¢, m, tag), such that = commit.(m, tag; r). We require
that equivocal commitments and openings are indistinguishable from real openings. For all advdrsaries
we have

Pr [(ck, th) « Kcom(1%) : ARG (ck) = 1] ~ Pr [(ck,tk) — Keom(1¥) : A°C)(ck) = 1],

where R(m,tag) returns a randomly selected randomizer af¥dm,tag) computes(c,ek) <«
Tcomeg ik (m, tag); r < Topen,, .,.(c, m,tag) and returng and.A does not submit the sameg twice to
the oracle.

The tag-based simulation soundness property is based on the notion of simulation soundness intr
duced by Sahai [Sah99] for NIZK proofs. It means that a commitment usipgemains binding even if

14

we have made equivocations for commitments using different tags. For all adver$aviebave
Pr [(ck,tk’) — K(1%); (¢, tag, mg, o, my, 1) — A%V (ck) :
¢ = commit(mo, tag; ro) = commit(my, tag; r1) andmg # my andtag ¢ Q| ~ 0,

where O(commit, tag) computes(c,ek) «— Tcom.(tag), returnsc and stores(c, tag, ek), and
O(open, c,m, tag) returnsr « Topen,, .. (c,m,tag) if (c,tag, ek) has been stored, and whefgis
the list of tags for which equivocal commitments have been mad@.by

Tag-based simulation-sound trapdoor commitment were first implicitly defined in [DIO98], and ex-
plicitly in [CKOS01, MYO04]. The notion of simulation soundness for NIZK [Sah99] will be critical to us
here, as well (see below). Aside from [DIO98, Sah99, CKOS01, MY04], other constructions of tag-basec
simulation sound commitments or schemes that can easily be transformed into tag-based simulation-sou
commitments have appeared in [DDQ@L, CLOS02, GMY03, DG03, Gro04, Gro05].

STRONG ONETIME SIGNATURES. We remind the reader that strong one-time signatures allow an ad-
versary to ask an oracle for a signature on one arbitrary message. Then it must be infeasible to forge
signature on any different message and also infeasible to come up with a different signature on the san
message. One-time signatures can be constructed from one-way functions.

6.3 UC NIZK

The standard technique to prove that a protocol securely realizes a functionality in the UC framewor}
is to show that the ideal model adversafycan simulate everything that happens on top of the ideal
functionality. In our case, there are two tricky parts. Fistmay learn that a statemeat has been
proved and has to simulate a UC NIZK argumeniithout knowing the witness. Furthermore, if this
honest prover is corrupted later then we learn the witness but must now simulate the randomness of tf
prover that would lead it to produce The second problem is that whenewesees an acceptable UC
NIZK argumentr for a statement’, then an honest verifidr will accept. We must therefore, input a
witnessw to Fzx SO it can instruct” to accept.

The main idea in overcoming these hurdles is to commit to the witmegsd make a NIZK proof
that indeed we have committed to a witnesso C'(w) = 1. We must show that our NIZK proof has a
simulation-soundness property (see above) to ensure that only true statements can be proven. On the ot
hand, if the NIZK proof has the honest prover state reconstruction property, then we can simulate NIZK
proofs and the prover’s random coins when forming this NIZK proof. This leaves us with the commitment
scheme. On one hand, when we simulate UC NIZK arguments we want to make equivocal commitment
that can be opened to anything since we do not know the witness yet. On the other hand, when we see
UC NIZK argument that we did not construct ourselves we want to be able to extract the witness, since
we have to give it tdFy 7k

We will construct such a commitment scheme from the tools specified in the previous section. We us
a tag-based simulation-sound trapdoor commitment scheme to commit to eachvblf af has lengthY
this gives us commitments, . . . , ¢,. For honest provers we can use the trapdoorkey create equivocal
commitments that can be opened to any bit we like. This enables us to simulate the commitments of th
honest provers, and when we learrupon corruption, we can simulate the randomness they could have
used to commit to the witness.

We still have an extraction problem, it is not clear that we can extract a witness from commitments
created by a malicious adversary. To solve this problem we choose to encrypt the openings of the con

15

mitments. Now we can extract withesses, but we have reintroduced the problem of equivocation. In i
simulated commitment we may know two different openings of a commitmetat respectively 0 and

1, however, if we encrypt the opening then we are stuck with one possible opening. This is where the
pseudorandomness property of the cryptosystem comes in handy. We can simply make two encryption
one of an opening to 0 and one of an opening to 1. Since the ciphertexts are pseudorandom, we can op
the ciphertext containing the opening we want and claim that the other ciphertext was chosen as a randc
string. To recap, the idea so far to commit to athis to make a commitment to this bit, and create a
ciphertextc; ;, containing an opening ef to b, while choosing; ;_, as a random string.

The commitment scheme is equivocable, however, again we must be careful that we can extract
message from an adversarial commitment. The problem is that since we equivocate commitments fc
honest provers it may be the case that the adversary can produce equivocable commitments. This mea
the adversary can produce some simulation sound commitenamid encryptions; o, c¢; 1 of openings
to respectively 0 and 1. To resolve this issue we will select the tags for the commitments in a way sc
the adversary is forced to use a tag that has not been used to make an equivocable commitment. Wh
an honest prover is making a commitment, we will select keys for a strong one-time signature schem
(vk, sk) «— Ksign(1¥). We will usetag = (vk,C') when making the commitment. The verification
key vk will be published together with the commitment, and we will sign the commitment (as well as
something else) using this key. Since the adversary cannot forge signatures, it must use a different ta
and therefore the commitment is binding and only one of the ciphertexts can contain an opening of
This allows us to establish simulation soundness.

If the adversary corrupts a party that has uskaarlier, then it may indeed sign messages using
and can therefore usé: in the tag for commitments. However, since we also include the staterhent
the tag for the commitment using:, the adversary can only create an equivocable commitment in a UC
NIZK argument for the same statemeTrit We will observe that in this particular case we do not need to
extract the witness), because we can get it during the corruption of the prover.

Finally, in order to make the UC NIZK argument perfect zero-knowledge we wrap all the commitments
¢; and the ciphertexts ;, inside a perfectly hiding commitmeant In the simulation, however, we generate
the key for this commitment scheme in a way such that it is instead a cryptosystem and we can extract tt
plaintext. We note that this step is only added to make the UC NIZK argument perfect zero-knowledge, i
can be omitted if perfect zero-knowledge is not needed.

The resulting protocol can be seen in Figure 4. We use the notation from Section 6.2.

Theorem 6 The protocol in Figure 6 securely realiz&%y;x in the Fors-model.

Proof. Let A be any adversary. We will describe an ideal adversasp no environment can distinguish
whether it is running in theFrs-hybrid model with partied;, . .., P, and adversaryl or in the ideal
process WithFy;zx, S and dummy partie®,, ..., P,.

S starts by invoking a copy afl. It will run a simulated interaction ofd, the parties and the envi-
ronment. In particular, whenever the simulagédommunicates with the environmetjust passes this
information along. And whenevet corrupts a party?;, S corrupts the corresponding dummy pafy
SIMULATING Fcrs. S chooses the common reference string in the following way. It sel@otsgk) «—
Kextract(1%); (ck,tk) < Kcom(1%); (pk,dk) « Kpseudo(1*) and (o, 7) « S;(1%). This meansS
is capable of extracting plaintext committed under, able to create and equivocate simulation sound
trapdoor commitments, decrypt pseudorandom ciphertexts and simulate NIZK proofs and make hone
prover state reconstruction of NIZK proofs.

16

CRS generation:

1. hk «— Kstat(1%)

2. (ck,tk) «— Kcom(1%)

3. (pk,dk) «— Kpseudo(1%)
4. (o,7) « S (1%)

5. ReturnX = (hk, ck, pk, o)

Statement: A circuit C' and a claim that there exists input wiressoC'(w) = 1.
Proof: On input(3, C, w).

1. CheckC(w) = 1 and returrfailure if not
(vk, sk) «— Ksign(1¥)
Fori = 1to ¢ selectr; at random and let; = commit (w;, (vk, C); ;)

oD

[

random string.
5. Choose at random and let = comy(c1, ¢10, €11, - - -, Cr, Co0, Coa;T)

Fori = 1to (¢ selectR,,, at random and set ,,, = E,;(r;; R,,) and choose; ;_,, as a

6. Create a NIZK proof: for the statement that there existsuch thatCC(w) = 1 and there

exists randomness sdas been produced as described in steps 3,4 and 5.
7. s« signg (C,vk,c,m)
8. Returnll = (vk,c,, s)
Verification: On input(X, C, 1)
1. Parsdl = (vk,c,,s)
2. Verify thats is a signature ofiC, vk, ¢,) undervk.

3. Verify the proofr
4. Returnl if all checks work out, else return O

Figure 4: UC NIZK argument.

Common reference string: On input Gtart,sid) run Y «— K (1%).
Send ¢rs,sid, X)) to all parties and halt.

Figure 5: Protocol for UC NIZK common reference string generation.

LetY = (hk, ck, pk,o). S simulatesFcrs sending €rs,sid,) to all parties. Wheneved decides to

deliver such a message to a pafty S will simulate P; receiving this string.

SIMULATING UNCORRUPTED PROVERS SupposeS receives froof,sid, ssid, C) from Fyrzx. This
means that some dummy par#y received input grove,sid, ssid, C,w), whereC(w) = 1. We must

simulate the output a real parfywould make, however, we may not knaw

17

Proof: Party P waits until receiving €rs,sid, >2) from F¢gs.
On input prove,sid, ssid, C,w) runIl « P(3, C,w). Output proof,sid, ssid,).

Verification: PartyV waits until receiving €rs,sid,) from Fcgs.
On input (erify ,sid, ssid, C,II) runb «— V (3, C, II). Output {erification,sid, ssid, b).

Figure 6: Protocol for UC NIZK argument.

We create(vk, sk) «— Ksign(1¥). Lettag = (vk,C) and form equivocal commitments;, ek) «
Tecomyy 1 (tag). We simulate openings of the's to both 0 and 1. For all = 1to ¢ andb = 0 to
1 computep;, « Topen, .. (c;, b, tag). Selectr;;, at random and set, = E,(pis;7i). Compute
¢ = Epr(ci,c10,¢11,- -5 Co,Cop,con;7) for a randomr. Choose randomnegsand simulate the NIZK
proof asr < Sy(a, 7, (C, vk, c); p). Finally, create a one-time signatwen C, vk, ¢, 7.

LetIl = (vk, ¢, 7, s) and return froof IT) to Fn;zx. Fnizx Subsequently sendprpof,sid, ssid, IT)
to P and we deliver this message so it gets output to the environment.

SIMULATING UNCORRUPTED VERIFIERS SupposeS receives Yerify ,C, IT) from Fy;zx. This means
an honest dummy parfly has receivedverify ,sid, ssid, C, IT) from the environment.

S checks the UC NIZK argument, < V (X, C,II). If invalid, it sends fitnessno witness) to
Fnizx and delivers the consequent messaggification,sid, ssid, 0) to V that outputs this rejection to
the environment.

On the other hand, if the UC NIZK argument is valid we must try to extract a witne#sC' has ever
been proved by an honest prover that was later corrupted, we will know the withess and do not need t
run the following extraction procedure. If the witness is not known alréadges the extraction keyk
to extract a plaintext;, c¢1 o, 11, - - ., o, ce, cer fromc. Since it knows the decryption ke, it can then
decrypt allc; ;. This gives us plaintexts; ,. We check whethet; = Tcom, (b, (vk, C); p;p) @and in that
caseb is a possible candidate for theh bit of w.

If successful in all of thisS lets w be these bits. However, if any of the bits are ambiguous, i.e.,
w; could be both 0 and 1, or if any of them are inextractable, then ittsetsno witness . It sends
(witnessw) to Fyzzic. It delivers the resulting output messagétdhat outputs it to the environment.

We will later argue that the probability of the UC NIZK argument being valid, yet not being able to
supply a good witness t@ -k is negligible. That means with overwhelming probability we input a
valid witnessw to Fy;zx whenll is an acceptable UC NIZK argument for satisfiability(of

SIMULATING CORRUPTION. Suppose a simulated parky is corrupted by4. Then we have to simulate
the transcript of?,. We start by corrupting®, thereby learning all UC NIZK arguments it has verified. It
is straightforward to simulat&,’s internal tapes when running these verification processes.

We also learn all statementsthat it has proved together with the corresponding witnegségecall,
the UC NIZK argument$l have been provided hy. Here is how we can simulate the randomness that
would leadP; to produce such a UC NIZK argumeiit SinceS created:;, c; o, ¢;1 such that; , contains
a 0-opening of;; andc;; contains a 1-opening af it can produce good looking randomness to claim
that it committed tav;. This also gives us convincing randomness for constructing all these commitments
and for producing the ciphertext so we can run the honest prover state reconstruction algofthio
simulate randomness that would lead the prover to produce

HYBRIDS. We wish to argue that no environment can distinguish between the advetsanning with
parties executing the UC NIZK protocol in tlf&. zs-hybrid model and the ideal adversa$yrunning in

18

the Fy 1z x-hybrid model with dummy parties. In order to do so we define several hybrid experiments and
show that the environment cannot distinguish between any of them.

HO: This is theF-rs-hybrid model running with adversary and parties”,, .. ., P,.

H1: We modify HO by running hk, 2k) « Kextract(1¥) instead ofhk «— K stat(1*) when generating
the common reference string

HO and H1 are indistinguishable, because otherwise we could build a distinguisher that could tel
which key generation algorithm creatgél.

H2: We modify H1 in the way an uncorrupted provercreates commitments, ..., c,. Lettag =
(vk,C) as chosen in the proof. Instead of creatingby selectingr; at random and setting
¢; = commity(w;, tag;r;), we create an equivocal commitmeat, ek) «— Tcom,y . (tag) and
subsequently produce randomness, < Topen,, .. (c;, w;, tag). We continue the proof using
Piw, INStead ofr;.

H1 and H2 are indistinguishable. If they were distinguishable, then we could distinguish real com-
mitments and openings from equivocal commitments and equivocated openings, in violation of the
definition of trapdoor commitments.

H3: In H3, we make another modification to the procedure followed by an honest prover. We are
already creating; as an equivocal commitment and equivocating it with randompgssthat
would open it to containv;. We run the equivocation procedure once more to also create con-
vincing randomness that would explainas a commitment t@ — w;. This means, we compute
pPil—w; < Topeny . (ci,1 —w;, tag). Instead of selecting;;_.,, as a random string, we choose

to encryptp; 1—w,; aS¢i1—w; = Epi(pii—w;;Ti1-w;) fOr a randomly chosen; ;_,,,. We still pretend
thatc; ;_,, is a randomly chosen string when we carry out the NIZK proof if the prover is ever
corrupted.

H2 and H3 are indistinguishable because of the pseudorandomness property of the cryptosyster
Suppose we could distinguish H2 and H3, then we can distinguish between an encryption oracl
and an oracle that supplies randomly chosen strings.

H4: Consider the case where an honest partgceives Yerify ,sid, ssid, C, II). Supposeél is indeed an
acceptable UC NIZK argument and the one-time signature scheme has verificatioh. kiéyv %
was selected by an honest party in making a UC NIZK argument, this party is still uncorrupted, yet
C, I1 differ from the UC NIZK argument this honest party produced, then we odiglute to
the environment.

To argue that H3 and H4 are indistinguishable we need to show that the probability of failure is
negligible. This follows from the fact that outpulttirfgilure corresponds to a forgery of a
strong one-time signature.

H5: Again, we look at the case of an uncorrupted verifier that has an acceptable UC NIZK argurient
to verify. If C, IT were produced by an uncorrupted prover we do not change the protocol, neither
do we modify the protocol it has been proved by an honest prover that has later been corrupted.
In all other cases, we use the extraction kéyin an attempt to decryptto get a plaintext on the
formey, 1,11, ..., co, Co0, 1. Then we use the decryption ke to attempt to decrypt the ,'s

19

to getp;, SO¢;, = commite (b, (vk, C); p;p. We outputfailure if at any point we encounter a
C; = Commitpk<0a (Uk7 C)) pi,O) = Commitck(lv (Ukv C)a pi,l)'

Simulation soundness of the commitment scheme implies that H4 and H5 are indistinguishable
Consider the tagvk, C'). Outputtingfailure corresponds to breaking the binding property of
the commitment scheme, unless we have previously equivocated a commitment with t&g.

In H4, we ruled out the possibility afk coming from a UC NIZK argument of a party that is still
uncorrupted. This leaves us with the possibility.4fcorrupting an honest proveé?, learning the
secret keysk corresponding tak and making a UC NIZK argument using this. However, this
means thaC' stems from the same honest prover that has now been corrupted, and in that case w
do not try to extracp; ;'s.

H6: We modify the common reference string by selecting- K (1) instead of(o, 7) « S;(1%).

Since we do not use for anything at the moment, the zero-knowledge property implies that H5
and H6 are indistinguishable.

H7: As in H5, we try to extractp;o,p;1's. We outputfailure if we cannot decryptc to get

€1,€1,0,C11,---,Ce, Cr0,Ce1. We also outpufailure if there is ani so we cannot decrypt ei-
therc; o or ¢; ; to give usp; , SO¢; = commit (b, (vk, C); p;). We ruled out the possibility of both
pio @andp; ;1 being an opening aof; in H5, so if everything is OK so far we have a uniquely defined
w so for alli we haver; = commit(w;, (vk, C); piw,). We outputfailure if C'(w) # 1.

¢ From the soundness property of the NIZK proof and the errorless decryption property of the cryp-
tosystems we know that we do succeed in decryptit@ somecy, ¢10,¢11, - - -, Cr, Coo, Coa. 1hE

NIZK proof also tells us that for all = 1 to ¢ at least one of the; o, ¢; ; will have a propemp;, ;, so

¢; = commit, (b, (vk, C); pip). By the soundness property of the NIZK proof we haiev) = 1.

The probability of outputtindailure is therefore negligible, and H6 is indistinguishable from
H7.

H8: Instead of making real NIZK proofs for uncorrupted provers we use the honest prover state recon

SIM:

struction simulators. In other words, we rin 7) < S;(1¥) when we create the common reference
string. We user — S,(0, 7, -; p) With p random to simulate the honest provers NIZK proofs that
has been correctly generated. Finally, if any such prover is corrupted wes8; (o, 7, z, 7, -, p)

to create convincing randomness that would make the prover oumtpatthe witness for: being
correctly generated.

The honest prover state reconstruction property of the NIZK proof implies that H7 and H8 are
indistinguishable.

This is the ideal process running wiffy;x andS.

H8 is already very similar to the ideal process. Honest provers in H8 make UC NIZK arguments in
the same way aS without using the knowledge of the witnegsfor anything. It therefore makes

no difference thaf only learnsw upon corruption of a party? when it has to simulate the random
tape of said party.

Whenever an honest verifier has to verify a proofl we are also very close to what happens in the
simulation. IfC, I has been produced by an honest prover it returns 1, as will the dummy verifier
in the ideal process. If’ is a statement proved by an honest prover, but this prover has later been
corrupted, then in H8 the verifier will return 1 it is an acceptable UC NIZK argumen& in

20

a similar situation will have corrupted the dummy prover that made the UC NIZK argument, and
therefore it will know the witness. Ifl is an acceptable UC NIZK argument, it can therefore give
this witness taF vz that will make the dummy verifier output an acceptance to the environment.
Finally, in the remaining case we have argued in H7 that we manage to extract a witiiddss
acceptable and this extraction procedure is carried out exactly as it is da#heTherefore S can
submit this withess tFn 2k .

In conclusion, H8 is perfectly indistinguishable from the ideal process. Our path from HO to SIM
shows us that HO and SIM are indistinguishable.

O
Theorem 7 The UC NIZK argument in Figure 4 is perfect zero-knowledge.

Proof. We start by describing the simulatst'® = (SY¢, SY¢). SVC runshk «— Kstat(1%); (ck,tk) «—
Kcom(1%); (pk, sk) «— Kpseudo(1¥); (o, 7) «+— K(1¥). LetY = (hk, ck, pk, o). SV outputs(Z, 7).

Consider nextS, that is given a circuitC' on which to simulate a UC NIZK argument for satis-
fiability. It generates keys for the one-time signature schémesk) «— Ksign(1¥). Then generates
a statistically hiding commitment < comy(0). It simulates a proofr for the statement thatc has
been correctly formed and contains a withessoC'(w) = 1 asw « So(X, 7, x). Finally, it creates a
one-time signature on everything,— sign,, (C, vk, ¢,). It outputs the simulated UC NIZK argument
II = (vk,c,m,s).

Perfect zero-knowledge of the NIZK proof implies that for all adversadege have

Pr [2 — KUC(1F) : APC)(3) = 1] — Pr [(2,7) — KUC(1F) : APSEme (D) = 1],

where PSis an oracle that on ingdit, 7, C, w) outputsfailure if C'(w) = 0 and otherwise creates a UC
NIZK argumentll = (vk, ¢, , s) by following the provers algorithm for creating:, ¢, s but simulating
the NIZK proofr.

Next, we argue that for all adversaridswe have

Pr|(Z,7) « SYC(14) s APSEm(3) = 1] = Pr[(8,7) e KUO(1F) : A5G (3) = 1]

whereS’ (3, 7, C,w) checks thaC'(w) = 1 and in that case returi$ «— Sy (%, 7, C).
The only difference in the two oraclé3S andS’ is the message inside the commitmenHowever,
since the commitment scheme is perfectly hiding, this does not change the distributions.
U

Corollary 8 Bilinear groups as described in Section 3 for which the decisional subgroup assumption
holds imply the existence of a non-interactive perfect zero-knowledge protocol that securely realize:
fNIZK-

Proof. The assumption implies the existence of strong one-time signatures since one-way functions suffic
for constructing those. The existence of one-way functions also suffices for the construction of tag-base
simulation sound trapdoor commitments. The BGN-cryptosystem can be set up both as a cryptosyste
and as a perfectly hiding commitment scheme, and the subgroup decision assumption says that the t\
types of keys cannot be distinguished. The BGN-cryptosystem has pseudorandom ciphertexts, since \

21

can sample random element frdghand cannot distinguish a full ordérfrom a small order. Finally,
as we saw in Section 4.2 we can construct a NIZK proof with honest prover state reconstruction fromn
the subgroup decision assumption. According to Theorem 6, plugging all these parts into the UC NIZK
argument construction in 4 gives us a protocol that securely redfizesy .

As already mentioned the BGN-cryptosystem set up with a full okdemerfectly hiding. It follows
from the proof of Theorem 4 that using the NIZK proof with a simulated common reference sgings
us a perfect zero-knowledge argument. Theorem 7 then tells us that the UC NIZK argument is perfec
zero-knowledge.

O

References

[AH87] William Aiello and Johan Hstad. Perfect zero-knowledge languages can be recognized in
two rounds. InProceedings of FOCS '8'pages 439-448, 1987.

[BC86] Gilles Brassard and Clauded&peau. Non-transitive transfer of confidence: A perfect zero-
knowledge interactive protocol for sat and beyondPtaceedings of FOCS '8fages 188—
195, 1986.

[BCC88] Gilles Brassard, David Chaum, and Claudef&au. Minimum disclosure proofs of knowl-
edge.JCS$37(2):156-189, 1988.

[BDMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninteractive
zero-knowledgeSIAM Jornal of Computatiqr20(6):1084-1118, 1991.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its
applications. Irproceedings of STOC '§pages 103—-112, 1988.

[BGNO5] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on ciphertexts. In
proceedings of TCC 'Q%ages 325-341, 2005.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic pro-
tocols. In proceedings of FOCS ’'Qlpages 136-145, 2001. Full paper available at
http://eprint.iacr.org/2000/067 :

[CKOSO01] Giovanni Di Crescenzo, Jonathan Katz, Rafail Ostrovsky, and Adam Smith. Efficient and
non-interactive non-malleable commitment. proceedings of EUROCRYPT 'Odages 40—
59, 2001.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable
two-party and multi-party secure computation.phoceedings of STOC '0pages 494-503,
2002. Full paper available attp://eprint.iacr.org/2002/140 .

[DDNOO] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptograp&iAM J. of
Computing 30(2):391-437, 2000. Earlier version at STOC '91.

[DDO'01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and Amit
Sahai. Robust non-interactive zero knowledgeprimceedings of CRYPTO '01, LNCS series,
volume 2139pages 566598, 2001.

22

[DDPY98] Alfredo De Santis, Giovanni Di Crescenzo, Giuseppe Persiano, and Moti Yung. Image density

[DGO3]

[DIO9S]

[FLS90]

[For87]

[GL8Y]

[GMY03]

[GOP98]

[Gro04]

[Gro05]

[GSV99]

[KP9S]

[MY04]

[Ost91]

[PS05]

is complete for non-interactive-szk. pmoceedings of ICALP '98, LNCS series, volume 1443
pages 784—795, 1998.

lvan Damg@rd and Jens Groth. Non-interactive and reusable non-malleable commitment
schemes. Iproceedings of STOC 'QPages 426-437, 2003.

Giovanni Di Crescenzo, Yvail Ishai, and Rafail Ostrovsky. Non-interactive and non-malleable
commitment. Inproceedings of STOC '98pages 141-150, 1998.

Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge proofs
based on a single random string.droceedings of FOCS '9@ages 308-317, 1990.

Lance Fortnow. The complexity of perfect zero-knowledge Pioceedings of STOC '87
pages 204-209, 1987.

Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In
proceedings of STOC '8pages 25-32, 1989.

Juan A. Garay, Philip D. MacKenzie, and Ke Yang. Strengthening zero-knowledge protocols
using signatures. lproceedings of EUROCRYPT '03, LNCS series, volume ,26&8es
177-194, 2003. Full paper availablehdatp://eprint.iacr.org/2003/037 .

Oded Goldreich, Rafail Ostrovsky, and Erez Petrank. Computational complexity and knowl-
edge complexitySIAM J. Comput.27:1116-1141, 1998.

Jens Groth. Honest verifier zero-knowledge arguments applied. Dissertation Series DS-04-3
BRICS, 2004. PhD thesis. xii+119 pp.

Jens Groth. Cryptography in subgroupsZgf In proceedings of TCC '05, LNCS series,
volume 3378pages 50-65, 2005.

Oded Goldreich, Amit Sahai, and Salil P. Vadhan. Can statistical zero knowledge be made
non-interactive? or on the relationship of szk and niszk. CRYPTO '99, LNCS series,
volume 1666pages 467—-484, 1999.

Joe Kilian and Erez Petrank. An efficient noninteractive zero-knowledge proof system for np
with general assumptiondournal of Cryptology11(1):1-27, 1998.

Philip D. MacKenzie and Ke Yang. On simulation-sound trapdoor commitmentgprdn
ceedings of EUROCRYPT '04, LNCS series, volume 30&yes 382—400, 2004. Full paper
available ahttp://eprint.iacr.org/2003/252 .

Rafail Ostrovsky. One-way functions, hard on average problems, and statistical zero-
knowledge proofs. IrProceedings of Structure in Complexity Theory Conferepeges
133-138, 1991.

Rafael Pass and Abhi Shelat. Characterizing non-interactive zero-knowledge in the pubilic
and secret parameter models.phoceedings of CRYPTO 05, LNCS seyi2805.

23

[Sah99] Amit Sahai. Non-malleable non-interactive zero-knowledge and adaptive chosen-ciphertex
security. Inproceedings of FOCS '99ages 543-553, 1999.

[SVO03] Amit Sahai and Salil Vadhan. A complete problem for statistical zero knowleliggnal of
the ACM (JACM)50(2):196-249, 2003.

24

