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Abstract. A coupon is an electronic data that represents the right to access a service
provided by a service provider (e.g. gift certificates or movie tickets). Recently, a privacy-
protecting multi-coupon system that allows a user to withdraw a predefined number of
single coupons from the service provider has been proposed by Chen et al. at Financial
Crypto 2005. In this system, every coupon has the same value which is predetermined by
the system. The main drawbacks of Chen et al. proposal are that the redemption protocol
of their system is inefficient, and that no formal security model is proposed. In this paper,
we consequently propose a formal security model for coupon systems and design a practical
multi-coupon system with new features: the quantity of single coupons in a multi-coupon
is not defined by the system and the value of each coupon is chosen in a predefined set of
values.
Keywords. Electronic coupons, e-cash, security model, proof of knowledge.

1 Introduction

The issues of electronic money [13, 16, 20, 17, 18, 7, 9] and electronic coupons [21] are closely related
since both are electronic data for payment. The former involves a Bank B, a User U and a Merchant
M; B delivers electronic coins to U , later B accepts these coins from M and in exchange credits
the banking account of M, U withdraws electronic coins from B and spends them to get goods or
services delivered by M, and M deposits the coins at the bank B. The latter involves a Service
Provider SP playing both the roles of B and M, and a User U that withdraws electronic coupons
from the SP and later redeems these coupons to get an access to specific services offered by the
SP.

The usually required security properties of electronic coin systems and those of electronic
coupons systems are closely related. For instance, the privacy of the users must be protected, i.e.
, it must be impossible to link a withdrawal protocol with a user identity as well as to link two
spending/redemption protocols, and it must be impossible to link a spending/redemption protocol
to a withdrawal protocol (except for the owner of the coin/coupon).

As it is easy to duplicate electronic data, an electronic payment system requires a mechanism
that prevents a user from spending the same electronic data (e.g. a coin or a coupon) twice. The
problem of detecting the double-redemption of a coupon is simpler than the problem of detecting
the double-spending of a coin. Indeed, in a coupon system, every coupon is redeemed to the service
provider that has previously delivered the coupon to a user; the service provider can then easily
check the redeemed coupons database in order to detect a double-redemption. In an electronic coin
system, the merchant cannot detect a double-spending during a payment protocol since the coins
delivered by the bank can be spent at several merchants. Then, the detection of a double-spending
is done by the bank.

For a practical use, it is important to consider the efficiency of each protocol of the electronic
coin/coupon scheme. For instance, the withdrawal of m coins/coupons should be more efficient
than m executions of the withdrawal protocol of one coin/coupon; an efficient solution has been
recently proposed [9]. In the same way, the spending/redemption of m coins/coupons should be



more efficient than m executions of the spending/redemption protocol; this is still an open problem.
Another practical property that should be considered is the size of the electronic wallet/multi-
coupon.

In real life, coupons are widely used by vendors. For instance gift certificates are useful means to
attract the attention of potential customers. Due to the diversification of the activities of more and
more shops, it becomes common that a vendor gives to customers a money-off coupon book with
coupons of different values or dedicated to different parts of the goods shop. Then, an electronic
coupon system must not only be secure and efficient, but it should also offer such features of real
life multi-coupon systems.

1.1 Related works

The coupon system proposed by Chen et al. [21] allows to create multi-coupons where a multi-
coupon is a set of m coupons (m is a predetermined value of the system) and every coupon
has the same value V . This system does not require the existence of a trusted third party. The
usual security properties required in the context of electronic payment are fulfilled by this coupon
scheme, i.e. the unforgeability (of a multi-coupon or of a coupon), the unlinkability (of a withdrawal
protocol with a redemption protocol, or between several redemption protocols), and the detection
of the double-redemption of a coupon. In [21], a multi-coupon is composed of non-detachable
coupons (i.e. if a user wants to transfer coupons to another user, she must give all her coupons
or nothing). This property can be suitable when coupons are used as drug prescriptions from a
doctor. However, this property seems to be inconvenient in many other applications such as movie
tickets or reduction tickets, for which a user must be allowed to detach a single coupon from her
multi-coupon. The redemption protocol proposed in [21] is not efficient. Indeed, it is based on a
proof of OR statement that is proportional to the number of withdrawn coupons and consequently
unpractical.

Camenisch et al. [9] have recently proposed an efficient compact e-cash system3 that allows
a user to withdraw a wallet with 2` coins such that the space required to store these coins, and
the complexity of the withdrawal protocol are proportional to ` rather than to 2`. This scheme
fulfills the anonymity and unlinkability properties usually required for electronic cash schemes.
The compact e-cash scheme combines Camenisch-Lysyanskaya’s signature [8], Dodis-Yampolskiy’s
verifiable random function (VRF) [24] and an innovative system of serial numbers and security
tags. As for the coupon system of Chen et al., the number of coins withdrawn during a withdrawal
protocol and the coin values are predetermined by the system. The main drawback of the compact
e-cash system is that it does not address the problem of divisibility: the property that payments
of any amount up to the monetary amount of a withdrawn coin can be made. This functionality
is considered by the divisible e-cash systems.

In [30, 29], the authors proposed unlikable divisible e-cash systems, i.e. schemes allowing a user
to withdraw a single coin and next to spend this coin in several times by dividing the value of the
coin. The usual properties of anonymity and unlinkability are fulfilled by these unlinkable divisible
e-cash schemes. Contrary to the schemes mentioned above, the unlinkable divisible e-cash scheme
requires a trusted third party. The scheme of Nakanishi and Sugiyama is less efficient than the
compact e-cash scheme since it uses double decker proofs of knowledge that are expensive.

Note that all schemes mentioned above suffer from the fact that it is not possible to choose
the number of coins/coupons and to choose the value of each coin/coupon.

1.2 Our contribution

We first propose a security model suitable for electronic multi-coupon systems that include the
usual security properties, i.e. the unforgeability and the unlinkability but also the propery for a
user to split her multi-coupon. In the coupon system of Chen et al., a user can give either her
3 In [9], an extension of this system provides traceable coins without any trusted third party but this

property is not relevant in our context.



whole multi-coupon or nothing. The protection against splitting of a multi-coupon can be suitable
when coupons are used such as drug prescriptions from a doctor. However, this protection seems
to be unsuitable in many other real life applications such as movie tickets or reduction tickets,
for which a user must be allowed to detach a coupon from her multi-coupon and transfer it to
another user. Then, we propose a model suitable for electronic multi-coupon systems that allows
the transfer of coupons.

We then propose a new multi-coupon scheme that is more efficient than the proposal of Chen et
al. [21] and in addition offers the following new features: the number of coupons of a multi-coupon
can be chosen during a withdrawal protocol, i.e. the size of the multi-coupons is not predetermined
by the system. Moreover, for each coupon of a multi-coupon, its value can be chosen among a set of
values during the withdrawal protocol; the set of possible values is predetermined by the system.
The owner of a multi-coupon can redeem each coupon of her multi-coupon to the appropriate
service provider. Furthermore, the owner of a multi-coupon can give a part of her multi-coupon
to another user, which means that, a first user can transfer a set of coupons to a second user
and then the first user looses the possibility to redeem the coupons she gave and the second user
can redeem only the coupons she received. Our redemption protocol is based on a proof of the
OR statement that is only proportional to the logarithm of the maximum number of withdrawn
coupons, which is far more efficient than the one of Chen et al. [21].

Very recently, some of the ideas present in this paper have been independently proposed by
Nguyen [31].

1.3 Organization of the paper

This paper is organized as follows. Section 2 describes the security model and requirements for a
multi-coupon system. In Section 3, we list and describe the cryptographic tools we need. Section 4
is the main one: it contains the new multi-coupon system. In Section 5, we study the security of
our scheme and Section 6 compares it to Nguyen’s coupon system. Section 7 concludes this paper.

2 Security Model

An electronic coupon system involves a service provider and several users. The Service Provider
is denoted by SP and a user by U . The set of authorized values for coupons is V = {V1, . . . , Vn}.
A coupon C is formed by an identifier IC and a value Vi ∈ V. A multi-coupon is formed by a
multi-coupon identifier I and the set S = {(Ji, Vi); i ∈ [1, n]} where Ji is the number of coupons
of value Vi. We set Ji = {0, . . . , Ji − 1}.

2.1 Algorithms

– ParamKeyGen: a probabilistic algorithm taking as input the security parameter k. This algo-
rithm outputs some secret parameters sParams and some public parameters pParams including
the authorized values of the coupons V = {V1, . . . , Vn}.

– SPKeyGen: a probabilistic algorithm executed by SP taking as inputs the security parameter
k and the parameters of the system sParams and pParams. This algorithm outputs the key
pair (skSP , pkSP) of SP.

– Withdraw: an interactive protocol between the service provider SP taking as inputs (skSP , pkSP)
and pParams, and a user U taking as inputs pkSP and pParams. For every i ∈ [1, n], the user
chooses the number Ji of coupons of value Vi she wants to withdraw. At the end of the protocol,
the user’s output is the multi-coupon, i.e. an identifier I and the set S = {(Ji, Vi); i ∈ [1, n]},
or an error message. The Service Provider’s output is its view VWithdraw

SP of the protocol.



– Redeem: an interactive protocol between a user U , taking as inputs a multi-coupon, i.e. an iden-
tifier I and the set S = {(Ji, Vi); i ∈ [1, n]}, the public key pkSP and pParams, and the service
provider SP, taking as inputs the public key pkSP and pParams. The user U chooses the value
Vj of the coupon she wants to redeem. At the end of the protocol, the Service Provider SP
obtains from the User U a coupon C of value Vj with a proof of validity and outputs its view
VRedeem
SP of the protocol. U outputs an updated multi-coupon, i.e. the identifier I and the set
{(J ′i , Vi); i ∈ [1, n]} where J ′j = Jj − 1 and J ′i = Ji, i ∈ [1, n] and i 6= j, or an error message.

– Transfer: an interactive protocol between a user U1, taking as inputs a multi-coupon, i.e. an
identifier I and the set S = {(Ji, Vi); i ∈ [1, n]}, the public key pkSP and pParams, and a
second user U2 taking as inputs pkSP and pParams. For every i ∈ [1;n], the user U1 chooses
the number J ′i , J ′i ≤ Ji, of coupons of value Vi she wants to transfer to U2. At the end
of the protocol, the user U2 outputs a new multi-coupon, i.e. an identifier I ′ and the set
{(J ′i , Vi); i ∈ [1, n]}, and the user U1 outputs an updated multi-coupon, i.e. the identifier I and
the set {(Ji − J ′i , Vi); i ∈ [1, n]}, or an error message.

2.2 A formal model

In this section, we propose a formal model for secure multi-coupon systems. A valid coupon is
a coupon obtained from a valid Withdraw or Transfer protocol and it has not been previously
redeemed.

– Correctness: if an honest user U runs Withdraw with an honest Service Provider SP, then
neither will output an error message; if an honest user U runs Redeem with an honest service
provider SP, then SP accepts the coupon if it is valid; if an honest user U1 runs Transfer
with an honest user U2, then U2 gets a valid coupon (possibly by assuming that SP is honest).

– Unforgeability: from the Service Provider’s point of view, what matters is that no coalition
of users can ever spend more coupons than they withdrew. Let an adversary A be a p.p.t.
Turing Machine. At the begining of the game, A is given the public key pkSP and the public
parameters pParams of the system. Furthermore, at any time during the game:
1. A can execute in a concurrent manner Withdraw protocols with honest service providers,
2. A can execute Redeem protocols with honest service providers,
3. A can execute Transfer protocols with honest users playing the role of U1 or U2.

At some point of the game, the adversary A can legitimately extract, from these protocols,
a list L of valid coupons C with identifiers I’s. At the end of the game, A outputs a coupon
C /∈ L and a Redeem protocol (or a Transfer protocol) is played by A with an honest service
provider SP (resp. an honest user U playing the role of U2).
We require that for every adversary playing the previous game, the probability that the hon-
est Service Provider SP (resp. the honest user U playing the role of U2) accepts the Redeem
protocol (resp. the Transfer protocol) is negligible.

– Unlinkability: from the privacy point of view, what matters to users is that the service
provider, even cooperating with any collection of malicious users, cannot learn anything about
the user’s spendings other than what is available from side information from the environment.
Let an adversary A be a p.p.t. Turing Machine. At the begining of the game, A is given the
key pair (pkSP , skSP) of the Service Provider SP and the public parameters pParams of the
system. Furthermore, at any time during the game:
1. A can execute in a concurrent manner Withdraw protocols with honest users,
2. A can execute Redeem protocols with honest users,
3. A can execute Transfer protocols with honest users playing the role of U1 or U2.

At some point of the game, the adversary A outputs two views VWithdraw1
A and VWithdraw2

A
of previously executed Withdraw protocols. Then, for the two challenged withdrawn multi-
coupon, the adversary outputs a value Vi and the rank j ∈ Ji of a coupon that has not been



already redeemed. We require that these two coupons must not be redeemed by the adversary.
A further step of the game consists in choosing secretly and randomly a bit b. Then, a Redeem
protocol (or a Transfer protocol) is played by A with the owner of the multi-coupon outputted
from Withdrawb. Finally, A outputs a bit b′.
We require that for every adversary playing the previous game, the success probability that
b = b′ differs from 1/2 by a fraction that is at most negligible.

2.3 Comparison between our security model and Chen et al.’s security model

Let us now show that our formulation is strong enough to capture all informal security requirements
introduced in [21].

Unforgeability. Chen et al. defined the unforgeability as the infeasibility to create new multi-
coupons, to increase the number of unspent coupons, or to reset the number of spent coupons.
In addition, Chen et al. defined a property called redemption limitation that consists in limiting
the number of times by at most m that a service provider accepts an m-redeemable coupon M .
The property of redemption limitation means that the user is not able to increase the quantity of
coupons contained in her multi-coupon, that is, the user is not able to create a new coupon in
her multi-coupon. In our security model, the property of unforgeability includes the property of
redemption limitation.

Double-redemption detection. The property of double-redemption detection is defined in the
security model of Chen et al. However, in the context of coupon systems, this property is useless.
Indeed, before accepting a coupon, a service provider checks that the coupon is fresh, i.e. the
coupon has not been redeemed before. Then, a double-redemption is impossible. We consequently
include the impossibility to use twice the same coupon in the correctness of the system.

Unlinkability and minimum disclosure. The property of unlinkability is similar of those given
in [21]. Here, the unlinkability must be ensured between a withdrawal protocol and a redemption
protocol, between a withdrawal protocol and a transfer protocol, between a redemption protocol
and a transfer protocol, between two redemption protocols and between two transfer protocols.

The property of minimum disclosure defined by Chen et al. is that the number of unspent
coupons cannot be inferred from any redemption protocol run. Chen et al. separate the property
of minimum disclosure from the property of unlinkability. However, since the minimum disclosure
property is included in the unlinkability property, we do not keep the separation of these two
properties.

Coupon transfer property / protection against splitting. The main difference between the
issues of our coupon system and Chen et al.’s is the property of transferability or untransferability.

It is trivially not possible to prevent a user to give all her multi-coupon to another user.
Beyond that, a first possibility, which was chosen by Chen et al., consists in preventing a user
to give a part of her multi-coupon to another user without giving her whole multi-coupon, i.e.
protect a multi-coupon system against splitting. The protection against splitting is defined in [21]
as follows: a coalition of customers Ui should not be able to split an m-redeemable multi-coupon
M into (disjoint) si-redeemable shares Mi with

∑
i si ≤ m such that Mi can only be redeemed by

customer Ui and none of the other customers Uj , j 6= i, or a subset of them is able to redeem Mi

or a part of it.
Chen et al. defined a weak protection against splitting property, assuming that users trust each

other not to spend (part of) the multi-coupon they have not. With this assumption, user U1 (resp.
is U2) is sure that user U2 (resp. U1) will not use one of the coupon of the multi-coupon C′ (resp.
Ĉ).



A second possibility, that we adopt in this paper, is to permit the splitting of a multi-coupon
by adding a new algorithm called Transfer as defined above. A user U1 with the coupons C =
{C0, . . . , Cm−1} can transfer to a user U2 part of C. At the end of the protocol, U1 obtains the
coupons C′ and U2 obtains the coupons Ĉ such that Ĉ ∪ C′ = C and Ĉ ∩ C′ = ∅.
In this paper, we consequently add an optional secure Transfer algorithm that implies an honest
service provider during the Transfer algorithm which is reponsible for the creation of two new
multi-coupons C′ and Ĉ from C.

3 Useful tools

In this section, we first introduce the notations and the complexity assumptions that we will use all
along the paper. We next present some cryptographic tools: proofs of knowledge, a type of signature
schemes introduced by Camenisch and Lysyanskaya and the Dodis-Yampolskiy pseudorandom
function.

3.1 Notation

Throughout the paper, the symbol ‖ denotes the concatenation of two strings. The notation
“x ∈R E” means that x is chosen uniformly at random from the set E. For an integer p, Zp

denotes the residue class ring modulo p and Z∗p the multiplicative group of invertible elements in
Zp. G denotes a cyclic group. PK(α : f(α, . . .)) will denote a proof of knowledge of a value α that
verifies the predicate f . PedCom(x1, . . . , xl) is the Pedersen commitment on values x1, . . . , xl.
Other notations and definitions will be set as needed.

3.2 Complexity assumptions

The security of our coupon system is based on the following assumptions.

Flexible RSA assumption [2, 26]: given an RSA modulus n of special form pq, where p = 2p′+1
and q = 2q′ + 1 are safe primes, and a random element g ∈ Z∗n, it is hard to output h ∈ Z∗n and
an integer e > 1 such that he ≡ g mod n.

y-Strong Diffie-Hellman assumption (y-SDH) [5]: given a random generator g ∈ G where
G has prime order p, and the values (g, gx, . . . , gxy

), it is hard to compute a pair (c, s) such that
sx+c = g.

y-Decisional Diffie-Hellman Inversion assumption (y-DDHI) [4]: given a random gener-
ator g ∈ G where G has prime order p and the values (g, gx, . . . , gxy

) for a random x ∈ Zp, and a
value R ∈ G, it is hard to decide if R = g1/x or not.

3.3 Proofs of knowledge

The zero-knowledge proofs of knowledge above are constructed over a cyclic group G =< g >
either of prime order p or of unknown order4(but where the bit-length of the order is lG). The base
of each construction is either the Schnorr authentication scheme [37] or the GPS authentication
scheme [27, 34]. These are interactive proofs of knowledge where the prover sends a commitment
and then responds to a challenge from the verifier.

4 Fujisaki and Okamoto [26] showed that, under the Flexible RSA Assumption, the standard proofs of
knowledge that work for a group of known order are also proofs of knowledge in this setting.



Proof of knowledge of a representation. A proof of knowledge of a representation (x1, . . . , xk)
of C in base (g1, . . . , gk), that is, such that C =

∏k
i=1 gxi

i , is done using an extension of the proof
of knowledge of a discrete logarithm modulo a prime [37] or a composite [27, 34]. This interactive
proof is denoted by

PK(α1, . . . , αk/C =
k∏

i=1

gαi
i ).

Proof of equality of two known representations. It is possible to prove the equality of
representations of elements from two possibly different groups G1 and G2. Let (g1, . . . , gk) ∈ G1

and (h1, . . . , hk) ∈ G2, let C1 ∈ G1 and C2 ∈ G2 and let (x1, . . . , xk) be the representation of C1

in base (g1, . . . , gk) and of C2 in base (h1, . . . , hk). This proof can be done by using [19, 11]. This
interactive proof is denoted by

PK(α1, . . . , αk/C1 =
k∏

i=1

gαi
i ∧ C2 =

k∏

i=1

hαi
i ).

Proof of the OR statement Let g1, . . . , gl be some generators of a group G. The proof of the
OR statement consists in proving, for some commitments C1, . . . , Ck where Ci =

∏
j∈Ji

g
xij

j for
all i ∈ [1, k] where Ji ⊆ [1, l], the knowledge of at least one tuple {xij ; j ∈ Ji}. Such a proof can
be found in [22, 36]. This interactive proof is denoted by

PK({αij ; j ∈ Ji}/
k∨

i=1

Ci =
∏

j∈Ji

g
αij

j ).

Proof that a committed value lies in an interval. A proof that a committed value lies in an
interval, that is the proof of knowledge of (x, r) such that C = gxhr and 0 ≤ x < a with C, g, h ∈ G
and a = 2l a defined integer, can be done using [6, 11, 14]. This interactive proof is denoted by

PK(α, β/C = gαhβ ∧ 0 ≤ α < a).

In this paper, we will be in the case where the committed value is small. It is then possible to
use another technique, secure under the discrete logarithm assumption, that consists in using its
binary representation [3]. We thus obtain the procedure described as follows.
We consider the binary decomposition of x: x = x0 + x12 + . . . + xl−12l−1.

1. The prover randomly chooses r, r0, . . . , rl−1 ∈R Zp and computes

C = gxhr

C0 = gx0hr0

C1 = gx1hr1

. . .

Cl−1 = gxl−1hrl−1

C̃ =
l−1∏

i=0

C2i

i

Note that the element C̃ can be computed by both the prover and the verifier. Moreover, note
that we have C̃ = gx̃hr̃ and consequently we have CC̃−1 = gx−x̃hr−r̃.

2. The prover and the verifier then make the following interactive proof of knowledge

PK(α, β, γ0, . . . , γl−1, δ/
C0 = hγ0 ∨ C0/g = hγ0 ∧ . . .∧

Cl−1 = hγl−1 ∨ Cl−1/g = hγl−1∧
C = gαhβ ∧ CC̃−1 = hδ)



By proving that she knows the discrete logarithm of CC̃−1 in base h which is r− r̃, the prover
has proved that x = x̃.

Proof that a committed value is less than another committed value. A proof that a
committed value is less than another committed value consists in proving that 0 ≤ x < y where x
and y are committed with C = gxhr and D = gyhw. This interactive proof is denoted by

PK(α, β, γ, δ/C = gαhβ ∧D = gγhδ ∧ 0 ≤ α < γ).

In our case, x and y are l-bit integers with l relatively small (see below), that is x = x0 + x12 +
. . . + xl−12l−1 and y = y0 + y12 + . . . + yl−12l−1. The proof can consequently be done as follows.

– Using all the possibilities of inequality.
1. The prover randomly chooses r, r0, . . . , rl−1 ∈R Zp, w,w0, . . . , wl−1 ∈R Zp and computes

C = gxhr D = gyhw

C0 = gx0hr0 D0 = gy0hw0

C1 = gx1hr1 D1 = gy1hw1

. . .

Cl−1 = gxl−1hrl−1 Dl−1 = gyl−1hwl−1

C̃ =
l−1∏

i=0

C2i

i D̃ =
l−1∏

i=0

D2i

i

Note that the elements C̃ and D̃ can be both computed by the prover and the verifier.
Moreover, note that we have C̃ = gx̃hr̃ and D̃ = gỹhw̃ and consequently wehave CC̃−1 =
gx−x̃hr−r̃ and DD̃−1 = gy−ỹhw−w̃.

2. Then, the prover and the verifier make the following interactive proof of knowledge

PK
(
α, β, γ0, . . . , γl−1, δ, ε, ζ, η0, . . . , ηl−1, ρ0, . . . , ρl−1, θ/

(C0 = hγ0 ∨ C0/g = hγ0) ∧ . . . ∧ (Cl−1 = hγl−1 ∨ Cl−1/g = hγl−1)∧
(D0 = hη0 ∨D0/g = hη0) ∧ . . . ∧ (Dl−1 = hηl−1 ∨Dl−1/g = hηl−1)∧

C = gαhβ ∧ CC̃−1 = hδ ∧D = gεhζ ∧DD̃−1 = hθ∧(
(Cl−1/Dl−1 = hρl−1 ∧ Cl−2 = hγl−2 ∧Dl−2/g = hηl−2)∨

(Cl−1/Dl−1 = hρl−1 ∧ Cl−2/Dl−2 = hρl−2 ∧ Cl−3 = hγl−3 ∧Dl−3/g = hηl−3)
∨ . . .∨

(Cl−1/Dl−1 = hρl−1 ∧ . . . ∧ C1/D1 = hρ1 ∧ C0 = hγ0 ∧D0/g = hη0)
))

.

This proof contains a number of proof of the OR statement that is in O(l).
– Using the fact that y − x− 1 ≥ 0. This proof necessitates that 2l < p/2.

1. The prover randomly chooses r, r0, . . . , rl−1 ∈R Zp, w, w0, . . . , wl−1 ∈R Zp. We note u =
y − x− 1 and u = u0 + u12 + . . . + ul−12l−1. The prover then computes

C = gxhr D = gyhw

C0 = gx0hr0 D0 = gu0hw0

C1 = gx1hr1 D1 = gu1hw1

. . .

Cl−1 = gxl−1hrl−1 Dl−1 = gul−1hwl−1

C̃ =
l−1∏

i=0

C2i

i D̃ =
l−1∏

i=0

D2i

i

D = D/(gC)



Note that the elements C̃, D̃ and D̄ can be computed by the prover and the verifier.
Moreover, note that we have D = gy−x−1hw−r = guhw−r. By noting C̃ = gx̃hr̃ and D̃ =
gũhw̃, we consequently obtain that CC̃−1 = gx−x̃hr−r̃ and that DD̃−1 = gu−ũhw−r−w̃.

2. Then, the prover and the verifier make the following interactive proof of knowledge

PK
(
α, β, γ0, . . . , γl−1, δ, ε, ζ, η0, . . . , ηl−1, θ, ρ, ι/

(C0 = hγ0 ∨ C0/g = hγ0) ∧ . . . ∧ (Cl−1 = hγl−1 ∨ Cl−1/g = hγl−1)∧
(D0 = hη0 ∨D0/g = hη0) ∧ . . . ∧ (Dl−1 = hηl−1 ∨Dl−1/g = hηl−1)∧

C = gαhβ ∧ CC̃−1 = hδ ∧D = gεhζ ∧D = gρhι ∧DD̃−1 = hθ
)
.

This proof is more efficient than the previous but needs either that 2l < p/2 (which is
note very restrictive in many cases5) or the Flexible RSA assumption, that is working in
a group of unknown order.

One may use Boudot’s proof [6] but this implies necessarily the use of a group of unknown
order, and consequently larger parameters (e.g. exponent of size 1024 bits instead of 160 bits in
our case). Thus, even if Boudot’s proof is proportional to O(1) w.r.t. the size of x and y, instead of
O(l) for us, the value of l will be smaller enough in practice to make Boudot’s proof less efficient.

3.4 Camenisch-Lysyanskaya type signature schemes with Pedersen commitment

The Pedersen commitment scheme [33] permits a user to commit to some values x1, . . . xl ∈
Zp without revealing them, using some public elements of a cyclic group G of prime order p

with generators (g1, . . . , gl). To do that, the user computes the commitment C =
∏l

i=1 gxi
i . Such

commitment is secure under the Discrete Logarithm assumption.
Camenisch et Lysyanskaya [10] have proposed various signature schemes, called CL signature

schemes for short, based on Pedersen’s scheme to which they add some specific protocols:

– an efficient protocol between a user and a signer that permits the user to obtain from the
signer a signature σ of some commitment C on values (x1, . . . , xl) unknown from the signer.
The latter computes CLSign(C) and the user obtains σ = Sign(x1, . . . , xl).

– an efficient proof of knowledge of a signature of some committed values. The proof is divided
into two parts: the computation of a witness, denoted witness(σ), and the following proof of
knowledge

PK(α1, . . . , αl, β/β = Sign(α1, . . . , αl)).

Such signature schemes verifies the standard definitions of digital signature schemes in terms of
security, that is, verifies the following properties:

– Correctness: if a message m is in the message space for a given public key pk, and sk is the
corresponding secret key, then the output of the signature algorithm on m using sk will always
be accepted by the verification algorithm.

– Unforgeability: even if an adversary has oracle access to the signing algorithm which provides
signatures on messages of the adversary’s choice, the adversary cannot create a valid signature
on a message not explicitly queried.

These constructions are close to group signature schemes and it seems possible to easily proceed
from one to another. This is the case of the two following examples, one base on the ACJT signature
scheme [1] and the other base of the BBS one [5].

5 This restriction does not permit an attacker to use its knowledge of the order p of g to use the repre-
sentation between 0 and p of a negative integer.



The ACJT signature scheme. The first one is derived from the group signature of [1] and is
secure under the Flexible RSA assumption and works as follows.

– Public parameters. The signer chooses a safe RSA modulus n = pq, where p = 2p′ + 1,
q = 2q′ + 1 and (l + 2) random elements of QR(n): a0, . . . , al+1. The public key is PK =
(n, a0, . . . , al+1) and the secret key is the factorization of n.

– Signing algorithm. To sign a block of messages m1, . . . , ml, the signer chooses a random prime
number e and a random prime number s. Then, she computes the value A such that

Ae = a0

l∏

i=1

ami
i as

l+1 (mod n)

The signature of m = (m1, . . . ,ml) is a tuple (A, s, e).
– Verification algorithm. This signature can be verified by anyone by checking that Ae =

a0

∏l
i=1 ami

i as
l+1 (mod n).

– Proof of knowledge of a signature. A proof of knowledge of a signature (A, s, e) of a message
m1, . . . , ml is denoted by

PK(α1, . . . , αl, β, γ, δ/(β, γ, δ) = Sign(α1, . . . , αl))
PK(α1, . . . , αl, β, γ, δ/βδ = a0

∏l
i=1 aαi

i aγ
l+1)

This proof is divided into two parts. The first one consists in computing witness(A, s, e), that
is T1 = Agw, T2 = gwhrw , T3 = gehre , T4 = gshrs , T5 = gewhrew and T6 = T e

1 hr and the
second one is the following proof of knowledge.

PK(α1, . . . , αl, β, γ, δ, ε, ζ, η, θ, ι, κ/

T6 = T β
1 hκ ∧ T3 = gβhη∧

T6/a0 =
∏l

i=1 aαi
i aγ

l+1g
ζhκ∧

T2 = gδhε ∧ T4 = gγhθ∧
T5 = gζhι ∧ T5 = T β

2 hµ)

The BBS signature scheme. The second example is derived from the group signature of [5],
secure under the y-SDH assumption and works as follows.

– Public parameter. The signer chooses a group G of prime order p, a secret γ ∈ Zp and random
generators (g1, g2, h1, . . . , hl) in G. Finally, the signer compute w = gs

2.
– Signing algorithm. To sign a block of messages m1, . . . ,ml, the signer chooses a random

prime number x and computes A such that A = (g1

∏l
i=1 h−mi

i )
1

x+s . The signature on m =
(m1, . . . , ml) is a couple (A, x). Such a signature verifies the following equation:

e(A,wgx
2 )

l∏

i=1

e(hi, g2)mi = e(g1, g2).

– Verification algorithm. This signature can be verified by checking that

Ax+s
l∏

i=1

hmi
i = g1.

– Proof of knowledge of a signature. A proof of knowledge of a signature (A, x) on a message
m1, . . . , ml is denoted by

PK(α1, . . . , αl, β, γ/(β, γ) = Sign(α1, . . . , αl))
PK(α1, . . . , αl, β, γ/βγ+s

∏l
i=1 hαi

i = g1)
PK(α1, . . . , αl, β, γ/e(β, wgγ

2 )
∏l

i=1 e(hi, g2)αi = e(g1, g2))



This proof is divided into two parts. The first one consists in computing witness(A, x), that
is T = Ahr

1. From this equation and the relation Ax+s
∏l

i=1 hmi
i = g1, we obtain

e(T, g2)xe(h1, g2)m1−rx
l∏

i=2

e(hi, g2)mie(h1, w)−r = e(g1, g2)e(T,w)−1

The second part of the proof consequently consists in the following proof of knowledge

PK(α1, . . . , αl, β, γ/

e(T, g2)βe(h1, g2)α1
∏l

i=2 e(hi, g2)αie(h1, w)−γ = e(g1, g2)e(T, w)−1)

3.5 The Dodis-Yampolskiy pseudorandom function

A cryptographically secure pseudorandom function (PRF) is an efficient algorithm that when
given a seed and an argument returns a new string that is undistinguishable from a truly random
function. Such function takes as input some public parameters, a seed s and a value x and outputs
a pseudorandom value (plus a proof of validity). In our paper, we will use the Dodis-Yampolskiy
pseudorandom function [24] which is secure under the y-DDHI assumption. In particular, Dodis
and Yampolskiy show that their construction verifies the following property.

– Pseudorandomness: let an avdersary be a p.p.t. Turing Machine that have access to all
public keys of the PRF and that can send some values x to a PRF oracle that sends back
the output of the pseudorandom function on this value. The game is then the following. The
adversary outputs a random integer x0 for which it has not asked the oracle. After that, a bit
b is secretly and randomly chosen. If b = 0, the adversary receives in return the output of the
PRF on x0. If b = 1, the adversary receives in return a random value. The advsersary can
then ask again the PRF oracle with inputs different from x0. Finally, the adversary outputs
a bit b′. We require that the success probability of the adversary in predicting b differs from
1/2 by a fraction that is at most negligible.

The construction of Dodis and Yampolskiy works as follows. Let G be a group of order p, g a
generator of G and s a seed in Zp. The Dodis-Yampolskiy pseudorandom function f takes as input
a x ∈ Zp and outputs fg,s(x) = g

1
s+x+1 .

4 Description of the handy multi-coupon system

In this section, we present our new construction of a multi-coupon system based on the compact
e-cash scheme [9] of Camenisch et al. We first give the general principle of our improvement and
then describe all algorithms.

4.1 General principle

A user can withdraw a number of coupons of her choice. Futhermore, a user can also choose the
value of each coupon from a set of values V = {V1, . . . , Vn} predetermined by the service provider.
For each possible value Vi, the user decides, with the service provider, the number Ji of coupons
of value Vi that she withdraws. In our construction, due to the used proof of knowledge, the
possible number of coupons she can withdrawn must be less than a fixed value, 2l. This is not
really restrictive in practice. The numbers J1, . . . , Jn are chosen by the user6, known and signed
by the service provider during the withdrawal protocol, but unrevealed during the redemption
protocol. Each value Vi is linked to a random value g̃i in G that is used to trace a designated coin.
During a redemption protocol of a coupon of value Vi, a user chooses a fresh integer in the set
Ji = {0, . . . , Ji − 1} in such a way that for each redemption protocol of a coupon of value Vi, the
6 The values J1, . . . , Jn can also be chosen by the service provider if required by the application.



user must choose an integer distinct from the ones revealed during previous redemption protocols
of coupons of the same value Vi. Consequently, we can associate the monetary value of the coupon,
the set Ji = {0, . . . , Ji − 1} and the generator g̃i in G.

Remark 1. Another solution (not addressed in this paper) is to choose the value j in the set
J = {0, . . . , Jm − 1} in such a way that J1 = {0, . . . , J1 − 1} corresponds to the value V1,
J2 = {J1, . . . , J2 − 1} corresponds to the value V2, etc. and Jn = {Jn−1, . . . , Jn − 1} corresponds
to the value Vn. All values J1, . . . , Jn are chosen by the user, known and signed by the bank but
unrevealed during the redemption protocol. This solution is nevertheless less efficient.

4.2 Setup

Let k be the security parameter. We consider a group G of order p. g̃1, . . ., g̃n, g, h, h0, . . ., hn+1 are
randomly chosen in G. All these data compose the public parameters pParams of the system. The
service provider SP computes the key pair (skSP , pkSP) of a Camenisch-Lysyanskaya signature
scheme that will permit it to sign multi-coupons, using the CLSign algorithm (see Section 3.4 for
details). The number 2l of coupons a user U can withdraw for each value Vi must be less than p/2,
due to the use of the proof that a commited value is less than another commited value described
in Section 3.3.

4.3 Withdrawal protocol

During a withdrawal protocol, a user U takes as inputs pParams and pkSP and interacts with a
service provider SP, that takes as inputs pParams and (skSP , pkSP), as follows.

1. U and SP both participate to the randomness of the secret s. First, U selects a random
value s′ ∈ Zp, sends to SP a commitment C ′ = PedCom(s′, r) and the numbers J1, . . . , Jn

corresponding to the number of coupons of values V1, . . . , Vn she wants to withdraw. SP sends
a random r′ ∈ Zp and U can compute the secret s as s = s′ + r′.

2. U and SP run the CL protocol’s for obtaining SP’s signature on committed values contained in
the commitment C = PedCom(s, J1, . . . , Jn, r). As a result, U obtains σ = Sign(s, J1, . . . , Jn, r).

3. U saves the multi-coupon, i.e. the identifier I = (s, r, σ) and the set S = {(Ji, Vi); i ∈ [1, n]}.
The withdrawal protocol is presented in Figure 1.

S = {(Ji, Vi); i ∈ [1, n]}

U SP

C′ = hs′
0 hr

n+1

J1, . . . , Jn ∈ Zp

s′, r ∈R Zp

s = s′ + r′

r′ ∈R Zp

C = C′hr′
0

Qn
i=1 h

Ji
i

J1, . . . , Jn, C′

U = PK(α, β/C′ = hα
0 hβ

n+1)

r′, σ

I = (s, r, σ)
σ

?
= Sign(s, J1, . . . , Jn, r)

σ = CLSign(C)

Fig. 1. Withdrawal protocol



4.4 Redemption protocol

When a user wants to redeem a coupon from her multi-coupon (I,S), she first has to choose the
value Vi of the coupon she wants to redeem. Then, the user chooses the rank j of the coupon she
wants to redeem in the set of all possible coupons of value Vi, that is between 0 and Ji − 1.
As explained in Figure 2, a redemption protocol consists in the following.

1. Computing the coupon’s identifier as the Dodis-Yampolskiy pseudorandom function with seed

s and generator g̃i associated to the monetary value Vi, on the input j: S = g̃
1

s+j+1
i .

2. A proof of validity of this coupon, that is an interactive proof of knowledge7 of a SP signature
on the secrets (s, J1, . . . , Jn, r), plus a proof that the selected coupon belongs to the set Ji =
{0, . . . , Ji − 1}.

T1 = gδ1hη1 ∧ . . . ∧ Tn = gδnhηn ∧ T = gιhθ

eT = gjhrj

∀i ∈ {1, . . . , n}Ti = gJihrJi

T = gshrs , T = grhrr

S = g̃
1

s+j+1
i

Verify that S has not
already been redeemed

witness(σ), S, T, T1, . . . , Tn, T , eT

Φ = PK(α, β, γ, ι, θ, δ1, . . . , δn, ε, ζ, η1, . . . , ηn/
g̃i/S = SβSγ ∧ T = gβhε ∧ eT = gγhζ∧

0 ≤ γ < δi ∧ α = Sign(β, δ1, . . . , δn, ι))

U SP
Compute witness(σ)
j ∈ [0, Ji[
rs, rJ1 , . . . , rJn , rr, rj ∈R Zp

Fig. 2. Redemption protocol

Note that the proof of knowledge Φ (see Figure 2) includes a challenge c sent by the service provider
SP.

Remark 2. S = g̃
1

s+j+1
i can also be written g̃i/S = SsSj , which explains the proof of knowledge.

4.5 Multi-redemption protocol

The multi-redemption protocol consists in redeeming several coupons of a multi-coupon in a single
interactive protocol with SP. The global protocol is more efficient than simply executing the
redemption protocol in Figure 2 for each redeemed coupon. In fact, the proof of knowledge of
the SP signature σ = Sign(s, J1, . . . , Jn, r) only needs to be done once whereas the computation
involving the rank of each redeemed coupon needs to be done for each coupon. The resulting
protocol is described in Figure 3.

4.6 Transfer protocol

As explained in Section 2.3, it can be interesting to design the possibility for one user U1 to transfer
some coupons of a multi-coupon to another user U2. A straightforward solution is described in
7 This proof consequently does not necessitates the Fiat Shamir heuristic and a hash function. Thus, our

construction is on the standard model.



T = gβhκ ∧ T = gιhθ∧

not already been redeemed

eT{i,l} = gj{i,l}h
rj{i,l}

witness(σ), T, T , T1, . . . , Tn, {(S{i,l}, eT{i,l}); (i, l) ∈ E}

U SP

j{i,l} ∈ [0, Ji[

S{i,l} = g̃

1
s+j{i,l}+1

i

∀i ∈ {1, . . . , n}Ti = gJihrJi

∀(i, l) ∈ E

∀i ∈ {1, . . . , n} choose Li ⊆ {0, . . . , Ji − 1} s.t. |Li| = li
E = {(i, l); i ∈ [1, n], l ∈ Li}

T = gshrs , T = grhrr

Compute witness(σ)
rs, rr, rJ1 , . . . , rJn ∈R Zp

rj{i,l} ∈R Zp

V{0 ≤ γ{i,l} < δi; (i, l) ∈ E} ∧V{Ti = gδihηi ; i ∈ [1, n]} ∧ α = Sign(β, δ1, . . . , δn, ι))

V{g̃i/S{i,l} = Sβ
{i,l}S

γ{i,l}
{i,l} ; (i, l) ∈ E} ∧V{T̃{i,1} = gγ{i,1}hζ{i,1} ; (i, l) ∈ E}∧

Φ = PK(α, β, κ, ι, θ, {γ{i,l}, ζ{i,l}; (i, l) ∈ E}, {δi, ηi; i ∈ [1, n]}/

Verify that the S{i,l} have

Fig. 3. Multi-redemption protocol

Figure 4 and include the participation of the Service Provider SP. The first step consists for U1

in choosing the coupons she wants to transfer and to redeem them by interactive with SP. The
second step is a withdrawal protocol between the user U2 and SP with the quantity and the right
values of transfered coupons. At the end of this global protocol, U1 obtains an updating multi-
coupons since she has withdraw some of her coupon. U2 obtains a new multi-coupon, as after a
withdrawal protocol.

J ′1, . . . , J ′n

with parameters J ′1, . . . , J
′
n

Multi-redemption protocol

Withdrawal protocol with parameters J ′1, . . . , J
′
n

SPU2
U1

J′1, . . . , J ′n ∈ Zp

Fig. 4. Transfer protocol

4.7 Revocation and expiration date of a multi-coupon

The revocability of a multi-coupon is not a property considered in [21]. However, this property
can be added to our scheme. The revocation means that the coupon must not be accepted by the
Service Provider if it decides that this multi-coupon is no longer valid. To revoke a multi-coupon,



the service provider SP has to calculate a new key pair (skSP , pkSP) and the users have to update
pkSP and their multi-coupon. It consists in revoking the signature made during the correspond-
ing withdrawal protocol. The revocation scheme of our multi-coupon system thus relies on the
revocation mechanism of the group signature underlying the CL signature scheme. When using a
BBS signature scheme we can use the revocation scheme described in [5]. For an ACJT signature
scheme, the revocation can be done as in [8].

We can also add an expiration date to the multi-coupon in case the Service Provider wants
to limitate its use. To do so, we simply modify the withdrawal and redemption protocols. During
the Withdraw protocol the Service Provider adds to the signature a value which represents the
expiration date. Then, during the Redeem protocol, the user proves to the Service Provider that
the date contained in her signature is more than the current date.

5 Security Arguments

Let us now give the security theorem that our proposal is secure under the definition given above.

Theorem 1. In the standard model, under the y-DDHI assumption and the security assumptions
of the used CL signature scheme (Flexible RSA if ACJT and y-SDH if BBS), the multi-coupon
system described in Section 4 is secure w.r.t. the security model described in Section 2.

Proof. The proof of the theorem consists in proving that the construction of Section 4 verifies all
security properties listed in Section 2.

– Correctness: by construction.
– Unforgeability: in this part of the proof, according to the construction of the Transfer

protocol described in Section 4.6, an adversary playing a Transfer protocol with an honest
user playing the role of U2 corresponds to the execution of a Redeem protocol with an honest
service provider. Similarly, an adversary playing a Transfer protocol with an honest user
playing the role of U1 corresponds to the execution of a Withdraw protocol with an honest
service provider.
The game is as follow. An adversary A can legitimately extract a list of coupons L. Then, A
outputs a coupon C /∈ L and a Redeem protocol is played by A with an honest service provider
SP.
We require that for every adversary playing the previous game, the probability that the honest
service provider SP accepts the Redeem protocol is negligible.
We show that if there exists such an adversary A that succeeds in the previous game with
non-negligible probability, then we can construct a machine M with access to A that can
break the CL signature scheme described in Section 3.4. We suppose that the machine M has
access to a CL signature oracle SCL that takes as input a commitment and that outputs a
signature on commited values.
The keys of the CL signature scheme are chosen and the public key is given to M. M chooses
a group G or order p and random elements g̃1, . . ., g̃n, g, h, h0, . . ., hn+1 ∈ G. These values
and the CL signature public key are then fed to A. When A executes a Withdraw protocol,
the machine M plays the role of the service provider as follows.
1. M first receives the Ji’s and the commitment C ′. It then interacts with A during the proof

of knowledge U and extracts s′ and r by rewinding of A.
2. M chooses r ∈R Zp, computes C as explained in Section 4.3 and then asks SCL a signature

on (s = s′+ r, J1, . . . , Jn, r). SCL is given the commitment C and outputs the signature σ.
3. M then sends σ to A.

After several executions of Withdraw protocols, A obtains a list of coupons L. Each coupon
is associated to a multi-coupon, and then to a CL signature obtains from the signature oracle
SCL. Then A outputs a coupon that does not belong to the list L and plays a Redeem protocol
that is accepted with non-negligible probability. For this purpose, A computes all necessary



data (see Figure 2 for details) and the proof of knowledge Φ by interacting with M. The latter
executes the Redeem protocol normaly.
M uses the proof of knowledge Φ to extract, in particular, the values (s, J1, . . . , Jn, r, σ) satis-
fying the relations embedded into the valid proof of knowledge. Consequently, σ is a signature
(forgery) in the CL’s scheme on the message (s, J1, . . . ; Jn, r). Since, A succeeds, this means
that σ is different from the signatures obtain during the execution of the Withdraw protocol
and submitted to SCL. As the CL signature scheme is proven secure against adaptive chosen
message attacks under the Flexible RSA assumption or the y-SDH, it follows that A cannot
succeed with non-negligible probability.
Because our proof requires rewinding to extract s′ and r from an adversary A, our theorem
is only valid against sequential attacks. Indeed, in a concurrent setting where the attacker is
allowed to interact with the service provider in an arbitrarily interleaving manner, our machine
may be forced to rewind an exponential number of times. This drawback could be overcome
by using for instance well-known techniques [23] which would require from the user to encrypt
s′ and r in a verifiable manner [12].

– Unlinkability (sketch of proof): the game is as follows. Let A an adversary that has access to
the key pair (skSP , pkSP). A outputs two views VWithdraw1

A and VWithdraw2
A of previously executed

Withdraw protocols. After that, a bit b is then secretly and randomly chosen. Then, a Redeem
protocol is played by A with the owner of the multi-coupon outputted from Withdrawb. Finally,
A outputs a bit b′.
We require that for every adversary playing the previous game, the success probability of A
in predicting b differs from 1/2 by a fraction that is at most negligible.
The proof is then divided into two parts:

1. During the first part:

• A can execute Withdraw protocols playing SP with honest users. For each Withdraw
protocol, the user U and the adversary A plays a CL signature protocol where U
chooses the values J1, . . . , Jn ∈ Zp and s′ ∈R Zp, and A chooses the value r′ ∈R Zp.
For each Withdraw protocol, the view of the protocol VWithdraw is stocked in the list V.

• A can execute Redeem protocols playing SP with honest users. For each Redeem pro-
tocol, the user U redeems one coupon of her multi-coupon by following the redemption
protocol described in Section 4.4.

• A can execute Transfer protocols playing both U2 and SP with honest users. Accord-
ing to the construction of the Transfer protocol described in Section 4.6, that comes
to say that A can execute Redeem protocols playing SP with an honest user U .

• A can execute Transfer protocols playing both U1 and SP with honest users. Accord-
ing to the construction of the Transfer protocol described in Section 4.6, that comes
to say that A can execute Withdraw protocols playing SP with an honest user U .

2. The work of the adversary is consequently, from the service provider side, to distinguish
between two Redeem protocols, even having the view of the withdrawal protocols from
which the redempted coupons has been withdrawn.
Suppose that A succeeds at the game described above with a probability which differ from
1/2 by a significant fraction. There are two possibilities.

• A must have linked with a probability that differs from 1/2 by a significant fraction
two Redeem protocols, the challenged one and the other obtained with an honest user
U . In this case, this implies one of the following.
(a) During a Redeem protocol, the user U proves the knowledge of a CL signature (with

Pedersen commitments) without revealing information neither about the values
s, J1, . . . , Jn that has been previously signed by A, nor about the corresponding
signature, due to the security of the used proofs of knowledge (see Section 3.3).
Thus, if the adversary wins, it implies that it has learn information about the
secret information in the proof of knwoledge. This case happens with negligible



probability under the assumption that the proof is zero-knowledge. We thus need
the y-DDHI8 and the Flexible RSA assumptions9.

(b) Due to the security of Dodis-Yampolskiy, the coupon S = g̃
1

s+j+1
i taking on input

a value s and a value j is computationally indistinguishable from another Dodis-
Yampolskiy function’s output with the same s but another j, or with the same j
but another s or with two different values s and j. Thus, the adversary succeeds
with negligible probability under the y-DDHI assumption [24].

• A must have linked with a probability that differs from 1/2 by a significant fraction a
Redeem protocol and a Withdraw protocol obtained with the user U . During a Withdraw
protocol, A does not learn anything meaningful about the secret s that is signed due
to the CL signatures, the Pedersen commitment and the proofs of knowledge. In fact
this value can be information theoretically-hidden from A by requesting a signature
on (s, J1, . . . , Jn, r) for a random r [10, 1, 5]. Consequently, after a Withdraw protocol
the adversary knows only the CL signature and the values Ji’s. The adversary then
cannot succeed for the following reasons.
(a) The adversary knows which signature is embedded in the proof of knowledge un-

derlying the Redeem protocol. This case happens with negligible probability under
the assumption that the proof is zero-knowledge. This requires the y-DDHI and
the Flexible RSA assumptions, for the reasons given above.

(b) The adversary can open a Pedersen commitment on the Ji’s. This case happens
with negligible probability under the y-DDHI assumption10 [33].

6 Recent work on coupon systems

Recently, Nguyen [31] has independently proposed a multi-coupon system and a formal security
model. Our model is quite close to Nguyen’s, except that we include a transfer protocol, which is
not compatible with his property of unsplittability.

As we do in this paper, Nguyen adapted the compact e-cash system [9] to the electronic
coupon context. In his adaptation, Nguyen focused on the efficiency of the redemption protocol
and consequently had a protocol with constant cost for communication and computation. However
the size of the multi-coupon increases proportionally to the number of coupons, whereas in our
scheme, the multi-coupon has a small constant size.

Apart from the adaptation of the compact e-cash system, Nguyen also permitted the revoca-
tion of a multi-coupon, as we do. He also suggested a solution, different from ours, to permit the
user to choose the number of coupons she wants to withdraw. It will be interesting in the future to
study the efficiency of these two solutions w.r.t. the size of the multi-coupon, the number of with-
drawn coupons and the application (efficiency of withdrawal protocol vs. efficiency of redemption
protocol).

Finally, we also add the possibility to have coupons of different values, which is not studied by
Nguyen.

7 Conclusion

In this paper, we first introduced a strong and formal model suitable for electronic multi-coupon
systems. We then proved the existence of a system, meeting our requirements, based on standard

8 In fact, due to Section 3.3, we need the Discrete Logarithm assumption but if we assume the y-DDHI
assumption, then it is necessary that the Discrete Logarithm assumption holds.

9 In fact, the Flexible RSA assumption is only needed if the chosen CL signature scheme is based on
ACJT since the proofs that a commited value lies in a (commited) interval are done using the binary
representation of the secret(s) (see Section 3.3) and the BBS based CL signature scheme concerns a
group of known prime order.

10 In fact, the Discrete Logarithm assumption.



complexity assumptions, in the standard model. We introduced in the context of electronic coupon
schemes the transfer of coupons which seems to be suitable for most of the applications of the
real life. Furthermore, our scheme allows a user to choose the number of coupons she wants to
withdraw, and the value of each coupon of a multi-coupon is chosen by the user among a set
of pre-defined values; as far as we know, our electronic coupon scheme is the first scheme that
propose these features. Moreover, the latter improvements can also be used in an electronic cash
system such as the compact e-cash of Camenisch et al.

It will be useful in the future to design a transfer protocol which does not involve the service
provider, as is it closer to reality and consequently more practical. Moreover, the multi-redeem
protocol may be run more efficiently, possibly by permitting the computation of coupon identifiers
iteratively for each redeemed coupon.
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