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Abstract

In this paper, we propose a new zero-knowledge identification protocol. While the protocol
consists of only two message flows, it does not rely on any underlying signature or encryp-
tion scheme. Its zero-knowledge property is preserved under concurrent composition and reset
settings. It is secure under the strongest attack model which incorporates concurrent attacks,
active-intruder attacks and reset attacks. Meanwhile its performance in computation and com-
munication is close to that of the most efficient identification protocols not based on signature
or encryption systems, most of which are insecure in this strong attack model.

1 Introduction

An identification protocol or scheme is an interactive protocol between a prover, “Alice” or “A”, and
a verifier, “Bob” or “B”, in which the prover tries to identify herself to the verifier by demonstrating
knowledge of a certain key associated with the prover. In the symmetric (secret key) setting, the
key is shared between prover and the verifier, whereas in the asymmetric (public key) setting, the
key is the private key of the prover. In this paper we are interested in the public key setting.

1.1 Challenge-response vs Customized Identification Techniques

Historically, there have been two distinct approaches to designing identification protocols. One
approach is to start with an underlying signature scheme or public key encryption system. With
this approach, in the public key setting, the prover demonstrates knowledge of her private key in
one of two ways (see [20, §10.3.3]):

1. the prover decrypts a challenge from the verifier encrypted under her public key, or

2. the prover digitally signs a challenge from the verifier.
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A protocol following this approach consists two message flows, consisting of the challenge sent from
the verifier to the prover and the response sent from the prover to the verifier. The security of such
a protocol relies on the underlying encryption or signature scheme.

The other approach is to design a protocol “from scratch” based on a specific computational
problem such as the discrete logarithm problem. A large number of identification schemes following
this approach make use of the zero-knowledge proof of knowledge technique, e.g., the Fiat-Shamir
(FS) Scheme [10], the Schnorr Scheme [23], the Feige-Fiat-Shamir (FFS) Scheme [9], the Guillou-
Quisquater (GQ) Scheme [15] and the Okamoto Scheme [21]. In these schemes, the prover proves
her identity by means of a proof of knowledge, where the proof is zero-knowledge so as not to
leak information about the private key. The security of the protocols relies on the presumed
intractability of a specific computational problem. These schemes usually consists of three message
flows: a commitment sent from the prover to the verifier, a challenge sent from the verifier to the
prover, and a response sent from the prover to the verifier.

1.2 Attacks Models for Identification Protocols

Like any cryptographic protocol, an identification protocol needs to be secure against various kinds
of adversaries, including legitimate but malicious users. The ultimate goal of an adversary is to
impersonate the prover. Different types of attacks may be carried out depending on what capability
is granted to the adversary. The weakest attack is eavesdropping, by which the adversary can only
observe the communications between the prover and the verifier. But in many other scenarios, the
adversary can do much more than that. The following attack models have been identified in the
literature, capturing the capability of the adversary in different settings.

Sequential Attacks

In this model, the adversary can act as a verifier and interact with the prover in various session
before the adversary tries to impersonate the prover. The sessions between the adversary and the
prover are carried out sequentially. This is the standard attack model for the identification protocols
in the smartcard communication model, and most existing zero-knowledge type identification pro-
tocols have been analyzed in this setting. In the literature, this kind of attack model is sometimes
termed an “active attack” because the adversary can actively execute the protocol (as a verifier) in
order to attempt to collect information beyond what he could obtain by passive eavesdropping. As
we will see later, many other attacks came into consideration in which the adversary is even more
“active”, so here we call this attack a “sequential attack”.

In the sequential attack model, the FFS and Okamoto schemes are secure assuming the in-
tractability of the square-root problem and the discrete logarithm problem (DLP) respectively.
There has been no proof of security for the Schnorr scheme and the GQ schemes under standard
assumptions. However, based on the “one-more inversion” of DLP and RSA assumptions respec-
tively, the schemes are proven secure in [3].

Concurrent Attacks

In sequential attack, the adversary can only execute multiple sessions sequentially. This is a natural
restriction to the adversary in the smartcard communication model. But in the internet communi-
cation model, the adversary may have the ability to carry out multiple sessions with the prover, not



only sequentially, but also in parallel, i.e., concurrently. Previous research on zero-knowledge pro-
tocols has shown that concurrent execution of zero-knowledge protocols does not always preserve
the zero-knowledge property, resulting in leakage of the prover’s secret key. One such example is
given in [14]. So it is natural to study the security of zero-knowledge based identification schemes
under concurrent attacks.

The FFS, Okamoto, Schnorr and GQ schemes have been proven secure in this attack model
under certain assumptions; see [3].

Active-intruder Attacks

In a concurrent attack, the adversary is only allowed to interact with the prover before he tries to
impersonate the prover. But in the internet communication model, the adversary may be able to
interact with the prover at the same time that he is impersonating the prover.

In such a setting, it is not straightforward to define what it means for an attack to be successful.
For example, the adversary can faithfully relay all the messages between the prover and verifier,
and the verifier will eventually accept. Yet this can hardly be regarded as a “real” attack. There
are three approaches to handling this definitional issue. The first is based on the idea of matching
conversations [8, 6], and a somewhat more formal notion is that of matching conversation ids [5].
The third approach is due to Stinson [24, §11.1] and uses the idea of an active adversary. Informally,
an active adversary is an adversary who alters, injects, drops, and/or diverts at least one message
between the prover and the verifier. (If the adversary simply relays messages between the prover
and verifier, then the adversary is not active.) Based on this notion, we define a successful active-
intruder attack as follows:

Definition 1.1. In an active-intruder attack, the adversary is successful if the (honest) verifier
accepts in a session after the adversary becomes active in the same session.

We observe that the notions of matching conversations and an inactive adversary are equiv-
alent, in that matching conversations take place if and only if there is no active adversary. Ei-
ther notion (matching conversation or active adversary) includes concurrent attacks, as well. The
active-intruder attack model is usually used in the context of identification schemes constructed
from underlying encryption, signature or MAC schemes. Active-intruder attacks are also incor-
porated into security models for mutual identification protocols discussed in [1, 6]. The security
model “concurrent reset 2” (CR2) for unilateral identification in [2] includes this attack.

In Appendix A we give examples of active-intruder attacks on several zero-knowledge based
identification schemes. This shows that FFS, Schnorr, GQ and Okamoto schemes are not secure
under this attack model.

Reset Attacks

In [2], Bellare et al proposed reset attacks on identification protocols, which originated in the context
of zero-knowledge proofs. A reset attack allows the adversary to reset the prover’s internal state.
Such attacks are realistic when the prover is in the possession or control of the adversary, e.g., when
the prover is a smartcard. For example, the adversary may not be able to read a secret key from
the secure hardware of the smartcard, but it may be easy to reset the card by disconnecting the
card’s battery.



The following example shows how the adversary can extract the secret key in the Schnorr
Scheme using a reset attack. The adversary resets the card, and starts an identification session.
The card outputs a commitment x where x = ¢" and r is a random number generated by the card.
The adversary then inputs a random number e; to the card, and the card will output y; = ae; +r
where a is the secret key of the card. Now the adversary can reset the card and start the second
session. Since it is reset, the card will output the same z = ¢g" as in the first session. The adversary
then inputs the card with some value ez # e; and receives yo = aes + r. Then the adversary
can compute a = (y1 — y2)/(e1 — e2). It has been observed that all proof-of-knowledge based
identification protocols can be broken in a similar way [2].

The combination of active-intruder and reset attacks is the strongest attack model that has
been considered for identification schemes to date. In [2], this attack model is named CR2. Corre-
spondingly, there is an attack model termed CR1, which combines concurrent and reset attacks.

1.3 Generalized Paradigms For Identification

Bellare et al [2] proposed four paradigms for identification protocols, and analyzed their security
against CR1 attacks as follows:

Signature based protocols

This refers to a signature based challenge-response identification protocol. The verifier sends a
random challenge to the prover, and then the prover signs the challenge and sends the signature
back to the verifier. The verifier then verifies the signature using the prover’s public key. When
the underlying signature scheme is secure, deterministic and stateless, the identification scheme is
secure in the CR1 model.

Encryption based protocols

This refers to a public-key encryption based challenge-response identification protocol. The verifier
encrypts a random challenge using the prover’s public key and sends the ciphertext to the prover.
The prover decrypts the ciphertext and sends the plaintext back to the verifier. When the under-
lying encryption scheme is secure against chosen-ciphertext attacks, the identification is secure in
the CR1 model.

Identification based protocols

This refers to a general transformation of the Fiat-Shamir type proof-of-knowledge based iden-
tification protocols. The Fiat-Shamir type protocols are secure against concurrent attacks but
are subject to reset attacks. The transformation utilizes resettable zero-knowledge techniques and
turns three-flow Fiat-Shamir type protocols into four-flow protocols that are secure against both
concurrent and reset attacks.

Resettable zero-knowledge based protocols

These protocols are based on resettable zero-knowledge arguments. Both the prover and the verifier
are required to have public keys, and the protocol has a constant number of rounds (flows). The
protocol is secure in the CR1 model.



In the CR2 setting, Bellare et al [2] proposed three paradigms:

1. a signature based protocol
2. an encryption based protocol.

3. an identification based protocol.

The three types of protocols are modifications of the corresponding ones in the CR1 setting. The
modifications increase the message lengths. For encryption based protocols, the modification also
increases the number of flows.

2-flow Zero-Knowledge Argument Systems

Another line of research work closely related to ours concerns zero-knowledge argument systems
in the random oracle model. In [22], Pass shows that a 2-flow straight-line witness extractable
deniable zero-knowledge argument system exists for any N P-language in the random oracle model.
However, the zero-knowledge argument system is very inefficient in communication complexity. In
[11], Fischlin proposed a communication efficient straight-line witness extractable zero-knowledge
proof which can improve the communication efficiency of Pass’s 2-flow zero-knowledge argument, yet
the improvement in communication is at the cost of large computational complexity. Considering
the communication and computation complexity, it is not practical to use these zero-knowledge
argument systems as identification schemes.

In [12], Furukawa et al. proposed a “compiler” that transforms a 3-flow honest verifier zero-
knowledge protocol with special soundness property (a X-protocol) to a 2-flow deniable zero-
knowledge argument. The communication and computation in one session of the protocol is only
two to three times as much as in the underlying ¥-protocol (such as the Schnorr identification
scheme). The efficiency of the constructed 2-flow zero-knowledge protocol makes it possible to be
used as an identification protocol in practice.

1.4 Our Contributions

In this paper, we propose a 2-flow identification protocol, secure against CR2 attacks in the random
oracle model, based on specific cryptographic assumptions (namely, the knowledge-of-exponent
assumption and the computational Diffie-Hellman assumption). It is interesting to note that our
protocol has the classical challenge-response structure, but it is not derived from the signature or
encryption based design approach described above. It does not belong to any of the four paradigms
for identification proposed in [2], either. While it is secure in the strongest security model considered
to date, it is also very efficient. The total message length and computation required in one session are
close to that of the Schnorr identification scheme, which is amongst the most eflicient identification
schemes used in practice.

Our work focuses on designing a specific identification scheme, instead of providing a general
mechanism to transform any ¥-protocol to 2-move identification protocols, as is done in [22, 11, 12].
This results in a more efficient identification scheme.



Protocol 2.1: Identification Scheme Setup
Input: Security parameters k and k', which are positive integers.

1. The TA chooses a large prime p such that p — 1 is divisible by another large prime g, where
logy p ~ k' and logy g =~ k.

2. The TA chooses an element g € Z,™ having order g.
3. The TA publishes the triple (p, g, g).
4. The TA publishes a hash function h : Z,* x Z,* — {0, 1}*.

5. Each potential prover A chooses a private key a uniformly from Z, at random, computes
v = ¢g® mod p, and registers v as his or her public key.

6. The TA issues a certificate to A certifying that v is indeed A’s public key.

1.5 Organization of the Paper

The remainder of the paper is organized as follows: Section 2 describes the protocol; Section 3
gives the security analysis; Section 4 analyzes its computation and communication performance;
and Section 5 concludes the paper.

2 Owur New Identification Scheme

2.1 Initial Setup

The initial setup for our scheme is described in Protocol 2.1. We assume the existence of a trusted
authority, denoted by TA, who will issue certificates for all potential participants in the scheme.
Observe that the setup of the scheme is defined in terms of security parameters ¥’ and k. We would
probably take k' = 1024 and k = 160 in practice.

2.2 Protocol Description

In a session of the scheme, the prover A tries to convince the verifier B of her identity. B “accepts”
only if A responds to B’s challenge in an appropriate way. The steps in a session of our scheme are
summarized in Protocol 2.2. Observe that B’s challenge must have a certain form; thus A “verifies”
the challenge before she responds. After receiving A’s response, B verifies it.

In the following, we omit the operation “mod p” to simplify the notation. Assuming that B’s
challenge is well-formed, the message flows can be depicted as follows:
A y1=g", hi=h(v") B
%
A y2:y1“ B



Protocol 2.2: A 2-flow identification scheme

1. B chooses r € Z, uniformly at random, computes
y1 = ¢" mod p and h; = h(v" mod p).
Then B sends (y1,h1) to A.
2. After receiving (y1, h1), A rejects and stops if y1¢ mod p # 1; otherwise A computes
Y2 = y1“ mod p.

If hy = h(y2) then A sends y» to B; otherwise A rejects and stops.

3. After receiving yo, B verifies y3. If yo = v" mod p, then B accepts; otherwise, B rejects.

Remark 2.1. Our protocol can also be implemented in the setting of an elliptic curve E of prime
order ¢, where ¢ ~ 260, In this setting, the verification that 419 mod p # 1 is unnecessary; it would
suffice to verify that y; is a point on E and that y; is not the point at infinity.

Remark 2.2. We note that the structure of our protocol is similar to that of the “identification
based on public-key decryption and witness” discussed in [20, §10.3.3]. As far as we know, the
first paper to suggest the general technique we are using in this paper is Damgard [7]. However,
Damgard’s paper just gives a brief description of the basic idea. For our protocol, we are going to
give a detailed construction and thorough analysis, and we believe that our results provide the first
proofs for schemes of this type.

2.3 Completeness

It is straightforward to prove that Protocol 2.2 is complete. Suppose A and B are both honest.
After receiving the challenge (y1,h1), A checks to see if h(y1*) = h;. Since

h(y1?) = h(g™) = h(v") = ha,

A accepts and sends the response y2 = y1® to B. B then checks to see if yo = v". Since

a ar s

Y2=Yy1 =9 =7,

B also accepts.

2.4 Small Subgroup Attacks

The verification that y;¢ mod p = 1 allows the protocol to withstand a small subgroup attack (see
[19]). To illustrate, consider a modified scheme where this verification step is omitted. This modified
protocol would be subject to the following attack. The adversary sends the challenge

y1=—9g",h1 = h(v")



to A. If he receives a reply from A, then he knows that A’s secret key, namely a, is even; otherwise,
a is odd. This yields one bit of information about the value of the secret key a.

This attack is prevented by checking that y179 mod p = 1 (equivalently, that y; € (g)) by A.
In doing so, A is required to perform one additional exponentiation. However, as mentioned in
Remark 2.1, an additional exponentiation is not required in the elliptic curve setting.

3 Security Analysis

3.1 Zero-Knowledge Properties of the Scheme
3.1.1 Perfect Zero-Knowledge for Honest Verifier

In each session, a transcript is generated. The transcript consists of the messages exchanged
between the two parties. For example, in a session in which both parties accept, the transcript is
(y1,h1,y2). If A rejects, we denote the transcript as (y1, h1, L), where “1” is a “reject” symbol.
In the case where the verifier is honest (i.e., the verifier follows the protocol), the real transcript
produced by the prover and the verifier during a session can be simulated by the verifier without
participating the session. The distribution of simulated transcripts is identical to the distribution of
real transcripts. Thus, we prove that Protocol 2.2 is perfect zero-knowledge for an honest verifier.

Theorem 3.1. Protocol 2.2 is perfect zero-knowledge for an honest verifier.

Proof. The set T of real transcripts obtained by a prover and an honest verifier consists of all
transcripts 1" having the following form:

T = (y1,h1,9y2)
(9" h(v"), (g")*)
(9", h(g""),9"")

where 7 is chosen by the verifier uniformly at random from 7Z,.

The set 7 of simulated transcripts can be constructed by the verifier as follows. The verifier
chooses r uniformly at random from Z,, and computes the simulated transcript T, using ¢, v, and
h(-), as follows:

T = (g", h(v"),v")
— (g'f" h(gaﬂ"),ga?‘)‘

The random numbers r in both 7" and 7" have identical probability distributions. Therefore 7 and
T have identical probability distributions, and the protocol is perfect zero-knowledge for an honest
verifier. O

3.1.2 Statistical Zero-Knowledge with Dishonest Verifier

Now we consider the case in which a verifier might be dishonest. A dishonest verifier may generate
messages not following the protocol, e.g., he may produce a pair (yi, h;) without first choosing 1,
or perhaps he chooses r; with a non-uniform probability distribution. We show that the protocol is
statistically zero-knowledge if the Knowledge-of-Exponent Assumption (KEA) holds and the hash
function h is a random oracle.



KEA is a non-standard cryptographic assumption first proposed by Damgéard in [7]. Its applica-
tion can be found in various papers, e.g., [4, 16, 17]. Although it is a “strong” assumption, it seems
to hold in most groups where the computation of discrete logarithms is intractable. Informally,
KEA says that, in the prime order group (g), given g* with a unknown, the only way (except with
negligible probability) to construct in polynomial time a pair of the form (d, d*) is to first compute
d = g" for some r, and then compute d* = (¢%)". More formally, the assumption is stated in the
next definition.

Definition 3.1. The Knowledge-of-Exponent Assumption is as follows: Let g be a generator of
a multiplicative (sub)group. For any polynomial-time algorithm A that takes as input g and g*
where a is an unknown randomly chosen value, and which produces as output a pair of the form
(d,d"),d € {g), there exists a polynomial-time “extractor” E, which takes the same input and outputs
the pair (d,d") along with an exponent r such that for sufficiently large k,

Pr[d =d® and g #d]<w

for any polynomials Q().

Remark 3.1. Our formal definition of KEA is based on [4], but it is a slight extension in that
we explicitly mandate that d € (g). Without this condition, the assumption no longer holds. For
example, suppose A chooses r and outputs (d = —g",d' = (¢%)"). If a is even (and there is a 50%
chance that it is, since a is chosen randomly), then d* = d’, but no algorithm can find r such that
g" =d,(g*)" = d because d ¢ (g). This is actually the same idea used in the small subgroup attack
that we discussed in Section 2.

Now, we consider a general polynomial-time verifier. This verifier can generate challenges (valid
or invalid) in whatever manner he wishes. For example, the verifier might sometimes generate valid
challenges (y1,h1) by first computing y; = ¢" and then computing h; = h(v" mod p); at other
times, the verifier might generate challenges (y1, h1) by some other poly-time method. Informally,
the KEA allows us to conclude that there is negligible probability that the verifier generates a valid
challenge without “knowing” the value of 7.

Theorem 3.2. If the KEA holds and h(-) is a random oracle, then the protocol is statistical zero-
knowledge for an arbitrary verifier.

Proof. Since all computations take place the in group Z,, we assume that y; € Z,. If y19 mod p # 1,
the verifier knows that the prover will reject. Therefore we only consider the case that y, € Z, and
y19 mod p = 1.

From the KEA, we know for random a, if A (g, g%) returns (y1,y2), then there exists an extractor
E(g,9%) that returns (y1,y2, ) such that, for sufficiently large k, it holds that

Prly =y1* and ¢" # y1] < -~ 1
[ 1< 50 (1)
for any polynomial Q().

Now B simulates transcripts as follows: first he generates the challenge pair (yi, h1) in the same
way as he would in a real session, and then he completes the transcript as follows:



1. Suppose h; is not generated by querying h(y2) for some ya. Then B outputs the transcript
(y1,h1, 1).

2. Suppose hj is a reply of h(ysz) for some input y2. This means that B generates (y1,y2) before
invoking the random oracle h. Then B computes the pair (y1,%2), and computes r using the
corresponding extractor E: E(g,v) = (y1,y2,7). If (y1,92) = (¢",v"), then B outputs the
transcript

(y1, h1,92);

otherwise, B outputs the transcript
(yla hlv J—)

From the description of the protocol and the process that B uses to simulate transcripts, we see
that a difference between the probability distributions of real transcripts 7 = {T'} and simulated
transcripts 7 = {T} can happen only when the challenge pair (yi,h1) is valid, i.e., when h; =
h(y1*). In this situation, the real transcript T = (yi,h1,v1%), while the simulated transcript
T = (y1,h1,11%) or (yi,h1,L). In the following three cases, the simulated transcript will be
(y1, 1 = h(y1?), L):

1. hjp is not the reply of a query h(yz2) for some ya, but h;y = h(y;"). We denote such an event
by e1. Obviously Prle;] = 1/2*.

2. hy is the reply of a query h(yz) for some y2 and h(y2) = h(y1?), but y2 # y1*. We denote
such an event by es. Obviously Prles] = 1/2%.

3. hy is the reply of a query h(yz2) and y2 = y1%, but the extractor fails to find r such that
g" = y1. We denote such an event by e3. From (1), we know that Pr[es] < 1/Q(k).

Now, the statistical distance d between the distributions on real transcripts and simulated
transcripts is computed as follows:

d Prle; or ey or eg]
Pre1] 4+ Prles] + Pr[es)

1/Q(k) + 1/2F 1.

<
<

Hence, the statistical distance between the probability distributions on 7 and T is negligible,
and the protocol is statistical zero-knowledge. O

Remark 3.2. The above analysis actually shows that the protocol has a property stronger than
zero-knowledge: when the challenge (yi,h;) is constructed by the verifier, he knows (with over-
whelming probability) what an honest prover will reply. This implies zero-knowledge. On the other
hand, zero-knowledge does not necessarily imply that the verifier knows the reply in advance.
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3.1.3 Zero-knowledge in Concurrent and Reset Settings

The zero-knowledge property of our protocol is preserved under the three types of composition
of sessions of the protocol; namely, sequential composition, parallel composition and concurrent
composition (see, e.g., [14]). In sequential composition, the protocol is invoked many times, where
each invocation follows the termination of the previous one. Every zero-knowledge protocol is
zero-knowledge under sequential composition ([14]).

Under parallel composition, many instances of the protocol are invoked at the same time and
they proceed at the same pace. In general, zero-knowledge properties are not preserved under
parallel composition ([14]). In our protocol, however, the prover is stateless and deterministic.
When he receives a challenge, the prover replies immediately and the session ends, and then he
proceeds with the next session. Since each reply is determined only by the corresponding challenge,
parallel composition of sessions of our protocol are equivalent to sequential compositions. Therefore
our protocol maintains zero-knowledge properties under parallel composition.

Concurrent composition generalizes both sequential and parallel composition. In this setting,
many instances of the protocol are invoked at arbitrary times and proceed at an arbitrary pace.
Again, for our protocol, any concurrent composition of sessions of the protocol is equivalent to a
sequential composition, because the prover is stateless and deterministic.

Our protocol also preserves zero-knowledge under the reset setting, where the adversary can
reset the internal state of the prover. Again, this follows immediately because the prover is stateless
and deterministic.

3.2 Security of the Scheme

In this section, we give a proof of security of our scheme, based on the intractability of the Compu-
tational Diffie-Hellman Problem (CDH). The Computational Diffie-Hellman Problem is to compute
the value of g?, given g, g® and ¢g°. The Computational Diffie-Hellman Assumption (denoted by
CDHA), is defined formally as follows.

Definition 3.2. The Computational Diffie-Hellman Assumption is as follows: Let g be a generator
for a group of order q, and let k = logy q. The CDH Assumption is that there is no polynomial-time
algorithm (i.e., poly-time in k) that can compute g®° for a non-negligible fraction of all possible
pairs a,b € Zq, when it is given g, g* and g° as input. That is, for any polynomial-time algorithm
A, and for any polynomial Q(-), it holds that

L
Q(k)

for all sufficiently large k, where a,b are random numbers uniformly distributed over Z,.

Pr[A(¢% ¢") = ¢ <

3.2.1 Security under Sequential, Concurrent and Reset Attacks

The goal of an adversary is to be able to impersonate a prover. The following result relates what
it means for an impersonation (for Protocol 2.2) to be considered successful, under a sequential,
concurrent or reset attack, to a computational problem similar to the Diffie-Hellman problem.

Theorem 3.3. Suppose an adversary is impersonating a prover with public key v = g% using a
sequential, concurrent or reset attack. Then the adversary can impersonate the prover with non-
negligible probability if and only if the adversary can compute g%, when he is given a random

11



challenge g°, for a non-negligible fraction of all values b € Zg. That is, there exists a polynomial-
time algorithm A, with respect to public key v = g%, and a polynomial Q1(-), such that for all
sufficiently large k, it holds that

where b is randomly chosen from Zq, and k = log, q.

Proof. In Protocol 2.2, a prover has a public key v = g®. If the challenge value y; = ¢®, then the
adversary must compute g* to successfully impersonate the prover. O

We have given a result stating what it means for an impersonation to be successful. Now we
can define what it means for an identification scheme to be secure.

Definition 3.3. An identification protocol is secure if there is no polynomial-time adversary who
can impersonate a non-negligible fraction of all possible provers with non-negligible probability.

Specifically, in the case of concurrent or reset attack, the security definition requires that for
any polynomial (), and for all sufficiently large k, it holds that

1
Pr[A, exists] < ——
° Q(k)
where v = g%, a is randomly chosen from Z,; and A, is as defined in Theorem 3.3.
Now, we prove that Protocol 2.2 is secure against sequential, concurrent and reset attacks under
the CDH and KEA Assumptions.

Theorem 3.4. Protocol 2.2 is secure against concurrent and reset attack in the random oracle
model under the CDH and KEA Assumptions.

Proof. Suppose that the protocol is not secure against concurrent and reset attack. Because the
KEA holds, we know from Theorem 3.2 that the protocol is zero-knowledge in the random oracle
model. Hence, the adversary can impersonate a prover without taking part in or observing any
previous sessions of the protocol.

Next, since the adversary can impersonate a non-negligible fraction of all possible provers, there
exists a polynomial Q2() such that, for sufficiently large &,

1
Pr[A, exists] >
for randomly chosen a € Z,, where v = g%, k = log, ¢, and A, satisfies
1
Pr[A,(¢°) = ¢%] > ——,
[Av(g”) = g% (k)

as defined in Theorem 3.3. Therefore, given a pair of elements g%, g°, where a,b are randomly
chosen from Z,, the probability that the adversary can compute g is at least

P[A, exists and A,(¢°) = ¢®] = Pr[A, exists] x Pr[A,(¢%) = g%
1
> e
Q1(k)Q2(k)
for any sufficiently large k. This contradicts the CDH Assumption. O
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3.2.2 Security Under Active-intruder Attacks

Next we prove our protocol is secure against active-intruder attacks.

Theorem 3.5. Protocol 2.2 is secure against active-intruder attacks in the random oracle model
under the CDH and KEA Assumptions.

Proof. We need to prove that, after the adversary is active in a session S, the verifier will reject.
We use a three bit string to indicate which of the three items y1, h1,y2 are not faithfully relayed,
respectively. A “1” indicates that the corresponding item is altered, and a “0” indicates that it is
not altered. Let y}, h}, y) represent altered items. There are a total of seven cases to examine:

case 001 Here, the verifier will reject because y) # y2 = y1% = v".
case 010 Here, the prover will reject because h} # hy = h(v")) = h(y1?). Hence the verifier will
also reject.

case 011 Here, the prover will reject as in the previous case. Moreover, the adversary knows that
the prover will reject. Then, after the prover rejects, the adversary sends a new value v} to
the verifier. If the adversary can make the verifier accept by sending yj, he could do the
same thing without interacting with the prover at all in the session S. This implies that the
adversary can carry out a successful concurrent attack, contradicting Theorem 3.4.

case 100 In this case, there is only a negligible probability that the adversary can find y] # y1
such that h(y}*) = hy. This is because the hash function h is a random oracle. Therefore
there is an overwhelming probability that the prover with reject, and the verifier will also
reject.

case 101 As in the previous case, there is an overwhelming probability that the prover will reject.
If the adversary can then cause the verifier to accept by sending a new value y5, he can do
the same thing without interacting with the prover in the session S. This implies a successful
concurrent attack, contradicting Theorem 3.4.

case 110 In this case, if the prover rejects, then the verifier will reject too. So, suppose (yi, k)
is accepted by the prover. (yj,h)) is either generated by the adversary or copied from a
previous session. In the former case, the adversary can predict (with overwhelming probabil-
ity) what the prover will reply; in the latter case, the adversary also knows what the reply
is from the previous session. Therefore, the adversary can make the verifier accept without
actually interacting with the prover in the session S. That implies that a concurrent attack
is successful, which contradicts Theorem 3.4.

case 111 If the prover rejects, then the adversary can make the verifier accept without interacting
with the prover in the session S, which means a concurrent attack is successful. If the prover
accepts, then as analyzed in the previous case, it also means that a successful concurrent
attack has occurred. In any case, Theorem 3.4 is contradicted.

Summarizing, we conclude that if the adversary is active in a session S, then the verifier will reject
with overwhelming probability in the session S. O
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4 Performance

We compare the performance of our scheme with the Schnorr Scheme, which is one of the most
efficient identification schemes known. Assume, for both protocols, that k¥’ = 1024 and k = 160.
The total message length in the Schnorr Scheme is 1344 bits, and the message length in our protocol
is 2208 bits. If both protocols use a hash function to compress the messages (in Schnorr scheme,
by hashing the 1024-bit commitment, and in our protocol by hashing the 1024-bit response), the
total message length is 480 bits and 1344 bits respectively.

For computational complexity, we compare the number of exponentiations required. In the
Schnorr scheme, there are two exponentiations for the verifier and one exponentiation for the
prover, all with a 160-bit exponent. In our scheme, the computational requirements for the verifier
are the same; however, the prover is also required to perform two exponentiations. Moreover, in
the Schnorr Scheme, the exponentiation for the prover can be precomputed. This is an advantage
in the smartcard setting, where the prover is a smartcard whose computing power is very limited.

In the elliptic curve setting, our scheme is very attractive. The message length would be roughly
480 bits in this setting, and the prover is required to perform only one “exponentiation” (i.e., a
scalar multiple of a point on the elliptic curve E).

Another advantage of our scheme is that a session consists of two flows, which is preferable to
the three flows required in the Schnorr Scheme. In most cases the prover will initiate a session by
declaring its identity; however, for two-flow identification, the “declaration” message is not bound
to a specific session. In some cases, e.g., when the prover needs to identify itself independently to a
group of verifiers, it can broadcast its identity and then each subsequent identification session still
has two flows. Moreover, the prover in a two-flow scheme can be implemented as a stateless server.
This is simpler than the structure of the three-flow identification protocols, which must be stateful
and which require a built-in random number generator.

5 Conclusion

In this paper, we proposed a new two-flow zero-knowledge identification scheme. Based on the
CDH and KEA assumptions, it is provably secure in random oracle model under the strongest
attack model to date, which incorporates sequential, concurrent, reset and active-intruder attacks.
While it achieves all these security properties, it is still very efficient. The total message length
and computation required in a session are reasonably close to those of the Schnorr Scheme, which
is among the most efficient known identification schemes.
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A Active-intruder Attacks

We use simple figures and notations to illustrate several identification protocols and corresponding
active-intruder attacks on them. Among these notations, r is a random number chosen by A and
e is a random number chosen by B. All computations take place in a relevant group.

A.1 Attack on the Schnorr Scheme

Schnorr Scheme: g is a public parameter, a is secret key and v = g~ is public key.

A =9 B

A & B
A y=ae+r B
B verifies that
gyve — uetr e ae+T( —a) — gr =
and accepts.
Attack:
AL, 0 = p
2
A2 0 &8
2 =
A ae/2+r 0 y=ae+2r B
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B verifies that

ae+2rve ae+2r (gfa)e

g%t =g =g

and accepts.

A.2 Attack on the Fiat-Shamir Scheme

Fiat-Shamir scheme: a is secret key, v = a? is public key.
A =" B

A ec{0,1} B
A YT B

B verifies that

y? = 1202 = g0
and accepts.
Attack:
AL o =Erp
A& o0 £p

e —kra®
Al) ) %B

B verifies that

and accepts.

A.3 Attack on the Okamoto Scheme

Okamoto scheme: aj,as are secret keys, v = g1 7% go~ 2.
z=g1"192"2
A —
e
A —

A yi1=aie+ri,y2=aze+rz

e aie+r
glyl g2y2 V- gl ! !

and accepts.

2r

=g

B
B
B

X

G272 (g1 7 Mgy ) =g g™ =

Attack:
_.2 2
A2 0 &8
A ae/2+r1,ae/2+7‘i\ 0 y1:a6+2r1,y2:ae+27‘i B
B verifies
_ +2 +2 - — 2 2rg __
91y192y2716 — glale Tlg2a26 T2 (91 a192 az)e — 91 1"192 T2 =1

and accepts.
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A.4 Attack on the GQ Scheme

GQ scheme: a is secret key, v is public key, v = a™?, b is a public parameter.

b
A =5 B

A & B
A y=ra’ B
B verifies
,Ueyb _ a—be,rbabe ’f’b =
and accepts.
Attack:
AT o =2
AE O £B
A ra® 0 y=2ra B
B verifies

veyb — afbe2brbabe — 2b7"b S

and accepts.
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