
Concurrent Non-Malleable Zero Knowledge

Boaz Barak
Department of Computer Science

Princeton University
boaz@cs.princeton.edu

Manoj Prabhakaran
Department of Computer Science

University of Illinois at Urbana-Champaign
mmp@cs.uiuc.edu

Amit Sahai∗

Department of Computer Science
University of California Los Angeles

sahai@cs.ucla.edu

October 21, 2006

Abstract

We provide the first construction of a concurrent and non-malleable zero knowledge argument for
every language inNP. We stress that our construction is in the plain model with no common random
string, trusted parties, or super-polynomial simulation. That is, we construct a zero knowledge protocol
Π such that for every polynomial-time adversary that can adaptively and concurrently schedule polyno-
mially many executions ofΠ, and corrupt some of the verifiers and some of the provers in these sessions,
there is a polynomial-time simulator that can simulate a transcript of the entire execution, along with the
witnesses for all statements proven by a corrupt prover to an honest verifier.

Our security model is the traditional model for concurrent zero knowledge, where the statements to
be proven by the honest provers are fixed in advance and do not depend on the previous history (but
can be correlated with each other); corrupted provers, of course, can chose the statements adaptively.
We also prove that there exists some functionalityF (a combination of zero knowledge and oblivious
transfer) such that it is impossible to obtain a concurrent non-malleable protocol forF in this model.
Previous impossibility results for composable protocols ruled out existence of protocols for a wider class
of functionalities (including zero knowledge!) but only if these protocols were required to remain secure
when executed concurrently with arbitrarily chosen different protocols (Lindell, FOCS 2003) or if these
protocols were required to remain secure when the honest parties’ inputs in each execution are chosen
adaptively based on the results of previous executions (Lindell, TCC 2004).

We obtain anÕ(n)-round protocol under the assumption that one-to-one one-way functions exist.
This can be improved tõO(k log n) rounds under the assumption that there existk-round statistically
hiding commitment schemes. Our protocol is a black-box zero knowledge protocol.

Keywords: Non-malleable protocols, concurrent composition, concurrent zero knowledge, non-malleable
zero knowledge

∗Research supported in part by an Alfred P. Sloan Foundation Research Fellowship, an Intel equipment grant, and NSF
ITR/Cybertrust grants 0205594, 0456717 and 0627781.

Contents

1 Introduction 1
1.1 Our Results . 1
1.2 Previous works. 3
1.3 Preliminaries. 4

2 A concurrent non-malleable zero knowledge protocol 5
2.1 UC-like definition of CNMZK . 6
2.2 Result from [PRS02] . 6
2.3 Non-Malleable Commitment . 8

2.3.1 Available Non-Malleable Commitment Protocols 9
2.4 Other Ingredients . 11
2.5 Our Protocol . 11

2.5.1 Proof of Claim 2.6 . 14
2.5.2 Relaxing the requirement onComNM . 18

3 Impossibility result for concurrent non-malleable general functionalities. 18
3.1 Proof of Theorem 3.1: First stage. 21
3.2 Proof of Theorem 3.1: Second stage. 22

4 Conclusions 24

1 Introduction

In the two decades since their introduction [GMR85], zero-knowledge proofs have played a central role in the
study of cryptographic protocols. Intuitively speaking, a zero-knowledge proof is an interactive protocol that
allows one party (a “prover”) to convince another party (a “verifier”) that some statement is true, without
revealing anything else to the verifier. The zero knowledge property was formalized in [GMR85] by requiring
that the verifier can efficientlysimulateits view of an interaction with the prover, when given only the
statement as input – i.e., without any knowledge of why the statement is true.

In many settings, however, the above security guarantee is not sufficient. Consider a situation in which
Alice is giving a zero-knowledge proof of the statement X to Bob, and at the same time Bob is trying to give
a zero-knowledge proof of some other statement X’ to Charlie. Our intuitive definition of zero-knowledge
tells us that Bob should not get any “help” in proving X’ to Charlie by means of the zero-knowledge proof
that Bob is getting from Alice – i.e. Bob should only be able to prove X’ to Charlie if he could have
done it on his own, without any help from Alice. This property is callednon-malleability[DDN91] for zero-
knowledge proofs. It turns out that the standard simulation definition of zero knowledge does not imply
non-malleability, and in fact, many known zero-knowledge proofs are susceptible to this kind of attack. We
note that we can describe non-malleability as security in the following scenario: there are two executions
of zero-knowledge proofs, with the adversary corrupting the verifier in one execution and the prover in the
other.

Another setting considered in the literature is the following: Suppose there are many verifiers, all of
which are receiving zero-knowledge proofs from various provers at the same time. We would like to guar-
antee that even if many of these verifiers collude, they still can’t learn anything nontrivial from the provers
– i.e., that it is possible to efficiently simulate the view of all the colluding verifiers interacting with the
provers, given only the statements being proven by the provers. This property is calledconcurrent zero
knowledge[DNS98, RK99], and here too, the standard definition of zero knowledge does not imply concurrent
zero knowledge.

1.1 Our Results

In this work, we present the first protocol that is provablysimultaneouslynon-malleable and concurrent
zero knowledge in the “plain” cryptographic model without any setup assumptions. Our protocol allows
provers to prove anyNP statement and is based on standard cryptographic assumptions – namely, the ex-
istence of collision-resistant hash functions. The assumptions that we use is the existence of statistically
hiding commitment schemes. Such schemes can be constructed withO(n) rounds under one-way permu-
tations [NOVY98] and and even regular (and in particular one-to-one) one-way functions [HHK+05] and in
constant rounds under claw-free permutations [GMR84] or collision-resistent hash functions [DPP97, HM96].
Simultaneous non-malleability and concurrency means that in the setting where there are many verifiers and
provers all interacting concurrently, with scheduling decided by the adversary as well, security is preserved
even if the adversary corrupts an arbitrary subset ofboth the provers and the verifiers. The definition of
security is that for any such adversary there exists a polynomial-time simulator that, given only the state-
ments proven by the honest parties (and not the witnesses), simulates the entire execution, and outputs
along with the simulated transcript a list of witnesses corresponding to all statements successfully proven
in this transcript by corrupted provers to honest verifiers. This definition is the natural combination of
non-malleable zero knowledge [DDN91] and concurrent zero knowledge [DNS98, RK99], and is also similar
to the analogous definitions for non-malleable and concurrent commitments [DDN91, PR05A]. We note that
the best previous results on zero knowledge either (1) achieved only concurrent zero knowledge without

1

non-malleability [RK99, KP01, PRS02], (2) achieved non-malleability but only with a bounded number of
parties present [DDN91, BAR02, PR05B], (3) made use of global setup assumptions like a common reference
strings [CLOS02] or time-delayed messages [KLP05], or (4) used different security frameworks like super-
polynomial simulation [PS04, BS05, MMY06].

As in previous works on concurrent zero knowledge and non-malleable zero knowledge, our model
assumes that the vector of inputs (statements and witnesses) to all parties is fixed according to some pre-
determined distribution (although corrupted parties of course do not have to use their given inputs and can
choose their inputs and messages adaptively). However, our security proof doesnot extend to the case
of adaptively chosen honest inputs; this is with good reason, as it was shown by Lindell that there isno
concurrent non-malleable zero knowledge protocol for honest adaptive inputs [L IN04]. Indeed, Lindell’s
argument also ruled out many other functionalities, including oblivious transfer (OT), in the setting where
the inputs for honest parties can be chosen adaptively based on outputs of previous protocols.

This leads to a natural question: Can we generalize our positive result on concurrent non-malleable zero
knowledge to obtain a result foranypolynomial-time functionality – as long as the inputs to honest parties
are fixed in advance? We answer this questionnegativelyby exhibiting a simple and natural functionality
that is impossible to realize, even in the setting where all honest inputs are fixed in advance. Our negative
result is also somewhat surprising since in many other settings (i.e., UC security in the common reference
string model [CLOS02], bounded-concurrent security [L IN03A, PR03, PAS04], super-polynomial simulation [PS04,
BS05, MMY06], and composition in timing model [KLP05]) obtaining composable zero-knowledge protocols
was the key step to obtaining protocols for all functionalities1.

Our techniques. Perhaps surprisingly, our protocol does not use non-black-box techniques, but rather
only uses black-box concurrent zero knowledge and non-malleable commitments; both tools that have been
around for several years by now [RK99, DDN91] (although we do require some tweaking of these protocols,
see below and Section 2). We see our main novelty in our proof of security.

Essentially all known techniques for achieving concurrent zero knowledge simulation and non-malleability
in the plain model have relied crucially on proof techniques based on complex “rewinding” arguments2. A
critical component to many results (e.g. [DDN91, PRS02, PR05A, BS05]) has been the development of new proof
techniques to tame the complexity introduced by rewinding, often through new kinds of hybrid arguments.
At a technical level, we continue in this line and develop new techniques for dealing with complex rewinding
in security proofs.

Our protocol uses the Prabhakaran-Rosen-Sahai (PRS) [PRS02] concurrent zero knowledge protocol and
simulation strategy. We also want to make use of non-malleable commitment constructions (e.g. [DDN91,
PR05A]) to obtain non-malleability. This gives rise to two main obstacles: (1) We need to guarantee that the
non-malleability properties of these commitment schemes remain even in the presence of our rewinding.
Note that in general, this should not be true – an adversary for a plain-model non-malleable commitment
scheme such as [DDN91, PR05A] that can rewind honest parties would always be able to cheat. We develop
a new hybrid argument that shows that we can guarantee non-malleability by making specific use of the
properties of the PRS rewinding strategy and a statistical zero knowledge variant of the PRS protocol. (2)
The other major obstacle is that the techniques for non-malleability necessarily involve rewinding of their

1We do believe that the pattern will still hold true here – that our concurrent non-malleable zero-knowledge protocol will lead
to protocols for all or large classes of functionalities, but just not according to the same definition of security. In the conclusions
section, we mention some possible directions.

2We note that all known non-black-box techniques [BAR01, BAR02, PAS03, PR03, PR05B, PR05A, BS05] for achieving concurrent
simulation or non-malleability can also be seen as introducing complexities similar to those that arise with rewinding. This is one
of the reasons that natural generalizations of [BAR01] has not led to a constant-round concurrent zero-knowledge protocol.

2

own (for extraction). We develop a new proof technique to show that the extraction methods we need can
work “on top of” the PRS rewinding strategy.

For our impossibility result ruling out concurrent non-malleable realizations of more general functions,
even when honest party input distributions are fixed, we work as follows: we start by taking one of the
counterexamples showing that very strongly composable protocols (e.g., UC security [CAN01] or security
against “chosen-protocol attack” [KSW97, L IN03B]) for, say, zero knowledge, do not exist in the plain model
(where there are no trusted parties or common reference strings). This basically implies that for every
supposedly composable zero-knowledge argumentΠ, there exists a protocolΠ′, depending onΠ, such that
their concurrent execution is not secure. The main novelty in our work is that in order to get the kind of
result we want, we use a variant of Yao’s garbled circuit technique [YAO86] to “compile” the protocolΠ′ into
a protocol using the oblivious transfer functionality. Thus, we create a scenario where for every protocol
Π implementing the combined zero knowledge and oblivious transfer functionality (or equivalently, for
every pair of protocolsΠZK andΠOT each implementing these two functionalities), there’s an adversary
launching a concurrent attack that manages to learn a secret with probability close to1 in the real world, but
no adversary would be able to learn the secret with non-negligible probability in the ideal model. Note that,
unlike its typical use, we’re using Yao’s technique here to get anegativeresult. (This is somewhat similar in
spirit to [BGI+01].)

1.2 Previous works.

Concurrent zero knowledge. Concurrent zero knowledge (where the adversary corrupts either only provers
or only verifiers) was defined by Dwork, Naor and Sahai [DNS98] and the first construction in the standard
model was given by Richardson and Kilian [RK99]. The number of rounds was improved tõO(log n) by
[KP01, PRS02] which is optimal forblack-box simulation[CKPR01]. (A constant round protocol for bounded-
concurrent zero knowledge was given in [BAR01] using non-black-box simulation.)

Non-malleable zero knowledge. Non-malleable zero knowledge was first defined and constructed by
Dolev, Dwork and Naor [DDN91]. Constant round protocols were given in [BAR02, PR05B]. These latter works
also introduced some more convenient definitions (which we follow) than the [DDN91] definition (inspired
by definitions of non-malleablenon-interactivezero knowledge [SAH99]).

Non-malleable and concurrent commitments. By a simple hybrid argument, every commitment scheme
remains secure under concurrent composition if the adversary can corrupt either only senders or only re-
ceivers. As in the case of zero knowledge, stand-alone non-malleable commitments were defined by [DDN91]
and constant-round protocols were given in [BAR02, PR05B]. Pass and Rosen [PR05A] showed that the commit-
ment scheme from [PR05B] is actuallyconcurrently non-malleablethus giving anO(1) round concurrent non-
malleable commitment scheme.Note: In many previous works, progress in commitment schemes and zero-
knowledge went hand in hand, where one could obtain a ZK protocol satisfying security notionX by plug-
ging a commitment scheme satisfyingX to a standard standalone protocol [DDN91, CF01, CLOS02, L IN03A].
Thus, one might hope that one could obtain in this way a concurrent non-malleable ZK protocol from
the [PR05A] scheme. However, an important limitation of [PR05A] is that security is guaranteed only under
the condition that only thecommitprotocol and not therevealprotocol is executed concurrently. For this
reason, such commitment schemes do not automatically imply concurrent non-malleable zero knowledge
proofs. In particular, we do not know that if we plug in [PR05A]’s commitments in one of the well known
constant-round ZK or honest-verifier ZK protocols we will get a concurrent non-malleable ZK protocol.

3

In fact, that would be quite surprising since in particular it will yield the first constant roundconcurrent
zero knowledgeprotocol. We note that our work here does not work in this way, and indeed, we can make
use of “non-concurrent” non-malleable commitment protocols like the original protocol of [DDN91], thus
avoiding non-black-box techniques altogether, and reducing our assumptions to just regular one-way func-
tions. We also don’t know whether it’s possible make the proof simpler by using concurrently non-malleable
commitments.

Universally composable (UC) security, general and self composition.In [CAN01], Canetti introduced the
notion ofuniversally composableor UC security for cryptographic protocols. This is a very strong notion of
security and in particular a UC secure zero-knowledge protocol will be concurrently non-malleable and in
fact will compose with an environment that contains executions of arbitrary other protocols as well (see also
[L IN03B]). However, this notion, that essentially implies black-box straightline simulation, is in some sense
“too strong”, and it was shown that in the “plain” model, without trusted parties, honest majority or setup, it
is impossibleto achieve UC-secure zero knowledge and in fact a very wide range of functionalities including
commitment schemes [CAN01, CF01, CKL03]. (See [BOGW88, CAN01, CLOS02, BCNP04] for constructions in other
models.)

Self-composition. As mentioned above, Lindell [L IN04] showed that for the case ofmessage passing func-
tionalities (functionalities allowing to transmit a bit, in particular including zero knowledge), security for
concurrent composition of thesameprotocolunder adaptive input selectionessentially implies UC security
and hence it is impossible to obtain a zero knowledge protocol satisfying this notion of self-composition in
the plain model. Adaptive input selection is defined by having the inputs supplied by an environment as in
the UC model, but unlike the UC definition, this environment is not allowed to look at the actualcommuni-
cationof the executions but only at theoutputsof these executions. In contrast, in our security model the
inputs may be chosen from some distribution but are supplied in advance to all parties, and so, while we
can’t control the corrupted parties’ behavior, the honest parties do not choose their inputs adaptively based
on previous executions.

Super-polynomial-time simulation. Another sequence of works considered a setting where the ideal
model simulator is allowed to run insuper-polynomialtime [PS04, BS05, MMY06]. This allows to bypass the
UC impossibility results and yield protocols for any functionality that seem to supply adequate security for
many applications. However, the definition is not as intuitive and mathematically clean as polynomial-time
simulation, and the current constructions do suffer from drawbacks such as requiring stronger complexity
assumptions, and a tradeoff between the time of simulation and the standalone soundness of the protocol.

Security for independent inputs. Garay and MacKenzie [GM00] show a protocol for oblivious transfer
that is concurrently secure if the inputs to the parties in each execution is chosen independently and at
random from a known distribution such as the uniform distribution. We note that in this paper we consider
the more standard setting where the inputs are arbitrarily chosen and in particular may be correlated.

1.3 Preliminaries.

We consider only two party protocols in this paper. Our model is ofm partiesP1, . . . , Pm (not necessarily
aware of one another) that interact in pairs via some two party protocolΠ. There’s some distributionD on
inputsx1, . . . , xm and each partyPi uses inputxi in its interaction (by adding more parties if necessary, we

4

can assume that each party participates in at most one interaction ofΠ). We assume an adversaryAdv that
chooses initially to corrupt a set of parties{Pi : i ∈ C}, and receives the inputs for that set, and completely
controls these parties. The adversary can also schedule concurrently and adaptively all the messages in the
network. We assume that all parties in the network have unique identities and authenticated communication
(following [DDN91] this can be relaxed somewhat for the positive result). We say thatΠ securely implements
an ideal functionalityF with two inputs and two outputs if for any suchAdv corrupting a setC there’s a
simulatorSim that receives the inputsxi for i ∈ C, and for every pair(i, j) that interacts viaΠ with i ∈ C
andj 6∈ C, Sim gets one access to the first output of the functionx 7→ F(x, xj) (we have an analogous
definition if the corrupted party is the second in the pair). The outputs ofSim and the second output should
be computationally indistinguishable from the outputs ofAdv and the outputs of the honest parties in the
real execution. It can be shown thatΠ is concurrent non-malleable zero knowledge for anNP-relation
R if and only if it secure implements the ZKPOK functionalityF defined as follows:F(x ◦ w) = x iff
(x,w) ∈ R andF(x ◦ w) = ⊥ otherwise (this functionality only uses one of its inputs).

2 A concurrent non-malleable zero knowledge protocol

Definition 2.1. A protocol is a Concurrent Non-Malleable Zero Knowledge (CNMZK) argument of knowl-
edge for membership in anNP languageL with witness relationR (that is,y ∈ L iff there existsw such
thatR(y, w) = 1), if it is an interactive proof system between a prover and a verifier such that

Completeness:if both the prover and the verifier are honest, then for every(y, w) such thatR(y, w) = 1,
the verifier will accept the proof, and

Soundness, Zero-Knowledge and Non-Malleability:for every (non-uniform PPT) adversaryA interact-
ing with proversP1, . . . , PmL in mL “left sessions” and verifiersV1, . . . , VmR in mR “right sessions”
of the protocol (withA controlling the scheduling of all the sessions), there exists a simulatorS such
that for every set of “left inputs”y1, . . . , ymL , we haveS(y1, . . . , ymL) = (ν, z1, . . . , zmR), such that

1. ν is a simulated view ofA: i.e., ν is distributed indistinguishably from the view ofA (for any
set of witnesses(w1, . . . , wmL) thatP1, . . . , PmL are provided with).3

2. For alli ∈ {1, . . . ,mR}, if in the i-th right hand side session inν the common input isxi and the
verifierVi accepts the proof, thenzi is a valid witness to the membership ofxi in the language,
except with negligible probability (zi = ⊥ if Vi does not accept.)

Further, we call the protocol a black-box CNMZK if there exists a universal simulatorSBB such that for any
adversaryA, it is the case thatS = SA

BB satisfies the above requirements.

Note that the above security property subsumes both zero-knowledge and proof-of-knowledge proper-
ties. In particular, the second condition reduces to regular (stand-alone) zero knowledge property when
mL = 1 andmR = 0, and implies regular (stand-alone) proof-of-knowledge property whenmL = 0 and
mR = 1. Furthermore, this condition reduces to concurrent zero knowledge [DNS98, RK99] whenmL = poly
andmR = 0; it reduces to basic (“non-concurrent”) non-malleability [DDN91] whenmL = mR = 1.

This definition resembles the notion of simulation-extractablity used in [PR05A] for concurrent non-
malleable commitments.

3Here, and elsewhere, by the view of a party we mean the sequence of its internal states during the execution, including the
messages received and sent by it.

5

2.1 UC-like definition of CNMZK

We can also write this definition in the language of the UC-framework, to further illustrate the level of
security and composition it gives. We do not get into the details of modeling the Network, but instead keep
our description at an informal level. For more details of modeling see [CAN05, PRA05].

The functionality in question isFR
ZK , the natural zero-knowledge functionality for membership inL: it

accepts a pair(y, w) from P and sends(y, R(y, w)) to V , which it outputs.
The nature of the security is essentially described by the kind of environments allowed in the security

definition. We call a PPT environmentZ a “CNM environment” if it behaves as follows:

• Z interacts arbitrarily with the adversary, and selects many pairs of parties(P, V). For each of these
pairs,Z picks(y, w) such thatR(y, w) = 1. It handsy to bothP andV , andw to P .

• ThenZ initiates each pair to interact with an instance ofFR
ZK . After this point the environment does

not send any messages to the parties or to the adversary (but it continues to receive messages from the
adversary).4

• FinallyZ outputs a bit.

Note that since there will be no automatic composition theorem available, the environment already invokes
multiple instances of the functionality. Also note that there are no other protocols or functionalities being
invoked, emphasising the fact that we are dealing only with self-composition.

In the “ideal” execution, when initiated with input, the parties interact withFR
ZK . In the “real” execution

the parties use the protocol in question. All scheduling is controlled adversarially.
Then the definition of security is that there exists a simulatorSBB such that for all adversariesA and

any CNM environmentZ, the output ofZ in the real execution is indistinguishable from that in the ideal
execution.

2.2 Result from [PRS02]

We adapt the main argument from [PRS02] for use in our protocol. Consider the following protocol segment:5

1. PRS Commitment: The verifier picks a (sufficiently long) random stringσ, and preparesk · t(k)
(wheret(k) is anyω(log k) function) pairs of secret shares(α0

ij , α
1
ij) for 1 ≤ i ≤ k, 1 ≤ j ≤ t(k)

such that for all(i, j) we haveα0
ij⊕α1

ij = σ. Then it commits toσ and(α0
ij , α

1
ij)ij using a statistically

binding commitment schemeComPRS.

2. PRS Challenge-Response:This is followed byt(k) rounds of randomk-bit challenges by the prover.
In response, for each(i, j), if the i-th bit in thej-th challengerij = b then the verifier opens the
commitment toαb

ij in that round.

3. On reaching this point the prover considers the preamble to have “concluded.”

4The environment not communicating with honest parties after initiating the protocol execution corresponds to the restriction
that the inputs to the honest parties are non-adaptive. Also the restriction that there is no information the adversary receives other
than its initial auxiliary inputs and the protocol messages is captured by restricting the environment from sending messages to the
adversary after the protocols commence. Technically, such a restricted environment allows a simulation that involves “rewinding,”
as in our case.

5In describing all protocols we use the implicit convention that if a party receives messages which are not as prescribed by the
protocol, that party is required to abort the entire session.

6

4. PRS Opening: The verifier opens all the commitments made in the PRS Commitment step, and the
prover verifies consistency of the revealed values (i.e., that for all(i, j), α0

ij ⊕ α1
ij evaluates to the

same value).

5. On reaching this point the prover “accepts” the preamble.

There can be other messages in between, as long as the challengesrij are picked randomly independent
of previous messages. In particular, as in our case, there can be messages in the protocol between the prover
concluding the preamble and the verifier opening the commitments.

The PRS simulator (for our purposes) is the following program which “simulates” multiple (polyno-
mially many in the security parameter) concurrent sessions of the protocol between honest provers and a
combined adversarial verifier,APRS. The simulator gets inputs of all the parties in all the sessions, and
it runs the honest provers and the adversarial verifier internally.6 In the end it produces an ordered list of
“threads of execution.” A thread of execution consists of views of all the parties, such that the following
hold.

• Each thread of execution is a perfect simulation of a prefix of an actual execution.

• The last thread, called themain thread, is a perfect simulation of a complete execution (i.e., until all
the parties terminate); all other threads are calledlook-ahead threads.

• Each thread shares a (possibly empty) prefix with the previous thread, and is derived by running the
honest parties with fresh randomness after that point.

The aim of the PRS simulator is, for each PRS commitment that it comes across in any session in any
thread, to extract the committed valueσ (referred to as the “PRS secret”) before the preamble of the session
is concludedin that thread. The extraction is achieved by observing the adversary’s messages in multiple
previous threads. If it fails to extract the PRS secret in any session in a thread,and the execution goes
on toacceptthe preamble of that session in that thread, then the simulation is said to “get stuck.” [PRS02]
guarantees that the probability of the PRS simulation getting stuck is negligible.

Lemma 2.2. (Adapted from [PRS02]) Consider proversP1, . . . , Pm and an adversarial verifierAPRSrunning
m sessions of a protocol with the PRS preamble as described above, wherem is any polynomial in the
security parameterk. Then except with negligible probability, in every thread of execution output by the
PRS simulator, if the simulation reaches a point where the proverPi accepts the PRS preamble withσ as
the secret in the preamble, then at the point when the preamble was concluded, the simulator would have
already recorded the valueσ.7

In fact [PRS02] prove a further refinement of this lemma (that we will need): instead of the simulator
running each thread exactly as in the original execution, if each thread (individually) is executed in an
indistinguishable way,8 the lemma still holds. (This is what allows [PRS02] to show that indistinguishable

6Note that the “simulator” as described here is given all the inputs to all the parties. Later, after introducing this simulator into
the sequence of hybrids in our proof, we shall show how to get rid of these inputs.

7Unlike in [PRS02], in our preamble, the PRS commitment is statistically binding. So, except with negligible probability, ifPi

accepts the preamble, there is a well-defined valueσ in the PRS commitment, and it is this value that the prover accepted as the
secret in the preamble. We point out that our case is slightly simpler than the original analysis in [PRS02] in that we are interested
in arguments (not proofs), and hence the commitment by the verifier can be statistically binding.

8In our applications, it is enough if this holds when the indistinguishability is statistical; but in fact this refinement holds even
if the indistinguishability is only computational. Indeed in [PRS02] the argument is used for computationally indistinguishable
executions.

7

simulation is possible.). It is important that here we require the indistinguishability requirement only on a
per threadbasis. In particular the joint distribution of the threads in the latter simulation is allowed to be
distinguishable from the joint distribution of the threads in the original simulation.

We shall adapt the PRS simulator to our setting in which an adversaryA is engaged in concurrent left
hand side sessions as the verifier, while concurrently playing the prover in multiple right hand sessions. We
could build a preliminary simulator (which is provided with inputs of all the parties) for this situation by
considering all the right hand verifiers also as part of an adversaryAPRSbefore invoking the PRS simulator.
However there is a minor technicality that needs to be taken into account. In [PRS02], since the adversary is
arbitrary, it may very well be assumed to read its entire random tape up front. Thus in all the threads (all
of which may share a common non-empty prefix) the PRS simulator in [PRS02] uses the same random tape
for the adversary. But it is easy to see that the analysis in [PRS02] works even with probabilistic adversaries
which do not read their entire random tapes initially, and in that case the PRS simulator can use fresh
randomness for the unread parts of the random tape when simulating a new thread. This is important for us
because in our simulation we will need to use fresh randomness for the right hand side verifiers in different
threads (except during the shared prefixes). So in our use of the PRS simulator only the random tape of the
original (arbitrary) adversaryA is fixed across all the threads while the rest ofAPRS(i.e., the right hand side
verifiers) is given fresh randomness in different threads.

Another equivalent (and in some sense a more natural) way to formulate this is to consider the right hand
side verifiers as part of the honest prover and, as in the original PRS simulator, to fix the random tape of the
adversary across all threads. Later in our proof, we will have chance to refer to this formulation.

2.3 Non-Malleable Commitment

The other ingredient we need is a statistically binding non-malleable commitment (not necessarily concur-
rent non-malleable) with an “extractability” property. More precisely, we require an interactive commitment
protocolComNM, between a “sender” (whose input it wants to commit to) and a “receiver” (with no input)
satisfying the following properties.

1. Statistical Binding: The protocol has a determining message from the sender to the receiver (typically
the first message from the sender) which is the first message containing information about the value
to be committed. If either the sender or the receiver is honest, the determining message is information
theoretically binding except with negligible probability.

For clarity in presentation we shall require that the first message in the protocol is itself the determin-
ing message. (However see Section 2.5.2.)

2. (Non-concurrent) Non-Malleability: Consider the following two experiments in which an adversary
M participates in one “left session” of the protocol as the receiver, and in one “right session” as the
sender.M picks a valuew and gives it to the left senderP . In the first experimentP commits to
w while in the second experiment it commits to the all-zeroes string. We define the value of the
experiment as(τ, α), whereτ is the output ofM andα is the value in the determining message of the
right-hand-side commitment. (We sayα = ⊥ if the right-hand-side commitment was not accepted, or
if the determining message did not uniquely determine the committed value).

The non-malleability property is that the values of the two experiments are distributed computationally
indistinguishably.

For the sake of convenience we state the hiding property explicitly, though it is implied by the non-
malleability property. The two experiments are defined as before, except thatM does not participate

8

in a right hand execution. Instead, after receiving the commitment fromP , M produces an output,
which is the value of the experiment. Then the hiding property requires that the values of the two
experiments are computationally indistinguishably distributed.

3. (Stand-alone) Extractability: The extractability requirement is that there is an efficient extractor
such that given an adversary and its view from a random execution of the protocol with an honest
receiver, then, except with negligible probability – the probability being over the coins of the adversary
and the verifier in the view, as well as that of the extractor, if it is randomized – the extractor outputs
the value in the commitment, if according to the view the receiver accepts the commitment.

In fact, we require a slight extension to this by requiring that the extraction can work on a prefix of
the protocol where the verifier is public-coin. More formally, there is a message from the sender in
the protocol called the “knowledge-determining message” (KDM), such that given an adversary and
its view during a random execution of the protocol till (and including) the KDM, the extractor will
output the committed value, if according to the view the verifier was still accepting (i.e., it did not
abort). We require that prior to receiving the KDM the receiver does not have any private coins.

2.3.1 Available Non-Malleable Commitment Protocols

For simplicity, first we consider a model in which all parties have distinct identities9, and all communication
is over authenticated channels.

Pass-Rosen Commitment: In [PR05A] give a statistically binding commitment protocol, and show that
their protocol satisfies the non-malleability property we require (and more).

Though [PR05A] states their definition without an extraction requirement, in their proof they show how
to do extraction as well. But in fact we observe that another simple extractor (so that the protocol is clearly
public coin until the knowledge-determining message) can be derived by slightly modifying their proto-
col. Their protocol has the following structure: first the sender commits to its input usinganystatistically
binding commitment scheme; then it gives a proof of knowledge of the input and randomness used in this
commitment, using a non-malleable ZK protocolnmZKID, whereID is the identity of the prover. Consider
modifying this protocol by replacing the first message – namely the statistically binding commitment – by an
interactivestatistically binding commitment, which consists of a regular non-interactive statistically binding
commitment (which can be based on any 1-1 one-way function) followed by a ZK proof of knowledge that
it knows the contents of the commitment. Using a ZKPOK of super-constant rounds we can obtain a deter-
ministic polynomial time extractor. This can be done, for instance, by having aω(logk)-round sequential
copies of the basic Hamiltonicity protocol [BLU87]. (see e.g. [GOL01]).

This commitment protocol satisfies all our requirements.

DDN Commitment: Surprisingly, though we are in a concurrent setting, our requirement of non-malleability
on the commitment schemeComNM is in the plain non-malleability setting (i.e., one execution each on the
left hand and right hand sides). We show that the original non-malleable commitment scheme by Dolev,
Dwork and Naor [DDN91] satisfies our requirements, when the initial (statistically binding, non-interactive)

9This assumption can be removed (as originally done in [DDN91]) by letting the honest parties pick a (signing key, verfication
key)-pair for a signature scheme, and having the entire transcript of the protocol signed using this key (only the provers need to
sign). Then the one case excepted from the definition of non-malleability is whenA copies an entire left execution as a right
execution, by playing a router for the messages.

9

commitment phase of their protocol is augmented to have a ZKPOK, as above. As we mentioned above this
modification takes care of the extraction requirement, while retaining the non-malleability property proven
there.

Next we claim that the non-malleability property of the DDN protocol implies the non-malleability
property that we require. First weadaptthe definition from [DDN91] as follows:

Definition 2.3. (DDN Non-Malleable Commitment. Adapted from [DDN91].) A statistically binding
commitment protocol is said to be DDN-non-malleable if for every (non-uniform PPT) adversaryADDN,
there exists a simulatorSDDN such that for all (non-uniform) PPT machinesR that take three inputs and
outputs a single bit, the outputs of the following two experiments are indistinguishable from each other.

DDN-Experiment 1: ADDN first outputs a stringw. Thena is set to bew or the all-zeros string, chosen
unifromly at random. An honest senderP commits toa to ADDN. MeanwhileADDN commits to some
stringα to an honest receiverV . (α is well-defined, possibly as⊥, because the commitment is statistically
binding). Also at the endADDN outputs a plain-textτDDN. The output of the experiment isR(a, α, τDDN).

DDN-Experiment 2: SDDN outputs a stringw anda is set to bew or the all-zeros string, chosen unifromly
at random. ThenSDDN commits to some stringα to an honest receiverV and outputs a plain-textτDDN. The
output of the experiment isR(a, α, τDDN).

Here we have simplified the DDN definition by replacing a general distribution by a uniform distribution
over a stringw and the all-zeros string. Without loss of generality we assume thatw is chosen determinis-
tically (but non-uniformly). Also, we have slightly strengthened the definition to include a plain-text output
τ produced by the adversary as input toR. To see that the protocol in [DDN91] does satisfy this strength-
ened requirement, note that the proof there first uses a “knowledge extractor” to extractα, which could be
modified to output(τ, α) instead.

Now suppose a commitment protocol did not satisfy the non-malleability we require. Then, there is
an adversaryA who gives a valuew, accepts a commitment on the left to eitherw or the all-zero string,
and makes a commitment on the right to computationally distinguishable values on the right, and outputs a
stringτ . Let the value committed to on the right beα. Denote these as(τ (w), α(w)) in the first experiment
(when commitment on the left is tow), and as(τ (0), α(0)) in the second experiment (when commitment
on the left is to0). We have a PPT distinguisherD which outputs a single bit such thatD(τ (w), α(w)) 6≡C

D(τ (0), α(0)). In other words,|πw−π0| is not negligible, whereπw andπ0 stand forPr[D(τ (w), α(w)) = 1]
andPr[D(τ (0), α(0)) = 1] respectively. Note that this can be true only ifw is not the all-zeros string. Now
defineADDN to be the same asA, but withτDDN = (τ, w). Define

R(a, α, (τ, w)) =

{
D(α, τ) if a = w

1−D(α, τ) otherwise.

Then the probability of the output of DDN-Experiment 1 being 1 is1
2 (πw + (1− π0)) = 1

2 + 1
2(πw − π0),

where as the probability of DDN-Experiment 2 producing 1 is1
2 (sincea = w with probability 1

2 ; here
we use the fact thatw is not the all-zeros string). Since|πw − π0| is not negligible, the outputs of the two
experiments are not indistinguishable. Hence we conclude that if the protocol is not non-malleabile in the
form we require, then it is not DDN-non-malleable either.

10

2.4 Other Ingredients

The other ingredients we use are

1. A statistically (or perfectly) hiding commitment schemeComSH.

2. A statistical (or perfect) ZK argument of knowledgesZKAOK, for proving knowledge of witness for
membership in anyNP language.

The statistically hiding commitment schemeComSH can be achieved in a constant-round protocol using
collision-resistant hash functions or claw-free permutations or, at the expense of havingO(k) rounds, using
one-way permutations [NOVY98] (see also Section 4.8 of [GOL01]), and even using only regular one-way
functions by the recent result of Haitneret al.[HHK+05]. Given such a commitment scheme, we getsZKAOK
as required with a factorω(log k) blow up in the number of rounds, in same manner as our construction
of a ZKPOK above, usingω(log k) sequential copies of the Hamiltonicity protocol, but where the prover’s
commitments in the Hamiltonicity protocol are made using the statistically hiding commitment scheme
ComSH. This sZKAOK enjoys a strict polynomial-time extraction procedure with negligible probability of
failure.

We note that all our ingredients are realizable under the assumption that regular one-way functions exist
(and in particular under the assumptions that one-to-one one-way functions exist).

2.5 Our Protocol

Consider anNP-complete languageL with a witness relationshipR. The prover and verifier receive a
common inputy and the prover receives a witnessw such thatR(y, w) = 1. The protocolCNMZK is
described below.

Phase I: PRS preamble from Section 2.2 up to the point where the proverconcludesthe preamble.

Phase II: Prover commits to the all-zero string usingComSH. Then it usessZKAOK to prove the knowledge
of the randomness and inputs to this execution ofComSH.

Phase III: Continue the PRS preamble until the prover accepts the preamble. Let the secret in the preamble
(as revealed by the verifier) beσ.

Phase IV: Prover commits to the witnessw usingComNM.

Phase V: Prover proves the following statement usingsZKAOK: either

• the value committed to in Phase IV isw such thatR(y, w) = 1, or

• the value committed to in Phase II isσ.

It uses the witness corresponding to the first part of the statement.

Theorem 2.4. Protocol CNMZK is a black-box concurrent non-malleable zero knowledge argument for
membership in theNP languageL (Defintion 2.1).

11

Proof. It is easy to see that the protocol satisifies the completeness condition. Below we shall build a
simulator-extractor, which outputs a simulated view of the adversary’s view along with witnesses for all the
successful right hand side proofs in the simulated view, as required by the second condition in Defintion 2.1.

We build the simulatorS in stages, via intermediate simulatorsHi, for i = 1, . . . , 4. Hi outputs a
simulated viewν(i). (S will in addition output a list of witnesses.) We define2mR random variables
{b(i)

` , α
(i)
` }mR

`=1, whereb
(i)
` is a bit denoting whether according toν(i), V` accepted the proof from the ad-

versary or not, andα(i)
` is the value contained in the Phase IV commitmentComNM received byV` (as

determined by the determining message; if there is no unique value, then it is defined to be⊥).
Stage 1:H1 gets all the inputs toP1, . . . , PmL as well as the inputs toA. It internally runs the (honest)
programs ofP1, . . . , PmL , as well the honest program for the verifiersV1, . . . , VmR , to generateA’s view
ν(1). The simulation is perfect.

Also one can show that due to the knowledge soundness of thesZKAOK scheme used in Phase II
and Phase V, ifV` accepts the proof in thè-th right hand session in the simulated viewν, then, except
with negligible probability, the Phase IV commitment (which is statistically binding) in that session indeed
contains a valid witnessz` to the statementx`. (This follows from a hybrid argument for themR right hand
side sessions.) This is stated in the claim below; a detailed proof follows.

Claim 2.5.

∀`
(
b
(1)
` = 1

)
=⇒

(
R(x`, α

(1)
`) = 1

)
(1)

except with negligible probability.

Proof. Fix ` ∈ {1, . . . ,mR}. First, fromH1, construct a standalone proverP ∗ which interacts withV`

alone. This is done by including everything simulated byH1 exceptV` as part ofP ∗, so that an interaction
of P ∗ with an honest verifierV` is identical to the execution ofH1. We need to argue that ifV` accepts
the proof byP ∗, then except with negligible probability, the Phase IV commitment made byP ∗ is a valid
witnessz` to the statementx`. We consider the following experiment. EngageP ∗ in an execution with
an honest verifierV` which uses a random PRS secretσ. Then, ifV` accepts the proof fromP ∗ build two
standalone proversP ∗

1 andP ∗
2 as follows.P ∗

1 is a copy ofP ∗ at the point where it began thesZKAOK in
Phase II.P ∗

2 is a copy ofP ∗ at the point where it began thesZKAOK in Phase V. Now run the extractor
for sZKAOK on P ∗

1 andP ∗
2 . First we observe that from the hiding property ofComPRS it follows that the

probability of the extractor onP ∗
1 returning (an opening or explanation ofComSH as a commitment to)σ

is negligible. Secondly we observe that the computational binding ofComSH implies that the probability of
extractor onP ∗

1 returning an opening to something other thanσ andthe extractor onP ∗
2 returning an opening

to σ is negligible: this is because, otherwise we obtain two different ways to openComSH. Finally by the
knowledge extractability property ofsZKAOK we observe that the probability of (V` accepting and)P ∗

1 not
returning some opening ofComSH is negligible; also that ofP ∗

2 returning neither an opening ofComSH to σ
nor an opening of the Phase IVComNM commitment to a valid witness forx` is negligible. Together these
imply that the probability ofV` accepting the proof and the Phase IVComNM being not to a valid witness
for x` is negligible.

Stage 2:H2 works just likeH1, but it also does the PRS look-aheads and records the PRS secrets. Recall
that this means that the simulator runs many perfect simulations of the execution with shared prefixes (but
using fresh randomness in the unshared parts), and records the PRS secrets for each preamble concluded in
any thread.H2 aborts if the PRS simulation gets stuck. Otherwise it outputs the view of the adversary in
the main thread of this simulation asν(2). If the simulator did not check for the aborting condition, the view

12

generated is identically distributed as in the simulation byH1. By Lemma 2.2 we know that the probability
of aborting is negligible. Hence, we have

ν(1) ≡C ν(2)

∀` (b(1)
` , α

(1)
` , y`) ≡C (b(2)

` , α
(2)
` , y`).

Stage 3:H3 works likeH2, except that in all the simulated left hand side sessions, the prover commits
to the PRS secretsin the Phase IIComSH, and follows up with an honest execution ofsZKAOK for this
commitment. SinceComSH is a statistically hiding commitment scheme, andsZKAOK is statistical zero
knowledge we get

ν(2) ≡C ν(3)

∀` (b(2)
` , α

(2)
` , y`) ≡C (b(3)

` , α
(3)
` , y`).

Stage 4:H4 works likeH3, except that in all the simulated left hand side sessions, the prover

• commits to the all zeros string in the Phase IVComNM, and

• uses theComSH commitment as the witness in the Phase VsZKAOK instead of the witnessesw`.

Claim 2.6.

ν(3) ≡C ν(4)

∀` (b(3)
` , α

(3)
` , y`) ≡C (b(4)

` , α
(4)
` , y`).

Hereν(4) and{b(4)
` , α

(4)
` }mR

`=1 are defined analogously to the case ofH1. We shall prove this claim
shortly, using a carefully designed series of hybrids. It is in this part of the proof that we shall require the
non-malleability property of the commitment schemeComNM.
Stage 5:Finally we describe the simulator-extractorS. First it runsH4 to produce a view of the adversary,
ν(4). Then it extracts the valuesα(4)

` , for ` = 1, . . . ,mR.
For this we take the view that in the PRS simulator all the honest parties includingV` are considered

part of the prover. Then, for each`, S will considerH4 as a standalone adversaryA∗
` making a single com-

mitment to a receiver. The adversaryA∗
` will contain the adversary and all of the honest parties simulated

by H4, except the part ofV` in the main thread which receives the Phase IV commitmentComNM. A∗
`

terminates execution after sending the knowledge-determining message (KDM) to the external verifier.
Note that some of the PRS look-ahead threads simulated byH4 will share a prefix with the main thread.

Thus the interaction ofA∗
` with the external receiver (which forms part of the main thread) may define parts

of these look-ahead threads as well. If the KDM toV` in the main thread does not occur in the shared prefix
with a look-ahead thread, thenH4 would have created this thread before reaching the KDM. HenceA∗

` also
needs to create this thread before terminating. For simulating such a look-ahead thread which shares some
prefix with the interaction with the external receiver,A∗

` should be able to internallycontinuea prefix of the
interaction with an external receiver where the prefix does not extend to the KDM. This is possible because
of our requirement that prior to the KDM the receiver inComNM does not use any private coins. So at the
pointA∗

` needs to continue this prefix as a look-ahead, there is no secret state of the receiver that it needs
to know. It simply continues the look-ahead thread using fresh coins for the verifier. ThusA∗

` is indeed
well-defined.

13

S constructs the view ofA∗
` (by having kept track of the internals in the run ofH4) and invokes the

extractor forComNM, with A∗
` and this view. The final output ofS is (ν, β1, . . . , βmR) whereβ` are the

extracted values. By the extraction guarantee, if according toν, V` accepted the proof, and in particular
accepted the Phase IV commitment, thenβ` = α

(4)
` except with negligible probability.

Note that from above displayed relations,ν(4) ≡C ν(1), where the former is the view generated byS and
the latter is identical to that of the adversaryA in an actual execution. Further, we have

∀`
(
b
(4)
` = 1

)
=⇒

(
R(x`, α

(4)
`) = 1

)
except with negligible probability. This follows from Equation 1, the fact that(b(4)

` , α
(4)
`) ≡C (b(1)

` , α
(1)
`) as

implied by the above displayed relations, and the fact that the condition
(
b
(·)
` = 1

)
=⇒

(
R(x`, α

(·)
`) = 1

)
can be efficiently checked.

This completes the proof except for the proof of Claim 2.6.

2.5.1 Proof of Claim 2.6

This is the most delicate part of the proof, which reduces the concurrent non-malleability of our zero-
knowledge protocol to (non-concurrent) non-malleability of the commitment schemeComNM. The goal is to
show that in moving from the hybridH3, which uses the real left hand side witnesses in the simulation, toH4

which uses the alternate PRS witnesses and commits to all-zeros strings instead of the witnesses, the values
committed to by the adversary do not change adversely. Conceptually the difficulty is in separating the effect
of the modifications in the left sessions from those in the right sessions. The technical difficulties stem from
the somewhat intricate nature of PRS simulation which causes change at some point in the simulation to
propagate in subtle ways.

Before proceeding we point out, intuitively, why wedo not requireconcurrentnon-malleability for
ComNM: all we require is that, inH4, for each right hand session, the commitment made usingComNM

continues to be a witness, if it used to be a witness inH3; wedo notrequire that the entire set of committed
values remain indistinguishable jointly.

We move fromH3 to H4 using a carefully designed series of hybrid simulators. To describe these
hybrids, first we introduce some notation. In the PRS simulation consider numbering (in order) all the
occurrences of first message (FM) in the Phase IVComNM in the left hand side sessions. Note that in a full
PRS execution, due to the look-aheads, we may have multiple FMs being sent by the same left hand side
prover (though only one in each thread). Further, in the simulation, for anyi, the left hand prover sending
FMi is a random variable with support on allmL provers: this is because in each thread, the adversary
dynamically schedulesthe protocol sessions based on the history of messages in the thread (and its random
tape, which we have fixed). We shall denote the index of the left hand prover sending FMi by p(i).

Consider a FM and all threads passing through it (i.e., all threads which share a prefix containing this
FM). Suppose this FM belongs to a left hand session with proverPj . In each of the threads, the session with
Pj may go on to reach Phase VsZKAOK. We will refer to these instances ofsZKAOK as “belonging” to
this particular FM.

Now we can describe our intermediate hybridsH̃i:1 andH̃i:2. We defineH̃0:2 to beH3 and letH4 be
H̃N :2, whereN is an upperbound on the number of FMs in the PRS schedule (N = O((mLt(k))2) suffices).
For i = 1, . . . , N , the simulatorsH̃i:1 andH̃i:2 are as follows:

H̃i:1: Exactly likeH̃i−1:2, except that for all thesZKAOK belonging to FMi, the prover will use the corre-
sponding PRS secret as the witness (instead of usingwp(i)). If the PRS secret is not available, then

14

Main Thread

A Look-Ahead Thread

FM1

FM2

FM3
FM4

FM5

FM6

A

B

C

D

Z

E

Figure 1: A schematic representation of the threads in a PRS simulation. Here the segment AB represents
the first thread and AZ the last or main thread (highlighted with dotted lines). AB, AC, AD, AE are all
look-ahead threads. Also marked are points where the FMs (first messages of Phase IVComNM fromA to
the right hand side verifiers) occurred during this simulation. Note the order in which FMs are numbered.

15

the simulator fails10.

H̃i:2: Exactly likeH̃i:1, except that in FMi the prover commits to the all-zeros string (instead ofwp(i)) and
continues the execution accordingly.

Fori = 1, . . . , N we define random variables̃ν(i:1) and{b̃(i:1)
` , α̃

(i:1)
` }mR

`=1 andν̃(i:2) and{b̃(i:2)
` , α̃

(i:2)
` }mR

`=1

analogous toν(1) and{b(1)
` , α

(1)
` }mR

`=1. Note that we need to show that

ν̃(0:2) ≡C ν̃(N :2)

∀` (b̃(0:2)
` , α̃

(0:2)
` , y`) ≡C (b̃(N :2)

` , α̃
(N :2)
` , y`).

We do this via the following sequence:

ν̃(i−1:2) ≡C ν̃(i:1) (2)

ν̃(i:1) ≡C ν̃(i:2) (3)

∀` (b̃(i−1:2)
` , α̃

(i−1:2)
` , y`) ≡C (b̃(i:1)

` , α̃
(i:1)
` , y`) (4)

∀` (b̃(i:1)
` , α̃

(i:1)
` , y`) ≡C (b̃(i:2)

` , α̃
(i:2)
` , y`) (5)

Proving Equations (2) and (4): These follow from the fact that the Phase VsZKAOK remains statisti-
cally indistinguishable when the alternate witness is used. However note that in the PRS simulation, indis-
tinguishability does not hold when multiple threads are considered together. But the only way a thread can
affect subsequent threads is through the availability of the PRS secrets at the right points in the simulation.
Recall the refinement mentioned after Lemma 2.2: as the change introduced in each thread is undetectable,
it will still hold that the PRS secrets will be available as required except with negligible probability. Other
than the availability of the PRS secret, each thread is independent of other threads. Thus each individual
thread, and in particular the main thread, continues to be statistically indistinguishable in the simulation by
H̃i−1:2 andH̃i:1. This in turn implies both equations (2) and (4).

Proving Equations (3) and (5): Equation (3) follows from the hiding property ofComNM. To see this we
create a standalone machineM which is identical toH̃i:1, except that on reaching FMi it starts interacting
with an external senderP . First it sendswp(i) to P , and then receives a commitment fromP which it uses

to interact withA, instead of an honest commitment towp(i) asH̃i:1 does. However ifP makes an honest

commitment towp(i) then the(M,P) system is identical tõHi:1. However, ifP makes a commitment to the

all-zeros string, then the(M,P) system is identical tõHi:2. By the hiding property ofComNM the output of
M must be indistinguishable in the two cases, establishing equation (3).

However to prove equation (5), this is not enough, because only the right hand side commitments appear
in the simulated view and not the committed values themselves (which can be distinguishable even when the
commitments themselves are indistinguishable). So now we build a machineM` which will “expose” the
incoming left hand side commitment fromPp(i) and the outgoing right hand side commitment toV`. That
is, M` will interact with an external sender and an external receiver for these commitments, while internally
simulating the rest. Then we shall use the non-malleability property ofComNM to argue that the values
committed to byM` in two experiments – one in whichPp(i) commits towp(i) and another in which to the

all-zeros string – are indistinguishable, and hence so will be the values committed toV` by H̃i:1 andH̃i:2.

10as it would have already failed inH3.

16

The precise argument is slightly more involved. Consider generating the pair of random variables
(b̃(i:1)

` , α̃
(i:1)
`) and (b̃(i:2)

` , α̃
(i:2)
`) as follows: note thatH̃i:1 and H̃i:2 are described identically until FMi.

Let us call this machinẽHi, which we run until reaching FMi. At this point there are three possibilities:

1 Both (b̃(i:1)
` , α̃

(i:1)
`) and (b̃(i:2)

` , α̃
(i:2)
`) are defined – i.e. thè’th right-hand-side interaction already

terminated before we reached FMi. In this case they have identical values.

2 Both α̃
(i:1)
` and α̃

(i:2)
` are defined and they have the same value,α̃

(i)
` . b̃

(i:1)
` and b̃

(i:2)
` are not yet

defined.

3 All of (b̃(i:1)
` , α̃

(i:1)
`) and(b̃(i:2)

` , α̃
(i:2)
`) are undefined.

In the latter two cases we continue the execution ofH̃i:1 andH̃i:2 separately to fully define the random
variables. It is sufficient to argue that the pairs of random variables obtained in these two sub-processes are
indistinguishably distributed.

In the second case this follows from the indistinguishability ofComNM. To see this consider a machine
M` initialized toH̃i, at the point of FMi. It starts off by sendingwp(i) to an external senderP and receives
a commitment to eitherwp(i) or to the all zeros string, and uses this commitment instead of the honest
commitment; then it outputs a bit indicating whetherV` accepted the simulated proof or not, along with
the committed valuẽα(i)

` , which is provided toM` non-uniformily (as it was already fixed). Depending on

the choice made byP , the output is either(b̃(i:1)
` , α̃

(i:1)
`) or (b̃(i:2)

` , α̃
(i:2)
`). SinceM is a (non-uniform) PPT

machine, the hiding property ofComNM implies that these two outputs must be indistinguishable.
In the third case we consider two sub-cases, depending on whether FMi is in the main thread or not. If

FMi is not in the main thread, then the statistical difference in the main thread is negligible. This is because,
as described in the proof of equations (2) and (4), the only way previous threads affect the main thread is
on account of whether all the requisite PRS secrets are available on time during the simulation; but, again
as pointed out above, the refinement of Lemma 2.2 guarantees that the probability of the simulation getting
stuck for want of a PRS secret will remain negligible in bothH̃i:1 andH̃i:2.

Dealing with the remaining sub-case, when FMi appears in the main thread, requires the non-malleability
property ofComNM. Note that at FMi the first message of the right handComNM phase withV` has not yet
started. Then, like before, we construct a machineM ′

`, again initialized toH̃i at the point of FMi, which
starts off by sendingwp(i) to an external senderP and receives a commitment to eitherwp(i) or to the all
zeros string, and uses this commitment instead of the honest commitment. HoweverM ′

` differs fromM` in
the following ways:

• It does not run any look-ahead threads. (For instance, in Figure 1, fori = 1, M ′
` will not run any look-

ahead threads; fori = 6, M ′
` will run all the look-ahead threads except AE.) Note that at the point

FMi, we have thatH̃i would have recorded the PRS secret for all the left hand side preambles which
were already concluded and could go on to be accepted. As for the preambles which are concluded
after the point FMi, if their sessions go on to reach Phase IVComNM, then they will be numbered
FMj for j ≥ i. So for those sessions̃Hi:1 andH̃i:2 do not require the PRS secret to execute the thread.
So there is no need to run any further look-ahead threads.

• The ComNM commitment toV` is “exposed.” That is, the part ofV` which receives theComNM

commitment is not internalized; insteadM ′
` expects this to be an outside party.

• For convenience, we will haveM ′
` output a bit indicating whether in the internal simulationV` ac-

cepted the proof or not.

17

WhenP chooses to commit to the string sent byM ′
`, the entire execution, with an honest external receiver

for the exposed commitment is a statistical simulation of the main thread execution ofH̃i:1, and whenP
chooses to commit to the all-zeros string it is a statistical simulation of the main thread execution ofH̃i:2.
(The only reason for the simulations being not perfect is that inM ′

`, the negligible probability that the PRS
simulation may fail beyond FMi is no longer present, whereas it is present inH̃i:1 andH̃i:2.) Further, in the
first case the output byM ′

` is b̃
(i:1)
` and in the latter̃b(i:2)

` . Now, the non-malleability condition onComNM

implies equation (5).

2.5.2 Relaxing the requirement onComNM

We remark that the (natural) requirement we used, that the first message inComNM be the determining
message, can in fact be removed. This will provide the flexibility of using a protocol based on alternate sta-
tistical binding commitment schemes (like Naor’s scheme [NAO89] in which the first message in the protocol
is a random string from the receiver to the sender, and it is the second message which is the determining
message).

Not having the first message as the determining messageg affects our proof at exactly one point:11 at the
very last case analysis in the proof of Claim 2.6, in constructing the adversaryM ′

` we assumed that it can
be initialized to the point at which FMi occurs in the main thread of̃Hi, and only subsequently does it start
interacting with the external receiver, in the exposed session (i.e.,ComNM session withV`). However, if the
first message ofComNM is not the determining message, the case analyzed should include the possibility that
the commitment to be exposed has already started before FMi occurs, but has not reached its determining
message yet. Then we modifyM ′

` to be initialized to the point where either theComNM session withV`

starts or where FMi occurs in the main thread, whichever occurs first. If the former occurs first,M ′
` needs

to carry out the execution of the look-ahead threadsuntil it reaches FMi. However since it cannot rewind
the external receiver, in the look-ahead threads it must internally simulate the receiver. This is similar to the
situation faced in creating the standalone adversary for extraction in the final stage of buildingS. Indeed,
the condition we used there, namely that the receiver has no private coin until the knowledge-determining
message, implies that the receiver has no private coins until the point where the simulation reaches FMi

(because it occurs before the determining message, which in turn occurs before the KDM). HenceM ′
` can

carry out the simulation of the look-ahead threads internally until it reaches FMi.

3 Impossibility result for concurrent non-malleable general functionalities.

In this section we show that it isimpossibleto extend the result we achieved for zero knowledge for general
functionalities. Specifically, we will show that there is some polynomial-time functionF , such that for
every protocol implementingF , there’s a concurrent attack that can be carried in the real model and cannot
be carried in the ideal mode, even in the case where all honest parties’ inputs are chosen according to some
(correlated) distribution and fixed in advance.

The functionF . The functionF will be a combination of
(
2
1

)
string oblivious transfer and zero knowledge

for a particular language. This is a two-party functionality where only one party (which we call thereceiver)
gets any output. Formally, it is defined as follows:

11There is also a notational difference: we definedp(i) to be the index of the proversendingFMi. Now, depending on whether
FMi is from the committing party or from the receiver,p(i) will be the index of the prover sendingor receiving FMi, respectively.

18

The functionality will be parameterized with a security parametern. Let f : {0, 1}n → {0, 1}n be a
one-way function, define

FZK(w ◦ x, x) =

{
1 x = f(w)
0 otherwise

Forx,w ∈ {0, 1}n, and where◦ denotes concatenation. That isFZK is the ideal zero knowledge function-
ality for theNP-relationRf = {(x,w) : x = f(w)}.

We defineFOT as follows
FOT (x0 ◦ x1, b) = xb

For x0, x1 ∈ {0, 1}n andb ∈ {0, 1}. That is,FOT is the functionality for
(
2
1

)
string oblivious transfer,

where the sender has two strings as inputsx0, x1 ∈ {0, 1}n, the receiver one bitb ∈ {0, 1}, the receiver
learnsxb but notx1−b and the sender learns nothing aboutb.

We defineF to be the function that allows to compute bothFZK andFOT . Formally, it is defined as
follows:

F(i ◦ x ◦ w ◦ x0 ◦ x1, i
′ ◦ x ◦ b) =


FZK(x ◦ w, x) i = i′ = 0
FOT (x0 ◦ x1, b) i = i′ = 1
⊥ otherwise(i 6= i′)

(where⊥ is a value denoting failure).
Let Π be a two-party protocol, where we call one party the sender and the other the receiver. We say that

Π computesF if when both parties follow the protocol’s instructions with inputss andr respectively, the
receiver outputsF(s, r). (To simplify notations, we assume that the valuen is used as the security parameter
of the protocolΠ as well as the input size parameter of the functionality.) We prove the following theorem:

Theorem 3.1. Assume thatf is a one-way functionf and letF be defined as above. LetΠ be any
polynomial-time two party protocol computingF . Then, there’s a polynomialt(·) such that for anyn
there exists a distributionDΠ on t = t(n) input pairs forΠ, a setting of one party in each oft pairs as
corrupt, and a polynomial functionSECRETthat maps the inputs into{0, 1}n, so that the following hold.

• There exists a polynomial-time adversaryA which controls the corrupt parties (including the schedule
and contents of those parties’ messages) such that in a concurrent execution oft copies ofΠ, with
the parties receiving inputs chosen from the distributionDΠ, the adversaryA outputs the value of
SECRETon the inputs with probability1.

• For any polynomial-time adversarŷA which controls the corrupt parties in an ideal model execution
wherein the parties get access tot copies of the ideal functionalityF , and receive inputs chosen from
the distributionDΠ, the probability thatÂ outputs the value ofSECRETon the inputs is negligible,
the probability taken overDΠ and the coins of̂A.

This is the first result ruling out composable protocols in the plain model for general (possibly non-
black-box) simulation, honest inputs fixed in advance, and without requiring composability also with other
arbitrary protocols.

This result is somewhat surprising since in many previous settings, (UC-security [CLOS02], bounded
composition [L IN03A, PAS04], timing [KLP05], super-polynomial simulation [PS04, BS05]) obtaining a compos-
able zero knowledge protocol implied obtaining a composable protocol for general functionalities. In fact,
there is a natural candidate for such a protocol in the case of oblivious transfer: to transform the Naor-Pinkas
OT protocol [NP99] to handle malicious adversaries we only need one application of zero-knowledge proofs,

19

and in that application the receiver proves a statement that is independent of any messages sent to it by the
prover (and hence can be thought of as secret input that is fixed in advance). Thus, it may seem that com-
bining this protocol with the zero knowledge argument of Section 2 would yield an implementation ofF .
In fact, it may seem that by combining Naor-Pinkas OT with our zero knowledge and Yao’s garbled circuit
protocol [YAO86], we might get a protocol for computinganydeterministic function assuming that the inputs
are fixed in advance, this is because the compiler to ensure security against malicious adversaries, no party
ever needs to use zero knowledge to prove statements that depend on the messages sent by the other party.
Thus, it may seem that we don’t need zero knowledge for adaptively chosen inputs in this case.

However, it turns out this is not the case. The problem in proving the security of this particular protocol
is that when performing the simulation and rewinding the zero-knowledge protocol, we may also rewind
other executions of the OT protocol, which is problematic in the case of an honest sender (as the security
of the OT requires that the receiver will only learn one of the sender’s inputs). Indeed, by the results of
Lindell [L IN04], no black-boxsimulator can work in this case. Nonetheless, when general composition with
arbitrary protocols is not required, the fact that the straightforward black-box simulation does not work does
not mean that there’s no other more clever simulation to prove the security of this protocol. The results of
this section will rule out this possibility as well.

The proof of Theorem 3.1 will proceed in two stages:

1 First, (as warm-up) we will prove that for every protocolΠZK for the zero knowledge functionality
(for the relationRf above), there exists an ideal two-party non-interactive deterministic functionality
FΠ (that depends on the protocolΠZK) such that a single instance ofΠZK executed concurrently
with several ideal calls to copies ofFΠ will not be secure. (In the same sense as Theorem 3.1, that for
inputs chosen from some distribution and fixed in advance, an adversary can learn a secret that she
cannot learn ifΠZK was replaced with the ideal zero knowledge functionality.)

Note that the inputs toFΠ are not adaptively chosen. For the second stage we would requireFΠ to be
non-interactive (i.e., notreactive). If FΠ were allowed to be a reactive functionality or use adaptively
chosen inputs, then this would be the same setting as the results for impossibility of protocols that
are secure under general composition or the “chosen protocol attack.” That is, the results of [L IN03B]
(and in fact implicitly earlier works such as [CAN01, CF01, CKL03, KSW97]) imply that for every zero
knowledge protocolΠZK , we can find aprotocol P (depending onΠZK) such that the concurrent
execution ofΠZK andP is insecure in the above sense. Our main tool in transformingP into a non-
interactive functionalityFΠ is to use Message Authentication Codes (MACs) to force the adversary
to make calls toFΠ in a certain order, imitating an interactive protocol.

The reason we’re not finished is not just becauseFΠ is a “less natural” functionality thanF , but also
– and more importantly – because the functionFΠ can (and will) depend onΠZK in its definition,
its complexity and its input size. To get the negative result that we want, we need to go further and
exhibit a functionalityF that cannot be implemented by anyΠ.

2 The second conceptual stage is to take this scenario of the protocolΠZK and functionalityFΠ and
compile this into a scenario where the only thing executed in the network is one copy of a zero
knowledge protocol and many copies of an OT protocol, with the honest parties’ inputs for these
copies chosen from a set of predefined distributions. We then argue that the previous real-world
attack remains viable in this scenario and (more subtly) that it is still infeasible to perform this attack
if all these copies were replaced by ideal calls to the OT/ZK functionalities. SinceF is a combination
of these functionalities, the result follows.

20

For this stage we will use a variant of Yao’s garbled circuit technique [YAO86]. Note that unlike its
typical usage, we use here this technique to get anegativeresult (this is somewhat similar to what was
done in [BGI+01]’s negative results for software obfuscation).

The overall idea is as follows: We will set up a situation – inboth the ideal and real worlds – which
could potentially allow for the evaluation of any function, using a variant of the garbled circuit tech-
nique and ideal calls to an OT functionality. But, we will set up the honest party inputs in such a way
that the only functions that can be evaluated mimic the functionalityFΠ described above. So here,
the only functionalities are the ZK and OT functionalities, but the predetermined honest party inputs
depend on the specific protocolΠZK . Then, in the real world, the adversary will always succeed in
obtaining a secret, whereas in the ideal world (whereΠZK is not being executed), no adversary can
succeed.

3.1 Proof of Theorem 3.1: First stage.

We now prove the following lemma (this is the formalization of Item 1 from above):

Lemma 3.2. Suppose thatf is a one-way function and letRf be theNP-relation{(x, w) : x = f(w)}. Let
Π be a stand-alone zero-knowledge proof of knowledge for the relationRf with k = k(n) prover messages
(wheren denotes both the security parameter and the length|x| of the statement being proven). Then, there
exists a polynomial-time functionF = FΠ : {0, 1}∗ ×{0, 1}∗ → {0, 1}∗, a distributionD on ({0, 1}∗)k+1,
a functionSECRET: ({0, 1}∗)k+1 → {0, 1}n and a polynomial-time adversaryA such that:

• In a concurrent execution scheduled byA of one copy ofΠ, with A as verifier, andk ideals calls toF
with A providing the second input and receiving the output, if the inputs to the honest parties ared
chosen fromD, thenA learnsSECRET(d) with probability one.

• In any execution ofk copies of the ideal calls toF and a copy of the ideal functionalityFZK , with
honest inputsd chosen fromD, a polynomial time adversarŷA will only output SECRET(d) with
negligible probability.

Proof. (Sketch) Before proving the lemma, let us recall why there do not exist (in the plain model) protocols
for zero-knowledge (proof of knowledge) that are secure against achosen protocol attack. Let Π be a
standalone zero knowledge proof of knowledge protocol. Think of the following scenario involving four
parties Alice, Bob, Charlie and David: there’s a public valuex and both Alice and David share a secret
valuew such thatx = f(w). We consider two simultaneous executions: in one execution Alice will prove
to Bob that she knows such a valuew using the ZKPOK protocolΠ. In the second execution Charlie and
David will run the protocolΠ′ defined as follows: At first Charlie will prove to David that he knows such a
valuew using the protocolΠ.12 Then, if this succeeds, David will sendw to Charlie.

It’s clear that if Bob and Charlie are coordinating a malicious attack, then they can learn the valuew.
However, if the execution ofΠ was replaced with an ideal call to the functionalityFZK , then it does not help
the adversary in executingΠ. In that case, sinceΠ is a proof of knowledge andf is a one-way function,
it follows that Charlie would not be able to runΠ with David, and so will not learn the valuew. This
is basically the proof that there’s no zero knowledge proof of knowledge protocolΠ that is secure under
general composition/chosen protocol attack.

12If the protocolΠ refers to the identities of the parties, we define that when executing this internal copy ofΠ, Charlie will use
the identity “Alice” and David will use the identity “Bob”. Note that we’re free to defineΠ′ to depend onΠ in an arbitrary way.

21

We now want to convertΠ′ from a protocol intok ideal calls to a functionalityF which uses inputs
that are chosen from some distribution and fixed in advance. The natural thing is to simply use forF the
next message functionof David’s strategy in the protocolΠ′. That is, the inputs will bew, a stringr that is
chosen at random, and on input a transcriptt = 〈d1, c1, d2, c2, . . . , di, ci〉 of Charlie and David’s messages
in the firsti rounds ofΠ′, the functionF will output David’si + 1th message in this protocol given that his
input isw, his random coins arer, and the transcript until that point wast. If we use thisF then certainly in
a coordinated attack, Bob and Charlie can emulate the attack above and learn the valuew. However, it’s not
at all clear that this is not possible in the ideal world as well— indeed ifΠ is a black-box zero knowledge
proof, given the ability to query the next-message function of David one can certainly obtain an accepting
transcript where David is the verifier.

To make the attack infeasible in the ideal model, we add to the inputs a keys for a message authentication
(MAC) scheme. Now, given such a transcriptt = 〈d1, c1, d2, c2, . . . , di, ci〉, the functionF will request also
a valid tag/signature (with respect to the keys) on the prefix〈d1, c1, d2, c2, . . . , di〉, and will output not only
di+1 but also a tag on〈d1, c1, d2, c2, . . . , di, ci, di+1〉. It’s not hard to see that now, given onlyk queries to
F , it’s infeasible for a polynomial-time adversary to obtainw without essentially interacting withΠ′ in a
straightline manner (i.e., submittingk queries of increasing and consistent transcripts). Thus, in this ideal
world, the soundness/proof of knowledge property ofΠ implies that the probability that an adversary outputs
w is negligible.

3.2 Proof of Theorem 3.1: Second stage.

We will now finish the proof of Theorem 3.1. As mentioned above, the idea would be to “compile” the
scenario of the first stage into a scenario where, in the real model, the only protocol executed is the oblivious
transfer protocol (apart from one execution of the ZKPOK protocolΠZK). We do this using a modification
of Yao’s “garbled circuit” method following the intuition given above. We note that we will not be using
Lemma 3.2 as a black-box but rather will follow the proof of this lemma to prove the theorem.

Yao’s garbled circuit technique. We now sketch Yao’s method. As this method is well known we focus
on our notations and particular conventions. See [LP04] (whose notations we follow) for a full description of
the method and its analysis. We will have two parties, asenderand areceiver. Letn be a security parameter
(we will use

(
2
1

)
string OT for strings of length2n). The sender holds a circuitC (where|C| is of some

polynomial size, and this size and the topological structure of the circuit are not secret), and the receiver
holds an inputx. The goal is for the receiver to learnC(x) but nothing else about the circuitC. For every
wire w in the circuit and bitσ ∈ {0, 1} we define a valuekσ

w which is chosen uniformly at random from
{0, 1}n. The garbled circuit consists of tables that allow you for any gateg (whereg : {0, 1} × {0, 1} →
{0, 1}) that takes input wiresw1, w2 and has one output wirew3, to computekg(σ1,σ2)

w3 from kσ1
w1

andkσ2
w2

.
The table is obtained by taking a private-key CPA-secure encryption scheme, and having for each gateg a
table with four rows: for everyσ1, σ2 ∈ {0, 1} we place the encryption ofkg(σ1,σ2)

w3 ◦ 0n with the keykσ1
w1

and then with the keykσ2
w2

(where◦ denotes concatenation).13

Typically, for every output wirew of the circuit, one also supplies a way to computeσ from kσ
w. That

is, for the tables corresponding to output gates, the valueσ (appropriately padded) is encrypted instead of
the valuekσ

w. However, we will do something slightly different: we will XOR the output with some secret
stringz ∈ {0, 1}m (wherem denotes the number of outputs). That is, we will encrypt in these tables the

13The reason for padding with zeros is to make sure that when trying to decrypt with the two keys all rows in the table, the
receiver will know when it found the right row.

22

valueσ ⊕ zw, wherew is the label of that output wire. We will choose the stringz to beG(s) where
G : {0, 1}n → {0, 1}m is a pseudorandom generator ands is chosen uniformly at random from{0, 1}n.

The Yao protocol. The protocol is typically as follows: the sender sends the garbled circuit over to the
receiver, but keeps to itself the keys corresponding to each of the input wires. Then, by performingm′

executions of string
(
2
1

)
OT (wherem′ is the number of input wires), for each input wirew the receiver

chooses to get eitherk0
w or k1

w, according to the value in thewth position of its inputx. We will make the
following changes:

1 Instead of sending the garbled circuit to the receiver, we will assume that the garbled circuit is an
input that is given to the receiver. We note that we will always have the receiver as a corrupted party.
Thus, we think of the scenario where the inputs are chosen from a distribution (not a product distri-
bution), and these inputs are given to both the honest parties and corrupted parties. This distribution
will provide the honest parties with the keys for the input wires, and the corrupted parties with the
corresponding garbled circuit. Note that this means that there’s no issue of trust that the circuit is
indeed garbled correctly.

2 We will selects1, . . . , sm′ uniformly at random from{0, 1}n subject to the conditions1 ⊕ s2 ⊕ · · · ⊕
sm′ = s (recall that the “mask” to the outputs isz = G(s)). In the OT, for every input wirew, the
sender will use as the two input stringsk0

w ◦ sw andk1
w ◦ sw. The idea is that before concludingall

the copies of the OT corresponding to this circuit, the receiver will not get any information about the
output. On the other hand, we note that by [YAO86] (see [LP04] for details), once a corrupted party
finishes all OT’s needed to obtain input strings corresponding to its chosen inputa, it will learn only
the output ofC(x), and nothing more.

Note that this means that the only interaction between the sender and receiver is performing them′

copies of the OT.

Our compiler. Let Π be a protocol that implementsF . We can derive fromΠ protocolsΠZK andΠOT

for zero-knowledge (for the relationRf) and oblivious transfer, respectively, by simply having the sender
and receiver choose the appropriate value ofi. FromΠZK , let F = FΠZK

be the function obtained from
the proof of Lemma 3.2. Ifk is the number of prover messages forΠZK , andm is the length of the input
to F , we now compile thek copies ofF from the proof of Lemma 3.2 following the procedure above into
km copies of the OT functionality (which is a subfunctionality ofF) with inputs as above. Consider an
execution of one copy ofΠZK (with inputsx = f(w) for w chosen at random) concurrently with thesekm
copies ofΠOT (or equivalently, execution ofkm+1 copies ofΠ) where the corrupt parties are the receivers
in all cases (i.e., the verifier in the zero-knowledge, and the receiver in the OT). We make the following
claims:

• In the real world, there is an adversary which can learnw with probability one.

This follows by combining the adversary strategy given in the proof of Lemma 3.2 – in which the
adversary needs access tok evaluations of theF functionality to learnw – with the Yao protocol –
which exactly allows the adversary to evaluate theF functionality. Thus, this scenario allows the
adversary to obtain the valuew with probability one.

23

• In the ideal world, no adversary can learnw with non-negligible probability.

In the ideal world the adversary basically gets one call to the ZK functionalityFZK andkm calls to
the OT functionalityFOT (with honest parties’ inputs chosen as described above) – note that since
both parties must agree on how to useF , if the adversary tries to useFZK more than once, orFOT

km + 1 times, then this will result in the adversary getting the output⊥. The adversary gains no
information (in an information-theoretic sense) aboutw from its one interaction withFZK . However,
it’s more tricky to show that it won’t learn anything from the OT calls.

The adversary has access tokm copies ofFOT , and we divide these copies to setsS1, . . . , Sk, where
|Si| = m for all i, and contains all copies ofFOT corresponding to a single garbled circuit. From
the proof of security of Yao’s protocol (see [LP04] for details), we can show that the adversary gets
no information (in a complexity-theoretic sense) about the circuit except for its value on the outputs
corresponding to the adversaries choice as a receiver in the OT executions. Furthermore, because
of the secret-shared “mask” we use, before the adversary queriesall the copies ofSi she gets no
information about the output of theith circuit. Assume the setsS1, . . . , Sk are ordered according to
the timing of the query to the last copy of the OT in each setSi. We can simulate the adversary by
an adversary in the model where all the invocations in the setSi are replaced with one invocation to
the functionalityF (the simulator will provide random answers until the last query). However, this is
exactly the model of Lemma 3.2 and so, as in that case, the adversary will only learnw with negligible
probability.

4 Conclusions

In this paper, we show how to construct the first concurrent non-malleable zero-knowledge protocol, assum-
ing only that regular one-way functions exist. We also provide a new impossibility result regarding general
functionalities, which together with [L IN03B, L IN04], gives us a better idea of where the border is between what
is and is not possible in the plain model. An unfortunate consequence of the impossibility results is that we
must move to alternative definitions of security for general functionalities if we want to obtain composable
protocols for broader classes of functionality in the setting where there are no trusted parties or setup. One
such definition was proposed in [PS04], by allowing super-polynomial time simulation. The main limitation
of this definitional framework concerns functionalities whosedefinitionsinvolve cryptographic primitives
(or otherwise rely on computational complexity assumptions to be meaningful). For such functionalities,
building on our techniques, one could hope to define and achieve security in a setting that a polynomial-time
simulator is given extra powers, such as limited rewinding of the ideal model. (Of course, when relaxing
security care must be taken that the definition still provides meaningful security guarantees for applications.)
In fact, one may hope for a general clean definition that would provide the best of all worlds: for function-
alities such as zero-knowledge provide full self composition, for functionalities where this is not possible
provide some relaxed notions of security, and perhaps for functionalities that take as extra inputs a common
reference string or input for a hard problem provide UC security or quasi-polynomial security. That is, there
is hope for a clean meta-theorem from which one could derive results such as [CLOS02, BS05] and our current
result by just plugging in the appropriate functionality.

24

References
[BAR01] B. Barak. How to go beyond the black-box simulation barrier. InProc.42nd FOCS, pages 106–115, 2001.

[BAR02] B. Barak. Constant-Round Coin-Tossing With a Man in the Middle or Realizing the Shared Random String Model.
In Proc.43rd FOCS, 2002.

[BCNP04] B. Barak, R. Canetti, J. B. Nielsen, and R. Pass. Universally Composable Protocols with Relaxed Set-Up Assumptions.
In Proc.45th FOCS, pages 186–195, 2004.

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K. Yang. On the (Im)possibility of
Obfuscating Programs. InCrypto ’01, pages 1–18, 2001.

[BS05] B. Barak and A. Sahai. How to Play Almost Any Mental Game Over the Net - Concurrent Composition Using
Super-Polynomial Simulation. InProc.46th FOCS, 2005.

[BOGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness Theorems for Non-Cryptographic Fault-Tolerant Dis-
tributed Computation. InProc.20th STOC, pages 1–10, 1988.

[BLU87] M. Blum. How to prove a theorem so no one else can claim it. InProceedings of the International Congress of
Mathematicians, pages 1444–1451, 1987.

[CAN01] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In B. Werner, editor,
Proc. 42nd FOCS, pages 136–147, 2001. Preliminary full version available as Cryptology ePrint Archive Report
2000/067.

[CAN05] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. Cryptology ePrint
Archive, Report 2000/067, 2005. Revised version of [CAN01].

[CF01] R. Canetti and M. Fischlin. Universally Composable Commitments. Report 2001/055, Cryptology ePrint Archive,
July 2001. Extended abstract appeared in CRYPTO 2001.

[CKPR01] R. Canetti, J. Kilian, E. Petrank, and A. Rosen. Black-Box Concurrent Zero-Knowledge Requires (Almost) Logarith-
mically Many Rounds.SIAM Journal on Computing, 32(1):1–47, Feb. 2003. Preliminary version in STOC ’01.

[CKL03] R. Canetti, E. Kushilevitz, and Y. Lindell. On the Limitations of Universally Composable Two-Party Computation
Without Set-up Assumptions. InEurocrypt ’03, 2003.

[CLOS02] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally Composable Two-party Computation. InProc.34th
STOC, pages 494–503, 2002.

[DPP97] I. Damg̊ard, T. P. Pedersen, and B. Pfitzmann. On the Existence of Statistically Hiding Bit Commitment Schemes and
Fail-Stop Signatures.J. Cryptology, 10(3):163–194, 1997.

[DDN91] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography.SIAM J. Comput., 30(2):391–437 (electronic), 2000.
Preliminary version in STOC 1991.

[DNS98] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero Knowledge. InProc.30th STOC, pages 409–418, 1998.

[GM00] J. A. Garay and P. D. MacKenzie. Concurrent Oblivious Transfer. InProc.41st FOCS, pages 314–324, 2000.

[GOL01] O. Goldreich.Foundations of Cryptography: Basic Tools. Cambridge University Press, 2001. Earlier version available
onhttp://www.wisdom.weizmann.ac.il/˜oded/frag.html .

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof systems.SIAM J. Comput.,
18(1):186–208, 1989. Preliminary version in STOC’ 85.

[GMR84] S. Goldwasser, S. Micali, and R. L. Rivest. A Digital Signature Scheme Secure Against Adaptive Chosen-Message
Attacks.SIAM J. Comput., 17(2):281–308, Apr. 1988. Preliminary version in FOCS’ 84.

[HHK+05] I. Haitner, O. Horvitz, J. Katz, C.-Y. Koo, R. Morselli, and R. Shaltiel. Reducing Complexity Assumptions for
Statistically-Hiding Commitment. InEUROCRYPT, pages 58–77, 2005.

[HM96] S. Halevi and S. Micali. Practical and Provably-Secure Commitment Schemes from Collision-Free Hashing. In
CRYPTO, pages 201–215, 1996.

[KLP05] Y. T. Kalai, Y. Lindell, and M. Prabhakaran. Concurrent General Composition of Secure Protocols in the Timing
Model. InProc.37th STOC, pages 644–653, 2005.

[KSW97] J. Kelsey, B. Schneier, and D. Wagner. Protocol Interactions and the Chosen Protocol Attack. InProc. 1997 Security
Protocols Workshop, pages 91–104, 1997. Appeared in LNCS vol. 1361.

25

[KP01] J. Kilian and E. Petrank. Concurrent and resettable zero-knowledge in poly-logarithm rounds. InProc.33th STOC,
pages 560–569, 2001. Preliminary full version published as cryptology ePrint report 2000/013.

[LP04] Lindell and Pinkas. A Proof of Yao’s Protocol for Secure Two-Party Computation. InECCCTR: Electronic Collo-
quium on Computational Complexity, technical reports, 2004.

[L IN03A] Y. Lindell. Bounded-concurrent secure two-party computation without setup assumptions. InProc.35th STOC, pages
683–692, 2003.

[L IN03B] Y. Lindell. General Composition and Universal Composability in Secure Multi-Party Computation. InProc. 44th
FOCS, pages 394–403, 2003.

[L IN04] Y. Lindell. Lower Bounds for Concurrent Self Composition. InTheory of Cryptography Conference (TCC), volume 1,
pages 203–222, 2004.

[MMY06] T. Malkin, R. Moriarty, and N. Yakovenko. Generalized Environmental Security from Number Theoretic Assumptions.
In TCC ’05, 2006.

[NAO89] M. Naor. Bit Commitment Using Pseudorandomness.Journal of Cryptology, 4(2):151–158, 1991. Preliminary
version in CRYPTO’ 89.

[NOVY98] M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yung. Perfect Zero-Knowledge Arguments forP Using Any One-Way
Permutation.J. Cryptology, 11(2):87–108, 1998.

[NP99] M. Naor and B. Pinkas. Oblivious Transfer with Adaptive Queries. InCrypto ’99, pages 573–590, 1999.

[PAS03] R. Pass. Simulation in Quasi-Polynomial Time, and Its Application to Protocol Composition. InEurocrypt ’03, 2003.

[PAS04] R. Pass. Bounded-concurrent secure multi-party computation with a dishonest majority. InProc.36th STOC, pages
232–241, 2004.

[PR03] R. Pass and A. Rosen. Bounded-Concurrent Secure Two-Party Computation in a Constant Number of Rounds. In
Proc.44th FOCS, 2003.

[PR05A] R. Pass and A. Rosen. Concurrent Non-Malleable Commitments. InProc.46th FOCS, 2005.

[PR05B] R. Pass and A. Rosen. New and Improved Constructions of Non-Malleable Cryptographic Protocols. InProc.37th
STOC, 2005.

[PRA05] M. Prabhakaran.New Notions of Security. PhD thesis, Department of Computer Science, Princeton University,
Princeton, NJ, USA, 2005.

[PRS02] M. Prabhakaran, A. Rosen, and A. Sahai. Concurrent Zero Knowledge with Logarithmic Round-Complexity. InProc.
43rd FOCS, 2002.

[PS04] M. Prabhakaran and A. Sahai. New notions of security: achieving universal composability without trusted setup. In
Proc.36th STOC, pages 242–251, 2004.

[RK99] R. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge Proofs. InEurocrypt ’99, pages
415–432, 1999.

[SAH99] A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. InProc. 40th
FOCS, pages 543–553, 1999.

[YAO86] A. C. Yao. How to Generate and Exchange Secrets. InProc.27th FOCS, pages 162–167, 1986.

26

