
Modeling Computational Security in Long-Lived Systems ? ??

Ran Canetti1,2, Ling Cheung2, Dilsun Kaynar3,
Nancy Lynch2, and Olivier Pereira4

1 IBM T. J. Watson Research Center
2 Massachusetts Institute of Technology

3 Carnegie Mellon University
4 Université catholique de Louvain

Abstract. For many cryptographic protocols, security relies on the assumption that adversarial entities have lim-
ited computational power. This type of security degrades progressively over the lifetime of a protocol. However,
some cryptographic services, such as timestamping services or digital archives, are long-lived in nature; they are
expected to be secure and operational for a very long time (i.e., super-polynomial). In such cases, security cannot
be guaranteed in the traditional sense: a computationally secure protocol may become insecure if the attacker has a
super-polynomial number of interactions with the protocol.
This paper proposes a new paradigm for the analysis of long-lived security protocols. We allow entities to be active
for a potentially unbounded amount of real time, provided they perform only a polynomial amount of work per unit
of real time. Moreover, the space used by these entities is allocated dynamically and must be polynomially bounded.
We propose a new notion of long-term implementation, which is an adaptation of computational indistinguishability
to the long-lived setting. We show that long-term implementation is preserved under polynomial parallel composi-
tion and exponential sequential composition. We illustrate the use of this new paradigm by analyzing some security
properties of the long-lived timestamping protocol of Haber and Kamat.

1 Introduction

Computational security in long-lived systems: Security properties of cryptographic protocols typically hold only
against resource-bounded adversaries. Consequently, mathematical models for representing and analyzing security of
such protocols usually represent all participants as resource-bounded computational entities. The predominant way
of formalizing such bounds is by representing all entities as time-bounded machines, specifically, polynomial-time
machines (a partial list of works representative of this direction includes [1–5]).

This modeling approach has been successful in capturing the security of protocols for many cryptographic tasks.
However, it has a fundamental limitation: it assumes that the analyzed system runs for only a relatively “short” time.
In particular, since all entities are polynomially-bounded (in the security parameter), the system’s execution must end
after a polynomial amount of time. This type of modeling is inadequate for analyzing security properties of protocols
that are supposed to run for a “long” time, that is, an amount of time that is not bounded by a polynomial.

There are a number of natural tasks for which one would indeed be interested in the behavior of systems that run
for a long time. Furthermore, a number of protocols have been developed for such tasks. However, none of the existing
models for analyzing security against computationally bounded adversaries is adequate for asserting and proving
security properties of protocols for such “long-lived” tasks.

One such task is proactive security [6]. Here, some secret information is distributed among several parties, in a way
that allows the parties to jointly reconstruct the information, while preventing an adversary that breaks into any small
subset of the parties from reconstructing the information. Furthermore, the parties periodically engage in a protocol for
“refreshing” their shares in a way that guarantees secrecy of the information even if all parties are broken into multiple
times, as long as not too many parties are broken into between two refreshes. The overall intention is to provide long-
lived security of the system. Another such task is forward secure signatures [7, 8], where the system runs for a “long”
time, and the signer periodically refreshes its secret key so that an adversary that corrupts the signer cannot forge

? Canetti’s work on this project was supported by NSF award #CFF-0635297 and BSF award #2006317. Cheung and Lynch were
supported by NSF Award #CCR-0326227. Kaynar was supported by US Army Research Office grant #DAAD19-01-1-0485.
Pereira is a Research Associate of the F.R.S.-FNRS and was supported by the Belgian Interuniversity Attraction Pole P6/26
BCRYPT.

?? Extended abstract of this work appears in Proceedings of CONCUR ’08.

signatures that bear time prior to the time of corruption. Forward secure encryption [7, 9] is defined analogously. Yet
another task of the same flavor is timestamping [10–12]. Although the literature contains protocols for these long-lived
tasks, we do not currently have the analytical tools to formulate and prove interesting assertions about their security.

Related work: A first suggestion for an approach might be to use existing models, such as the PPT calculus [13],
the Reactive Simulatability [14], or the Universally Composable security frameworks [3], with a sufficiently large
value of the security parameter. However, this would be too limited for our purpose in that it would force protocols to
protect against an overly powerful adversary even in the short run, while not providing any useful information in the
long run. Similarly, turning to information theoretic security notions is not appropriate in our case because unbounded
adversaries would be able to break computationally secure schemes instantaneously. We are interested in a notion of
security that can protect protocols against an adversary that runs for a long time, but is only “reasonably powerful” at
any point in time.

Recently, Müller-Quade and Unruh proposed a notion of long-term security for cryptographic protocols [15].
However, they consider adversaries that try to derive information from the protocol transcript after protocol conclusion.
This work does not consider long-lived protocol execution and, in particular, the adversary of [15] has polynomially
bounded interactions with the protocol parties, which is not suitable for the analysis of long-lived tasks such as those
we described above.

Our approach: In this paper, we propose a new mathematical model for analyzing the security of such long-lived sys-
tems. To the best of our knowledge our work is the first one to tackle the issue of modeling computational security in
long-lived systems. Our understanding of a long-lived system is that some protocol parties, including adversaries, may
be active for an unbounded amount of real time, subject to the condition that only a polynomial amount of work can be
done per unit of real time. Other parties may be active for only a short time, as in traditional settings. Thus, the adver-
sary’s interaction with the system is unbounded, and the adversary may perform an unbounded number of computation
steps during the entire protocol execution. This renders traditional security notions insufficient: computationally and
even statistically secure protocols may fail if the adversary has unbounded interactions with the protocol.

Modeling long-lived systems requires significant departures from standard cryptographic modeling. First and fore-
most, unbounded entities cannot be modeled as probabilistic polynomial time (PPT) Turing machines. In search of
a suitable alternative, we see the need to distinguish between two types of unbounded computation: steps performed
steadily over a long period of time, versus those performed very rapidly in a short amount of time. The former conforms
with our understanding of boundedness, while the latter does not. Guided by this intuition, we introduce real time ex-
plicitly into a basic probabilistic automata model, the Task-PIOA model [5], and impose computational restrictions in
terms of rates, i.e., number of computation steps per unit of real time.

Another interesting challenge is the restriction on space, which traditionally is not an issue because PPT Turing
machines can, by their nature, access only a polynomially bounded amount of space. In the long-lived setting, space
restriction warrants explicit consideration. During the lifetime of a long-lived security protocol, we expect some com-
ponents to die and other new ones to become active, for example, due to the use of cryptographic primitives that have
a shorter life time than the protocol itself. Therefore, we find it important to be able to model dynamic allocation of
space. We achieve this by restricting the use of state variables. In particular, all state variables of a dormant entity
(either not yet invoked or already dead) are set to a special null value ⊥. A system is regarded as bounded only if,
at any point in its execution, only a bounded amount of space is needed to maintain all variables with non-⊥ values.
For example, a sequential composition (in the temporal sense) of an unbounded number of entities is bounded if each
entity uses a bounded amount of space.

Having appropriate restrictions on space and computation rates, we then define a new long-term implementation
relation,≤neg,pt, for long-lived systems. This is intended to extend the familiar notion of computational indistinguisha-
bility, where two systems (real and ideal) are deemed equivalent if their behaviors are indistinguishable from the point
of view of a computationally bounded environment. However, notice that, in the long-lived setting, an environment
with super-polynomial run time can typically distinguish the two systems trivially, e.g., by launching brute force at-
tacks. This is true even if the environment has bounded computation rate. Therefore, our definition cannot rule out
significant degradation of security in the overall lifetime of a system. Instead, we require that the rate of degradation is
small at any point in time; in other words, the probability of a new successful attack during any polynomial-bounded
window of time remains bounded during the lifetime of the system.

To capture this intuition, we introduce a new type of ideal system, one that includes designated “failure” steps
that change its behavior to allow specified forms of attack. For example, a failure step might represent the release of

a key, or a weakening of the criteria for verifying a signature. Typically, a failure step will affect only aspects of the
ideal system involving current activity, e.g., the use of currently-active keys. In particular, if the ideal system is itself a
composition of components, some of which are short-lived, the failure steps will generally affect only those short-lived
components that are currently active. If failure steps stop by some time t, no new modifications of the specified ideal
system behavior will occur; in particular, no failures will be considered for short-lived ideal components that awaken
after time t. However (and seemingly unavoidably), the effects of old failure steps may persist and propagate forever.
The ideal system specifies what effects these old failures may have. In this way, the ideal system specifies a form of
“damage control” for the effects of old failures.

Our long-term implementation relation ≤neg,pt requires that the real system approximates the ideal’s system’s
handling of failures. More precisely, we quantify over all real time points t and require that the real and ideal systems
are computationally indistinguishable up to time t + q (where q is polynomial in the security parameter), even if no
failures steps are taken by the ideal system in the interval [t, t+ q]. Notice that we do allow failure steps before time t.
This expresses the idea that, despite any security breaches that may have occurred before time t, the success probability
of a fresh attack in the interval [t, t + q] is small. Our formal definition of ≤neg,pt includes one more generalization:
it considers failure steps in the real system as well as the ideal system, in both cases before the same real time t. This
natural extension is intended to allow repeated use of≤neg,pt, in verifying protocols using several levels of abstraction.

We show that ≤neg,pt is transitive, and is preserved under the operations of polynomial parallel composition and
exponential sequential composition. The sequential composition result highlights the power of our model to formulate
and prove properties of an exponential number of entities in a meaningful way.

Example: Digital timestamping: As a proof of concept, we analyze some security properties of the digital timestamp-
ing protocol of Haber et al. [10–12], which was designed to address the problem of content integrity in long-term
digital archives. In a nutshell, a digital timestamping scheme takes as input a document d at a specific time t0, and
produces a certificate c that can be used later to verify the existence of d at time t0. The security requirement is that
timestamp certificates are difficult to forge. Haber et al. note that it is inadvisable to use a single digital signature
scheme to generate all timestamp certificates, even if signing keys are refreshed periodically. This is because, over
time, any single signature scheme may be weakened due to advances in algorithmic research and/or discovery of vul-
nerabilities. Haber et al. propose a solution in which timestamps must be renewed periodically by generating a new
certificate for the pair 〈d, c〉 using a new signature scheme. Thus, even if the signature scheme used to generate c is
broken in the future, the new certificate c′ still provides evidence that d existed at the time t0 stated in the original
certificate c.

We model the protocol of Haber et al. as the composition of a dispatcher component and a sequence of signature
services. Each signature service “wakes up” at a certain time and is active for a specified amount of time before
becoming dormant again. This can be viewed as a regular update of the signature service, which may entail a simple
refresh of the signing key, or the adoption of a new signing algorithm. The dispatcher component accepts various
timestamp requests and forwards them to the appropriate signature service. We show that the composition of the
dispatcher and the signature services is indistinguishable from an ideal system, consisting of the same dispatcher
composed with ideal signature functionalities. Specifically, this guarantees that the probability of a new forgery is
small at any given point in time, regardless of any forgeries that may have happened in the past.

2 Task-PIOAs

We build our new framework using task-PIOAs [5], which are a version of Probabilistic Automata [16], augmented
with an oblivious scheduling mechanism based on tasks. A task is a set of related actions (e.g., actions representing the
same activity but with different parameters). We view tasks as basic groupings of events, both for real time scheduling
and for imposing computational bounds (cf. Sections 3 and 4). In this section, we review basic notations related to
task-PIOAs.

Notation: Given a set S, let Disc(S) denote the set of discrete probability measures on S. For s ∈ S, let δ(s) denote
the Dirac measure on s, i.e., δ(s)(s) = 1. Let V be a set of variables. Each v ∈ V is associated with a (static) type
type(v), which is the set of all possible values of v. We assume that type(v) is countable and contains the special
symbol⊥. A valuation s for V is a function mapping every v ∈ V to a value in type(v). The set of all valuations for V
is denoted val(V). Given V ′ ⊆ V , a valuation s′ for V ′ is sometimes referred to as a partial valuation for V . Observe
that s′ induces a (full) valuation ιV (s′) for V , by assigning ⊥ to every v 6∈ V ′. Finally, for any set S with ⊥ 6∈ S, we
write S⊥ := S ∪ {⊥}.

PIOA: We define a probabilistic input/output automaton (PIOA) to be a tuple A = 〈V, S, sinit, I, O,H,∆〉, where:
(i) V is a set of state variables and S ⊆ val(V) is a set of states;

(ii) sinit ∈ S is the initial state;
(iii) I , O and H are countable and pairwise disjoint sets of actions, referred to as input, output and hidden actions,

respectively;
(iv) ∆ ⊆ S × (I ∪O ∪H)× Disc(S) is a transition relation.

The set Act := I ∪ O ∪ H is the action alphabet of A. If I = ∅, then A is said to be closed. The set of external
actions ofA is I ∪O and the set of locally controlled actions is O ∪H . An execution is a sequence α = q0a1q1a2 . . .
of alternating states and actions where q0 = sinit and, for each 〈qi, ai+1, qi+1〉, there is a transition 〈qi, ai+1, µ〉 ∈ ∆
with qi+1 ∈ Support(µ). A sequence obtained by restricting an execution of A to external actions is called a trace.
We write s.v for the value of variable v in state s. An action a is enabled in a state s if 〈s, a, µ〉 ∈ ∆ for some µ. We
require that A satisfy the following conditions.

– Input Enabling: For every s ∈ S and a ∈ I , a is enabled in s.
– Transition Determinism: For every s ∈ S and a ∈ Act , there is at most one µ ∈ Disc(S) with 〈s, a, µ〉 ∈ ∆. We

write ∆(s, a) for such µ, if it exists.
Parallel composition for PIOAs is based on synchronization of shared actions. PIOAs A1 and A2 are said to be

compatible if Vi ∩ Vj = Act i ∩Hj = Oi ∩ Oj = ∅ whenever i 6= j. In that case, we define their composition
A1‖A2 to be 〈V1 ∪ V2, S1 × S2, 〈sinit

1 , sinit
2 〉, (I1 ∪ I2) \ (O1 ∪ O2), O1 ∪ O2, H1 ∪ H2, ∆〉, where ∆ is the set of

triples 〈〈s1, s2〉, a, µ1 × µ2〉 satisfying: (i) a is enabled in some si, and (ii) for every i, if a ∈ Act i, then 〈si, a, µi〉 ∈
∆i, otherwise µi = δ(si). It is easy to check that input enabling and transition determinism are preserved under
composition. Moreover, the definition of composition can be generalized to any finite number of components.

Task-PIOA: To resolve nondeterminism, we make use of the notion of tasks introduced in [17, 5]. Formally, a task-
PIOA is a pair 〈A,R〉 where A is a PIOA and R is a partition of the locally-controlled actions of A. The equivalence
classes in R are called tasks. For notational simplicity, we often omit R and refer to the task-PIOA A. The following
additional axiom is assumed.

– Action Determinism: For every state s and every task T , at most one action a ∈ T is enabled in s.
Unless otherwise stated, terminologies are inherited from the PIOA setting. For instance, if some a ∈ T is enabled in
a state s, then T is said to be enabled in s.

Example 1 (Clock automaton). Figure 1 describes a simple task-PIOA Clock(T), which has a tick(t) output action for
every t in some discrete time domain T. For concreteness, we assume that T = N, and write simply Clock. Clock has a
single task tick, consisting of all tick(t) actions. These clock ticks are produced in order, for t = 1, 2, In Section 3,
we will define a mechanism that will ensure that each tick(t) occurs exactly at real time t.

Clock(T)

Signature

Input:
none

Output:
tick(t : T), t > 0

Tasks
tick = {tick(∗)}

States
count ∈ T, initially 0

Transitions
tick(t)
Precondition:

count = t− 1
Effect:

count := t

Fig. 1. Task-PIOA Code for Clock(T)

Operations: Given compatible task-PIOAs A1 and A2, we define their composition to be 〈A1‖A2,R1 ∪ R2〉. Note
that R1 ∪ R2 is an equivalence relation because compatibility requires disjoint sets of locally controlled actions.
Moreover, it is easy to check that action determinism is preserved under composition.

We also define a hiding operator: given A = 〈V, S, sinit, I, O,H,∆〉 and B ⊆ O, hide(A, B) is the task-PIOA
given by 〈V, S, sinit, I, O′, H ′, ∆〉, whereO′ = O\B andH ′ = H∪B. This prevents other PIOAs from synchronizing
with A via actions in B: any PIOA with an action in B in its signature is no longer compatible with A.

Executions and traces: A task schedule for a closed task-PIOA 〈A,R〉 is a finite or infinite sequence ρ = T1, T2, . . .
of tasks inR. This induces a well-defined run of A as follows.

(i) From the start state sinit, we apply the first task T1: due to action- and transition-determinism, T1 specifies at
most one transition from sinit; if such a transition exists, it is taken, otherwise nothing happens.

(ii) Repeat with remaining Ti’s.
Such a run gives rise to a unique probabilistic execution, which is a probability distribution over executions in A.
For finite ρ, let lstate(A, ρ) denote the state distribution of A after executing according to ρ. A state s is said to be
reachable under ρ if lstate(A, ρ)(s) > 0. Moreover, the probabilistic execution induces a unique trace distribution
tdist(A, ρ), which is a probability distribution over the set of traces of A. We refer the reader to [5] for more details
on these constructions.

3 Real Time Scheduling Constraints

In this section, we describe how to model entities with unbounded lifetime but bounded processing rates. A natural
approach is to introduce real time, so that computational restrictions can be stated in terms of the number of steps
performed per unit real time. Thus, we define a timed task schedule τ for a closed task-PIOA 〈A,R〉 to be a finite or
infinite sequence 〈T1, t1〉, 〈T2, t2〉, . . . such that: Ti ∈ R and ti ∈ R≥0 for every i, and t1, t2, . . . is non-decreasing.
Given a timed task schedule τ = 〈T1, t1〉, 〈T2, t2〉, . . . and t ∈ R≥0, let trunc≥t(τ) denote the result of removing all
pairs 〈Ti, ti〉 with ti ≥ t. The limit time, denoted ltime(τ), is defined as follows.

– If τ is empty, then ltime(τ) := 0.
– If t1, t2, . . . is bounded, then ltime(τ) := limi→∞ ti, otherwise ltime(τ) :=∞.

Following [18], we associate lower and upper real time bounds to each task. If l and u are, respectively, the lower
bound and upper bound for a task T , then the amount of time between consecutive occurrences of T is at least l and at
most u. To limit computational power, we impose a rate bound on the number of occurrences of T within an interval
I , based on the length of I . A burst bound is also included for modeling flexibility.

Formally, a bound map for a task-PIOA 〈A,R〉 is a tuple 〈rate, burst, lb, ub〉 such that: (i) rate, burst, lb : R →
R≥0, (ii) ub : R → R∞>0, and (iii) for all T ∈ R, lb(T) ≤ ub(T). To ensure that rate and ub can be satisfied
simultaneously, we require rate(T) ≥ 1/ ub(T) whenever rate(T) 6= 0 and ub(T) 6= ∞. From this point on, we
assume that every task-PIOA is associated with a particular bound map.

Given a timed schedule τ and a task T , let projT (τ) denote the result of removing all pairs 〈Ti, ti〉 with Ti 6= T .
Let I be any left-closed interval with left endpoint 0. We say that τ is valid for the interval I (under a bound map
〈rate, burst, lb, ub〉) if the following hold for every task T .

(i) If the pair 〈T, t〉 appears in τ , then t ∈ I .
(ii) If lb(T) > 0, then: (a) if 〈T, t〉 is the first element of projT (τ), then t ≥ lb(T); (b) for every interval I ′ of a

non-negative real length less than lb(T), projT (τ) contains at most one element 〈T, t〉 with t ∈ I ′.
(iii) If ub(T) 6=∞, then, for every interval I ′ ⊆ I of a non-negative real length greater than ub(T), projT (τ) contains

at least one element 〈T, t〉 with t ∈ I ′.
(iv) For any d ∈ R≥0 and any interval I ′ of length d, projT (τ) contains at most rate(T) · d + burst(T) elements
〈T, t〉 with t ∈ I ′.

We sometimes say that a task schedule τ is valid, without specifying an interval, to mean that it is valid for the
interval [0, ltime(τ)].

Note that every timed schedule τ projects to an untimed schedule ρ by removing all real time information ti,
thereby inducing a trace distribution tdist(A, τ) := tdist(A, ρ). The set of trace distributions induced by all valid
timed schedules for A and 〈rate, burst, lb, ub〉 is denoted TrDists(A, 〈rate, burst, lb, ub〉). Since the bound map is
typically fixed, we often omit it and write TrDists(A).

In a parallel composition A1‖A2, the composite bound map is the union of component bound maps:

〈rate1 ∪ rate2, burst1 ∪ burst2, lb1 ∪ lb2, ub1 ∪ ub2〉.

This is well defined since the task partition of A1‖A2 isR1 ∪R2.

Example 2 (Bound map for Clock). We use upper and lower bounds to ensure that Clock’s internal counter evolves at
the same rate as real time. Namely, we set lb(tick) = ub(tick) = 1. The rate and burst bounds are also set to 1. It is
not hard to see that, regardless of the system of automata with which Clock is composed, we always obtain the unique
sequence 〈tick, 1〉, 〈tick, 2〉, . . . when we project a valid schedule to the task tick.

Note that we use real time solely to express constraints on task schedules. We do not allow computationally-
bounded system components to maintain real-time information in their states, nor to communicate real-time informa-
tion to each other. System components that require knowledge of time will maintain discrete approximations to time
in their states, based on inputs from Clock.

4 Complexity Bounds

We are interested in modeling systems that run for an unbounded amount of real time. During this long life, we expect
that a very large number of components will be active at various points in time, while only a small proportion of them
will be active simultaneously. During the life time of a long-lived system, especially for systems such as those that use
short-lived cryptographic primitives, it is natural to expect that many components will become obsolete or die, and will
be replaced with other components. Defining complexity bounds in terms of the total number of components would
then introduce unrealistic security constraints. Therefore, we find it more reasonable to define complexity bounds in
terms of the characteristics of the components that are simultaneously active at any point in time.

To capture these intuitions, we define a notion of step bound, which limits the amount of computation a task-PIOA
can perform, and the amount of space it can use, in executing a single step. By combining the step bound with the
rate and burst bounds of Section 3, we obtain an overall bound, encompassing both bounded memory and bounded
computation rates.

Note that we do not model situations where the rates of computation, or the computational power of machines,
increases over time. This is an interesting direction in which the current research could be extended.

Step Bound: We assume some standard bit string encoding for Turing machines and for the names of variables, actions,
and tasks. We also assume that variable valuations are encoded in the obvious way, as a list of name/value pairs. Let
A be a task-PIOA with variable set V . Given state s, let ŝ denote the partial valuation obtained from s by removing all
pairs of the form 〈v,⊥〉. We have ιV (ŝ) = s, therefore no information is lost by reducing s to ŝ. This key observation
allows us to represent a “large” valuation s with a “condensed” partial valuation ŝ.

Let p ∈ N be given. We say that a state s is p-bounded if the encoding of ŝ is at most p bits long. The task-PIOA
A is said to have step bound p if the following hold.

(i) For every variable v ∈ V , type(v) ⊆ {0, 1}p.
(ii) The name of every action, task, and variable of A has length at most p.

(iii) The initial state sinit is p-bounded.
(iv) There exists a deterministic Turing machine Menable satisfying: for every p-bounded state s, Menable on input ŝ

outputs the list of tasks enabled in s.
(v) There exists a probabilistic Turing machineMR satisfying: for every p-bounded state s and task T , MR on input
〈ŝ, T 〉 decides whether T is enabled in s. If so, MR computes and outputs a new partial valuation ŝ′, along with
the unique a ∈ T that is enabled in s. The distribution on ιV (ŝ′) coincides with ∆(s, a).

(vi) There exists a probabilistic Turing machineMI satisfying: for every p-bounded state s and action a,MI on input
〈ŝ, a〉 decides whether a is an input action of A. If so, MI computes a new partial valuation ŝ′. The distribution
on ιV (ŝ′) coincides with ∆(s, a).

(vii) The encoding of Menable is at most p bits long, and Menable terminates after at most p steps on every input. The
same hold for MR and MI .

Thus, step bound p limits the size of action names, which often represent protocol messages. It also limits the
number of tasks enabled from any p-bounded state (Condition (iv)) and the complexity of individual transitions (Con-
ditions (v) and (vi)). Finally, Condition (vii) requires all of the Turing machines to have description bounded by p.

Lemma 1 guarantees that a task-PIOA with step bound p will never reach a state in which more than p variables
have non-⊥ values. The proof is a simple inductive argument.

Lemma 1. LetA be a task-PIOA with step bound p. For every valid timed task schedule τ and every state s reachable
under τ , there are at most p variables v such that s.v 6= ⊥.

Proof. By the definition of step bounds, we have sinit is p-bounded. For a state s′ reachable under schedule τ ′, let s be
a state immediately preceding s′ in the probabilistic execution induced by τ ′. Thus s is reachable under some prefix of
τ . If the transition from s to s′ is locally controlled, we use the fact that MR always terminates after at most p steps,
therefore every possible output, including ŝ′, has length at most p. This implies ŝ′ is a partial valuation on at most p
variables. If the transition from s to s′ is an input, we follow the same argument with MI . ut

Given a closed (i.e., no input actions) task-PIOAA with step bound p, one can easily define a Turing machine MA
with a combination of nondeterministic and probabilistic branching that simulates the execution of A. Lemma 1 can
be used to show that the amount of work tape needed by MA is polynomial in p. This is reminiscent of the PSPACE
complexity class, except that our setting introduces bounds on the computation rate, and allows probabilistic choices.
Lemma 2 says that, when we compose task-PIOAs in parallel, the complexity of the composite is proportional to the
sum of the component complexities. The proof is similar to that of the full version of [5, Lemma 4.2]. We also note
that the hiding operator introduced in Section 2 preserves step bounds.

Lemma 2. Suppose {Ai|1 ≤ i ≤ b} is a compatible set of task-PIOAs, where each Ai has step bound pi ∈ N. The
composition ‖bi=1Ai has step bound ccomp ·

∑b
i=1 pi, where ccomp is a fixed constant.

Overall Bound: We now combine real time bounds and step bounds. To do so, we represent global time using the
clock automaton Clock (Figure 1). Let p ∈ N be given and let A be a task-PIOA compatible with Clock. We say that
A is p-bounded if the following hold:

(i) A has step bound p.
(ii) For every task T of A, rate(T) and burst(T) are both at most p.

(iii) For every t ∈ N, let St denote the set of states s ofA‖Clock such that s is reachable under some valid schedule τ
and s.count = t. There are at most p tasks T such that T is enabled in some s ∈ St. (Here, s.count is the value
of variable count of Clock in state s).

We say that A is quasi-p-bounded if A is of the form A′‖Clock where A′ is p-bounded.
Conditions (i) and (ii) are self-explanatory. Condition (iii) is a technical condition that ensures that the enabling of

tasks does not change too rapidly. Without such a restriction, A could cycle through a large number of tasks between
two clock ticks, without violating the rate bound of any individual task.

Task-PIOA Families: We now extend our definitions to task-PIOA families, indexed by a security parameter k. More
precisely, a task-PIOA family Ā is an indexed set {Ak}k∈N of task-PIOAs. Given p : N → N, we say that Ā is p-
bounded just in case: for all k, Ak is p(k)-bounded. If p is a polynomial, then we say that Ā is polynomially bounded.
The notions of compatibility and parallel composition for task-PIOA families are defined pointwise. We now present an
example of a polynomially bounded family of task-PIOAs—a signature service that we use in our digital timestamping
example in Section 8.

Example 3 (Signature Service). A signature scheme Sig consists of three algorithms: KeyGen, Sign and Verify. KeyGen
is a probabilistic algorithm that outputs a signing-verification key pair 〈sk , vk〉. Sign is a probabilistic algorithm that
produces a signature σ from a message m and the key sk . Finally, Verify is a deterministic algorithm that maps
〈m,σ, vk〉 to a boolean. The signature σ is said to be valid for m and vk if Verify(m,σ, vk) = 1.

Let SID be a domain of service identifiers. For each j ∈ SID , we build a signature service as a family of task-
PIOAs indexed by security parameter k. Specifically, we define three task-PIOAs, KeyGen(k, j), Signer(k, j), and
Verifier(k, j) for every pair 〈k, j〉, representing the key generator, signer, and verifier, respectively. The composition
of these three task-PIOAs gives a signature service. We assume a function alive : T → 2SID such that, for every t,
alive(t) is the set of services alive at discrete time t. The lifetime of each service j is then given by aliveTimes(j) :=
{t ∈ T|j ∈ alive(t)}; we assume this to be a finite set of consecutive numbers.

For every value k of the security parameter, we assume the following finite domains: RIDk (request identifiers),
Mk (messages to be signed) and Σk (signatures). The representations of elements in these domains are bounded by
p(k), for some polynomial p. Similarly, the domain Tk consists of natural numbers representable using p(k) bits. Each
of the components KeyGen(k, j), Signer(k, j), and Verifier(k, j) has a set of input actions tick(t), t ∈ Tk, which are
intended to match with corresponding outputs from the clock automaton Clock (Figure 1). These inputs allow each

component to record discrete time information in its state variable clock . Since clock can produce tick(t) outputs for
arbitrary t ∈ T, this means that these new components do not receive all of clock ’s inputs, but only those with t ∈ Tk.

KeyGen(k, j) chooses a signing key mySK and a corresponding verification key myVK . It does this exactly once,
at any time when service j is alive. It outputs the two keys separately, via actions signKey(sk)j and verKey(vk)j . The
signing key goes to Signer(k, j), while the verification key goes to Verifier(k, j).

The code for KeyGen(k, j) is given in Figure 2. As we mentioned before, the tick(t) action brings in the current
time. If j is alive at time t, then clock is set to the current time t. Also, if j has just become alive, as evidenced by the
fact that the awake flag is currently ⊥, the awake flag is set to true. On the other hand, if j is no longer alive at time
t, all variables are set to ⊥.

The chooseKeys action uses KeyGenj to choose the key pair, and is enabled only when j is awake and the keys are
currently ⊥. Note that the KeyGen algorithm is indexed by j, because different services may use different algorithms.
The same applies to Signj in Signer(k, j) and Verifyj in Verifier(k, j). The signKey and verKey actions output the
keys, and they are enabled only when j is awake and the keys have been chosen.

KeyGen(k : N, j : SID)

Signature

Input:
tick(t : Tk)

Output:
signKey(sk : 2k)j

verKey(vk : 2k)j

Internal:
chooseKeysj

Tasks
verKeyj = {verKey(∗)j}
signKeyj = {signKey(∗)j}
chooseKeysj = {chooseKeysj}

States
awake : {true}⊥, init ⊥
clock : (Tk)⊥, init ⊥
mySK : (2k)⊥, init ⊥
myVK : (2k)⊥, init ⊥

Transitions
tick(t)
Effect:

if j ∈ alive(t) then
clock := t
if awake = ⊥ then

awake := true
else

awake, clock ,mySK ,
myVK := ⊥

chooseKeysj

Precondition:
awake = true
mySK = myVK = ⊥

Effect:
〈mySK ,myVK 〉
← KeyGenj(1

k)

signKey(sk)j

Precondition:
awake = true
sk = mySK 6= ⊥

Effect:
none

verKey(vk)j

Precondition:
awake = true
vk = myVK 6= ⊥

Effect:
none

Fig. 2. Task-PIOA Code for KeyGen(k, j)

Signer(k, j) receives the signing key from another component, e.g., KeyGen(k, j). It then responds to signing
requests by running the Signj algorithm on the given message m and the received signing key sk . Figure 3 presents
the code for Signer(k, j), which is fairly self-explanatory.

The data type quek represents queues with maximum length p(k), where p is a polynomial. The enqueue operation
automatically discards the new entry if the queue is already of length p(k). This models the fact that Signer(k, j) has a
bounded amount of memory. For concreteness, we assume here that p is the constant function 1 for the queues toSign
and signed .

We use a variable toSign of type queue to keep track of signature requests for which the Signer has not yet
produced a signature, and another variable signed of type queue to keep track of signature requests for which the
Signer has produced a signature but not yet output it.

Again, transitions except for clock ticks are guarded by tests that j’s awake flag is set to true. The signing key
arrives in an signKey action. Note there is no explicit request for the key—KeyGen supplies it spontaneously. When a
request to sign a message m arrives, it’s simply put into a toSign queue, provided that the queue isn’t full. (If it is, the
message is dropped.)

The real work is done in the sign step. This is enabled when j is awake and has received its signing key, and some
request appears at the head of the toSign queue. Signer simply dequeues the message, and (if the signed queue isn’t
full), Signer signs the message using its key and enqueues the resulting signature on the signed queue. The respSign
step simply outputs signatures from the signed queue.

As for KeyGen, the tick transition handles the wakeup and death of the component, as well as recording the clock
time. Again, if j is supposed to be alive at time t, it records the current time, and if it has just become alive, it sets all
its variables to their default starting values. If j is not supposed to be alive, then it sets all of its variables to ⊥.

In this code and other code to follow, we follow the general policy of dropping elements entirely rather than
retrying, if the target queue is full. The hope is that, in the situations we are interested in, the queues will not fill up.

Verifier(k, j) accepts verification requests and simply runs the Verifyj algorithm. The code appears in Figure 4.
Again, all queues have maximum length 1.

Assuming the algorithms KeyGenj , Signj and Verifyj are polynomial time, it not hard to check that the composite
KeyGen(k, j)‖Signer(k, j)‖Verifier(k, j) has step bound p(k) for some polynomial p. If rate(T) and burst(T) are at
most p(k) for every T , then the composite is p(k)-bounded. The family {KeyGen(k, j)‖
Signer(k, j)‖Verifier(k, j)}k∈N is therefore polynomially bounded.

5 Long-Term Implementation Relation

Much of modern cryptography is based on the notion of computational indistinguishability. For instance, an encryption
algorithm is (chosen-plaintext) secure if the ciphertexts of two distinct but equal-length messages are indistinguish-
able from each other, even if the plaintexts are generated by the distinguisher itself. The key assumption is that the
distinguisher is computationally bounded, so that it cannot launch a brute force attack. In this section, we adapt this
notion of indistinguishability to the long-lived setting.

We define an implementation relation based on closing environments and acceptance probabilities. Let A be a
closed task-PIOA with output action acc and task acc = {acc}. Let τ be a timed task schedule for A. The acceptance
probability of A under τ is: Pacc(A, τ) := Pr[β contains acc : β ←R tdist(A, τ)]; that is, the probability that a trace
drawn from the distribution tdist(A, τ) contains the action acc. If A is not necessarily closed, we include a closing
environment. A task-PIOA Env is an environment forA if it is compatible withA andA‖Env is closed. From here on,
we assume that every environment has output action acc.

In the short-lived setting, we say that a system A1 implements another system A2 if every run of A1 can be
“matched” by a run of A2 such that no polynomial time environment can distinguish the two runs. As we discussed in
the introduction, this type of definition is too strong for the long-lived setting, because we must allow environments
with unbounded total run time (as long as they have bounded rate and space).

For example, consider the timestamping protocol of [11, 12] described in Section 1. After running for a long period
of real time, a distinguisher environment may be able to forge a signature with non-negligible probability. As a result,
it can distinguish the real system from an ideal timestamping system, in the traditional sense. However, the essence
of the protocol is that such failures can in fact be tolerated, because they do not help the environment to forge new
signatures, after a new, uncompromised signature service becomes active.

This timestamping example suggests that we need a new notion of long-term implementation that makes mean-
ingful security guarantees in any polynomial-bounded window of time, in spite of past security failures. Our new
implementation relation aims to capture this intuition.

First we define a comparability condition for task-PIOAs: A1 and A2 are said to be comparable if they have the
same external interface, that is, I1 = I2 andO1 = O2. In this case, every environmentE forA1 is also an environment
for A2, provided E is compatible with A2.

Let A1 and A2 be comparable task-PIOAs. To model security failure events in both automata, we let F 1 be a set
of designated failure tasks of A1, and let F 2 be a set of failure tasks of A2. We assume that each task in F 1 and F 2

has∞ as its upper bound.

Signer(k : N, j : SID)

Signature

Input:
tick(t : Tk)

signKey(sk : 2k)j

reqSign(rid : RIDk,
m : Mk)j

Output:
respSign(rid : RIDk,
σ : Σk)j

Internal:
sign(rid : RIDk,m : Mk)j

Tasks
respSignj = {respSign(∗, ∗)j}
signj = {sign(∗, ∗)j

States
awake : {true}⊥, init ⊥
clock : (Tk)⊥, init ⊥
mySK : (2k)⊥, init ⊥
toSign : quek(RIDk ×Mk)⊥,
init ⊥
signed : quek(RIDk ×Σk)⊥,
init ⊥

Transitions
tick(t)
Effect:

if j ∈ alive(t) then
clock := t
if awake = ⊥ then

awake := true
toSign, signed

:= empty
else

awake, clock ,mySK ,
toSign, signed := ⊥

signKey(sk)j

Effect:
if awake = true
∧mySK = ⊥

then mySK := sk

reqSign(rid ,m)j

Effect:
if awake = true
∧¬ full(toSign)

then toSign :=
enq(toSign, 〈rid ,m〉)

sign(rid ,m)j

local σ : Σ
Precondition:

awake = true
head(toSign) = 〈rid ,m〉
mySK 6= ⊥

Effect:
toSign := deq(toSign)
σ ← Signj(m,mySK)
signed :=

enq(signed , 〈rid , σ〉)

respSign(rid , σ)j

Precondition:
awake = true
head(signed) = 〈rid , σ〉

Effect:
signed := deq(signed)

Fig. 3. Task-PIOA Code for Signer(k, j)

Given t ∈ R≥0 and an environment Env for bothA1 andA2, we consider two experiments. In the first experiment,
Env interacts with A1 according to some valid task schedule τ1 of A1‖Env, where τ1 does not contain any tasks from
F 1 from time t onwards. In the second experiment, Env interacts with A2 according to some valid task schedule τ2
of A2‖Env, where τ2 does not contain any tasks from F 2 from time t onwards. Our definition requires that the first
experiment “approximates” the second one, that is, if A1 acts ideally (does not perform any of the failure tasks in F 1)
after time t, then it simulates A2, also acting ideally from time t onwards.

More specifically, we require that, for any valid τ1, there exists a valid τ2 as above such that the two executions
are identical before time t from the point of view of the environment. That is, the probabilistic execution is the same
before time t. Moreover, the two executions are overall computationally indistinguishable, namely, the difference in
acceptance probabilities in these two experiments is negligible provided Env is computationally bounded.

If τ is a schedule ofA‖B, then we define projB(τ) to be the result of removing all 〈Ti, ti〉 where Ti is not a task of
B. Moreover, let ExecsB(A‖B, τ) denote the distribution of executions of B when executed with A under schedule τ .

Definition 1. Let A1 and A2 be comparable task-PIOAs that are both compatible with Clock. Let F 1 and F 2 be sets
of tasks of, respectively, A1 and A2, such that for any T ∈ (F 1 ∪ F 2), ub(T) = ∞. Let p, q ∈ N and ε ∈ R≥0 be

given. Then we say that (A1, F 1) ≤p,q,ε (A2, F 2) provided that the following is true:
For every t ∈ R≥0, every quasi-p-bounded environment Env, and every valid timed schedule τ1 for A1‖Env for the
interval [0, t + q] that does not contain any pairs of the form 〈Ti, ti〉 where Ti ∈ F 1 and ti ≥ t, there exists a valid
timed schedule τ2 for A2‖Env for the interval [0, t+ q] such that:

(i) projEnv(τ1) = projEnv(τ2);
(ii) τ2 does not contain any pairs of the form 〈Ti, ti〉 where Ti ∈ F 2 and ti ≥ t;

(iii) ExecsEnv(A1‖Env, trunc≥t(τ1)) = ExecsEnv(A2‖Env, trunc≥t(τ2));
(iv) |Pacc(A1‖Env, τ1)−Pacc(A2‖Env, τ2)| ≤ ε.

The following lemma says that ≤p,q,ε (Definition 1) is transitive up to additive errors.

Lemma 3. Let A1, A2, and A3 be comparable task-PIOAs, and let F 1, F 2, and F 3 be sets of tasks of A1, A2, and
A3, respectively, such that for any T (∈ F 1 ∪F 2 ∪F 3), ub(T) =∞. Let p, q ∈ N and ε ∈ R≥0 be given. Assume that
(A1, F 1) ≤p,q,ε1 (A2, F 2) and (A2, F 2) ≤p,q,ε2 (A3, F 3). Then (A1, F 1) ≤p,q,ε1+ε2 (A3, F 3).

Proof. Let t ∈ R≥0, Env a quasi-p-bounded environment, and a valid timed schedule τ1 for A1‖Env for the interval
[0, t + q] be given, where τ1 does not contain any pairs of the form 〈Ti, ti〉 where Ti ∈ F 1 and ti ≥ t. Choose τ2 for
A2‖Env according to the assumption (A1, F 1) ≤p,q,ε1 (A2, F 2). Using τ2, choose τ3 for A3‖Env according to the
assumption (A2, F 2) ≤p,q,ε2 (A3, F 3).

Clearly, we have

– projEnv(τ1) = projEnv(τ2) = projEnv(τ3);
– τ3 does not contain any pairs of the form 〈Ti, ti〉 where Ti ∈ F 3 and ti ≥ t;
– ExecsEnv(A1‖Env, trunc≥t(τ1)) = ExecsEnv(A2‖Env, trunc≥t(τ2)) = ExecsEnv(A3‖Env, trunc≥t(τ3)).

Finally,

|Pacc(A1‖Env, τ1)−Pacc(A3‖Env, τ3)|
≤ |Pacc(A1‖Env, τ1)−Pacc(A2‖Env, τ2)|

+ |Pacc(A2‖Env, τ2)−Pacc(A3‖Env, τ3)|
≤ ε1 + ε2. ut

The relation≤p,q,ε can be extended to task-PIOA families as follows. Let Ā1 = {(Ā1)k}k∈N and Ā2 = {(Ā2)k}k∈N
be pointwise comparable task-PIOA families. Let F̄ 1 be a family of sets such that each (F̄ 1)k is a set of tasks of
(Ā1)k and let F̄ 2 be a family of sets such that each (F̄ 2)k is a set of tasks of (Ā2)k, satisfying the condition that
each task of those sets has an infinite upper bound. Let ε : N → R≥0 and p, q : N → N be given. We say that
(Ā1, F̄ 1) ≤p,q,ε (Ā2, F̄ 2) just in case ((Ā1)k, (F̄ 1)k) ≤p(k),q(k),ε(k) ((Ā2)k, (F̄ 2)k) for every k.

Restricting our attention to negligible error and polynomial time bounds, we obtain the long-term implementation
relation ≤neg,pt. Formally, a function ε : N → R≥0 is said to be negligible if, for every constant c ∈ N, there exists
k0 ∈ N such that ε(k) < 1

kc for all k ≥ k0. (That is, ε diminishes more quickly than the reciprocal of any polynomial.)
Given task-PIOA families Ā1 and Ā2 and task set families F̄ 1 and F̄ 2, respectively, of Ā1 and Ā2, we say that
(Ā1, F̄ 1) ≤neg,pt (Ā2, F̄ 2) if ∀p, q ∃ε : (Ā1, F̄ 1) ≤p,q,ε (Ā2, F̄ 2), where p, q are polynomials and ε is a negligible
function.

Lemma 4 (Transitivity of ≤neg,pt). Let Ā1, Ā2, and Ā3 be comparable task-PIOA families. Let F̄ 1 be a task set
family of Ā1, Let F̄ 2 be a task set family of Ā2, and let F̄ 3 be a task set family of Ā3 (satisfying the upper bound
condition). Suppose (Ā1, F̄ 1) ≤neg,pt (Ā2, F̄ 2) and (Ā2, F̄ 2) ≤neg,pt (Ā3, F̄ 3). Then (Ā1, F̄ 1) ≤neg,pt (Ā3, F̄ 3).

Proof. Given polynomials p and q, choose negligible functions ε1 and ε2 according to the assumptions. Then ε1 + ε2
is negligible. By Lemma 3, we have (Ā1, F̄ 1) ≤p,q,ε1+ε2 (Ā3, F̄ 3).

6 Ideal Signature Functionality

In this section, we specify an ideal signature functionality SigFunc, and show that it is implemented, in the sense of
our ≤neg,pt definition, by the real signature service of Section 4.

As with KeyGen, Signer, and Verifier, each instance of SigFunc is parameterized with a security parameter k and
an identifier j. The code for SigFunc(k, j) appears in Figure 5. It is very similar to the composition of Signer(k, j) and
Verifier(k, j). The important difference is that SigFunc(k, j) maintains an additional variable history , which records
the set of signed messages. In addition, SigFunc(k, j) has an internal action failj , which sets a boolean flag failed . If
failed = false, then SigFunc(k, j) uses history to answer verification requests: a signature is rejected if the submitted
message is not in history , even if Verifyj returns 1. If failed = true, then SigFunc(k, j) bypasses the check on history ,
so that its answers are identical to those from the real signature service.

Recall that, for every task T of the real signature service, rate(T) and burst(T) are bounded by p(k) for some
polynomial p. We assume that the same bound applies to SigFunc(k, j). Since aliveTimes(j) is a finite set of con-
secutive numbers, it represents essentially an interval whose length is constant in the security parameter k. Therefore,
p(k) gives rise to a bound p′(k) on the maximum number of signatures generated by SigFunc(k, j), where p′ is also
polynomial. We set the maximum length of the queue history to p′(k). All other queues have maximum length 1.

We claim that the real signature service implements the ideal signature functionality. The proof relies on a reduction
to standard properties of a signature scheme, namely, completeness and existential unforgeability, as defined below.

Definition 2. A signature scheme Sig = 〈KeyGen,Sign,Verify〉 is complete if Verify(m,σ, vk) = 1 whenever 〈sk , vk〉 ←
KeyGen(1k) and σ ← Sign(sk ,m). We say that Sig is existentially unforgeable under adaptive chosen message at-
tacks (or EUF-CMA secure) if no probabilistic polynomial-time forger has non-negligible success probability in the
following game.
Setup The challenger runs KeyGen to obtain 〈sk , vk〉 and gives the forger vk .
Query The forger submits message m. The challenger responds with signature σ ← Sign(m, sk). This may be re-

peated adaptively.
Output The forger outputs a pair 〈m∗, σ∗〉 and he wins if m∗ is not among the messages submitted during the query

phase and Verify(m∗, σ∗, vk) = 1.

For all k ∈ N and j ∈ SID , we define RealSig(j)k to be hide(KeyGen(k, j)‖Signer(k, j)‖Verifier(k, j), signKeyj)
and IdealSig(j)k to be hide(KeyGen(k, j)‖SigFunc(k, j), signKeyj).

These automata are gathered into families in the obvious way: RealSig(j) := {RealSig(j)k}k∈N and IdealSig(j) :=
{IdealSig(j)k}k∈N. Note that the hiding operation prevents the environment from learning the signing key.

Theorem 1. Let j ∈ SID be given. Suppose that 〈KeyGenj ,Signj ,Verifyj〉 is a complete and EUF-CMA secure
signature scheme. Then (RealSig(j), ∅) ≤neg,pt (IdealSig(j), {failj}).

To prove Theorem 1, we show that, for every time point t, the environment cannot distinguish RealSig(j)k from
IdealSig(j)k with high probability between time t and t + q(k), where q is a polynomial. This holds even when the
task {failj} is not scheduled in the interval [t, t + q]. The interesting case is when j is awakened after time t. That
implies the failed flag is never set and SigFunc(k, j) uses history to reject forgeries.

We use the the EUF-CMA assumption to obtain a bound on the distinguishing probability of any environment.
Essentially, we build a forger that emulates the execution of our various task-PIOAs under some valid schedule. When
the environment interacts with the Signer and Verifier automata, this forger uses the signature oracle and verification
algorithm in the EUF-CMA game. Moreover, the success probability of this forger is maximized over all environments
satisfying a particular polynomial bound. (Note that, given polynomial p and security parameter k, there are only a
finite number of quasi-p(k)-bounded environments.) Applying the definition of EUF-CMA security, we obtain the
desired negligible bound on distinguishing probability.

Proof. Unwinding the definition of ≤neg,pt using the given failure sets, we need to show the following: For every pair
of polynomials p and q, there is a negligible function ε such that, for every k ∈ N, t ∈ R≥0, quasi-p(k)-bounded
environment Env for RealSig(j)k, and valid schedule τ1 for RealSig(j)k‖Env for the interval [0, t + q(k)], there is a
valid schedule τ2 for IdealSig(j)k‖Env such that:

(i) projEnv(τ1) = projEnv(τ2);
(ii) τ2 does not contain any pairs of the form 〈failj , ti〉 where ti ≥ t;

(iii) ExecsEnv(RealSig(j)k‖Env, trunc≥t(τ1)) = ExecsEnv(IdealSig(j)k‖Env, trunc≥t(τ2));
(iv) Pacc(RealSig(j)k‖Env, τ1) is at most ε(k) away from Pacc(IdealSig(j)k‖Env, τ2).

Since Sig is complete, we observe that the difference between the acceptance probabilities of the two automata
compared in Condition (iv) can only be non-zero if Env succeeds in producing a forged signature (that is, a valid

signature for a message that was not previously signed by the Sign or SigFunc automata) and in having this signature
rejected when the verify and respVer actions of SigFunc execute.

Fix polynomials p and q. We must obtain a negligible ε bound that satisfies the four conditions above for every
k, t, Env, and valid τ1, for some corresponding τ2. To define ε, we rely on the EUF-CMA security of Sig. However,
here we must bound, not the success probability of one specific forger, as in the EUF-CMA definition, but the success
probability of all forgers that satisfy the fixed polynomial p and q bounds, for every time t and every schedule τ1.

Define tl to be the time point marking the beginning of j’s lifetime: tl = min(aliveTimes(j)). We know that both
RealSig(j)k and IdealSig(j)k are dormant before time tl.

For every k ∈ N, we define a quasi-p(k)-bounded environment (Envmax)k for RealSigk, a time (tmax)k ≤ tl, and
a schedule (τ1max)k for RealSigk‖(Envmax)k that is valid for interval [0, (tmax)k+q(k)], where tmax ≤ tl, satisfying
the following property: For every quasi-p(k)-bounded environment Env for RealSigk, every time t ≤ tl, and every
valid schedule τ1 for RealSigk‖Env for the interval [0, t+ q(k)]:

|Pacc(RealSig(j)k‖Env, τ1)−Pacc(IdealSig(j)k‖Env, τ1)|
≤ |Pacc(RealSig(j)k‖(Envmax)k, (τ1max)k)−Pacc(IdealSig(j)k‖(Envmax)k, (τ1max)k)|.

To see that such (Envmax)k, (tmax)k, and (τ1max)k exist, it is enough to observe:
– The set of quasi-p(k)-bounded environments is finite (up to isomorphism).
– The set of untimed versions of the candidate τ1 schedules is finite; this follows from the rate restriction and the

task enabling properties (properties (ii) and (iii) in the definition of p-boundedness).
– The probability of acceptance depends only on the untimed version of the τ1 schedule.

Based on these observations, we first define (Envmax)k, and an untimed schedule ρ that yield the maximum difference
between the acceptance probabilities. Then we fix (τ1max)k and (tmax)k to be any valid timed schedule and real time
that yield ρ.

We use (Envmax)k, (tmax)k, and (τ1max)k, for all k, to define the needed negligble function ε. We do this by
defining a probabilistic polynomial-time (non-uniform) forger G = {Gk}k∈N for Sig, in such a way that each Gk
essentially emulates an execution of the automaton IdealSig(j)k‖(Envmax)k with schedule (τ1max)k. More precisely,
Gk successively reads all the tasks in the schedule (τ1max)k, and uses them to internally emulate an execution of
IdealSig(j)k‖(Envmax)k, up to the following exceptions:
1. when the {verKey(∗)} task has to be emulated, Gk replaces the verification algorithm obtained when emulating

the {chooseKeys} task with the one provided by Sig in the EUF-CMA game, and
2. when the {sign(∗, ∗)} task has to be emulated, Gk obtains signatures by using the signing oracle available in the

EUF-CMA game.
Furthermore,Gk stores a list of all messages that the emulated (Envmax)k asked to sign, and checks whether (Envmax)k
ever asks for the verification of a message with a valid signature that is not in the list. If such a signature is produced,
Gk outputs it as a forgery.

We observe that this emulation process is polynomial time-bounded because all transitions of the emulated systems
are polynomial time-bounded, the total running time of the system is bounded by tl + q(k), and Condition (iii) on the
overall bound of automata guarantees that no more than a polynomial number of transitions are performed per time
unit. (Although tl may be very large, it does not depend on k, and so does not cause a violation of the polynomial-time
requirement.)

We also observe that the two proposed exceptions in the emulation of the execution of IdealSig(j)k‖(Envmax)k
do not change the distribution of the messages that (Envmax)k sees, since the verification algorithm used by Gk is
generated in the same way as KeyGen generates it, and since the message signatures are also produced in a valid way.
Therefore, it is with the same probability that the environment distinguishes the two systems it is interacting with (by
producing a forgery early enough) in a real execution of the different automata and in the version emulated by G.

Now, the assumption that Sig is EUF-CMA secure guarantees the existence of a negligible function ε bounding the
success probability of G. It follows that:

|Pacc(RealSig(j)k‖(Envmax)k, (τ1max)k)−Pacc(IdealSig(j)k‖(Envmax)k, (τ1max)k)| ≤ ε(k).

We fix this function ε for the rest of our proof.
It remains to show that, for every k ∈ N, t ∈ R≥0, quasi-p(k)-bounded environment Env for RealSig(j)k, and

valid schedule τ1 for RealSig(j)k‖Env for the interval [0, t+ q(k)], there is a valid schedule τ2 for IdealSig(j)k, ‖Env
satisfying the four required conditions. Fix k, Env, t, and τ1. We consider two cases.

First, suppose that tl < t. We obtain τ2 by inserting 〈{failj}, tl〉 immediately after 〈tick, tl〉. This sets the failed
flag in SigFunc(k, j) to true immediately after awake becomes true. Notice that, if failed = true, the verify transition
bypasses the check m ∈ history (Figure 5). In other words, SigFunc(k, j) answers verify requests in exactly the
same way as Verifier(k, j), using the Verify algorithm only. Furthermore, it is easy to check that failed remains true
as long as SigFunc(k, j) is alive. Therefore, IdealSig(j)k has exactly the same visible behavior as RealSig(j)k and
Conditions (i) through (iv) are satisfied. (For Condition (iv), we obtain a bound of 0, which implies the needed bound
of ε(k).)

Second, suppose that t ≤ tl. Define τ2 := τ1. Since both RealSig(j)k and IdealSig(j)k are dormant during [0, t],
Condition (i) is immediate and Condition (ii) holds because failj is not a task of RealSig(j)k. Condition (iii) also must
hold. For Condition (iv), observe that,

|Pacc(RealSig(j)k‖Env, τ1)−Pacc(IdealSig(j)k‖Env, τ1)|
≤ |Pacc(RealSig(j)k‖(Envmax)k, (τ1max)k)−Pacc(IdealSig(j)k‖(Envmax)k, (τ1max)k)| ≤ ε(k),

as needed. ut

7 Composition Theorems

In practice, cryptographic services are seldom used in isolation. Usually, different types of services operate in con-
junction, interacting with each other and with multiple protocol participants. For example, a participant may submit a
document to an encryption service to obtain a ciphertext, which is later submitted to a timestamping service. In such
situations, it is important that the services are provably secure even in the context of composition.

In this section, we consider two types of composition. The first, parallel composition, is a combination of services
that are active at the same time and may interact with each other. Given a polynomially bounded collection of real
services such that each real service implement some ideal service, the parallel composition of the real services is
guaranteed to implement that of the ideal services.

The second type, sequential composition, is a combination of services that are active in succession. The interaction
between two distinct services is much more limited in this setting, because the earlier one must have finished execution
before the later one begins. An example of such a collection is the signature services in the timestamping protocol
of [12, 11], where each service is replaced by the next at regular intervals.

As in the parallel case, we prove that the sequential composition of real services implements the sequential com-
position of ideal services. We are able to relax the restriction on the number of components from polynomial to
exponential.5 This highlights a unique aspect of our implementation relation: essentially, from any point t on the real
time line, we focus on a polynomial length interval starting from t.

Parallel Composition: Using a standard hybrid argument, we show that the relation ≤p,q,ε (cf. Definition 1) is pre-
served under polynomial parallel composition, with some appropriate adjustment to the environment complexity bound
and to the error in acceptance probability.

Theorem 2 (Parallel Composition Theorem). Let A1
1,A1

2, . . . and A2
1,A2

2, . . . be two infinite sequences of task-
PIOAs, with A1

i comparable to A2
i for every i. Suppose that Aα1

1 ,Aα2
2 , . . . are pairwise compatible for any combina-

tion of αi ∈ {1, 2}. Let b ∈ N, and let Â1 and Â2 denote ‖bi=1A1
i and ‖bi=1A2

i , respectively. Let r be a nondecreasing
function, r : N→ N such that, for every i, both A1

i and A2
i are r(i)-bounded.

For each i, let F 1
i and F 2

i be sets of tasks of A1
i and A2

i , respectively, all with infinite upper bounds. Let F̂ 1 and
F̂ 2 denote

⋃b
i=1 F

1
i and

⋃b
i=1 F

2
i , respectively.

Let p, q ∈ N and ε ∈ R≥0. Suppose that (A1
i , F

1
i) ≤p,q,ε (A2

i , F
2
i) for every i.

Let p′ ∈ N and ε′ ∈ R≥0, with p = ccomp ·(b ·r(b)+p′) (where ccomp is the constant factor for parallel composition
of task-PIOAs), and ε′ = b · ε. Then (Â1, F̂ 1) ≤p′,q,ε′ (Â2, F̂ 2).

Proof. Let t ∈ R≥0 be given. Let Env be a quasi-p′-bounded environment and let τ0 be a valid timed task schedule
for Â1‖Env for the interval [0, t+ q] where τ0 contains no actions from F̂1 occurring at t or later. We must show that
|Pacc(Â1‖Env, τ0)−Pacc(Â2‖Env, τb)| ≤ bε′.

5 In our model, it is not meaningful to exceed an exponential number of components, because the length of the description of each
component is polynomially bounded.

For each 0 ≤ i ≤ b, let Hi denote A2
1‖ . . . ‖A2

i ‖A1
i+1‖ . . . ‖A1

b . In particular, H0 = ‖bi=1A1
i and Hb = ‖bi=1A2

i .
Similarly, let

Envi := A2
1‖ . . . ‖A2

i−1‖A1
i+1‖ . . . ‖A1

b‖Env

for each 1 ≤ i ≤ b. Note that every Envi is quasi-p-bounded and is an environment for A1
i and A2

i . In fact, we have
Hi−1‖Env = A1

i ‖Envi and Hi‖Env = A2
i ‖Envi.

Since τ0 does not contain any tasks from F̂ 1 at time t or later, it does not contain any tasks from F 1
1 from time t or

later. Since (A1
1, F

1
1) ≤p,q,ε (A2

1, F
2
2) and τ0 is a valid schedule for A1

1‖Env1 in which no tasks from F 1
1 occur from

time t onwards, we may choose a valid schedule τ1 for A2
1‖Env1 for the interval [0, t+ q] such that

(i) projEnv1
(τ0) = projEnv1

(τ1);
(ii) τ1 does not contain any pairs of the form 〈Ti, ti〉 where Ti ∈ F 2

1 and ti ≥ t;
(iii) ExecsEnv1(A1

1‖Env1, trunc≥t(τ0)) = ExecsEnv1(A2
1‖Env1, trunc≥t(τ1));

(iv) |Pacc(A1
1‖Env1, τ0)−Pacc(A2

1‖Env1, τ1)| ≤ ε.

Repeating this argument, we choose valid schedules τ2, . . . , τb for H2‖Env, . . ., Hb‖Env, respectively, all satis-
fying the appropriate four conditions. Since Env is part of every Envi, Condition (i) guarantees that projEnv(τ0) =
projEnv(τb). Using both Conditions (i) and (ii), we can infer that τb does not contain any pairs of the form 〈Ti, ti〉
where Ti ∈ F̂ 2 =

⋃b
i=1 F

2
i and ti ≥ t. Since Env is part of every Envi, Condition (iii) guarantees that

ExecsEnv(H0‖Env, trunc≥t(τ0)) = ExecsEnv(Hb‖Env, trunc≥t(τb)).

Finally,

|Pacc(‖bi=1A1
i ‖Env, τ0)−Pacc(‖bi=1A2

i ‖Env, τb)|
≤ |Pacc(H0‖Env, τ0)−Pacc(H1‖Env, τ1)|+ . . .

+ |Pacc(Hi‖Env, τi)−Pacc(Hi+1‖Env, τi+1)|+ . . .

+ |Pacc(Hb−1‖Env, τb−1)−Pacc(Hb‖Env, τb)|
≤ b · ε = ε′.

Thus, |Pacc(Â1‖Env, τ0)−Pacc(Â2‖Env, τb)| ≤ b · ε = ε′, as needed. ut

Using Theorem 2, it is not hard to prove a polynomial composition theorem for ≤neg,pt. The theorem contains a
technicality: instead of simply assuming ≤neg,pt relationships for all the components, we assume a slightly stronger
property, in which the same negligible function ε is assumed for all of the components; that is, ε is not allowed to
depend on the component index i.

Theorem 3 (Parallel Composition Theorem for ≤neg,pt). Let Ā1
1, Ā1

2, . . . and Ā2
1, Ā2

2, . . . be two infinite sequences
of task-PIOA families, with Ā1

i comparable to Ā2
i for every i. Suppose that Āα1

1 , Āα2
2 , . . . are pairwise compatible for

any combination of αi ∈ {1, 2}. Let b be any polynomial, and for each k, let (Â1)k and (Â2)k denote ‖b(k)i=1 (Ā1
i)k and

‖b(k)i=1 (Ā2
i)k, respectively. Let r and s be polynomials, r, s : N → N, such that r is nondecreasing, and for every i, k,

both (Ā1
i)k and (Ā2

i)k are bounded by s(k) · r(i).
For each i, let F̄ 1

i be a family of sets such that (F̄ 1
i)k is a set of tasks of (Ā1

i)k for every k, and let F̄ 2
i be a family

of sets such that (F̄ 2
i)k is a set of tasks of (Ā2

i)k for every k, where all these tasks have infinite upper bounds. Let
(F̂ 1)k and (F̂ 2)k denote

⋃b(k)
i=1 (F̄ 1

i)k and
⋃b(k)
i=1 (F̄ 2

i)k, respectively.
Assume:

∀p, q ∃ε ∀i (Ā1
i , F̄

1
i) ≤p,q,ε (Ā2

i , F̄
2
i), (1)

where p, q are polynomials and ε is a negligible function.
Then (Â1, F̂ 1) ≤neg,pt (Â2, F̂ 2).

Proof. By the definition of ≤neg,pt, we need to prove: ∀p′, q ∃ε′ (Â1, F̂ 1) ≤p′,q,ε′ (Â2, F̂ 2), where p′, q are polyno-
mials and ε′ is a negligible function. Let polynomials p′ and q be given and define p := ccomp · (b · (r ◦ b) + p′),
where ccomp is the constant factor for composing task-PIOAs in parallel. Now choose ε using p, q, and Assumption (3).
Define ε′ := b · ε.

Let k ∈ N be given. We need to prove ((Â1)k, (F̂ 1)k) ≤p′(k),q(k),ε′(k) ((Â2)k, (F̂ 2)k). That is,

(‖b(k)i=1 (Ā1
i)k,

b(k)⋃
i=1

(F̄ 1
i)k) ≤p′(k),q(k),ε′(k) (‖b(k)i=1 (Ā2

i)k,
b(k)⋃
i=1

(F̄ 2
i)k).

For every i, we know that (Ā1
i)k and (Ā2

i)k are bounded by s(k) · r(i). Also, by the choice of ε, we have
((Ā1

i)k, (F̄
1
i)k) ≤p(k),q(k),ε(k) ((Ā2

i)k, (F̄
2
i)k) for all i. Therefore, we may apply Theorem 2 to conclude that

((Â1)k, (F̂ 1)k) ≤p′(k),q(k),ε′(k) ((Â2)k, (F̂ 2)k), as needed. ut

Sequential Composition: We now treat the more interesting case, namely, exponential sequential composition. The
first challenge is to formalize the notion of sequentiality. On a syntactic level, all components in the collection are
combined using the parallel composition operator. To capture the idea of successive invocation, we introduce some
auxiliary notions. Intuitively, we distinguish between active and dormant entities. Active entities may perform actions
and store information in memory. Dormant entities have no available memory and do not enable locally controlled
actions.6 In Definition 3, we formalize the idea of an entity A being active during a particular time interval. Then we
introduce sequentiality in Definition 4.

Definition 3. Let A be a task-PIOA and let reals t1 ≤ t2 be given. We say that A is restricted to the interval [t1, t2] if
for every t /∈ [t1, t2], environment Env for A of the form Env′‖Clock, valid schedule τ for A‖Env for [0, t], and state
s reachable under τ , no locally controlled actions of A are enabled in s, and s.v = ⊥ for every variable v of A.

Lemma 5 below states the intuitive fact that no environment can distinguish two entities during an interval in which
both entities are dormant.

Lemma 5. SupposeA1 andA2 are comparable task-PIOAs that are both restricted to the interval [t1, t2]. Let Env be
an environment for both A1 and A2, of the form Env′‖Clock. Let t ∈ R≥0 and q ∈ N be given. Suppose τ1 is a valid
schedule for A1‖Env for the interval [0, t+ q], and τ2 a valid schedule for A2‖Env for [0, t+ q], satisfying:

– projEnv(τ1) = projEnv(τ2);
– ExecsEnv(A1‖Env, trunc≥t(τ1)) = ExecsEnv(A2‖Env, trunc≥t(τ2)).

Assume further that either t2 < t or t1 > t+ q. Then Pacc(A1‖Env, τ1) = Pacc(A2‖Env, τ2)).

Proof. First we consider the case t2 < t. Since A1 and A2 are restricted to the interval [t1, t2], neither of them
enables any output actions during the interval [t, t + q]. Since τ1 and τ2 agree on the tasks of Env, and the execution
distributions of Env just before time t are identical in the two experiments. the probability that Env outputs acc during
[t, t+ q] must be identical in the two experiments. Also, since the execution distributions before t are the same in the
two experiments, the probability that Env outputs acc during [0, t) is the same in the two experiments. Therefore, the
acceptance probabilities are the same for the entire interval [0, t+ q], as needed.

Similarly, if t1 > t + q, then neither A1 nor A2 enables any output actions during the interval [t, t + q]. Then we
follow the same argument as above. ut

Definition 4 (Sequentiality). Let A1,A2, . . . be pairwise compatible task-PIOAs. We say that A1,A2, . . . are se-
quential with respect to the the nondecreasing sequence t1, t2, . . . of nonnegative reals provided that for every i, Ai is
restricted to [ti, ti+1].

Note the slight technicality that each Ai may overlap with Ai+1 at the boundary time ti+1. Now we are ready to
state the sequential composition theorems.

Theorem 4 (Sequential Composition Theorem). Let A1
1,A1

2, . . . and A2
1,A2

2, . . . be two infinite sequences of task-
PIOAs, with A1

i comparable to A2
i for every i. Suppose that Aα1

1 ,Aα2
2 , . . . are pairwise compatible for any combina-

tion of αi ∈ {1, 2}. Let L ∈ N, and let Â1 and Â2 denote ‖Li=1A1
i and ‖Li=1A2

i , respectively. Let p̂ ∈ N, and assume
that both Â1 and Â2 are p̂-bounded.

6 For technical reasons, dormant entities must synchronize on input actions. Some inputs cause dormant entities to become active,
while all others are trivial loops on the null state.

Assume that bothA1
1, . . . ,A1

L andA2
1, . . . ,A2

L are sequential with respect to the same nondecreasing sequence of
reals t1, t2, Assume that b ∈ N is an upper bound on the number of ti’s that fall into a single closed interval of
length q.

For each i, let F 1
i and F 2

i be sets of tasks of A1
i and A2

i , respectively, all with infinite upper bounds. Let F̂ 1 and
F̂ 2 denote

⋃L
i=1 F

1
i and

⋃L
i=1 F

2
i , respectively.

Let p, q ∈ N and ε ∈ R≥0. Suppose that (A1
i , F

1
i) ≤p,q,ε (A2

i , F
2
i) for every i.

Let p′ ∈ N and ε′ ∈ R≥0, with p ≥ ccomp · (p̂ + p′) (where ccomp is the constant factor for parallel composition),
and ε′ ≥ (b+ 2) · ε. Then (Â1, F̂ 1) ≤p′,q,ε′ (Â2, F̂ 2).

In the statement of Theorem 4, the error in acceptance probability increases by a factor of b + 2, where b is the
largest number of components that may be active in a closed time interval of length q. For example, if the lifetime of
each component is q

3 , then b is 5.7 This is the key difference between parallel composition and sequential composition:
for the former, error increases with the total number of components (namely, L), and hence no more than a polynomial
number of components can be tolerated. In the sequential case, L may be exponential, as long as b remains small.
The proof of Theorem 4 involves a standard hybrid argument for active components, while dormant components are
replaced without affecting the difference in acceptance probabilities.

Proof. Let t ∈ R≥0 be given. Let Env = Env′‖Clock be a quasi-p′-bounded environment and let τ0 be a valid timed
task schedule for (‖Li=1A1

i)‖Env for the interval [0, t + q] where τ0 has no tasks from F̂ 1 occurring at time t or later.
We must find τL for (‖Li=1A2

i)‖Env such that

(i) projEnv(τ0) = projEnv(τL);
(ii) τL does not contain any pairs of the form 〈Ti, ti〉 where Ti ∈ F̂ 2 and ti ≥ t;

(iii) ExecsEnv(‖Li=1A1
i ‖Env, trunc≥t(τ0)) = ExecsEnv(‖Li=1A2

i ‖Env, trunc≥t(τL));
(iv) |Pacc(‖Li=1A1

i ‖Env, τ0)−Pacc(‖Li=1A2
i ‖Env, τL)| ≤ ε′.

Without loss of generality, assume there is an index i such that [ti, ti+1] intersects with [t, t + q]. Let l be the
smallest such index. Recall from the assumptions that at most b consecutive ti’s fall into a closed interval of length q.
Therefore, we know that tl−1 < t and tl+b > t+ q.

The rest of the proof proceeds as in the proof of Theorem 2. Namely, we define

Envi := A2
1‖ . . . ‖A2

i−1‖A1
i+1‖ . . . ‖A1

b‖Env

for each 1 ≤ i ≤ L. Note that Envi is quasi-p-bounded; therefore we may choose τi+1 using τi and the assumption
that (A1

i , F
1
2) ≤p,q,ε (A2

i , F
2
i). Since Env is part of Envi for every i, Conditions (i) and (iii) are clearly satisfied at

every replacement step. Condition (ii) is satisfied because the following hold at every step i.

– The new task schedule τi+1 does not contain tasks from F 2
i+1.

– Condition (i) guarantees that τi+1 does not contain tasks from
⋃i
j=1 F

2
j .

Finally, we consider Condition (iv). There are two cases. If i < l−1 or i ≥ l+b, then we can apply Lemma 5 to con-
clude that Pacc(A1

i ‖Envi, τi) in fact equals Pacc(A2
i ‖Envi, τi+1). Otherwise, Pacc(A1

i ‖Envi, τi) and Pacc(A2
i ‖Envi, τi+1)

differ by at most ε. Summing over all indices i, we have |Pacc(‖Li=1A1
i ‖Env, τ0)−Pacc(‖Li=1A2

i ‖Env, τL)|
≤ (b+ 2) · ε = ε′, as needed. ut

Using Theorem 4, it is straightforward to prove the sequential composition theorem for ≤neg,pt.

Theorem 5 (Sequential Composition Theorem for ≤neg,pt). Let Ā1
1, Ā1

2, . . . and Ā2
1, Ā2

2, . . . be two infinite se-
quences of task-PIOA families, with Ā1

i comparable to Ā2
i for every i. Suppose that Āα1

1 , Āα2
2 , . . . are pairwise

compatible for any combination of αi ∈ {1, 2}. Let L : N → N be an exponential function and, for each k, let
(Â1)k and (Â2)k denote ‖L(k)

i=1 (Ā1
i)k and ‖L(k)

i=1 (Ā2
i)k, respectively. Let p̂ be a polynomial such that both Â1 and Â2

are p̂-bounded.
Suppose there exists an increasing sequence of nonnegative reals t1, t2, . . . such that, for each k, both (Ā1

1)k, . . . , (Ā1
L(k))k

and (Ā2
1)k, . . . , (Ā2

L(k))k are sequential for t1, t2, . . . Assume there is a constant real number c such that consecutive
ti’s are at least c apart.

7 Recall that two components may be active simultaneously at the boundary time.

For each i, let F̄ 1
i be a family of sets such that (F̄ 1

i)k is a set of tasks of (Ā1
i)k for every k and let F̄ 2

i be a family of
sets such that (F̄ 2

i)k is a set of tasks of (Ā2
i)k for every k, where all these tasks have infinite upper bounds. Let (F̂ 1)k

and (F̂ 2)k denote
⋃L(k)
i=1 (F̄ 1

i)k and
⋃L(k)
i=1 (F̄ 2

i)k, respectively.
Assume:

∀p, q ∃ε ∀i (Ā1
i , F̄

1
i) ≤p,q,ε (Ā2

i , F̄
2
i), (2)

where p, q are polynomials and ε is a negligible function.
Then (Â1, F̂ 1) ≤neg,pt (Â2, F̂ 2).

Proof. Let polynomials p′, q be given and define p := ccomp ·(p̂+p′), where ccomp is the constant factor for composing
task-PIOAs in parallel. Choose ε from p, q according to the assumption of the theorem. For each k, let b(k) be the
ceiling of q(k)c + 1. (The choice of b(k) ensures that at most b(k) consecutive ti’s fall within any interval of length at
most q(k). This is necessary in order to apply Theorem 4.) Since c is constant, b is a polynomial. Define ε′ := b · ε.

For every k ∈ N, we apply Theorem 4 to conclude that ((Â1)k, (F̂ 1)k) ≤p′(k),q(k),ε′(k) ((Â2)k, (F̂ 2)k, as needed.
ut

Next, we present a corollary to Theorem 5, which provides a composition result for d-bounded concurrent systems,
for d any positive integer. Informally, a d-bounded concurrent system is a system in which up to d components can be
simultaneously alive.

Definition 5 (d-Bounded Concurrency). LetA1,A2, . . . be pairwise compatible task-PIOAs, d a positive integer. We
say that A1,A2, . . . are d-bounded-concurrent with respect to sequences l1, l2, . . . and r1, r2, . . . of nonnegative reals
provided that:

1. 0 ≤ l1 ≤ l2 ≤ . . ., and for every i, li ≤ ri.
2. For every positive real t, t is in the interior of at most d of the intervals [li, ri], that is, |{i : li < t < ri}| ≤ d.
3. For every i, Ai is restricted to [li, ri].

Corollary 1 (d-Bounded Composition Theorem for ≤neg,pt). Let Ā1
1, Ā1

2, . . . and Ā2
1, Ā2

2, . . . be two infinite se-
quences of task-PIOA families, with Ā1

i comparable to Ā2
i for every i. Suppose that Āα1

1 , Āα2
2 , . . . are pairwise com-

patible for any combination of αi ∈ {1, 2}. Let L : N → N be an exponential function and, for each k, let (Â1)k
and (Â2)k denote ‖L(k)

i=1 (Ā1
i)k and ‖L(k)

i=1 (Ā2
i)k, respectively. Let p̂ be a polynomial such that both Â1 and Â2 are

p̂-bounded.
Let d be a positive integer. Suppose that l1, l2, . . . and r1, r2, . . . are two sequences of nonnegative reals, and

for each k, both (Ā1
1)k, (Ā1

2)k, . . . and (Ā2
1)k, (Ā2

2)k, . . . are d-bounded concurrent with respect to l1, l2, . . . and
r1, r2, Let c be a constant real number, and suppose that li + c ≤ ri for every i.

For each i, let F̄ 1
i be a family of sets such that (F̄ 1

i)k is a set of tasks of (Ā1
i)k for every k and let F̄ 2

i be a family of
sets such that (F̄ 2

i)k is a set of tasks of (Ā2
i)k for every k, where all these tasks have infinite upper bounds. Let (F̂ 1)k

and (F̂ 2)k denote
⋃L(k)
i=1 (F̄ 1

i)k and
⋃L(k)
i=1 (F̄ 2

i)k, respectively.
Assume:

∀p, q ∃ε ∀i (Ā1
i , F̄

1
i) ≤p,q,ε (Ā2

i , F̄
2
i), (3)

where p, q are polynomials and ε is a negligible function.
Then (Â1, F̂ 1) ≤neg,pt (Â2, F̂ 2).

Proof. By induction on d. The base case, d = 1, follows easily from Theorem 5, where the increasing sequence
t1, t2, . . . is simply the sequence of left interval endpoints l1, l2,

For the inductive step, we suppose the result holds for all values up to d− 1, and show the result for d. We extract
a pair of sequences of task-PIOA families to which we can apply Theorem 5, in such a way that the remaining pair
of sequences of task-PIOA families satisfy the inductive hypothesis. To extract these sequences, we select a subset
I = {i1, i2, . . .} of the indices, with i1 < i2 < . . ., and consider the task-PIOA families associated with the indices in
I .

We construct the subset I as follows: Let i1 = 1. Then for each j > 1 in turn, define mj and ij as follows: Let
mj = min{li : li ≥ rij−1}, that is, the smallest left endpoint of any interval that is greater than or equal to the right
endpoint of the previously-chosen interval, and let ij be the smallest index with lij = mj .

Now we consider the two sequences of task-PIOA families associated with the indices in I , Ā1
i1
, Ā1

i2
, . . . and

Ā2
i1
, Ā2

i2
, We apply Theorem 5 to these two sequences, and conclude that the compositions of these families

are related by ≤neg,pt. More precisely, for every k, define I(k) = I ∩ {i : i ≤ L(k)}. Define task-PIOA fami-
lies B̂1 and B̂2, where for every k, (B̂1)k = ‖i∈I(k)(Ā1

i)k and (B̂2)k = ‖i∈I(k)(Ā2
i)k. Also define failure-task-set

families Ĝ1 and Ĝ2, where (Ĝ1)k =
⋃
i∈I(k) (F̄ 1

i)k and (Ĝ2)k =
⋃
i∈I(k) (F̄ 2

i)k. Observe that, for every k, the se-
quences (Ā1

i1
)k, (Ā1

i2
)k, . . . and (Ā2

i1
)k, (Ā2

i2
)k, . . . are both sequential for li1 , li2 , Then Theorem 5 implies that

(B̂1, Ĝ1) ≤neg,pt (B̂2, Ĝ2).
Let J = N − I be the set of non-selected indices. We claim that J satisfies d − 1-bounded concurrency; namely,

for every positive real t, t is in the interior of at most d− 1 intervals [li, ri] for i ∈ J .
To see this, we argue by contradiction: Consider any time t that falls into the interior of d of the intervals for indices

in J . Then t cannot also be in the interior of an interval for an index in I , since that would mean that t is in the interior
of at least d+ 1 intervals overall, which violates the d-bounded-concurrency assumption. Similarly, t cannot be either
a left or right endpoint of any interval for an index in I , since in either case, a slight perturbation of t would be in the
interior of d + 1 intervals overall. It follows that t must lie in the “gap” between intervals for indices ij−1 and ij , for
some j. But then we claim that at least one of the d intervals for indices in J containing t in its interior must have its
left endpoint ≥ rij−1 : if not, then all of these intervals would overlap the interval for ij−1 by more than just one point,
again violating d-bounded concurrency. But this claim violates the choice of lij as the smallest left endpoint ≥ rij−1 .

It follows that the pair of subsequences of task-PIOA families associated with the indices in J satisfy the as-
sumptions for the inductive hypothesis. So by the conclusion of the inductive hypothesis, the two compositions of
families of task-PIOAs associated with the indices in J are related by ≤neg,pt. More precisely, for every k, define
J(k) = J ∩ {i : i ≤ L(k)}. Define task-PIOA families Ĉ1 and Ĉ2, where for every k, (Ĉ1)k = ‖i∈J(k)(Ā1

i)k
and (Ĉ2)k = ‖i∈J(k)(Ā2

i)k. Also define failure-task-set families Ĥ1 and Ĥ2, where (Ĥ1)k =
⋃
i∈J(k) (F̄ 1

i)k and

(Ĥ2)k =
⋃
i∈J(k) (F̄ 2

i)k. Then the inductive hypothesis implies that (Ĉ1, Ĥ1) ≤neg,pt (Ĉ2, Ĥ2).

Finally, we combine the claims (B̂1, Ĝ1) ≤neg,pt (B̂2, Ĝ2) and (Ĉ1, Ĥ1) ≤neg,pt (Ĉ2, Ĥ2) using Theorem 3, to
conclude the final result, (Â1, F̂ 1) ≤neg,pt (Â2, F̂ 2). Note that, in applying Theorem 3, we need that the two negligible
functions implicit in the claims (B̂1, Ĝ1) ≤neg,pt (B̂2, Ĝ2) and (Ĉ1, Ĥ1) ≤neg,pt (Ĉ2, Ĥ2) are the same. However, since
we are composing only two task-PIOA families, we can simply use the maximum of the two negligible functions. The
r and s bounds follow from the fact that we are composing only two families and each of these is polynomially
bounded.

8 Application: Digital Timestamping

In this section, we present a formal model of the digital timestamping protocol of Haber et al. (cf. Section 1). Recall
the real and ideal signature services from Section 6. The timestamping protocol consists of a dispatcher component
and a collection of real signature services. Similarly, the ideal protocol consists of the same dispatcher with a collec-
tion of ideal signature services. Using the bounded concurrent composition corollary (Corollary 1), we prove that the
real protocol implements the ideal protocol with respect to the long-term implementation relation ≤neg,pt. This result
implies that, no matter what security failures (forgeries, guessed keys, etc.) occur up to any particular time t, new cer-
tifications and verifications performed by services that awaken after time t will still be correct (with high probability)
for a polynomial-length interval of time after t.

Note that this result does not imply that any particular document is reliably certified for super-polynomial time. In
fact, Haber’s protocol does not guarantee this: even if a document certificate is refreshed frequently by new services,
there is at any time a small probability that the environment guesses the current certificate, thus creating a forgery.
That probability, over super-polynomial time, becomes large. Once the environment guesses a current certificate, it
can continue to refresh the certificate forever, thus maintaining the forgery.

Let SID , the domain of service names, be N. In addition to alive and aliveTimes (cf. Section 4), we assume the
following.

– pref : T → SID . For every t ∈ T, the service pref(t) is the designated signer for time t, i.e., any signing request
sent by the dispatcher at time t goes to service pref(t).

– usable : T → 2SID . For every t ∈ T, usable(t) specifies the set of services that are accepting new verification
requests.

Assume, for every t ∈ T, pref(t) ∈ usable(t) ⊆ alive(t). If a service is preferred, it accepts both signing and
verification requests. If it is alive but not usable, no new verification requests are accepted, but those already submitted
will still be processed.

– prefTimes : SID ⇒ 2T, defined by prefTimes(j) = {t ∈ T|j = pref(t)}. This says which times a particular j is
preferred.

– usableTimes : SID ⇒ 2T, defined by usableTimes(j) = {t ∈ T|j = usable(t)}. This says which times a
particular j is usable for verification.

Dispatcher: We define Dispatcherk for each security parameter k. If the environment sends a first-time certificate re-
quest reqCert(rid , x), Dispatcherk requests a signature from service j = pref(t) via the action reqSign(rid , 〈x, t,⊥〉)j ,
where t is the clock reading at the time of reqSign. In this communication, we instantiate the message space Mk as
Xk ×Tk × (Σk)⊥, where Xk is the domain of documents to which timestamps are associated. After service j returns
with action respSign(rid , σ)j , Dispatcherk issues a new certificate via respCert(rid , σ, j).

If a renew request reqCert(rid , x, t, σ1, σ2, j) comes in, Dispatcherk first checks to see if j is still usable. If not,
it responds with respCert(rid , false). Otherwise, it sends reqVer(rid , 〈x, t, σ1〉, σ2)j to service j. If service j answers
affirmatively, Dispatcherj sends a signature request reqSign(rid , 〈x, t, σ2〉)j′ , where j′ is the current preferred service.
When service j′ returns with action respSignj′(rid , σ3), Dispatcherk issues a new certificate via respCert(rid , σ3, j

′).
The task-PIOA code for the component Dispatcher appears in Figure 7. As a convention, we use σ1, σ2 and σ3 to

denote previous, current, and new signatures, respectively.

Concrete Time Scheme: Let d be a positive natural number. Each service j is in alive(t) for t = (j − 1)d, . . . , (j +
2)d − 1, so j is alive in the real time interval [(j − 1)d, (j + 2)d]. Thus, at any real time t, at most three services are
concurrently alive; more precisely, t lies in the interior of the intervals for at most three services. Moreover, service j
is preferred for signing for discrete times (j − 1)d, . . . , jd− 1, that is, for real times in the interval [(j − 1)d, jd− 1],
and is usable for discrete times (j−1)d, . . . , (j+ 1)d−1, that is, for real times in the interval [(j−1)d, (j+ 1)d−1].
Between real times (j+1)d and (j+2)d, service j continues to process requests already submitted, without receiving
new requests.

Protocol Correctness: For every security parameter k, let SIDk ⊆ SID denote the set of p(k)-bit numbers, for some
polynomial p. Recall from Section 5 that RealSig(j)k = hide(KeyGen(k, j)‖Signer(k, j)‖Verifier(k, j), signKeyj)
and IdealSig(j)k = hide(KeyGen(k, j)‖SigFunc(k, j), signKeyj). Here we define

Realk = ‖j∈SIDk
RealSig(j)k, Idealk = ‖j∈SIDk

IdealSig(j)k, and

RealSigSysk := Dispatcherk‖Realk, IdealSigSysk := Dispatcherk‖Idealk.

Eventually, define Real := {Realk}k∈N, Ideal := {Idealk}k∈N, RealSigSys := {RealSigSysk}k∈N and
IdealSigSys := {IdealSigSysk}k∈N. Our goal is to show that

(RealSigSys, ∅) ≤neg,pt (IdealSigSys, F̄),

where we use ∅ for a family of empty failure sets and F̄k :=
⋃
j∈SIDk

{{failj}} for every k (Theorem 6).
First, we observe that certain components of the real and ideal systems are restricted to certain time intervals, in

the sense of Definition 3.

Lemma 6. Suppose k ∈ N, j ∈ SIDk. Then RealSig(j)k and IdealSig(j)k are restricted to [(j − 1)d, (j + 2)d].

Proof. Suppose we have t < (j − 1) · d, environment Env for RealSig(j)k of the form Env′‖Clock, valid schedule τ
for RealSig(j)k‖Env for [0, t], and state s reachable under τ . Recall from Section 3 that, for every t′ ∈ T, the action
tick(t′) must take place at time t′. Therefore, τ does not trigger a tick(t′) action with t′ ∈ [(j − 1)d, (j + 2)d]. On the
other hand, all variables of RealSig(j)k remains ⊥ unless such a tick(t′) action takes place, so we can conclude that
s.v = ⊥ for every variable v of RealSig(j)k.

For t > (j + 2)d, we know that τ must have triggered the action tick((j + 2)d), which sets all variables of
RealSig(j)k to ⊥. Moreover, every subsequent tick(t′) has t′ > t, so the variables remain ⊥.

Finally, by inspection of the code for RealSig(j)k, we know that no locally controlled actions are enabled if all
variables are ⊥.

The proof for IdealSig(j)k is analogous. ut

Lemma 7. For every k, both RealSig(1)k,RealSig(2)k, . . . and IdealSig(1)k, IdealSig(2)k, . . . are 3-bounded-concurrent.

Proof. Follows from Lemma 6.

Lemma 8. The task-PIOA families Real and Ideal are polynomially bounded.

Theorem 6. Assume the concrete time scheme described above and assume that every signature scheme used in the
timestamping protocol is complete and existentially unforgeable. Then (RealSigSys, ∅) ≤neg,pt (IdealSigSys, F̄), where
F̄k :=

⋃
j∈SIDk

{{failj}} for every k.

Proof. We apply Corollary 1 to the two sequences RealSig(1),RealSig(2), . . . and IdealSig(1), IdealSig(2), It
is easy to see that for each j ∈ SID, RealSig(j) is comparable to IdealSig(j), and that the needed compatibility
conditions are satisfied. The number of components in Realk is bounded by the cardinality of the set SIDk. Since
SIDk is the set of p(k)-bit numbers for some polynomial p, the size of SIDk is bounded by some exponential in k.
We use this exponential for the L bound in Corollary 1. Lemma 8 implies that conditions on the complexity bounds
are met. Lemma 7 yields the needed sequences of positive reals for 3-bounded concurrency.

Theorem 1 implies that (RealSig(j), ∅) ≤neg,pt (IdealSig(j), {failj}) for every j ∈ SID . We need a stronger
statement here: that, for every pair of polynomials p and q, there exists a single negligible function ε such that
(RealSig(j), ∅) ≤p,q,ε (IdealSig(j), {failj}) for every j ∈ SID . That is, we require that the negligible function be
independent of j. In our particular example, this independence follows because all of the RealSig(j) are identical
except for the parameter j, and likewise for all of the IdealSig(j).8 Thus, we can apply Theorem 5, which shows that
(Real, ∅) ≤neg,pt (Ideal, F̄).

Then, we apply Theorem 3 to Dispatcher‖Real and Dispatcher‖Ideal. In order to apply this theorem we first
observe that Dispatcher is comparable to Dispatcher, and for each j ∈ SID, RealSig(j) ∈ Real is comparable to
IdealSig(j) ∈ Ideal. Observe also that compatibility conditions are satisfied.

It is also obvious that for every pair of polynomials p and q, (Dispatcher, ∅) ≤p,q,0 (Dispatcher, ∅), and we just
showed that there is a negligible function ε such that (Real, ∅) ≤p,q,ε (Ideal, F̄). The fact that each of the composed
families is polynomially bounded, and that we are only considering the composition of a constant number of them (that
is, 2) provides the r, s bounds and guarantees the uniformity condition (3) required for Theorem 3 (we can simply
select the larger of the bounds of the individual families). Those observations are sufficient to apply Theorem 3, which
yields the result.

Abstract long-lived timestamp service: It is possible to define a somewhat more abstract specification for a long-lived
timestamp service—one that does not include explicit representations of individual short-lived services—and to show
that our ideal level system model implements this specification, in the sense of ≤neg,pt. The abstract specification
would, for example, include global sets of signing and verification keys instead of individual mySK and myVK
variables, and a global table of issued certificates instead of individual history queues. Old entries in the table that are
not recertified quickly enough would be garbage-collected, in order to keep the model polynomial-bounded. Otherwise,
the specification would be essentially the same as our ideal system model.

Given the close correspondence between our ideal system model and the new abstract specification, it should be
straightforward to show that the two models are related by ≤neg,pt. Then transitivity of ≤neg,pt (Lemma 4) can be used
to show that our real system model also implements the new abstract specification, in the sense of ≤neg,pt.

9 Conclusion

We have introduced a new model for long-lived security protocols, based on task-PIOAs augmented with real-time task
schedules. We express computational restrictions in terms of processing rates with respect to real time. The heart of our
model is a long-term implementation relation, ≤neg,pt, which expresses security in any polynomial-length interval of
time, despite of prior security violations. We have proved polynomial parallel composition and exponential sequential
composition theorems for ≤neg,pt. Finally, we have applied the new theory to show security properties for a long-lived
timestamping protocol.

8 In other examples, this independence might not follow, e.g., because not all of the services are identical. In such cases, we would
have to add an additional independence assumption.

This work suggests several directions for future work. First, for our particular timestamping case study, it remains
to carry out the details of defining a higher-level abstract functionality specification for a long-lived timestamp service,
and to use ≤neg,pt to show that our ideal system, and hence, the real protocol, implements that specification.

We would also like to know whether or not it is possible to achieve stronger properties for long-lived timestamp
services, such as reliably certifying a document for super-polynomial time.

It remains to use these definitions to study additional long-lived protocols and their security properties. The use
of real time in the model should enable quantitative analysis of the rate of security degradation. Finally, it would be
interesting to generalize the framework to allow the computational power of the various system components to increase
with time.

References

1. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. In: Proceedings of the 17th
Annual ACM Symposium on Theory of Computing (STOC’85). (1985) 291–304

2. Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its application to secure message transmission.
In: IEEE Symposium on Security and Privacy, Oakland, CA, IEEE Computer Society (2001) 184–200

3. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In Naor, M., ed.: Proceedings of
the 42nd Annual Symposium on Foundations of Computer Science, IEEE Computer Society (2001) 136–145

4. Goldreich, O.: Foundations of Cryptography: Basic Tools. Volume 1. Cambridge University Press (2001 (reprint of 2003))
5. Canetti, R., Cheung, L., Kaynar, D., Liskov, M., Lynch, N., Pereira, O., Segala, R.: Analyzing security protocols using time-

bounded Task-PIOAs. Discrete Event Dynamic Systems 18(1) (2008) 111–159
6. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks. In: Proceedings of 10th annual ACM Symposium on

Principles of Distributed Computing (PODC-91). (1991) 51–59
7. Anderson, R.: Two remarks on public key cryptology. Technical Report UCAM-CL-TR-549, University of Cambridge (2002)
8. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In Wiener, M.J., ed.: Advances in Cryptology - CRYPTO

’99. Volume 1666 of Lecture Notes in Computer Science., Springer (1999) 431–448
9. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In Biham, E., ed.: Advances in Cryptology

— EUROCRYPT 2003. Number 2656 in LNCS, Springer (2003) 255–271
10. Bayer, D., Haber, S., Stornetta, S.W.: Improving the efficiency and reliability of digital time-stamping. In Capocalli, R.M.,

Santis, A.D., , Vaccaro, U., eds.: Sequences II: Methods in Communication, Security, and Computer Science, Springer-Verlag
(1993) 329–334 (Proceedings of the Sequences Workshop, 1991).

11. Haber, S.: Long-lived digital integrity using short-lived hash functions. Technical report, HP Laboratories (2006)
12. Haber, S., Kamat, P.: A content integrity service for long-term digital archives. In: Proceedings of the IS&T Archiving Con-

ference. (2006) Also published as Technical Memo HPL-2006-54, Trusted Systems Laboratory, HP Laboratories, Princeton.
13. Mitchell, J., Ramanathan, A., Scedrov, A., Teague, V.: A probabilistic polynomial-time process calculus for the analysis of

cryptographic protocols. Theoretical Computer Science 353 (2006) 118–164
14. Backes, M., Pfitzmann, B., Waidner, M.: Secure asynchronous reactive systems. Cryptology ePrint Archive, Report 2004/082

(2004) http://eprint.iacr.org/.
15. Müller-Quade, J., Unruh, D.: Long-term security and universal composability. In: Theory of Cryptography, Proceedings of

TCC 2007. Volume 4392 of LNCS., Springer-Verlag (2007) 41–60 Preprint on IACR ePrint 2006/422.
16. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. Nordic Journal of Computing 2(2) (1995) 250–273
17. Lynch, N., Tuttle, M.: An introduction to input/output automata. CWI Quarterly 2(3) (1989) 219–246
18. Merritt, M., Modugno, F., Tuttle, M.: Time constrained automata. In: Proceedings of CONCUR 1991. Volume 527 of LNCS.

(1991) 408–423

Verifier(k : N, j : SID)

Signature

Input:
tick(t : Tk)

verKey(vk : 2k)j

reqVer(rid : RIDk,
m : Mk, σ : Σk)j

Output:
respVer(rid : RIDk,
b : Bool)j

Internal:
verify(rid : RIDk,
m : Mk, σ : Σk)j

Tasks
respVerj = {respVer(∗, ∗)j}
verifyj = {verify(∗, ∗, ∗)j}

States
awake : {true}⊥, init ⊥
clock : (Tk)⊥, init ⊥
myVK : (2k)⊥, init ⊥
toVer : quek(RIDk ×Mk

×Σk)⊥, init ⊥
verified : quek(RIDk ×Mk

×Σk)⊥, init ⊥

Transitions
tick(t)
Effect:

if j ∈ alive(t) then
clock := t
if awake = ⊥ then

awake := true
toV er, verified

:= empty
else

awake, clock ,myVK ,
toV er, verified := ⊥

verKey(vk)j

Effect:
if awake = true
∧myVK = ⊥

then myVK := vk

reqVer(rid ,m, σ)j

Effect:
if awake = true
∧¬ full(toVer)

then toVer :=
enq(toVer , 〈rid ,m, σ〉)

verify(rid ,m, σ)j

local b : Bool
Precondition:

awake = true
∧myVK 6= ⊥

head(toVer) = 〈rid ,m, σ〉
Effect:

toVer := deq(toVer)
b := Verifyj(m,σ,myVK)
verified :=

enq(verified , 〈rid , b〉)

respVer(rid , b)j

Precondition:
awake = true
head(verified) = 〈rid , b〉

Effect:
verified := deq(verified)

Fig. 4. Task-PIOA Code for Verifier(k, j)

SigFunc(k : N, j : SID)

Signature

Input:
IVerifier ∪ ISigner

Output:
OVerifier ∪OSigner

Internal:
HVerifier ∪HSigner ∪ {failj}

Tasks
RSigner ∪RVerifier ∪ {{failj}}

States
All variables of Signer
and Verifier
history : quek(Mk)⊥, init ⊥
failed : {true, false}⊥, init ⊥

Transitions
Same as Signer and Verifier,
except the following:

tick(t)
Effect:

if j ∈ alive(t) then
clock := t
if awake = ⊥ then

awake := true
toSign, toV er,
signed , verified

:= empty
history := ∅
failed := false

else
awake, clock ,mySK ,
myVK , toSign, toVer ,
signed , history , verified ,
failed := ⊥

failj
Precondition:

awake = true
Effect:

failed := true

sign(rid ,m)j

local σ : Σ
Precondition:

awake = true
∧mySK 6= ⊥

head(toSign) = 〈rid ,m〉
Effect:

toSign := deq(toSign)
σ := Signj(m,mySK)
signed :=

enq(signed , 〈rid , σ〉)
history :=

enq(history ,m)

verify(rid ,m, σ)j

Local b : Bool
Precondition:

awake = true
∧myVK 6= ⊥

head(toVer) = 〈rid ,m, σ〉
Effect:

toVer := deq(toVer)
b := (Verify(m,σ,myVK)
∧(m ∈ history ∨ failed))

verified :=
enq(verified , 〈rid , b〉)

Fig. 5. Code for SigFunc(k, j)

Dispatcher(k : N)

Signature

Input:
tick(t : Tk)
reqCert(rid : RIDk, x : Xk)
reqCert(rid : RIDk, x : Xk, t : Tk,
σ1 : (Σk)⊥, σ2 : Σk, j : SID)

reqCheck(rid : RIDk, x : Xk, t : Tk,
σ1 : (Σk)⊥, σ2 : Σk, j : SID)

respSign(rid : RIDk, σ : Σk)j , j ∈ SID
respVer(rid : RIDk, b : Bool)j , j ∈ SID

Output:
reqSign(rid : RIDk,m : Mk)j , j ∈ SID
reqVer(rid : RIDk,m : Mk, σ : Σk)j , j ∈ SID
respCert(rid : RIDk, σ : Σk, j : SID)
respCert(rid : RIDk, false)
respCheck(rid : RIDk, b : Bool)

Internal:
denyVer(rid : RIDk, op : {′cert′,′ check′},
m : Mk, σ : Σk, j : SID)

Tasks
reqSign = {reqSign(∗, ∗)∗}
reqVer = {reqVer(∗, ∗, ∗)∗}
respCert = {respCert(∗, ∗, ∗)} ∪ {respCert(∗, false)}
respCheck = {respCheck(∗, ∗)}
denyVer = {denyVer(∗, ∗, ∗, ∗, ∗)}

States
clock : Tk, init 0
toSign : quek(RIDk ×M), init empty
toVer : quek(RIDk × {′cert′,′ check′}
×M ×Σ × SID), init empty
pendingVer , pendingSign : Bool , init false
certified : quek((RIDk ×Σ × SID)
∪(RIDk × {false})), init empty
checked : quek(RIDk × Bool), init empty
currCt : N, init 0

Transitions
tick(t)
Effect:

clock := t

reqCert(rid , x)
Effect:

if currCt < b then
toSign := enq(toSign, 〈rid , 〈x, clock ,⊥〉〉)
currCt := currCt + 1

reqCert(rid , x, t, σ1, σ2, j)
Effect:

if currCt < b then
toVer := enq(toVer ,
〈rid ,′ cert′, 〈x, t, σ1〉, σ2, j〉)

currCt := currCt + 1

reqCheck(rid , x, t, σ1, σ2, j)
Effect:

if currCt < b then
toVer := enq(toVer ,
〈rid ,′ check′, 〈x, t, σ1〉, σ2, j〉)

currCt := currCt + 1

reqSign(rid ,m)j

Precondition:
head(toSign) = 〈rid ,m〉
j = pref(clock)
¬pendingSign

Effect:
pendingSign := true

respSign(rid , σ3)j

Effect:
if pendingSign ∧ (∃m)(head(toSign) =
〈rid ,m, j〉) then

choose m where head(toSign) = 〈rid ,m, j〉
toSign := deq(toSign)
pendingSign := false
choose x, t where (∃σ2)(m = 〈x, t, σ2〉)
certified := enq(certified , 〈rid , σ3, j〉)

denyVer(rid , op,m, σ2, j)
Precondition:

head(toVer) = 〈rid , op,m, σ2, j〉
j /∈ usable(clock)

Effect:
toVer := deq(toVer)
if op =′ cert′ then

certified := enq(certified , 〈rid , false〉)
else checked := enq(checked , 〈rid , false〉)

reqVer(rid ,m, σ2)j

Precondition:
(∃op)(head(toVer) = 〈rid , op,m, σ2, j〉
j ∈ usable(clock)
¬pendingV er

Effect:
pendingVer := true

Fig. 6. Task-PIOA Code for Dispatcher(k : N), Part I

Transitions
respVer(rid , b)j

Effect:
if pendingVer
∧(∃op,m, σ2)(head(toVer) =
〈rid , op,m, σ2, j〉) then

choose op,m, σ2 where
head(toVer) = 〈rid , op,m, σ2, j〉

toVer := deq(toVer)
pendingVer := false
if op =′ cert′ ∧ ¬b then

certified := enq(certified , 〈rid , false〉)
if op =′ cert′ ∧ b then

choose x, t where (∃σ1)(m = 〈x, t, σ1〉)
toSign := enq(toSign, 〈rid , 〈x, t, σ2〉〉)

if op =′ check′ then
checked := enq(checked , 〈rid , b〉)

respCert(rid , false)
Precondition:

head(certified) = 〈rid , false〉
Effect:

certified := deq(certified)
currCt := currCt − 1

respCert(rid , σ3, j)
Precondition:

head(certified) = 〈rid , σ3, j〉
Effect:

certified := deq(certified)
currCt := currCt − 1

respCheck(rid , b)
Precondition:

head(checked) = 〈rid , b〉
Effect:

checked := deq(checked)
currCt := currCt − 1

Fig. 7. Task-PIOA Code for Dispatcher(k : N), Part II

