
Joint State Composition Theorems for Public-Key Encryption and
Digital Signature Functionalities with Local Computation∗

Ralf Küsters Max Tuengerthal
University of Trier, Germany

{kuesters,tuengerthal}@uni-trier.de

August 30, 2013

Abstract

In frameworks for universal composability, complex protocols can be built from sub-protocols in a
modular way using composition theorems. However, as first pointed out and studied by Canetti and
Rabin, this modular approach often leads to impractical implementations. For example, when using
a functionality for digital signatures within a more complex protocol, parties have to generate new
verification and signing keys for every session of the protocol. This motivates to generalize composition
theorems to so-called joint state (composition) theorems, where different copies of a functionality may
share some state, e.g., the same verification and signing keys.

In this paper, we present a joint state theorem which is more general than the original theorem of
Canetti and Rabin, for which several problems and limitations are pointed out. We apply our theorem
to obtain joint state realizations for three functionalities: public-key encryption, replayable public-key
encryption, and digital signatures. Unlike most other formulations, our functionalities model that
ciphertexts and signatures are computed locally, rather than being provided by the adversary. To obtain
the joint state realizations, the functionalities have to be designed carefully. Other formulations proposed
in the literature are shown to be unsuitable. Our work is based on the IITM model. Our definitions
and results demonstrate the expressivity and simplicity of this model. For example, unlike Canetti’s UC
model, in the IITM model no explicit joint state operator needs to be defined and the joint state theorem
follows immediately from the composition theorem in the IITM model.

∗This work is an extended and updated version of the paper [25].

Contents
1 Introduction 4

2 The IITM Model 6
2.1 The General Computational Model . 7
2.2 Polynomial Time and Properties of Systems . 9
2.3 Notions of Universal Composability . 9
2.4 Composition Theorems . 10

3 The Joint State Theorem 13
3.1 The Joint State Theorem in the UC Model . 13
3.2 The Joint State Theorem in the IITM Model . 16

4 Ideal Functionalities 18
4.1 Notation for the Definition of IITMs . 18

4.1.1 Pseudocode . 18
4.1.2 Specification of IITMs . 18
4.1.3 Running External Code . 20

4.2 Digital Signatures . 20
4.2.1 An Ideal Functionality Fsig for Digital Signatures . 20
4.2.2 Realizing Fsig by UF-CMA Secure Digital Signature Schemes 22

4.3 Public-Key Encryption . 23
4.3.1 Leakage Algorithms . 23
4.3.2 An Ideal Functionality Fpke for Public-Key Encryption 24
4.3.3 Realizing Fpke by IND-CCA2 Secure Public-Key Encryption Schemes 26

4.4 Replayable Public-Key Encryption . 27
4.4.1 An Ideal Functionality Frpke for Replayable Public-Key Encryption 27
4.4.2 Realizing Frpke by IND-RCCA Secure Public-Key Encryption Schemes 28

5 Joint State Realizations 28
5.1 A Joint State Realization for Digital Signatures . 28
5.2 A Joint State Realization for Public-Key Encryption . 34
5.3 A Joint State Realization for Replayable Public-Key Encryption 38

6 Related Work 40
6.1 Digital Signatures . 40
6.2 Public-Key Encryption . 41
6.3 Replayable Public-Key Encryption . 44
6.4 Joint State Theorems Without Pre-Established Session Identifiers 44

A Security Definitions for Cryptographic Primitives 45
A.1 Digital Signatures . 45
A.2 Public-Key Encryption . 46

B Proofs of Theorems 6, 7, and 8 47
B.1 Proof of Theorem 6 . 47

B.1.1 Σ is UF-CMA Secure ⇒ Psig ≤ Fsig . 47
B.1.2 Psig ≤ Fsig ⇒ Σ is UF-CMA Secure . 49

B.2 Proof of Theorem 7 . 50
B.2.1 Σ is IND-CCA2 Secure ⇒ Ppke ≤ Fpke . 50
B.2.2 Ppke ≤ Fpke ⇒ Σ is IND-CCA2 Secure . 52

B.3 Proof of Theorem 8 . 54

2

B.3.1 Σ is IND-RCCA Secure ⇒ Ppke ≤ Frpke . 54
B.3.2 Ppke ≤ Frpke ⇒ Σ is IND-RCCA Secure . 57

3

1 Introduction
In frameworks for universal composability (see, e.g., [8, 7, 10, 18, 21, 22, 23, 24, 27, 31]) the security of
protocols is defined in terms of an ideal protocol (also called an ideal functionality). A real protocol securely
realizes the ideal protocol if every attack on the real protocol can be translated to an “equivalent” attack
on the ideal protocol, where equivalence is specified based on an environment trying to distinguish the real
attack from the ideal one. That is, for every real adversary on the real protocol there must exist an ideal
adversary (also called a simulator) on the ideal protocol such that no environment can distinguish whether it
interacts with the real protocol and the real adversary or the ideal protocol and the ideal adversary. So the
real protocol is as secure as the ideal protocol (which, by definition, is secure) in all environments. At the
core of the universal composability approach are composition theorems which say that if a protocol uses one
or more (independent) instances of an ideal functionality, then all instances of the ideal functionality can be
replaced by instances of the real protocol that realizes the ideal functionality. In this way, more and more
complex protocols can be designed and analyzed in a modular way based on ideal functionalities, which later
can be replaced by their realizations.

However, as first pointed out and studied by Canetti and Rabin [17] (see the related work), this modular
approach often leads to impractical implementations since the composition theorems assume that different
copies of a protocol have disjoint state. In particular, the random coins used in different copies have to be
chosen independently. Consequently, when, for example, using a functionality for digital signatures within a
more complex protocol, e.g., a key exchange protocol, parties have to generate new verification and signing
keys for every copy of the protocol. This is completely impractical and motivates to generalize composition
theorems to so-called joint state (composition) theorems, where different copies of a protocol may share some
state, such as the same verification and signing keys.

The main goal of this paper is to obtain a general joint state theorem and to apply it to (novel) public-key
encryption, replayable public-key encryption, and digital signature functionalities with local computation.
In these functionalities, ciphertexts and signatures are computed locally, rather than being provided by the
adversary, a feature often needed in applications. To obtain the joint state realizations, the functionalities
have to be designed carefully. Other formulations proposed in the literature are shown to be unsuitable.

Contribution of this paper. In a nutshell, our contributions include (i) novel and rigorous formulations
of ideal (replayable) public-key encryption and digital signature functionalities with local computation, along
with their implementations, (ii) a joint state theorem which is more general than other formulations and
corrects flaws in these formulations, and (iii) based on this theorem, joint state realizations and theorems for
(replayable) public-key encryption and digital signatures.

Unfortunately, all other joint state theorems claimed in the literature for such functionalities with local
computation can be shown to be flawed. An overall distinguishing feature of our work is the rigorous
treatment, the simplicity of our definitions, and the generality of our results, which is due to the expressivity
and simplicity of the model for universal composability that we use, the IITM model [24, 27]. For example,
unlike Canetti’s UC model [8, 7], in the IITM model no explicit joint state operator needs to be defined
and the joint state theorem follows immediately from the composition theorems of the IITM model. More
precisely, our contributions are as follows.
(i) We formulate three functionalities: digital signatures, public-key encryption, and replayable public-key
encryption. Our formulation of replayable public-key encryption is meant to model in a universal composability
setting the notion of replayable IND-CCA2 security (IND-RCCA security) [14]. This relaxation of IND-CCA2
security permits anyone to generate new ciphertexts that decrypt to the same plaintext as a given ciphertext.
As argued in [14], IND-RCCA security suffices for most existing applications of IND-CCA2 security. In
our formulations of the above mentioned functionalities ciphertexts and signatures are determined by local
computations, and hence, as needed in many applications, a priori do not reveal signed messages or ciphertexts.
In other formulations, e.g., those in [17, 9, 2, 14, 20], signatures and ciphertexts are determined by interaction
with the adversary, with the disadvantage that the adversary learns all signed messages and all ciphertexts.
Hence, such functionalities cannot be used, for example, in the context of secure message transmissions

4

where a message is first signed and then encrypted, or in protocols with nested encryptions. Although
there exist formulations of non-replayable public-key encryption and digital signature functionalities with
local computation in the literature, these formulations have several deficiencies, in particular, as mentioned,
concerning joint state realizations (see below).

We show that a public-key encryption scheme implements our (replayable) public-key encryption function-
ality if and only if it is IND-CCA2 secure (IND-RCCA secure), in case of static corruptions. We also prove
equivalence between UF-CMA security of digital signatures schemes and our digital signature functionality,
in case of adaptive corruptions.
(ii) In the spirit of Canetti and Rabin [17], we state a general joint state theorem. However, in contrast to
Canetti’s UC model as employed in [17] and the new versions of his model [7], within the IITM model we
do not need to explicitly define a specific joint state operator. Also, our joint state theorem, unlike the one
in the UC model, immediately follows from the composition theorem in the IITM model, no extra proof
is needed. In addition to the seamless treatment of the joint state theorem within the IITM model, which
exemplifies the simplicity and expressivity of the IITM model, our theorem is even more general than the
ones in [17, 7] (see Section 3). We also note in Section 3 that, due to the kind of ITMs used in the UC model,
the assumptions of the joint state theorems in the UC models can in many interesting cases not be satisfied
and in cases they are satisfied, the theorem does not necessarily hold true.

We note that, similarly to the UC model, in the recently proposed GNUC model [23], dealing with joint
state is quite cumbersome as well. In this model, in a run of a system machines have to form a call tree (every
machine must have a unique caller), which is not the case in settings with joint state. Hence, unlike the IITM
model, this model does not allow for dealing with joint state in a natural and smooth way. For example, the
general joint state theorem does not immediately follow from the composition theorem in the GNUC model.
It rather requires a non-trivial proof, which has to take into account details fixed in the GNUC model, such
as corruption and so-called invited messages (see also the discussion in [27]).
(iii) We apply our general joint state theorem to obtain joint state theorems for our (replayable) public-
key encryption and digital signature functionalities. These joint state theorems are based on our ideal
functionalities alone, and hence, work for all implementations of these functionalities. While the core of our
joint state realizations are quite standard, their constructions and the proofs need care; as already mentioned,
all other joint state theorems claimed in the literature for such functionalities with local computation are
flawed.

Related work. As mentioned, Canetti and Rabin [17] were the first to explicitly study the problem of
joint state, based on Canetti’s original UC model [8]. They propose a general joint state theorem and apply
it to a digital signature functionality with non-local computation (see also [2, 16]), i.e., the adversary is asked
to provide a signature for every message. While the basic ideas in this work are interesting and useful, their
general joint state theorem has several problems and limitations, as discussed in Section 3.

While most formulations of digital signatures and public-key encryption proposed in the literature use non-
local computation, some formulations with local computations exist, which howerver, as already mentioned,
are unsuitable for obtaining joint state realizations (see Section 6 for a detailed discussion).

For example, in [7] (version of December 2005),1 Canetti proposes functionalities for public-key encryption
and digital signatures with local computation. He sketches a functionality for replayable public-key encryption
in a few lines. However, this formulation only makes sense in a setting with non-local computation, as
proposed in [14]. As for joint state, Canetti only points to [17], with the limitations and problems inherited
from this work. Moreover, as further discussed in Section 6, the joint state theorems claimed for the public-key
encryption and digital signature functionalities in [7] are flawed. The same is true for the work by Canetti
and Herzog in [12], where another public-key encryption functionality with local computation is proposed
and a joint state theorem is claimed.

We note that, despite the problems with the joint state theorem and its application in the UC model
pointed out in this work (see Sections 3.1 and 6 for detailed discussions), the basic ideas and contributions in

1In the most recent version, the one from July 2013, Canetti does not consider functionalities for public-key encryption and
digital signatures.

5

that model are important and useful. However, we believe that it is crucial to equip that body of work with
a more rigorous and elegant framework. This is one of the goals of this work.

In [11], Canetti et al. study universal composability with global setup. We note that they have to extend
the UC model to allow the environment to access the functionality for the global setup. In the IITM model,
this is not necessary (see the discussion in [27]). The global setup can be considered as joint state. But it is a
joint state shared across all entities, unlike the joint state settings considered here, where the joint state is
only shared within copies of functionalities. Therefore the results proved in [11] do not apply to the problem
studied in this paper.

The present paper is an extended and updated version of [25]. In contrast to [25], here we use the new
version of the IITM model, which has been proposed recently [27].

Structure of the paper. In the following section, we briefly recall the IITM model. The general joint
state theorem is presented in Section 3, along with a discussion of the joint state theorem of Canetti and
Rabin [17]. In Section 4, we present our formulations of ideal functionalities for digital signatures, public-key
encryption, and replayable public-key encryption along with realizations of these functionalities. Joint state
realizations of these functionalities are provided in Section 5. In Section 6, we discuss further related work and
provide more details for the related work mentioned above. Some more details are provided in the appendix.

Notation and basic terminology. For a bit string a ∈ {0, 1}∗ we denote by |a| the length of a. Given
bit strings a1, . . . , an, by (a1, . . . , an) we denote the tuple consisting of these bit strings. We assume that
tuples have a simple bit string representation and that converting a tuple to its bit string representation and
vice versa is efficient. We do not distinguish between a tuple and its bit string representation.

Following [7, 27], a function f : N× {0, 1}∗ → R≥0 is called negligible if for all c, d ∈ N there exists η0 ∈ N
such that for all η > η0 and all a ∈

⋃
η′≤ηd{0, 1}η

′ : f(η, a) < η−c.2 A function f : N × {0, 1}∗ → [0, 1] is
called overwhelming if 1− f is negligible.3

2 The IITM Model
In this section, we recall the IITM model [27, 24], a simple and expressive model for universal composability.
More precisely, here we use the IITM model as presented in [27], which equips the original IITM model [24]
with a more general notion of runtime. This allows us to formulate protocols and ideal functionalities in a
more intuitive way, without technical artifacts concerning runtime. As discussed in [27], the (new) IITM
model has several advantages compared to other models for universal composability. In particular, it resolves
problems in Canetti’s UC model and does not suffer from restrictions imposed in the GNUC model [23]. As
already mentioned in the introduction and further discussed in Section 6, these problems and restrictions also
affect the joint state theorems.

As discussed in [27], the IITM model does not fix details such as addressing of machines by party/session
IDs or corruption. Such details can be specified in a flexible and general way as part of the protocol
specification. The IITM also does not impose any specific structure, e.g., a hierarchical structure with
protocols and subroutines, on systems. Altogether, this makes the model both simpler and more expressive.
It also makes the theorems proven in the IITM model, such as composition and joint state theorems, more
general as they hold true for a large class of protocols and no matter how certain details are fixed.

Since the IITM model is in the spirit of Canetti’s UC model, we note that conceptually the results
presented in this paper also carry over to other models for universal composability.

2We note that this definition of negligibility is equivalent to the following: f is negligible if and only if for all positive
polynomials p(η) and q(η) in η ∈ N (i.e., p(η) > 0 and q(η) > 0 for all η ∈ N) there exists η0 ∈ N such that for all η > η0 and all
a ∈
⋃
η′≤q(η){0, 1}

η′ : f(η, a) < 1
p(η) . We further note that negligible functions have the following properties: (i) If f and g are

negligible, then f+g is negligible. (ii) If f is negligible and p(n) is a positive polynomial in n ∈ N, then g(η, a) := p(η+ |a|) ·f(η, a)
and g′(η, a) := p(η) · f(η, a), for all η, a, are negligible.

3By [0, 1] we denote the interval of all real numbers x such that 0 ≤ x ≤ 1.

6

2.1 The General Computational Model
In the IITM model, security notions and composition theorems are formalized based on a simple, expressive
general computational model, in which IITMs (inexhaustible interactive Turing machines) and systems of
IITMs are defined.

Inexhaustible interactive Turing machines. An inexhaustible interactive Turing machine (IITM) is
a probabilistic Turing machine with named input and output tapes as well as an associated polynomial.
The tape names determine how different machines are connected in a system of IITMs (see below). Tapes
named start and decision serve a particular purpose when running a system of IITMs. It is required that
only input tapes can be named start and only output tapes can be named decision. Tapes named start are
used to provide a system with external input and to trigger an IITM if no other IITM was triggered. An
IITM is triggered by another IITM if the latter sends a message to the former. An IITM with an input tape
named start is called master IITM. On tapes named decision the final output of a system of IITMs will be
written. An IITM runs in one of two modes, CheckAddress and Compute. The CheckAddress mode is used as
a generic mechanism for addressing copies of IITMs in a system of IITMs, as explained below. In this mode,
an IITM may perform, in every activation, a deterministic polynomial-time computation in the length of the
security parameter plus the length of the current input plus the length of its current configuration, where the
polynomial is the one associated with the IITM. The IITM is supposed to output “accept” or “reject” at the
end of the computation in this mode, indicating whether the received message is processed further or ignored.
The actual processing of the message, if accepted, is done in mode Compute. In this mode, a machine may
only output at most one message on an output tape (and hence, only at most one other machine is triggered).
The runtime in this mode is not a priori bounded. Later the runtime of systems and their subsystems will be
defined in such a way that the overall runtime of a system of IITMs is polynomially bounded in the security
parameter. We note that in both modes, an IITM cannot be exhausted (hence, the name): in every activation
it can perform actions and cannot be forced to stop. This property, while not satisfied in all other models, is
crucial to obtain a reasonable model for universal composability (see, e.g., [27] for more discussion).

Systems of IITMs. A system S of IITMs is of the form

S = M1 | · · · |Mk | !M ′1 | · · · | !M ′k′

where Mi, i ∈ {1, . . . , k}, and M ′j , j ∈ {1, . . . , k′}, are IITMs such that, for every tape name c, at most two of
these IITMs have a tape named c and, if two IITMs have a tape named c, this tape is an input tape in one of
the machines and an output tape in the other. That is, two IITMs can be connected via tapes with the same
name and opposite directions. These tapes are called internal and all other tapes are called external. The
IITMs M ′j are said to be in the scope of a bang operator. This operator indicates that in a run of a system
an unbounded number of (fresh) copies of a machine may be generated. Conversely, machines which are not
in the scope of a bang operator may not be copied. Systems in which multiple copies of a machine may be
generated are often needed, e.g., in case of multi-party protocols or in case a system describes the concurrent
execution of multiple instances of a protocol. The above conditions imply that in every system only at most
one IITM may be a master IITM, i.e., may have an input tape named start; there may be several copies of
such a machine in a run of a system though.

Running a system. In a run of a system S with security parameter η and external input a — such a
system is denoted by S(1η, a) —, at any time only one (copy of an) IITM is active and all other IITMs wait
for new input. The active copy, say M ′, which is a copy of a machine M defined in S, may write at most one
message, say m, on one of its output tapes, say c. This message is then delivered to another (copy of an)
IITM with an input tape named c, say N is the machine specified in S with an input tape named c.4 In the
current configuration of the system, there may be several copies of N . In the order of creation, the copies of

4By the convention on the names of input tapes in systems of IITMs there can be at most one such machine.

7

N are run in mode CheckAddress with input m. Once one copy accepts m, this copy gets to process m, i.e.,
it runs in mode Compute with input m, and in particular, may produce output on one output tape, which is
then sent to another copy and so on. If no copy of N accepts m and N is in the scope of a bang, a fresh
copy of N is created and run in mode CheckAddress. If this copy accepts m, it gets to process m in mode
Compute. Otherwise, the new copy of N is deleted, m is dropped, and a master IITM is activated (with
empty input). If N is not in the scope of a bang (and—the only copy of—N does not accept m), then too a
master IITM is activated. The first IITM to be activated in a run is a master IITM. It gets the bit string a
as external input (on tape start). A master IITM is also activated if the currently active machine does not
produce output (i.e., stops in its activation without writing to any output tape). A run stops if a master
IITM, after being activated, does not produce output or output was written by some machine on an output
tape named decision. The overall output of the run is defined to be the message that is output on decision.
The probability that, in runs of S(1η, a), the overall output is m ∈ {0, 1}∗ is denoted by

Pr [S(1η, a) = m] .5

To illustrate runs of systems, consider, for example, the system S = M1 | !M2 and assume that M1 has
an output tape named c, M2 has an input tape named c, and M1 is the master IITM. (There may be other
tapes connecting M1 and M2.) Furthermore, assume that in the run of S executed so far, two copies of M2,
say M ′2 and M ′′2 , have been generated, with M ′2 generated before M ′′2 , and that M1 just sent a message m
on tape c. This message is delivered to M ′2 (as the first copy of M2). First, M ′2 runs in mode CheckAddress
with input m; as mentioned, this is a deterministic polynomial-time computation which outputs “accept”
or “reject”. If M ′2 accepts m, then M ′2 gets to process m in mode Compute and could, for example, send a
message back to M1. Otherwise, m is given to M ′′2 which then runs in mode CheckAddress with input m. If
M ′′2 accepts m, then M ′′2 gets to process m in mode Compute. Otherwise (if both M ′2 and M ′′2 do not accept
m), a new copy M ′′′2 of M2 with fresh randomness is generated and M ′′′2 runs in mode CheckAddress with
input m. If M ′′′2 accepts m, then M ′′′2 gets to process m. Otherwise, M ′′′2 is removed again, the message m is
dropped, and the master IITM is activated (with empty input), in this case M1, and so on.

Equivalence/indistinguishability of systems. Two systems that produce overall output 1 with almost
the same probability are called equivalent or indistinguishable:

Definition 1 ([27]). Let f : N×{0, 1}∗ → R≥0 be a function. Two systems P and Q are called f -equivalent or
f -indistinguishable (P ≡f Q) if and only if for every security parameter η ∈ N and external input a ∈ {0, 1}∗:

|Pr [P(1η, a) = 1]− Pr [Q(1η, a) = 1]| ≤ f(η, a) .

Two systems P and Q are called equivalent or indistinguishable (P ≡ Q) if and only if there exists a
negligible function f such that P ≡f Q.

It is easy to see that for every two functions f, f ′ as in Definition 1 the relation ≡f is reflexive and that
P ≡f Q and Q ≡f ′ S implies P ≡f+f ′ S. In particular, ≡ is reflexive and transitive.

Composition of systems. We say that a system P is connectable or can be connected to a system Q if P
connects only to the external tapes of Q, i.e., tapes with the same name in P and Q are external tapes of P
and Q, respectively, and they have opposite directions (an input tape in one system is an output tape in the
other). By P |Q we denote the composition of the systems P and Q, defined in the obvious way. For example,
if P = M1 | !M2 and Q = !M3 | !M4 | !M5, then P |Q = M1 | !M2 | !M3 | !M4 | !M5. When writing P |Q we
implicitly assume that the internal tapes of P and Q are renamed in such a way that the sets of internal
tapes of P and Q are disjoint. This guarantees that P and Q communicate only over their external tapes.

5Formally, S(1η , a) is a random variable that describes the overall output of runs of S(1η , a), based on a standard probability
space for runs of systems, see [27] for details.

8

2.2 Polynomial Time and Properties of Systems
So far, the runtime of IITMs in mode Compute has not been restricted in any way. To define notions of
universal composability, it has to be enforced that systems run in polynomial time (except maybe with
negligible probability). This will be done based on the following runtime notions.

A system S is called strictly bounded if there exists a polynomial p such that, for every security parameter
η and external input a, the overall runtime of S in mode Compute (i.e., the overall number of transitions
taken in this mode) is bounded by p(η + |a|) in every run of S(1η, a). If this holds only for an overwhelming
set of runs, S is still called almost bounded. As shown in [27], every almost/strictly bounded system can be
simulated (except maybe with a negligible error) by a probabilistic polynomial-time Turing machine.

A system E is called universally bounded if there exists a polynomial p such that, for every security
parameter η, external input a, and system S that can be connected to E , the overall runtime of E in mode
Compute is bounded by p(η + |a|) in every run of (E | S)(1η, a). (We note that environmental systems will be
defined to be universally bounded, see below.)

A system P is called environmentally (almost) bounded if E | P is almost bounded for every universally
bounded system E that can be connected to P. Similarly, P is called environmentally strictly bounded if
E | P is strictly bounded for every universally bounded system E that can be connected to P .6 (We note that
protocol systems will be environmentally bounded. Therefore, it will be guaranteed that a protocol, together
with an environment, runs in polynomial time, see below.)

2.3 Notions of Universal Composability
To define notions of universal composability, we first introduce the following terminology. For a system S,
the external tapes are grouped into I/O and network tapes. Three different types of systems are considered:
protocol systems, adversarial systems, and environmental systems, modeling (i) real and ideal protocols/func-
tionalities, (ii) adversaries and simulators, and (iii) environments, respectively. Protocol systems, adversarial
systems, and environmental systems are systems which have an I/O and network interface, i.e., they may
have I/O and network tapes. Environmental systems have to be universally bounded and protocol systems
have to be environmentally bounded.7 Protocol systems and adversarial systems may not have a tape named
start or decision; only environmental systems may have such tapes, i.e., environmental systems may contain a
master IITM and may determine the overall output of a run. Furthermore, for every IITM M that occurs in
a protocol system and is not in the scope of a bang, it is required that M accepts every incoming message in
mode CheckAddress.8

Given a system S, the set of all environmental systems that can be connected to S (on the network or
I/O interface) is denoted by Env(S). For two protocol systems P and F , SimP(F) denotes the set of all
adversarial systems A such that A can be connected to F , the set of external tapes of A is disjoint from
the set of I/O tapes of F (i.e., A only connects to the network interface of F), A |F and P have the same
external network and I/O interface, and A |F is environmentally bounded.

We now recall the definition of strong simulatability; other, equivalent, security notions, such as UC and
dummy UC, can defined in a similar way [27]. The systems considered in this definition are depicted in
Figure 1.

6As discussed in [27], since the runtime of universally bounded systems is polynomially bounded, the definition of environ-
mentally almost/strictly bounded is equivalent to the following: P is environmentally almost/strictly bounded iff, for every
universally bounded system E, there exists a polynomial p such that, for every η and a, the overall runtime of P in mode
Compute (i.e., the overall number of transitions taken by machines of P in mode Compute) is bounded by p(η + |a|) in every run
of (E | P)(1η , a) (except for a negligible set of runs).

7We note that protocol systems, as defined in [27], per se are not required to be environmentally bounded. Instead, to obtain
more general results, this is explicitly stated where needed. However, in most applications and throughout this paper protocol
systems are always environmentally bounded (or even environmentally strictly bounded). Therefore, we simply require protocol
systems to be environmentally bounded here.

8The motivation behind this condition is that if M does not occur in the scope of a bang, then, in every run of the protocol
system (in some context), there will be at most one copy of M . Hence, there is no reason to address different copies of M ,
and therefore, in mode CheckAddress, M should accept every incoming message. This condition is needed in the proofs of the
composition theorems for unbounded self-composition.

9

P

E

I/O
interface
of P

network
interface

of P

external input overall output
(on decision)

S F

E

network
interface

of F

network
interface

of P

I/O
interface
of F

external input overall output
(on decision)

≡

Figure 1: Strong simulatability (P ≤ F). We note that P and F have the same I/O interface.

Definition 2 ([27]). Let P and F be protocol systems, the real and ideal protocol, respectively. Then, P
realizes F (P ≤ F) if and only if there exists a simulator S ∈ SimP(F) (also called ideal adversary) such
that E | P ≡ E | S |F for every environment E ∈ Env(P).

As shown in [27], this relation is reflexive and transitive.

2.4 Composition Theorems
The first composition theorem handles concurrent composition of a fixed number of (possibly different)
protocol systems. The second one guarantees secure composition of an unbounded number of copies of a
protocol system.

Theorem 1 ([27]). Let k ≥ 1. Let Q,P1, . . . ,Pk,F1, . . . ,Fk be protocol systems such that they connect only
via their I/O interfaces, Q |P1 | · · · | Pk is environmentally bounded, and Pi ≤ Fi, for i ∈ {1, . . . , k}. Then,
Q |P1 | · · · | Pk ≤ Q |F1 | · · · | Fk.

Note that this theorem does not require that the protocols Pi/Fi are subprotocols of Q, i.e., that Q has
matching external I/O tapes for all of these protocols. How these protocols connect to each other via their
I/O interfaces is not restricted in any way, even the environment could connect directly to (the full or the
partial) I/O interface of these protocols. Clearly, the theorem also holds true if the system Q is dropped.

For the following composition theorem, we introduce the notion of a session version of a protocol in
order to be able to address copies of the protocol. Given an IITM M , the session version M of M is an
IITM which internally simulates M and acts as a “wrapper” for M . More precisely, in mode CheckAddress,
M accepts an incoming message m′ only if the following conditions are satisfied: (i) M has not accepted
a message yet (in mode CheckAddress), m′ is of the form (id,m), and m is accepted by the simulated M
in mode CheckAddress. (In this case, later when activated in mode Compute, the ID id will be stored by
M .) (ii) M has accepted a message before, m′ is of the form (id ′,m), id ′ coincides with the ID id that M
has stored before (in mode Compute), and m is accepted by M when simulated in mode CheckAddress. In
mode Compute, if M is activated for the first time in this mode, i.e., the incoming message, say m′ = (id,m),
was accepted in mode CheckAddress for the first time, then first id is stored and then M is simulated with
input m. Otherwise (if M was activated in mode Compute before), M is directly simulated with input m. If
the simulated M produces output on some tape, then M prefixes this output with id and then outputs the
resulting message on the corresponding tape.

The ID id typically is some session ID (SID) or some party ID (PID) or a combination of both. Clearly, it
is not essential that messages are of the form (id,m). Other forms are possible as well. In fact, everything
checkable in polynomial time works.

To illustrate the notion of a session version of an IITM, assume that M specifies some ideal functionality.
Then !M denotes the multi-session version of M , i.e., a system in which an unbounded number of copies of

10

M can be created where every copy of M can be addressed by a unique ID, where the ID could be a PID
(then an instance of M might model one party running M) or an SID (then an instance of M models one
session of M)

We sometimes require IDs to belong to a specific (polynomially decidable) domain D. In this case, we
refer to session version with domain D. For such a session version, in mode CheckAddress only those SIDs are
accepted that belong to D. With this, we could, for example, define a session version M of an IITM M which
only accepts SIDs of the form (sid, pid), where pid denotes a party and sid identifies the session in which
this party runs. Hence, in a run of the system !M (in some environment) all instances of M would have SIDs
of this form. In this case, an instance M with ID (sid, pid) models an instance of party pid running M in
session sid.

In statements involving session versions, such as composition theorems, details of how the domains of
SIDs are chosen are typically not important, as long as they are chosen consistently. We therefore omit such
details in the statements.

Given a system S, its session version S is obtained by replacing all IITMs in S by their session version.
For example, we obtain S = M | !M ′ for S = M | !M ′.

Now, the following composition theorem says that if a protocol P realizes F , then the multi-session version
of P realizes the multi-session version of F .

Theorem 2 ([27]). Let P and F be protocol systems such that !P is environmentally bounded and P ≤ F .
Then, !P ≤ !F .

We note that the extra proof obligation that !P is environmentally bounded is typically easy to show.
If P is environmentally strictly bounded (which should be the case in most applications), it even follows
immediately that !P is environmentally (strictly) bounded, as further discussed below.

Theorems 1 and 2 can be applied iteratively to construct more and more complex systems. For example,
as an immediate consequence of Theorem 1 and 2 we obtain that if (an unbounded number of sessions of)
an ideal protocol F is used as a component in a more complex system Q, then it can be replaced by its
realization P:9

Corollary 1. Let Q, P, and F be protocol systems such that P and F have the same I/O interface, Q only
connects to the I/O interface of !P (and, hence, !F), and !P and Q | !P are environmentally bounded. If
P ≤ F , then Q | !P ≤ Q | !F .

When addressing a session version M of a machine M , the machine M simulated within M is not aware
of its ID and cannot use it. For example, it cannot put the ID into a message that M creates. However,
sometimes this is desirable. Therefore another, more general, composition theorem is considered, where
machines are aware of their IDs. While these IDs can, as already mentioned above, be interpreted in different
ways, they will often be referred to as SIDs.

To this end, [27] first generalized the notion of a session version. They consider (polynomial-time
computable) session identifier (SID) functions which, given a message and a tape name, output a SID (a bit
string) or ⊥. For example, the following function takes the prefix of a message as its SID: σprefix(m, c) := s if
m = (s,m′) for some s,m′ and σprefix(m, c) := ⊥ otherwise, for all m, c. Clearly, many more examples are
conceivable. The reason that σ, besides a message, also takes a tape name as input is that the way SIDs are
extracted from messages may depend on the tape a message is received on.

Given an SID function σ, an IITM M is called a σ-session machine (or a σ-session version) if the following
conditions are satisfied: (i) M rejects (in mode CheckAddress) a message m on tape c if σ(m, c) = ⊥. (ii) If
m0 is the first message that M accepted (in mode CheckAddress), say on tape c0, in a run, then, M will reject
all messages m received on some tape c (in mode CheckAddress) with σ(m, c) 6= σ(m0, c0). (iii) Whenever M
outputs a messages m on tape c, then σ(m, c) = σ(m0, c0), with m0 and c0 as before.

A system S is a σ-session version if all IITMs defined in S are. It is easy to see that session versions
are specific forms of σ-session versions: given an IITM M , we have that M is a σprefix-session version. The

9This corollary is in the spirit of Canetti’s universal composition theorem [8].

11

crucial difference is that while σ-session versions look like session version from the outside, inside they are
aware of their SID.

Before the composition theorem can be stated, a notion of single-session realizability needs to be introduced.
An environmental system E is called σ-single session if it outputs messages only with the same SID

according to σ. Hence, when interacting with a σ-session version, such an environmental system invokes at
most one protocol session. Given a system S and an SID function σ, Envσ-single(S) denotes the set of all
environments E ∈ Env(S) such that E is σ-single session, i.e., Envσ-single(S) is the set of all σ-single session
environmental systems that can be connected to S.

For two protocol systems P and F and an SID function σ, SimPσ-single(F) denotes the set of all adversarial
systems A such that A can be connected to F , the set of external tapes of A is disjoint from the set of I/O
tapes of F (i.e., A connects to only the network interface of F), A |F has the same external tapes as P , and
E |A |F is almost bounded for every E ∈ Envσ-single(A |F). We note that SimP(F) ⊆ SimPσ-single(F); the
only difference between these two sets is that the runtime condition on A |F is relaxed in SimPσ-single(F).

Let P and F be protocol systems, which in the setting considered here would typically describe multiple
sessions of a protocol. Moreover, we assume that P and F are σ-session versions. Now, it is defined what it
means that a single session of P realizes a single session of F . This is defined just as P ≤ F (Definition 2),
with the difference that only σ-single session environments are considered, and hence, environments that
invoke at most one session of P and F .

Definition 3 ([27]). Let σ be an SID function and let P and F be protocol systems, the real and ideal
protocol, respectively, such that P and F are σ-session versions. Then, P single-session realizes F w.r.t. σ
(P ≤σ-single F) if and only if there exists S ∈ SimPσ-single(F) such that E | P ≡ E | S |F for every σ-single
session environment E ∈ Envσ-single(P).

Now, analogously to Theorem 2, the following theorem says that if P realizes F w.r.t. a single session,
then P realizes F w.r.t. multiple sessions. As mentioned before, in the setting considered here P and F
would typically model multi-session versions of a protocol/functionality.

Theorem 3 ([27]). Let σ be an SID function and let P and F be protocol systems such that P and F are
σ-session versions and P ≤σ-single F . Then, P ≤ F .

Clearly, this theorem can be combined with the other composition theorems to construct more and more
complex systems. For example, similar to the above corollary, we obtain the following corollary:

Corollary 2. Let Q, P, and F be protocol systems such that P and F are σ-session versions for some SID
function σ, P and F have the same I/O interface, Q connects to only the I/O interface of P (and, hence,
F), and Q |P is environmentally bounded. If P ≤σ-single F , then Q |P ≤ Q |F .

As discussed in [27], the composition of two environmentally bounded systems is not necessarily environ-
mentally bounded. For instance, two systems, where each on its own is environmentally bounded, could play
ping-pong, i.e., send message back and forth between each other. However, in applications the composition of
environmentally almost/strictly bounded systems is basically always environmentally almost/strictly bounded.
Moreover, in applications it is typically easy to see whether a system, including the composition of two
environmentally almost/strictly bounded systems, is environmentally almost/strictly bounded. As also
observed in [27], in applications protocol systems are typically strictly bounded, and for such systems we
obtain useful general composability statements, which are briefly recalled next.

Lemma 1 ([27]). Let P and Q be two environmentally strictly bounded protocol systems such that the sets of
external tapes of P and Q are disjoint. Then, P |Q is environmentally strictly bounded.

This lemma can be generalized to the case where P and Q can communicate via tapes, provided that the
information flow from P to Q is polynomially bounded in the security parameter, the length of the external
input, and the overall length of messages P gets from the environment.

The following lemma says that the notion of environmentally strict boundedness is closed under unbounded
self-composition.

12

Lemma 2 ([27]). Let S be an environmentally strictly bounded protocol system. Then, !S is environmentally
strictly bounded.

3 The Joint State Theorem
As already sketched in the introduction, joint state theorems are needed for the following reason. Composition
theorems (for unbounded self-composition) state that it suffices to prove that a real protocol realizes an ideal
functionality in a single session in order to conclude that multiple sessions of the real protocol realize multiple
sessions of the ideal functionality. The problem is that this requires the states of the different sessions of the
protocols/functionalities to be disjoint. In particular, the random coins used in different sessions have to be
chosen independently. This, for example for digital signatures or public-key encryption, means that a party
would have to choose new key pairs for every session, which is completely impractical.

Canetti and Rabin [17] proposed composition theorems with joint state, or joint state (composition)
theorems for short, to solve this problem.

In this section, we first recall the general joint state theorem proposed by Canetti and Rabin in [17] and
discuss several (partly severe) problems of this theorem. We then present a general joint state theorem in the
IITM model. As we will see, this theorem does not suffer from the problems in the UC model and it can
be stated in a more elegant and general way, and, unlike in the UC model, it follows immediately from the
composition theorem.

3.1 The Joint State Theorem in the UC Model
To state the general joint state theorem proposed by Canetti and Rabin in the UC model, let Q be a protocol
which uses multiple sessions with multiple parties of some ideal functionality F, i.e., Q works in an F-hybrid
model. Let P̂ be a realization of F̂, where F̂ is a single machine which simulates the multi-session multi-party
version of F. Now, Q[P̂] denotes the JUC composition of Q and P̂, where calls from Q to F are translated to
calls to P̂ and where for each party there is only one copy of P̂ and this copy handles all sessions of this
party, i.e., P̂ may make use of joint state. Now, Canetti and Rabin obtain the following theorem.

Theorem 4 (Joint State Theorem in UC Model, informal). If P̂ realizes F̂, then Q[P̂] realizes Q in the
F-hybrid model.

The typical use case of this theorem is that P̂ realizes F̂ in the F-hybrid model in such a way that P̂
creates only one copy of F per party and that this copy handles all sessions of this party. The protocol P̂ then
plays the role of a kind of multiplexer which maps all sessions of one party to the corresponding copy of F. In
this sense, P̂ is a joint state realization of the multi-session and multi-party version of F. Now, the theorem
says that if Q uses the multi-session and multi-party version of F (i.e., Q works in the F-hybrid model where
there is on fresh copy of F per party and session), then Q can instead use the joint state realization P̂ where
only one copy of F is used per party and this copy is used across all sessions of that party. For example, if F
is an ideal functionality for digital signatures which allows one party to sign messages and allows all parties
to verify signatures of that party, then the theorem says that the protocol Q which uses one “signing box”
per party (through the joint state realization P̂) realizes the protocol Q when it uses a new signing box per
party and session.

As further discussed in Section 3.2, due to the restricted expressivity of the UC model and unlike the
IITM model, formulating the joint state theorem in the UC model requires some new notions, such as the
notion of JUC composition, and a non-trivial proof.

Moreover, unfortunately there are some partly severe technical problems with this theorem in the UC
model as discussed next, which are mainly due to the way the runtime of (systems of) ITMs is defined.

Problems of the joint state theorem in the UC model. In the UC model, the overall runtime of
an ITM is bounded by a polynomial in the security parameter alone in the original UC model [8] or in the

13

security parameter and the overall length of the input on the I/O interface in the new versions of the model
[7], including the most recent one. Consequently, once the overall bound is hit, the ITMs are forced to stop.
In particular, it is easy to force an ITM to stop by sending many (useless) messages (on the network interface).
This, among others, results in the following problem in the UC model. In general, a single ITM, say M ,
cannot simulate a concurrent composition of a fixed finite number of ITMs, say M1, . . . ,Mn, or an unbounded
number of (copies of) ITMs: By sending many messages to M intended for M1, say, M will eventually
stop, and hence, cannot simulate the other machines anymore, even though, in the actual composition these
machines could still take actions.

Now, this causes problems in the joint state theorem of the UC model: Although the ITM F̂ in the joint
state theorem is intended to simulate the multi-party, multi-session version of F, for the reason explained
above, it cannot do this in general; it can only simulate some approximated version. The same is true for P̂.
This, as further explained below, has several negative consequences:

A) For many interesting functionalities, including existing versions of digital signatures and public-key
encryption, it is not always possible to find a P̂ that realizes F̂ (for a reasonable functionality F), and
hence, in these cases the precondition of the joint state theorem cannot be satisfied.

B) In some cases, the joint state theorem in the UC model itself fails.

ad A) We first illustrate the problem of realizing F̂ in the original UC model, i.e., the one presented in [8],
on which the work in [17] is based. We then explain the corresponding problem for the new versions of the
UC model [7].

The ITM F̂ is intended to simulate the multi-party, multi-session version of F, e.g., a digital signature
functionality. The realization P̂ is intended to do the same, but it contains an ITM for every party. Now,
consider an environment that sends many requests to one party, e.g., verification requests such that the
answer to all of them is ok. Eventually, F̂ will be forced to stop, as it runs out of resources. Consequently,
requests to other parties cannot be answered anymore. However, such requests can still be answered in P̂,
because these requests are handled by other ITMs, which are not exhausted. Consequently, an environment
can easily distinguish between the ideal (F̂) and real world (P̂). This argument works independently of the
simulator. The situation just described is very common. Therefore, strictly speaking, for many functionalities
of interest it is not possible to find a realization of F̂ in the original UC model.

In the new versions of the UC model [7], the problem of realizing F̂ is similar. However, ITMs cannot
be exhausted (forced to stop) via communication on the I/O interface. Nevertheless, exhaustion is possible
via the network interface. Assume that P̂ tries to realize F̂ in an F-hybrid model, where for every party
one instance of P̂ and F is generated, if any.10 The environment (via a dummy adversary) can access any
copy of F in the F-hybrid model directly via the network interface. In this way, the environment can send
many messages to a copy of F, and hence, exhaust this copy, i.e., force it to stop, after some time. Even
when the copy has stopped, the environment can keep sending messages to this copy, which in the hybrid
model does not have any effect. On the ideal side, the simulator, say S, has to know when a copy of F
would stop in the hybrid model, because it then must not forward messages addressed to this copy of F to F̂.
Otherwise, F̂ would get exhausted as well and the environment could distinguish between the hybrid and
the ideal world as above: It simply contacts another copy of F in the F-hybrid world (via P̂ and the I/O
interface or directly via the network interface). This copy (since it is another ITM and not exhausted) would
still be able to react, while F̂ is not. However, in general S does not necessarily know if an instance in the
hybrid model is exhausted, e.g., because the simulator does not know how many resources have been provided
to the functionalities on the I/O interface, to which S does not have access, and how many resources the
functionality has consumed. Hence, in this case S always has to forward messages, because the functionality
might still have enough resources to react. But this then leads to the exhaustion of F̂, with the consequence

10This, as already mentioned before, is the typical setting for joint state realizations. Our arguments also apply in many cases
where P̂ does not work in the F-hybrid model, which is however quite uncommon. The whole point of modular protocol analysis
and design is to use the ideal functionalities.

14

that the environment can distinguish between the hybrid and the ideal world as described above. It is easy
to come up with functionalities where the problem just described occurs, including reasonable formulations of
public-key encryption and digital signature functionalities. Typically, formulations of functionalities in the
UC model are not precise about the runtime of functionalities, e.g., whether a functionality stops as soon
as it gets a message of a wrong format or whether it ignores messages until it gets the expected message
and only stops if it runs out of runtime. Different interpretations of how the runtime is defined or ill-defined
functionalities can then lead to the mentioned problems. Even if there is a realization of F̂ that would work,
proving this can become quite tricky because of the described exhaustion problem and its consequences.

ad B) Having discussed the problem of meeting the assumptions of the joint state theorem in the UC model,
we now turn to flaws of the joint state theorem itself. For this, assume that P̂ realizes F̂ within the F-hybrid
model, with the (usual) intention that P̂ creates only one copy per party of F. Such a copy handles all
sessions of F for that party. In contrast, F̂ simulates a new copy of F per party and session. According to
the joint state theorem in the UC model, we should have that Q[P̂] (real world) realizes Q (ideal world)
in the F-hybrid model. However, the following problems occur: An environment can directly access (via a
dummy adversary) a copy of F in the real world. By sending many messages to this copy, this copy will be
exhausted. This copy of F, let us call it F[pid], which together with P̂ handles all sessions of a party pid,
corresponds to several copies F[pid, sid] of F, for SIDs sid, in the ideal world. Hence, once F[pid] in the real
world is exhausted, the simulator also has to exhaust all its corresponding copies F[pid, sid] in the ideal world
for every sid, because otherwise an environment could easily distinguish the two worlds. (While F[pid] cannot
respond, some of the copies F[pid, sid] still could otherwise.) Consequently, for the simulation to work, F will
have to provide to the simulator a way to be terminated. A feature typically not contained in formulations of
functionalities in the UC model. Hence, for such functionalities the joint state theorem would typically fail.
However, this could be fixed by assuming this feature for functionalities (even though this might be quite
artificial.) A more serious problem is that the simulator might not know whether F[pid] in the real model
is exhausted (the simulator does not necessarily see how much resources F[pid] gets from the I/O interface
and how much resources F[pid] has used), and hence, the simulator does not know when to terminate the
corresponding copies in the ideal model. So, in these cases again the joint state theorem fails. In fact, just as
in the case of realizing F̂, it is not hard to come up with functionalities where the joint state theorem fails,
including reasonable formulations of public-key encryption and digital signature functionalities. So, the joint
state theorem cannot simply be applied to arbitrary functionalities. One has to reprove this theorem on a
case by case basis or characterize classes of functionalities for which the theorem holds true.

We finally note that in the original UC model [8] there is yet another, but smaller problem with the joint
state theorem. Since in the original UC model the number of copies of F that F̂ can simulate is bounded
by a polynomial in the security parameter, this number typically also has to be bounded in the realization
P̂. However, now the environment can instruct Q to generate many copies of F for one party. In the real
world, after some time no new copies of F for this party can be generated because P̂ is bounded. However, an
unbounded number of copies can be generated in the ideal world, which allows the environment to distinguish
between the real and ideal world. The above argument uses that the runtime of Q is big enough such that
the environment can generate, through Q, more copies than P̂ can produce. So, this problem can easily be
fixed by assuming that the runtime of Q is bounded appropriately. Conversely, given Q, the runtime of P̂
should be made big enough. This, however, has not been mentioned in the joint state theorem in [17].

As already mentioned in the introduction, despite of the various problems with the joint state theorem in
the UC model, within that model useful and interesting results have been obtained. However, it is crucial to
equip that body of work with a coherent as well as more rigorous and elegant framework. We believe that
the IITM model provides such a framework.

15

Q

PFjs

sid1 sid2 sid3

Q

F [sid2]F [sid1] F [sid3]

sid1 sid2 sid3

Figure 2: A run of Q |PFjs (left) and Q | !F (right), respectively, with three sessions (with SIDs) sid1, sid2, sid3.
The runs are with respect to some environment that is not displayed. By !F [sidi] we denote the copy of
F that is addressed by sidi. The arrows denote the connections between the systems via I/O tapes and
addressing with SIDs. In addition, all systems may be connected to the environment via I/O and network
tapes; these connections are not displayed.

3.2 The Joint State Theorem in the IITM Model
In order to present the joint state theorem in the IITM model, assume that F is a protocol system (modeling
an ideal functionality). For our joint state theorem any protocol system can be used. In applications, F will
typically model an ideal functionality that can be used by multiple parties in one session. For example, F
could be some σprefix-session version which excepts messages of the form (pid,m), where pid is a party ID
(PID). A specific instance of such a functionality would be a functionality of the form !F ′, where F ′ is a
protocol system which describes an ideal functionality that can be used by one party in one session. Runs of
!F ′ can thus contain multiple instances of F ′ where every instance can be addressed by some ID, which in
this case would be interpreted as a PID. In particular, messages to !F ′ would be of the form (pid,m) and
such a message would be sent to the instance of F ′ corresponding to pid and this instance would be given
the message m.

Given some ideal functionality F , the system !F models a multi-session version of F : A run of !F can
contain multiple sessions of F . In order to send a message m to session sid, one would send the message
(sid,m) to !F . If F is a multi-party, single-session formulation of an ideal functionality, as explained above,
in order to send a message m to party pid in session sid one would send the message (sid, (pid,m)) to !F .

In the formulation of our joint state theorem we use !F to denote a multi-session version of the functionality
F . However, the specific form of the multi-session version does not matter. We could replace !F by any
protocol system. We use !F because this system is closer to the intended application of the theorem.

Now, our joint state theorem can be stated as follows (see also Figure 2 for an illustration of the runs of
the systems considered in this theorem).

Theorem 5. Let Q,PFjs ,F be (arbitrary) protocol systems such that PFjs and !F have the same I/O interface
and Q connects only to the I/O interface of PFjs (and, hence, !F), Q |PFjs and Q | !F are environmentally
bounded, and PFjs ≤ !F . Then, Q |PFjs ≤ Q | !F .

Proof. By Theorem 1, PFjs ≤ !F immediately implies that Q |PFjs ≤ Q | !F .

The fact that Theorem 5 immediately follows from Theorem 1 shows that, in the IITM model, there is no
need for an explicit (general) joint state theorem.

The reason that such a theorem is needed in the UC model lies in the restricted expressivity of this model:
First, one has to define a single ITM F̂ which simulates the multi-party, multi-session version of F . One
cannot simply write !F because multi-party, multi-session versions only exist as part of a hybrid model. In
particular, one cannot write PFjs ≤ !F directly, but has to say that P̂ realizes F̂. Second, the JUC operator
has to be defined explicitly since it cannot be directly stated that only one instance of PFjs is invoked by Q; in

16

the IITM model we can simply write Q |PFjs . Also, a composition theorem corresponding to Theorem 1, which
is used to show that PFjs can be replaced by !F , is not directly available in the UC model, only a composition
theorem corresponding to Corollaries 1 and 2. Finally, due to the addressing mechanism employed in the UC
model, redirection of messages have to be made explicit.

We note that despite the trivial proof of Theorem 5 in the IITM model (given the composition theorem),
the statement that Theorem 5 makes is stronger than that of the joint state theorem in the UC model [17, 7].
Inherited from our composition theorems, and unlike the theorem in the UC model, Theorem 5 does not
require that Q completely shields the sub-protocol from the environment, and hence, from super-protocols on
higher levels. This can lead to simpler systems and more efficient implementations.

As already mentioned in the introduction and further explained in [27], also in the recently proposed
GNUC model [23] it is necessary to explicitly state a joint state theorem. The main problem in that model is
that it imposes a tree structure on protocols, which for joint state (and global state) is too restricted and
requires a quite artificial workaround in that model.

Applying the joint state theorem. Theorem 5, just like the joint state theorem in the UC model, does
not by itself yield practical joint state realizations, as it does not answer the question of how a practical
realization PFjs can be found. A desirable instantiation of PFjs would be of the form !Pjs | F where !Pjs is
a very simple protocol in which for every party only one copy of Pjs is generated and this copy handles,
as a multiplexer, all sessions of this party via the single instance of the ideal multi-party, single-session
functionality F . Hence, the goal is to find a protocol system !Pjs (with one copy per party) such that:

!Pjs | F ≤ !F .11 (1)

The protocol !Pjs | F will be called a (practical) joint state realization of !F in what follows.
Now, assume that P ≤ F . Provided that F is a multi-party, single-session functionality, note that P too

is a multi-party protocol which realizes a single session of F . By (1), the composition theorems, and the
transitivity of ≤ we immediately obtain that !Pjs | P ≤ !F . That is, we obtain a realization of the multi-session
version of F where only one session of P is used (in combination with the multiplexer Pjs) to realize all
sessions of F .

Moreover, if F = !F ′ is the multi-party, single-session version of the single-party, single-session functionality
F ′ and P ′ realizes F ′, i.e., P ′ ≤ F ′, then !Pjs | !P ′ ≤ !Pjs | !F ′ ≤ !F = !F ′, where P ′ denotes the party version
of P ′, F ′ the party version of F ′, and F ′ the session and party version of F ′. That is, to realize the
multi-session and multi-party version of F ′, we obtain a joint state realization where only one copy of P ′ is
used per party. This copy handles all sessions of that party.

The seamless treatment of joint state in the IITM model allows for iterative applications of the joint state
theorem. Consider a protocol Q that uses the multi-session version !F of a (multi-party) ideal functionality
F . That is, we consider the system Q | !F . Furthermore, assume that multiple sessions of Q are used within
a more complex protocol. Hence, such a protocol uses the system !(Q | !F) = !Q | !F . In this system, in every
session of Q several sub-sessions of F can be used. Now iterated application of the composition theorems/joint
state theorem and (1) yields: !Q | !F = !(Q | !F) ≥ !(Q | (!Pjs | F)) = !Q | !Pjs | !F ≥ !Q | !Pjs | !Pjs | F . This
means that !Pjs | !Pjs | F is a joint state realization of !F . Note that in this realization only a single instance
of F is used to realize all sessions of F in the system !F . Message sent to !F (and hence, !Pjs | !Pjs | F)
are of the form (sid1, sid,2 , pid) where sid1 denotes the SID of a session of Q, sid2 denotes the session of
F within the session sid1, and pid denotes the party running in session (sid1, sid2). While in !F there is a
new copy of F for each SID (sid1, sid2), in the joint state realization all such sessions would be handled by a
single copy of F . If F = !F ′, then all sessions (sid1, sid2) for party pid would be handled by the copy F ′ of
pid. If, for example, F ′ is an ideal (single-party, single-session) public-key encryption functionality, then this
means that there is only one decryption/encryption box for every party which is used across all sessions of Q.

11Strictly speaking, one has to rename the I/O tapes of F on the right-hand side (or I/O tapes of Pjs on the left-hand side),
to ensure that both sides have the same external I/O interface.

17

4 Ideal Functionalities
We now present ideal functionalities for digital signatures, public-key encryption, and replayable public-key
encryption; along with realizations.

4.1 Notation for the Definition of IITMs
We start with notational conventions that we use in the following to define IITMs.

4.1.1 Pseudocode

To define IITMs (and algorithms in general), we use standard pseudocode with the obvious semantics.
By x := y we denote deterministic assignment of a variable or constant y to a variable x. By x← A we

denote probabilistic assignment to a variable x according to the distribution of the output of an algorithm A.
By x $← S we denote that x is chosen uniformly at random from a finite set S.

All values that are manipulated are bit strings or special symbols such as the symbol ⊥. We only use very
basic data structures. For example, we often use tuples and sets of bit strings. As already mentioned at the
end of the introduction, for tuples we assume an efficient encoding as bit strings. Furthermore, we assume an
efficient implementation of sets (e.g., by lists or tuples) that allows us (i) to add a bit string to a set, (ii) to
remove a bit string from a set, (iii) to test if a bit string is an element of a set, and (iv) to iterate over all
elements of a set. We denote the empty set by ∅.

4.1.2 Specification of IITMs

Most of our definitions of IITMs are divided into six parts (where some are optional): Parameters, Tapes,
State, CheckAddress, Initialization, and Compute.

Parameters. In this part, we list all parameters of the IITM. That is, when defining a system that contains
this IITM, these parameters have to be instantiated. This part is omitted if the IITM has no parameters.

For example, our ideal functionalities are typically parameterized by a number n > 0 that defines the I/O
interface (more precisely, the number of I/O tape pairs, see below).

Tapes. This part lists all input and output tapes. Unless otherwise stated, I/O tapes are named ioyx
and network tapes are named netyx for some decorations x, y. The IITMs we define in this paper have a
corresponding output tape for every input tape. The intuition is that, upon receiving a message on some
input tape, the response is sent on the corresponding output tape. Furthermore, we typically give a name
(this name is independent of the tape names) to every such pair of input and output tapes: We write “from/to
z: (c, c′)” to denote that the pair of tapes (c, c′) is named z. Then, we refer to the input tape c by “from
z” and to the output tape c′ by “to z”. We use the generic names IO and NET to refer to general I/O and
network tapes to which an environment or adversary/simulator, respectively, connect to. If the tapes connect
to a known machine/system, we typically use the name of this machine/system.

For example, the ideal signature functionality Fsig (see Section 4.2.1) has the I/O input tapes ioin
i (for

all i ∈ {1, . . . , n} where the number n is a parameter of Fsig), the network input tape netin
Fsig

, and the
corresponding output tapes ioout

i and netout
Fsig

. We give the name IOi to the pair (ioin
i , ioout

i) and the name
NET to (netin

Fsig
, netout

Fsig
). So, “from IOi” refers to the tape ioin

i , “to NET” refers to netout
Fsig

, etc.

State. Here, we list all state variables of the machine. These are variables that define the state of this copy
of the IITM and are saved on its work tapes (i.e., they are local to the copy of the IITM and cannot be
accessed by other copies). These state variables are set to some initial value when a copy of this machine is
created. Typically, the initial value is ⊥ (undefined) for bit strings and tuples of bit strings and the empty set

18

∅ for sets. In mode Compute, the machine may modify the values of these variables. We always use sans-serif
font for state variables.

For example, all ideal functionalities that we define in this paper have a state variable corrupted ∈
{false, true} which holds the corruption status of the ideal functionality.

CheckAddress. In this part, we define the mode CheckAddress of the machine.

Initialization. This part is optional. If it exists and (this copy of) the machine is activated for the first
time in mode Compute, then the machine executes the code in this part. When the code finishes, the machine
then processes the incoming message as defined in the part Compute, see below.

Initialization is used for example to tell the adversary (or simulator) that a new copy of this machine has
been created and to allow her to corrupt this copy of the machine right from the start.

Compute. The description in mode Compute consists of a sequence of blocks where every block is of the
form “recv mt on c s.t. 〈condition〉: 〈code〉” where mt is an input template (see below), c is an input tape
(see above), 〈condition〉 is a condition on the input, and 〈code〉 is the code of this block that is executed if
the input template matches and the condition is satisfied (see below).

An input template is recursively defined as follows: It is either an unbound variable, a constant bit string,
a state variable (see above), or a tuple of input templates. We say that a bit string m matches an input
template mt if there exists a mapping σ from the unbound variables in mt to bit strings such that m equals
m′t where m′t is obtained from mt by replacing every unbound variable x in mt by the bit string σ(x) and
every state variable x in mt by the value of the state variable (according to the state of the machine). We
say that σ is the matcher of m and mt. To distinguish unbound variables from constant bit strings and state
variables, we use sans-serif font for constant bit strings and state variables and cursive font for unbound
variables. For example, the input template (Enc, x) is matched by every tuple that consists of the constant
bit string Enc and an arbitrary bit string.

Upon activation, the blocks are checked one after the other. The (copy of the) machine executes the code
of the first block that matches the input (see below). If no block matches the input, the machine stops for
this activation without producing output. In the next activation, the machine will again go through the
sequence of blocks, starting with the first one, and so on.

A block, as above, matches some input, say message m on input tape c′, if c = c′, m matches mt (as
defined above), and 〈condition〉 is satisfied. The condition may use state variables of the machine and the
unbound variables contained in mt (these are instantiated by the matcher σ of m and mt). Similarly, when
executing the code, the unbound variables contained in mt are instantiated by the matcher σ of m and mt.

Every execution of 〈code〉 ends with a send command: send m to c, where m is a bit string and c is an
output tape. This means that the machine outputs the message m on tape c and stops for this activation. In
the next activation the machine will not proceed at the point where it stopped, but again go through the
sequence of blocks, starting with the first one, as explained above. However, if the send command is followed
directly by a receive command, such as send m on c; recv mt on c′ s.t. 〈condition〉 (where mt is an input
template, c′ an input tape, and 〈condition〉 a condition, as above), then the machine does the following: It
outputs m on tape c and stops for this activation. In the next activation, it will check whether it received
a message on input tape c′ and check whether this message matches mt and the condition is satisfied (as
above). If it does, the computation continues at this point in the code. Otherwise, the machine stops for
this activation without producing output. In the next activation, it will again check whether it received a
message on input tape c′ and whether this message matches mt and the condition is satisfied and behaves as
before, and so on, until it receives an expected message.

For named pairs of input and output tapes, as described above in the Tapes part, we use the following
notation: Let z be the name of the pair (c, c′) of an input tape c and an output tape c′. Then, we write “recv
mt from z s.t. 〈condition〉” for “recv mt on c s.t. 〈condition〉” and “send m to z” for “send m on c′”.

19

4.1.3 Running External Code

Sometimes, an IITM M obtains the description of an algorithm A as input on some tape and has to execute
it (e.g., all ideal functionalities defined in this paper receive algorithms from the adversary/simulator). We
write y ← A(p)(x), where p is a polynomial, to say that M simulates algorithm A on input x for p(η + |x|)
steps, where η is the security parameter and |x| the length of x. The random coins that might be used by A
are chosen by M uniformly at random. The variable y is set to the output of A if A terminates after at most
p(η + |x|) steps. Otherwise, y is set to the error symbol ⊥. If we want to enforce that M simulates A in a
deterministic way, we write y := A(p)(x). In the simulation of A, M sets the random coins of A to zero.

Typically, we are interested in environmentally bounded systems. If such a system contains an IITM M
that executes external code A (e.g., A is provided by the adversary or simulator), then M is only allowed to
perform a polynomial number of steps for executing the algorithm A (except with negligible probability). So,
M has to be parameterized by a polynomial p and simulates A as described above. We note that at least the
degree of the polynomial that bounds the runtime of the algorithm has to be fixed in advance because it
must not depend on the security parameter. This holds true for any definition of polynomial time and is not
a limitation of the definition of polynomial time in the IITM model.

4.2 Digital Signatures
In this section, we present our ideal functionality for digital signatures with local computation as explained in
the introduction and show that a digital signature scheme realizes this functionality if and only if it is UF-CMA
secure; see Section 6.1 for a comparison of our digital signature functionality with other functionalities in the
literature.

4.2.1 An Ideal Functionality Fsig for Digital Signatures

The basic idea of an ideal functionality for digital signatures is that verification only succeeds if the message
has actually been signed using the functionality. This ideally prevents forgery of signatures, see, e.g., [9, 7].

Our ideal signature functionality Fsig(n, p) is an IITM which is parametrized by a number n > 0 and a
polynomial p. We often omit n and p and just write Fsig instead of Fsig(n, p). The number n defines the
I/O interface: for every i ∈ {1, . . . , n}, Fsig has an I/O input tape and an I/O output tape. These I/O tapes
allow (machines of) a protocol that uses Fsig to send requests to Fsig (and to receive the responses). For
example, these tapes can be used by a protocol system that consists of n machines such that the i-th machine
connects to the i-th I/O input and output tape of Fsig. We note that these tapes are only for addressing
purposes, to allow n different machines to connect to Fsig; Fsig does not interpret input on different I/O
tapes differently. If a request is sent on the i-th I/O input tape, Fsig outputs the response on the i-th I/O
output tape.12 Furthermore, Fsig has a network input tape and a network output tape to communicate
with the adversary (or simulator). In mode CheckAddress, Fsig accepts all input on all tapes. As usual for
machines that run external code (see Section 4.1.3), the polynomial p bounds the runtime of the signing and
verification algorithms provided by the adversary. Since every potential signing and verification algorithm
has polynomial runtime, p can always be chosen in such a way that the algorithms run as expected.

The functionality Fsig is defined in pseudocode in Figure 3. Upon the first request (initialization), Fsig
first asks the adversary for a signature and verification algorithm, a public/private key pair, and whether it
is corrupted (this allows corruption upon initialization but later corruption is allowed too, see below). We
note that, when Fsig executes these algorithms, Fsig executes them as described in Section 4.1.3 where the
polynomial p is used to bound their runtime and the execution of the verification algorithm is forced to be
deterministic. After the initialization, the first request is executed just as all later requests. We now describe
the operations that Fsig provides in more detail. See also the remarks below for the typical usage of this
functionality.

12The n machines connecting to Fsig might model n roles in a protocol, such as initiator and responder. However, instead of
several I/O tapes one could also consider one pair of I/O tapes and use identifiers for roles, similarly to SIDs. Hence, Fsig could

20

Parameters: – n > 0 {number of I/O tape pairs
– p {polynomial that bounds the runtime of the algorithms provided by the adversary

Tapes: from/to IOi (i ∈ {1, . . . , n}): (ioin
i , io

out
i); from/to NET: (netinFsig

, netout
Fsig

)

State: – sig, ver, pk, sk ∈ {0, 1}∗ ∪ {⊥} {algorithms and key pair (provided by the adversary); initially ⊥
– H ⊆ {0, 1}∗ {set of recorded messages; initially ∅
– corrupted ∈ {false, true} {corruption status; initially false

CheckAddress: Accept every input on every tape.
Initialization: Upon receiving the first message in mode Compute do:

send Init to NET; recv (corrupt, sig, ver , pk, sk) from NET s.t. corrupt ∈ {false, true}
{receive algorithms and

key pair from adversary,
allow corruptioncorrupted := corrupt; sig := sig; ver := ver ; pk := pk; sk := sk

Then, continue processing the first request as defined below.
Compute:

recv PubKey? from IOi: send (PubKey, pk) to IOi {return public key

recv (Sign, x) from IOi:
σ ← sig(p)(sk, x); b := ver(p)(pk, x, σ) {sign x and check that verification succeeds)
if σ = ⊥ ∨ (b 6= true ∧ corrupted = false): send (Signature,⊥) to IOi {error: signing or test verification failed
add x to H; send (Signature, σ) to IOi {record x for verification and return signature

recv (Verify, pk, x, σ) from IOi:
b := ver(p)(pk, x, σ) {verify signature
if corrupted = false ∧ pk = pk ∧ b = true ∧ x /∈ H: send (VerResult,⊥) to IOi {prevent forgery, return error
send (VerResult, b) to IOi {return verification result

recv CorrStatus? from IOi: send (CorrStatus, corrupted) to IOi {corruption status request

recv Corrupt from NET: corrupted := true; send Corrupted to NET {adaptive corruption

Figure 3: The ideal signature functionality Fsig. See Section 4.1 for notational conventions.

Public key request PubKey?: Upon this request on an I/O input tape, Fsig returns (on the corresponding
I/O output tape) the recorded public key (provided by the adversary upon initialization). This request allows
the “owner” of the public/private key pair to obtain its public key (e.g., to distribute it) and can also be used
to model certain setup assumptions such as a public-key infrastructure (see the remarks below).

Signature generation request (Sign, x): Upon a signature generation request for a message x on an I/O input
tape, Fsig computes a signature for x using the recorded signature generation algorithm and private key
(both provided by the adversary upon initialization). Then, Fsig checks that the signature verifies (using the
recorded verification algorithm and public key). If this check fails13 and Fsig is uncorrupted (note that upon
corruption, Fsig does not guarantee anything, not even that the public and private key belong together), Fsig
returns an error message. Otherwise, Fsig records the message x (to prevent forgery, see below) and returns
the signature.

Verification request (Verify, pk, x, σ): Upon a signature verification request on an I/O input tape, Fsig verifies
the signature σ for x using the provided public key pk and the recorded verification algorithm (provided
by the adversary). If the verification succeeds but Fsig is not corrupted, pk equals the recorded public key
(provided by the adversary), and x has not been recorded (upon signature generation), then Fsig returns an
error message. This ideally prevents forgery (if Fsig is uncorrupted and the correct public key is used) because

expect messages of the form (r,m) and would return messages of the form (r,m) where r is an identifier for a role. In this way,
one can model an arbitrary number of roles that can use Fsig.

13Note that every reasonable digital signature scheme satisfies that this check never fails. However, as we do not put any
restrictions on the algorithms provided by the adversary, Fsig does not know whether they have this property. This test
guarantees that every verification request to Fsig succeeds for signatures that have been created by Fsig (if the correct message
and public key are provided upon verification).

21

it guarantees that signatures only verify if the message has previously been signed using Fsig. Otherwise,
Fsig returns the verification result.

Corruption status request CorrStatus?: Upon a corruption status request on an I/O input tape, Fsig returns
its corruption status, i.e., true if it is corrupted and false otherwise.

As always in universal composability settings, the distinguishing environment should have the possibility to
know which functionalities are corrupted because, otherwise, a simulator could always corrupt a functionality
and then no security guarantees would be provided by the functionality. As a result, in the case of Fsig, even
insecure digital signature schemes would realize Fsig.

Corrupt request Corrupt: Upon a corruption request on the network input tape (i.e., from the adversary),
Fsig records that it is corrupted and returns an acknowledgment message (on the network output tape). This
models adaptive corruption. We could have defined Fsig to output its entire state (in particularly all recorded
messages) to the adversary upon corruption. However, this would only make the simulator stronger and it is
not needed to realize Fsig, as we will see below.

Remarks. As mentioned in the introduction, since signatures are determined by local computations, the
signatures and the signed messages are a priori not revealed to the adversary. This, for example, is needed to
reason about protocols where signatures or signed messages should remain secret.

The functionality Fsig is formulated for a single public/private key pair. The “owner” of this key pair is
not made explicit in Fsig because it is irrelevant for the tasks provided by Fsig. Instead, the environment
has to use Fsig appropriately, i.e., only the party that “owns” this key pair should be allowed to send Sign
requests. Of course, every party should be allowed to send Verify requests. If parties other than the “owner”
are allowed to send PubKey? requests to Fsig, then this models that the public key is distributed among the
parties, e.g., by some kind of a public-key infrastructure.

To make the “owner” explicit and to obtain multiple instances of Fsig, one can consider the system !Fsig,
where Fsig is the multi-party version of Fsig. Recall that for every PID pid (in a run of !Fsig with some
environment) there can be a copy of Fsig. Let us denote this copy by Fsig[pid]. The “owner” of Fsig[pid] is
the party with PID pid. Every message sent to/received from this copy is prefixed with pid. For example,
if a party wants to verify a message, it would send a message of the form (pid, (Verify, pk, x, σ)) to Fsig[pid].
Only the owner of Fsig[pid] should have unrestricted access to all commands provided by Fsig[pid]. Other
parties should, for example, not be able to issue signing requests to Fsig[pid]. As mentioned, this should be
guaranteed by the protocols that use Fsig[pid].

The multi-session, multi-party version of Fsig can be described by the system !Fsig. In this system, to
address different copies of Fsig all messages are prefixed by a SID and a PID.

It is easy to see that Fsig is environmentally strictly bounded. Hence, by Lemma 2, both the multi-party
version !Fsig and the multi-session, multi-party version !Fsig are environmentally strictly bounded.

4.2.2 Realizing Fsig by UF-CMA Secure Digital Signature Schemes

In this section, we show that a (digital) signature scheme (more precisely, the protocol system induced
by it) realizes the ideal signature functionality Fsig if and only if the signature scheme is UF-CMA secure
(unforgeability under chosen-message attacks). UF-CMA security is a standard security notion for signature
schemes, see, e.g., [19]. We recall the definition of signature schemes and UF-CMA security in Appendix A.1.

Every signature scheme Σ = (gen, sig, ver) induces a realization Psig(n,Σ) of Fsig(n, p) (where p depends
on Σ) in a straightforward way. This realization is defined as follows (see also Figure 9 in the appendix):
Upon initialization (i.e., when receiving the first message), Psig asks the adversary whether it is corrupted. If
the adversary decides to corrupt Psig upon initialization, she provides a public/private key pair. Otherwise,
Psig generates a fresh key pair itself (using gen). The key pair, say (pk, sk), is recorded in Psig. The adversary
can also corrupt Psig adaptively by sending the message Corrupt to Psig upon which Psig returns the recorded

22

key pair (pk, sk). Upon a signature generation requests of the form (Sign, x) from some party (i.e., from
the environment on an I/O input tape), Psig computes a signature σ ← sig(sk, x) and returns σ. Upon
a signature verification requests of the form (Verify, pk ′, x, σ) from some party, Psig verifies the signature,
b := ver(pk ′, x, σ), and returns b. Upon a public key request (PubKey?) from some party, Psig returns the
recorded public key pk. Upon a corruption status request from some party, Psig returns true if it has been
corrupted by the adversary (upon initialization or by receiving the message Corrupt) and false otherwise. It is
easy to see that Psig is environmentally strictly bounded.

We obtain the following theorem. A proof is provided in Appendix B.1. The proof is similar to other
proofs for realizations of digital signatures [9, 7, 2].

Theorem 6. Let n > 0, Σ be a signature scheme, and p be a polynomial that bounds the runtime of the
algorithms in Σ (in the length of their inputs). Then, Σ is UF-CMA secure if and only if Psig(n,Σ) ≤ Fsig(n, p).

4.3 Public-Key Encryption
In this section, we present our ideal functionality for public-key encryption with local computation as explained
in the introduction. Our functionality is parametrized by what we call a leakage algorithm which allows
to define the amount of information that may be leaked by the encryption. We first define and discuss
leakage algorithms. Then, we present our ideal public-key encryption functionality and show that a public-key
encryption scheme realizes this functionality (given an appropriate leakage algorithm) if and only if it is
IND-CCA2 secure; see Section 6.2 for a comparison of our public-key encryption functionality with other
functionalities in the literature.

4.3.1 Leakage Algorithms

We now introduce leakage algorithms that are used by our ideal functionality for public-key encryption. In
this functionality, instead of the actual plaintext, its leakage is encrypted. The leakage is computed by a
leakage algorithm and captures the amount of information that may be leaked about the plaintexts even in
the ideal setting.

Definition 4. Let D = {D(η)}η∈N with D(η) ⊆ {0, 1}∗ for all η ∈ N be a polynomial-time decidable domain
of plaintexts.14 A leakage algorithm L with domain D is a probabilistic, polynomial-time algorithm that takes
as input 1η for some security parameter η ∈ N and a plaintext x ∈ D(η) and returns a bit string x ∈ D(η),
the leakage of x.

The plaintext domain associated with a leakage algorithm L is denoted by DL.

Example 1. Typical examples of leakage algorithms are (i) L(1η, x) := 0|x| (for all η, x) and (ii) the
algorithm that returns a random bit string of length |x|. They both leak exactly the length of a plaintext.
The domain of these leakage algorithms is the domain of all bit strings.

We sometimes require leakage algorithms to have some of the following properties.

Definition 5. We call a leakage algorithm L length preserving if |x| = |x| for every η ∈ N, x ∈ DL(η), and
leakage x produced by L(1η, x).

We say that a leakage algorithm leaks at most the length of a plaintext if the leakage of a plaintext does
not reveal any information about the actual bits of the plaintext. Formally, this is defined as follows:

Definition 6. A leakage algorithm L leaks at most the length of a plaintext if there exists a probabilistic,
polynomial-time algorithm T such that, for every η ∈ N and x ∈ DL(η), the probability distributions of
T (1η, 1|x|) and L(1η, x) are equal (i.e., Pr[T (1η, 1|x|) = x] = Pr[L(1η, x) = x] for every x ∈ {0, 1}∗, where the
probability is over the random coins of T and L, respectively).

14That is, there exists a deterministic algorithm A and a polynomial p such that, for all η ∈ N and x ∈ {0, 1}∗, A(1η , x) = 1
iff x ∈ D(η) and the runtime of A(1η , x) is bounded from above by p(η + |x|).

23

Definition 7. We say that a leakage algorithm L leaks exactly the length of a plaintext if it is length
preserving and leaks at most the length of a plaintext.

We say that a leakage algorithm has high entropy if collisions of the leakage occur only with negligible
probability.

Definition 8. A leakage algorithm L has high entropy if the probability of collisions, i.e.,

sup
x,x′∈DL(η)

Pr [x← L(1η, x), x′ ← L(1η, x′) : x = x′]

(the probability is over the random coins of L) is negligible (as a function in η).

For example, both leakage algorithms from Example 1 are length preserving and leak at most the length
of a plaintext (for any plaintext domain), i.e., they leak exactly the length of a plaintext. Moreover, the
second leakage algorithm, which returns a random bit string of the same length as the plaintext, has high
entropy if its plaintext domain only contains “long” plaintexts, e.g., only bit strings of length ≥ η.15 We
note that deterministic leakage algorithms (e.g., the first leakage algorithm from Example 1, which returns a
constant bit string of the same length as the plaintext) do not have high entropy if they are associated with
any non-empty domain of plaintexts.

4.3.2 An Ideal Functionality Fpke for Public-Key Encryption

Our ideal functionality Fpke for public-key encryption with local computation is in the spirit of the one
proposed by Canetti in [7] (version of December 2005) in that, other than providing an encryption and
decryption algorithm as well as a public/private key pair (Canetti does not distinguish between a public
key and the encryption algorithm), the simulator is not involved in the execution of the functionality. In
particular, all ciphertexts and decryptions are performed locally within the functionality. However, our
formulation differs in essential ways from the one by Canetti, e.g., Canetti’s formulation is not suitable for
joint state realizations (see Section 6.2).

We now present our ideal public-key encryption functionality Fpke(n, p, L). In many technical matters the
formulation is similar to Fsig. The IITM Fpke(n, p, L) is parametrized by a number n > 0, a polynomial p,
and a leakage algorithm L. We often omit some or all parameters if they are clear from the context and, for
example, just write Fpke instead of Fpke(n, p, L). Just like for Fsig, n determines the I/O interface of Fpke
and p bounds the runtime of the encryption and decryption algorithms provided by the adversary. Since
every potential encryption and decryption algorithm has polynomial runtime, p can always be chosen in such
a way that the algorithms run as expected. Furthermore, just like Fsig, Fpke has a network input and output
tape to communicate with the adversary (or simulator).

The functionality Fpke is defined in pseudocode in Figure 4. We now describe the operations that
Fpke provides in more detail. Upon the first request (initialization), Fpke first asks the adversary for an
encryption and decryption algorithm, a public/private key pair, and whether it is corrupted (this models
static corruption). We note that, when Fpke executes these algorithms, Fpke executes them as described in
Section 4.1.3 where the polynomial p is used to bound their runtime and the execution of the decryption
algorithm is forced to be deterministic. After the initialization, the first request is executed just as all later
requests.

Public key request PubKey?: Just as Fsig, upon this request on an I/O input tape, Fpke returns the recorded
public key (on the corresponding I/O output tape). This request allows the “owner” of the public/private key
pair to obtain its public key (e.g., to distribute it) and can also be used to model certain setup assumptions
such as a public-key infrastructure (see the remarks below).

15For this leakage algorithm, the probability of collisions of leakages is 2−l for plaintexts that have the same length l and 0 if
they are of different length. Hence, for a plaintext domain {D(η)}η∈N with |x| ≥ η for all η ∈ N and x ∈ D(η), the probability
in Definition 8 is at most 2−η , which is negligible.

24

Parameters: – n > 0 {number of I/O tape pairs
– p {polynomial that bounds the runtime of the algorithms provided by the adversary
– L {leakage algorithm with associated plaintext domain DL = {DL(η)}η∈N

Tapes: from/to IOi (i ∈ {1, . . . , n}): (ioin
i , io

out
i); from/to NET: (netinFpke

, netout
Fpke

)

State: – enc, dec, pk, sk ∈ {0, 1}∗ ∪ {⊥} {algorithms and key pair (provided by the adversary); initially ⊥
– H ⊆ {0, 1}∗ × {0, 1}∗ {set of recorded plaintext/ciphertext pairs; initially ∅
– corrupted ∈ {false, true} {corruption status; initially false

CheckAddress: Accept every input on every tape.
Initialization: Upon receiving the first message in mode Compute do:

send Init to NET; recv (corrupt, enc, dec, pk, sk) from NET s.t. corrupt ∈ {false, true}
{receive algorithms and

key pair from adversary,
allow corruptioncorrupted := corrupt; enc := enc; dec := dec; pk := pk; sk := sk

Then, continue processing the first request as defined below.
Compute:

recv PubKey? from IOi: send (PubKey, pk) to IOi {return public key

recv (Enc, pk, x) from IOi s.t. x ∈ DL(η):
if corrupted = false ∧ pk = pk: {i.e., uncorrupted and correct public key

x← L(1η , x); y ← enc(p)(pk, x); x′ := dec(p)(sk, y) {encrypt leakage of x, test if decryption yields leakage again
if y = ⊥ ∨ x′ 6= x: send (Ciphertext,⊥) to IOi {error: encryption or decryption test failed
add (x, y) to H; send (Ciphertext, y) to IOi {record (x, y) for decryption, return y

else: {i.e., corrupted or wrong public key
y ← enc(p)(pk, x); send (Ciphertext, y) to IOi {encrypt x, return y

recv (Dec, y) from IOi:
if corrupted = false ∧ ∃x : (x, y) ∈ H:

if ∃x, x′ : x 6= x′ ∧ (x, y), (x′, y) ∈ H: send (Plaintext,⊥) to IOi {error: unique decryption not possible
let x s.t. (x, y) ∈ H {in this case, such an x always exists and is unique
send (Plaintext, x) to IOi {return x

else:
x := dec(p)(sk, y); send (Plaintext, x) to IOi {decrypt y, return x

recv CorrStatus? from IOi: send (CorrStatus, corrupted) to IOi {corruption status request

Figure 4: The ideal public-key encryption functionality Fpke. See Section 4.1 for notational conventions.

Encryption request (Enc, pk, x): Upon an encryption request for a plaintext x ∈ DL(η) (recall that DL =
{DL(η)}η∈N is the plaintext domain associated with the leakage algorithm L) under a public key pk on an I/O
input tape, Fpke does the following. If Fpke is corrupted or pk is not the recorded public key (that has been
provided by the adversary upon initialization), Fpke encrypts x under pk (using the encryption algorithm
provided by the adversary upon initialization) and returns the ciphertext. Otherwise, Fpke generates the
ciphertext by encrypting the leakage x ← L(1η, x) of x. Then, Fpke checks that the decryption of the
ciphertext yields the leakage x again. If this check fails, Fpke returns an error message. Otherwise, Fpke
records the message x for that ciphertext (for later decryption) and returns the ciphertext.

We note that, every reasonable encryption scheme satisfies that the decryption of the encryption yields the
plaintext again. However, as we do not put any restrictions on the algorithms provided by the adversary, Fpke
does not know whether they have this property. In the remarks below we explain why the decryption test
performed by Fpke is useful and sometimes needed. In particularly, it is needed for our joint state realization,
see Section 5.2.

Decryption request (Dec, y): Upon a decryption request for a ciphertext y on an I/O input tape, Fpke does
the following. If Fpke is corrupted or there is no recorded message for y, Fpke decrypts y using the recorded
private key and decryption algorithm (both provided by the adversary upon initialization) and returns the
resulting plaintext. Otherwise, the plaintext that is recorded for y is returned (an error message is returned if
there is more than one recorded plaintext for y because unique decryption is not possible in this case).

25

Corruption status request CorrStatus?: Just as Fsig, upon a corruption status request on an I/O input
tape, Fpke returns true if it is corrupted and false otherwise; see the description of Fsig for a discussion on
corruption status requests.

Remarks. The same remarks for Fsig (see Section 4.2.1) apply also to Fpke: It is left to the environment
to use Fpke appropriately, i.e., only the “owner” of the public/private key pair should use Fpke to decrypt
messages. As mentioned for Fsig, a multi-party version of Fpke where every party (with PID) pid owns one
copy of Fpke can be modeled by the system !Fpke and a multi-session, multi-party version of Fpke can be
modeled by !Fpke.

If Fpke(L) is used with a leakage algorithm L with high entropy, then an uncorrupted Fpke guarantees that
ciphertexts stored in H cannot be guessed. For example, if one ciphertext, say y, is given to the adversary only
encrypted (nested encryption), then the adversary is not able to guess y. The reason that Fpke(L) has this
property, provided that L has high entropy, is as follows: the ciphertext has to contain as much information
as the leakage L(1η, x), because of the decryption test performed in Fpke(L) (decryption of a ciphertext must
yield the original plaintext). Since the leakage has high entropy, L(1η, x) is sufficiently random and can be
guessed only with negligible probability.

It can be shown that a realization of Fpke is impossible if it is adaptively corruptible [29]. Therefore, our
formulation of Fpke, unlike Fsig, only allows for corruption upon initialization.

It is easy to see that Fpke is environmentally strictly bounded. Hence, by Lemma 2, both the multi-party
version !Fpke and the multi-session, multi-party version !Fpke are environmentally strictly bounded.

4.3.3 Realizing Fpke by IND-CCA2 Secure Public-Key Encryption Schemes

In this section, we show that a public-key encryption scheme realizes the ideal public-key encryption
functionality Fpke (given an appropriate leakage algorithm) if and only if the encryption scheme is IND-CCA2
secure (indistinguishability under chosen-ciphertext attacks). IND-CCA2 security is a standard security notion
for public-key encryption schemes, see, e.g., [5, 6]. We recall the definition of public-key encryption schemes
and IND-CCA2 security in Appendix A.2. Similar to leakage algorithms, we assume that every public-key
encryption scheme Σ is associated with a polynomial-time decidable domain of plaintexts DΣ = {DΣ(η)}η∈N
for some DΣ(η) ⊆ {0, 1}∗ for every security parameter η ∈ N.

Every public-key encryption scheme Σ = (gen, enc, dec) induces in a straightforward way a realization
Ppke(n,Σ) of Fpke. The realization Ppke(n,Σ) is defined in Figure 10 (in the appendix). Informally, it is
described as follows: Upon initialization (i.e., when the first message is received), Ppke asks the adversary
whether it is corrupted. If the adversary decides to corrupt Ppke upon initialization, he provides a public/private
key pair. Otherwise, Ppke generates a fresh key pair itself (using gen). The key pair, say (pk, sk), is recorded
in Ppke. As already mentioned above, Fpke is not realizable under adaptive corruption due to the commitment
problem [29]. Therefore, the adversary can only corrupt Ppke upon initialization. Upon an encryption requests
of the form (Enc, pk ′, x) with x ∈ DΣ(η) from some party (i.e., from the environment on an I/O input tape),
Ppke computes the ciphertext y ← enc(pk ′, x) and returns y. Upon a decryption requests of the form (Dec, y)
from some party, Ppke computes the plaintext x := dec(sk, x) (where sk is the recorded private key) and
returns x. Upon a public key request (PubKey?) from some party, Ppke returns the recorded public key pk.
Upon a corruption status request from some party, Ppke returns true if it has been corrupted by the adversary
upon initialization and false otherwise. It is easy to see that Ppke is environmentally strictly bounded.

The following theorem shows that Fpke(L) exactly captures the standard security notion IND-CCA2, if
the leakage algorithm leaks exactly the length of a plaintext (Definition 7). A proof of the following theorem
is provided in Appendix B.2.

Theorem 7. Let n > 0, Σ be a public-key encryption scheme, p be a polynomial that bounds the runtime of
the algorithms in Σ (in the length of their inputs), and L be a leakage algorithm such that DΣ = DL (i.e., Σ
and L have the same plaintext domain) and L leaks exactly the length of a plaintext (e.g., L is one of the
algorithms from Example 1). Then, Σ is IND-CCA2 secure if and only if Ppke(n,Σ) ≤ Fpke(n, p, L).

26

Parameters, Tapes, State, CheckAddress, Initialization: Just like Fpke, see Figure 4.
Compute:

recv PubKey? from IOi: send (PubKey, pk) to IOi {return public key

recv (Enc, pk, x) from IOi s.t. x ∈ D(η):
if corrupted = false ∧ pk = pk: {i.e., uncorrupted and correct public key

x← L(1η , x); y ← enc(p)(pk, x); x′ := dec(p)(sk, y) {encrypt leakage of x, test if decryption yields leakage again)
if y = ⊥ ∨ x′ 6= x: send (Ciphertext,⊥) to IOi {error: encryption or decryption test failed
add (x, x) to H; send (Ciphertext, y) to IOi {record (x, y) for decryption, return y

else: {i.e., corrupted or wrong public key
y ← enc(p)(pk, x); send (Ciphertext, y) to IOi {encrypt x, return y

recv (Dec, y) from IOi:
x := dec(p)(sk, y) {decrypt y
if corrupted = false ∧ ∃x : (x, x) ∈ H:

if ∃x, x′ : x 6= x′ ∧ (x, x), (x′, x) ∈ H: send (Plaintext,⊥) to IOi {error: unique decryption not possible
let x s.t. (x, x) ∈ H {in this case, such an x always exists and is unique
send (Plaintext, x) to IOi {return x

else:
send (Plaintext, x) to IOi {return x

recv CorrStatus? from IOi: send (CorrStatus, corrupted) to IOi {corruption status request

Figure 5: The ideal functionality Frpke for replayable public-key encryption. See Section 4.1 for notational
conventions.

The direction from left to right holds for any length preserving leakage algorithm L and the direction from
right to left holds for any leakage algorithm L that leaks at most the length of a plaintext.

We note that Bellare et al. [6] define two security notions for public-key encryption schemes (namely
IND-CCA-BP and IND-CCA-BE) that are shown to be strictly weaker than IND-CCA2 security (which is
called IND-CCA-SE in the taxonomy of [6]). Theorem 7 now shows that these weaker notions do not suffice
to realize Fpke (if L leaks at most the length of a plaintext).

4.4 Replayable Public-Key Encryption
In this section, we present our replayable public-key encryption functionality with local computation, as
explained in the introduction, and show that a public-key encryption scheme realizes this functionality (given
an appropriate leakage algorithm) if and only if it is IND-RCCA secure. We refer to Section 6.3 for a
comparison of our replayable public-key encryption functionality with other functionalities in the literature.

4.4.1 An Ideal Functionality Frpke for Replayable Public-Key Encryption

Our ideal functionality Frpke with local computation for replayable public-key encryption is defined as follows.
The functionality Frpke(n, p, L) (or Frpke for short) is, just as Fpke, parametrized by a number n > 0

which defines the I/O interface, a polynomial p that bounds the runtime of the algorithms provided by
the adversary (or simulator), and a leakage algorithm L. A definition of Frpke in pseudocode is given in
Figure 5. The only difference between Frpke and Fpke is that upon encryption of a plaintext x, the pair (x, x)
(where x← L(1η, x) is the leakage of x) is stored instead of (x, y) (where y is the ciphertext) and that upon
decryption it is not looked for the ciphertext y but for the decryption dec(sk, y) of the ciphertext. Hence, it
might be possible for an adversary to produce a ciphertext y′ 6= y such that the decryption x of y′ is the
same as the one of y, without knowing x. This models replayable encryption.

We note that the decryption test upon encryption (to test that the decryption yields the leakage again) is
not needed for the joint state theorem for Frpke (see below), so, it could be omitted. However, it is sometimes
useful, e.g., when reasoning about protocols with nested encryption, as discussed for Fpke.

27

It is easy to see that Frpke is environmentally strictly bounded. Hence, just as for Fpke, by Lemma 2,
both the multi-party version !Frpke and the multi-session, multi-party version !Frpke are environmentally
strictly bounded.

4.4.2 Realizing Frpke by IND-RCCA Secure Public-Key Encryption Schemes

We now show that a public-key encryption scheme realizes the ideal replayable public-key encryption
functionality Frpke (given an appropriate leakage algorithm) if and only if the encryption scheme is IND-
RCCA (replayable IND-CCA2) secure. IND-RCCA security, which has been introduced by Canetti et al. [14],
is a relaxed form of IND-CCA2 security where modifications of the ciphertext that yield the same plaintext
are permitted. In particular, IND-CCA2 security implies IND-RCCA security [14]. As explained by Canetti
et al., IND-RCCA security suffices in many applications where IND-CCA2 security is used. We recall the
definition of public-key encryption schemes and IND-RCCA security in Appendix A.2. As mentioned above,
similar to leakage algorithms, we assume that every public-key encryption scheme Σ is associated with a
polynomial-time decidable domain of plaintexts DΣ.

The realization Ppke(n,Σ) (see Section 4.3.3) of Frpke is the same as for Fpke; only the requirements on Σ
are milder, namely IND-RCCA security instead of IND-CCA2 security.

The following theorem shows that Frpke(L) exactly captures IND-RCCA security if the leakage algorithm
L leaks exactly the length of a plaintext (Definition 7) and has high entropy (Definition 8). For example,
this condition on L is satisfied if L is the leakage algorithm that returns a random bit string of the length of
the plaintext and the domain of plaintexts only contains “long” plaintexts, e.g., only plaintexts of length
≥ η (where η is the security parameter), see Section 4.3.1. A proof of the following theorem is provided in
Appendix B.3.

Theorem 8. Let n > 0, Σ be a public-key encryption scheme, p be a polynomial that bounds the runtime of
the algorithms in Σ (in the length of their inputs), and L be a leakage algorithm such that DΣ = DL (i.e., Σ
and L have the same plaintext domain) and L leaks exactly the length of a plaintext and has high entropy.
Then, Σ is IND-RCCA secure if and only if Ppke(n,Σ) ≤ Frpke(n, p, L).

The direction from left to right holds for any length preserving leakage algorithm L that has high entropy
and the direction from right to left holds for any leakage algorithm L that leaks at most the length of a
plaintext.

We note that if a length preserving leakage algorithm has high entropy, then its domain of plaintexts
contains only “long” plaintexts (e.g., only plaintexts of length ≥ η for security parameter η). So, our result
is consistent with the result by Canetti et al. [14], where large plaintext domains are assumed. We further
remark that Canetti et al. showed that IND-RCCA security is not sufficient to realize Frpke if plaintext
domains have only polynomial size.

5 Joint State Realizations
In this section, we present joint state realizations of the ideal functionalities presented in the previous section,
i.e., for digital signatures, public-key encryption, and replayable public-key encryption. We refer to Section 6
for a comparison of our joint state theorems with others proposed in the literature. The explanations given
in Section 6 will also motivate and justify the definitions of our functionalities and the way our joint state
theorems are stated.

5.1 A Joint State Realization for Digital Signatures
We now present a joint state realization P js

sig of Fsig. This realization uses a single copy of Fsig per party to
realize multiple sessions of Fsig per party. The joint state theorem for digital signatures basically says that

!P js
sig | !F ′sig ≤ !Fsig ,

28

E

P js
sig[pA] P js

sig[pB]

F ′sig[pA] F ′sig[pB]

(s1, (pA, (Sign, x)))

(pA, (Sign, (s1, x)))

(s2, (pA, (Sign, x′)))

(pA, (Sign, (s2, x′)))

(s1, (pB , (Sign, x′′)))

(pB , (Sign, (s1, x′′)))

E

Fsig[s1, pA] Fsig[s2, pA] Fsig[s1, pB]

(s1, (pA, (Sign, x)))

(s2, (pA, (Sign, x′)))

(s1, (pB , (Sign, x′′)))

Figure 6: A run of P js
sig | !F ′sig (left) and !Fsig (right), respectively, where an environment E sends three

signature generation requests: 1. to sign a message x in session (with SID) s1 with the private key of party
(with PID) pA, 2. to sign x′ in session s2 with the private key of party pA, and 3. to sign x′′ in session s1
with the private key of party pB .

where F ′sig is obtained from Fsig by renaming all input and output tapes. As described in Section 3, on the
right-hand side we have the multi-session multi-party version of Fsig: !Fsig is the multi-party version of
Fsig, where in a run of this system we can have one copy of Fsig per party, and !Fsig is the multi-session
version of the multi-party version of Fsig, where in a run of this system we can have multiple sessions of Fsig
per party. So, altogether there can be one copy of Fsig, denoted by Fsig[sid, pid], per session (with SID) sid
and per party (with PID) pid in a run of !Fsig with some environment. On the left-hand side, we consider
only the multi-party version !F ′sig of F ′sig and the “multiplexer” !P js

sig and in a run of !P js
sig | !F ′sig with some

environment there can be at most one copy of P js
sig, denoted by P js

sig[pid], for every party pid and this copy
handles all sessions of this party through one copy of F ′sig, namely the copy for party pid, which we denote
by F ′sig[pid]. Hence, the multi-session multi-party version of Fsig is realized by a system (the joint state
realization) with only a multi-party version of F ′sig where a copy of F ′sig for one party handles all sessions of
that party. This is illustrated in Figure 6.

The basic idea of P js
sig is simple and follows the one by Canetti and Rabin [17] (see also Figure 6): SIDs

are added by P js
sig to the messages to be signed so that signatures cannot be mixed between different sessions.

More specifically, if a party pid in session sid sends a request to !P js
sig | !F ′sig to sign a message x, i.e., a

message of the form (sid, (pid, (Sign, x))) is send to !P js
sig | !F ′sig, and hence, P js

sig[pid], then P js
sig[pid] replaces the

message x by (sid, x) and forwards the request to the copy of F ′sig for this party, i.e., to F ′sig[pid].16 Similarly,
when a party pid in session sid sends a verification request for a signature σ, a message x, and a public key
pk, then P js

sig[pid] forwards the requests to F ′sig[pid] but replaces x by (sid, x). However, this simple idea only
works given an appropriate formulation of the digital signature functionality (see Section 6.1) and if some
technical details are taken care of, see below.

We define P js
sig(n,Dsid) to be an IITM that is parametrized i) by a number n > 0 which, like in the

16We note that the actual encoding of (sid, x) as a bit string is not important. In fact, we could parametrize Pjs
sig by any

appropriate pairing function τ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ and replace (sid, x) by τ(sid, x).

29

case of Fsig, defines the I/O interface of P js
sig and ii) by a polynomial-time decidable domain of SIDs

Dsid = {Dsid(η)}η∈N. Requests with an SID not in Dsid(η) (where η is the security parameter) are ignored by
P js

sig; see below why this is needed. We often omit n and/or Dsid and just write, e.g., P js
sig instead of P js

sig(n,Dsid).
The machine P js

sig additionally has an I/O interface two connect to !F ′sig(n) such that P js
sig(n) | !F ′sig(n) and

!Fsig(n) have the same external I/O interface (which they must have because P js
sig(n) | !F ′sig(n) is meant to

realize !Fsig(n). Following the above basic idea, P js
sig is defined in pseudocode in Figure 7. It is easy to see

that P js
sig | !F ′sig is environmentally strictly bounded.

We emphasize a technical detail of P js
sig which is necessary for the joint state theorem to hold. If the

environment sends the first request to P js
sig[pid], for some PID pid, with some SID sid, then P js

sig[pid] forwards
it to F ′sig[pid] which in turn sends an initialization request to the adversary (on the network tape) and waits
for a response from the adversary (because this is the first request sent to it). Now, while waiting for this
response, the environment might send another request to P js

sig[pid], with some other SID sid ′ 6= sid. If this
happens, F ′sig[pid] is still blocked because it is waiting for a response from the adversary. In the ideal world
(i.e., in an interaction of the environment with !Fsig and a simulator) there would now be two copies, namely
Fsig[sid, pid] and Fsig[sid′, pid] waiting for a response to the initialization request from the simulator. The
environment could provide a response to Fsig[sid′, pid] which could then continue its work, while Fsig[sid, pid] is
still blocked. Also, the environment could provide different responses to Fsig[sid, pid] and Fsig[sid′, pid]. This is
not possible in the real world where there is only one copy F ′sig[pid] which is used to realize both Fsig[sid, pid]

and Fsig[sid′, pid]. To make the joint state realization indistinguishable from the ideal world in this case, we
define P js

sig[pid] to record sid ′ as blocked and to ignore this last request, i.e., to end this activation without
producing output. All later requests with blocked SIDs are ignored too. Accordingly, the simulator will be
defined to never complete initialization for Fsig[sid′, pid]. This guarantees that the environment cannot exploit
such race conditions to distinguish between the joint state realization and the ideal world. It basically forces
the environment to first finish the initialization before it can use F ′sig[pid]. We note that the problem could
also be solved by restricting the environment. For example, we could require that the environment always
directly replies to initialization requests from instances F ′sig. This would be a natural assumption but, to
then use the joint state theorem, one would need to reason about restricted environments (see, e.g., [1]),
which is inconvenient.

Next, we state and prove the joint state theorem for digital signatures. In this theorem, we have to
restrict the length of SIDs to be polynomially bounded in the security parameter. This is needed to prove
the theorem because the algorithms that are provided by the simulator and executed by Fsig get different
inputs. In the joint state realization, they obtain input of the form (sid, x) and in the ideal world, they just
obtain input of the form x and have to add the SID (see the proof for details). Therefore, we require that the
domain of SIDs Dsid = {Dsid(η)}η∈N is polynomially bounded: The domain Dsid = {Dsid(η)}η∈N is called
polynomially bounded if there exists a polynomial q such that |sid| ≤ q(η) for all η ∈ N and sid ∈ Dsid(η).

We note that the following theorem can be applied iteratively as described in Section 3 in order to reason
about more and more complex systems. We also emphasize that the proof of this theorem uses Theorem 3
(composition theorem). By Theorem 3, it suffices to reason about only one party in order to obtain a result
for multiple parties.
Theorem 9. Let n > 0 and Dsid be a polynomially bounded domain of SIDs. Then, for every polynomial p
there exists a polynomial p′ such that:

!P js
sig(n,Dsid) | !F ′sig(n, p) ≤ !Fsig(n, p′)

where !F ′sig(n, p) is the multi-party version of Fsig where all input and output tapes are renamed as described
above and !Fsig(n, p′) is the multi-session, multi-party version of Fsig where the domain of SIDs is Dsid.17

17Recall the definition of session versions with domain from Section 2.4.

30

Parameters: – n > 0 {number of I/O tape pairs
– Dsid = {Dsid(η)}η∈N {polynomial-time decidable domain of SIDs

Tapes: For all i ∈ {1, . . . , n}: from/to IOi: (ioin
i , io

out
i); from/to IO′i (to connect to !F ′sig): (ioout

i
′
, ioin

i
′)

State: – pid ∈ {0, 1}∗ ∪ {⊥} {PID; initially ⊥
– B ⊆ Dsid(η) {set of blocked SIDs; initially ∅
– lastSID ∈ Dsid(η) ∪ {⊥} {last received SID, lastSID 6= ⊥ iff waiting for response from F ′sig[pid]; initially ⊥

CheckAddress: Accept input of the form (sid, (pid,m)) where sid ∈ Dsid(η) from IOi or input of the form (pid,m) from
IO′i if pid = pid or pid = ⊥. Reject all other input.

Initialization: Upon receiving the first message, which, by definition of mode CheckAddress, is of the form (sid, (pid,m)) or
(pid,m), in mode Compute, set pid := pid (i.e., record the PID pid, which is used for addressing multiple instances of Pjs

sig).
Then, continue processing the first message as defined below.

Compute:

recv (sid, (pid,m)) from IOi:
if lastSID 6= ⊥ ∨ sid ∈ B: {waiting for response from F ′sig[pid] or SID is blocked

add sid to B; end this activation with empty output
else:

lastSID := sid {record SID
if m = (Sign, x) for some x: send (pid, (Sign, (sid, x))) to IO′i {sign (sid, x) using F ′sig[pid]

else if m = (Verify, pk, x, σ) for some pk, x, σ: send (pid, (Verify, pk, (sid, x), σ)) to IO′i {verify σ using F ′sig[pid]

else if m = PubKey? ∨m = CorrStatus?: send (pid,m) to IO′i {forward request to F ′sig[pid]

else: lastSID := ⊥; end this activation with empty output {ignore the request because it is not valid

recv (pid,m) from IO′i s.t. lastSID 6= ⊥: {by definition, lastSID 6= ⊥ if Pjs
sig[pid] receives a message from F ′sig[pid]

sid := lastSID; lastSID := ⊥; send (sid, (pid,m)) to IOi {forward response from F ′sig[pid] with recorded SID

Figure 7: The joint state realization P js
sig for digital signatures. See Section 4.1 for notational conventions.

Proof. By Theorem 3, it suffices to reason about environments that use only a single PID: The protocol
systems P := !P js

sig(n,Dsid) | !F ′sig(n, p) and F := !Fsig(n, p′) are σ-session versions (as defined in Section 2.4)
for the following SID function σ: σ(m, c) := pid if (i) m = (sid, (pid,m′)) for some sid, pid,m′ and c is
an external tape of F (or an external I/O tape of P because F and P have the same I/O interface) or
(ii) m = (pid,m′) for some pid,m′ and c is an external tape of !F ′sig (i.e., an internal tape of P , that connects
P js

sig with !F ′sig, or an external network tape of P). Otherwise, σ(m, c) := ⊥. So, to prove P ≤ F , by
Theorem 3, it suffices to show that P is environmentally bounded (which is easy to see, as mentioned above)
and that P ≤σ-single F , i.e., that there exists a simulator S ∈ SimPσ-single(F) such that E | P ≡ E | S |F for
every environment E ∈ Envσ-single(P) that only uses a single PID pid (of course, E may use multiple SIDs).

This “single-PID” simulator S that we define below will, when the environment sends algorithms sig,
ver and keys pk, sk (to F ′sig[pid]), provide the algorithms sig(sid), sig(sid) and the keys pk, sk to the instance
Fsig[sid, pid] for every SID sid.

Let η ∈ N be a security parameter, sid ∈ Dsid(η) be an SID, and sig and ver be descriptions of algorithms.
We now define the algorithms sig(sid) and ver (sid):

• sig(sid)(sk, x) computes σ ← sig(sk, (sid, x)) and counts the steps needed. If at most p(η+|sk|+|(sid, x)|)
steps are needed, then it returns σ. Otherwise, it enters an infinite loop.

• ver (sid)(pk, x, σ) computes b← ver(pk, (sid, x), σ) and counts the steps needed. If at most p(η + |pk|+
|(sid, x)|+ |σ|) steps are needed, then it returns b. Otherwise, it enters an infinite loop.

Since |sid| ≤ q(η) for some polynomial q (because Dsid is polynomially bounded), we find a polynomial p′
that only depends on p and q such that:

31

(a) For all sk, x ∈ {0, 1}∗, the computation of sig(sk, (sid, x)) exceeds p(η + |sk|+ |(sid, x)|) steps if and
only if the computation of sig(sid)(sk, x) exceeds p′(η + |sk|+ |x|) steps.

(b) For all pk, x, σ ∈ {0, 1}∗, the computation of ver(pk, (sid, x), σ) exceeds p(η + |pk|+ |(sid, x)|+ |σ|)
steps if and only if the computation of ver (sid)(pk, x, σ) exceeds p′(η + |pk|+ |x|+ |σ|) steps.

We now define the “single-PID” simulator S ∈ SimPσ-single(F). Recall that this simulator has to work for
environments that only use a single PID. The task of S is merely to forward initialization requests, to provide
algorithms and keys, and to perform corruptions. For the simulation, S maintains a set I of SIDs (initially ∅),
a flag corrupted ∈ {false, true} (initially false), and variables sig, ver, pk, sk (initially undefined).

• When the simulator S receives the first initialization request from F , i.e., the message (sid, (pid, Init))
from Fsig[sid, pid] for some sid, pid, then S sends (pid, Init) to E .

• If another initialization requests arrives from F , say with SID sid ′ (i.e., from Fsig[sid′, pid]), but S has
not yet received a response to the first initialization request from E , then S records sid ′ as blocked and
ends this activation with empty output (S will never complete initialization for Fsig[sid′, pid], i.e., this
instance is “blocked”, which corresponds to the fact that P js

sig[pid] would record sid ′ as blocked in this
case).

• When S receives a response to the initialization request from E , i.e., a message of the form (pid, (corrupt,
sig, ver , pk, sk)) with corrupt ∈ {false, true}, then S adds sid to the set of initialized SIDs I, sets sig := sig;
ver := ver ; pk := pk; sk := sk, and, if corrupt = true, sets corrupted := true (if corrupted is already
true, it remains true no matter what value corrupt has). Then, S sends (sid, (pid, (corrupted, sig(sid),
ver(sid), pk, sk))) to F where sid is the SID contained in the first initialization request S received from
F . That is, S completes initialization for Fsig[sid, pid].

• When another initialization request arrives from F , say with SID sid ′ and PID pid, and S has already
received an initialization response from E (i.e., I 6= ∅ and sig, ver, pk, sk are defined), then S sends
(sid ′, (pid, (corrupted, sig(sid), ver(sid), pk, sk))) to F and adds sid ′ to I. That is, S completes initialization
for Fsig[sid′, pid] without sending a request to E .

• When S receives a corrupt request from E , i.e., the message (pid,Corrupt) for some pid, then S
distinguishes the following cases:

(i) If S has sent an initialization request to E but not yet received a response (i.e., I = ∅), then S
ignores the corrupt request (i.e., it ends this activation without producing output).

(ii) If S has already received an initialization response from E (i.e., I 6= ∅), then S sets corrupted :=
true and, for every sid ∈ I, sends (sid, (pid,Corrupt)) to F and waits for receiving (sid, (pid,
Corrupted)) from F (which, by definition of Fsig, is the immediate response of F to corrupt
requests). That is, S corrupts all existing instances of Fsig. Then, S returns (pid,Corrupted)
to E .

(iii) If S has not received any initialization request from F so far, then S sets corrupted := true and
returns (pid,Corrupted) to E .

• Upon any other input, S ends this activation without producing output.

It is easy to see that S |F is environmentally strictly bounded, and hence, S ∈ SimPσ-single(F).
Let E ∈ Envσ-single(P), i.e., E uses only a single PID. Furthermore, let η ∈ N be a security parameter

and a ∈ {0, 1}∗ be some external input. We now prove that Pr [(E | P)(1η, a) = 1] = Pr [(E | S | F)(1η, a) = 1]
by showing that there exists a bijective mapping that maps every run ρ of (E | P)(1η, a) to a run ρ′ of
(E | S | F)(1η, a) such that both runs have the same probability and overall output. From this, we immediately

32

obtain Pr [(E | P)(1η, a) = 1] = Pr [(E | S | F)(1η, a) = 1]. In fact, defining the bijection is simple. Let ρ be a
run of (E | P)(1η, a). We define ρ′ as follows: First, we note that P js

sig is deterministic and, since E only uses a
single PID, there exists at most one instance of F ′sig in ρ. Let αE be the random coins used by E and αF ′

sig

be the random coins used by the instance of F ′sig in ρ.18 Furthermore, S is deterministic, that is, a run of
(E | S | F)(1η, a) is fixed by defining the random coins of E and F (note that F only uses random coins in the
simulation of the signature algorithm). We define ρ′ by defining the random coins of E to be αE (i.e., E in
ρ′ uses the same randomness as in ρ) and the random coins of F to be such that F uses the same random
coins to sign messages as the instance of F ′sig in ρ uses to sign the messages. That is, the first message that is
signed in ρ is signed using the same random coins as those used to sign the first message in ρ′. This also
holds for the second message and so on. By induction on the length of runs ρ, it is easy to see that the view
of E is the same in both runs ρ and ρ′ using the following arguments:

1. E does not observe any difference regarding blocked SIDs: It holds that sid ∈ B in P js
sig[pid] (in ρ) where

pid is the PID E uses iff S (in ρ′) recorded sid as blocked. Therefore, if E sends a request for with a
blocked SID sid, then, in ρ, P js

sig[pid] will end its activation with empty output and, in ρ′, Fsig[sid, pid]

will end its activation with empty output because it never completed initialization. Hence, in both
runs the master IITM (in E) is activated with empty input.

2. E does not observe any difference regarding Corrupted? requests: By definition of S, F ′sig[pid] (in ρ) is
corrupted iff Fsig[sid, pid] (in ρ′) is corrupted for all sid such that sid is not blocked and this instance
exists.

3. The signing algorithm is executed on the same messages using the same random coins: Let x be a
message that is signed in ρ with some SID sid. Let sig be the signing algorithm and sk be the secret key
(both provided previously by E). Then, the signature σ is computed in ρ by simulating sig(sk, (sid, x))
at most p(η + |sk| + |(sid, x)|) steps and in ρ′ by simulating sig(sid)(sk, x) at most p′(η + |sk| + |x|)
steps. In both runs the same random coins are used. Hence, by definition of sig(sid) and (a), the same
signature is created in both runs.

4. Similarly to signing, the verification algorithm is executed on the same messages in both runs. Hence,
by definition of ver (sid) and (b), the algorithm returns the same verification result in both runs.
Furthermore, the check to prevent forgery produces the same result in both runs because, for all sid, x,
(sid, x) ∈ H in F ′sig[pid] (in ρ) iff x ∈ H in Fsig[sid, pid] (in ρ′) where pid is the PID E uses.

From this, we obtain that E | P ≡ E | S |F . Hence, P ≤σ-single F . By Theorem 3, we conclude P ≤ F .

Using the composition theorems, we can immediately replace the ideal functionality in the joint state
realization by its realization as stated in Theorem 6, resulting in an actual joint state realization (without
any ideal functionality):
Corollary 3. Let n > 0, Dsid be a polynomially bounded domain of SIDs, and Σ be an UF-CMA secure
signature scheme. Then, there exists a polynomial p such that:

!P js
sig(n,Dsid) | !P ′sig(n,Σ) ≤ !Fsig(n, p)

where !P ′sig(n,Σ) is the multi-party version of Psig where all input and output tapes are renamed just as for
F ′sig and, as above, !Fsig(n, p) is the multi-session, multi-party version of Fsig where the domain of SIDs is
Dsid.
Proof. By Theorem 6 (because Σ is UF-CMA secure), it holds that P ′sig ≤ F ′sig(p′) for any polynomial p′
that bounds the runtime of the algorithms in Σ. From this, by the composition theorems (Theorems 1
and 2), we obtain that !P js

sig | !P ′sig ≤ !P js
sig | !F ′sig(p′). By Theorem 9 and transitivity of ≤, we conclude that

!P js
sig | !P ′sig ≤ !Fsig(p) for some polynomial p.

18We refer to [27] for a formal definition of random coins for systems of IITMs and runs of systems of IITMs.

33

Parameters, Tapes, State, CheckAddress, Initialization: Just as for Pjs
sig, see Figure 7.

Compute:

recv (sid, (pid,m)) from IOi:
if lastSID 6= ⊥ ∨ sid ∈ B: {waiting for response from F ′pke[pid] or SID is blocked

add sid to B; end this activation with empty output
else:

lastSID := sid {record SID
if m = (Enc, pk, x) for some pk, x: send (pid, (Enc, pk, (sid, x))) to IO′i {encrypt (sid, x) using F ′pke[pid]

else if ∃y : m = (Dec, y) ∨m = PubKey? ∨m = CorrStatus?: send (pid,m) to IO′i {forward request to F ′pke[pid]

else: lastSID := ⊥; end this activation with empty output {ignore the request because it is not valid

recv (pid,m) from IO′i s.t. lastSID 6= ⊥: {receive response from F ′sig[pid]; by definition, lastSID 6= ⊥
sid := lastSID; lastSID := ⊥
if m = (Plaintext, (lastSID, x)) for some x: {m is response to a Dec request and plaintext is prefixed by correct SID

send (sid, (pid, (Plaintext, x))) to IOi {strip off SID, return plaintext
else if m = (Plaintext, x) for some x: {m is response to a Dec request but plaintext has unexpected format

send (sid, (pid, (Plaintext,⊥))) to IOi {return decryption error
else: {m is response to a PubKey?, Enc, or CorrStatus? request

send (sid, (pid,m)) to IOi {forward response

Figure 8: The joint state realization P js
pke for public-key encryption. See Section 4.1 for notational conventions.

5.2 A Joint State Realization for Public-Key Encryption
The joint state realization P js

pke presented in this section is similar to the joint state realization P js
sig for digital

signatures. It uses one copy of Fpke per party for all sessions of this party and realizes the multi-session,
multi-party version of Fpke where one copy of Fpke is used per party per session. Hence, similarly to the case
of digital signatures the joint state theorem for public-key encryption states that

!P js
pke | !F ′pke ≤ !Fpke

where F ′pke is obtained from Fpke by renaming all input and output tapes. The basic idea for P js
pke, which

again is similar to the case of digital signatures and first appeared in [12], but without any details or proofs
(see Section 6.2 for further discussion), is as follows: The SID sid is prefixed to the plaintext x prior to
encryption, i.e., instead of encrypting x in session sid under a separate key for this session, (sid, x) is encrypted
(under the same key for every session). Upon decryption of a ciphertext y in session sid it is checked whether
y decrypts to (sid, x) with the correct SID sid.19 While the main idea is simple, it only works given an
appropriate formulation of the public-key encryption functionality (see also Section 6.2).

Following this basic idea, P js
pke is defined in pseudocode in Figure 8. Just as P js

sig, P js
pke is parametrized

by a number n that defines the I/O interface and a domain of SIDs Dsid. We write P js
pke(n,Dsid) to denote

P js
pke with parameters n and Dsid but often omit one or both parameters. Analogously to the case of digital

signatures, P js
pke(n) connects to the I/O interface of !F ′pke(n).

We can now state and prove the joint state theorem for public-key encryption. As mentioned above, the
joint state realization P js

pke is based on the multi-party version !F ′pke of the ideal functionality F ′pke. Recall
that F ′pke is obtained from Fpke by renaming all external tapes. More importantly, F ′pke will use the leakage
algorithm L′ that in addition to the leakage algorithm L in the ideal world (!Fpke) also leaks the SID of the
session in which the message was encrypted. This, in conjunction with the decryption test performed in Fpke
(to guarantee that the decryption of the encryption of a leakage yields the leakage again), guarantees that
ciphertexts generated in different sessions are different. This is crucial for the joint state theorem to hold (see

19We note that the actual encoding of (sid, x) as a bit string is not important. In fact, we could parametrize Pjs
pke by any

appropriate pairing function τ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ and replace (sid, x) by τ(sid, x).

34

below). Just as in the case of digital signatures, the domain of SIDs has to be restricted. We further remark
that the theorem can be applied iteratively, as described in Section 3.

Theorem 10. Let n > 0, Dsid be a polynomially bounded domain of SIDs, and L be a leakage algorithm.
Then, for every polynomial p there exists a polynomial p′ such that:

!P js
pke(n,Dsid) | !F ′pke(n, p, L′) ≤ !Fpke(n, p′, L)

where

1. the leakage algorithm L′ is defined as follows: L′(1η, (sid, x)) := (sid, L(1η, x)) for all η ∈ N, sid ∈
Dsid(η), and x ∈ DL(η) (the domain of L′ is DL′ = {DL′(η)}η∈N with DL′(η) := {(sid, x) | sid ∈
Dsid(η), x ∈ DL(η)} for all η ∈ N),

2. !F ′pke(n, p, L′) is the multi-party version of Fpke where all input and output tapes are renamed, as
described above, and

3. !Fpke(n, p′, L) is the multi-session, multi-party version of Fpke where the domain of SIDs is Dsid.20

Proof. The proof is similar to the proof of Theorem 9. The basic idea is that the usage of the SID in every
plaintext, in conjunction with the definition of the leakage algorithm L′ (i.e., the SID is part of the leakage)
and the decryption test performed in Fpke (i.e., ciphertexts are guaranteed to contain all the information
contained in the leakage, in particularly the SID), guarantees that ciphertexts generated in different sessions
are different and that ideal decryption (i.e., decryption that returns a recorded plaintext) in some session
only succeeds if the ciphertext has been generated in this session.

As in the proof of Theorem 9, to show that P := !P js
pke(n,Dsid) | !F ′pke(n, p, L′) realizes F := !Fpke(n, p′, L),

by Theorem 3, it suffices to show that there exists a simulator S ∈ SimPσ-single(F) such that E | P ≡ E | S |F
for every environment E ∈ Envσ-single(P) that only uses a single PID pid (of course, E may use multiple
SIDs), where σ is the SID function defined in the proof of Theorem 9.

The “single-PID” simulator S is defined analogously to the one in the proof of Theorem 9, except for the
following:

• S ignores corrupt requests from the environment (i.e., messages of the form (pid,Corrupt)) because
Fpke is only corruptible upon initialization.

• We replace the algorithms sig and ver , obtained from the environment, by the algorithms enc and dec.
Also, instead of sig(sid) and sig(sid), S provides the algorithms enc(sid) and dec(sid), defined below, to
F .

Let η ∈ N be a security parameter, sid ∈ Dsid(η) be an SID, and enc and dec be descriptions of algorithms.
We now define the algorithms enc(sid) and dec(sid):

• enc(sid)(pk, x) computes y ← enc(pk, (sid, x)) and counts the steps needed. If at most p(η + |pk| +
|(sid, x)|) steps are needed, then it returns y. Otherwise, it enters an infinite loop.

• dec(sid)(sk, y) computes x′ ← dec(sk, y) and counts the steps needed. If more than p(η + |sk| + |y|)
steps are needed, it enters an infinite loop. Otherwise, if x′ = (sid, x) for some x, then it returns x,
otherwise, it returns the error symbol ⊥.

Since |sid| ≤ q(η) for some polynomial q (because Dsid is polynomially bounded), we find a polynomial p′
that only depends on p and q (i.e., on Dsid) such that:

(a) For all pk, x ∈ {0, 1}∗, the computation of enc(pk, (sid, x)) exceeds p(η + |pk| + |(sid, x)|) steps if
and only if the computation of enc(sid)(pk, x) exceeds p′(η + |pk|+ |x|) steps.

20Recall the definition of session versions with domain from Section 2.4.

35

(b) For all sk, y ∈ {0, 1}∗, the computation of dec(sk, y) exceeds p(η + |sk|+ |y|) steps if and only if the
computation of dec(sid)(sk, y) exceeds p′(η + |sk|+ |y|) steps.

Let E ∈ Envσ-single(P), i.e., E uses only a single PID. Furthermore, let η ∈ N be a security parameter and
a ∈ {0, 1}∗ be some external input. As in the proof of Theorem 9, to prove that Pr [(E | P)(1η, a) = 1] =
Pr [(E | S | F)(1η, a) = 1], we show that there exists a bijective mapping that maps every run ρ of (E | P)(1η, a)
to a run ρ′ of (E | S | F)(1η, a) such that both runs have the same probability and overall output. Again,
defining such a bijection is simple. Let ρ be a run of (E | P)(1η, a). Now, ρ′ is defined by defining the random
coins of E and F (note that S is deterministic and F only uses random coins in the simulation of the leakage
and encryption algorithms) such that E uses the same random coins as in ρ and F uses the same random
coins to encrypt messages as F ′pke uses in ρ. That is, the ciphertext for the first message that is encrypted in
ρ is computed using the same random coins as those used to compute the ciphertext for the first message in
ρ′. This also holds for the second message and so on. By induction on the length of runs ρ, it is easy to see
that the view of E is the same in both runs ρ and ρ′ using the following arguments:

1. As in the proof of Theorem 9, E does not observe any difference regarding blocked SIDs or Corrupted?
requests.

2. Upon encryption, in both runs, the leakage and encryption algorithms are executed on the same
messages using the same random coins, and hence, the same ciphertext is returned: Let x be a plaintext
that is encrypted in ρ under the public key pk ′ with some SID sid and PID pid. Furthermore, let enc
be the encryption algorithm and pk be the public key provided previously by E . We distinguish two
cases:

(i) Ideal encryption, i.e., pk = pk ′ and F ′pke[pid] (in ρ) is not corrupted: In this case, the ciphertext
y returned to E is computed in ρ by computing the leakage x ← L′(1η, (sid, x)) and simulating
enc(pk, x) at most p(η + |pk|+ |x|) steps.
We note that in this case, by definition of S, pk ′ is the recorded public key in Fpke[sid, pid] (in ρ′)
and Fpke[sid, pid] is not corrupted. Hence, in ρ′, the ciphertext that is returned to E is computing
by computing the leakage x′ ← L(1η, x) and simulating enc(sid)(pk, x′) at most p′(η + |pk|+ |x′|)
steps. The same random coins as in ρ are used to compute the leakage. Hence, by definition of L′,
x = (sid, x′). Furthermore, the same random coins as in ρ are used to simulate the encryption
algorithm. Hence, by definition of enc(sid) and by (a), the same ciphertext y is returned.

(ii) Non-ideal encryption, i.e., pk 6= pk ′ or F ′pke in ρ is corrupted: First, we note that in this case, by
definition of S, pk ′ is not the recorded public key in Fpke[sid, pid] (in ρ′) or Fpke[sid, pid] is corrupted.
Now, the ciphertext y is computed in ρ by simulating enc(pk, (sid, x)) at most p(η+ |pk|+ |(sid, x)|)
steps and in ρ′ by simulating enc(sid)(pk, x) at most p′(η + |pk|+ |x|) steps. Since in both runs
the same random coins are used to simulate the algorithm, by definition of enc(sid) and by (a), the
same ciphertext is created in both runs.

3. Upon decryption, in both runs, the same algorithms are executed on the same bit strings, and hence,
the same plaintext is returned: Let y be a ciphertext that is decrypted in ρ with some SID sid and
PID pid. Furthermore, let enc, dec be the algorithms and pk, sk be the key pair provided previously
by E . We now distinguish the following cases:

(i) Ideal decryption, i.e., F ′pke[pid] (in ρ) is not corrupted and there exists x such that (x, y) ∈ H in
F ′pke[pid]: First, we note that in this case Fpke[sid, pid] (in ρ′) is not corrupted. We now distinguish
two cases:
• Ciphertexts collide, i.e., there exist x0, x1 such that x0 6= x1 and (x0, y), (x1, y) ∈ H in F ′pke[pid]:

In this case, decryption fails in ρ. We now show that decryption also fails in ρ′.

36

For this purpose, we first show that x0 and x1 “belong” to the same session. More precisely,
we show that there exist sid ′, x′0, x′1 such that x0 = (sid ′, x′0) and x1 = (sid ′, x′1). By definition
of P js

pke, x0 = (sid0, x
′
0) and x1 = (sid1, x

′
1) for some sid0, x

′
0, sid1, x

′
1. Since (x0, y), (x1, y) ∈ H

(in F ′pke[pid] in ρ), x0 and x1 have been encrypted to y such that y has been computed once
as x0 ← L′(1η, x0); y ← enc(pk, x0) and another time as x1 ← L′(1η, x1); y ← enc(pk, x1).
Furthermore, the decryption check succeeded in both cases, i.e., x0 = dec(sk, y) = x1 (decryption
is deterministic). By definition of L′ (because it leaks the SID), we have that x0 = (sid0, x

′
0)

and x1 = (sid1, x
′
1) for some x′0, x′1. Hence, sid0 = sid1.

Now, if sid = sid ′ (i.e., x0 and x1 “belong” to session sid), then, because ideal encryption
is performed identically in ρ and ρ′ (as shown above), we have that (x′0, y), (x′1, y) ∈ H in
Fpke[sid, pid]. Since x′0 6= x′1 (because x0 6= x1), we conclude that decryption also fails in ρ′.
Otherwise, i.e., sid 6= sid ′, decryption also fails in ρ′ because dec(sk, y) = (sid ′, x) for some x.
Hence, by definition of dec(sid), we obtain that dec(sid)(sk, y) = ⊥.

• Ciphertexts do not collide, i.e., there exist x such that (x, y) ∈ H in F ′pke[pid] and x is unique
with this property.
If x = (sid, x′) for some x′, then the plaintext x′ is returned (to E) in ρ. Since ideal encryption
is performed identically in ρ and ρ′ (as shown above), (x′, y) ∈ H in Fpke[sid, pid], and there is no
other recorded plaintext for y. Hence, x′ is returned in ρ′ too.
Otherwise, i.e., x = (sid ′, x′) for some sid ′, x′ such that sid 6= sid ′, by definition of P js

pke,
decryption fails in ρ (i.e., ⊥ is returned to E). Since ideal encryption is performed identically
in ρ and ρ′ (as shown above), (x′′, y) /∈ H in Fpke[sid, pid] for any x′′ ((x′, y) is only recorded

in Fpke[sid′, pid]). Hence, Fpke[sid, pid] computes the plaintext as dec(sid)(sk, y). This yields ⊥
because dec(sk, y) = (sid ′, x) for some x (since F ′pke[pid] performed a decryption test upon
encryption) and sid 6= sid ′. Hence, decryption fails in ρ′ too.

(ii) Non-ideal decryption, i.e., F ′pke[pid] (in ρ) is corrupted or there does not exist x such that (x, y) ∈ H
in F ′pke[pid]: In this case, the plaintext x is computed by F ′pke[pid] by simulating dec(sk, y) at most
p(η + |sk| + |y|) steps (x = ⊥ if number of steps is exceeded). Then, x is returned to P js

pke and
P js

pke returns x′ as the plaintext if x = (sid, x′) for some x′. Otherwise, P js
pke returns ⊥ (decryption

error).
We note that in this case, by definition of S, Fpke[sid, pid] (in ρ′) is corrupted or, because ideal
encryption is performed identically in ρ and ρ′ (as shown above), there does not exist x such that
(x, y) ∈ H in Fpke[sid, pid] (in fact, y is not recorded in any instance of Fpke). Hence, in ρ′, the

plaintext is computed by simulating dec(sid)(sk, y) at most p′(η + |sk|+ |y|) steps. By definition of
dec(sid) and by (b), the same plaintext x′ (possibly x′ = ⊥) is returned.

From this, we obtain that E | P ≡ E | S |F . Hence, P ≤σ-single F . By Theorem 3, we conclude that P ≤ F .

We note that the above theorem implies that we obtain joint state realizations for all realizations of
Fpke. In particular, by Theorem 7 (and the composition theorems), we obtain that the joint state realization
!P js

pke | !Ppke(Σ) of an IND-CCA2 secure public-key encryption scheme Σ realizes the multi-party, multi-session
version of Fpke. In this corollary, we assume that the leakage algorithm L′ (recall that L′(1η, (sid, x)) =
(sid, L(1η, x))) is length preserving (i.e., |L′(1η, (sid, x))| = |(sid, L(1η, x))| = |(sid, x)|). Note that L′ is
length preserving if L is length preserving (e.g., L is one of the leakage algorithms from Example 1) and
pairing (·, ·) is length preserving. We say that pairing (·, ·) is length preserving if |(sid, x)| = |(sid, x′)| for all
η ∈ N, sid ∈ Dsid(η), and x, x′ ∈ DL(η) such that |x| = |x′|. This is a natural assumption.

Corollary 4. Let n > 0, Dsid be a polynomially bounded domain of SIDs, Σ be an IND-CCA2 secure
public-key encryption scheme, and L be leakage algorithm such that the leakage algorithm L′ (as defined in

37

Theorem 10) is length preserving and DΣ = DL′ (i.e., Σ and L′ have the same plaintext domain). Then,
there exists a polynomial p such that:

!P js
pke(n,Dsid) | !P ′pke(n,Σ) ≤ !Fpke(n, p, L)

where !P ′pke(n,Σ) is the multi-party version of Ppke where all input and output tapes are renamed as for F ′pke
and, as above, !Fpke(n, p, L) is the multi-session, multi-party version of Fpke where the domain of SIDs is
Dsid.

Proof. By Theorem 7 (because Σ is IND-CCA2 secure, L′ is length preserving, and DΣ = DL′), it holds
that P ′pke ≤ F ′pke(p′, L′) for any polynomial p′ that bounds the runtime of the algorithms in Σ. From this,
by the composition theorems (Theorems 1 and 2), we obtain that !P js

pke | !P ′pke ≤ !P js
pke | !F ′pke(p′, L′). By

Theorem 10 and transitivity of ≤, we conclude that !P js
pke | !P ′pke ≤ !Fpke(p, L) for some polynomial p.

5.3 A Joint State Realization for Replayable Public-Key Encryption
The joint state realization for replayable public-key encryption is analogous to the joint state realization for
public-key encryption. In fact, the same protocol P js

pke (see Section 5.2) can be used. As before, the joint
state theorem for replayable public-key encryption states that !P js

pke | !F ′rpke(L′) (where F ′rpke is obtained
from Frpke by renaming all external tapes) realizes the multi-session, multi-party version !Frpke(L) where,
again, L′ leaks the SID plus the information that L leaks (L′(1η, (sid, x)) = (sid, L(1η, x)) for all η, sid, x)
and the domain of SIDs has to be restricted. The joint state theorem can be applied iteratively, as described
in Section 3.

Theorem 11. Let n > 0, Dsid be a polynomially bounded domain of SIDs, and L be a leakage algorithm.
Then, for every polynomial p there exists a polynomial p′ such that:

!P js
pke(n,Dsid) | !F ′rpke(n, p, L′) ≤ !Frpke(n, p′, L)

where the leakage algorithm L′ is defined as in Theorem 10, !F ′rpke(n, p, L′) is the multi-party version of Frpke

where all input and output tapes are renamed, as described above, and !Frpke(n, p′, L) is the multi-session,
multi-party version of Frpke where the domain of SIDs is Dsid.21

Proof. The proof is similar to the proof of Theorem 10. To show that P := !P js
pke(n,Dsid) | !F ′rpke(n, p, L′)

realizes F := !Frpke(n, p′, L), by Theorem 3, if suffices to show that there exists a simulator S ∈ SimPσ-single(F)
such that E | P ≡ E | S |F for every environment E ∈ Envσ-single(P) that only uses a single PID pid (of course,
E may use multiple SIDs), where σ is the SID function defined in the proof of Theorem 9. This “single-PID”
simulator S is defined as in the proof of Theorem 10 and we use the same polynomial p′. In particular, S
uses the same algorithms enc(sid) and dec(sid).

Let E ∈ Envσ-single(P), i.e., E uses only a single PID. Furthermore, let η ∈ N be a security parameter and
a ∈ {0, 1}∗ be some external input. To prove that Pr [(E | P)(1η, a) = 1] = Pr [(E | S | F)(1η, a) = 1], we show
that there exists a bijective mapping that maps every run ρ of (E | P)(1η, a) to a run ρ′ of (E | S | F)(1η, a)
such that both runs have the same probability and overall output. The definition of such a bijection coincides
with the one in the proof of Theorem 10, except that Fpke is replaced by Frpke. The proof that this bijection
has the desired properties is similar to the one in the proof of Theorem 10: By induction on the length of
runs ρ, it can be shown that E has the same view in both runs ρ and ρ′. The proof only differs from the one
of Theorem 10 in the argument for the case of decryption:

Let y be a ciphertext that is decrypted in ρ with some SID sid and PID pid and let enc, dec be the
algorithms and pk, sk be the key pair provided previously by E . Furthermore, let x be the plaintext/leakage

21Recall the definition of session versions with domain from Section 2.4.

38

computed by F ′rpke[pid] (in ρ), i.e., by simulating dec(sk, y) at most p(η + |sk| + |y|) steps (if more steps
would be needed, x = ⊥). Analogously, let x∗ be the plaintext/leakage computed by Frpke[sid, pid] (in ρ′),

i.e., by simulating dec(sid)(sk, y) at most p′(η + |sk|+ |y|) steps (if more steps would be needed, x∗ = ⊥). By
definition of dec(sid) and p′ (see (b) in the proof of Theorem 10), we have that

x = (sid, x∗) if and only if x∗ 6= ⊥ . (2)

Hence, if x = ⊥, then x∗ = ⊥ and, therefore, decryption fails both in ρ and ρ′ (i.e., ⊥ is returned to E). Now,
assume that x 6= ⊥. We distinguish the following cases:

(i) Ideal decryption, i.e., F ′rpke[pid] (in ρ) is not corrupted and there exists x such that (x, x) ∈ H in
F ′rpke[pid]: First, we note that in this case Frpke[sid, pid] (in ρ′) is not corrupted. Furthermore, by
definition of L′ (since L′ leaks the SID), x = (sid ′, x′) for some sid ′, x′. We now distinguish two cases:

• Leakages collide, i.e., there exist x0, x1 such that x0 6= x1 and (x0, x), (x1, x) ∈ H in F ′rpke[pid]: In
this case, decryption fails in ρ. We now show that decryption also fails in ρ′.
First, it is easy to see that x0 and x1 “belong” to the same session sid ′, i.e., x0 = (sid ′, x′0) and
x1 = (sid ′, x′1) for some x′0, x′1.22

Now, if sid = sid ′ (i.e., x0 and x1 “belong” to session sid), then, by (2), x′ = x∗. Since ideal
encryption is performed identically in ρ and ρ′, we have that (x′0, x∗), (x′1, x∗) ∈ H in Frpke[sid, pid].
Since x′0 6= x′1 (because x0 6= x1), we conclude that decryption also fails in ρ′. Otherwise, i.e.,
sid 6= sid ′, decryption also fails in ρ′ because, by (2), x∗ = ⊥.

• Leakages do not collide, i.e., there exist x such that (x, x) ∈ H in F ′rpke[pid] and x is unique with
this property.
If x = (sid, x′) for some x′, then the plaintext x′ is returned (to E) in ρ. Furthermore, sid ′ = sid
and, by (2), x = (sid, x∗). Since ideal encryption is performed identically in ρ and ρ′, we have that
(x′, x∗) ∈ H in Frpke[sid, pid] and there is no other recorded plaintext for x∗. Hence, x′ is returned in
ρ′ too.
Otherwise, i.e., x = (sid ′′, x′) for some sid ′′, x′ such that sid 6= sid ′′, by definition of P js

pke, decryption
fails in ρ (i.e., ⊥ is returned to E). Furthermore, sid ′ = sid ′′, i.e., x = (sid ′′, x′). Hence, by (2),
x∗ = ⊥, i.e., decryption fails in ρ′ too.

(ii) Non-ideal decryption, i.e., F ′rpke[pid] (in ρ) is corrupted or there does not exist x such that (x, x) ∈ H
in F ′rpke[pid]:

If x = (sid, x′) for some x′, then, by definition of P js
pke, the plaintext x′ is returned to E in ρ. In this

case, by (2), x′ = x∗ and this plaintext is returned to E in ρ′ too.
Otherwise, i.e., x 6= (sid, x′) for any x′, then decryption fails in ρ (by definition of P js

pke). By (2),
x∗ = ⊥ in this case and, hence, decryption fails in ρ′ too.

From this, we obtain that E | P ≡ E | S |F . Hence, P ≤σ-single F . By Theorem 3, we conclude that P ≤ F .

Similarly to the case of public-key encryption, we note that the above theorem implies that we obtain joint
state realizations for all realizations of Frpke. In particular, by Theorem 8 (and the composition theorems),
we obtain that the joint state realization !P js

pke | !Ppke(Σ) with an IND-RCCA secure public-key encryption
scheme Σ realizes the multi-party, multi-session version of Frpke.

22We note that in the proof of Theorem 10, to show this, the decryption test upon encryption was required. This is not needed
here. Hence, the decryption test could be omitted in Frpke, as mentioned above.

39

Corollary 5. Let n > 0, Dsid be a polynomially bounded domain of SIDs, Σ be an IND-RCCA secure
public-key encryption scheme, and L be a leakage algorithm such that the leakage algorithm L′ (as defined in
Theorem 10) is length preserving, has high entropy, and DΣ = DL′ (i.e., Σ and L′ have the same plaintext
domain). Then, there exists a polynomial p such that:

!P js
pke(n,Dsid) | !P ′pke(n,Σ) ≤ !Frpke(n, p, L)

where !P ′pke(n,Σ) is the multi-party version of Ppke where all input and output tapes are renamed as for
F ′rpke and, as above, !Frpke(n, p, L) is the multi-session, multi-party version of Frpke where the domain of
SIDs is Dsid.

Proof. By Theorem 8 (because Σ is IND-RCCA secure, L′ is length preserving and has high entropy,
and DΣ = DL′), it holds that P ′pke ≤ F ′rpke(p′, L′) for any polynomial p′ that bounds the runtime of the
algorithms in Σ. From this, by the composition theorems (Theorems 1 and 2), we obtain that !P js

pke | !P ′pke ≤
!P js

pke | !F ′rpke(p′, L′). By Theorem 11 and transitivity of ≤, we conclude that !P js
pke | !P ′pke ≤ !Frpke(p, L) for

some polynomial p.

We note that the above corollary holds in particular if L is the leakage algorithm that returns a random
bit string of the same length as the plaintext and if the plaintext domain contains only “long” plaintexts (e.g.,
only plaintexts of length ≥ η for security parameter η) and if pairing (·, ·) is length preserving, as defined in
Section 5.2 (i.e., the length of a pair of an SID and a plaintext does not depend on the actual bits of the
plaintext but only on the SID and the length of the plaintext). In this case, it is easy to see that L′ is length
preserving and has high entropy.

6 Related Work
We have already discussed some related work in the introduction. In this section, we compare our ideal
functionalities and results with the ones from the literature in more detail.

6.1 Digital Signatures
We first compare our formulation of the digital signature functionality with other formulations in the literature.

As mentioned in the introduction, most other formulations of digital signature functionalities are defined
in a non-local way [8, 17, 16, 2], i.e., all signatures are provided by the adversary, with the mentioned
disadvantages. The only formulations with local computation in the literature, besides the one in the present
paper, are the ones in [7] (see the version of December 2005) and [3].

The digital signature functionality in [3] is part of a Dolev-Yao style cryptographic library. A user does
not obtain the actual signature but only a handle to this signature within the library. By this, the use
of the signature is restricted for the user to the operations provided in the cryptographic library. The
implementation for the digital signature functionality within the library does not use a standard UF-CMA
secure digital signature scheme, but requires a specific stronger construction. Joint state realizations have not
been considered. In fact, the library is expressed within the model by Pfitzmann and Waidner [31] which
does not explicitly talk about copies of protocols/functionalities.

One problem of the formulation in [7] is that it does not seem to have any reasonable joint state realization,
unlike claimed in [7]: The signature functionality in [7] uses only the signing and verification algorithms sig
and ver , but no public/private keys pk/sk. It is argued that the public/private keys can be incorporated in
the algorithms ver/sig. That is, the verification algorithm plays the role of the public key. Thus, in order to
verify a message-signature pair (x, σ) in addition to this pair a verification algorithm ver ′ has to be provided
and in the functionality it is then checked if ver ′ = ver . If ver ′ 6= ver , the algorithm ver ′ is run on (x, σ), and
the result of this algorithm is returned. While this integration of the keys into the algorithms works for the
private key, it does not work for the public key. As argued next, failing to make the distinction between the

40

verification algorithm and the public key prevents to obtain joint state realizations following the “concatenate
and sign” approach or any approach that somehow manipulates the signed messages in an observable way.

An environment E that distinguishes a joint state realization from the multi-session, multi-party version
of the digital signature functionality in the ideal world works as follows: It sends an initialization message to
some copy of the digital signature functionality and provides some algorithms sig and ver . It then requests
to verify the message-signature pair (x, σ), where x is not of the form (sid, x′) for any sid, x′, with the
verification algorithm ver ′ where ver ′ 6= ver is defined as follows: ver ′(x, σ) outputs true if the message x
is of shape (sid, x′), it outputs false otherwise. If E obtains (VerResult, true), it outputs 1, and 0 otherwise.
It is easy to see that if E communicates with the joint state realization it will always output 1 since this
realization forwards (sid, x) to the digital signature functionality. Since ver ′ 6= ver , the functionality will call
ver ′((sid, x), σ) and so 1 is returned. Conversely, in the ideal world where E communicates directly with a
copy of the digital signature functionality, E will always output 0 since this copy runs ver ′(x, σ).

Another problem in Canetti’s formulation of the digital signature functionality in [7] is that the signing
algorithm sig is allowed to preserve some state (i.e., the signature values may depend on the messages signed
so far). Note that in our formulation sig is stateless. It is easy to prove that with a stateful sig, joint state
realizations, such as “concatenate and sign” or similar approaches, fail, depending on the kind of state that is
used. The problem is that the signing algorithms in the real and the ideal world will have different states, and
that this cannot be prevented by the simulator. If states of signing algorithms are predictable and observable
to some extent, then an environment can easily distinguish between the real and the ideal world. Note that
Canetti’s joint state realization is based on his ideal digital signature functionality and this functionality
accepts any signature and verification algorithms from the environment/simulator. Hence, one in particular
has to deal with the described “problematic” algorithms, which, however, is not possible. An alternative would
be to restrict the kind of stateful signing algorithms that may be provided by the environment/simulator.
This class would have to be carefully defined in order to fulfill certain closure properties to be useful in the
context of joint state realizations. In any case, it would have to exclude several existing stateful signature
schemes as they are problematic in the sense described. Also, the analysis of complex protocols based on
functionalities which are parametrized by certain classes of signing/verification algorithms would be more
complex.

While we define corruption very thoroughly, other formulations of signature functionalities lack to do so.
But when it comes to joint state realizations, this is crucial. For example, if corruption reveals the order
of the messages that have been signed so far, then the environment is able to distinguish the joint state
world from the ideal world because the simulator has no chance to determine the order in which messages
of different sessions where signed in the ideal world. If the messages are revealed in random order or in
some order that is independent from the moment of activation (e.g., in lexicographical order), the joint state
theorem for digital signatures still holds because the simulator is able to obtain the messages from each copy
of the digital signature functionality and can combine them such that they respect the expected ordering.

6.2 Public-Key Encryption
In the proof of the joint state theorem for public key encryption, several subtleties come up which were
overlooked in other works, in particular [7, 12]. In these works, joint state theorems, similar to Theorem 10,
for public-key encryption functionalities with local computation were mentioned. However, the joint state
realizations were only sketched and no proofs were provided. It, in fact, turns out that the joint state theorems
for these functionalities do not hold true. Let us first explain this for [7] (see the version of December 2005)
and then for [12]. These explanations motivate and justify the definition of our functionality and the way our
joint state theorem is stated.

Problems with the joint state realization in [7]. There are two problems:

1. The public-key encryption functionality in [7], unlike our functionality, identifies the public/private
keys with the encryption/decryption algorithms enc/dec. While this works for the private key, it is
problematic for the public key as explained next. If the environment wishes to encrypt a message x,

41

it is supposed to also present an encryption algorithm enc′ (not just a key, as in our functionality).
If enc 6= enc′, i.e., enc′ is different from the algorithm associated with the functionality, then the
ciphertext returned is enc′(x). Now, assume that the environment asks to encrypt some message x
with enc′ in session sid, where, say enc′ coincides with enc except that enc′ uses a different public
key. In the joint state world (i.e., in an interaction with !P js

pke | !Fpke), the ciphertext is computed as
enc′((sid, x)). In the ideal world (i.e., in an interaction with the simulator and !Fpke), the ciphertext
is computed as enc′(x). Since the two ciphertexts have different lengths, the environment can easily
distinguish between the joint state and ideal world no matter what simulator is chosen.

2. In [7], the leakage is fixed to be the length of a message, i.e., instead of a message x a fixed message
µ|x| of length |x| is encrypted (e.g., µ|x| = 1|x|). In particular, this is so also in the joint state world.
Hence, the SID is not leaked. This is problematic: The kind of encryption and decryption algorithms
that may be provided by the simulator/environment in the joint state and ideal world to the public-key
encryption functionality are not restricted in any way. In particular, the encryption algorithm that is
provided may be deterministic. But then, if the environment asks to encrypt two different messages of
the same length in two different sessions for the same party, then the resulting ciphertexts will be the
same, since in both cases some fixed message is encrypted. In the ideal world, the two ciphertexts can
be decrypted, since they are stored in different sessions. In the joint state world, decryption fails: The
decryption box has two entries with the same ciphertext but different plaintexts. (The leakage that we
use prevents this.) Consequently, the environment can easily distinguish between the ideal and joint
state world.

To circumvent the second problem, one might think that restricting the environment to only provide
encryption and decryption algorithms that originate from probabilistic encryption schemes where the
probability for clashes between ciphertexts are negligible solves the problem. Let us call such an encryption
scheme a valid encryption scheme. However, this is not the case if, as in [7], SIDs are not leaked in the joint
state world; even if the algorithms provided by the environment/simulator are assumed to be IND-CCA2
secure.

Upon encryption of some message x0 with the proper public key pk in some session sid0 in the joint state
world the ciphertext y is computed as enc(pk, µ|(sid0,x0)|). Depending on µn and how pairings are encoded,
we have that

µ|(sid0,x0)| = (sid1, x1) (3)

for some SID sid1 and some plaintext x1. This is, for example, the case if SIDs are assumed to have fixed
length (e.g., the length of the security parameter) and are simply appended at the beginning of a message.
This is a natural encoding, but our argument also works for other encodings and choices of µn (see below).
Note that the environment can even try to choose x0 and sid0 in order to make (3) true.

When trying to prove the joint state theorem, the obvious candidate for a simulator, subsequently called
the standard simulator, is the following. If the standard simulator receives algorithms enc(·, ·), dec(·, ·) and
the private/public key pair sk/pk from the environment, then it provides the algorithms enc(sid)(·, ·) and
dec(sid)(·, ·) and the key pair sk/pk to the instance of Fpke with SID sid where

enc(sid)(pk ′, x) : if pk = pk ′ and not corrupted then return enc(pk, µ|(sid,x)|) else return enc(pk ′, (sid, x)) 23

and

dec(sid)(sk, y) : x := dec(sk, y); if x = (sid ′, x′) for some x′ and sid ′ = sid then return x′ else return ⊥

for all SIDs sid. This seems to be the only reasonable simulator because in the joint state world a ciphertext
for a message x in session sid is computed as enc(pk, µ|(sid,x)|) and the plaintext of a ciphertext y that

23Technically, encsid cannot know whether the functionality is corrupted or not but if we assume only static corruption
then the simulator is able to know whether the functionality is corrupted or not at the moment it is requested to present the
algorithms and can hard-code this into encsid .

42

was not output by the functionality is computed as x = dec(sk, y) and the joint state realization checks if
x = (sid ′, x′) and outputs x′ if sid ′ = sid and ⊥ otherwise.

Now, we provide an environment E that distinguishes between the joint state and the ideal world for such
a simulator. As we will see, E will not corrupt any parties. Therefore, the simulator will not do so either: In
the UC model the simulator is prohibited to do so by the control function and in the IITM model E could
check this by requesting the functionality if it is corrupted and then distinguish between joint state and ideal
world.

First, E initializes two instances for the same party, say with PID pid; one in session (with SID) sid0 and
one in session sid1. Furthermore, E provides algorithms enc(·, ·), dec(·, ·) and the public/private keys pk/sk
where enc, dec, pk, and sk originate from a valid encryption scheme (e.g., they could belong to an IND-CCA2
secure encryption scheme). Then, E requests to encrypt the plaintext x0 under the (correct) public key pk of
party pid in session sid0. Let y denote the resulting ciphertext. Finally, E sends a decryption request for y
and party pid in session sid1. It outputs “joint state” (or 1) if the returned plaintext is ⊥, and “ideal” (or 0)
otherwise.

It is easy to see that E determines correctly whether it interacts with the joint state or the ideal world:
In the joint state world, the plaintext returned by the ideal functionality upon the decryption request by E
is (sid0, x0) (this is the plaintext recorded in the ideal functionality along with y). Since sid0 6= sid1, the
joint state realization returns ⊥ as plaintext. In the ideal world, since y has not been recorded in session
sid1, y is encrypted using dec(sid1)(sk, y). That is, first dec(sk, y) = µ|(sid0,x0)| is computed. Then, it is

checked whether the first component of µ|(sid0,x0)| is sid1, which, because of µ|(sid0,x0)|
(3)= (sid1, x1), is the

case. Therefore, x1 is returned as plaintext by dec(sid1)(sk, y).
We note that even if in Fpke instead of a constant message randomly chosen messages are encrypted in

the case of ideal encryption, the above argument still works in case SIDs are short, but the success probability
of the environment will be smaller (still non-negligible).

Problems with the joint state realization in [12]. In [12], a (certified) public-key encryption function-
ality with local computation is proposed which is parametrized by fixed encryption and decryption algorithms;
the keys are embedded in the algorithms, and hence, are also fixed (below we discuss the case that keys are
not fixed). For this functionality, a theorem similar to Theorem 10 is stated only informally and without a
proof. One can only hope such a theorem to hold if one assumes that in the ideal world the ideal functionality
is defined in such a way that its SID is given to the encryption and decryption algorithms by the functionality,
and that the encryption and decryption algorithms make use of the SID in the same way as prescribed by
the simulator in the proof of Theorem 10. So, already the ideal functionality has to mimic the joint state
realization. However, the ideal functionality in the joint state world should be defined differently: It should
ignore SIDs, because in the joint state world SIDs are handled outside of the ideal functionality. Hence, the
joint state theorem would be defined with different ideal functionalities in the joint state and ideal world.
This has not been mentioned in [12]. But even if this is done, the theorem would still not hold if in the joint
state world SIDs are not leaked. The reasoning is similar to the one above for the joint state theorem in [7].
Note that since the keys as well as encryption and decryption algorithms are fixed, the environment can still
decrypt messages on its own. To fix this problem, the ideal functionality in the joint state world would have
to be modified to account for the leakage. Altogether, these modifications would mimic what is happening in
Theorem 10 and our proof of this theorem.

Alternatively, instead of parametrizing the functionality with a fixed public-key, encryption and decryption
algorithm, one could have the functionality generate its own keys. In this case in the ideal world for encryption
different public keys would be used in different sessions for the same party while in the joint state world the
same key would be used for all sessions of this party. For the joint state theorem to hold this would require
the encryption scheme to hide the public key, which is not a property IND-CCA2 secure schemes have in
general.

Remarks on other functionalities in the literature. As mentioned in the introduction, other formu-
lations of public-key encryption functionalities, e.g., those in [8, 20], are defined in a non-local way, i.e.,

43

all ciphertexts are provided by the adversary, with the mentioned disadvantages. Formulations with local
computation, besides the one discussed above, have been proposed in [31, 3].

The public-key encryption functionality in [3] is part of a Dolev-Yao style cryptographic library. It has
similar restrictions as the digital signatures in this library: A user does not obtain the actual ciphertexts but
only a handle to the ciphertexts within the library. By this, the use of ciphertexts by the user is restricted to
the operations provided in the library. The implementation of the public-key encryption functionality within
the library does not use a standard IND-CCA2 secure scheme, but requires a specific stronger construction.

In [31], formulations of public-key encryption functionalities with local computation are proposed which
are parametrized by specific encryption and decryption algorithms, with the same drawbacks (concerning
joint state) mentioned for [12].

We note that in [3, 31] joint state realizations of the proposed functionalities have not been considered.

General remarks. One general remark for joint state theorems is that specifying corruption precisely is
vital, as we do in our work, since some forms of corruption do not allow for joint state realizations. For
example, if upon corruption all messages encrypted so far would be given to the adversary in order of
occurrence, the joint state and ideal world could be distinguished because the order in the joint state world
cannot be reconstructed by the simulator in the ideal world. (See also the discussion of corruption for joint
state for digital signatures in Section 6.1.)

6.3 Replayable Public-Key Encryption
Canetti et al. [14] define and motivate IND-RCCA secure encryption schemes and propose a public-key
functionality with non-local computation that captures IND-RCCA security. In [7] (see the version of
December 2005), Canetti sketches in a few lines how his public-key encryption functionality with local
computation should be modified to obtain a functionality that mimics IND-RCCA security. However, the
modification that Canetti proposes only makes sense in a setting with non-local computation of ciphertexts.
A proof of equivalence of his functionality with IND-RCCA security is not provided. Also, neither in [14]
nor in [7] the issue of joint state is mentioned in the context of IND-RCCA security. So, our formulation of
replayable public-key encryption with local computation is the first such formulation. Also, we are the first
to propose a joint state realization (see Section 5.3) in the context of IND-RCCA security.

The general remarks in Sections 6.1 and 6.2 about the features and advantages of our formulations of
digital signature and public-key encryption functionalities compared to other formulations also apply to our
formulation of the functionality for replayable public-key encryption.

6.4 Joint State Theorems Without Pre-Established Session Identifiers
The ideal functionalities and the realizations proposed here (and in other works) require parties to have
pre-established and globally unique SIDs before using the functionalities/realizations. This implicitly requires
protocols to use these SIDs in some essential way in order to prevent “interference” between different protocol
sessions. In joint state realizations such SIDs are prefixed to the messages to be encrypted/signed.

While this is a good design principle, not all protocols use pre-established SIDs. This is, for example, the
case for most real-world authentication, key exchange, and secure channel protocols.

Therefore, in [26], an alternative way of addressing multiple protocol session without pre-established and
globally unique SIDs is presented within the IITM model. Also, composition and joint state theorems without
such SIDs are presented. In the formulation in [26], parties merely use locally chosen and managed SIDs.

Acknowledgment
We thank Ran Canetti for many interesting discussions on the UC model and joint state.

44

A Security Definitions for Cryptographic Primitives
In this section, we recall standard security notions for cryptographic schemes. They will be used to realize
the ideal functionalities for cryptographic primitives that we present in this paper.

Traditionally, security notions for cryptographic primitives are defined with respect to adversaries that
do not obtain external input, except for the security parameter. Universal composability frameworks such
as the UC model [8, 7] or the IITM model deal with environments that receive external input (and where
the runtime of the environment might depend on the security parameter and the length of the external
input). In order to realize ideal functionalities for cryptographic primitives, reduction proofs to the security
of the underlying primitives are necessary, and hence, the notions have to be compatible. We chose to adapt
the standard notions of security, i.e., we formulate them with respect to adversaries that receive external
input. We note, however, that all our results carry over to the setting without external input, i.e., where all
environments and adversaries do not receive external input (except for the security parameter).

To define the security notions, as usual in cryptographic literature, we use the following notation: By

Pr [y ← A(x) : B]

we denote the probability of an event B where the probability distribution is given by a probabilistic algorithm
A with input x: y is a random variable that is distributed according to the probability distribution induced
by A. This notion is extended naturally to allow for a sequence of algorithms A1, . . . , An instead of A. For
example, given algorithms gen, enc, and A; a security parameter η ∈ N; and a bit string x, the probability
that A on input y outputs 1 where (the probability distribution of) y is obtained from running gen on input
1η (to obtain k) and then running enc on input k and x is denoted by

Pr [k ← gen(1η); y ← enc(k, x) : A(y) = 1] .

Furthermore, we use the notion of negligible functions as used in the IITM model (which we recalled at
the end of the introduction).

A.1 Digital Signatures
In this section, following [19], we recall standard notions for digital signature schemes.

Definition 9. A (digital) signature scheme Σ = (gen, sig, ver) consists of three polynomial-time algorithms.
The probabilistic key generation algorithm gen expects a security parameter (in unary form) and returns a
pair of keys (pk, sk), the public key pk and the private key sk. The (possibly) probabilistic signing algorithm
sig expects a private key and a message and returns a signature. The deterministic verification algorithm ver
expects a public key, a message, and a signature and returns true (verification succeeds) or false (verification
fails).

It is required that, for every security parameter η ∈ N, public/private key pair (pk, sk) generated by
gen(1η), message m ∈ {0, 1}∗, and signature σ generated by sig(sk,m), it holds that ver(pk,m, σ) = true.

We note that we do not restrict the domain of messages, i.e., any bit string is a valid message. However,
all results presented in this paper could easily be extended to deal with other domains.

Definition 10 (UF-CMA security). A digital signature scheme Σ is called existentially unforgeable under
adaptive chosen-message attacks (UF-CMA secure) if for every probabilistic, polynomial-time algorithm AO(·)

with access to a signing oracle O, the UF-CMA advantage of A against Σ

Advuf-cma
A,Σ (1η, a) := Pr[(pk, sk)← gen(1η); (m,σ)← Asig(sk,·)(1η, a, pk) :

ver(pk,m, σ) = true and A has not queried sig(sk, ·) with m]

is negligible (as a function in η and a).

45

A.2 Public-Key Encryption
In this section, we recall two security notions for public-key encryption schemes: IND-CCA2 (following [5])
and replayable IND-CCA2 (IND-RCCA) (following [14]).

Definition 11. A public-key encryption scheme Σ = (gen, enc, dec) consists of three polynomial-time
algorithms. The probabilistic key generation algorithm gen expects a security parameter 1η and returns a
pair of keys (pk, sk), the public key pk and the private key sk. The probabilistic encryption algorithm enc
expects a public key and a plaintext and returns a ciphertext. The deterministic decryption algorithm dec
expects a private key and a ciphertext and returns a plaintext if decryption succeeds. Otherwise, it returns
the special symbol ⊥.

We assume that every public-key encryption scheme Σ is associated with a polynomial-time decidable
domain of plaintexts DΣ = {DΣ(η)}η∈N for some DΣ(η) ⊆ {0, 1}∗ for all η ∈ N. We require that, for every
security parameter η ∈ N, public/private key pair (pk, sk) generated by gen(1η), plaintext x ∈ DΣ(η), and
ciphertext y generated by enc(pk, x), it holds that dec(sk, y) = x.

IND-CCA2 security. Following [5], IND-CCA2 security is defined as follows. We note that this notion is
called IND-CCA-SE in the taxonomy of [6].

Definition 12 (IND-CCA2 security). A public-key encryption scheme Σ = (gen, enc, dec) is called IND-CCA2
secure (indistinguishability of encryptions under adaptive chosen-ciphertext attacks) if, for every adversary
A = (A1, A2) that is a pair of probabilistic, polynomial-time algorithms such that:

1. AO(·)
1 expects a security parameter 1η, external input a, and a public key pk as input, has access to an

oracle O, and produces output of the form (x0, x1, s) consisting of two plaintexts x0, x1 ∈ DΣ(η) of the
same length (|x0| = |x1|) and a bit string s (some information A1 wants to pass to A2), and

2. AO(·)
2 expects a bit string s and a ciphertext y ∈ {0, 1}∗ as input, has access to an oracle O but never

queries O with input y, and outputs a bit b′ ∈ {0, 1},

the IND-CCA2 advantage of A against Σ

Advind-cca2
A,Σ (1η, a) :=

∣∣∣2 · Pr
[
(pk, sk)← gen(1η); (x0, x1, s)← A

dec(sk,·)
1 (1η, a, pk); b $← {0, 1};

y ← enc(pk, xb); b′ ← A
dec(sk,·)
2 (s, y) : b = b′

]
− 1
∣∣∣

is negligible (as a function in η and a).

IND-RCCA security. The notion IND-RCCA security (replayable IND-CCA2 security) for public-key
encryption schemes is a relaxed form of IND-CCA2 security where modifications of the ciphertext that
yield the same plaintext are permitted. In particular, IND-CCA2 security implies IND-RCCA security [14].
IND-RCCA security has been introduced by Canetti, Krawczyk, and Nielsen in [14]. As explained in [14],
IND-RCCA security suffices in many applications where IND-CCA2 security is used. IND-RCCA security is
defined as follows.

Definition 13 (IND-RCCA security). A public-key encryption scheme Σ = (gen, enc, dec) is called IND-
RCCA secure (replayable IND-CCA2 secure) if, for every adversary A = (A1, A2) that is a pair of probabilistic,
polynomial-time algorithms such that:

1. AO(·)
1 expects a security parameter 1η, external input a, and a public key pk as input, has access to an

oracle O, and produces output of the form (x0, x1, s) consisting of two plaintexts x0, x1 ∈ DΣ(η) of the
same length (|x0| = |x1|) and a bit string s (some information A1 wants to pass to A2), and

2. AO(·)
2 expects a bit string s and a ciphertext y ∈ {0, 1}∗ as input, has access to an oracle O, and

outputs a bit b′ ∈ {0, 1},

46

Parameters: – n > 0 {number of I/O tape pairs
– Σ = (gen, sig, ver) {signature scheme

Tapes: from/to IOi (i ∈ {1, . . . , n}): (ioin
i , io

out
i); from/to NET: (netinPsig

, netout
Psig

)

State: – pk, sk ∈ {0, 1}∗ ∪ {⊥} {key pair; initially ⊥
– corrupted ∈ {false, true} {corruption status; initially false

CheckAddress: Accept every input on every tape.
Initialization: Upon receiving the first message in mode Compute do:

send Init to NET; recv (corrupt, pk, sk) from NET s.t. corrupt ∈ {false, true} {ask adversary for corruption
if corrupt = true: corrupted := true; pk := pk; sk := sk {use key pair provided by adversary
else: (pk, sk)← gen(1η) {generate fresh key pair

Then, continue processing the first request as defined below.
Compute:

recv PubKey? from IOi: send (PubKey, pk) to IOi {return public key

recv (Sign, x) from IOi: σ ← sig(sk, x); send (Signature, σ) to IOi {sign x, return signature

recv (Verify, pk, x, σ) from IOi: b← ver(pk, x, σ); send (VerResult, b) to IOi {verify, return result

recv CorrStatus? from IOi: send (CorrStatus, corrupted) to IOi {corruption status request

recv Corrupt from NET: corrupted := true; send (Corrupted, pk, sk) to NET {adaptive corruption

Figure 9: The realization Psig of Fsig. See Section 4.1 for notational conventions.

the IND-RCCA advantage of A against Σ

Advind-rcca
A,Σ (1η, a) :=

∣∣∣2 · Pr
[
(pk, sk)← gen(1η); (x0, x1, s)← A

dec(sk,·)
1 (1η, a, pk); b $← {0, 1};

y ← enc(pk, xb); b′ ← A
dec(x0,x1,sk,·)
2 (s, y) : b = b′

]
− 1
∣∣∣

is negligible (as a function in η and a), where the oracle dec is defined as follows:

dec(x0, x1, sk, y) : if dec(sk, y) ∈ {x0, x1}: return test else: return dec(sk, y) .

(The symbol test is a special symbol which is not confused with any bit string or ⊥.)

B Proofs of Theorems 6, 7, and 8
B.1 Proof of Theorem 6
We now prove Theorem 6, i.e., that Psig realizes Fsig if and only if Σ is UF-CMA secure.

B.1.1 Σ is UF-CMA Secure ⇒ Psig ≤ Fsig

First, we assume that Σ is UF-CMA secure and show that Psig ≤ Fsig.
We use the following straightforward simulator S ∈ SimPsig(Fsig): S is a single IITM that accepts all

messages in mode CheckAddress. In mode Compute, upon receiving Init from Fsig, S forwards Init to the
environment and waits for receiving a message of the form (corrupt, pk, sk) from the environment where
corrupt ∈ {false, true} and pk, sk ∈ {0, 1}∗. Any message not of this form is ignored by S, i.e., S ends the
activation with empty output. When receiving (corrupt, pk, sk) with corrupt = false, i.e., the environment does
not want to corrupt Psig upon initialization, then S generates a new public/private key pair (pk ′, sk ′)← gen(1η)
using the key generation algorithm of Σ, sends (false, sig, ver, pk ′, sk ′) to Fsig (where sig and ver are descriptions
of the signing and verification algorithms of Σ). When receiving (corrupt, pk, sk) with corrupt = true, i.e.,
the environment wants to corrupt Psig upon initialization, then S sends (true, sig, ver, pk, sk) to Fsig (i.e., S

47

corrupts Fsig upon initialization). Then, S waits for receiving Corrupt from the environment (any other input
is ignored by S, as above). If it receives Corrupt, S forwards Corrupt to Fsig, waits for receiving Corrupted
from Fsig, and sends (Corrupted, pk, sk) to the network where pk, sk is the key pair provided previously to
Fsig (i.e., either the key pair provided by the environment or the key pair generated by S). Then, S again
waits for receiving Corrupt from the environment and this request is processed in the same way as described
above.

It is easy to see that S |Fsig is environmentally strictly bounded, i.e., S ∈ SimPsig(Fsig).
Let E ∈ Env(Psig) be an environment of Psig. Using E , we construct an UF-CMA adversary A on

Σ such that, basically, A is successful if E successfully distinguishes between Psig and S |Fsig. We define
AO(·)(1η, a, pk) (where O is a signing oracle) as follows: A simulates a run of (E | Psig)(1η, a) with the following
exceptions:

(a) If E corrupts Psig (i.e., either upon initialization or later by sending the request Corrupt to Psig on
the network tape), then A aborts (i.e., in this case, A fails to produce a forgery).

(b) Instead of using the public key generated by Psig, the public key pk is used. (The private key
generated by Psig is never used because O is used for signing, see below.)

(c) Whenever Psig wants to compute the signature σ of a message x, then A instead computes σ ← O(x)
using its signing oracle O.

(d) Whenever Psig verifies a signature σ for a message x, then A checks whether (x, σ) constitutes a
forgery, i.e., x has never been signed before and ver(pk, x, σ) = true. If (x, σ) is a forgery, then A
terminates with output (x, σ). Otherwise, A continues the simulation of E | Psig.

It is easy to see that A is polynomial-time because E | Psig is strictly bounded.
Let B(1η, a) be the set of runs of (E | Psig)(1η, a) where, at some point during the run, Psig is uncorrupted

and verifies a signature σ for a message x where x has never been signed before and ver(pk, x, σ) = true. By
B(1η, a) we denote the complement, i.e., the set of runs of (E | Psig)(1η, a) which are not in B(1η, a). Since
every run of (E | Psig)(1η, a) that is simulated by A corresponds to a run of (E | Psig)(1η, a), it is easy to see
that:

Pr [B(1η, a)] = Pr[(pk, sk)← gen(1η), (x, σ)← Asig(sk,·)(1η, a, pk) :
ver(pk, x, σ) = true and A has not previously called sig(sk, x)]

= Advuf-cma
A,Σ (1η, a) .

By assumption, Σ is UF-CMA secure and, hence, Pr [B(1η, a)] is negligible (as a function in η and a).
Because the behavior of Psig and S |Fsig is identical as long as no forgery occurs or once Psig (and hence,

by definition of S, Fsig) is corrupted, it is easy to see that every run ρ of (E | Psig)(1η, a) which is not in
B(1η, a) corresponds to a run ρ′ of (E | S | Fsig)(1η, a) such that both ρ and ρ′ have the same probability and
the view and probabilistic choices of E are the same in both runs. Formally, there exists an injective mapping
from runs ρ of (E | Psig)(1η, a) excluding B(1η, a) to runs ρ′ of (E | S | Fsig)(1η, a) such that both ρ and ρ′

have the same probability and the same overall output on decision. We obtain that:

Pr
[
(E | Psig)(1η, a) = 1 ∧B(1η, a)

]
≤ Pr [(E | S | Fsig)(1η, a) = 1] and

Pr
[
(E | Psig)(1η, a) 6= 1 ∧B(1η, a)

]
≤ Pr [(E | S | Fsig)(1η, a) 6= 1] .

48

It immediately follows that:

0 ≤ Pr [(E | S | Fsig)(1η, a) = 1]− Pr
[
(E | Psig)(1η, a) = 1 ∧B(1η, a)

]
≤ Pr [(E | S | Fsig)(1η, a) = 1]− Pr

[
(E | Psig)(1η, a) = 1 ∧B(1η, a)

]
+

Pr [(E | S | Fsig)(1η, a) 6= 1]− Pr
[
(E | Psig)(1η, a) 6= 1 ∧B(1η, a)

]
= Pr [B(1η, a)] .

From this, we conclude that:

|Pr [(E | Psig)(1η, a) = 1]− Pr [(E | S | Fsig)(1η, a) = 1]|

=
∣∣∣Pr [(E | Psig)(1η, a)=1 ∧B(1η, a)] + Pr

[
(E | Psig)(1η, a)=1 ∧B(1η, a)

]
−Pr [(E | S | Fsig)(1η, a)=1]

∣∣∣
≤ Pr [(E | Psig)(1η, a)=1 ∧B(1η, a)] +

∣∣∣Pr
[
(E | Psig)(1η, a)=1 ∧B(1η, a)

]
−Pr [(E | S | Fsig)(1η, a)=1]

∣∣∣
≤ Pr [B(1η, a)] + Pr [B(1η, a)]
= 2 ·Advuf-cma

A,Σ (1η, a) ,

which is negligible (as a function in η and a) because Σ is UF-CMA secure. Hence, E | Psig ≡ E | S |Fsig, i.e.,
Psig ≤ Fsig.

B.1.2 Psig ≤ Fsig ⇒ Σ is UF-CMA Secure

We now show that Σ is UF-CMA secure if Psig ≤ Fsig. Therefore, we assume that Σ is not UF-CMA secure,
i.e., there exists a UF-CMA adversary AO(·) such that the UF-CMA advantage of A against Σ is not negligible
(see Definition 10). Using A, we construct an environment E ∈ Env(Psig) such that E distinguishes Psig from
S |Fsig for every simulator S ∈ SimPsig(Fsig).

We define E to be a master IITM (i.e., E has an input tape named start) which has an output tape named
decision and connects to the I/O and network tapes of Psig (and, hence, S |Fsig). In mode CheckAddress, E
accepts every message. Next, we describe the mode Compute of E in an interaction with Psig, but, of course,
Psig can be replaced by S |Fsig:

(a) Upon the first activation with external input a on tape start, E sends PubKey? to Psig on an I/O
tape, say on ioin

1 . Then, E waits for receiving Init from Psig on the network tape (i.e., on netout
Psig

) and
replies with (false, ε, ε) (where ε is the empty bit string) on netin

Psig
, i.e., E does not corrupt Psig and

Psig generates a fresh key pair. Then, E waits for receiving (PubKey, pk) from Psig on ioout
1 .

(b) Then, E simulates the algorithm AO(·)(1η, a, pk). Whenever A asks its signing oracle O to sign a
message x, then E sends (Sign, x) to Psig on ioin

1 and waits for receiving (Signature, σ) from Psig on
ioout

1 . Then, E continues the simulation of A as if O returned σ. The output of A will be a pair
(x0, σ0).

(c) Then, E checks whether (x0, σ0) constitutes a forgery, i.e., x0 has not been signed and Psig, upon
request (Verify, pk, x0, σ0) on ioin

1 , returns (VerResult, true). If (x0, σ0) constitutes a forgery and Psig
is not corrupted (E can check this by sending CorrStatus? to Psig on ioin

1), then E terminates with
output 1 on decision, otherwise with output 0. (Note that E never corrupts Psig but S might have
corrupted Fsig.)

If at some point in the description above, E waits for receiving a message but the input is not as expected or
on an unexpected tape (this will never happen in the real world, i.e., in a run of E | Psig, but possibly in the
ideal world, i.e., in a run of E | S | Fsig), then E terminates with output 0 on decision.

49

Parameters: – n > 0 {number of I/O tape pairs
– Σ = (gen, enc, dec) {public-key encryption scheme with associated plaintext domain DΣ = {DΣ(η)}η∈N

Tapes: from/to IOi (i ∈ {1, . . . , n}): (ioin
i , io

out
i); from/to NET: (netinPpke

, netout
Ppke

)

State, CheckAddress, and Initialization: Just like Psig, see Figure 9.
Compute:

recv PubKey? from IOi: send (PubKey, pk) to IOi {return public key

recv (Enc, pk, x) from IOi s.t. x ∈ DΣ(η): y ← enc(pk, x); send (Ciphertext, y) to IOi {encrypt x, return ciphertext

recv (Dec, y) from IOi: x← dec(sk, y); send (Plaintext, x) to IOi {decrypt y, return plaintext

recv CorrStatus? from IOi: send (CorrStatus, corrupted) to IOi {corruption status request

Figure 10: The realization Ppke of Fpke. See Section 4.1 for notational conventions.

In the ideal world (i.e., in a run of E | S | Fsig) E will never output 1 on decision, i.e.:

Pr [(E | S | Fsig)(1η, a) = 1] = 0 ,

because, by definition, an uncorrupted Fsig will never return (VerResult, true) upon a Verify request for a
message that has not previously been signed using Fsig. The probability that E outputs 1 on decision in the
real world is exactly the advantage of A against Σ:

Pr [(E | Psig)(1η, a) = 1] = Pr[(pk, sk)← gen(1η), (x, σ)← Asig(sk,·)(1η, a, pk) :
ver(pk, x, σ) = true and A has not previously called sig(sk, x)]

= Advuf-cma
A,Σ (1η, a) .

We obtain that:

|Pr [(E | Psig)(1η, a) = 1]− Pr [(E | S | Fsig)(1η, a) = 1]| = Advuf-cma
Σ,A (1η, a) .

Hence, by assumption that A is successful, we conclude that E | Psig 6≡ E | S | Fsig, i.e., Psig 6≤ Fsig.
This concludes the proof of Theorem 6.

B.2 Proof of Theorem 7
We prove Theorem 7, i.e., that Ppke realizes Fpke if and only if Σ is IND-CCA2 secure. This proof is along
the lines of the proof in [7] (version of December 2005). Let n, Σ = (gen, enc, dec), p, and L be given as in
the theorem.

B.2.1 Σ is IND-CCA2 Secure ⇒ Ppke ≤ Fpke

First, we assume that Σ is IND-CCA2 secure and show that Ppke ≤ Fpke.
We use a straightforward simulator S ∈ SimPpke(Fpke) that accepts all messages in mode CheckAddress,

forwards the Init request from Fpke to the environment, and completes initialization with a freshly generated
key pair in the uncorrupted case and with the key pair provided by the environment upon corruption. More
formally, S is defined exactly as the simulator in the proof of Theorem 6 (see Appendix B.1.1), except that
Corrupt requests from the environment are not forwarded to Fpke (recall that Ppke and Fpke both do not
allow adaptive corruption, in contrast to Psig and Fsig). It is easy to see that S |Fpke is environmentally
strictly bounded, i.e., S ∈ SimPpke(Fpke).

Let E ∈ Env(Ppke) be an environment of Ppke. Using E , we construct an IND-CCA2 adversary A on Σ
such that, basically, A is successful if E successfully distinguishes between Ppke and S |Fpke.

To simplify the presentation of the adversary A, without loss of generality, we assume the following:

50

(i) The first request E sends to Ppke (or S |Fpke) in any run is an PubKey? request. Then, E receives
Init from Ppke (or S |Fpke) on the network tape and completes initialization of Ppke (or S |Fpke) by
sending (false, ε, ε) (ε is the empty bit string) to the network interface of Ppke (or S |Fpke). That is,
E does not corrupt Ppke (or Fpke) and directly completes initialization. (It is easy to see that, upon
corruption, Ppke and S |Fpke are indistinguishable; in fact, the observational behavior of Ppke and
S |Fpke would be exactly the same.) Furthermore, E never sends a second PubKey? request.

(ii) In any run, E never sends corruption status requests (CorrStatus?). (By definition of S, Ppke and
Fpke always agree on the corruption status. Hence, this request would not help E to distinguishes
between Ppke and S |Fpke.)

(iii) In any run, E only sends encryption requests with the correct public key, i.e., the public key pk in
every Enc request is the public key that E received as response to the PubKey? request. (It is easy
to see that E has no advantage of sending Enc requests with a different key.)

(iv) There exists a polynomial nEnc such that the overall number of encryption requests that E sends
in any run (with security parameter η and external input a) is exactly nEnc(η + |a|). (Note that
the number of Enc requests sent by E is polynomially bounded in η + |a| because E is universally
bounded.) In the following, we just write nEnc to denote nEnc(η + |a|).

We now define an IND-CCA2 adversary A = (A1, A2) against Σ. The first part AO(·)
1 (1η, a, pk) (where

O(·) is a decryption oracle) is defined as follows: At first A1 chooses h ∈ {1, . . . , nEnc} uniformly at random.
Then, A1 simulates a run of E as follows:

• A1 starts the simulation of E with security parameter η and external input a.

• When E sends the PubKey? request, A1 sends Init on the network tape to E . (This is what E expects in
a run with Ppke or S |Fpke.)

• When E replies with (false, ε, ε), A1 sends the public key (PubKey, pk) to E , as the response to the
PubKey? request. (This is what E expects in a run with Ppke or S |Fpke.)

• When E sends an Enc request, say the i-th encryption request and the plaintext is xi (for some
i ∈ {1, . . . , h}), then A1 does the following: If i < h, then A1 computes yi ← enc(pk, xi), records
the pair (xi, yi) for later decryption, and sends (Ciphertext, yi) to E . Otherwise (i.e., i = h), A1
computes xh ← L(1η, xh). Furthermore, A1 computes a bit string s that encodes pk, xh, all recorded
plaintext/ciphertext pairs, and all information that A2 needs to continue the simulation of E . Then, A1
outputs (xh, xh, s).

• When E sends a Dec request, say for the ciphertext y, then A1 does the following: At first, similarly to
Fpke, A1 checks whether there exists a plaintext x such that the pair (x, y) has been recorded upon
encryption (see above). If there exists more than one such plaintext, then A1 sends the error message
(Plaintext,⊥) to E . If there exists exactly one such x, then A1 sends (Plaintext, x) to E . And if there
exists no such x, then A1 decrypts y using its decryption oracle O and sends the obtained plaintext to
E .

The second part AO(·)
2 (s, y∗) reconstructs the information stored in s, records the pair (xh, y∗), and continues

the simulation of the run of E as follows:

• First, A2 sends (Ciphertext, y∗) to E . (Recall that E just sent an encryption request and is waiting for a
ciphertext.)

• When E sends an Enc request, say the i-th encryption request and the plaintext is xi (for some
i ∈ {h+ 1, . . . , nEnc}), then, similarly to Fpke, A2 computes xi ← L(1η, xi) and y ← enc(pk, xi). Then,
A2 records the pair (xi, y) (for later decryption) and sends (Ciphertext, y) to E .

51

• When E sends a Dec request, then A2 behaves exactly as A1, see above.

• When the simulated run stops, then A2 outputs 1 if E has output 1 on decision, otherwise, A2 outputs 0.

Note that it always holds that |xh| = |xh| because L is length preserving. Furthermore, A2, by definition, never
asks its oracle O for the decryption of y∗. Since E is universally bounded, A1 and A2 are polynomial-time.
Hence, A is a valid IND-CCA2 adversary against Σ.

Before we analyze the advantage of A against Σ, we note that the following is easy to see:

Advind-cca2
A,Σ (1η, a) =

∣∣∣Pr
[
Expind-cca2-1

A,Σ (1η, a) = 1
]
− Pr

[
Expind-cca2-0

A,Σ (1η, a) = 1
]∣∣∣ (4)

where for all b ∈ {0, 1}:

Expind-cca2-b
A,Σ (1η, a) : (pk, sk)← gen(1η); (x0, x1, s)← A

dec(sk,·)
1 (1η, a, pk);

y ← enc(pk, xb); b′ ← A
dec(sk,·)
2 (s, y); return b′ .

(5)

By construction of A, it is easy to see that for all η, a:

Pr [(E | S | Fpke)(1η, a) = 1] = Pr
[
Expind-cca2-1

A,Σ (1η, a) = 1 | h = 1
]

and (6)

Pr [(E | Ppke)(1η, a) = 1] = Pr
[
Expind-cca2-0

A,Σ (1η, a) = 1 | h = nEnc

]
. (7)

Furthermore, it is easy to see that for all η, a and all i ∈ {1, . . . , nEnc − 1}:

Pr
[
Expind-cca2-0

A,Σ (1η, a) = 1 | h = i
]

= Pr
[
Expind-cca2-1

A,Σ (1η, a) = 1 | h = i+ 1
]

(8)

because, by construction of A, in both experiments (Expind-cca2-0
A,Σ with h = i and Expind-cca2-1

A,Σ with h = i+ 1),
it is the case that the first i encryptions are encryptions of the real messages and all later encryptions are
encryptions of leakages.

We conclude that for all η, a:

Advind-cca2
A,Σ (1η, a)

(4)=
∣∣∣Pr
[
Expind-cca2-1

A,Σ (1η, a) = 1
]
− Pr

[
Expind-cca2-0

A,Σ (1η, a) = 1
]∣∣∣

= 1
nEnc

·

∣∣∣∣∣
nEnc∑
i=1

Pr
[
Expind-cca2-1

A,Σ (1η, a) = 1 | h = i
]
− Pr

[
Expind-cca2-0

A,Σ (1η, a) = 1 | h = i
]∣∣∣∣∣

(8)= 1
nEnc

·
∣∣∣Pr
[
Expind-cca2-1

A,Σ (1η, a) = 1 | h = 1
]
− Pr

[
Expind-cca2-0

A,Σ (1η, a) = 1 | h = nEnc

]∣∣∣
(6),(7)= 1

nEnc
· |Pr [(E | S | Fpke)(1η, a) = 1]− Pr [(E | Ppke)(1η, a) = 1]| .

By assumption, Σ is IND-CCA2 secure. Hence, Advind-cca2
A,Σ (1η, a) is negligible (as a function in η and a).

Since nEnc is a polynomial in η and a, we obtain that E | Ppke ≡ E | S |Fpke, i.e., Ppke ≤ Fpke.

B.2.2 Ppke ≤ Fpke ⇒ Σ is IND-CCA2 Secure

We now show that Σ is IND-CCA2 secure if Ppke ≤ Fpke. Therefore, we assume that Σ is not IND-CCA2
secure, i.e., there exists an IND-CCA2 adversary A = (A1, A2) with non-negligible IND-CCA2 advantage
against Σ (see Definition 12). Using A, we construct an environment E ∈ Env(Ppke) such that E distinguishes
Ppke from S |Fpke for every simulator S ∈ SimPpke(Fpke).

52

We define E to be a master IITM (i.e., an IITM with a tape named start) with an output tape named
decision and tapes to connect to Ppke (or S |Fpke for any S ∈ SimPpke(Fpke)). In what follows, when we say
E encrypts/decrypts using Ppke, we mean using Ppke or S |Fpke, depending on which system E is connected
to. In mode CheckAddress E accepts every incoming message and in mode Compute it operates as follows:

• Upon the first activation with external input a on tape start, E sends PubKey? to Ppke on an I/O tape,
say on ioin

1 . Then, E waits for receiving Init from Ppke on the network tape (i.e., on netout
Ppke

) and replies
with (false, ε, ε) (where ε is the empty bit string) on netin

Ppke
, i.e., E does not corrupt Ppke and Ppke

generates a fresh key pair. Then, E waits for receiving (PubKey, pk) from Ppke on ioout
1 .

• Then, E simulates a run of the adversary AO(·)
1 (1η, a, pk) as follows:

– Whenever A1 asks its decryption oracle O to decrypt a ciphertext, say y, then E decrypts y using
Ppke, i.e., E sends (Dec, y) to Ppke and waits for receiving (Plaintext, x) from Ppke. Then, E continues
simulating A1 as if O returned x.

– When A1 halts and outputs (x0, x1, s), then E chooses a bit b ∈ {0, 1} uniformly at random
and encrypts xb under pk using Ppke by sending (Enc, pk, xb) the request and waits for receiving
(Ciphertext, y∗).

• Then, E simulates a run of AO(·)
2 (1η, s, y∗) as follows:

– Whenever A2 asks its decryption oracle O to decrypt a ciphertext, say y, then E decrypts y using
Ppke and continues simulating A2 as described above for A1.

– When A2 halts and outputs a bit b′ ∈ {0, 1}, then E does the following: First, E checks whether
Ppke is corrupted (it should not be corrupted because E did not corrupt Ppke but if E interacts with
S |Fpke instead of Ppke, then S might have corrupted Fpke), i.e., E sends CorrStatus? to Ppke and
waits for receiving (Corrupted, corrupt) from Ppke. If corrupt = false and b = b′, then E outputs 1 on
the tape decision. Otherwise, if corrupt = false (i.e., b 6= b′), then E outputs 0 on decision. Otherwise
(i.e., corrupt = true), then E outputs a random bit on decision (i.e., E chooses b′′ ∈ {0, 1} uniformly
at random and outputs b′′ on decision).

If at some point above E waits for receiving a message but this message is not as expected, then E outputs a
random bit on decision. It is easy to see that E is universally bounded, i.e., E ∈ Env(Ppke).

In the real world (i.e., in runs of E | Ppke), E always receives what it expects because of the definition of
Ppke. Furthermore, Ppke never gets corrupted (i.e., corrupt = false) and, hence, the simulation of A is exactly
as in the IND-CCA2 experiment, i.e., for all b̂ ∈ {0, 1}:

Pr
[
(E | Ppke)(1η, a) = 1 | b = b̂

]
= Pr

[
Expind-cca2-b̂

A,Σ (1η, a) = b̂
]
. (9)

(See (5) in Appendix B.2.1 for the definition of Expind-cca2-b̂
A,Σ .) From this, we obtain:

Pr [(E | Ppke)(1η, a) = 1] = 1
2 Pr [(E | Ppke)(1η, a) = 1 | b = 1] + 1

2 Pr [(E | Ppke)(1η, a) = 1 | b = 0]

(9)= 1
2 Pr

[
Expind-cca2-1

A,Σ (1η, a) = 1
]

+ 1
2 Pr

[
Expind-cca2-0

A,Σ (1η, a) = 0
]

= 1
2 Pr

[
Expind-cca2-1

A,Σ (1η, a) = 1
]

+ 1
2 −

1
2 Pr

[
Expind-cca2-0

A,Σ (1η, a) = 1
]
.

(10)

In the ideal world (i.e., in runs of E | S | Fpke), E outputs 1 with probability exactly 1/2: If E receives some
unexpected input or if Fpke gets corrupted (i.e., corrupt = true) then, by definition of E , E outputs a random
bit. Otherwise, E always receives what it expects and Fpke is uncorrupted. In this case, E outputs 1 iff b = b′.
Because the leakage algorithm L leaks at most the length, by definition, there exists a PPT algorithm T
such that for all x (in particular for x ∈ {x0, x1}) the distribution of T (1η, 1|x|)) equals the distribution of

53

L(1η, x). That is, since A1 outputs plaintexts of the same length (i.e., |x0| = |x1|), the input to A2 (as a
random variable) is independent of b (as a random variable) and, hence, the output of A2 (as a random
variable) is independent of b. We conclude that b = b′ occurs with probability exactly 1/2 and we obtain:

Pr [(E | S | Fpke)(1η, a) = 1] = 1
2 . (11)

We conclude that:

|Pr [(E | Ppke)(1η, a) = 1]− Pr [(E | S | Fpke)(1η, a) = 1]|
(10),(11)= 1

2 ·
∣∣∣Pr
[
Expind-cca2-1

A,Σ (1η, a) = 1
]
− Pr

[
Expind-cca2-0

A,Σ (1η, a) = 1
]∣∣∣

(4)= 1
2 ·Advind-cca2

A,Σ (1η, a) ,

which, by assumption, is non-negligible (as a function in η and a). Hence, E | Ppke 6≡ E | S | Fpke and we
conclude that Ppke 6≤ Fpke.

This concludes the proof of Theorem 7.

B.3 Proof of Theorem 8
We now prove Theorem 8, i.e., that Ppke realizes Frpke if and only if Σ is IND-RCCA secure. Let n,
Σ = (gen, enc, dec), p, and L be given as in the theorem.

B.3.1 Σ is IND-RCCA Secure ⇒ Ppke ≤ Frpke

First, we assume that Σ is IND-RCCA secure and show that Ppke ≤ Frpke.
Let S be the simulator defined in Appendix B.2.1 (to prove that Ppke ≤ Fpke). It is easy to see that

S ∈ SimPpke(Frpke), i.e., S is also a valid simulator for Frpke.
Let E ∈ Env(Ppke) be an environment of Ppke. Using E , we construct an IND-RCCA adversary A on Σ

such that, basically, A is successful if E successfully distinguishes between Ppke and S |Frpke.
As in Appendix B.2.1, to simplify the presentation of the adversary A, without loss of generality, we

assume the following:

(i) The first request E sends to Ppke (or S |Frpke) in any run is an PubKey? request. Then, E receives
Init from Ppke (or S |Frpke) on the network tape and completes initialization of Ppke (or S |Frpke)
by sending (false, ε, ε) (ε is the empty bit string) to the network interface of Ppke (or S |Frpke).
That is, E does not corrupt Ppke (or Frpke) and directly completes initialization. (It is easy to see
that, upon corruption, Ppke and S |Frpke are indistinguishable; in fact, the observational behavior
of Ppke and S |Frpke would be exactly the same.) Furthermore, E never sends a second PubKey?
request.

(ii) In any run, E never sends corruption status requests (CorrStatus?). (By definition of S, Ppke and
Frpke always agree on the corruption status. Hence, this request would not help E to distinguishes
between Ppke and S |Frpke.)

(iii) In any run, E only sends encryption requests with the correct public key, i.e., the public key pk in
every Enc request is the public key that E received as response to the PubKey? request. (It is easy
to see that E has no advantage of sending Enc requests with a different key.)

(iv) There exists a polynomial nEnc such that the overall number of encryption requests that E sends
in any run (with security parameter η and external input a) is exactly nEnc(η + |a|). (Note that
the number of Enc requests sent by E is polynomially bounded in η + |a| because E is universally
bounded.) In the following, we just write nEnc to denote nEnc(η + |a|).

54

In the following, to simplify notation, let a security parameter η ∈ N and an external input a ∈ {0, 1}∗ be
fixed. Furthermore, we often omit the arguments (1η, a) and (η + |a|). For example, we simply write nEnc
instead of nEnc(η + |a|) and Pr [E | P = 1] instead of Pr [(E | P)(1η, a) = 1].

We now define an IND-RCCA adversary A = (A1, A2) against Σ. It is defined similarly to the adversary
A in Appendix B.2.1. It only differs slightly upon encryption and decryption requests. AO(·)

1 (1η, a, pk) first
chooses h ∈ {1, . . . , nEnc} uniformly at random and then simulates a run of E with security parameter η
and external input a: Upon the PubKey? request of E , A1 sends the public key pk to E . The first h − 1
encryption requests (i.e., for the plaintexts x1, . . . , xh−1) are answered by simply encrypting the plaintext
under the public key pk. In contrast to A in Appendix B.2.1, the plaintext/ciphertext pair is not recorded
for later decryption. Decryption requests are answered by using the decryption oracle O of A1. When E
sends the h-th encryption request, then A1 halts and outputs (xh, xh, s) where xh is the plaintext in this
encryption request, xh is the leakage xh ← L(1η, xh) of xh, and s is a bit string that encodes all information
that A2 needs to continue the simulation of E . In the IND-RCCA experiment, AO(·)

2 (1η, s, y∗) then receives
the encryption y∗ of xh if b = 0 and of xh of b = 1 and has to guess b. Similar to A1, A2 continues the
simulation of E as follows: Recall that E has just sent an encryption request and is still waiting to receive a
ciphertext. A2 returns y∗ to E as the ciphertext and continues the simulation of E . Now, encryption requests
are handled as in Frpke. More precisely: When E sends the i-th encryption request for the plaintext xi, with
i ∈ {h+ 1, . . . , nEnc}, then A2 computes the leakage xi ← L(1η, xi) of xi, records the pair (xi, xi) for later
decryption, encrypts xi under pk, and returns the obtained ciphertext to E . When E sends a decryption
request, say for the ciphertext y, then, similarly to Frpke, A2 decrypts y using its decryption oracle O; let
x := O(y). If x = test, then A2 sends xh (recall that xh is the plaintext in the h-th encryption request, i.e.,
the left part of the challenge output by A1) to E . Otherwise (i.e., x 6= test), A2 does the following: If there
exists exactly one plaintext x such that the pair (x, x) has been recorded upon encryption, then A2 returns
this x to E . Otherwise, if there exist more than one such x, A2 sends an error message to E . Otherwise (i.e.,
there exists no such x), A2 sends x to E . When the simulated run stops, then A2 outputs 1 if E has output 1
on decision, otherwise, A2 outputs 0.

Note that it always holds that |xh| = |xh| because L is length preserving. Since E is universally bounded,
A1 and A2 are polynomial-time. Hence, A is a valid IND-RCCA adversary against Σ.

Before we analyze the advantage of A against Σ, we note that it is easy to see that:

Advind-rcca
A,Σ (1η, a) =

∣∣∣Pr
[
Expind-rcca-1

A,Σ = 1
]
− Pr

[
Expind-rcca-0

A,Σ = 1
]∣∣∣ (12)

where for all b ∈ {0, 1}:

Expind-rcca-b
A,Σ (1η, a) : (pk, sk)← gen(1η); (x0, x1, s)← A

dec(sk,·)
1 (1η, a, pk);

y ← enc(pk, xb); b′ ← A
dec(x0,x1,sk,·)
2 (s, y); return b′

(13)

where dec(x0, x1, sk, ·) is defined in Definition 13.
For every i ∈ {1, . . . , nEnc}, by A(i) = (A(i)

1 , A
(i)
2) we denote the adversary which, instead of choosing h

randomly, sets h to i and then behaves exactly as A. The proof proceeds similar to the proof of Theorem 7
(Appendix B.2.1): We consider the experiments Expind-rcca-b

A(i),Σ for i = 1, . . . , nEnc. To simplify notation, we
define

Exp0
0 := E | S | Frpke Expbi := Expind-rcca-b

A(i),Σ Exp1
nEnc+1 := E | Ppke

for all i ∈ {1, . . . , nEnc} and b ∈ {0, 1}. By construction of A, it is easy to see that:

Advind-rcca
A,Σ (1η, a) (12)=

∣∣∣Pr
[
Expind-rcca-1

Σ,A = 1
]
− Pr

[
Expind-rcca-0

Σ,A = 1
]∣∣∣

= 1
nEnc

·

∣∣∣∣∣
nEnc∑
i=1

Pr
[
Exp1

i = 1
]
− Pr

[
Exp0

i = 1
]∣∣∣∣∣ . (14)

55

Now, as in the proof of Theorem 7, we would like to prove that Pr
[
Exp0

i = 1
]

= Pr
[
Exp1

i+1 = 1
]

for all
i ∈ {0, . . . , nEnc − 1} because this would imply |Pr [E | Ppke = 1]− Pr [E | S | Frpke = 1]| = nEnc · Advind-rcca

A,Σ .
This however is not possible because the systems differ slightly (see below). Instead, we show that there
exists a negligible function fB such that:

fB(η, a) ≥
∣∣Pr
[
Exp0

i = 1
]
− Pr

[
Exp1

i+1 = 1
]∣∣ for all i ∈ {0, . . . , nEnc}. (15)

Before we prove (15), we show how this implies Ppke ≤ Frpke. It holds that:

|Pr [E | S | Frpke = 1]− Pr [E | Ppke = 1]|
=

∣∣Pr
[
Exp0

0 = 1
]
− Pr

[
Exp1

nEnc+1 = 1
]∣∣

=

∣∣∣∣∣
nEnc∑
i=0

Pr
[
Exp0

i = 1
]
− Pr

[
Exp1

i+1 = 1
]

+
nEnc∑
i=1

Pr
[
Exp1

i = 1
]
− Pr

[
Exp0

i = 1
]∣∣∣∣∣

≤
nEnc∑
i=0

∣∣Pr
[
Exp0

i = 1
]
− Pr

[
Exp1

i+1 = 1
]∣∣+

∣∣∣∣∣
nEnc∑
i=1

Pr
[
Exp1

i = 1
]
− Pr

[
Exp0

i = 1
]∣∣∣∣∣

(14),(15)
≤ (nEnc + 1) · fB(η, a) + nEnc ·Advind-rcca

A,Σ (1η, a) .

By the assumption that Σ is IND-RCCA secure, Advind-rcca
A,Σ is negligible (as a function in η and a). Hence,

because nEnc is a polynomial (in η and a) and fB is negligible, we conclude that E | S | Frpke ≡ E |Ppke, i.e.,
Ppke ≤ Frpke.

Finally, we show (15); here we will need that L has high entropy (Definition 8). For every i ∈ {0, . . . , nEnc},
we define Bi(1η, a) (Bi for short) to be the event that, in a run of Exp0

i (1η, a), (at least) one of the following
things happens:24

1. Collision of a leakage with the i-th plaintext: xi ∈ {xi+1, . . . , xnEnc} and 0 < i < nEnc.

2. Collision of a leakage with the (i+ 1)-st plaintext: xi+1 ∈ {xi+2, . . . , xnEnc} and i < nEnc − 1.

3. Collision of a leakage with the (i+ 1)-st leakage: xi+1 ∈ {xi+2, . . . , xnEnc} and i < nEnc − 1.

4. The ciphertext in a decryption request of E decrypts to the i-th leakage: i > 0 and E sends a decryption
request for some ciphertext y such that dec(sk, y) = xi, where sk is the private key that has been
generated in the experiment.

Note that B0 is the event that in a run of E | S | Fpke = Exp0
0 it holds that x1 ∈ {x2, . . . , xnEnc} (i.e., the first

plaintext collides with some leakage) or x1 ∈ {x2, . . . , xnEnc} (i.e., the first leakage collides with some other
leakage).

We show that the event Bi occurs with negligible probability. More precisely, there exists a negligible
function fB such that:

Pr [Bi(1η, a)] ≤ fB(η, a) for all i ∈ {0, . . . , nEnc}. (16)

It is easy to see that (16) holds: Since L has high entropy, freshly generated leakages do not collide (except with
negligible probability) with xi, xi+1, and xi+1. Furthermore, E does not (except with negligible probability)
send a decryption request for a ciphertext y such that y decrypts to xi because xi is a leakage and the view of
E is independent (as a random variable) of xi until E sends this decryption request. Note that xi is only used
in the decryption oracle O because in Exp0

i the ciphertext y∗ is the encryption of xi and not the encryption
of xi. Hence, we find a polynomial q (because E is universally bounded) such that

fB(η, a) := q(η + |a|) · sup{Pr [x← L(1η, x), x′ ← L(1η, x′) : x = x′] | x, x′ ∈ DL(η)} ,
24Formally, Bi(1η , a) is the set of all runs of Exp0

i (1η , a) with the mentioned property.

56

where DL is the domain of plaintexts associated with L (and Σ), satisfies (16). Since L has high entropy (i.e.,
the supremum in the definition of fB is negligible) and q is a polynomial (in η and a), fB is negligible.

For every i ∈ {0, . . . , nEnc}, it is now easy to see that every run of Exp0
i where Bi does not occur

corresponds to a run of Exp1
i+1 such that both runs have the same probability and the same overall output.

More formally, we can define an injective mapping from runs of Exp0
i where Bi does not occur to runs of

Exp1
i+1 such that E and every call to the encryption and leakage algorithm uses the same randomness in

both runs. One can then show that E has the same view in both runs (the view of E would only differ if Bi
would occur). Furthermore, both runs have the same probability. Hence:

∣∣Pr
[
Exp0

i = 1
]
− Pr

[
Exp1

i+1 = 1
]∣∣ ≤ Pr [Bi(1η, a)]

(16)
≤ fB(η, a) .

This shows (15), which, as shown above, implies Ppke ≤ Frpke.

B.3.2 Ppke ≤ Frpke ⇒ Σ is IND-RCCA Secure

We now show that Σ is IND-RCCA secure if Ppke ≤ Frpke. The proof is very similar to the corresponding part
of the proof of Theorem 7 (Appendix B.2.2). Assuming that Σ is not IND-RCCA secure, we use a successful
adversary A = (A1, A2) against Σ to construct an environment E ∈ Env(Ppke) that distinguishes between
Ppke and S |Frpke for any simulator S ∈ SimPpke(Frpke). The environment E is defined as in Appendix B.2.2
except that whenever A2 asks its decryption oracle to decrypt a ciphertext y then E does the following: It
asks Ppke to decrypt y; let x be the returned plaintext. If x = x0 or x = x1 (where x0, x1 are the challenge
plaintexts that have been output by A1), then E continues the simulation of A2 as if the decryption oracle
returned test. Otherwise, E continues the simulation as if the oracle returned x.

Analogously to the proof in Appendix B.2.2, we can show that in the real world (i.e., in runs of E | Ppke),
the simulation of A is exactly like in the IND-RCCA experiment and we obtain:

Pr [(E | Ppke)(1η, a) = 1] = 1
2 Pr

[
Expind-rcca-1

A,Σ (1η, a) = 1
]

+ 1
2 −

1
2 Pr

[
Expind-rcca-0

A,Σ (1η, a) = 1
]
. (17)

(See (13) in Appendix B.3.1 for the definition of Expind-rcca-b
A,Σ for b ∈ {0, 1}.)

As for the ideal world, again analogously to the proof in Appendix B.2.2, one can show that in runs of
E | S | Frpke, E outputs 1 with probability exactly 1/2:

Pr [(E | S | Frpke)(1η, a) = 1] = 1
2 . (18)

We conclude that:

|Pr [(E | Ppke)(1η, a) = 1]− Pr [(E | S | Frpke)(1η, a) = 1]|
(17),(18)= 1

2 ·
∣∣∣Pr
[
Expind-rcca-1

A,Σ (1η, a) = 1
]
− Pr

[
Expind-rcca-0

A,Σ (1η, a) = 1
]∣∣∣

(12)= 1
2 ·Advind-rcca

A,Σ (1η, a) ,

which, by assumption, is non-negligible (as a function in η and a). Hence, E | Ppke 6≡ E | S | Frpke and we
conclude that Ppke 6≤ Frpke.

This concludes the proof of Theorem 8.

References
[1] M. Backes, M. Dürmuth, D. Hofheinz, and R. Küsters. Conditional Reactive Simulatability. International

Journal of Information Security (IJIS), 7(2):155–169, April 2008.

57

[2] M. Backes and D. Hofheinz. How to Break and Repair a Universally Composable Signature Functionality.
In Information Security, 7th International Conference, ISC 2004, Proceedings, volume 3225 of Lecture
Notes in Computer Science, pages 61–72. Springer, 2004.

[3] M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested operations.
In S. Jajodia, V. Atluri, and T. Jaeger, editors, Proceedings of the 10th ACM Conference on Computer
and Communications Security (CCS 2003), pages 220–230. ACM, 2003.

[4] M. Backes, B. Pfitzmann, and M. Waidner. Secure Asynchronous Reactive Systems. Technical Report
2004/082, Cryptology ePrint Archive, 2004. Available at http://eprint.iacr.org/2004/082.

[5] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations Among Notions of Security for Public-
Key Encryption Schemes. In H. Krawczyk, editor, Advances in Cryptology, 18th Annual International
Cryptology Conference (CRYPTO 1998), volume 1462 of Lecture Notes in Computer Science, pages
549–570. Springer, 1998.

[6] M. Bellare, D. Hofheinz, and E. Kiltz. Subtleties in the Definition of IND-CCA: When and How Should
Challenge-Decryption be Disallowed? Technical Report 2009/418, Cryptology ePrint Archive, 2009.
Available at http://eprint.iacr.org/2009/418.

[7] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. Technical
Report 2000/067, Cryptology ePrint Archive, 2000. Available at http://eprint.iacr.org/2000/067
with new versions from December 2005 and July 2013.

[8] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In
Proceedings of the 42nd Annual Symposium on Foundations of Computer Science (FOCS 2001), pages
136–145. IEEE Computer Society, 2001.

[9] R. Canetti. Universally Composable Signature, Certification, and Authentication. In Proceedings of the
17th IEEE Computer Security Foundations Workshop (CSFW-17 2004), pages 219–233. IEEE Computer
Society, 2004.

[10] R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira, and R. Segala. Time-Bounded
Task-PIOAs: A Framework for Analyzing Security Protocols. In S. Dolev, editor, 20th International
Symposium on Distributed Computing (DISC 2006), pages 238–253. Springer, 2006.

[11] R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally Composable Security with Global Setup. In
S. P. Vadhan, editor, Theory of Cryptography, Proceedings of TCC 2007, volume 4392 of Lecture Notes
in Computer Science, pages 61–85. Springer, 2007.

[12] R. Canetti and J. Herzog. Universally Composable Symbolic Analysis of Mutual Authentication and
Key-Exchange Protocols. In S. Halevi and T. Rabin, editors, Theory of Cryptography, Third Theory of
Cryptography Conference, TCC 2006, volume 3876 of Lecture Notes in Computer Science, pages 380–403.
Springer, 2006.

[13] R. Canetti and H. Krawczyk. Universally Composable Notions of Key Exchange and Secure Channels. In
Advances in Cryptology - EUROCRYPT 2002, International Conference on the Theory and Applications
of Cryptographic Techniques, Proceedings, volume 2332 of Lecture Notes in Computer Science, pages
337–351. Springer, 2002.

[14] R. Canetti, H. Krawczyk, and J. Nielsen. Relaxing Chosen-Ciphertext Security. In Advances in Cryptology,
23rd Annual International Cryptology Conference (CRYPTO 2003), volume 2729 of Lecture Notes in
Computer Science, pages 565–582. Springer, 2003.

[15] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-party and multi-party
secure computation. In Proceedings of the 34th Annual ACM Symposium on Theory of Computing
(STOC 2002), pages 494–503. ACM Press, 2002.

58

http://eprint.iacr.org/2004/082
http://eprint.iacr.org/2009/418
http://eprint.iacr.org/2000/067

[16] R. Canetti and T. Rabin. Universal Composition with Joint State. Technical Report 2002/047, Cryptology
ePrint Archive, 2002. Version of Nov. 2003. Available at http://eprint.iacr.org/2002/047.

[17] R. Canetti and T. Rabin. Universal Composition with Joint State. In Advances in Cryptology, 23rd
Annual International Cryptology Conference (CRYPTO 2003), Proceedings, volume 2729 of Lecture
Notes in Computer Science, pages 265–281. Springer, 2003.

[18] A. Datta, R. Küsters, J. Mitchell, and A. Ramanathan. On the Relationships Between Notions of
Simulation-Based Security. In J. Kilian, editor, Proceedings of the 2nd Theory of Cryptography Conference
(TCC 2005), volume 3378 of Lecture Notes in Computer Science, pages 476–494. Springer, 2005.

[19] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive chosen-message
attacks. SIAM Journal on Computing, 17(2):281–308, 1988.

[20] D. Hofheinz, J. Mueller-Quade, and R. Steinwandt. On Modeling IND-CCA Security in Cryptographic
Protocols. Cryptology ePrint Archive, Report 2003/024, 2003. Available at http://eprint.iacr.org/
2003/024.

[21] D. Hofheinz, J. Müller-Quade, and D. Unruh. Polynomial Runtime in Simulatability Definitions. In
18th IEEE Computer Security Foundations Workshop (CSFW-18 2005), pages 156–169. IEEE Computer
Society, 2005.

[22] D. Hofheinz, J. Müller-Quade, and D. Unruh. A simple model of polynomial time uc. One-page abstract
of a talk given at the Workshop on Models for Cryptographic Protocols (MCP 2006), 2006.

[23] D. Hofheinz and V. Shoup. GNUC: A New Universal Composability Framework. Technical Report
2011/303, Cryptology ePrint Archive, 2011. Available at http://eprint.iacr.org/2011/303.

[24] R. Küsters. Simulation-Based Security with Inexhaustible Interactive Turing Machines. In Proceedings
of the 19th IEEE Computer Security Foundations Workshop (CSFW-19 2006), pages 309–320. IEEE
Computer Society, 2006. See http://eprint.iacr.org/2013/025/ for a full and revised version.

[25] R. Küsters and M. Tuengerthal. Joint State Theorems for Public-Key Encryption and Digital Signature
Functionalities with Local Computation. In Proceedings of the 21st IEEE Computer Security Foundations
Symposium (CSF 2008), pages 270–284. IEEE Computer Society, 2008.

[26] R. Küsters and M. Tuengerthal. Composition Theorems Without Pre-Established Session Identifiers. In
Y. Chen, G. Danezis, and V. Shmatikov, editors, Proceedings of the 18th ACM Conference on Computer
and Communications Security (CCS 2011), pages 41–50. ACM, 2011.

[27] R. Küsters and M. Tuengerthal. The IITM Model: a Simple and Expressive Model for Universal
Composability. Technical Report 2013/025, Cryptology ePrint Archive, 2013. Available at http:
//eprint.iacr.org/2013/025.

[28] Y. Lindell, A. Lysyanskaya, and T. Rabin. On the composition of authenticated byzantine agreement. In
Proceedings of the 34th Annual ACM Symposium on Theory of Computing (STOC 2002), pages 514–523.
ACM Press, 2002.

[29] J. B. Nielsen. Separating Random Oracle Proofs from Complexity Theoretic Proofs: The Non-committing
Encryption Case. In M. Yung, editor, Advances in Cryptology, 22nd Annual International Cryptology
Conference (CRYPTO 2002), volume 2442 of Lecture Notes in Computer Science, pages 191–214. Springer,
2002.

[30] B. Pfitzmann, M. Schunter, and M. Waidner. Reactively Simulatable Certified Mail. Technical Report
2006/041, Cryptology ePrint Archive, 2006. Available at http://eprint.iacr.org/2006/041.

59

http://eprint.iacr.org/2002/047
http://eprint.iacr.org/2003/024
http://eprint.iacr.org/2003/024
http://eprint.iacr.org/2011/303
http://eprint.iacr.org/2013/025/
http://eprint.iacr.org/2013/025
http://eprint.iacr.org/2013/025
http://eprint.iacr.org/2006/041

[31] B. Pfitzmann and M. Waidner. A Model for Asynchronous Reactive Systems and its Application to
Secure Message Transmission. In IEEE Symposium on Security and Privacy, pages 184–201. IEEE
Computer Society, 2001.

60

	Introduction
	The IITM Model
	The General Computational Model
	Polynomial Time and Properties of Systems
	Notions of Universal Composability
	Composition Theorems

	The Joint State Theorem
	The Joint State Theorem in the UC Model
	The Joint State Theorem in the IITM Model

	Ideal Functionalities
	Notation for the Definition of IITMs
	Pseudocode
	Specification of IITMs
	Running External Code

	Digital Signatures
	An Ideal Functionality Fsig for Digital Signatures
	Realizing Fsig by UF-CMA Secure Digital Signature Schemes

	Public-Key Encryption
	Leakage Algorithms
	An Ideal Functionality Fpke for Public-Key Encryption
	Realizing Fpke by IND-CCA2 Secure Public-Key Encryption Schemes

	Replayable Public-Key Encryption
	An Ideal Functionality Frpke for Replayable Public-Key Encryption
	Realizing Frpke by IND-RCCA Secure Public-Key Encryption Schemes

	Joint State Realizations
	A Joint State Realization for Digital Signatures
	A Joint State Realization for Public-Key Encryption
	A Joint State Realization for Replayable Public-Key Encryption

	Related Work
	Digital Signatures
	Public-Key Encryption
	Replayable Public-Key Encryption
	Joint State Theorems Without Pre-Established Session Identifiers

	Security Definitions for Cryptographic Primitives
	Digital Signatures
	Public-Key Encryption

	Proofs of Theorems 6, 7, and 8
	Proof of Theorem 6
	 is UF-CMA Secure PsigFsig
	PsigFsig is UF-CMA Secure

	Proof of Theorem 7
	 is IND-CCA2 Secure PpkeFpke
	PpkeFpke is IND-CCA2 Secure

	Proof of Theorem 8
	 is IND-RCCA Secure PpkeFrpke
	PpkeFrpke is IND-RCCA Secure

