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Abstract

The selective decommitment problem can be described as follows: assume an adversary re-
ceives a number of commitments and then may request openings of, say, half of them. Do the
unopened commitments remain secure? Although this question arose more than twenty years
ago, no satisfactory answer could be presented so far. We answer the question in several ways:

1. If simulation-based security is desired (i.e., if we demand that the adversary's output can
be simulated by a machine that does not see the unopened commitments), then secu-
rity is not achievable for non-interactive or perfectly binding commitment schemes via
black-box reductions to standard cryptographic assumptions. However, we show how to
achieve security in this sense with interaction and a non-black-box reduction to one-way
permutations.

2. If only indistinguishability of the unopened commitments from random commitments is
desired, then security is not achievable for (interactive or non-interactive) perfectly binding
commitment schemes, via black-box reductions to standard cryptographic assumptions.
However, any statistically hiding scheme does achieve security in this sense.

Our results give an almost complete picture when and how security under selective openings
can be achieved. Applications of our results include:
• Essentially, an encryption scheme must be non-committing in order to achieve provable

security against an adaptive adversary.
• When implemented with our secure commitment scheme, the interactive proof for graph

3-coloring due to Goldreich et al. becomes zero-knowledge under parallel composition.
On the technical side, we develop a technique to show very general impossibility results for
black-box proofs.

Keywords: cryptography, commitments, zero-knowledge, black-box separations.

1 Introduction

Consider an adversary A that observes ciphertexts sent among parties in a multi-party cryptographic
protocol. At some point, A may decide, based on the information he already observed, to corrupt,
say, half of the parties. By this, A learns the secret keys of these parties, which allows him to open
some of the observed ciphertexts. The question is: do the unopened ciphertexts remain secure?
Since most encryption schemes actually constitute commitments to the respective messages, we can
rephrase the question as what is known as the selective decommitment problem: assume A receives
a number of commitments and then may request openings of half of them. Do the unopened
commitments remain secure? According to Dwork et al. [15], this question arose already more than
twenty years ago in the context of Byzantine agreement, but it is still relatively poorly understood.
In particular, standard cryptographic techniques (e.g., guessing which commitments are opened,
or hybrid arguments) fail to show that �ordinary� commitment security against a static adversary
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guarantees security under selective openings.1 Even worse: no commitment scheme is known to be
secure under selective openings.

Related work. The selective decommitment problem arises in particular in the encryption sit-
uation described above, and hence was recognized and mentioned in a number of works before
(e.g., [7, 4, 8, 12, 10]). However, these works solved the problem by using (and, in fact, inventing)
non-committing encryption, which circumvents the underlying commitment problem.

Dwork et al. [15] is, to the best of our knowledge, the only work that explicitly studies the
selective decommitment problem. They prove that a commitment scheme which is secure under
selective openings would have interesting applications. In particular, they show that the parallel
composition of the graph 3-coloring protocol G3C of Goldreich et al. [20], when implemented with
such a commitment scheme, satis�es a relaxed variant of zero-knowledge. They proceed to give
positive results for substantially relaxed selective decommitment problems (essentially, they prove
security when standard techniques can be applied, i.e., when the set of opened commitments can be
guessed, or when the messages are independent). However, they leave open the question whether
commitment schemes secure under (general) selective openings exist.

Our work. We answer the selective decommitment problem in several ways. First, we consider
what happens if �security of the unopened commitments� means that we require the existence of
a simulator S, such that S essentially achieves what A does, only without seeing the unopened
commitments in the �rst place. We call a commitment scheme which is secure in this sense simu-
latable under selective openings. We show that no non-interactive or perfectly binding commitment
scheme can be proved simulatable under selective openings using black-box reductions to standard
assumptions. However, we also show how to construct commitment schemes which are simulatable
under selective openings, under the assumption that one-way permutations exist. Our construction
uses non-black-box techniques (i.e., zero-knowledge proofs) as well as interaction to circumvent our
impossibility results. This solves an important open problem from Dwork et al. [15]: our schemes
are the �rst commitment schemes provably secure under selective openings.

We proceed to consider what happens if �security� means that A cannot distinguish the messages
inside the unopened commitments from independent2 messages. We call a commitment scheme
which is secure in this sense indistinguishable under selective openings. We show that no perfectly
binding commitment scheme (interactive or not) can be proved indistinguishable under selective
openings, via black-box reductions from standard assumptions. However, we also show that all

statistically hiding commitment schemes are indistinguishable under selective openings.
Technically, we derive black-box impossibility results in the style of Impagliazzo and Rudich [22],

but we can derive stronger claims, similar to Dodis et al. [14]. Concretely, we prove impossibility via
∀∃semi-black-box proofs from any computational assumption that can be formalized as an oracle X
and a corresponding security property P which the oracle satis�es. For instance, to model one-way
permutations, X could be a truly random permutation and P could be the one-way game in which
a PPT adversary tries to invert a random image. We emphasize that, somewhat surprisingly, our
impossibility claim holds even if P models security under selective openings. In that case, however,
a reduction will necessarily be non-black-box, see Appendix A for a discussion.

1For instance, the probability to correctly guess an n/2-sized subset of n commitments is too small, and a hybrid
argument would require some independence among the commitments, which we cannot assume in general.

2�independent� can of course only mean �independent, conditioned on the already opened messages�
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Applications. We apply our results to the adaptively secure encryption example mentioned in the
beginning, and to a special class of interactive proof systems. First, we comment that an adaptively
secure encryption scheme must be non-committing, or rely on non-standard techniques. Namely,
whenever a committing (i.e., ciphertexts commit to messages) encryption scheme is adaptively
secure, then it also is, interpreted as a (non-interactive) commitment scheme, simulatable under
selective openings. Our impossibility results show that hence, a committing encryption scheme
cannot be proved adaptively secure via black-box reductions from standard assumptions.

Second, we apply our results to �commit-choose-open� (CCO) style interactive proof systems
such as the graph 3-coloring protocol G3C from Goldreich et al. [20]. Re�ning the techniques of
Dwork et al. [15], we prove that any CCO protocol becomes zero-knowledge under parallel composi-
tion, when implemented with a commitment scheme which is simulatable under selective openings.
In particular, our (interactive, but constant-round) commitment scheme enables the parallel com-
posability of G3C. This is surprising, given the negative results of Goldreich and Krawczyk [19]
and Canetti et al. [9] for the concurrent composability limitations of (black-box) zero-knowledge
proof systems. We stress that our simulator is strict polynomial-time (as opposed to expected
polynomial-time simulators used, e.g., by Goldreich and Kahan [18]). We also show that a CCO
protocol becomes witness-indistinguishable, even under parallel composition, when implemented
with a commitment scheme which is indistinguishable under selective openings. Although some-
what less surprising, this shows the usefulness of our indistinguishability-based security de�nition
as a reasonable fallback.

Organization. After �xing some notation in Section 2, we present in Section 3 our possibility
and impossibility results for the simulation-based security de�nition of Dwork et al. [15]. We give
an indistinguishability-based security de�nition, along with possibility and impossibility results in
Section 4. In Section 5 and Section 6, we consider applications of our results to encryption and
interactive proof systems. We discuss the role of the computational assumption in our impossibility
results in Appendix A.

2 Preliminaries

Notation. Throughout the paper, k ∈ N denotes a security parameter. With growing k, attacks
should be become harder, but we also allow schemes to be of complexity which is polynomial in
k. A PPT algorithm/machine is a probabilistic algorithm/machine which runs in time polynomial
in k. While an algorithm is stateless, a machine maintains a state across activations. A function
f = f(k) is called negligible if it vanishes faster than the inverse of any polynomial. That is, f
is negligible i� ∀c∃k0 ∀k > k0 : |f(k)| < k−c. If f is not negligible, we call f non-negligible. We
say that f is overwhelming i� 1 − f is negligible. We write [n] := {1, . . . , n}. If M = (Mi)i is an
indexed set, then we write MI := (Mi)i∈I . We denote the empty (bit-)string by ε.

Commitment schemes.

De�nition 2.1 (Commitment scheme). A commitment scheme is a pair of PPT machines Com =
(S,R) such that the following holds:

Syntax. For any M ∈ {0, 1}k, S(commit,M) �rst interacts with R(receive). We call this the

commit phase. After that, S(open) interacts again with R(open), and R �nally outputs a

value M ′ ∈ {0, 1}k ∪ {⊥}. We call this the opening phase.
Correctness. We have M ′ = M always and for all M .

Binding. For a machine A, consider the following experiment Expbinding
Com,A :
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1. Let A(commit) interact with R(receive),
2. let M ′

0 denote R's output after interacting (on input open) with A(open, 0),
3. rewind A and R back to the point before step 2,

4. let M ′
1 denote R's output after interacting (on input open) with A(open, 1),

5. output 1 i� ⊥ 6= M ′
0 6= M ′

1 6= ⊥.
We require that Advbinding

Com,A = Pr
[
Expbinding

Com,A = 1
]
is negligible for all PPT A.

Hiding. For a PPT machine A, let Advhiding
Com,A := Pr

[
Exphiding-0

Com,A = 1
]
− Pr

[
Exphiding-1

Com,A = 1
]
. Here,

Exphiding-b
Com,A proceeds as follows:

1. run (M0,M1)← A(choose) to obtain two messages M0,M1 ∈ {0, 1}k,
2. let S(commit,Mb) interact with A(receive),
3. let b′ be A's �nal output
4. output b′.

We demand that Advhiding
Com,A is negligible for all PPT A.

Further, we say that Com is perfectly binding i� Advbinding
Com,A = 0 for all A. We say that statistically

hiding i� Advhiding
Com,A is negligible for all (not necessarily PPT) A.

De�nition 2.2 (Non-interactive commitment scheme). A non-interactive commitment scheme is

a commitment scheme Com = (S,R) in which both commit and opening phase consist of only one

message sent from S to R. We can treat a non-interactive commitment scheme as a pair of algorithms

rather than machines. Namely, we write (com, dec)← S(M) shorthand for the commit message com
and opening message dec sent by S on input M . We also denote by M ′ ← R(com, dec) the �nal

output of R upon receiving com in the commit phase and dec in the opening phase.

Note that perfectly binding implies that any commitment can only be opened to at most one
value M . Perfectly binding (non-interactive) commitment schemes can be achieved from any one-
way permutation (e.g., Blum [6]). On the other hand, statistically hiding implies that for any
M0,M1 ∈ {0, 1}k, the statistical distance between the respective views of the receiver in the commit
phase is negligible. One-way functions su�ce to implement statistically hiding (interactive) com-
mitment schemes (Haitner and Reingold [21]). If we assume the existence of (families of) collision-
resistant hash functions, then even constant-round statistically hiding commitment schemes exist
(Damgård et al. [13], Naor and Yung [25]).

Interactive argument systems. We recall some basic de�nitions concerning interactive argu-
ment systems, mostly following Goldreich [17].

De�nition 2.3 (Interactive proof/argument system). An interactive proof system for a language

L with witness relation R is a pair of PPT machines IP = (P,V) such that the following holds:

Completeness. For every family (xk, wk)k∈N such that R(xk, wk) for all k and |xk| is polynomial
in k, we have that the probability for V(xk) to output 1 after interacting with P(xk, wk) is at

least 2/3.
Soundness. For every machine P ∗ and every family (xk, zk)k∈N such that |xk| = k and xk 6∈ L

for all k, we have that the probability for V(xk) to output 1 after interacting with P ∗(xk, zk)
is at most 1/3.

If the soundness condition holds for all PPT machines P ∗ (but not necessarily for all unbounded

P ∗), then IP is an interactive argument system. We say that IP enjoys perfect completeness if V
always outputs 1 in the completeness condition. Furthermore, IP has negligible soundness error if
V outputs 1 only with negligible probability in the soundness condition.
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We now state what it means for an interactive proof or argument system to be zero-knowledge:

De�nition 2.4 (Zero-knowledge). Let IP = (P,V) be an interactive proof or argument system for

language L with witness relation R. IP is zero-knowledge if for every PPT machine V ∗, there exists
a PPT machine S∗ such that for all sequences (x,w) = (xk, wk)k∈N with R(xk, wk) for all k and

|xk| polynomial in k, for all PPT machines D, and all auxiliary inputs zV ∗
= (zV ∗

k )k∈N ∈ ({0, 1}∗)N
and zD = (zD

k )k∈N ∈ ({0, 1}∗)N, we have that

AdvZK
V ∗,S∗,(x,w),D,zV ∗ ,zD := Pr

[
D(xk, z

D
k , 〈P(xk, wk), V ∗(xk, z

V ∗
k )〉) = 1

]
− Pr

[
D(xk, z

D
k , S∗(xk, z

V ∗
k )) = 1

]
is negligible in k. Here 〈P(xk, wk), V ∗(xk, z

V ∗
k )〉 denotes the transcript of the interaction between the

prover P and V ∗.

Note that De�nition 2.5 involves two auxiliary inputs, one input zV ∗
for V ∗ and S∗, and one

input zD for D. This deviates from the standard zero-knowledge de�nition (e.g., Goldreich [17,
De�nition 4.3.10]), in which V ∗, S∗, and D all get the same auxiliary input z. However, our change
is without loss of generality (cf. [17, Discussion after De�nition 4.3.10]). Namely, since in the
standard de�nition, D and z are chosen after V ∗ and S∗, and, by de�nition of PPT, the running
time of V ∗ and S∗ is polynomial in k (but not in the length of z), we can pad z such that only D
will be able to access a certain portion zD of z.

Most known interactive proof system achieve perfect completeness. Conversely, most systems
do not enjoy a negligible soundness error �by nature�; their soundness has to be ampli�ed via
repetition, e.g., via sequential or concurrent composition. Thus, it is important to consider the
concurrent composition of an interactive argument system:

De�nition 2.5 (Concurrent zero-knowledge). Let IP = (P,V) be an interactive proof or argument

system for language L with witness relation R. IP is zero-knowledge under concurrent composition
i� for every polynomial n = n(k) and PPT machine V ∗, there exists a PPT machine S∗ such that

for all sequences (x,w) = (xi,k, wi,k)k∈N,i∈[n] with R(xi,k, wi,k) for all i, k and |xi,k| polynomial in k,

for all PPT machines D, and all auxiliary inputs zV ∗
= (zV ∗

k )k∈N ∈ ({0, 1}∗)N and zD = (zD
k )k∈N ∈

({0, 1}∗)N, we have that

AdvcZK
V ∗,S∗,(x,w),D,zV ∗ ,zD := Pr

[
D((xi,k)i∈[n], z

D
k , 〈P((xi,k, wi,k)i∈[n]), V

∗((xi,k)i∈[n], z
V ∗
k )〉) = 1

]
− Pr

[
D((xi,k)i∈[n], z

D
k , S∗((xi,k)i∈[n], z

V ∗
k )) = 1

]
is negligible in k. Here 〈P((xi,k, wi,k)i∈[n]), V ∗((xi,k)i∈[n], z

V ∗
k )〉 denotes the transcript of the inter-

action between n copies of the prover P (with the respective inputs (xi,k, wi,k) for i = 1, . . . , n) on
the one hand, and V ∗ on the other hand.

There exist interactive proof systems (with perfect completeness and negligible soundness error)
that achieve De�nition 2.5 for arbitrary NP-languages if one-way permutations exist (e.g., Richard-
son and Kilian [28]; see also [23, 9, 1, 16, 3] for similar results in related settings). If we assume
the existence of (families of) collision-resistant hash functions, then there even exist constant-round
interactive proof systems that achieve a bounded version of De�nition 2.5 in which the number of
concurrent instances is �xed in advance (Barak [1], Barak and Goldreich [2]).

We also recall the de�nition of witness indistinguishability (a relaxation of zero-knowledge) from
Goldreich [17], where we chose a slightly di�erent but equivalent formulation:
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De�nition 2.6 (Witness indistinguishability). Let IP = (P,V) be an interactive proof or argument

system for language L with witness relation R. IP is witness indistinguishable i� for every PPT

machines V ∗ and D, all sequences x = (xk)k∈N, w0 = (w0
k)k∈N, and w1 = (w1

k)k∈N with R(xk, w
0
k)

and R(xk, w
1
k) for all k and |xk| polynomial in k, and all auxiliary inputs z = (zk)k∈N ∈ ({0, 1}∗)N,

we have that

AdvWI
x,w0,w1,V ∗,D,z := Pr

[
D(xk, zk, 〈P(xk, w

0
k), V

∗(xk, zk)〉) = 1
]

− Pr
[
D(xk, zk, 〈P(xk, w

1
k), V

∗(xk, zk)〉) = 1
]

is negligible in k. Here, 〈P(x,w), V ∗(x)〉 denotes a transcript of the interaction between P and V ∗.

Black-box reductions. Reingold et al. [27] give an excellent overview and classi�cation of black-
box reductions. We recall some of their de�nitions which are important for our case. A primitive

P = (FP, RP) is a set FP of functions f : {0, 1}∗ → {0, 1}∗ along with a relation R over pairs
(f,A), where f ∈ FP, and A is a machine. We say that f is an implementation of P i� f ∈ FP.
Furthermore, f is an e�cient implementation of P i� f ∈ FP and f can be computed by a PPT
machine. A machine A P-breaks f ∈ FP i� RP(f,A). A primitive P exists if there is an e�cient
implementation f ∈ FP such that no PPT machine P-breaks f . A primitive P exists relative to an

oracle B i� there exists an implementation f ∈ FP which is computable by a PPT machine with
access to B, such that no PPT machine with access to B P-breaks f .

De�nition 2.7 (Relativizing reduction). There exists a relativizing reduction from a primitive

P = (FP, RP) to a primitive Q = (FQ, RQ) i� for every oracle B, the following holds: if Q exists

relative to B, then so does P.

De�nition 2.8 (∀∃semi-black-box reduction). There exists a ∀∃semi-black-box reduction from a

primitive P = (FP, RP) to a primitive Q = (FQ, RQ) i� for every implementation f ∈ FQ, there

exists a PPT machine G such that Gf ∈ FP, and the following holds: if there exists a PPT machine

A such that Af P-breaks Gf , then there exists a PPT machine S such that Sf Q-breaks f .

It can be seen that if a relativizing reduction exists, then so does a ∀∃semi-black-box reduction.
The converse is true when Q �allows embedding,� which essentially means that additional oracles
can be embedded into Q without destroying its functionality (see Reingold et al. [27, De�nition 3.4
and Theorem 3.5] and Simon [29]). Below we will prove impossibility of relativizing reductions
between certain primitives, which also proves impossibility of ∀∃semi-black-box reductions, since
the corresponding primitives Q allow embedding.

3 A simulation-based de�nition

Consider the following real security game: adversary A gets, say, n commitments, and then may ask
for openings of some of them. The security notion of Dwork et al. [15] requires that for any such
A, there exists a simulator S that can approximate A's output. More concretely, for any relation
R, we require that R(M, outA) holds about as often as R(M, outS), where M = (Mi)i∈[n] are the
messages in the commitments, outA is A's output, and outS is S's output. Formally, we get the
following de�nition (where henceforth, I will denote the set of �allowed� opening sets):

De�nition 3.1 (Simulatable under selective openings/SIM-SO-COM). Let n = n(k) > 0 be poly-

nomially bounded, and let I = (In)n be a family of sets such that each In is a set of subsets of [n].
A commitment scheme Com = (S,R) is simulatable under selective openings (short SIM-SO-COM
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secure) i� for every PPT n-message distribution M, every PPT relation R, and every PPT ma-

chine A (the adversary), there is a PPT machine S (the simulator), such that Advsim-so
Com,M,A,S,R is

negligible. Here

Advsim-so
Com,M,A,S,R := Pr

[
Expsim-so-real

Com,M,A,R = 1
]
− Pr

[
Expsim-so-ideal

M,S,R = 1
]
,

where Expsim-so-real
Com,M,A,R proceeds as follows:

1. sample messages M = (Mi)i∈[n] ←M,

2. let A(receive) interact concurrently with n instances (Si(commit,Mi))i∈[n] of S,
3. let I ∈ I be A's output after interacting with the Si,

4. let A(open) interact concurrently with the |I| instances (Si(open))i∈I of S,
5. let outA denote A's �nal output,
6. output 1 i� R(M, outA).

On the other hand, Expsim-so-ideal
M,S,R proceeds as follows:

1. sample messages M = (Mi)i∈[n] ←M,

2. invoke I ← S(choose) to obtain a set I ∈ I,
3. invoke outS ← S((Mi)i∈I),
4. output 1 i� R(M, outS).

For simplicity, we opted not to give auxiliary input to the adversary (or to the relation R). Such
an auxiliary input is a common tool in cryptographic de�nitions to ensure some form of composabil-
ity. Not giving the adversary auxiliary input only makes our negative results stronger. We stress,
however, that our positive results (Theorem 3.11 and Theorem 4.11) hold also for adversaries and
relations with auxiliary input.

3.1 Impossibility from black-box reductions

Formalization of computational assumptions. Our �rst result states that SIM-SO-COM
security cannot be achieved via black-box reductions from standard assumptions. We want to
consider such standard assumptions in a general way that allows to make statements even in the
presence of �relativizing� oracles. Thus we make the following de�nition, which is a special case of
the de�nition of a primitive from Reingold et al. [27] (cf. also Section 2).

De�nition 3.2 (Property of an oracle). Let X be an oracle. Then a property P of X is a (not

necessarily PPT) machine that, after interacting with X and another machine A, �nally outputs a

bit b. For an adversary A (that may interact with X and P), we de�ne A's advantage against P
as

Advprop
P,X ,A := Pr [P outputs b = 1 after interacting with A and X ]− 1/2.

Now X is said to satisfy property P i� for all PPT adversaries A, we have that Advprop
P,X ,A is negligible.

In terms of Reingold et al. [27], the corresponding primitive is P = (FP, RP), where FP = {X},
and RP(X , A) i� Advprop

P,X ,A is non-negligible. Our de�nition is also similar in spirit to �hard games�
as used by Dodis et al. [14], but more general. We emphasize that P can only interact with X and
A, but not with possible additional oracles. (See Appendix A for further discussion of properties
of oracles, in particular their role in our proofs.) Intuitively, P acts as a challenger in the sense of
a cryptographic security experiment. That is, P tests whether adversary A can �break� X in the
intended way. We give an example, where �breaking� means �breaking X 's one-way property�.
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Example. If X is a random permutation of {0, 1}k, then the following P models X 's one-way
property: P acts as a challenger that challenges A to invert a randomly chosen X -image. Concretely,
P initially chooses a random Y ∈ {0, 1}k and sends Y to A. Upon receiving a guess X ∈ {0, 1}k
from A, P checks if X (X) = Y . If yes, then P terminates with output b = 1. If X (X) 6= Y , then
P tosses an unbiased coin b′ ∈ {0, 1} and terminates with output b = b′.

We stress that we only gain generality by demanding that Pr [P outputs 1] is close to 1/2 (and
not, say, negligible). In fact, this way indistinguishability-based games (such as, e.g., the indistin-
guishability of ciphertexts of an ideal encryption scheme X ) can be formalized very conveniently.
On the other hand, cryptographic games like the one-way game above can be formulated in this
framework as well, by letting the challenger output b = 1 with probability 1/2 when A fails.

On the role of property P. Our upcoming results state the impossibility of (black-box) security
reductions, from essentially any computational assumption (i.e., property) P. The obvious ques-
tion is: what if the assumption already is an idealized commitment scheme secure under selective
openings? The short answer is: �then the security proof will not be black-box.� We give a detailed
explanation of what is going on in Appendix A.

Stateless breaking oracles. In our impossibility results, we will describe a computational world
with a number of oracles. For instance, there will be a �breaking oracle� B, such that B aids in
breaking the SIM-SO-COM security of any given commitment scheme, and in nothing more. To this
end, B takes the role of the adversary in the SIM-SO-COM experiment. Namely, B expects to receive
a number of commitments, then chooses a subset of these commitments, and then expects openings
of the commitments in this subset. This is an interactive process which would usually require B
to hold a state across invocations. However, stateful oracles are not very useful for establishing
black-box separations, so we will have to give a stateless formulation of B. Concretely, suppose that
the investigated commitment scheme is non-interactive. Then B answers deterministically upon
queries and expects each query to be pre�xed with the history of that query. For instance, B �nally
expects to receive openings dec = (deci)i∈I along with the corresponding previous commitments
com = (comi)i∈[n] and previously selected set I. If I is not the set that B would have selected
when receiving com alone, then B ignores the query. This way, B is stateless (but randomized,
similarly to a random oracle). Furthermore, for non-interactive commitment schemes, this makes
sure that any machine interacting with B can open commitments to B only in one way. Hence this
formalization preserves the binding property of a commitment scheme, something which we will
need in our proofs.

We stress, however, that this method does not necessarily work for interactive commitment
schemes. Namely, any machine interacting with such a stateless B can essentially �rewind� B
during an interactive commitment phase, since B formalizes a next-message function. Now if the
commitment scheme is still binding if the receiver of the commitment can be rewound (e.g., this
holds trivially for non-interactive commitment schemes, and also for perfectly binding commitment
schemes), then our formalization of B preserves binding, and our upcoming proof works. If, however,
the commitment scheme loses its binding property if the receiver can be rewound, then the following
theorem cannot be applied.

We are now ready to state our result.

Theorem 3.3 (Black-box impossibility of non-interactive or perfectly binding SIM-SO-COM, most
general formulation). Let n = n(k) > 0 be arbitrary, and let I = (In)n be arbitrary such that In is

a set of subsets of [n] and |In| is super-polynomial in k.3 Let X be an oracle that satis�es property

3e.g., one could think of n = 2k and In = {I ⊆ [n] | |I| = n/2} here
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P. Then there is a set of oracles relative to which X still satis�es property P, but there exists

no non-interactive or perfectly binding commitment scheme which is simulatable under selective

openings.

Proof. First, let RO be a random oracle (i.e., a random function {0, 1}∗ → {0, 1}k). When writing
RO(x1, . . . , x`), we assume that RO's input x1, . . . , x` is encoded in a pre�x-free way, such that all
individual xi can be e�ciently reconstructed from RO's input. Furthermore, to derive our second
oracle B, �rst consider the following machine B:

1. Upon receiving Com as input, interpret Com as the description of two machines (S,R) as in
De�nition 2.1. Then, concurrently receive n Com-commitments, indexed by i ∈ [n].

2. When all commitments are received, output a uniformly chosen I ∈ I.
3. Engage in |I| concurrent opening phases for the Com-instances with i ∈ I. If all openings

are valid (i.e., every receiver instance with i ∈ I outputs some Mi 6= ⊥), return the set of all
X ∈ {0, 1}k/3 such that Mi = RO(Com, i,X) for all i ∈ I.

Unfortunately, we cannot use B directly in our proof, since B is stateful, and black-box separations
require stateless oracles. So let B be the oracle that evaluates B's next-message function. Formally,
B expects queries of the form h = (hi)i∈[`]. Upon each such query, B invokes a fresh copy of B,
and feeds it input messages h1 up to h` successively, ignoring the respective answers of B. Finally,
B outputs B's answer to the last input h`. The random coins used for B in a given activation are
supplied by B as a random (but deterministic) function of the previous message history of B. This
way, B itself is randomized but stateless, and can be used to emulate interactions with B. (In fact,
B models a B which can be rewound.)

We now comment on the description of Com that B receives. Com describes two machines S
and R, which may make arbitrary oracle calls (even recursive B-queries). We make no requirement
that Com describes a hiding, binding, or correct commitment scheme. However, we do require that
S and R are PPT whenever the description Com is generated by a PPT algorithm. We achieve
this with a suitable padding: We require all B-queries h are pre�xed with 1`, where ` bounds B's
running time on input h. Here, we count any oracle query with input x as |x| computational steps,
and the �nal computation of all X as one step. This way, not even recursive B-queries consume
more than overall ` steps (not measuring the time needed to parse `), while any PPT commitment
scheme Com can still be encoded e�ciently.

For a query h = (hi)i∈[`], let Ih ∈ I and Mh
Ih = (Mh

i )i∈Ih denote the variables from the
corresponding interaction with B. For a commitment scheme Com and a machine A, we say that
A breaks Com∗ in B i� A manages to output two queries h = (hi)i∈[`] and h′ = (h′i)i∈[`′] such that
the following holds.
• hi = h′i for all i ≤ iI , where iI is the (unique) index for which B((hi)i∈[iI ]) outputs Ih ∈ I.
• There is an index j ∈ [n] such that ⊥ 6= Mh

j 6= Mh′
j 6= ⊥.

In other words, this holds if A manages to produce interactions with B in which the same commit-
ment is opened in di�erent ways.

From here on, �x a (hiding and binding) commitment scheme Com∗ = (S∗,R∗), such that Com∗

is non-interactive or perfectly binding (or both). We �rst show that our modeling of B preserves
the binding property of Com∗.

Lemma 3.4. No PPT adversary A breaks Com∗ in B with non-negligible probability.

Proof. If Com∗ is perfectly binding, there never exists a commitment for which two di�erent openings
are possible (as long as the receiver acts honestly). Hence there simply are no h and h′ as required
to break the binding property of Com∗ in B. On the other hand, if Com∗ is non-interactive, then
A must �nd a non-interactive commitment com along with two non-interactive openings dec1 and

9



dec2 in order to break Com∗ in B. The (ordinary) binding property of Com∗ implies that this is not
e�ciently possible.

Now consider the n-message distribution M∗ = {(RO(Com∗, i,X∗))i∈[n]}X∗∈{0,1}k/3 (i.e., M∗

chooses X∗ ∈ {0, 1}k/3 uniformly and then sets M∗
i = RO(Com∗, i,X∗) for all i).

Lemma 3.5. There is an adversary A that outputs outA = M∗ with overwhelming probability in

the real SIM-SO-COM experiment Expsim-so-real
Com∗,M,A,R. Here M∗ denotes the full message vector sampled

fromM∗ by the experiment.

Proof. Let A be the SIM-SO-COM adversary on Com∗ that relays between its interface to the SIM-
SO-COM experiment and B as follows. We silently assume that A pre�xes queries to B with the
respective message history, and applies a padding as described above.

1. Initially, send Com∗ to B.
2. Relay the n commitments from the SIM-SO-COM experiment to B.
3. Upon receiving I∗ ∈ I from B, send I∗ to the SIM-SO-COM experiment.
4. Upon receiving |I∗| openings from the experiment, relay these openings to B.
5. Finally, upon receiving a singleton set {X∗} from B, return outA = (RO(Com∗, i,X∗))i∈[n].

If B returns a set of larger size, return outA = ⊥.
By construction of M∗ and B, it is clear that outA = M∗ unless B returns multiple X (which
happens only with negligible probability by a counting argument).

Lemma 3.6. Any given PPT simulator S will output outS = M∗ in the ideal SIM-SO-COM

experiment Expsim-so-ideal
M,S,R only with negligible probability.

Proof. Fix a PPT S. We claim that in the ideal SIM-SO-COM experiment, S has a view that
is almost statistically independent of X∗, and hence will output outS = M∗ only with negligible
probability. To show the claim, denote by I∗ the subset that S submits to the SIM-SO-COM exper-
iment, and by M∗

I∗ the messages that S receives back. Denote by Comj , Ij ,M j
Ij the corresponding

values used in S's j-th query hj = (hj
i )i∈[`j ] to B. We �rst de�ne and bound a number of �bad�

events:
• badcoll occurs i� S reveals a message M j

i to B for which there are two distinct X1, X2 ∈
{0, 1}k/3 with RO(Comj , i,X1) = M j

i = RO(Comj , i,X2).
• badimg occurs i� S reveals a message M j

i to B for which an X with M j
i = RO(Comj , i,X)

exists, but M j
i has not been obtained through an explicit RO-query (by either S or the

SIM-SO-COM experiment).
• badbind occurs i� (Comj , Ij ,M j

Ij ) = (Com∗, I∗,M∗
I∗) for some j.

• bad := badcoll ∨ badimg ∨ badbind.
These events occur only with negligible probability: informally, badcoll implies a collision among
2k/3 uniformly distributed k-bit values, which is ruled out by a birthday bound. badimg means that
S guessed an element of a very sparse set. Finally, badbind means that S broke Com∗'s binding
property (or, rather, S broke Com∗ in B). A detailed proof can be found in Lemma 3.7 below.

Now consider the following machine B′ which is almost identical to B (the di�erence to B is
emphasized):

1. Upon receiving Com as input, interpret Com as the description of two machines (S,R) as in
De�nition 2.1. Then, concurrently receive n Com-commitments, indexed by i ∈ [n].

2. When all commitments are received, output a uniformly chosen I ∈ I.
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3. Engage in |I| concurrent opening phases for the Com-instances with i ∈ I. If all openings
are valid (i.e., every receiver instance with i ∈ I outputs some Mi 6= ⊥), proceed as follows.
If every Mi is the result of an RO(Com, i,X)-query of S (for the same X ∈ {0, 1}k/3), then

output {X}. Otherwise, output ∅.
Denote by B′ the oracle that evaluates B′'s next-message function. We �rst remark that B′ can
be e�ciently simulated inside S: B′ running time is (roughly) the same as B's running time, if we
count oracle queries and the �nal computation of the X as above. Furthermore, by de�nition, the
output of B and B′ can di�er only if
• there are multiple X with Mi = RO(Com, i,X) for some i ∈ I, or
• for some i ∈ I, Mi is not the result of an explicit RO-query of S, but there exists an X with

Mi = RO(Com, i,X) for all i ∈ I.
Suppose bad does not occur. Then ¬badcoll ensures that no multiple X with Mi = RO(Com, i,X)
exist, and ¬badimg ensures that all Mi have been explicitly queried as Mi = RO(Com, i,X) by either
S or the SIM-SO-COM experiment. Now since the SIM-SO-COM experiment makes only queries
of the form M∗

i = RO(Com∗, i,X∗), this means that B and B′ can only di�er if Com = Com∗, and
if MI contains some Mi from M∗

I∗ . On the other hand, ¬badbind implies that then, MI must also
contain some Mi′ not contained in M∗

I∗ . By ¬badimg, then Mi′ must have been explicitly queried by
S through Mi′ = RO(Com∗, i′, X∗), for the same X∗ as chosen by the SIM-SO-COM experiment
to generate M∗

i = RO(Com∗, i,X∗).
In other words, assuming ¬bad, in order to detect a di�erence between B and B′, S must already

have guessed the hidden X∗ used in the SIM-SO-COM experiment. In particular, since up to that
point, oracles B and B′ behave identically, and S can simulate B′ internally, S can either extract
the hidden X∗ from the SIM-SO-COM experiment with oracles RO and X alone, or not at all.
However, since we de�ned RO independently and after X , these oracles are independent. Hence,
using RO and X alone, the view of S is independent of X∗ unless S explicitly makes a RO-query
involving X∗. Since X∗ ∈ {0, 1}k/3 is uniformly chosen from a suitably large domain, and bad
occurs with negligible probability, we get that S's view is almost statistically independent of X∗.
Consequently, S's view is almost statistically independent of all M∗

i with i 6∈ I∗. Hence, S can
produce outS = M∗ only with negligible probability.

It remains to prove that bad occurs only negligibly often.

Lemma 3.7. Event bad occurs only with negligible probability.

Proof. We show that any of the events badcoll, badimg, badbind occurs only with negligible proba-
bility for any �xed i, j. The full claim then can be derived by a union bound over i, j, and the
individual events. So �rst �x i, j, and note that the functions RO(Comj , i, ·) and RO(Com, i′, ·) are
independent as soon as Comj 6= Com or i 6= i′. Hence, for all of the events, we can ignore RO- and
B-queries with a di�erent Com or i, and assume that RO′(·) := RO(Comj , i, ·) is a fresh random
oracle.
badcoll: Using a birthday bound, we get

Pr
[
∃X1, X2 ∈ {0, 1}k/3, X1 6= X2 : RO′(X1) = RO′(X2)

]
≤ (2k/3)2

2k
= 2−k/3,

which implies that with large probability, there simply exists no M j
i which could raise badcoll.

badimg: We show that S's chance to output Mi with Mi = RO′(s) for some s ∈ {0, 1}k/3, and such
that X has not been queried to RO′-query, is negligible. Now S's access to the B-oracle can
be emulated using an oracle B′ that, upon input Y , outputs the set of all X ∈ {0, 1}k/3 with
RO′(X) = Y . Without loss of generality, we may further assume that S never queries B′
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with a Y which has been obtained through an explicit RO′(X)-query. (Namely, unless badcoll
occurs, which happens only with negligible probability, B′'s answer will then be {X}.)
Hence, whenever S receives an answer 6= ∅ from B′, it has already succeeded in producing
an Mi with RO′(X) = Mi for some X, and without querying RO′(X). So without loss of
generality, we can assume that S never queries B′, and hence only produces such an Mi using
access to RO and X alone. Clearly, X does not help S, since X and RO are independent.
But since the set of all Y for which RO′(X) = Y for some X ∈ {0, 1}k/3 is sparse in the set
of all Y ∈ {0, 1}k, and S can only make a polynomial number of RO-queries, S's success in
producing such an Mi is negligible.

badbind: Let iI be the (unique) index for which B((hj
i )i∈[iI ]) outputs Ij . Without loss of generality,

assume that S sets I∗ after B �rst outputs Ij = B((hj
i )i∈[iI ]). (Otherwise, Ij = I∗ occurs

only with probability 1/|I|, since Ij is chosen uniformly and then independent of I∗.) We can
also assume that Comj = Com∗, since otherwise badbind cannot happen by de�nition. Hence,
S �rst generates a commit transcript (hj

i )i∈[iI ], then receives Ij and sends I∗ = Ij to the
SIM-SO-COM experiment, and only then receives messages M∗

I∗ . To achieve badbind in this

situation, S must �nd a full transcript hj such that M j
Ij = M∗

I∗ . In particular, there is an
i ∈ Ij such that S opens the i-th commitment in hj to a value M∗

i which S only sees after
the transcript of the commit phase is �xed.
Hence, if S achieves badbind with non-negligible probability, we can construct the following
PPT machine A. A �rst simulates S to extract h = hj , and then rewinds S back to the point
before it received M∗

I∗ . Restarting S with di�erent messages M∗
I∗ then yields a transcript h′

that opens the same commitments as in h to di�erent messages. This contradicts Lemma 3.4.

Taking things together, this shows that Advsim-so
Com∗,M∗,A,S,R is overwhelming for the relation

R(x, y) :⇔ x = y, the described A, and any PPT S. Hence Com∗ is not SIM-SO-COM secure.
It remains to argue that in the described computational world, X still satis�es property P.

Lemma 3.8. X satis�es P.

Proof. Assume a PPT adversary A on X 's property P. Since X and P do not query B or RO,
A can do without external oracles RO and B, and use internal simulations of RO and B instead.
Using lazy sampling for RO, both simulations can even be made PPT. (This includes B's inversion
of RO, since we simulate B and RO at the same time. We omit the details.)

So without loss of generality, we can assume that A only uses X -queries when interacting with
P. Since we assumed that P holds in the standard model (i.e., without any auxiliary oracles), A's
advantage Advprop

P,X ,A must be negligible.

This concludes the proof of Theorem 3.3.

The following corollary provides an instantiation of Theorem 3.3 for a number of standard
cryptographic primitives.

Corollary 3.9 (Black-box impossibility of non-interactive or perfectly binding SIM-SO-COM).
Assume n and I as in Theorem 3.3. Then no non-interactive or perfectly binding commitment

scheme can be proven simulatable under selective openings via a ∀∃semi-black-box reduction to one

or more of the following primitives: one-way functions, one-way permutations, trapdoor one-way

permutations, IND-CCA secure public key encryption.
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The corollary is a special case of Theorem 3.3. For instance, to show Corollary 3.9 for one-
way permutations, one can use the example X and P from above: X is a random permutation
of {0, 1}k, and P models the one-way experiment with X . Clearly, X satis�es P, and so we can
apply Corollary 3.9. This yields impossibility of relativizing proofs for SIM-SO-COM security
from one-way permutations. We get impossibility for ∀∃semi-black-box reductions since one-way
permutations allow embedding, cf. Simon [29], Reingold et al. [27]. The other cases are similar.
Note that while it is generally not easy to even give a candidate for a cryptographic primitive in
the standard model, it is easy to construct an idealized, say, encryption scheme in oracle form.

Generalizations. First, Corollary 3.9 constitutes merely an example instantiation of the much
more general Theorem 3.3. The proof also holds for a relaxation of SIM-SO-COM security considered
by Dwork et al. [15, De�nition 7.3], where adversary and simulator approximate a function of the
message vector.

3.2 Possibility using non-black-box techniques

Non-black-box techniques vs. interaction. Theorem 3.3 shows that SIM-SO-COM security
cannot be achieved unless one uses non-black-box techniques or interaction. In this section, we will
investigate the power of non-black-box techniques to achieve SIM-SO-COM security. As it turns
out, for our purposes a concurrently composable zero-knowledge argument system is a suitable
non-black-box tool.4 We stress that the use of this zero-knowledge argument makes our scheme
necessarily interactive, and so actually circumvents Theorem 3.3 in two ways: by non-black-box
techniques and by interaction. However, from a conceptual point of view, our scheme is �non-
interactive up to the zero-knowledge argument.� In particular, our proof does not use the fact that
the zero-knowledge argument is interactive. (That is, if we used a concurrently composable non-
interactive zero-knowledge argument in, say, the common reference string model, our proof would
still work.)

The scheme. For our non-black-box scheme, we need an interactive argument system IP with
perfect completeness and negligible soundness error, such that IP is zero-knowledge under concurrent
composition. We also need a perfectly binding non-interactive commitment scheme Comb. Both
these ingredients can be constructed from one-way permutations. To ease presentation, we only
describe a bit commitment scheme, which is easily extended (along with the proof) to the multi-bit
case.

Scheme 3.10 (Non-black-box commitment scheme ZKCom). Let Comb = (Sb,Rb) be a perfectly
binding non-interactive commitment scheme. Let IP = (P,V) be an interactive argument system for
NP which enjoys perfect completeness, has negligible soundness error, and which is zero-knowledge
under concurrent composition. De�ne ZKCom = (SZK,RZK) for the following machines SZK and
RZK:
• Commitment to bit b:

1. SZK computes (com0, dec0) ← Sb(b) and (com1, dec1) ← Sb(b), and sends (com0, com1)
to RZK.

2. SZK uses IP to prove to RZK that com0 and com1 commit to the same bit.5

4We require concurrent composability since the SIM-SO-COM de�nition considers multiple, concurrent sessions
of the commitment scheme.

5Formally, the corresponding language L for IP considers statements x = (com0, com1) and witnesses w =
(dec0, dec1) such that R(x, w) i� Rb(com0, dec0) = Rb(com1, dec1) ∈ {0, 1}.
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• Opening:
1. SZK uniformly chooses j ∈ {0, 1} and sends (j, decj) to RZK.

The security of ZKCom. It is straightforward to prove that ZKCom is a hiding and binding
commitment scheme. (We stress, however, that Comb's perfect binding property is needed to prove
that ZKCom is binding; otherwise, the zero-knowledge argument may become meaningless.) More
interestingly, we can also show that ZKCom is SIM-SO-COM secure:

Theorem 3.11 (non-black-box possibility of SIM-SO-COM). Fix any n and I as in De�nition 3.1.

Then ZKCom is simulatable under selective openings in the sense of De�nition 3.1.

Proof. Assume arbitrary n, I,M, R, and A as in De�nition 3.1. We proceed in games.
Game 0 is the real SIM-SO-COM experiment Expsim-so-real

ZKCom,M,A,R for ZKCom. De�ne the random
variable out0 as the output of the experiment, so that

Pr
[
Expsim-so-real

ZKCom,M,A,R = 1
]

= Pr [out0 = 1] .

In Game 1, we interpret the �rst stage of the experiment as a veri�er V ∗ in the sense of
De�nition 2.5. To this end, we constructively de�ne random variables xi,k, wi,k, z

D
k , zV ∗

k as follows:
1. sample M = (Mi)i∈[n] ∈ {0, 1}n fromM,
2. uniformly and independently choose n bits j1, . . . , jn,
3. for all i ∈ [n] and j ∈ {0, 1}, compute (comj

i , dec
j
i )← Sb(Mi),

4. de�ne xi,k = (com0
i , com

1
i ), wi,k = (dec0

i , dec
1
i ), zV ∗

k = ε and zD
k = (M, (ji, dec

ji
i )i∈[n]).

Using this notation, the commitment stage of Expsim-so-real
ZKCom,M,A,R can be expressed as an interac-

tion of n concurrent instances of prover P with a suitable veri�er V ∗ as in De�nition 2.5.6 Con-
cretely, we de�ne a veri�er V ∗ that, on input (xi,k)i∈[n] = (com0

i , com
1
i )i∈[n], internally simulates

Expsim-so-real
ZKCom,M,A,R up to the point where A outputs I. The interactive arguments which show that

com0
i and com1

i commit to the same bit are performed concurrently with (n instances of) a prover
P that gets xi,k = (com0

i , com
1
i ) and wi,k = (dec0

i , dec
1
i ) as input. Finally, V ∗ outputs outV ∗ = I,

so that I will be part of the transcript TP,V ∗ = 〈P((xi,k, wi,k)i∈[n]), V ∗((xi,k)i∈[n], z
V ∗
k )〉.

We outsource the second stage of the attack into a suitable distinguisher D. Concretely, we
de�ne a machine D which, on input zD

k = (M, (ji, dec
ji
i )i∈[n]) and a transcript TP,V ∗ (which contains

outV ∗ = I), simulates outA ← A((ji, dec
ji
i )i∈I) and outputs out1 = R(M, outA).

This setting is merely a reformulation of Expsim-so-real
ZKCom,M,A,R as a concurrent zero-knowledge argu-

ment, so we have that
Pr [out1 = 1] = Pr [out0 = 1] .

In Game 2, we use IP's concurrent zero-knowledge property. That is, Game 1 already speci�es
a PPT veri�er V ∗ and a PPT distinguisher D, as well as random variables (x,w), zV ∗

, and zD,
as in De�nition 2.5. Hence our assumption on IP guarantees that there exists a PPT simulator
S∗ such that AdvcZK

V ∗,S∗,(x,w),D,zV ∗ ,zD is negligible. We substitute V ∗ (along with all instances of P)

from Game 1 with that simulator S∗ in Game 2. Note that now, the execution of Game 2 does not
require wi,k = (dec0

i , dec
1
i ) anymore, but instead only one opening decji

i for each argument session.
If we let out2 denote D's output (on input zD

k and outS∗) in this setting, we get that

Pr [out1 = 1]− Pr [out2 = 1] = AdvcZK
V ∗,S∗,(x,w),D,zV ∗ ,zD

6Note that De�nition 2.5 trivially implies security for all distributions on (x, w), zV ∗
and zD. Also recall that

De�nition 2.5 models two di�erent auxiliary inputs zV ∗
(for V ∗ and S∗) and zD (for D). We emphasize again that

this is without loss of generality, cf. the discussion after De�nition 2.4.
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is negligible.
In Game 3, we use Comb's hiding property. Namely, we now change the generation of the

xi,k = (com0
i , com

1
i ). While we still generate comji

i as a commitment to Mi, we now de�ne com1−ji
i

as a commitment to 1−Mi, so that com0
i and com1

i are commitments to di�erent bits. Since dec1−ji
i

is never used in Game 2, this does not result in a detectable change in D's output. Concretely, we
have that

Pr [out3 = 1]− Pr [out2 = 1] = Advhiding

Comb,A′

for a suitable adversary A′ on Comb's hiding property, so that Pr [out3 = 1]−Pr [out2 = 1] is negli-
gible.

To construct Game 4, observe that in Game 3, distinguisher D only needs the openings decji
i

for i ∈ I from its input zD
k = (M, (decji

i )i∈[n]). We can exploit this fact as follows. We now

generate the commitments xi,k = (com0
i , com

1
i ) and openings decji

i , as well as the ji ∈ {0, 1}
slightly di�erently. Concretely, for each message bit Mi, we �rst choose a random bit bi and
compute (com0

i , dec
0
i ) ← Sb(bi) and (com1

i , dec
1
i ) ← Sb(1 − bi). This modi�cation does not change

S∗'s view. When D requires an opening decji
i (for i ∈ I), we de�ne ji = bi⊕Mi, so that decji

i opens
the �right� message Mi. This does not change the view of S∗ or D, so that we have

Pr [out4 = 1] = Pr [out3 = 1] .

The crucial conceptual di�erence to Game 3 is that now the execution of D requires only knowledge
about the message parts (Mi)i∈I selected by S∗ and not the full message vector M .

We can now reformulate Game 4 as an ideal SIM-SO-COM experiment. First, we de�ne a
simulator S as follows: �rst, S prepares bits bi and commitments (comi

0, com
i
1) as in Game 4

and then runs an internal simulation of S∗ on these commitments. Upon obtaining I from S∗, S
outputs I. Then, upon input (Mi)i∈I , S runs an internal simulation of A on input (ji, dec

ji
i )i∈I

for ji = bi ⊕ Mi as in Game 4. Finally, S outputs outS = outA. By construction, the ideal
SIM-SO-COM experiment Expsim-so-ideal

M,S,R with this S is only a reformulation of Game 4, so that

Pr
[
Expsim-so-ideal

M,S,R = 1
]

= Pr [out4 = 1] .

Putting things together, we get that

Advsim-so
ZKCom,M,A,S,R = Pr

[
Expsim-so-real

ZKCom,M,A,R = 1
]
− Pr

[
Expsim-so-ideal

M,S,R = 1
]

is negligible, which proves the theorem.

Where is the non-black-box component? Interestingly, the used zero-knowledge argument
system IP itself can well be black-box zero-knowledge (where black-box zero-knowledge means that
the simulator S∗ from De�nition 2.5 has only black-box access to the next-message function of V ∗).
The essential fact that allows us to circumvent our negative result Theorem 3.3 is the way we employ
IP. Namely, ZKCom uses IP to prove a statement about two given commitments (com0, com1).
This proof (or, rather, argument) uses an explicit and non-black-box description of the employed
commitment scheme Comb. It is this argument that cannot even be expressed when Comb makes
use of, say, a one-way function given in oracle form.

Generalizations. First, ZKCom can be straightforwardly extended to a multi-bit commitment
scheme, e.g., by running several sessions of ZKCom in parallel. Second, ZKCom is SIM-SO-COM
secure also against adversaries with auxiliary input z: our proof holds literally, where of course we
also require security of Comb against non-uniform adversaries.
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4 An indistinguishability-based de�nition

Motivated by the impossibility result from the previous section, we relax De�nition 3.1 as follows:

De�nition 4.1 (Indistinguishable under selective openings/IND-SO-COM). Let n = n(k) > 0 be

polynomially bounded, and let I = (In)n be a family of sets such that each In is a set of subsets

of [n]. A commitment scheme Com = (S,R) is indistinguishable under selective openings (short

IND-SO-COM secure) i� for every PPT n-message distribution M, and every PPT adversary A,
we have that Advind-so

Com,M,A is negligible. Here

Advind-so
Com,M,A := Pr

[
Expind-so-real

Com,M,A = 1
]
− Pr

[
Expind-so-ideal

Com,M,A = 1
]
,

where Expind-so-real
Com,M,A proceeds as follows:

1. sample messages M = (Mi)i∈[n] ←M,

2. let A(receive) interact concurrently with n instances (Si(commit,Mi))i∈[n] of S,
3. let I ∈ I be A's output after interacting with the Si,

4. let A(open) interact concurrently with the |I| instances (Si(open))i∈I of S,
5. send the full message vector M to A,
6. output A's �nal output b.

On the other hand, Expind-so-ideal
Com,M,A proceeds as follows:

1. sample messages M = (Mi)i∈[n] ←M,

2. let A(receive) interact concurrently with n instances (Si(commit,Mi))i∈[n] of S,
3. let I ∈ I be A's output after interacting with the Si,

4. let A(open) interact concurrently with the |I| instances (Si(open))i∈I of S,
5. sample M ′ ←M |MI , i.e., sample a fresh message vector M ′ fromM with M ′

I = MI ,

6. send the full vector M ′ to S,
7. output A's �nal output b.

On the conditioned distributionM |MI . We stress that, depending onM, it may be compu-
tationally hard to sample M ′ ←M |MI , even if (the unconditioned)M is PPT. This might seem
strange at �rst and inconvenient when applying the de�nition in some larger reduction proof. How-
ever, there simply seems to be no other way to capture indistinguishability, since the set of opened
commitments depends on the commitments themselves. In particular, in general we cannot predict
which commitments the adversary wants opened, and then, say, substitute the not-to-be-opened
commitments with random commitments. What we chose to do instead is to give the adversary
either the full message vector, or an independent message vector which �could be� the full message
vector, given the opened commitments. We believe that this is the canonical way to capture se-
crecy of the unopened commitments under selective openings. We should also stress that it is this
de�nition that turns out to be useful in the context of interactive argument systems, see Section 6.

The relation between SIM-SO-COM and IND-SO-COM security. Unfortunately, we (cur-
rently) cannot prove that SIM-SO-COM security implies IND-SO-COM security (although this
seems plausible, since usually simulation-based de�nitions imply their indistinguishability-based
counterparts). Technically, the reason why we are unable to prove an implication is the conditioned
distributionM |MI in the ideal IND-SO-COM experiment, which cannot be sampled from during
an (e�cient) reduction.
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A relaxation. Alternatively, we could let the adversary predict a predicate π of the whole message
vector, and consider him successful if Pr [b = π(M)] and Pr [b = π(M ′)] for the alternative message
vector M ′ ←M |MI di�er non-negligibly. We stress that our upcoming negative result (as well as
the application in Section 6) also applies to this relaxed notion.

4.1 Impossibility from black-box reductions

Theorem 4.2 (Black-box impossibility of perfectly binding IND-SO-COM, most general formula-
tion). Let n = n(k) = 2k, and let I = (In)n with In = {I ⊆ [n] : |I| = n/2} be the family of

all n/2-sized subsets of [n]. Let X be an oracle that satis�es property P even in presence of an

EXPSPACE-oracle. We also demand that X is computable in EXPSPACE.7 Then, there exists a

set of oracles relative to which X still satis�es P, but no perfectly binding commitment scheme is

indistinguishable under selective openings.

Proof. Let E = {0, 1}k and ε := .01. Let EXPSPACE be an EXPSPACE-oracle. We stress that
EXPSPACE can be used to perform ine�cient computations, but EXPSPACE itself never makes
oracle queries (e.g., to X or the oracles RO and B presented below). Let RO be a random function
from En/2+1 to En. We write M ∈ RO when M ∈ En lies in the range of RO. For M,M ′ ∈ En

and ε > 0, we write M ≡ε M ′ i� M and M ′ coincide in at least d(1 − ε)ne components (i.e., i�
there exists R ⊆ [n], |R| ≥ d(1 − ε)ne, with MR = M ′

R). To construct our last oracle B, let B be
the machine that proceeds as follows.

1. Upon receiving Com as input, check that Com describes a perfectly binding (but not necessarily
hiding) commitment scheme (see the discussion after the description of B). If not, reject with
output ⊥. If yes, concurrently receive n Com-commitments, indexed by i ∈ [n].

2. When all commitments are received, output a uniformly chosen I ∈ I.
3. Engage in |I| concurrent opening phases for the Com-instances with i ∈ I. If all openings are

valid (i.e., every Com-receiver instance with i ∈ I outputs some Mi 6= ⊥), then extract the
whole message vector M = (Mi)i∈[n] ∈ En from the commitments (this is possible uniquely
since Com is perfectly binding). Output the set of all M ′ ∈ RO with M ′

I = MI and M ′ ≡ε M .
We should comment on B's check whether Com is perfectly binding. We want that, for all possible
values of RO and states of X , and for all syntactically allowed commitments, there is at most one
message Mi to which a commitment can be opened in the sense of Com. Note that by assumption
about X , this condition can be checked using EXPSPACE . Concretely, we let EXPSPACE iterate
internally over all possible internal states of X and B, and over all possible random tapes of an
honest veri�er. EXPSPACE then checks whether a syntactically possible commitment along with
two openings to di�erent messages exists. Note that we completely ignore whether or not Com is
hiding.

Again, we cannot use B directly, since B is stateful, and black-box separations require stateless
oracles. So let B be the oracle that evaluates B's next-message function, suitably padded as in the
proof of Theorem 3.3. We note that, similarly to Lemma 3.4, we can derive that the perfect binding
property of a perfectly binding commitment scheme is preserved by the rewindable formalization
in B. In particular, (the transcript of) a commitment phase uniquely determines the only possible
opening message.

Lemma 4.3. Let Com∗ be a perfectly binding commitment scheme (that may use all of the described
oracles in its algorithms). Then, Com∗ is not indistinguishable under selective openings.

7Examples of such X are random oracles or ideal ciphers. It will become clearer how we use the EXPSPACE
requirement in the proof.
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Proof. Consider the n-message distributionM∗ that samples random elements in the range of RO.
(I.e.,M∗ outputs RO(X) for a uniformly sampled X ∈ En/2+1.) Consider the following adversary
A that relays between the real or ideal IND-SO-COM experiment and oracle B. (Again, we silently
assume that A pre�xes queries to B with the respective message history.)

1. Initially, send Com∗ to B.
2. Relay the n commitments from the IND-SO-COM experiment to B.
3. Upon receiving I∗ ∈ I from B, send I∗ to the IND-SO-COM experiment.
4. Upon receiving |I∗| openings from the experiment, relay these openings to B.
5. Upon receiving a challenge message M from the experiment, and a set S ⊆ En from B, output

outA = 1 i� S = {M}.
First, we claim that the probability for S = {M∗} is overwhelming, where M∗ denotes the message
vector sampled by the IND-SO-COM experiment. By construction of B, we have M∗ ∈ S. Fur-
thermore, for any M ′ ∈ S, it must hold that M ′ ≡ε M∗. But for any distinct X1, X2 ∈ En/2+1,
we have that RO(X1) ≡ε RO(X2) with probability

(
n

d(1−ε)ne
)
/|E|d(1−ε)ne. A union bound over all

M ′ ∈ RO shows that the probability that there exists an M ′ ∈ S, M ′ 6= M∗ is negligible. Hence
S = {M∗} with overwhelming probability.

Thus, A outputs 1 in the real IND-SO-COM experiment with overwhelming probability, since
then M = M∗. However, in the ideal IND-SO-COM experiment, M 6= M∗ with overwhelming
probability (since for uniformly chosen M∗ ∈ RO, the expected number of M ∈ RO with MI = M∗

I

is about |E| = 2k). Consequently, A outputs 1 in the ideal IND-SO-COM experiment only with
negligible probability. We get that Advind-so

Com∗,M∗,A is overwhelming, which proves the lemma.

Lemma 4.4. X satis�es P.

Proof. Consider a PPT adversary A on X 's property P. Note that A may use RO, B, and
EXPSPACE freely. We proceed in games to show that Advprop

P,X ,A is negligible.
Let Game 0 by the original security experiment in which A attacks X 's property P. We say

that a B-query is a commit query (resp. open query) if it �nishes the commitment (resp. opening)
phase in the corresponding interaction with B, such that B responds with an I ∈ I (resp. a set of
M ′ ∈ RO). Without loss of generality, we may assume that A never makes commit queries twice,
and always makes precisely p(k) open queries for a �xed polynomial p. We also assume that for any
of A's open queries, A made a corresponding commit query �rst.8 Let out0 denote P's output in
Game 0. By de�nition, we have

Pr [out0 = 1]− 1/2 = Advprop
P,X ,A.

In Game i (for 0 < i ≤ p(k)), we use an oracle Bi instead of oracle B. Here, Bi behaves like B,
except that Bi answers each of A's �rst i opening queries as follows. Here, MI = (MI)i∈I denotes
the opened messages, as before.
• If all openings are valid, then return the set of all M ′ ∈ RO which have been explicitly
obtained through RO-queries by A (or Bi, in the role of a receiver), and for which M ′

I = MI .
We stress that oracle Bi does not break a commitment or use internal access to RO until the (i+1)-
th open query. Let out i denote P's output in Game i. To show that out i is not signi�cantly a�ected
by our changes, �x an i. Let h denote A's i-th open query in Game i. Let S = Bi(h) denote the
answer A gets in Game i, and let S′ = Bi−1(h) denote the answer that A would have received in

8In order to violate this assumption, A would have to guess an I ∈ I as chosen by B upon the corresponding
commit query. Since |I| is large, we ignore this possibility.
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Game i − 1. We show in Lemma 4.5 below that S = S′ except with probability asymptotically
smaller than 2−3εk, so that

Pr [out i = 1]− Pr [out i−1 = 1] ≤ 2−(ε/2)k

for su�ciently large k and all i ∈ [p(k)].
Observe that in Game p(k), Bp(k) and RO can both be simulated e�ciently inside A. Indeed,

Bp(k) only needs knowledge about A'sRO-queries, as well as access to EXPSPACE to check whether
a given commitment scheme is perfectly binding. Hence,

Advprop
P,X ,A′ = Pr

[
outp(k) = 1

]
− 1/2

for a suitable PPT adversary A′ that internally simulates A, RO, and Bp(k), and only needs access to
EXPSPACE . By assumption about X , Advprop

P,X ,A′ is negligible, and hence so must be Advprop
P,X ,A.

It remains to prove that, in the situation of Lemma 4.4, S = S′ with high probability.

Lemma 4.5. In the situation of Lemma 4.4, Pr [S 6= S′] ≤ 2−(ε/2)k for su�ciently large k.

Combining Lemma 4.6, 4.7, 4.8, and 4.9 below shows Lemma 4.5.

Lemma 4.6. In the situation of Lemma 4.4, |S| ≤ 1 except with probability at most q(k)2−k for

some polynomial q.

Proof. We interpret the whole Game i (including A, P, X , Bi, and EXPSPACE) as a machine
A′ interacting with RO. Note that A′ may be computationally unbounded, but only makes a
polynomial number of RO-queries, at least until A's i-th open query. Let QRO denote the set of
RO-queries of A′. Now |S| > 1 implies that there are X1, X2 ∈ QRO with X1 6= X2, such that
RO(X1),RO(X2) ∈ S, and so RO(X1)I = RO(X2)I . However, the statistical properties of RO
imply that for any X1, X2 ∈ QRO, RO(X1) and RO(X2) match in at least one component with
probability at most n2−k. A union bound over all such pairs shows the claim.

Lemma 4.7. In the situation of Lemma 4.4, |S′| ≤ 1 except with probability at most q(k)2−k for

some polynomial q.

Proof. As in Lemma 4.6, we interpret Game i as a machine A′ interacting with RO. Again, let
QRO denote the set of RO-queries of A′. Now let X be the set of all X ∈ En/2+1 \ QRO with
RO(X)I = MI . Using, e.g., Chebyshev's inequality, we get |X| < 2|E|, except with probability
at most 2−k. Furthermore, QRO contains at most one query X with RO(X)I = MI except with
probability at most q1(k)2−k for some polynomial q1 (with similar reasoning as in Lemma 4.6). Let
X
′ := X ∪ {X} for that X ∈ QRO, or X

′ := X if no such X exists. By the preceding discussion,
|X′| ≤ 2E except with probability (q1(k) + 1)2−k.

Now |S′| > 1 implies that X1, X2 ∈ X′ exist, such that X1 6= X2 but RO(X1) ≡ε M ≡ε

RO(X2), and so RO(X1) ≡2ε RO(X2). Observe that the values RO(X) for X ∈ X′ are inde-
pendent, conditioned only on RO(X)I = MI . For any �xed X1, X2 ∈ X′ with X1 6= X2, the

probability that RO(X1) ≡2ε RO(X2) is
( n/2
d(1/2−2ε)ne

)
/|E|d(1/2−2ε)ne, which is less than 2−3k−2 for

su�ciently large k. Assuming that |X′| ≤ 2|E| = 2k+1, a union bound yields that no such X1, X2

exist, and hence |S′| ≤ 1, except with probability 2−k. Summing up shows the claim.

Lemma 4.8. In the situation of Lemma 4.4, S = ∅ but |S′| = 1 with probability at most q(k)2−k/2

for some polynomial q.
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Proof. Let bad denote the event that S = ∅ but S′ = {M ′} for some M ′, and let badj denote the
event that bad occurs and A's i-th open query refers to A's j-th commit query. Since A makes only
polynomially many Bi-queries, there is a polynomial q1 = q1(k) and a function j = j(k) such that
Pr [badj ] ≥ Pr [bad] /q1(k).

Consider the machine A′ that simulates Game i and interacts externally only with oracle RO.
Call I1 ∈ I the answer of Bi to A's j-th commit query. After A submits its i-th open query, A′

rewinds the simulation back to A's j-th commit query, and then restarts with a freshly sampled
I2 ∈ I as Bi's answer to A's j-th commit query. By badj,1, resp. badj,2, we denote the events that
badj occurs before, resp. after the rewinding. It is clear that Pr [badj,1] = Pr [badj,2] = Pr [badj ],
but unfortunately, the events badj,1 and badj,2 may be dependent. We have to work to establish
that badj,1 and badj,2 occur simultaneously with su�ciently large probability. Consider a pre�x Ej

of A′'s execution until A's j-th commit query. Given any such Ej and a �xed oracle RO, the events
badj,1 and badj,2 are independent and occur with the same probability, so that

Pr [badj,1 ∧ badj,2] =
∑

Ej ,RO
Pr [badj,1 ∧ badj,2 | Ej ,RO] · Pr [Ej ,RO]

=
∑

Ej ,RO
Pr [badj,1 | Ej ,RO]2 · Pr [Ej ,RO]

(∗)
≥

 ∑
Ej ,RO

Pr [badj,1 | Ej ,RO] · Pr [Ej ,RO]

2

= Pr [badj,1]
2 = Pr [badj ]

2 ≥ Pr [bad]2 /q1(k)2,

where (∗) uses that
∑

i cix
2
i ≥ (

∑
i cixi)2 for ci, xi ≥ 0 with

∑
i ci = 1 by Jensen's inequality.

Let QRO,1 denote the set of A′'s RO-queries before the rewinding, and let QRO,2 denote the set
of A′'s RO-queries after the rewinding and before A's j-th commit query. The rationale here is that
QRO,1 are A's queries in the run related to I1, and QRO,2 are A's queries in the run related to I2.
Note that QRO,1 and QRO,2 share A's queries before the j-th commitment. We write RO(QRO,i)
for the set of all RO(X) for X ∈ QRO,i.

Now badj,1∧badj,2 implies that A opens two subsets MI1 and MI2 message vector M inside the
j-th commit query, such that there exist M1,M2 ∈ RO with the following properties:
• M1

I1 = MI1 and M2
I2 = MI2 ,

• M1 ≡ε M ≡ε M2 and hence M1 ≡2ε M2,
• M1 6∈ RO(QRO,1) and M2 6∈ RO(QRO,2).

We claim that M1 = M2 with high probability. To see this, letM be set of all M ′ ∈ RO\RO(QRO,1)
which satisfy M ′

I1∩I2 = MI1∩I2 . A simple calculation shows that m := |I1 ∩ I2| ≥ n/10 except
with probability at most 2−k for su�ciently large k. Now |M|'s expected value is, depending on
|QRO,1|, at most |E|n/2+1−m. A Chebyshev bound as in Lemma 4.7 yields that |M| ≤ |E|n/2−m+2

except with probability at most q2(k)2−k for some polynomial q2. So assume |I1 ∩ I2| ≥ n/10
and |M| ≤ |E|n/2−m+2. Then, for any two M1,M2 ∈ M with M1 6= M2, we have M1 ≡2ε M2

with probability at most
(

n−m
b2εnc

)
/|E|n−m−b2εnc. A simple calculation and a union bound over all

M1,M2 ∈ M yield that there do not exist M1,M2 ∈ M with M1 ≡2ε M2 yet M1 6= M2, except
with probability at most q3(k)2−k for some polynomial q3. So for the M1,M2 guaranteed by
badj,1 ∧ badj,2, either M1 = M2, or M2 6∈M with high probability.

Now M2 6∈M implies M2 = RO(X) for some X ∈ QRO,1, and badj,2 even dictates X ∈ QRO,1 \
QRO,2. Put di�erently, M2 6∈ M implies that in the execution after the rewinding, MI2 = M2

I2

contains a component of an RO-image M2 obtained (independently, since M2 6∈ QRO,2) before
the rewinding. By symmetry, the probability that this happens equals the probability that MI1

contains a component of an RO-image M1 queried after the rewinding. However, this essentially
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means that A′ has guessed a component of the result of an upcoming RO-query, which can happen
with probability at most q4(k)2−k for some polynomial q4 by the statistical properties of RO. We
conclude that hence, M2 ∈ M and so M1 = M2 except with probability at most q5(k)2−k for a
polynomial q5.

Finally, a counting argument shows that |I1 ∪ I2| < n/2 + 2 happens with probability less
than 2−k for large enough k. Summarizing, badglue := badj,1 ∧ badj,2 ∧ (M1 = M2) ∧ (|I1 ∪
I2| ≥ n/2 + 2) happens with probability at least Pr [bad]2 − q6(k)2−k for some polynomial q6.
But badglue implies that A′ has found J := I1 ∪ I2 with |J | ≥ n/2 + 2, such that there exists an
M ′ := M1 = M2 ∈ RO with M ′

J = MJ , and A′ has not obtained M ′ through an explicit RO-query.
Another Chebyshev bound shows that no such M ′ exists, except with probability (over the images
RO \ RO(QRO,1 ∪QRO,2) not queried by A′) at most 2−k. Hence, Pr

[
badglue

]
≤ 2−k, so that we

�nally have Pr [bad] ≤ q(k)2k/2 for some polynomial q.

Lemma 4.9. In the situation of Lemma 4.4, |S| = 1 but S′ = ∅ with probability at most 2−(ε/2)k

for large enough k.

Proof. Again, we interpret the whole Game i (except for RO) as a machine A′ interacting with RO.
As in Lemma 4.8, A′ waits for A's i-th open query MI , and then rewinds the whole game back to
A's j-th commit query. Again, A′ re-samples an I ← I as a fresh answer to A's j-th commit query,
in the hope that A opens MI in the i-th open query. However, this time A′ repeats this process
p(k) times for a suitable number p(k) to be determined later. Let S` and I` denote the values of I
and S from the `-th rewinding.

Now �x random tapes for all machines simulated inside A′, and �x an RO. This means that
the only randomness during the execution of A′ comes from the choice of the I`. Let bad denote
the event that |S| = 1 but S′ = ∅, and let badj denote the event that bad occurs and A's i-th open
query refers to A's j-th commit query. Since A makes only polynomially many Bi-queries, there
is a polynomial q = q(k) and a function j = j(k) such that Pr [badj ] ≥ Pr [bad] /q(k), where the
probability is only over I ∈ I.

Suppose that Pr [bad] > 2−(ε/2)k for contradiction, so that Pr [badj ] > 2−εk for large enough k.
Let I ′ ⊆ I be the set of all I such that badj occurs when A receives I upon the j-th commit query.
Note that I ′ is well-de�ned, since we �xed all randomness except for I. Assume �rst that there
exists a subset B ⊆ [n] of size |B| > bεnc with Pr [I ∈ I ′ ∧ i ∈ I] < 2−2εk for all i ∈ B, where the

probability is over I ∈ I. We have Pr [I ∩B = ∅] =
(d(1−ε)ne

n/2

)
/
(

n
n/2

)
≤ 2−εn = 2−2εk, so

2−εk − 2−2εk ≤ Pr
[
I ∈ I ′

]
− Pr [I ∩B = ∅] ≤ Pr

[
I ∈ I ′ ∧ I ∩B 6= ∅

]
≤

∑
i∈B

Pr
[
I ∈ I ′ ∧ i ∈ I

]
< n · 2−2εk

creates a contradiction for su�ciently large k. Hence, no such B exists, and so there must be a
subset R ⊆ [n] of size |R| ≥ d(1− ε)ne such that Pr [I ∈ I ′ ∧ i ∈ I] ≥ 2−2εk for all i ∈ R.

Our goal is now to use A′ to extract MR with high probability. To this end, we �rst �nish
our description of A′. Let L denote the set of all ` ∈ [p(k)] for which badj occurs in the `-th
rewinding. After p(k) := 28εk rewindings, A′ outputs MJ , where J =

⋃
`∈L I` is the union of all

successfully extracted partial message subsets. For ` ∈ L, we have |S`| = 1 by de�nition of badj , so
say S` = {M `}. By de�nition, M ` has been obtained by A′ through an explicit RO-query, and we
have M `

I` = MI` for the message vector M inside A's j-th commit query. Similar to Lemma 4.6, all
components of all RO-images obtained by A′ are pairwise distinct, except with probability at most
2−k/2 for large enough k. As in Lemma 4.8, we can show that all the RO-images M ` are identical,
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except with probability 2−k/2 for su�ciently large k. Thus, there exists one single M ′ ∈ RO with
M ′

J = MJ . Now note that the I` are independent. Hence, a Chebyshev bound shows that for
each �xed i ∈ R, there is an I` ∈ L ⊆ I ′ with i ∈ I`, except with probability at most 2−6εk. A
union bound over all i ∈ R yields R ⊆ J except with probability at most 2−5εk for large enough
k. So, except with probability 2−6εk + 2k/2 < Pr [bad], A′ shows the existence of an M ′ ∈ RO
with M ′

J = MJ for |J | ≥ d(1 − ε)ne, such that M ′ ≡ε M . Since M ′
I` = MI` for any I` ∈ L, this

contradicts badj and thus bad. Hence, our assumption on Pr [bad] must have been incorrect, and
we have proved the lemma.

Combining Lemma 4.3 and Lemma 4.4 shows Theorem 4.2.

We stress that the requirement in Theorem 4.2 on X is a rather mild one. For instance, random
oracles are one-way even against computationally unbounded adversaries, as long as the adversary
makes only a polynomial number of oracle queries. Hence, an EXPSPACE-oracle (which itself does
not perform oracle queries) is not helpful in breaking a random oracle. So similarly to Corollary 3.9,
we get for concrete choices of X and P:

Corollary 4.10 (Black-box impossibility of perfectly binding IND-SO-COM). Let n and I as in

Theorem 4.2. Then no perfectly binding commitment scheme can be proved indistinguishable under

selective openings via a ∀∃semi-black-box reduction to one or more of the following primitives: one-

way functions, one-way permutations, trapdoor one-way permutations, IND-CCA secure public key

encryption.

Generalizations. Again, Corollary 4.10 constitutes merely an example instantiation of the much
more general Theorem 4.2. We stress, however, that the proof for Theorem 4.2 does not apply
to �almost-perfectly binding� commitment schemes such as the one from Naor [24]. (For instance,
for such schemes, B's check that the supplied commitment scheme is binding might tell something
about X .)

4.2 Statistically hiding schemes are secure

Fortunately, things look di�erent for statistically hiding commitment schemes:

Theorem 4.11 (Statistically hiding schemes are IND-SO-COM secure). Fix arbitrary n and I as

in De�nition 4.1, and let Com = (S,R) be a statistically hiding commitment scheme. Then Com is

indistinguishable under selective openings in the sense of De�nition 4.1.

Proof. Fix an n-message distributionM and a PPT adversary A on the SIM-SO-COM security of
Com. We proceed in games.

Game −1 is the real IND-SO-COM experiment Expind-so-real
Com,M,A. Let out−1 denote the output of

the experiment, so that we have

Pr
[
Expind-so-real

Com,M,A = 1
]

= Pr [out−1 = 1] .

Game 0 constitutes our �rst modi�cation of Expind-so-real
Com,M,A, and proceeds as follows (emphasized

steps are di�erent from Expind-so-real
Com,M,A):

1. sample messages M = (Mi)i∈[n] ←M,
2. let A(receive) interact concurrently with n instances (Si(commit,Mi))i∈[n] of S,
3. let I ∈ I be A's output after interacting with the Si,
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4. for every i ∈ I, set the i-th sender's state to the output of procedure AltDec(Hi,Mi) (described
below), where Hi denotes the exchanged messages during the commit phase of the i-th Com
instance,

5. let A(open) interact concurrently with the |I| instances (Si(open))i∈I of S,
6. send the full message vector M to A,
7. output A's �nal output b.

The (in general ine�cient) procedure AltDec takes as input a history Hi of exchanged messages
in the commit phase and a message Mi. We call a random tape t for S consistent with Hi and

Mi i� S(commit,Mi) (with random tape t) produces the sender's messages in Hi when receiving
the respective receiver's replies in Hi. Let THi,Mi denote the set of all random tapes t for S which
are consistent with Hi and Mi. Now AltDec(Hi,Mi) samples uniformly a random tape t from
THi,Mi and returns the state of S with random tape t and after an interaction according to Hi. If
THi,Mi = ∅, then AltDec returns ⊥ (and Game 0 aborts with output 0). In other words, AltDec
returns the state of a sender S with initial input Mi, conditioned on the transcript Ti of the commit
phase.

In Game 0, AltDec will never return ⊥ (since AltDec is invoked with a transcript Hi that has
actually been produced as a commit phase to Mi). Moreover, the view of the adversary is not altered
by re-sampling the internal state of the sender, conditioned on all previous actions, as AltDec does.
Hence, we have

Pr [out0 = 1] = Pr [out−1 = 1]

for the output out0 of the experiment in Game 0.
We describe Game j (for j ∈ [n]). Game j is identical to Game 0, except for step 2:

2∗. let A(receive) interact concurrently with n instances (Si(commit,M∗
i ))i∈[n] of S, where we

set M∗
i = 0k for i ≤ j and M∗

i = Mi for j > i,
Obviously, for j = 0 we would get Game 0. Note that only di�erence between Game j−1 and Game
j is the commitment to Mj . In fact, we can now construct an adversary A′ on Com's statistical
hiding property. A′ �rst uniformly chooses j ∈ [n], then simulates Game j − 1, but picks Mj and

0k as challenge messages for its own experiment Exphiding-b
Com,A′ . The j-th commitment (to either Mj or

0k) is performed through the experiment. Exphiding-0
Com,A′ is then a perfect simulation of Game j − 1,

and Exphiding-1
Com,A′ perfectly simulates Game j. (However, we stress that A′ is inherently unbounded:

A′ must run procedure AltDec.) We get that

Pr [outn = 1]− Pr [out0 = 1] = n · Advhiding
Com,A′

must be negligible, which proves that

Pr
[
Expind-so-real

Com,M,A = 1
]
− Pr [outn = 1]

is negligible.
We can apply the same reasoning for the ideal IND-SO-COM experiment Expind-so-real

Com,M,A: we �rst
construct the openings using the commit transcripts Hi and the target messages Mi alone as in
Game 0 above. Then we change the actual commitments to commitments to 0k, as in Game 1 up
to Game n above. At this point, the modi�ed ideal experiment �rst samples M ← M and then
M ′ ← M | MI , but never uses M . Hence we can sample M ′ ← M in the �rst place without
changing A's view. But this is then exactly Game n from above, so that we get that

Pr
[
Expind-so-ideal

Com,M,A = 1
]
− Pr [outn = 1]

is negligible. Hence Advind-so
Com,M,A is negligible as well, which shows the theorem.
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We stress that the proof of Theorem 4.11 also holds (literally) in case A and/or M gets an
additional auxiliary input z.

5 Application to adaptively secure encryption

Motivation and setting. Taking up the motivation of Damgård [11], we consider the setting of
an adversary A that may corrupt, in an adaptive manner, a subset of a set of parties P1, . . . , Pn.
Assume that for all i, the public encryption key pk i with which party Pi encrypts outgoing messages,
is publicly known. Suppose further that A may corrupt parties based on all public keys and all so
far received ciphertexts. When A corrupts Pi, A learns Pi's internal state and history, in particular
A learns the randomness used for all of that party's encryptions, and its secret key sk i. We assume
the following:

1. The number of parties is n = 2k for the security parameter k,
2. It is allowed for A to choose at some point a subset I ⊆ [n] of size n/2 and to corrupt all these

Pi (i ∈ I).
3. We can interpret the used encryption scheme as a (non-interactive, hiding and binding) com-

mitment scheme Com = (S,R) in the following sense: S(M) generates a fresh public key pk and
outputs a commitment com = (pk ,Enc(pk ,M ; r)) and an opening dec = (M, r). Here Enc de-
notes the encryption algorithm of the encryption scheme, and r denotes the randomness used
while encrypting M . Veri�cation of (com, dec) = (pk ,C ,M, r) checks that Enc(pk ,M ; r) = C .

Note that the third assumption does not follow from the scheme's correctness. Indeed, correctness
implies only that honestly generated (pk ,M) are committing. However, there are schemes for which
it is easy to come up with fake public keys and ciphertexts (i.e., fake commitments) which are
computationally indistinguishable from honestly generated commitments, but can be opened in
arbitrary ways. Prominent examples of such schemes are non-committing encryption schemes [7,
4, 8, 12, 10], which however generally contain interaction from time to time and are comparatively
ine�cient.

Application of our impossibility results. Attacks in this setting cannot be easily simulated in
the sense of, e.g., Canetti et al. [7]: such a simulator would in particular be able to simulate openings
(in the sense of Com, i.e., openings of ciphertexts). Hence, this would imply a simulator for Com
in the sense of SIM-SO-COM security (De�nition 3.1). Now from Corollary 3.9 we know that the
construction and security analysis of such a simulator requires either a very strong computational
assumption, or fundamentally non-black-box techniques. Even worse: if Com is perfectly binding9,
then Corollary 4.10 shows that not even secrecy in the sense of De�nition 4.110 can be proved
in a black-box way. On top of that, we cannot hope to use our (non-black-box) SIM-SO-COM
secure scheme ZKCom to construct an encryption scheme in a non-black-box way, since ZKCom's
commitment phase is inherently interactive.

We stress that these negative results only apply if encryption really constitutes a (binding)
commitment scheme in the above sense. In fact, e.g., [7] construct a sophisticated non-committing

(i.e., non-binding) encryption scheme and prove simulatability for their scheme. Our results show
that such a non-committing property is to a certain extent necessary.

9in the presence of non-uniform adversaries, this is already implied by the fact that the scheme is non-interactive
and computationally binding

10in the context of encryption, De�nition 4.1 would translate to a variant of indistinguishability of ciphertexts
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6 Application to zero-knowledge proof systems

6.1 Graph 3-coloring is composable in parallel

Outline. Dwork et al. [15] have considered the applications of SIM-SO-COM secure commitment
schemes to zero-knowledge protocols, in particular to the graph 3-coloring interactive proof system
G3C of Goldreich et al. [20]. Concretely, [15, Theorem 7.6] states that G3C, when instantiated
with a SIM-SO-COM secure commitment scheme, retains a relaxed zero-knowledge property called
�S(V, T,D) zero-knowledge� under parallel composition. S(V, T,D) zero-knowledge is a variant
of zero-knowledge in which the simulator S may depend on the veri�er V , on the distinguisher T
between real and simulated transcript, and on the considered message distribution D. Unfortunately,
[15] could not give a SIM-SO-COM secure commitment scheme to implement their theorem.

Using our scheme ZKCom, we can instantiate and in fact generalize [15, Theorem 7.6]. Con-
cretely, using a re�ned analysis and the speci�c structure of ZKCom, we show that G3C, when
implemented with ZKCom, is zero-knowledge under parallel composition. This is surprising in light
of the negative composability results Goldreich and Krawczyk [19], Canetti et al. [9]. Similar to
Barak [1], we use non-black-box techniques to circumvent known impossibilities.

Commit-choose-open protocols. We can actually prove parallel composability of a larger class
of �commit-choose-open� style interactive argument systems:

De�nition 6.1 (Commit-choose-open (CCO) protocol). Let IP = (P,V) be an interactive argument

system for an NP-language L with witness relation R. Let n = n(k) > 0 be polynomially bounded,

and let I = (In)n be a family of sets such that each In is a set of subsets of [n]. We say that IP is

a commit-choose-open (CCO) protocol (that uses commitment scheme Com) if the following holds.
First, we require that IP is of the following form:

1. P, upon input (x,w) with x ∈ L and R(x,w), selects n messages (Mi)i∈[n],

2. P engages in n instances of Com to commit to the Mi at R,
3. V, upon input x, chooses a subset I ∈ In and sends I to P,
4. P opens all Com-commitments to Mi with i ∈ I,
5. V accepts if the openings are valid and if the opened values satisfy some �xed relation speci�ed

by the protocol.

Second, we require that the messages (Mi)i∈I opened by P in the third step are uniform and indepen-

dent values over their respective domain. (In particular, (Mi)i∈I can be e�ciently sampled without

knowing a witness w.)

It is easy to verify that the mentioned graph 3-coloring protocol G3C [20] is a CCO protocol. Also,
trivially, the parallel composition of many instances of a CCO protocol is again a CCO protocol.
In particular, in the following, we will for simplicity only talk about a single CCO protocol, while
one should actually have the parallel composition of, e.g., G3C in mind.

Auxiliary-input SIM-SO-COM security. We will prove that any CCO protocol, when using
a commitment scheme which is simulatable under selective openings, is black-box zero-knowledge.
To this end, we need a re�nement of SIM-SO-COM security, which captures auxiliary input and an
order of quanti�ers as in the zero-knowledge de�nition.

De�nition 6.2 (AI-SIM-SO-COM). In the situation of De�nition 3.1, we say that Com is AI-SIM-

SO-COM secure, i� for every PPT adversary A, there exists a PPT simulator S, such that for every
PPT relation R, every PPT n-message distribution M, and all auxiliary inputs zM = (zMk )k∈N ∈
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({0, 1}∗)N, zA = (zA
k )k∈N ∈ ({0, 1}∗)N, and zR = (zR

k )k∈N ∈ ({0, 1}∗)N, we have that the advantage
Advsim-so

Com,M,A,S,R,zM,zA,zR is negligible. Here, Advsim-so
Com,M,A,S,R,zM,zA,zR is de�ned as Advsim-so

Com,M,A,S,R,

with the following di�erences:

• M gets additional input zM,

• A and S get additional input zA, and

• R gets additional input zR.

We claim that our scheme ZKCom from Section 3.2 satis�es De�nition 6.2. To see this, recall
that the simulator S constructed in the proof of Theorem 3.11 works also in the presence of auxiliary
input. Furthermore, S does not depend onM and R. However, sinceM, S, A, and R all receive
an auxiliary input in the AI-SIM-SO-COM experiment, we must demand that the commitment
schemes Comb and Comh against non-uniform adversaries. We get:

Theorem 6.3 (ZKCom is AI-SIM-SO-COM). Suppose that there exist one-way permutations secure
against non-uniform adversaries. Then our commitment scheme ZKCom from Section 3.2 can be

instantiated such that ZKCom achieves AI-SIM-SO-COM security for arbitrary n, I.

The following theorem is a generalization of Dwork et al. [15, Theorem 7.6]:

Theorem 6.4 (AI-SIM-SO-COM implies zero-knowledge). Let IP = (P,V) be a CCO protocol that

uses a commitment scheme Com. If Com is AI-SIM-SO-COM secure (for n and I as used in IP),
then IP is zero-knowledge in the sense of De�nition 2.4.

Proof. Assume V ∗, (x,w), D, zV ∗
, and zD as in De�nition 2.4. We will construct a suitable PPT

simulator S∗. Since IP is a CCO protocol, we can immediately use the AI-SIM-SO-COM security of
Com. To this end, we de�ne an adversary A, a message distributionM, a relation R, and auxiliary
inputs zA and zR as in De�nition 6.2.

Concretely, de�ne zM = (x,w) and letM be the PPT n-message distribution that is induced by
P on input (x,w). Furthermore, let zA = (xk, z

V ∗
) and let A = V ∗, except that A �nally outputs a

transcript of its conversation. We hence have outA = 〈P(xk, wk), V ∗(xk, z
V ∗
k )〉. Finally, set zR = zD

and R(M, out , zR) = D(out , zR), such that R outputs exactly what D outputs on real transcripts
as in De�nition 2.4. Now De�nition 6.2 guarantees that there exists a PPT machine S such that

Pr
[
R(M, outA, zR) = 1

]
− Pr

[
R(M, outS , zR) = 1

]
= Pr

[
D(〈P(xk, wk), V ∗(xk, z

V ∗
k )〉, zD) = 1

]
− Pr

[
D(outS , zD) = 1

]
is negligible, where outS denotes the �nal output of S in the ideal AI-SIM-SO-COM experiment.
Note that outS is still obtained through an interactive experiment that in particular requires knowl-
edge about M and hence the witness w. However, the only information S actually receives about
the message vector M is the subset MI = (Mi)i∈I . Since IP is a CCO protocol in the sense of De�-
nition 6.1, MI is statistically independent of (x,w). Hence we can construct the following machine
S∗ which has oracle access to A = V ∗. Namely, S∗ internally simulates S (and relays to S∗ its own
oracle access to A). As soon as S outputs a set I, S∗ answers with a uniformly and independently
sampled set (Mi)i∈I . Note that S∗ no longer takes part in a AI-SIM-SO-COM experiment, but
instead works with input zA = (xk, z

V ∗
) and oracle access to V ∗ alone. By the CCO property of

IP, we obtain

Pr
[
D(outS , zD) = 1

]
= Pr

[
D(S∗(xk, z

V ∗
, zD) = 1

]
,

and hence, putting things together shows that AdvZK
V ∗,S∗,(x,w),D,zV ∗ ,zD is indeed negligible.
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Observing that the mentioned graph 3-coloring protocol G3C from Goldreich et al. [20] is a CCO
protocol, and that the set of CCO protocols are closed under parallel composition we get:

Corollary 6.5 (G3C is composable in parallel). The graph 3-coloring protocol G3C, when imple-

mented with our commitment scheme ZKCom, is zero-knowledge, even under parallel composition.

What our positive results do not imply (and what our negative results do imply).

We emphasize as well that our results do not imply that there are no, in the terminology of [15],
�magic functions.� In order to prove non-existence of magic functions with [15, Theorem 5.1], one
would have to �nd a non-interactive SIM-SO-COM secure commitment scheme. Our negative result
Theorem 3.3 states that this will not be possible with black-box reductions to standard assumptions.

6.2 IND-SO-COM security and witness indistinguishability

Outline. A natural question is whether IND-SO-COM security, our relaxation of SIM-SO-COM
security, provides a reasonable fallback for SIM-SO-COM security. Now �rst, our results show that
even when using IND-SO-COM secure schemes, we cannot rely on perfectly binding commitment
schemes because of Theorem 4.2. For many interesting interactive proofs (and in particular the
mentioned graph 3-coloring protocol G3C), this unfortunately means that the proof system degrades
to an argument system. But, assuming we are willing to pay this price, what do we get from IND-
SO-COM security?

The answer is �essentially witness indistinguishability,� as we will argue in a minute. Essentially,
any commitment scheme which satis�es (a slight variation of) IND-SO-COM security can be used to
implement commit-choose-open style interactive argument systems. The resulting argument system
will be witness-indistinguishable, and the security reduction is tight. (In particular, the security
reduction does not lose a factor of |I|, where |I| is the number of possible challenges sent by the
veri�er.)

We stress that, since the set of commit-choose-open protocols is closed under parallel compo-
sition, we get composability �for free.� Now witness indistinguishable argument systems already
enjoy a composition theorem (see, e.g., Goldreich [17, Lemma 4.6.6]), so the compositionality claim
is not surprising. However, we believe that our results demonstrate that the security notion of
IND-SO-COM secure commitments itself is a reasonable fallback to SIM-SO-COM security.

Auxiliary-input IND-SO-COM security. Since the standard de�nition of witness indistin-
guishability (see De�nition 2.6) involves an auxiliary input z given to the veri�er/adversary V ∗, we
also consider a variation of De�nition 4.1 that involves auxiliary input. Namely,

De�nition 6.6 (AI-IND-SO-COM). In the situation of De�nition 4.1, we say that Com is AI-
IND-SO-COM secure i� Advind-so

Com,M,A,z is negligible for all PPT M and A and all auxiliary inputs

z = (zk)k∈N ∈ ({0, 1}∗)N, where bothM and A are invoked with additional auxiliary input zk.

We stress that the proof of Theorem 4.11 shows AI-IND-SO-COM security, once the investigated
commitment scheme is statistically hiding against non-uniform adversaries.

Now we are ready to prove the following connection between witness indistinguishability and
AI-IND-SO-COM:

Theorem 6.7 (AI-IND-SO-COM implies witness indistinguishability). Assume a CCO protocol

IP with parameters n′ and I ′ that uses commitment scheme Com as in De�nition 6.1. If Com is

AI-IND-SO-COM for parameters n = n′ + 1 and I = I ′, then IP is witness indistinguishable. The

security reduction loses only a factor of 2.
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Proof. Assume arbitrary x,w0, w1, V ∗, D, z as in De�nition 2.6. We construct a message distribution
M, an adversary A, and a z′ such that

Advind-so
Com,M,A,z =

1
2
AdvWI

x,w0,w1,V ∗,D,z.

First, de�ne z′k = (xk, w
0
k, w

1
k, zk), so that M and A are both invoked with both witnesses and zk.

Then, letM be the following PPT algorithm:
1. upon input z′k = (xk, w

0
k, w

1
k, zk), toss a coin b ∈ {0, 1},

2. sample messages (Mi)i∈[n′] by running P on input (xk, w
b
k),

3. de�ne Mn′+1 := b,
4. return the (n′ + 1)-message vector (Mi)i∈[n′+1].

Now adversary A, running in the IND-SO-COM experiment, proceeds as follows:
1. upon input z′k = (xk, w

0
k, w

1
k, zk), start an internal simulation of V ∗ on input (xk, zk),

2. upon receiving n = n′ + 1 Com-commitments from the experiment, relay the �rst n′ of these
commitments to V ∗, and receive the (n′ + 1)-th commitment,

3. when V ∗ chooses a set I ⊆ [n′], relay this set (interpreted as a subset of [n] = [n′ + 1]) to the
experiment,

4. upon receiving openings (for i ∈ I) from the experiment, relay these openings to V ∗,
5. when the interaction between experiment and V ∗ �nishes, run b′ ← D(xk, zk, T ) to obtain a

bit b′, where T denotes the transcript of the interaction between the experiment and V ∗,
6. upon receiving a message vector M∗ = (M∗

i )i∈[n] from the experiment, output b′ ⊕M∗
n′+1.

Now in the real IND-SO-COM experiment Expind-so-real
Com,M,A,z, the following happens: if M chose

b = 0, then an interaction of P(xk, w
0
k) and V ∗(xk, zk) is perfectly simulated. Since M∗

n′+1 = b = 0,
consequently A and also Expind-so-real

Com,M,A,z output D(xk, zk, 〈P(xk, w
0
k), V

∗(xk, zk)〉). Conversely, if b = 1,
then Expind-so-real

Com,M,A,z outputs 1 −D(xk, zk, 〈P(xk, w
1
k), V

∗(xk, zk)〉) because M∗
n′+1 = b = 1 then. We

get that

Pr
[
Expind-so-real

Com,M,A,z = 1
]

=
1
2

(
Pr

[
D(xk, zk, 〈P(xk, w

0
k), V

∗(xk, zk)〉) = 1
]

+ 1− Pr
[
D(xk, zk, 〈P(xk, w

0
k), V

∗(xk, zk)〉) = 1
] )

=
1
2
AdvWI

x,w0,w1,V ∗,D,z +
1
2
.

On the other hand, in the ideal IND-SO-COM experiment, the message M∗
n′+1 that A receives from

the experiment results from a resampling of M, conditioned on M∗
I = MI . Since IP is a CCO

protocol, MI is independent of the used witness. Hence MI is also independent of b, and so M∗
n′+1

will be a freshly tossed coin. We get

Pr
[
Expind-so-ideal

Com,M,A,z = 1
]

=
1
2
.

Putting things together proves the theorem.

Tightness in the reduction and composition. We stress that we only lose a factor of 2 in
our security reduction, which contrasts the loss of a factor of about n′2 in the proof of Goldreich
et al. [20]. Their proof works also for perfectly binding commitment schemes (thus achieving an
interactive proof system), which we (almost) cannot hope to satisfy AI-IND-SO-COM security,
according to Theorem 4.2. However, since we can instantiate AI-IND-SO-COM secure schemes
for arbitrary parameters n and I, we can hope to apply Theorem 6.7 even to protocols where
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|In| is super-polynomial.11 In particular, we can apply our theorem to a parallel composition of a
CCO protocol (which is again a CCO protocol). This gives a composition theorem for the witness
indistinguishability of CCO protocols (implemented with AI-IND-SO-COM secure commitments)
at virtually no extra cost.

7 Conclusion and open problems

While our results give an almost complete characterization when and how security under selective
openings can be achieved, some interesting questions remain. Most importantly:
• Is there a non-interactive commitment scheme which is simulatable under selective openings?

The existence of such a scheme would prove the existence of 3-round zero-knowledge proofs with
negligible soundness error. While Theorem 3.3 states that any such scheme must employ non-
standard techniques, we cannot rule out such schemes completely.

Another interesting question is the following:
• Are statistically hiding commitment schemes simulatable under selective openings?

Theorem 4.11 states that such schemes are at least indistinguishable under selective openings.
However, our proof gives no indication on how to construct a simulator.
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A On the role of property P
The intuitive contradiction. The formulations of Theorem 3.3 and Theorem 4.2 seem intuitively
much too general: essentially they claim impossibility of black-box proofs from any computational
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assumption which is formulated as a property P of an oracle X . Why can't we choose X to be an
ideally secure commitment scheme, and P a property that models precisely what we want to achieve,
e.g., De�nition 4.1 (i.e., IND-SO-COM security)? After all, De�nition 4.1 can be rephrased as a
property P by letting A choose a message distributionM and send this distribution (as a description
of a PPT algorithmM) to P. Then, P could perform the Expind-so-real

Com,M,A or the Expind-so-ideal
Com,M,A experiment

with A, depending on an internal coin toss (the output of P will then depend on A's output and on
that coin toss). This P models De�nition 4.1, in the sense that

Advind-so
Com,M,A = 2Advprop

P,X ,A.

Also, using a truly random permutation as a basis, it is natural to assume that we can construct
an ideal (i.e., as an oracle) perfectly binding commitment scheme X that satis�es P. (Note that al-
though X is perfectly binding, A's view may still be almost statistically independent of the unopened
messages, since the scheme X is given in oracle form.)

Hence, if the assumption essentially is already IND-SO-COM security, we can certainly achieve
IND-SO-COM security (using a trivial reduction), and this seems to contradict Theorem 4.2. So
where is the problem?

Resolving the situation. The problem in the above argument is that P-security (our assump-
tion) implies IND-SO-COM security (our goal) in a fundamentally non-black-box way. Namely, the
proof converts an IND-SO-COM adversary A and a message distributionM into a P-adversary A′

that sends a description ofM to P. This very step makes use of an explicit representation of the
message distribution M, and this is what makes the whole proof non-black-box. In other words,
this way of achieving IND-SO-COM security cannot be black-box, and there is no contradiction to
our results.

Viewed from a di�erent angle, the essence of our impossibility proofs is: build a very speci�c
message distribution, based on oracles (RO, resp. C), such that another �breaking oracle� B �breaks�
this message distribution if and only if the adversary can prove that he can open commitments. This
step relies on the fact that we can specify message distributions which depend on oracles. Relative
to such oracles, property P still holds (as we prove), but may not re�ect IND-SO-COM security
anymore. Namely, since P itself cannot access additional oracles12, P is also not able to sample a
message space that depends on additional (i.e., on top of X ) oracles. So in our reduction, although
A itself can, both in the IND-SO-COM experiment and when interacting with P, access all oracles,
it will not be able to communicate a message distribution M that depends on additional oracles
(on top of X ) to P. On the other hand, any PPT algorithmM, as formalized in De�nition 4.1, can
access all available oracles.

So for the above modeling of IND-SO-COM security as a property P in the sense of De�nition 3.2,
our impossibility results still hold, but become meaningless (since basically using property P makes
the proof non-black-box). In a certain sense, this comes from the fact that the modeling of IND-
SO-COM as a property P is inherently non-black-box.

What computational assumptions can be formalized as properties in a �black-box�

way? Fortunately, most standard computational assumptions can be modeled in a black-box way
as a property P. Besides the mentioned one-way property (and its variants), in particular, e.g.,
the IND-CCA security game for encryption schemes can be modeled. Observe that in this game,
we can let the IND-CCA adversary himself sample challenge messages M0, M1 for the IND-CCA

12by de�nition, P must be speci�ed independently of additional oracles, cf. De�nition 3.2; if we did allow P to
access additional oracles, this would break our impossibility proofs
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experiment from his favorite distribution; no PPT algorithm has to be transported to the security
game. In fact, the only properties which do not allow for black-box proofs are those that involve
an explicit transmission of code (i.e., a description of a circuit or a Turing machine). In that sense,
the formulation of Theorem 3.3 and Theorem 4.2 is very general and useful.

(Non-)programmable random oracles. We stress that the black-box requirement for random
oracles (when used in the role of X ) corresponds to �non-programmable random oracles� (as used
by, e.g., Bellare and Rogaway [5]) as opposed to �programmable random oracles� (as used by, e.g.,
Nielsen [26]). Roughly, a proof in the programmable random oracle model translates an attack on
a cryptographic scheme into an attack on a simulated random oracle (that is, an oracle completely
under control of simulator). Naturally, such a reduction is not black-box. And indeed, with pro-
grammable random oracles, even non-interactive SIM-SO-COM secure commitment schemes can
be built relatively painless. As an example, [26] proves a simple encryption scheme (which can be
interpreted as a non-interactive commitment scheme) secure under selective openings.
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