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Abstract

This work examines a weakness in re-using masks for masked Galois inversion, specifically in the
masked Galois multipliers. Here we show that the mask re-use scheme included in our work[1] cannot
result in “perfect masking,” regardless of the order in which the terms are added; explicit distributions are
derived for each step. The same problem requires new masks in the subfield calculations, not included
in [1]. Hence, for resistance to first-order differential attacks, the masked S-box must use distinct,
independent masks for input and output bytes of the masked inverter, and new masks in the subfields,
resulting in a larger size.
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1 Introduction

Implementations of cryptographic algorithms, e.g. the Advanced Encryption Standard (AES), may be vul-
nerable to “side-channel attacks” such as differential power analysis (DPA). One countermeasure against
such attacks is adding a random mask to the data; this randomizes the statistics of the calculation at the
cost of computing “mask corrections.” Oswald et al.[2] showed how the “tower field” representation of the
Galois field allows maintaining an additive mask throughout the Galois inverse calculation. For a hardware
implementation of AES, they suggested re-using masks from input to output, which allows re-use of some pre-
viously computed products to save circuitry. We incorrectly applied a similar masking strategy in developing
a compact masked S-box[1]. Both of these works claimed “perfect masking” (by the definition of Blömer[3])
giving suitable implementations immunity to first-order differential side-channel attacks. However, only [2]
was indeed secure; as shown below, the incorrect mask re-use employed in [1] cannot give perfect masking.

Note that, even though the masking scheme of [2] was provably secure, nonetheless Mangard et al.[4]
successfully attacked an ASIC implementing this scheme. The weakness was attributed to CMOS “glitches,”
and indeed Mangard and Schramm[5] showed specifically how timing glitches could actually leak information
even in a “perfectly masked” CMOS implementation.

1.1 Security Model

We adopt the notion of “perfect masking” given by Blömer[3], that is, assuming a source of truly random
uniformly distributed masks, then the distribution of each intermediate result is independent of both the
plaintext data and the key. This gives protection from first-order differential side-channel attacks (neglecting
specific hardware problems such as CMOS glitches).

For reference, here we paraphrase Lemmas 1 and 2 of [3].

Lemma 1 Given x uniformly distributed over a finite field F, and any y ∈ F independent of x, then z = x+y
is also uniformly distributed and independent of y.[3]

Lemma 2 Given x and y independent and both uniformly distributed over a finite field Fq of size q, then
z = x y is distributed according to

Pr(z = i) =
{

(2q − 1)/q2 , i = 0
(q − 1)/q2 , i 6= 0
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here called the random product distribution.[3]

2 Masked Multipliers

The re-use of masks in the Galois inverter part of an AES S-box in [1], turns out not to give “perfect
masking,” where each intermediate operand has a distribution independent of the masked data. The problem
is in masking the multiplications inherent in evaluating the inverse over the subfield. We adopt the notation
of Mangard and Schramm[5], who pinpointed the CMOS glitch problem to the adding of terms in the masked
multiplier.

To mask the Galois field multiplication
a b = c (1)

we need masks ma, mb, mc for a, b, c respectively. (We assume a source of uniformly distributed random
masks.) Define the masked variables by

am = a + ma , bm = b + mb , cm = c + mc (2)

Then the masked multiplier of [5] is

cm = am bm + (ma bm + (am mb + (ma mb + mc))) (3)

where + indicates Galois field addition (bitwise XOR, assuming an extension of the binary field), multiplica-
tions are in the Galois field, and the parens indicate the order of operations to avoid any intermediate result
with a distribution dependent on the data a and/or b. If the masks are indeed random and independent,
this is provably secure, and can be made immune to CMOS glitches by enforcing some timing constraints[5].

Oswald et al.[2] suggested re-using masks in the Galois inverter, to be able to replace some subfield
multiplications by previously known products. The approach shown in, e.g., equation [2, (15)], is to replace
the independent mask mc above with ma, one of the input masks. After all the additions are complete, the
result would be c + ma, so the product (output data) is correctly masked by an independent uniform mask.

But before [2, (15)] and related formulas, Oswald specifically warns:

It needs to be pointed out that the formulae, which we derive in this section, do not lead to a
secure implementation when directly implemented. The secure implementation of these formulae
requires the addition of an independent value to the first intermediate value that is computed.

Unfortunately, in [1] we failed to heed this warning.
The problem is, you can’t get there (c + ma) from here:

am bm + ma bm + am mb + ma mb + ma (4)

No matter what order you choose to perform the additions, some intermediate result will have a distribution
that depends on the data. The source of the trouble is that the mask, though uniform, is not independent
of the other terms.

Here is an exhaustive examination of the possible addition strategies. First, it is well known that adding
any two of the products

P1 = am bm , P2 = ma bm , P3 = am mb , P4 = ma mb (5)

gives a data-dependent distribution, even though each product has the “random product” distribution (here-
after denoted as P ). But for completeness, we will consider what distributions result from adding two
products. P1 + P2 = a bm with a distribution of the form a X (where X is independent and uniform); this
distribution depends on a since a = 0 gives the constant zero distribution while a 6= 0 gives a uniform
distribution. Similarly, P3 + P4 = a mb (of the form a X) and P1 + P3 = am b and P2 + P4 = ma b (of the
form b X) give data-dependent distributions. Both P1 + P4 = a bm + ma b and P2 + P3 = a mb + ma b have
distributions of the form a X + b Y (with both X and Y uniform and independent); if a = b = 0 the zero
distribution results, otherwise the uniform distribution: data-dependent.
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So the addition must start with the mask. Consider first adding

P1 + ma = a bm + ma (bm + 1) (6)

The result is of the form aX + P where X is uniform and P is a random product and both are independent
of a. Then if a = 0 we get the product distribution P , but if a 6= 0 we get a uniform distribution (by Lemma
1 since then aX is uniform); the distribution depends on a. Similarly,

P3 + ma = a mb + ma (mb + 1) (7)

is of the form aX + P .
So we must start with either

P2 + ma = ma (bm + 1) (8)

or
P4 + ma = ma (mb + 1) (9)

each having distribution P .
Say we take the first choice (8). Consider adding P4 (or equivalently, take the second choice and add P2):

(P2 + ma) + P4 = ma (b + 1) (10)

which has the form (b + 1) X. So if b = 1 we get the constant zero distribution; if not we get a uniform
distribution; no go. Or try adding P3:

(P2 + ma) + P3 = a mb + ma (b + 1) (11)

of the form a X + (b + 1) Y . So if a and b + 1 are both zero, we get the zero distribution; otherwise uniform:
no go. Similarly if we start with the second choice (9) and add P1

(P4 + ma) + P1 = a bm + ma (b + 1) (12)

no go.
So the first choice (8) leads to

(P2 + ma) + P1 = a bm + ma (13)

of the form a X + Y , giving a uniform distribution. Similarly, the second choice (9) gives

(P4 + ma) + P3 = a mb + ma (14)

again a X + Y .
From (13), if we add P4

((P2 + ma) + P1) + P4 = a bm + ma (mb + 1) (15)

we again get the form a X + P ; no go. Similarly if we take (14) and add P2

((P4 + ma) + P3) + P2 = a mb + ma (bm + 1) (16)

also of form a X + P .
But from (13), if we add P3

((P2 + ma) + P1) + P3 = a b + ma (mb + 1) (17)

we get the form c + P , which is the product distribution if c = 0 and not otherwise (each different value of
c gives a different distribution, which could be called an “offset” product distribution). And similarly if we
add P1 to (14)

((P4 + ma) + P3) + P1 = a b + ma (bm + 1) (18)

again of form c+P . (Note that this shows that all four possible third steps, independent of the earlier steps,
give data-dependent distributions, so consideration of third steps alone would have sufficed.)

So even though each individual term in (4) has a data-independent distribution, and so does their sum,
there is no way to add them up without revealing a data-dependent distribution! Hence, the direct re-use
of masks in masked products, as in [2, (15)], cannot give perfect masking. ([2] does not use ma to protect
the additions, but rather points out that “every summation of variables must start with the addition of an
independent mask M.”) Therefore the statement before eq. [1, (29)], that the output mask S could be the
original input mask M (without adding an independent “fresh mask” first), is incorrect.
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2.1 Intermediate Masks in Subfields

What about the re-use of masks in the subfield calculations of [1, (23–28)]?
There is a big difference there, in that the mask re-used on each output product is neither of the masks

of the factors. The output mask is re-used from a different part of the calculation.
For example, in [1, (23)] the two factors b̃0 and c̃−1 are respectively masked by m0 and m1, which are

the two halves of the uniform mask M2 = N (M1 + M0)2 [1, (13)]. But the output b̃−1
1 is masked by m11,

the upper half of M1, which is uniform and independent of the two input masks (due to the M0). Similarly
with [1, (25)].

2.2 Other Dependent Masks

How about other combinations of inputs to mask products, such as in [1, (12)]? There we asserted that the

addition must start with the uniformly distributed term N
(
Ã1 + Ã0

)2

. One might suspect that, because
this term does not seem to be independent of the others, that there may be a problem.

Unfortunately, there is a problem. Again, even though the final result would be correctly masked, no
order of additions maintains data-independent distributions.

Rewrite [1, (12)] in the notation used above:

N(am + bm)2 + am bm + ma bm + am mb + ma mb (19)

where N is a known nonzero constant. Use the following respective labels for these terms:

M = N(am + bm)2 , P1 = am bm , P2 = ma bm , P3 = am mb , P4 = ma mb (20)

Again, since no two products can be added, the sum must begin with the mask M . (In the algebra that
follows, recall that, since the field has characteristic 2, subtraction is addition, and a sum squared is the sum
of the squares.)

Consider beginning with
M + P1 = N(am + bm)2 + am bm (21)

This is clearly independent of the data (a & b), being solely a function of the uniform, masked quantities am

& bm. The specific distribution that results depends on the value of N1.
The N in [1] comes from earlier work[6]: N is the norm of an element of the normal basis for the larger

field, where the basis element was chosen to have a trace of 1. So in GF(24), N is a root of one of the two
polynomials2 x4 + x3 + 1 or x4 + x3 + x2 + x + 1; in GF(22) it is a root of x2 + x + 1. For these values of
N , the polynomial

x2 + N−1 x + 1 (22)

is irreducible and so has no roots in the field. (It turns out that, for all other values of N [the other half of
the field], then (22) factors and M +P1 gives the product distribution; this case is discussed in the appendix
A.)

Then the distribution of M +P1 is uniform over the nonzero elements of the field Fq, each with probability
(q + 1)/q2, except zero occurs with probability 1/q2. This distribution can be understood as follows. If
am = bm = 0, then clearly (21) is 0. But if am or bm is nonzero, we can “divide it out”. For example,
suppose bm 6= 0, that is, consider the nonzero portion of the uniform distribution of bm. Then (21) =
N bm (X2 + N−1X + 1) where X = amb−1

m . But, for any value of X, the polynomial (22) gives a nonzero
result, and N bm is uniformly distributed over the nonzero multiplicative group F∗q , so for each value of X
then (21) is uniformly distributed over the nonzero group. The same reasoning applies for am 6= 0. Hence,
only the case am = bm = 0 leads to (22) = 0; any other case leads to a uniform distribution over the nonzero
values of the field. Let us call this distribution the “unproduct” distribution, since the paucity of zeros is
the opposite of the product distribution.

The other three possible beginnings all give data-dependent distributions. For

M + P2 = Na2 + [N(ma + bm)2 + ma bm] (23)
1These results were guided and/or checked by calculations using the Maple mathematics software.
2The specific value used in [1] is a root of the first minimal polynomial.
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the terms in brackets give the unproduct distribution, and adding the first term gives a different “offset
unproduct” distribution (where one value occurs with probability 1/q2, the rest uniformly) for each a.
Similarly,

M + P3 = Nb2 + [N(am + mb)2 + am mb] (24)

gives a different offset unproduct distribution for each b. And

M + P4 = N(a + b)2 + [N(ma + mb)2 + ma mb] (25)

gives a different offset unproduct distribution for each a + b.
For the second addition, one possibility is

(M + P1) + P2 = Nm2
a + N(a + bm)2 + a bm (26)

where the first term is uniform and independent of the rest, so the sum gives a uniform distribution. Similarly

(M + P1) + P3 = Nm2
b + N(am + b)2 + am b (27)

also gives a uniform distribution. The remaining case is

(M + P1) + P4 = N(ma + mb)2 + N(a + b)2 + a b + a mb + b ma (28)

For most choices of a and b the first (uniform) term is independent of the rest and so adds to give a uniform
distribution. But when a = b 6= 0 then the result has the form N X2 + a X + a2, where X = ma + mb is
uniform, but the range of this quadratic polynomial only gives half of the field; which half depends on a:
data-dependent.

But now all three feasible third steps give data-dependent distributions (offset unproduct distributions
with the offset given by the data):

((M + P1) + P2) + P3 = N(a + b)2 + a b + [N(ma + mb)2 + ma mb] (29)

((M + P1) + P2) + P4 = Nb2 + a b + [N(am + mb)2 + am mb] (30)

((M + P1) + P3) + P4 = Na2 + a b + [N(ma + bm)2 + ma bm] (31)

(In fact, skipping over first and second steps, the fourth possible third step ((M + P2) + P3) + P4 =
a b+[N(am +bm)2 +am bm] also gives a data-dependent distribution, so consideration of third steps suffices.)

Again, you can’t get there from here. Similarly for [1, (14)].
So the masking scheme as given in [1] is incorrect. Dang. In order to achieve perfect masking, not only

must top level input and output masks be different (S 6= M in [1, (29)]), but also new independent uniform
masks must be introduced in the subfield calculations (similar to the approach in Blömer et al.[3]).

2.3 Re-using Masks Between Rounds

What about re-using masks between rounds, a possible implementation choice discussed in [1]? That is a
completely different sort of mask re-use, where the masks used on a block for one round are used again in
a later round. Note that for each Galois inverter, the input mask is different from the output mask in this
proposed masking scheme. This sort of re-use does not introduce any data-dependent operand distributions,
and so (assuming the rest of the masking scheme is secure) is resistant to first-order DPA (although such
re-use probably decreases resistance to higher-order attacks).

3 Conclusion

Masked multipliers that re-use an input mask (or a mask dependent on the input) for output are insecure
(unless an independent “fresh mask” is added first to protect the summations).

The “perfectly masked” compact AES S-box of [1] was not perfectly masked, because of mask re-use and
input-dependent masks. (A corrected version [7] is available.) Because re-using input masks as output masks
in the Galois inverter is precluded, and additional masks must be included in the subfield calculations, then
the size of a compact masked S-box is significantly larger.
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A Other Values of N

For values of N other than the norms discussed above (i.e., excluding roots of x4+x3+1 and x4+x3+x2+x+1
in GF(24), and roots of x2 + x + 1 in GF(22)), then some of the distributions are different from those above,
though the conclusions about data dependency remain unchanged. Of course, if N = 0 there is no mask, so
we only consider nonzero N here.

For these values of N , the polynomial (22) x2 + N−1 x + 1 has two distinct roots in the field, which we
can call k and k−1 (since their product is 1). Then k + k−1 = N−1, and

M + P1 = N(am + bm)2 + am bm = N(am + k bm)(am + k−1bm) (32)

gives a distribution of the form N X Y with X and Y uniform and independent and N nonzero, i.e., we get
the product distribution P , independent of the data.

Again, the other three possible beginnings all give data-dependent distributions.

M + P2 = N(a + ma + bm)2 + ma bm = Na2 + N(ma + k bm)(ma + k−1bm) (33)

of the form Na2 + P , gives a different offset product distribution for each a. Similarly,

M + P3 = N(am + b + mb)2 + am mb = Nb2 + N(am + k mb)(am + k−1mb) (34)

is of the form Nb2 + P , a different offset product distribution for each b. And

M + P4 = N(a + ma + b + mb)2 + ma mb = N(a + b)2 + N(ma + k mb)(ma + k−1mb) (35)

is of the form N(a + b)2 + P , a different offset product distribution for each a + b.
For the second addition, the distributions remain as given above; the specific value of N is not important

there.
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And again all three feasible third steps give data-dependent distributions (offset product distributions
with the offset given by the data):

((M +P1)+P2)+P3 = N(a+ma+b+mb)2+a b+ma mb = N(a+b)2+a b+N(ma+k mb)(ma+k−1mb) (36)

((M + P1) + P2) + P4 = N(am + b + mb)2 + a b + am mb = Nb2 + a b + N(am + k mb)(am + k−1mb) (37)

((M + P1) + P3) + P4 = N(a + ma + bm)2 + a b + ma bm = Na2 + a b + N(ma + k bm)(ma + k−1bm) (38)

And so does the fourth possible third step, without considering previous steps:

((M + P2) + P3) + P4 = N(am + bm)2 + a b + am bm = a b + N(am + k bm)(am + k−1bm) (39)

So masks using these other values of N also reveal data-dependent distributions: imperfect masking.
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