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Abstract. We treat the security of group key exchange (GKE) in the universal composability (UC)
framework. Analyzing GKE protocols in the UC framework naturally addresses attacks by malicious
insiders. We define an ideal functionality for GKE that captures contributiveness in addition to other
desired security goals. We show that an efficient two-round protocol securely realizes the proposed func-
tionality in the random oracle model. As a result, we obtain the most efficient UC-secure contributory
GKE protocol known.
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1 Introduction

A group key exchange (GKE) protocol allows a group of parties to agree upon a common session key
over a public network. GKE protocols are useful in a variety of group applications like audio/video
conferences, multicast/broadcast communication and other collaborative systems [6]. Although used
in different applications a common requirement for the underlying GKE protocol is the assurance
that the protocol has desired security properties.

Bresson et al. [9, 7, 8] initiate the formal treatment of security for GKE protocols based on
earlier models for two-party key exchange [4, 3]. They formalize authenticated key exchange (AKE)
security and mutual authentication as the desired notions of security. Informally, AKE-security
ensures that the established session key is computationally indistinguishable from a random string,
whereas mutual authentication guarantees that each party is assured of the participation of every
other party in the protocol.

The above models assume the adversary to be an outsider who is not part of the GKE protocol
execution. Katz and Shin [24] define insider security for GKE protocols by separating the require-
ments of mutual authentication into agreement on the session key and security against insider
impersonation attacks. Bohli et al. [5] revisit this notion in the weak corruption model, where ses-
sion state is not revealed. They also present insider attacks on the protocols of Katz and Yung [25]
and Kim et al. [26] that violate integrity of those protocols. Later, Bresson and Manulis [10] unify
the insider security notions of Katz and Shin into their definition of mutual authentication.

Another important security notion, considered by Bohli et al. [5] and Bresson and Manulis [10],
is contributiveness in the presence of malicious insiders. A protocol satisfying this notion ensures
that a proper subset of insiders cannot predetermine the session key. Note that if the resulting
session key is allowed to be controlled by insiders, the session may be fixed to any value including
the keys established in the past sessions. Hence, the protocol in this case cannot guarantee even the
basic key freshness property. Lack of contributiveness may also allow insiders to establish “covert
channels” by fixing the key to a value agreed with an outsider beforehand [29, 19]. For example, if
the session key is to be used for the purpose of achieving confidentiality of future communication,
this will allow an insider to leak the sensitive information without being detected.



Universal Composability. In the universal composability (UC) framework [12] a crypto-
graphic task is specified through an ideal functionality. The UC formulation allows cryptographic
protocols to preserve their security under arbitrary protocol composition. This also facilitates mod-
ular design of complex protocols. However, defining an appropriate ideal functionality for some
cryptographic tasks has proven not to be easy [12].

Canetti and Krawczyk [15] show that their earlier game-based notion of SK-security [13] for
two-party key exchange (2PKE) is equivalent to a relaxed notion of UC-security. This implies that
a 2PKE protocol that satisfies the SK-security notion preserves its security under arbitrary protocol
composition. On the other hand, Katz and Shin [24] define an ideal functionality for GKE in the
UC framework and show that this notion of UC-security is strictly stronger than the game-based
notions for GKE. There is no known equivalence between the game-based notions and UC notions
of security for GKE and it is known that game-based notions guarantee security only when the
protocols are run “stand-alone”. Hence, we treat the security of GKE in the UC framework.

Katz and Shin also present a compiler (we call this the KS-compiler) that turns an AKE-
secure protocol into a protocol that can realize their proposed ideal functionality. The KS-compiler
follows the informal suggestion of Canetti and Krawczyk [15] to ensure that the compiled protocol
has the so-called “ACK-property” [15, 24]. However, it introduces an extra round of communication
for broadcasting a signature authenticated acknowledgment message. As the existing AKE-secure
GKE protocols require at least two rounds of communication [25, 20], a KS-compiled protocol will
have at least three communication rounds. In spite of introducing an additional round, the KS-
compiler does not provide contributiveness in the presence of malicious insiders [27, Section 9.5].
On the other hand, Bohli et al. [5] present a two-round GKE protocol that satisfies contributiveness
in the presence of insiders. This protocol cannot be obtained through the KS-compiler.

Furukawa et al. [21] present an ideal functionality for GKE without considering contributiveness.
They also propose a two-round GKE protocol based on bilinear pairings and use non-interactive
proofs to guarantee the ACK-property. This protocol is also shown to securely realize their func-
tionality in the standard model. However, to establish a session key among a group of n parties,
the protocol requires each party to perform 2n + 1 pairing computations apart from other oper-
ations. These computations make this protocol very inefficient when compared to existing insider
secure protocols [5, 10], which are proven secure under game-based notions. In this paper, we focus
on defining an ideal functionality which guarantees contributiveness and at the same time can be
realized by efficient GKE protocols.

Our Approach. Canetti and Krawczyk [15] note that a two-party key exchange protocol not
having the ACK-property does not necessarily have any security weakness. They also introduce a
tool called “non-information oracle” to relax a natural two-party key exchange functionality. It is
shown that the relaxed functionality can be securely realized by protocols which do not have the
ACK-property. We apply this approach to the case of GKE.

Contributions. We first propose a GKE functionality using non-information oracles. Unlike
the formulation of Canetti and Krawczyk [15], our functionality runs multiple copies of the non-
information oracle. Canetti and Krawczyk informally remark that this approach is more natural
with each copy of the non-information oracle representing single session execution within a single
participant. Another important advantage of this approach is that it naturally allows us to model
an unreliable broadcast channel, where the parties do not necessarily receive the same values. We
show that the proposed UC notion implies existing game-based security notions of AKE-security,
mutual authentication and contributiveness.
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In the later part of the paper, we modify the protocol of Bohli et al. [5] and show that it securely
realizes the proposed functionality in the random oracle model. The modification to the protocol
introduces a slight computational overhead for each party but not any communication rounds.
Besides assuring strong security properties, this protocol is the most efficient GKE protocol proven
secure in the UC framework.

Organization. We give an overview of the UC framework and the ideal functionality of Katz
and Shin in Section 2. Section 3 presents an ideal functionality for GKE with contributiveness. A
protocol that securely realizes the proposed functionality is given in Section 4 with a proof of secu-
rity. Appendix A reviews existing game-based notions of security and also presents a revised notion
of contributiveness. In Appendix B, we show that the security guaranteed by our functionality
implies existing game-based security notions for GKE.

2 Universally Composable Group Key Exchange

We first give a brief overview of the UC framework, assuming basic familiarity. Please refer to
Canetti [12] for more details. We also discuss the assumptions we make. A brief overview of Katz
and Shin’s ideal functionality for GKE is then provided.

In the UC framework, the security requirements of a task at hand are captured by an ideal
functionality F , which runs instructions specified by a trusted party. In an ideal protocol φ for a
given F , the ideal (dummy) parties send their input and obtain output from F , which computes the
output as per the instructions. An ideal adversary S (also called “simulator”) interacts with F and
can participate in the ideal protocol φ through corrupted parties. The security of φ is inherently
guaranteed as S at the maximum can learn or possibly modify only the internal state of a corrupted
party. The real-world execution of a protocol π involves parties running π among themselves and
a real-world adversary A, who is allowed to control some of the parties and the communication
among all the parties.

A protocol π is said to securely realize F if running π amounts to “emulating” φ. The notion of
emulation is defined by introducing an additional entity called environment Z. Z generates inputs
to all parties, observes their outputs and is allowed to interact with the adversary in an arbitrary
way throughout the course of the computation. The protocol π emulates φ if for any adversary A
there exists an adversary S such that, the probability of a probabilistic polynomial time (PPT)
environment Z, running on the security parameter k and any input, distinguishing its interaction
with π and A from an interaction with φ and S is negligible1 in k. Note that S has to interact with
Z just as A does, particularly, S cannot “rewind” Z.

Let ρ be a protocol that securely realizes an ideal functionality F and let π be a protocol
executing in the F-hybrid model where the parties in π make ideal calls to multiple instances of F
in addition to interacting in the usual way. Let πρ be a protocol which starts with the protocol π
and replaces the interaction with each instance of F with an interaction with a separate instance
of ρ. The universal composition theorem of Canetti [12] states that running the composed protocol
πρ has essentially the same effect as running the protocol π in the F-hybrid model. Particularly, if
π securely realizes some ideal functionality G in the F-hybrid model then πρ securely realizes G.

The security of cryptographic protocols analyzed in the UC framework is preserved under arbi-
trary protocol composition. Furthermore, the UC formulation allows these protocols to be designed

1 An event is negligible in k if it happens with a probability that is less than the inverse of any polynomial in k

3



Functionality FGKE

FGKE proceeds as follows, running on security parameter k, with parties U1, . . . , Un, and an ideal adversary S.
Initialization: Upon receiving a value (new-session, sid, pid) from party Ui for the first time (where pid is a

non-empty set of distinct user identities), record (sid, pid, Ui) and send this to S. In addition, if there are
already |pid|-1 recorded tuples (sid, pid, Uj) for Uj ∈ pid\Ui then store (sid, pid, ready) and send this to S.

Key Generation: Upon receiving a message (sid, pid, ok) from S for a recorded tuple (sid, pid, ready), do:

– If all U ∈ pid are uncorrupted, choose κ
R
← {0, 1}k and store (sid, pid, κ).

– If any of U ∈ pid is corrupted, wait for S to send a message (key, κ) and then store (sid, pid, κ).

Key Delivery: If S sends a message (deliver, Ui, sid, pid) for a recorded tuple (sid, pid, κ) and Ui ∈pid, then
send (sid, pid, κ) to party Ui.

Party Corruption: If S corrupts Ui ∈ pid for a recorded tuple (sid, pid, κ) and message (sid, pid, κ) has not yet
been sent to Ui, then S is given κ. Otherwise, S is given nothing.

Fig. 1. Functionality FGKE [24]

and analyzed in a modular way. It should be noted that the preserved security is as guaranteed by
the corresponding ideal functionality.

Multiple Sessions. In the UC framework, it is sufficient to analyze the security of a single
instance of a protocol i.e. it suffices to show that a single instance of a protocol ρ securely realizes
some ideal functionality F . The UC theorem can be used to show that multiple concurrent instances
of ρ securely realize multiple concurrent instances of F . However, this analysis is valid only if the
instances of ρ have mutually disjoint state. The security of a multi-session extension of a protocol ρ
whose instances share some joint state can be deduced by applying the universal composition with
joint state theorem [17]. Hence, we analyze the security of only a single instance of a GKE protocol.

Party IDs and Session IDs. Similar to all existing work (both in non-UC and UC models)
on GKE, we assume the pre-specified peer model [14], where each party is assumed to know the
identities of the intended peers to the session when it commences the protocol. The partner ID (pid)
of an instance at a party U is a set of identities of intended peers, including U itself. We assume
that unique session IDs are provided by a higher level protocol when the GKE protocol is first
initiated, which is in line with the UC formulation. However, as shown by Furukawa et al [21] one
can combine the protocol initialization functionality of Barak et al. [2] with a GKE functionality.
The combined functionality can be realized by a protocol in which the session ID is derived during
the protocol execution.

Corruption Model. We assume that once a party is corrupted the adversary is given the
entire current internal state and the adversary takes control of the party from then onwards. This
corruption behavior of parties naturally models the so-called strong corruption model [24]. This
corruption behavior does not model opening attacks [10], where only the ephemeral state of a
session is revealed. However, we provide an alternate way of modeling opening attacks.

Katz-Shin’s functionality for GKE [24]. Figure 1 outlines the ideal functionality FGKE of Katz
and Shin and now we briefly explain FGKE . In the Initialization phase the functionality waits to
be notified by each party in pid. Once it receives such notifications from each of the parties in pid
with matching sid and pid, FGKE enters a “ready” state and sends the adversary S a ready message.
The Key Generation phase starts only after the functionality receives an ok message from S.
Intuitively, this ensures mutual authentication in the sense that each party in pid gets the common
key only after it has notified that it wishes to exchange a key with the other parties in pid. FGKE

chooses a random key if all the parties in pid are uncorrupted. However, S is allowed to choose the
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common group key if at least one of the parties in pid is corrupted. The schedule of key delivery
to individual parties is determined by S, particularly the key is delivered to a party immediately
after S requests FGKE to do so. Finally, to model forward secrecy, the adversary is not given the
session key on corruption of a party if the key has already been delivered to that party.

3 Universally Composable GKE with Contributiveness

The functionality FGKE allows the adversary to freely choose the common group key if at least
one party in pid is corrupted. Clearly, this modeling lets an insider have complete control over
the resulting key. Hence, FGKE guarantees insider security only with respect to impersonation
and agreement but not with respect to contributiveness. Informally, a GKE protocol guarantees
contributiveness in the presence of malicious participants if no proper subset of participating parties
can influence the resulting common key to their advantage. Note that it is possible for an insider to
mount denial of service attack by not following the protocol, but we do not deal with such attacks.

3.1 A GKE functionality that guarantees contributiveness

FGKE can be easily modified to arrive at a GKE functionality which assures of a random session key
as long as there exist a single honest party. However such a functionality cannot be realized by any
protocol in the strong corruption model where the entire internal state of a party is revealed upon
corruption. To see why, a GKE protocol guaranteeing such strong contributiveness can be seen as a
special type of asynchronous distributed coin-tossing protocol. Cleve [18] derive an upper bound of
(n−1)/2 corrupted parties for a coin-tossing protocol among n parties to obtain an unbiased output.
Hence, as argued by Desmedt et al. [19], if there is no honest majority of the parties in a GKE
protocol the resulting session key can be biased by non-negligible amount. Thus the straightforward
modification of FGKE assuming up to (n− 1) corrupted parties cannot be realized.

We now present an ideal functionality F+
GKE for GKE protocols using “non-information or-

acle” [15]. Informally, a non-information oracle has the property that its local output remains
indistinguishable from a random string for any PPT adversary that it interacts with. A formal
definition is given below:

Definition 1 (Non-information Oracle [15]). Let N be a PPT interactive Turing machine (ITM).
Then N is a non-information oracle if no PPT ITM M, having interacted with N on security
parameter k, can distinguish with non-negligible probability between the local output of N and a
value drawn uniformly from {0, 1}k.

The functionality F+
GKE is presented in Figure 2. F+

GKE invokes a new copy Ni of a non-
information oracle N for each unique notification from the parties in pid and allows each copy
to interact with the ideal adversary S. Each N i represents a single session execution of the group
key exchange in an individual participating party. This is in contrast to the formulation used by
Canetti and Krawczyk [15] for two-party key exchange, where a single non-information oracle cap-
tures both the sessions run by the partners of a session. Although complex, the current formulation
naturally allows us to model an unreliable broadcast channel in the case of GKE as S is allowed to
interact with each copy of N separately.

We now informally argue that the functionality F+
GKE intuitively captures contributiveness. The

major difference between the functionalities FGKE and F+
GKE is in the key generation phase. Note
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Functionality F+
GKE

F+
GKE proceeds as follows, running on security parameter k, with parties U1, . . . , Un, and an ideal adversary S.
F+

GKE is parameterized by non-information oracle N .

Initialization: Upon receiving a value (sid, pid, new-session) from party Ui ∈ pid for the first time (where pid
is a set of at least two distinct party identities), record (sid, pid, Ui) and send this to S. In addition do the
following:
1. Invoke a copy Ni of N with fresh random input.
2. If there are already |pid|-1 recorded tuples (sid, pid, Uj) for Uj ∈ pid then store (sid, pid, ready) and send

this to S.
Whenever Ni generates a message send this to S and whenever S sends a message to Ni forward this to Ni.

Key Generation: Upon receiving a message (sid, pid, ok) from S for a recorded tuple (sid, pid, ready) do:

– If all the parties Ui ∈ pid are uncorrupted: After all the corresponding copies Ni have generated local

output, verify if these outputs are the same. Then choose κ
R
← {0, 1}k and store (sid, pid, κ).

– If there exist at least one uncorrupted party Ui ∈ pid: After all the corresponding copies Ni have generated
their local output, verify if these outputs are the same. Then set κ to be one of these local outputs and
store (sid, pid, κ).

Key Delivery: If S sends a message (deliver, Ui) when there is a recorded tuple (sid, pid, κ) and for Ui ∈ pid
then send (sid, pid, κ) to Ui immediately.

Party Corruption: If S corrupts Ui ∈ pid for a recorded tuple (sid,pid,k) and message (sid,pid,k) has not yet
been sent to Ui, then S is given the internal states of all the copies of N (including their local outputs if
generated). Otherwise, S is given nothing.

Fig. 2. F+
GKE : A GKE functionality that guarantees contributiveness

that FGKE allows S to choose the common group key κ when at least one party is corrupted. This
allows even a single malicious insider to fix the resulting group key to a value of its choice. On
the other hand F+

GKE sets the common key to be the output of the copies Ni that correspond to
the uncorrupted parties, after verifying that these outputs are the same, when there is at least one
uncorrupted party. As discussed earlier, in the presence of at least (|pid| − 1)/2 corrupted parties
the output distribution of Ni may be biased. But the output cannot be predetermined. When S
corrupts at least one of the parties, F+

GKE gives the internal states of all the copies of N . Hence none
of the copies of N is a non-information oracle any longer. This reflects the fact that the common
group key output by honest parties cannot be kept confidential from insiders. F+

GKE chooses the

common key uniformly at random from {0, 1}k, when there is no corrupted party.

We assume arbitrarily malicious behavior for all the corrupted parties to model insider security.
When considering such a behavior, the environment Z is not given read access to the corrupted
parties’ output tape [16]. Hence, the outputs of the parties are not relevant when all the parties in
pid are corrupted.

3.2 Relation between relaxed UC-security and previous notions

We show that the security guaranteed by F+
GKE implies the existing notions of security reviewed in

Appendix A. The claims and the corresponding proofs are in Appendix B.

Bresson and Manulis [10] define a session as opened if the adversary reveals ephemeral secrets of a
session without revealing the long-term secret key. They observe that the simulation-based security
models like universal composability do not handle opening attacks. The standard corruption model
considered in the UC framework is the Byzantine corruption, where the adversary upon corrupting
a party learns the entire internal state of that party and controls it from then onwards. To model
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Round 1:
Computation Each Ui does the following:

1. Chooses ki
R
← {0, 1}k, xi

R
←Zq and computes yi = gxi and H(ki)

2. Sets MI
i = H(ki)‖yi and computes a signature σI

i on MI
i ‖pid.

Broadcast Each Ui broadcasts MI
i ‖σ

I
i .

Check Each Ui checks all signatures σI
j of incoming messages MI

j ‖σ
I
j .

Round 2:

Computation Each Ui does the following:
1. Computes tL

i = H(yxi

i−1), tR
i = H(yxi

i+1), Ti = tL
i ⊕ tR

i , authi = H(pid‖H(k1) . . . ‖H(kn)), maski =

ki ⊕ tR
i .

2. Sets MII
i = maski‖Ti‖authi and computes a signature σII

i on MII
i .

Broadcast Each Ui broadcasts MII
i ‖σ

II
i .

Check Each Ui does the following for each j = 1, . . . , n, j 6= i. Ui aborts in case any of the checks fail.
1. Verify the signature σII

j on the message MII
j

2. Check T1 ⊕ · · · ⊕ Tn
?
= 0 and authi

?
= authj

3. Parse each incoming message MII
j as maskj‖Tj‖authj and extract kj = maskj⊕Tj+1⊕· · ·⊕Ti−1⊕ tL

i

4. Checks the commitments H(kj) sent in Round 1 for each kj extracted in Round 2.
Key Computation Each Ui computes the session key ski = H(pid‖k1‖ . . . ‖kn)

Fig. 3. A protocol that realizes F+
GKE

opening attacks, one may consider honest-but-curious behavior for parties upon corruption, in
addition to the Byzantine corruption behavior. Such a formulation requires modifications to F+

GKE

as the environment should now be allowed to access the output tapes of parties who have been
issued only an honest-but-curious corrupt query.

Although we do not explicitly consider opening attacks, note that the functionality F+
GKE does

allows S to obtain internal states of all the copies of N when at least one party in pid is corrupted.
Hence, a protocol that securely realizes F+

GKE guarantees mutual authentication and contributive-
ness in the presence of at most (|pid| − 2) and (|pid| − 1) insiders respectively, while the internal
states of all the parties are revealed!

4 A protocol that realizes F
+

GKE

In Figure 3, we present a protocol that securely realizes F+
GKE . The protocol is a slightly modified

version of Bohli et al.’s protocol [5], which itself is inspired from earlier protocols [26, 11].

Let {U1, . . . , Un} be the set of parties who wish to establish a common group key. We assume
that the parties are ordered in a logical ring with Ui−1 and Ui+1 being the left and right neighbors
of Ui for 1 ≤ i ≤ n, U0 = Un and Un+1 = U1. We also assume the pre-specified peer model.

During the initialization phase, a cyclic group G of prime order q, an arbitrary generator g
of G and the description of a hash function H that maps to {0, 1}k are chosen. We assume that
each party has a pair of long-term private and public key pair for a public key signature scheme.
Figure 3 outlines the execution of the protocol after the initialization phase. Unlike the protocol
of Bohli et al. [5], the protocol in Figure 3 avoids rushing attack by broadcasting the commitment
to their contribution H(ki) for all the parties, in Round 1. This modification is suggested by Bohli
et.al themselves based on the technique of Mitchell et al. [28]. Note that this does not introduce
any extra rounds. But the computational cost and message size are slightly increased as each party
has to compute and broadcast H(ki) in the first round.
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1. Choose xi
R
← Zq, ki

R
← {0, 1}k and compute yi = gxi

2. Compute Mi1 = H(ki)‖yi and send it to M
3. On receiving a set of (|pid| − 1) messages {Mj1 |j 6= i, j ∈ [1, |pid|]}, parse each Mj1 as H(kj)‖yj

4. Compute tL
i = H(yxi

i−1), t
R
i = H(yxi

i+1), Ti = tL
i ⊕ tR

i (with y0 = y|pid| and y|pid|+1 = y1)

5. Compute Mi2 = ki ⊕ tR
i ‖Ti and send it to M

6. On receiving a set of (|pid| − 1) messages {Mj2 |j 6= i, j ∈ [1, |pid|]}, parse each Mj2 as maskj‖Tj

7. If T1 ⊕ · · · ⊕ T|pid| 6= 0, choose ski
R
← {0, 1}k, locally output ski and halt. Otherwise continue to next step.

8. For each j = 1, . . . , |pid|, j 6= i, extract kj = maskj⊕Tj+1⊕· · ·⊕Ti−1⊕ tL
i from the messages parsed in Step 6

9. Compute hash values for each extracted kj and check to see if the output matches with the corresponding

hash value parsed in Step 3. If there is at least one mismatch choose ski
R
← {0, 1}k, locally output ski and

halt. Otherwise continue to next step.
10. Compute ski = H(pid‖k1‖ . . . ‖k|pid|) and locally output.

Fig. 4. A non-information oracle Ngke

4.1 Security Analysis

In order to prove that the protocol in Figure 3 realizes F+
GKE we first have to show that there exists a

non-information oracle for the exchanged keys. We now present a construction of a non-information
oracle Ngke, which will be used in the security proof of the protocol.

LetM be the ITM that is interacting with Ngke. When activated, Ngke expects a message that
contains the description of a group G of prime order q and generator g, the description of a hash
function H and pid. An i-th copy of Ngke proceeds as outlined in Figure 4. We now show that our
construction of Ngke is indeed a non-information oracle.

Claim 1. Let SuccNIOM be the success probability ofM in distinguishing the output of Ngke from

random. Then SuccNIOM ≤
qro+|pid|+3

2k + qro·SuccCDH

|pid| + qro

2k , where qro is the polynomial bound for

the number of queries to the random oracle H, |pid| is the number of copies of Ngke and SuccCDH

is the success probability of solving the CDH problem in the group G.

Proof. (Sketch) We prove the claim in a sequence of games. Let Si be the event thatM distinguishes
the output of Ngke from random in Gamei.

Game 0: This is the initial game in whichM interacts with Ngke as per the definition 1. We have

Pr[S0] = SuccNIOM (1)

Game 1: This is the same as the previous game except that the game aborts if an event Collision
occurs, where Collision is the event that a collision occurs in the random oracle. We have

|Pr[S1]− Pr[S0]| ≤ Pr[Collision] (2)

Note that Ngke makes |pid|+ 3 queries to H in its execution. Hence, the number of calls to the
random oracle is bounded by qro + |pid|+ 3 and the probability that Collision occurs is

Pr[Collision] ≤
qro + |pid|+ 3

2k
(3)

Game 2: This is the same as the previous game except that the game aborts if an event Ask
occurs, where Ask is an event thatM queries a pair-wise CDH component (yxl

l−1 or yxl

l+1) to H.
We have
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|Pr[S2]− Pr[S1]| ≤ Pr[Ask] (4)

Note that there exist exactly |pid| unique pair-wise CDH instances that can be formed from the
messages sent and received by Ngke. If the event Ask happens, we can useM to solve the CDH
problem by randomly picking one of the entries of the H asked byM. The success probability
of solving CDH SuccCDH is given as SuccCDH = Pr[Ask]·|pid|

qro
. Rewriting the equation we have

Pr[Ask] =
qro · SuccCDH

|pid|
(5)

Game 3: This game is the same as the previous game except it aborts ifM queries H with the key
material pid‖k1‖ . . . ‖k|pid| as input. This at the maximum happens with a negligible probability
qro

2k . Hence we have,

|Pr[S3]− Pr[S2]| ≤
qro

2k
(6)

By substituting Pr[S3] = 0 and from Equations 1-6 we have

SuccNIOM ≤
qro + |pid|+ 3

2k
+

qro · SuccCDH

|pid|
+

qro

2k

which is negligible in k. Hence, Ngke is a non-information oracle when H is modeled as a random
oracle and if CDH is computationally hard in G.

Having shown that there exists a non-information oracle Ngke for the protocol in Figure 3, we
now claim that the protocol securely realizes the functionality F+

GKE .

Claim 2. The protocol πgke in Figure 3 securely realizes F+
GKE for the non-information oracle Ngke

assuming that the signature used in the protocol is existentially unforgeable against chosen message
attacks (EU-CMA).

Proof. (Sketch) Let A be a real adversary interacting with πgke and real-world parties. We construct
an ideal adversary S such that no environment Z can tell whether it is interacting with A and
parties running πgke in the real world or with S and dummy parties communicating with F+

GKE .
The general proof idea is similar to the approach of the two-party cases [15, 23], but as stated

earlier we make use of multiple copies of Ngke. These copies of Ngke provide S, transcripts of the
protocol for its simulation. If all the parties in pid remain uncorrupted, S uses these transcripts
to simulate messages among the parties. If only a proper subset of parties in pid is corrupted S
obtains the internal state of the copies of Ngke through F+

GKE that is consistent with the transcripts.
Moreover, S can now have the chance to perform the group key exchange on behalf of the corrupted
parties with the copies of Ngke that correspond to the uncorrupted parties. In both the cases, during
its interaction with Z, S supplies transcripts on demand to Z, which are consistent with the final
output (that contains the common key) of the uncorrupted parties in the ideal model as observed
by Z. S proceeds as follows:

1. S internally keeps a simulation of the parties U
(s)
1 , . . . , U

(s)
n running the protocol πgke. Any

message from Z is forwarded to A (as if coming from A’s environment) and any message from
A is forwarded to Z(S’s environment).
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2. S generates public-private key pairs for all the simulated parties U
(s)
1 , . . . , U

(s)
n and gives the

resulting public keys to A. It also chooses the common parameters: the description of a group
G of prime order q and a generator g of G.

3. Upon receiving a message (sid, pid, Ui) from F+
GKE for an uncorrupted party Ui, S initiates the

simulation of πgke for A, being run by U
(s)
i with sid(s) = sid and pid(s) = pid. It sends the

common parameters and pid(s) to the i-th copy of Ngke and obtains a message Mi1 .

4. For each i ∈ {1, . . . , |pid(s)|} do:

When a simulated party U
(s)
i wants to broadcast a message (M

(s)
i1

, σ
(s)
i1

) and if the corresponding

ideal party Ui is uncorrupted, S first checks if σ
(s)
i1

is a valid signature on M
(s)
i1

and aborts the

simulation if it is not a valid signature. Otherwise, S generates a signature σi1 on Mi1‖pid(s)

using the private key of U
(s)
i , where Mi1 is the message obtained from the i-th copy of Ngke and

simulates the message (Mi1‖pid(s), σi1) for A.
5. For each i ∈ {1, . . . , |pid(s)|} do:

When a simulated party U
(s)
i is delivered a set of |pid(s)| − 1 messages {(sid(s), M

(s)
j1

, σ
(s)
j1

)|j 6=

i, 1 ≤ j ≤ |pid(s)|} and if the corresponding ideal party Ui is uncorrupted, S checks if each

σ
(s)
j1

is a valid signature on the corresponding M
(s)
j1

. S aborts if there is at least one invalid

signature and proceeds as follows otherwise: S parses each M
(s)
j1

that U
(s)
i received as Mj1‖pid(s)

and sends each Mj1 to the i-th copy of Ngke and waits till it obtains a message Mi2 . It now

generates a signature σi2 on the message Mi2‖authi using the private key of U
(s)
i and simulates

a message (Mi2‖authi, σi2) for A, where authi = H(pid(s)‖H(k1)‖ . . . ‖H(k|pid(s)|)). The H(kj)’s

used in computing authi are parsed from the messages received by U
(s)
i .

6. For each i ∈ {1, . . . , |pid(s)|} do:

When a simulated party U
(s)
i is delivered a set of |pid(s)| − 1 messages {(sid(s), M

(s)
j2

, σ
(s)
j2

)|j 6=

i, 1 ≤ j ≤ |pid(s)|} and if the corresponding ideal party Ui is uncorrupted, S checks if each σ
(s)
j2

is a valid signature on the corresponding M
(s)
j2

. It aborts if there is at least one invalid signature

and proceeds as follows otherwise: S parses each M
(s)
j2

that U
(s)
i received as Mj2‖authi and sends

each Mj2 to the i-th copy of Ngke.

7. When A corrupts a party U
(s)
i , S proceeds as follows:

(a) If S has not yet received a message (sid, pid, Ui) from F+
GKE , A is given the long term private

key of U
(s)
i .

(b) If U
(s)
i already chose the internal state but did not yet erase it, A is given the internal state

of U
(s)
i along with its private key as follows:

i. U
(s)
i has not yet sent a message (M

(s)
i1

, σ
(s)
i1

) (first round message), S gives the current

internal state of U
(s)
i

ii. U
(s)
i has already sent the first round message (M

(s)
i1

, σ
(s)
i1

), S obtains the internal state
of the i-th copy of Ngke by corrupting the party Ui in the ideal world and replaces the

current internal state of U
(s)
i with this state. A is then given the internal state of U

(s)
i .

(c) If U
(s)
i already erased its internal state, S has to give the common key to A.

i. If no uncorrupted party in the simulation generated an output, S obtains the local output
of N i by corrupting Ui in the ideal model. The key is handed over to A.
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ii. If some uncorrupted has generated an output, S corrupts Ui, asks F+
GKE to deliver the

session key to Ui and gives the key to A.
(d) If S has already sent a (deliver, Ui) message to F+

GKE , A gets no internal state.

8. If a simulated party U
(s)
i , whose ideal counterpart Ui is uncorrupted, produces an output sk

(s)
i ,

S proceeds as follows:

(a) If no parties in pid are corrupted:
i. If S has not yet sent (ok) message to F+

GKE , then S checks if it has received (sid,pid,ready)

from F+
GKE . If not S aborts. Otherwise, it sends (ok) and then (deliver, Ui) to F+

GKE .

ii. If S has already sent an (ok) message to F+
GKE , S sends (deliver, Ui) to F+

GKE .
(b) Let C ⊆ pid \ {Ui} be the set of corrupted parties.

i. If S has not yet sent (ok) to F+
GKE , then S first sends (sid,pid,new-session) to F+

GKE on
behalf of the parties in C who have not done so. If S does not receive (sid,pid,ready) after
doing so, it aborts. Otherwise, it sends (ok) back to F+

GKE , followed by (deliver, Ui).
ii. S aborts if two simulated parties corresponding to uncorrupted ideal parties output

different keys.
iii. If S already sent (ok) message to F+

GKE , S now sends (deliver, Ui).

With the above description of S, we now argue that no PPT environment Z can distinguish its
interaction with S in the ideal world from that with A in the real world. We explain only the case
where S aborts in its simulation.

– In Step 4, S simulates Round 1 messages on behalf of the uncorrupted parties using the messages
obtained from the respective copies of Ngke. Note that S aborts the simulation in the case of a
simulated party corresponding to an uncorrupted ideal party tries to send a message containing
invalid signature. However, this probability is negligible as an uncorrupted simulated party
follows the protocol and generates a valid signature using the specified signature scheme.

– In Step 5, S validates the received Round 1 messages and simulates Round 2 messages on behalf
of the uncorrupted parties. It aborts simulation if any message received by a simulated party
corresponding to an uncorrupted party has invalid signature. However, in this case the real
world execution of the protocol would also abort. The adversary A has to forge the signature in
case it wants S to accept a signature on a modified message. However, as the signature used is
EU-CMA secure this probability negligible. The Round 2 messages simulated by S on behalf of
the uncorrupted parties in this step do not introduce any difference. The simulation in Step 6
is also valid based on the above arguments.

– Corruptions of parties at different stages of the protocol execution are handled in Step 7, without
introducing any difference from the point of view of Z. Note, in particular, that the internal
state provided in Step 7(b)ii is consistent with the earlier simulated messages.

– The probability of S aborting in Step 8(a)i is negligible. S starts simulating the protocol πgke for

a simulated party U
(s)
i (corresponding to an uncorrupted Ui) only after receiving the message

(sid, pid, Ui) from F+
GKE as described in Step 3. F+

GKE sends the (sid, pid, ready) message once
it receives the (sid, pid, new-session) message from all Ui ∈ pid. As all the parties in pid are

uncorrupted, a party U
(s)
i outputting a key in the simulation before S receiving the (sid, pid,

ready) message is negligible.
– In Steps 8(a)i,8(a)ii when all the parties in pid are uncorrupted, the common key output (chosen

uniformly at random from {0, 1}k) by these parties remain indistinguishable from a random
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string. When a proper subset of parties in pid is corrupted, as explained earlier, the output key
of the uncorrupted parties is consistent with the earlier simulated messages and this key is an
output of one of the copies of Ngke.

– S aborts in Step 8(b)ii if two simulated parties corresponding to two uncorrupted parties in the
ideal world output two different keys, which happens with negligible probability as the protocol
is correct.

If a GKE protocol employs signatures, it is generally assumed that a strong corrupt query or
a session state reveal query do not reveal the randomness used in generating the signatures, as
this may potentially leak the long-term secret key itself [8, 10]. This is easily simulated by S by
revealing internal state of the copies of Ngke on an appropriate query from the environment. Note
that the copies of Ngke do not compute any signatures. Hence, the environment cannot distinguish
its interaction with the protocol in the real world and a real adversary from an interaction with S
and F+

GKE running the copies of Ngke in the ideal world.
This completes our sketch of proof that the simulation by S is valid.

4.2 Discussion

Desmedt et al. [19] propose a notion of shielded insider privacy, which guarantees that the session
key distribution is not biased. As explained in Section 3.1, this level of contributiveness can be
achieved only assuming weak corruptions and honest majority of participants. On the other hand,
if there exists no honest majority of participants, our formulation allows the session key distribution
to be biased. As explained by Bresson and Manulis [10], this scenario cannot be addressed when
assuming strong corruptions and corrupted parties up to (|pid|−1). Hence there is trade-off between
the capability of the adversary and the attack it can mount.

In independent work, Furukawa et al. [21] present an ideal functionality for GKE protocols with-
out assuming the availability of unique session IDs. However, they do not consider contributiveness.
They also propose a two-round protocol that can realize their functionality. The Initialization
phase of our functionality can also be modified in the same way and the protocol in Figure 3 can
be shown to realize the resulting functionality with authi as the session ID. Although the protocol
of Furukawa et al. [21] is proven secure in the standard model, its security relies on a new non-
standard assumption called linear oracle bilinear Diffie-Hellman assumption. On the other hand,
our protocol is proven secure in the random oracle model assuming the hardness of the standard
computational Diffie-Hellman problem. It is arguable whether proofs in the standard model assum-
ing a strong computational assumption are of more practical importance than proofs in the random
oracle model assuming a weak computational assumption [30].

We have assumed the hash function H used in the protocol to be a random oracle, while proving
that Ngke is a non-information oracle but not as a helper functionality in the simulation [22, 1]. This
allowed the proof to be simple and yet demonstrating the usefulness of the functionality F+

GKE . We

leave open the task of constructing efficient protocols which can realize F+
GKE without the random

oracle assumption.

Acknowledgments

The authors thank Mark Manulis for his comments on an earlier version of this paper. This work
has been supported by the Australian Research Council Discovery Project grant DP0773348.

12



References
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A Review of Game-based Notions of Security for GKE

We first review the communication and adversarial model based on Katz and Shin [24]. We try to
be as brief as possible due to lack of space.

Let U = {U1, . . . , Un} be a fixed set of n parties. The protocol may be run among any subset of
these parties. Each party has a pair of long-term public and private keys, (PKU , SKU ) generated
during an initialization phase prior to the protocol run. A group key exchange protocol π is modeled
as a collection of n programs running at the n different parties in U . Each instance of π within a
party is defined as a session and each party may have multiple such sessions running concurrently.
Let πi

U be the i-th invocation of the protocol π at party U .

Following [24], we assume that a unique session ID for each instance of the protocol is provided
by a higher-level protocol. The session ID of an instance πi

U is denoted by sidi
U . We assume the

pre-specified peer model and hence each party knows who the other participating parties are. The
partner ID pidi

U of an instance πi
U , is a set of identities of the parties with whom πi

U wishes to
establish a common group key. Note that pidi

U includes the identity of U itself.

An instance πi
U enters an accepted state when it computes a session key ski

U . Note that an
instance may terminate without ever entering into an accepted state. The information of whether
an instance has terminated with acceptance or without acceptance is a public information. Two
instances πi

U and πj
U ′ at two different parties U and U ′ respectively are considered partnered iff (1)

both the instances have accepted, (2) sidi
U= sidj

U ′ and (3) pidi
U= pidj

U ′ .

The communications network is controlled by an adversary A, which schedules and mediates
all sessions among the parties. If the adversary honestly forwards all messages between instances
of parties in a given set pid, and each such instance holds the same value sid, then these instances
all accept and output identical session keys. Such a protocol is called a correct GKE protocol. In
addition to controlling the message transmission, A is allowed to ask the following queries.

– Execute(sid,pid) prompts a complete execution of the protocol among the parties in pid using
the unique session ID sid. A is given all the protocol messages, modeling passive attacks.

– Send(πi
U ,m) sends a message m to the instance πi

U . If the message is (sid,pid), the instance πi
U is

initiated with (sid,pid). The response of πi
U to any Send query is returned to A.

– RevealKey(πi
U ) If πi

U has accepted, A is given the session key ski
U established at πi

U .
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– Corrupt(U) The complete internal state of U including the long-term secret key SKU of U is
returned to A. Note that this query does not return the session key, if computed.

– Test(πi
U ) A random bit b is secretly chosen. If b = 1, A is given ski

U established at πi
U . Otherwise,

a random string chosen from the session key probability distribution is given. Note that a Test
query is allowed only on an accepted instance.

A.1 AKE Security

We present here the AKE-security notion in the strong corruption model, defined by Katz and
Shin [24]. Unlike Bresson and Manulis [10], we do not separate strong corruption into long-term
secret Key reveal and session state reveal queries.

The notion of freshness is central to defining AKE-security for GKE protocols. An instance πi
U

is unfresh if the instance πi
U or any of its partners is asked a RevealKey after having accepted or a

Corrupt(U ′) query is asked for some U ′ ∈ pidi
U before πi

U and its partners have terminated. In all
other cases πi

U is assumed to be fresh.

Definition 2. An adversary Aake against the AKE-security notion is allowed to make Execute,
Send, RevealKey and Corrupt queries in Stage 1. Aake makes a Test query to an instance πi

U at the
end of Stage 1 and it is given a challenge key Kb as described above. It can continue asking queries
in Stage 2. Finally, Aake outputs a bit b′ and wins the AKE security game if (1) b′ = b and (2)
the instance πi

U that was asked Test remains fresh till the end of Aake’s execution. Let SuccAake

be the success probability of Aake in winning the AKE security game. The advantage of Aake in
winning this game is AdvAake

= 2 · |Pr[SuccAake
]− 1

2 |. A protocol is called AKE-secure if AdvAake

is negligible in the security parameter k for any polynomial time Aake.

A.2 Mutual Authentication

The notion of mutual authentication presented here is a modified version of the one by Bresson
and Manulis [10], as we do not consider session state reveal separately.

Definition 3. An adversary Ama against the mutual authentication of a correct GKE protocol π is
allowed to ask Execute, Send, RevealKey and Corrupt queries. Ama wins the mutual authentication
security game if at some point during the protocol run, there exist an uncorrupted party U whose
instance πi

U has accepted with a key ski
U and another party U ′ ∈ pidi

U that is uncorrupted at the
time πi

U accepts such that

1. there is no instance πj
U ′ with (pidj

U ′ , sidj
U ′) = (pidi

U , sidi
U ) or

2. there is an instance πj
U ′ with (pidj

U ′ , sidj
U ′) = (pidi

U , sidi
U ) that has accepted with skj

U ′ 6= ski
U .

Let SuccAma be the success probability of Ama in winning the mutual authentication game. A
protocol is said to provide mutual authentication in the presence of insiders if SuccAma is negligible
in the security parameter k for any polynomial time Ama.

A.3 Contributiveness

The notion of contributiveness presented here can be seen as a strengthened notion of contributive-
ness defined by Bohli et al. [5], by considering strong and adaptive corruptions. As stated earlier,
this notion does not consider opening attacks.

15



Definition 4. An adversary Acon against the contributiveness of correct GKE protocol π is allowed
ask Execute, Send, RevealKey and Corrupt queries and It operates in two stages prepare and attack:

prepare. Acon queries the instances of π and outputs some state information ζ along with a de-
scription of a boolean valued algorithm χ. We denote by Kχ a set of keys Kχ = {k̃|k̃ ∈

{0, 1}k and χ(k̃) = true} such that
|Kχ|
2k is negligible in the security parameter k.

At the end of prepare stage, a set Π is built such that Π consists of honest instances which have
been asked either Execute or Send queries

attack. On input (χ, ζ, Π), Acon interacts with the instances of π as in the prepare stage.

At the end of this stage Acon outputs (U, i) and wins the game if an honest instance πi
U has

terminated accepting k̃ ∈ Kχ with πi
U /∈ Π

Let SuccAcon be the success probability of Acon in winning the above game. A protocol is said
to provide contributiveness in the presence of insiders, if SuccAcon is negligible in the security
parameter k for any polynomial time Acon.

B Relaxed UC-security implies the existing notions

Claim 3. Let π be a GKE protocol that securely realizes F+
GKE . Then π is AKE secure as defined

in Appendix A.1.

Proof. (Sketch) We follow the proof idea of Canetti and Krawczyk [15], but give a direct proof
without casting the AKE-security notion in the UC framework.

Assume that π securely realizes F+
GKE for some ITM N . Hence π̂ securely realizes ˆF+

GKE , where

π̂ and ˆF+
GKE are multi-session extensions of π and F+

GKE respectively. Now, assume to the contrary
that π̂ is not AKE-secure i.e. there exists an adversary Aake against the AKE-security of π̂ such
that AdvAake

is non-negligible in the security parameter k. Then, we show that N is not a non-
information oracle.

We use Aake to construct an environment Zake and a real-world adversary A. A runs Aake as
subroutine and gives it any public keys that were given to A. Whenever Aake asks a query or sends
a message, A forwards it to Zake and any message sent by Zake is forwarded to Aake. A follows the
instructions of Zake and they both proceed as follows:

1. When Aake asks Execute(ssid,pid) query
– If none of the parties in pid is corrupted, Zake invokes all parties in pid with input (new-

session,sid,ssid,pid). The real-world adversary A sends these messages to Zake, which will
then be forwarded to Aake. Let (ssid,pid,κ) be the output of a party U ∈ pid as observed by
Zake, Zake records session (U,ssid,pid,κ) and marks it completed and fresh.

– If there exists at least one corrupted party, Zake invokes the uncorrupted parties (if exist) in
pid as above and instructs A to run the protocol honestly on behalf of all corrupted parties.
A forwards the messages from the corrupted parties to Zake. The protocol transcript is
also forwarded to Aake. If an uncorrupted party U ∈ pid outputs (ssid,pid,κ), Zake records
(U,ssid,pid,κ) and marks this session completed and unfresh.

2. When Aake asks Send(π̂i
U ,(ssid,pid)) query

– If no parties in pid is corrupted, Zake invokes U with input (new-session,sid,ssid,pid) and
records (U,ssid,pid,*) as an uncompleted and fresh session.
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– If some parties in pid are corrupted, Zake invokes uncorrupted parties (if any) in pid as above
and instructs A to run run the protocol honestly on behalf of the corrupted parties. Zake

records the session (U ,ssid,pid,*) as uncompleted and unfresh.
In both the cases above, A forwards the messages among the real parties to Zake and the
transcripts are subsequently forwarded to Aake as instructed by Zake.

3. When Aake asks a Send(π̂i
U ,m) query (let π̂i

U be associated with the session (ssid, pid))

– U is uncorrupted: If U is not yet invoked, Zake first invokes U with the input (new-session,
sid, ssid, pid). It instructs A to deliver m to the appropriate instance at U and subsequently
to deliver the outgoing message of this instance to Aake. If there is exist no previous record
for this session, Zake records (U ,ssid,pid,*) as uncompleted and fresh.

– If U is corrupted, then Zake instructs A to execute the next step of the protocol honestly
on behalf of U .

4. When a party U outputs a value (ssid,pid,κ), Zake records the output value and marks the
instance as completed. Note that the instance would be fresh if U is uncorrupted and unfresh if
U is corrupted (the output key in this case would have been computed locally by Zake).

5. If Aake asks a RevealKey(π̂i
U ) query for a recorded completed session with session key κ, Zake

instructs A to hand over the key to Aake. Let (ssid, pid) be the session associated with the
instance; Zake marks the session (U ,ssid,pid,κ) as unfresh.

6. When Aake issues a Corrupt(U) query, A provides the complete internal state of U to Aake. Each
uncompleted session (ssid,pid) at U and any uncompleted sessions of the form (U ′, ssid, pid, *)
(the partnered sessions) are marked unfresh. Note also that Zake marks all the future sessions
established at U as unfresh.

7. When Aake asks a Test(π̂i
U ) query on a completed session, Zake first chooses a bit b

R
← {0, 1}. If

b = 0, Aake is given (via A) the session key κ recorded as established at the instance. If b = 1,
Aake is given (via A) a random key drawn from probability distribution of the session keys.

8. When Aake outputs its guess bit b′ for the test session, Zake proceeds as follows: Let (ssid, pid)
be the session associated with the test instance π̂i

U . If there exist at least one unfresh record
that contains (ssid, pid) (the test session and its partners), Zake outputs a random bit. Else, if
b′ = b, Zake outputs 1; otherwise, outputs 0.

It is easy to see that the simulation done by Zake and A for Aake is valid. Since, π̂ is not
AKE-secure, Aake wins the AKE-security game with non-negligible advantage. Hence, when Aake

interacts with Zake (via A), the output of Zake is skewed non-negligibly away from fifty-fifty. Since π̂

securely realizes ˆF+
GKE there exists an ideal adversary S that causes the same skew in the output of

Zake after its interaction with S and an ideal process for ˆF+
GKE . We use S to construct a distinguisher

M that interacts with the copies of N and distinguishes between the output of any of these copies
and a random value, thus showing that a copy of N is not a non-information oracle.

Let m be the maximum number of sessions invoked by S in the ideal world.M starts by choosing

l
R
← {1, . . . , m} and simulates the interactions of S with Zake and an instance of ˆF+

GKE as follows:

1. Whenever S asks Zake to activate a subset of parties in U to invoke a session (with session

ID sid) among them, M simulates ˆF+
GKE for S. For each query of this type, M first invokes a

new instance of F+
GKE within ˆF+

GKE , which also requires running |pid| copies of N corresponding
to that session. M runs these copies of N by itself except those that correspond to the l-th
instance of F+

GKE . The messages sent by S to the copies N that correspond to the l-th instance
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of F+
GKE are forwarded to those copies and similarly all the messages from these copies of N are

forwarded to S as coming from the l-th copy of F+
GKE .

2. When S corrupts an ideal party U ,M checks to see if this results in obtaining the internal state
of copies of N which correspond to the l-th copy of F+

GKE . If so it outputs a random bit and
halts as the simulation failed. Otherwise, M gives S the internal states of the corresponding
copies of N (As M runs these copies of N by itself it knows the internal states).

3. When S chooses a test session that is not the l-th session, then M outputs a random bit as
its simulation failed. If the test session corresponds to the l-th copy of F+

GKE , then M is given
either the local output of one of the copies of N (As the test session is fresh the local outputs
of all these of N would be identical) or a random value. M then forwards this test value to S
as the one given by Zake.

4. When S outputs its guess for the bit b, M simply outputs the same guess.

Since π̂ securely realizes ˆF+
GKE S outputs its guess with probability non-negligibly more than 1

2 .
If S chooses the l-th session as the test session, thenM also succeeds in distinguishing the output
of any of the |pid| copies of N from a random value with the same probability. Note that there are
a maximum of m sessions among a maximum of n parties. Hence, a total of n ·m copies of N could
be invoked. It follows thatM succeeds in its guess with an advantage that is |pid|

n·m times that of S,
which is non-negligible.

Claim 4. Let π be a GKE protocol that securely realizes F+
GKE . Then π satisfies the mutual au-

thentication notion as defined in Appendix A.2.

Proof. Note that the definition in Appendix A.2 unifies the game-based notions of insider security
defined by Katz and Shin [24]. The proof of this claim is similar to that of Claim 3 in Katz and
Shin. We give a sketch of the proof here for completeness.

As π securely realizes F+
GKE , we have π̂ securely realizing ˆF+

GKE , where π̂ and ˆF+
GKE are multi-

session extensions of π and F+
GKE respectively. Now, assume to the contrary that π̂ does not satisfy

the definition of mutual authentication i.e. there exists an adversary Ama against π̂ that has non-
negligible advantage in winning the mutual authentication game defined in Appendix A.2.

We use Ama to construct an environment Zma and a real-world adversary A such that for any
ideal adversary S, Zma can distinguish whether it interacts with A and the players running the

real protocol π̂ or with S and the ideal process for ˆF+
GKE . A runs Ama as subroutine and gives it

any public keys that were given to A. Whenever Ama asks a query or sends a message, A forwards
it to Zma and any message sent by Zma is forwarded to Ama. A follows the instructions of Zma

and they both proceed as follows:

1. All the queries of asked by Ama are handled as described in the proof of Claim 3 above.

2. Zma outputs 1 if any of the following events happens:

(a) There exist two players U and U ′ and a completed and fresh session (U , ssid, pid, κ) such
that U ′ was not corrupted before this session was completed, U ′ ∈ pid, but there is no session
(U ′,ssid, pid, *).

(b) There exist two players U and U ′ and sessions (U , ssid, pid, κ) and (U ′, ssid, pid, κ′), which
are completed and fresh but κ 6= κ′.

3. In all other events, Zma outputs 0.
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It is easy to see that the simulation done by Zma and A for Ama is valid. Note that we have assumed
that Ama has non-negligible advantage in winning the mutual authentication game. Hence, Zma

outputs 1 whenever Ama violates the mutual authentication in the protocol π̂.

Now consider Zma’s interaction with S and an ideal process for ˆF+
GKE . In this case we argue

that Zma never outputs 1. Firstly, the Event 2a above does not happen in the ideal world because,

as per the definition of the ideal functionality F+
GKE , the copy of F+

GKE running within ˆF+
GKE does

not proceed to Key Generation phase unless it receives (sid, ssid, pid, new-session) from all users
U ∈ pid. Next, the Event 2b also does not happen in the ideal world. To see why, note that when
all the parties U ∈ pid are uncorrupted F+

GKE generates a uniformly random key. When there

exist at least one uncorrupted party, F+
GKE first checks if the copies of non-information oracles Ni

corresponding to the uncorrupted parties Ui ∈ pid output identical session key values. In both the
cases, F+

GKE distributes the same session key to all uncorrupted parties.
Since, Zma can distinguish its interaction with π̂ running in the presence ofA from its interaction

with S and an ideal process for ˆF+
GKE , it violates the UC-security of π̂. This is a contradiction to

our initial assumption. Hence, π satisfies the mutual authentication notion.

Claim 5. Let π be a GKE protocol that securely realizes F+
GKE . Then π satisfies the contributiveness

notion as defined in Appendix A.3.

Proof. Assume that π securely realizes F+
GKE . Thus π̂ securely realizes ˆF+

GKE . Now, assume that π̂
does not guarantee contributiveness as per Definition 4 in Appendix A.3, then we show that π̂ does

not securely realize ˆF+
GKE . Let Acon be an adversary that violates the contributiveness of π̂.

We construct an environment Zcon and a real-world adversary A using Acon such that for an
ideal adversary S, Zcon distinguishes an execution of A with the parties running the protocol π̂

from an execution of S with the ideal process for ˆF+
GKE . Zcon and A proceed as follows:

1. The queries Execute, Send, Corrupt and RevealKey asked by Acon are handled in the same way
as Zake does in the proof of Claim 3.

2. Zcon records the output of Acon at the end of prepare and continues to answer Acon’queries in
attack stage. Specifically, it constructs the set Kχ from Acon’s output.

3. During its execution Zcon outputs 1 if the following event happens: there exists a completed and
fresh session (U, ssid, pid, κ̃) that is invoked after Acon’s prepare stage such that κ̃ ∈ Kχ.

4. Zcon outputs 0, otherwise.

Note that, whenever Acon violates the contributiveness of π̂, Zcon outputs 1. As we assumed
that π̂ does not guarantee contributiveness this happens with a non-negligible probability. On the

other hand, in an interaction with S and the ideal process for ˆF+
GKE , the event in Step 3 happens

with negligible probability; thus Zcon outputting 1 in this interaction is also negligible. To see why,
note that as long as there exists at least one uncorrupted party U , the copy of F+

GKE corresponding

to the session (sid,ssid,pid) running within ˆF+
GKE , sets the session key to be the local output of a

copy of N . The probability of the copy of N corresponding to the uncorrupted party outputting a

key from the set Kχ is
|Kχ|
2k , which is negligible in the security parameter as per Definition 4. This

implies that π̂ and consequently π do not securely realize ˆF+
GKE and F+

GKE respectively. Hence, we

conclude that a protocol π that securely realizes F+
GKE guarantees contributiveness.
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