
Wild McEliece

Daniel J. Bernstein1, Tanja Lange2, and Christiane Peters2

1 Department of Computer Science
University of Illinois at Chicago, Chicago, IL 60607–7045, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands
tanja@hyperelliptic.org, c.p.peters@tue.nl

Abstract. The original McEliece cryptosystem uses length-n codes over
F2 with dimension ≥ n−mt efficiently correcting t errors where 2m ≥ n.
This paper presents a generalized cryptosystem that uses length-n codes
over small finite fields Fq with dimension ≥ n − m(q − 1)t efficiently
correcting bqt/2c errors where qm ≥ n. Previously proposed cryptosys-
tems with the same length and dimension corrected only b(q − 1)t/2c
errors for q ≥ 3. This paper also presents list-decoding algorithms that
efficiently correct even more errors for the same codes over Fq. Finally,
this paper shows that the increase from b(q − 1)t/2c errors to more than
bqt/2c errors allows considerably smaller keys to achieve the same secu-
rity level against all known attacks.

Keywords: McEliece cryptosystem, Niederreiter cryptosystem, Goppa
codes, wild Goppa codes, list decoding

1 Introduction

Code-based cryptography was proposed in 1978 by McEliece [28] and
is one of the oldest public-key cryptosystems. Code-based cryptography
has lately received a lot of attention because it is a good candidate for
public-key cryptography that remains secure against attacks by a quan-
tum computer. See Overbeck and Sendrier [32] for a detailed overview of
the state of the art; see also Bernstein [3] for the fastest known quantum
attack.

Encryption in McEliece’s system is very efficient (a matrix-vector mul-
tiplication) and thanks to Patterson’s algorithm [33] decryption is also ef-
ficient. However, this system is rarely used in implementations. The main
complaint is that the public key is too large.
* This work was supported in part by the Cisco University Research Program,

in part by the Fields Institute, and in part by the European Commission un-
der Contract ICT-2007-216646 ECRYPT II. Permanent ID of this document:
69b9a7e1df30d1cd1aaade333b873601. Date: 2010.10.07.

2 D. J. Bernstein, T. Lange, C. Peters

Obviously, in the post-quantum setting, some secure public-key cryp-
tosystem is better than none, and so one can tolerate the large key sizes.
However, convincing users to already now switch over to code-based sys-
tems requires shorter keys.

McEliece’s original system uses binary Goppa codes. Several smaller-
key variants have been proposed using other codes, such as Reed–Solomon
codes [31], generalized Reed–Solomon codes [38], quasi-dyadic codes [30]
or geometric Goppa codes [22]. Unfortunately, many specific proposals
turned out to be breakable.

The most confidence-inspiring proposal is still McEliece’s original pro-
posal to use binary Goppa codes. For these only information-set-decoding
attacks apply; these are generic attacks that work against any code-based
cryptosystem. In 2008, Bernstein, Lange, and Peters [7] ran a highly op-
timized information-set-decoding attack to break the specific parameters
proposed by McEliece in 1978. After 30 years the system had lost little of
its strength; the break would not have been possible with the computation
power available in 1978.

The best defense against this attack is to use codes with a larger
error-correcting capability. Slightly larger binary Goppa codes are still
unbreakable by any algorithm known today.

The disadvantage of binary Goppa codes is that they have a compa-
rably large key size. The construction of the code is over F2m but then
only codewords with entries in F2 are considered. Doing a similar con-
struction with Fq, for a prime power q > 2, as base field decreases the
key size at the same security level against information-set decoding, as
shown by Peters [34]. However, this effect appears only with sufficiently
big base fields such as F31; codes over F3 and F4 look worse than those
over F2. The main reason making F2 better is that for binary Goppa
codes it is well known that the subfield construction almost doubles the
error-correcting capability of the code (more precisely, of known fast de-
coding algorithms), improving the security of the resulting scheme. For
codes over other fields no increase in the error-correcting capability was
used in the estimates.

In this paper we propose using “wild Goppa codes”. These are subfield
codes over small Fq that have an increase in error-correcting capability by
a factor of about q/(q − 1). McEliece’s construction using binary Goppa
codes is the special case q = 2 of our construction.

These codes were analyzed in 1976 by Sugiyama, Kasahara, Hirasawa,
and Namekawa [41] but have not been used in code-based cryptography
so far. We explain how to use these codes in the McEliece cryptosystem

Wild McEliece 3

and how to correct bqt/2c errors where previous proposals corrected only
b(q − 1)t/2c errors. We also present a list-decoding algorithm that allows
even more errors.

In the following sections we give the mathematical background of
our proposal and explain where the increase in error-correcting capabil-
ity comes from. After reviewing structural attacks and their applicabil-
ity to our proposal we present parameters for different base fields that
achieve 128-bit security against information-set-decoding attacks. These
show that base fields Fq with q ≤ 32 are interesting alternatives to F2.
For F32 the increase factor q/(q − 1) is close to 1 and so our results are
close to the results of Peters; but for q = 3, 4, or 5 the change is signifi-
cant. Using list decoding further decreases the size of the key and leads
to the smallest public keys proposed for subfield Goppa codes.

2 The McEliece cryptosystem

This section gives background on the McEliece cryptosystem in two vari-
ants: the classical setup by McEliece as in [28] and Niederreiter’s vari-
ant [31].

Codes. A linear code of length n and dimension k over Fq is a k-
dimensional subspace of Fn

q . Such a code C can be represented (usu-
ally in many ways) by a generator matrix, a k × n matrix G such that
C =

{
mG : m ∈ Fk

q

}
; or by a parity-check matrix, an (n−k)×n matrix H

such that C =
{
c ∈ Fn

q : Hct = 0
}

.
Given a generator matrix G for a linear code C one can easily deter-

mine a parity-check matrix H for C by linear transformations. In partic-
ular, if G has systematic form, i.e., G = (Ik|Q) where Q is a k × (n− k)
matrix, then H = (−Qt|In−k) is a parity-check matrix for the code Fk

qG.
The Hamming distance between two words in Fn

q is the number of
coordinates where they differ. The Hamming weight of a word is the
number of nonzero coordinates in the word. The minimum distance of
a nonzero linear code C is the smallest Hamming weight of a nonzero
codeword in C.

A decoding algorithm for C receives a vector y in Fn
q and a positive

integer w as inputs. The output is a codeword c in C at distance at most
w from y if such c exists. The linear codes that are interesting candidates
for the McEliece cryptosystem are codes allowing fast error correction,
i.e. fast computation of an error vector e of weight ≤ w such that y − e
lies in C.

4 D. J. Bernstein, T. Lange, C. Peters

The McEliece public-key cryptosystem. Choose a linear code C
over Fq of length n and dimension k which can correct w errors. Take
a generator matrix G for C. Also choose uniformly at random an n × n
permutation matrix P and an invertible k × k matrix S. Compute the
matrix Ĝ = SGP and publish Ĝ together with the parameters n, k, and
w. Make sure to keep G, P , and S as well as C secret.

Messages suitable for encryption are messages m ∈ Fk
q . Encryption

works as follows: Compute mĜ. Compute a random error vector e of
weight w. Send y = mĜ+ e.

Decryption: Compute yP−1 = mSG + eP−1. Apply C’s decoding
algorithm to find mSG which is a codeword in C from which one obtains
the original message m.

The Niederreiter public-key cryptosystem. Choose C as above.
Take a parity-check matrix H of C. Choose a random n × n permuta-
tion matrix P and a random invertible (n − k) × (n − k) matrix M .
Publish the matrix Ĥ = MHP and the error weight w. Again keep the
code and the matrices H, P , and M secret.

Messages suitable for encryption are vectors u ∈ Fn
q of Hamming

weight w. Encryption works as follows: Encrypt u by multiplication with
Ĥ. Send y = Ĥut.

Decryption: Compute v in Fn
q with M−1y = Hvt by linear algebra.

Note that vt−Put lies in the kernel of H, i.e. is a codeword in C. Use the
decoding algorithm to retrieve vt − Put, and since v is known get Put.
Inverting P yields u.

Choice of codes. Niederreiter proposed his system using generalized
Reed–Solomon codes (GRS codes) whereas McEliece proposed to use
classical binary Goppa codes. The use of GRS codes was proven to be
insecure in [38]. However, Niederreiter’s system with binary Goppa codes
has the same security as the McEliece cryptosystem as shown in [26].

3 Goppa codes

This section gives an introduction to classical Goppa codes over Fq.
Fix a prime power q; a positive integer m; a positive integer n ≤ qm;

an integer t < n/m; distinct elements a1, . . . , an in Fqm ; and a polynomial
g(x) in Fqm [x] of degree t such that g(ai) 6= 0 for all i.

The words c = (c1, . . . , cn) in Fn
qm with

n∑
i=1

ci
x− ai

≡ 0 (mod g(x)) (3.1)

Wild McEliece 5

form a linear code Γqm(a1, . . . , an, g) of length n and dimension n− t over
Fqm . The Goppa code Γq(a1, . . . , an, g) with Goppa polynomial g(x) and
support a1, . . . , an is the restriction of Γqm(a1, . . . , an, g) to the field Fq,
i.e., the set of elements (c1, . . . , cn) in Fn

q that satisfy (3.1). As a subfield
subcode of Γqm(a1, . . . , an, g) the code Γq(a1, . . . , an, g) has dimension ≥
n−mt. Beware that there is a conflicting definition of “support” elsewhere
in coding theory.

Let Γq(a1, . . . , an, g) be a Goppa code of length n, support a1, . . . , an,
and Goppa polynomial g of degree t. Assume that Γq(a1, . . . , an, g) has
dimension exactly n − mt. Fix a basis of Fqm over Fq and write each
element of Fqm with respect to that basis. Then a parity-check matrix for
Γq(a1, . . . , an, g) is given by the mt× n matrix

H =

1

g(a1)
1

g(a2) · · ·
1

g(an)
a1

g(a1)
a2

g(a2) · · ·
an

g(an)
...

...
. . .

...
at−1
1

g(a1)
at−1
2

g(a2) · · ·
at−1

n
g(an)

 ,

over Fq where each entry is actually a column vector written in the chosen
Fq-basis of Fqm .

The code Γq(a1, . . . , an, g) is often referred to as a “classical” Goppa
code since it is the basic construction of a genus-0 geometric Goppa code
which Goppa later generalized for higher-genus varieties.

For the decoding algorithm in Section 5 it is useful to recall that the
codewords in Γqm(a1, . . . , an, g) can be constructed by evaluating certain
functions at a1, . . . , an. Specifically: Define h(x) =

∏
i(x− ai). Note that

g(x) and h(x) are coprime. For each f ∈ gFqm [x] define

ev(f) =
(
f(a1)
h′(a1)

,
f(a2)
h′(a2)

, . . . ,
f(an)
h′(an)

)
,

where h′ denotes the derivative of h.
If f has degree less than n then one can recover it from the the entries

of ev(f) by Lagrange interpolation: namely, f/h =
∑

i(f(ai)/h′(ai))/(x−
ai). Consequently

∑
i(ev(f))i/(x − ai) is 0 in Fqm [x]/g, where (ev(f))i

denotes the i-th entry of ev(f).
Let (c1, . . . , cn) in Fn

qm be such that
∑

i ci/(x − ai) ≡ 0 (mod g(x)).
Define f =

∑
i cih/(x − ai) in Fqm [x]. Then f ∈ gFqm [x]. Since the

polynomial
∑

i cih/(x− ai) has degree less than n, also f has degree less
than n. Moreover, cj = f(aj)/h′(aj) = ev(f)j .

Therefore Γqm(a1, . . . , an, g) = {ev(f) : f ∈ gFqm [x], deg(f) < n} =
{(f(a1)/h′(a1), . . . , f(an)/h′(an)) : f ∈ gFqm [x], deg(f) < n}.

6 D. J. Bernstein, T. Lange, C. Peters

4 Wild McEliece

We propose using the McEliece cryptosystem, the Niederreiter cryptosys-
tem, etc. with Goppa codes of the form Γq(a1, . . . , an, g

q−1) where g is an
irreducible monic polynomial in Fqm [x] of degree t. Note the exponent
q − 1 in gq−1. We refer to these codes as “wild Goppa codes” for reasons
explained later in this section.

We further propose to use error vectors of weight bqt/2c. The advan-
tage of wild Goppa codes is that they allow us to efficiently correct bqt/2c
errors (or slightly more with the help of list decoding). For q ∈ {3, 4, . . .}
this is strikingly better than the performance of an irreducible polynomial
of the same degree (q − 1)t, namely correcting b(q − 1)t/2c errors. This
change does not hurt the code dimension: polynomials of the form gq−1

produce codes of dimension at least n −m(q − 1)t (and usually exactly
n−m(q − 1)t), just like irreducible polynomials of degree (q − 1)t.

Comparison to previous proposals. For q = 2 this proposal is not
new: it is exactly McEliece’s original proposal to use a binary Goppa
code Γ2(a1, . . . , an, g), where g is an irreducible polynomial of degree t,
and to use error vectors of weight t. McEliece used Patterson’s algorithm
to efficiently decode t errors.

We also do not claim credit for considering Goppa codes over slightly
larger fields F3, F4, etc. Peters in [34, Section 8] pointed out that switch-
ing from binary Goppa codes to codes of the form Γ31(a1, . . . , an, g), with
t/2 errors, reduces the key size by a factor of more than 2 while preserving
security against all known attacks.

What is new in our cryptosystem is the use of Goppa polynomials of
the form gq−1 for q ≥ 3, allowing us to correct more errors for the same
field size, the same code length, and the same code dimension.

Minimum distance of wild Goppa codes. The following theorem is
the main theorem of the 1976 paper [41] by Sugiyama, Kasahara, Hira-
sawa, and Namekawa. What the theorem states is that, for any monic
squarefree polynomial g in Fqm [x], the code Γq(a1, . . . , an, g

q−1) is the
same as Γq(a1, . . . , an, g

q). The code therefore has minimum distance at
least qt + 1. Efficient decoding of bqt/2c errors requires more effort and
is discussed in the next section.

The case q = 2 of this theorem is due to Goppa, using a different
proof that can be found in many textbooks. The case q ≥ 3 has received
less attention. We include a streamlined proof to keep this paper self-
contained.

Wild McEliece 7

The proof immediately generalizes from the pair (gq−1, gq) to the pair
(grq−1, grq), and to coprime products of such pairs. These generalizations
also appear in [41]. Wirtz in [44], and independently Katsman and Ts-
fasman in [23], further generalized the results of [41] to geometric Goppa
codes. See Janwa and Moreno [22] for discussion of the possibility of using
geometric Goppa codes in the McEliece cryptosystem but also Minder’s
thesis [29] and the paper by Faure and Minder [15] for attacks on the
elliptic-curve version and the genus-2 version. We do not consider this
possibility further in this paper.

Theorem 4.1 Let q be a prime power. Let m be a positive integer. Let
n be an integer with 1 ≤ n ≤ qm. Let a1, a2, . . . , an be distinct elements
of Fqm. Let g be a monic squarefree polynomial in Fqm [x] coprime to
(x−a1) · · · (x−an). Then Γq(a1, a2, . . . , an, g

q−1) = Γq(a1, a2, . . . , an, g
q).

Proof. If
∑

i ci/(x−ai) = 0 in Fqm [x]/gq then certainly
∑

i ci/(x−ai) = 0
in Fqm [x]/gq−1.

Conversely, consider any (c1, c2, . . . , cn) ∈ Fn
q such that

∑
i ci/(x −

ai) = 0 in Fqm [x]/gq−1. Find an extension k of Fqm so that g splits into
linear factors in k[x]. Then

∑
i ci/(x−ai) = 0 in k[x]/gq−1, so

∑
i ci/(x−

ai) = 0 in k[x]/(x−r)q−1 for each factor x−r of g. The elementary series
expansion

1
x− ai

= − 1
ai − r

− x− r
(ai − r)2

− (x− r)2

(ai − r)3
− · · ·

then implies∑
i

ci
ai − r

+ (x− r)
∑

i

ci
(ai − r)2

+ (x− r)2
∑

i

ci
(ai − r)3

+ · · · = 0

in k[x]/(x − r)q−1; i.e.,
∑

i ci/(ai − r) = 0,
∑

i ci/(ai − r)2 = 0, . . . ,∑
i ci/(ai−r)q−1 = 0. Now take the qth power of the equation

∑
i ci/(ai−

r) = 0, and use the fact that ci ∈ Fq, to obtain
∑

i ci/(ai− r)q = 0. Work
backwards to see that

∑
i ci/(x− ai) = 0 in k[x]/(x− r)q.

By hypothesis g is the product of its distinct linear factors x − r.
Therefore gq is the product of the coprime polynomials (x − r)q, and∑

i ci/(x− ai) = 0 in k[x]/gq; i.e.,
∑

i ci/(x− ai) = 0 in Fqm [x]/gq. ut

The “wild” terminology. To explain the name “wild Goppa codes” we
briefly review the standard concept of wild ramification.

8 D. J. Bernstein, T. Lange, C. Peters

A prime p “ramifies” in a number field L if the unique factorization
pOL = Qe1

1 Q
e2
2 · · · has an exponent ei larger than 1, where OL is the ring

of integers of L and Q1, Q2, . . . are distinct maximal ideals of OL. Each
Qi with ei > 1 is “ramified over p”; this ramification is “wild” if ei is
divisible by p.

If OL/p has the form Fp[x]/f , where f is a monic polynomial in
Fp[x], then the maximal ideals Q1, Q2, . . . correspond naturally to the
irreducible factors of f , and the exponents e1, e2, . . . correspond naturally
to the exponents in the factorization of f . In particular, the ramifica-
tion corresponding to an irreducible factor of f is wild if and only if the
exponent is divisible by p.

Similar comments apply to more general extensions of global fields.
Ramification corresponding to an irreducible factor ϕ of a monic poly-
nomial f in Fpm [x] is wild if and only if the exponent is divisible by p,
i.e., the local component of f is a power of ϕp. We take the small step of
referring to ϕp as being “wild”, and referring to the corresponding Goppa
codes as “wild Goppa codes”. Of course, if the Goppa code for ϕp is wild,
then the Goppa code for ϕp−1 must also be wild, since (by Theorem 4.1)
it is the same code.

The traditional concept of wild ramification is defined by the charac-
teristic of the base field. We find it more useful to allow a change of base
from Fp to Fq, generalizing the definition of wildness to use the size of
Fq rather than just the characteristic of Fq.

5 Decrypting wild-McEliece ciphertexts

The main problem faced by a wild-McEliece receiver is to decode bqt/2c
errors in the code Γ = Γq(a1, . . . , an, g

q−1): i.e., to find a codeword
c = (c1, . . . , cn) ∈ Γ , given a received word y = (y1, . . . , yn) ∈ Fn

q at
Hamming distance bqt/2c from c. This section presents an asymptoti-
cally fast algorithm that decodes bqt/2c errors, and then a “list decoding”
algorithm that decodes even more errors.

Classical decoding. Recall from Theorem 4.1 that

Γ = Γq(a1, . . . , an, g
q)

⊆ Γqm(a1, . . . , an, g
q)

=
{(

f(a1)
h′(a1)

, . . . ,
f(an)
h′(an)

)
: f ∈ gqFqm [x], deg f < n

}
where h = (x − a1) · · · (x − an). We thus view the target codeword
c = (c1, . . . , cn) ∈ Γ as a sequence (f(a1)/h′(a1), . . . , f(an)/h′(an)) of

Wild McEliece 9

function values, where f is a multiple of gq of degree below n. We are
given y, the same sequence with bqt/2c errors, or more generally with
≤ bqt/2c errors. We reconstruct c from y as follows:

– Interpolate y1h
′(a1)/g(a1)q, . . . , ynh

′(an)/g(an)q into a polynomial ϕ:
i.e., construct the unique ϕ ∈ Fqm [x] such that ϕ(ai) = yih

′(ai)/g(ai)q

and degϕ < n.
– Compute the continued fraction of ϕ/h to degree bqt/2c: i.e., apply

the Euclidean algorithm to h and ϕ, stopping with the first remainder
v0h− v1ϕ of degree < n− bqt/2c.

– Compute f = (ϕ− v0h/v1)gq.
– Compute c = (f(a1)/h′(a1), . . . , f(an)/h′(an)).

This algorithm uses n1+o(1) operations in Fqm if multiplication, evalua-
tion, interpolation, and continued-fraction computation are carried out by
standard FFT-based subroutines; see [5] for a survey of those subroutines.

To see that this algorithm works, observe that ϕ has many values in
common with the target polynomial f/gq: specifically, ϕ(ai)=f(ai)/g(ai)q

for all but bqt/2c values of i. In other words, the error-locator polynomial

ε =
∏

i:
f(ai)

g(ai)
q 6=ϕ(ai)

(x− ai)

has degree at most bqt/2c. The difference ϕ − f/gq is a multiple of h/ε,
say δh/ε. Now the difference δ/ε−ϕ/h = −(f/gq)/h is smaller than 1/xqt

and therefore smaller than 1/ε2, so δ/ε is a “best approximation” to ϕ/h,
so δ/ε must appear as a convergent to the continued fraction of ϕ/h,
specifically the convergent at degree bqt/2c. Consequently δ/ε = v0/v1;
i.e., f/gq = ϕ− v0h/v1.

More generally, one can use any Reed–Solomon decoder to reconstruct
f/gq from the values f(a1)/g(a1)q, . . . , f(an)/g(an)q with bqt/2c errors.
This is an illustration of the following sequence of standard transforma-
tions:

Reed–Solomon decoder⇒ generalized Reed–Solomon decoder
⇒ alternant decoder⇒ Goppa decoder.

The resulting decoder corrects b(deg g)/2c errors for general Goppa codes
Γq(a1, . . . , an, g); in particular, bq(deg g)/2c errors for Γq(a1, . . . , an, g

q);
and so bq(deg g)/2c errors for Γq(a1, . . . , an, g

q−1), by Theorem 4.1.
We do not claim that the particular algorithm stated above is the

fastest possible decoder, and in particular we do not claim that it is quite

10 D. J. Bernstein, T. Lange, C. Peters

as fast as Patterson’s algorithm [33] for q = 2. However, it has essentially
the same scalability in n as Patterson’s algorithm, works for general q,
and is obviously fast enough to be usable.

An example implementation of a wild-Goppa-code decoder in the Sage
computer-algebra system [39] can be found at http://pqcrypto.org/
users/christiane/wild.html.

List decoding. By switching from a classical Reed–Solomon decoding
algorithm to the Guruswami–Sudan list-decoding algorithm [19] we can
efficiently correct n −

√
n(n− qt) > bqt/2c errors in the function values

f(a1)/g(a1)q, . . . , f(an)/g(an)q. This algorithm is not as fast as a classical
decoder but still takes polynomial time. Consequently we can handle n−√
n(n− qt) errors in the wild Goppa code Γq(a1, . . . , an, g

q−1).
This algorithm can, at least in theory, produce several possible code-

words c. This does not pose a problem for the CCA2-secure variants of
the McEliece cryptosystem introduced by Kobara and Imai in [25]: those
variants automatically reject all codewords that do not include proper
labels cryptographically protected by an “all-or-nothing transform”.

As above, we do not claim that this algorithm is the fastest possible
decoder. In particular, for q = 2 the same error-correcting capacity was
obtained by Bernstein in [4] using a more complicated algorithm, analo-
gous to Patterson’s algorithm; we do not claim that the Γ (a1, . . . , an, g

2)
approach is as fast as that algorithm.

With more decoding effort we can handle a few additional errors by the
standard idea of combinatorially guessing those errors. Each additional
error produces a noticeable reduction of key size, as shown later in this
paper. In many applications, the McEliece decoding time is unnoticeable
while the McEliece key size is a problem, so allowing extra errors at the
expense of decoding time is a good tradeoff.

6 Attacks

This section discusses several attacks against the wild McEliece cryptosys-
tem. All of the attacks scale poorly to large key sizes; Section 7 presents
parameters that are safe against all of these attacks. We do not claim
novelty for any of the attack ideas.

We emphasize that the wild McEliece cryptosystem includes, as a
special case, the original McEliece cryptosystem. A complete break of the
wild McEliece cryptosystem would therefore imply a complete break of
the original McEliece cryptosystem, a system that has survived scrutiny
for 32 years. It is of course possible that there is a magical dividing line

http://pqcrypto.org/users/christiane/wild.html
http://pqcrypto.org/users/christiane/wild.html

Wild McEliece 11

between q = 2 and q = 3, an attack that breaks every new case of our
proposal while leaving the original cryptosystem untouched, but we have
not found any such line.

We focus on inversion attacks, i.e., attacks against the one-wayness of
wild McEliece encryption. There are several well-known chosen-ciphertext
attacks that break semantic security without breaking one-wayness, but
all of those attacks are stopped by standard conversions; see [25].

Information-set decoding. The top threat against the original McEliece
cryptosystem, the attack algorithm that has always dictated key-size rec-
ommendations, is information-set decoding, which as mentioned in the
introduction is a generic decoding method that does not rely on any par-
ticular code structure. The same attack also appears to be the top threat
against the wild McEliece cryptosystem for F3, F4, etc.

The exact complexity of information-set decoding is not easy to state
concisely. We rely on, and refer the reader to, the recent analysis of state-
of-the-art Fq information-set decoding by Peters in [34], combining vari-
ous improvements from [40], [11], [7], and [16]. To find the parameters in
Section 7 we searched various (n, k, t) and applied the complexity formu-
las from [34] to evaluate the security level of each (n, k, t).

Generalized birthday attacks. Wagner’s “generalized birthday at-
tacks” [43] can also be used as a generic decoding method. The Courtois–
Finiasz–Sendrier signature system [13] was attacked by Bleichenbacher
using this method. However, information-set decoding is always more ef-
ficient than generalized birthday attacks as an attack against code-based
encryption. See [16] for further discussion; the analysis is essentially in-
dependent of q.

Polynomial-searching attacks. There are approximately qmt/t monic
irreducible polynomials g of degree t in Fqm [x], and therefore approxi-
mately qmt/t choices of gq−1. One can marginally expand the space of
polynomials by considering more general squarefree polynomials g, but
we focus on irreducible polynomials to avoid any unnecessary security
questions.

An attacker can try to guess the Goppa polynomial gq−1 and then ap-
ply Sendrier’s “support-splitting algorithm” [37] to compute the support
(a1, . . . , an). We combine two defenses against this attack:

– We keep qmt/t extremely large, so that guessing gq−1 has negligible
chance of success. Parameters with qmt/t smaller than 2128 are marked
with the international biohazard symbol h in Section 7.

12 D. J. Bernstein, T. Lange, C. Peters

– We keep n noticeably lower than qm, so that there are many possible
subsets {a1, . . . , an} of Fqm . The support-splitting algorithm takes
{a1, . . . , an} as an input along with g.

The second defense is unusual: it is traditional, although not universal,
to take n = 2m and q = 2, so that the only possible set {a1, . . . , an} is
F2m . The strength of the second defense is unclear: we might be the first
to ask whether the support-splitting idea can be generalized to handle
many sets {a1, . . . , an} simultaneously, and we would not be surprised if
the answer turns out to be yes. However, the first defense is well known
for q = 2 and appears to be strong.

Algebraic attacks. In a recent paper [14], Faugère, Otmani, Perret,
and Tillich broke many (but not all) of the “quasi-cyclic” and “quasi-
dyadic” variants of the McEliece cryptosystem that had been proposed
in the papers [2] and [30] in 2009. Gauthier Umana and Leander in [17]
independently broke some of the same systems.

These variants have highly regular support structures allowing very
short public keys. The attacks set up systems of low-degree algebraic
equations for the code support, taking advantage of the fact that there
are not many variables in the support.

The paper [14] indicates that the same attack strategy is of no use
against the original McEliece cryptosystem because there are “much more
unknowns” than in the broken proposals: for example, 1024 variables in
F1024, totalling 10240 bits. Our recommended parameters also have very
large supports, with no particular structure, so algebraic attacks do not
appear to pose any threat.

7 Parameters

The public key in Kobara and Imai’s CCA2-secure variant [25] of the
McEliece cryptosystem can be stored in systematic form as (n − k)k
entries in Fq. The same is true for the Niederreiter variant; see, e.g., [32,
Algorithm 2.3]. The simplest representation of an element of Fq takes
dlog2 qe bits (e.g., 3 bits for q = 5), but a sequence of elements can be
compressed: one stores a batch of b elements of Fq in

⌈
log2 q

b
⌉

bits, at the
expense of some easy computation to recover the individual elements. As
b grows the storage per field element drops to approximately log2 q bits,
so (n− k)k elements can be stored using about d(n− k)k log2 qe bits.

Table 7.1 gives parameters (n, k, t) for the McEliece cryptosystem us-
ing a code Γ = Γq(a1, . . . , an, g

q−1) that provides 128-bit security against

Wild McEliece 13

 0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

 2 3 4 5 7 8 9 11 13 16 17 19 23 25 27 29 31 32

ke
y

bi
ts

q

(q-1)t/2
qt/2

qt/2+1
qt/2+2

Fig. 7.1: Decrease in key sizes when correcting more errors (128-bit security). See Ta-
ble 7.1.

the attack in [34]. We chose the code length n, the degree t of g and
the dimension k = n −

⌈
logq n

⌉
t(q − 1) of Γ to minimize the key size

d(n− k)k log2 qe for 128-bit security when w errors are added. We com-
pare four cases:

– w = b(q − 1)t/2c added errors using classical decoding techniques,
– w = bqt/2c added errors using Theorem 4.1,
– w = bqt/2c+ 1 added errors, and
– w = bqt/2c+ 2 added errors,

where the last two cases use Theorem 4.1 together with list decoding as
in Section 5. See Figure 7.1 for a graph of the resulting key sizes.

In [7] a Goppa code Γ2(a1, . . . , an, g) with length 2960, dimension
2288, and g of degree t = 56 is proposed for 128-bit security when 57
errors are added by the sender. A key in this setting has 1537536 bits.
This is consistent with our table entry for q = 2 with w = bqt/2c + 1
added errors.

Small q’s larger than 2 provide astonishingly good results. For larger
q’s one has to be careful: parameters optimized against information-set

14 D. J. Bernstein, T. Lange, C. Peters

decoding have qmt/t dropping as q grows, reducing the number of suitable
polynomials g in Fqm [x] significantly. For example, there are only about
228 monic irreducible polynomials g of degree 3 over F312 [x], while there
are about 2227 monic irreducible polynomials g of degree 20 in F55 [x].
The smallest q for which the g possibilities can be enumerated in less
time than information-set decoding is q = 11: the parameters (n, k, t) =
(1199, 899, 10) satisfy qdlogq net/t ≈ 2100, so there are about 2100 monic
irreducible polynomials g in F113 [x] of degree t = 10. This is one of the
cases marked by h in Table 7.1. The security of these cases depends on
the strength of the second defense discussed in Section 6.

The h symbol is omitted from the b(q − 1)t/2c column because that
relatively low error-correcting capability, and relatively high key size, can
be achieved by non-wild codes with many more choices of g.

Table 7.1: Decrease in key sizes when correcting more errors (128-bit secu-
rity). Each entry in the first column states q. Each entry in the subsequent
columns states key size, (n, k, t) and the number of errors.

q b(q − 1)t/2c bqt/2c bqt/2c+ 1 bqt/2c+ 2

2 —
1590300 bits: 1533840 bits: 1477008 bits:

(3009, 2325, 57) (2984, 2324, 55) (2991, 2367, 52)
57 errors 56 errors 54 errors

3
4331386 bits: 1493796 bits: 1439876 bits: 1385511 bits:

(3946, 3050, 56) (2146, 1530, 44) (2133, 1545, 42) (2121, 1561, 40)
56 errors 66 errors 64 errors 62 errors

4
3012336 bits: 1691424 bits: 1630044 bits: 1568700 bits:

(2886, 2202, 38) (2182, 1678, 28) (2163, 1677, 27) (2193, 1743, 25)
errors 57 errors 56 55 errors 52 errors

5
2386014 bits: 1523278 bits: 1468109 bits: 1410804 bits:

(2395, 1835, 28) (1931, 1491, 22) (1877, 1437, 22) (1919, 1519, 20)
56 errors 55 errors 56 errors 52 errors

7
1806298 bits: 1319502 bits: 1273147 bits: 1223423 bits:

(1867, 1411, 19) (1608, 1224, 16) (1565, 1181, 16) (1633, 1297, 14)
57 errors 56 errors 57 errors 51 errors

8
1924608 bits: 1467648 bits: 1414140 bits: 1359540 bits:

(1880, 1432, 16) (1640, 1248, 14) (1659, 1295, 13) (1609, 1245, 13)
56 errors 56 errors 53 errors 54 errors

Continued on next page

Wild McEliece 15

Table 7.1 – continued from previous page
q b(q − 1)t/2c bqt/2c bqt/2c+ 1 bqt/2c+ 2

9
2027941 bits: 1597034 bits: 1537389 bits: 1481395 bits:

(1876, 1428, 14) (1696, 1312, 12) (1647, 1263, 12) (1601, 1217, 12)
56 errors 54 errors 55 errors 56 errors

11
1258265 bits: 1004619 bits: 968295 bits: 933009 bits:

(1286, 866, 14) (1268, 968, 10)h (1233, 933, 10)h (1199, 899, 10)h
70 errors 55 errors 56 errors 57 errors

13
1300853 bits: 1104093 bits: 1060399 bits: 1018835 bits:

(1409, 1085, 9) (1324, 1036, 8)h (1283, 995, 8)h (1244, 956, 8)h
54 errors 52 errors 53 errors 54 errors

16
1404000 bits: 1223460 bits: 1179360 bits: 1129680 bits:
(1335, 975, 8) (1286, 971, 7)h (1251, 936, 7)h (1316, 1046, 6)h

60 errors 56 errors 57 errors 50 errors

17
1424203 bits: 1260770 bits: 1208974 bits: 1160709 bits:

(1373, 1037, 7) (1359, 1071, 6)h (1315, 1027, 6)h (1274, 986, 6)h
56 errors 51 errors 52 errors 53 errors

19
1472672 bits: 1318523 bits: 1274481 bits: 1231815 bits:

(1394, 1070, 6) (1282, 958, 6)h (1250, 926, 6)h (1219, 895, 6)h
54 errors 57 errors 58 errors 59 errors

23
1553980 bits: 1442619 bits: 1373354 bits: 1310060 bits:

(1371, 1041, 5) (1472, 1208, 4)h (1414, 1150, 4)h (1361, 1097, 4)h
55 errors 46 errors 47 errors 48 errors

25
1599902 bits: 1465824 bits: 1405640 bits: 1349468 bits:
(1317, 957, 5) (1384, 1096, 4)h (1339, 1051, 4)h (1297, 1009, 4)h

60 errors 50 errors 51 errors 52 errors

27
1624460 bits: 1502811 bits: 1446437 bits: 1395997 bits:

(1407, 1095, 4) (1325, 1013, 4)h (1287, 975, 4)h (1253, 941, 4)h
52 errors 54 errors 55 errors 56 errors

29
1656766 bits: 699161 bits: 681478 bits: 617003 bits:

(1351, 1015, 4) (794, 514, 5)h (781, 501, 5)h (791, 567, 4)h
56 errors 72 errors 73 errors 60 errors

31
726484 bits: 681302 bits: 659899 bits: 634930 bits:
(851, 611, 4) (813, 573, 4)h (795, 555, 4)h (892, 712, 3)h

60 errors 62 errors 63 errors 48 errors

32
735320 bits: 685410 bits: 654720 bits: 624960 bits:
(841, 593, 4) (923, 737, 3)h (890, 704, 3)h (858, 672, 3)h

62 errors 48 errors 49 errors 50 errors

16 D. J. Bernstein, T. Lange, C. Peters

References

[1] — (no editor), Eleventh international workshop on algebraic and combinatorial
coding theory, June 16–22, 2008, Pamporovo, Bulgaria, 2008. URL: http://www.
moi.math.bas.bg/acct2008/acct2008.html. See [15].

[2] Thierry P. Berger, Pierre-Louis Cayrel, Philippe Gaborit, Ayoub Otmani, Reducing
key length of the McEliece cryptosystem, in AFRICACRYPT 2009 [35] (2009), 77–
97. Citations in this document: §6.

[3] Daniel J. Bernstein, Grover vs. McEliece, in PQCrypto 2010 [36] (2010), 73–80.
URL: http://cr.yp.to/papers.html#grovercode. Citations in this document: §1.

[4] Daniel J. Bernstein, List decoding for binary Goppa codes (2008). URL: http://
cr.yp.to/papers.html#goppalist. Citations in this document: §5.

[5] Daniel J. Bernstein, Fast multiplication and its applications, in Algorithmic Num-
ber Theory [10] (2008), 325–384. URL: http://cr.yp.to/papers.html#multapps.
Citations in this document: §5.

[6] Daniel J. Bernstein, Johannes Buchmann, Erik Dahmen (editors), Post-quantum
cryptography, Springer, 2009. ISBN 978-3-540-88701-0. See [32].

[7] Daniel J. Bernstein, Tanja Lange, Christiane Peters, Attacking and defending the
McEliece cryptosystem, in PQCrypto 2008 [9] (2008), 31–46. URL: http://eprint.
iacr.org/2008/318. Citations in this document: §1, §6, §7.

[8] Colin Boyd (editor), Advances in cryptology — ASIACRYPT 2001, proceedings of
the 7th international conference on the theory and application of cryptology and
information security held on the Gold Coast, December 9–13, 2001, Lecture Notes
in Computer Science, 2248, Springer, 2001. ISBN 3-540-42987-5. See [13].

[9] Johannes Buchmann, Jintai Ding (editors), Post-quantum cryptography, second
international workshop, PQCrypto 2008, Cincinnati, OH, USA, October 17-19,
2008, proceedings, Lecture Notes in Computer Science, 5299, Springer, 2008. See
[7].

[10] Joe Buhler, Peter Stevenhagen (editors), Algorithmic number theory: lattices, num-
ber fields, curves and cryptography, Cambridge University Press, 2008. ISBN 978-
0521808545. See [5].

[11] Anne Canteaut, Florent Chabaud, A new algorithm for finding minimum-weight
words in a linear code: application to McEliece’s cryptosystem and to narrow-sense
BCH codes of length 511, IEEE Transactions on Information Theory 44 (1998),
367–378. MR 98m:94043. URL: http://hal.inria.fr/inria-00074006/en/. Ci-
tations in this document: §6.

[12] Gérard D. Cohen, Jacques Wolfmann (editors), Coding theory and applications,
Lecture Notes in Computer Science, 388, Springer, 1989. See [40].

[13] Nicolas Courtois, Matthieu Finiasz, Nicolas Sendrier, How to achieve a McEliece-
based digital signature scheme, in Asiacrypt 2001 [8] (2001), 157–174. MR
2003h:94028. URL: http://hal.inria.fr/docs/00/07/25/11/PDF/RR-4118.pdf.
Citations in this document: §6.

[14] Jean-Charles Faugère, Ayoub Otmani, Ludovic Perret, Jean-Pierre Tillich, Alge-
braic cryptanalysis of McEliece variants with compact keys, in Eurocrypt 2010 [18]
(2010), 279–298. Citations in this document: §6, §6.

[15] Cédric Faure, Lorenz Minder, Cryptanalysis of the McEliece cryptosystem over
hyperelliptic codes, in ACCT 2008 [1] (2008), 99–107. URL: http://www.moi.math.
bas.bg/acct2008/b17.pdf. Citations in this document: §4.

[16] Matthieu Finiasz, Nicolas Sendrier, Security bounds for the design of code-based
cryptosystems, in Asiacrypt 2009 [27] (2009), 88–105. URL: http://eprint.iacr.
org/2009/414. Citations in this document: §6, §6.

http://www.moi.math.bas.bg/acct2008/acct2008.html
http://www.moi.math.bas.bg/acct2008/acct2008.html
http://cr.yp.to/papers.html#grovercode
http://cr.yp.to/papers.html#goppalist
http://cr.yp.to/papers.html#goppalist
http://cr.yp.to/papers.html#multapps
http://eprint.iacr.org/2008/318
http://eprint.iacr.org/2008/318
http://hal.inria.fr/inria-00074006/en/
http://hal.inria.fr/docs/00/07/25/11/PDF/RR-4118.pdf
http://www.moi.math.bas.bg/acct2008/b17.pdf
http://www.moi.math.bas.bg/acct2008/b17.pdf
http://eprint.iacr.org/2009/414
http://eprint.iacr.org/2009/414

Wild McEliece 17

[17] Valerie Gauthier Umana, Gregor Leander, Practical key recovery attacks on two
McEliece variants (2009). URL: http://eprint.iacr.org/2009/509. Citations in
this document: §6.

[18] Henri Gilbert (editor), Advances in cryptology — EUROCRYPT 2010, 29th annual
international conference on the theory and applications of cryptographic techniques,
French Riviera, May 30–June 3, 2010, proceedings, Lecture Notes in Computer
Science, 6110, Springer, 2010. See [14].

[19] Venkatesan Guruswami, Madhu Sudan, Improved decoding of Reed-Solomon and
algebraic-geometry codes, IEEE Transactions on Information Theory 45 (1999),
1757–1767. ISSN 0018–9448. MR 2000j:94033. URL: http://theory.lcs.mit.

edu/~madhu/bib.html. Citations in this document: §5.

[20] I. Martin Isaacs, Alexander I. Lichtman, Donald S. Passman, Sudarshan K. Sehgal,
Neil J. A. Sloane, Hans J. Zassenhaus (editors), Representation theory, group rings,
and coding theory: papers in honor of S. D. Berman, Contemporary Mathematics,
93, American Mathematical Society, 1989. See [23].

[21] Michael J. Jacobson Jr., Vincent Rijmen, Reihaneh Safavi-Naini (editors), Selected
areas in cryptography, 16th annual international workshop, SAC 2009, Calgary,
Alberta, Canada, August 13–14, 2009, revised selected papers, Lecture Notes in
Computer Science, 5867, Springer, 2009. See [30].

[22] Heeralal Janwa, Oscar Moreno, McEliece public key cryptosystems using algebraic-
geometric codes, Designs, Codes and Cryptography 3 (1996), 293–307. Citations
in this document: §1, §4.

[23] Gregory L. Katsman, Michael A. Tsfasman, A remark on algebraic geometric codes,
in Representation theory, group rings, and coding theory [20], 197–199. Citations
in this document: §4.

[24] Kwangjo Kim (editor), Public key cryptography: proceedings of the 4th international
workshop on practice and theory in public key cryptosystems (PKC 2001) held on
Cheju Island, February 13–15, 2001, Lecture Notes in Computer Science, 1992,
Springer, 2001. See [25].

[25] Kazukuni Kobara, Hideki Imai, Semantically secure McEliece public-key crypto-
systems — conversions for McEliece PKC, in PKC 2001 [24] (2001), 19–35. MR
2003c:94027. Citations in this document: §5, §6, §7.

[26] Yuan Xing Li, Robert H. Deng, Xin Mei Wang, On the equivalence of McEliece’s
and Niederreiter’s public-key cryptosystems, IEEE Transactions on Information
Theory 40 (1994), 271–273. Citations in this document: §2.

[27] Mitsuru Matsui (editor), Advances in cryptology — ASIACRYPT 2009, 15th inter-
national conference on the theory and application of cryptology and information
security, Tokyo, Japan, December 6–10, 2009, proceedings, Lecture Notes in Com-
puter Science, 5912, Springer, 2009. ISBN 978-3-642-10365-0. See [16].

[28] Robert J. McEliece, A public-key cryptosystem based on algebraic coding theory,
JPL DSN Progress Report (1978), 114–116. URL: http://ipnpr.jpl.nasa.gov/
progress_report2/42-44/44N.PDF. Citations in this document: §1, §2.

[29] Lorenz Minder, Cryptography based on error-correcting codes, Ph.D. thesis, EPFL,
PhD thesis 3846, 2007. Citations in this document: §4.

[30] Rafael Misoczki, Paulo S. L. M. Barreto, Compact McEliece keys from Goppa codes,
in SAC 2009 [21] (2009), 376–392. Citations in this document: §1, §6.

[31] Harald Niederreiter, Knapsack-type cryptosystems and algebraic coding theory,
Problems of Control and Information Theory 15 (1986), 159–166. Citations in
this document: §1, §2.

http://eprint.iacr.org/2009/509
http://theory.lcs.mit.edu/~madhu/bib.html
http://theory.lcs.mit.edu/~madhu/bib.html
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF

18 D. J. Bernstein, T. Lange, C. Peters

[32] Raphael Overbeck, Nicolas Sendrier, Code-based cryptography, in Post-quantum
cryptography [6] (2009), 95–145. Citations in this document: §1, §7.

[33] Nicholas J. Patterson, The algebraic decoding of Goppa codes, IEEE Transactions
on Information Theory 21 (1975), 203–207. Citations in this document: §1, §5.

[34] Christiane Peters, Information-set decoding for linear codes over Fq, in PQCrypto
2010 [36] (2010), 81–94. URL: http://eprint.iacr.org/2009/589. Citations in
this document: §1, §4, §6, §6, §7.

[35] Bart Preneel (editor), Progress in Cryptology — AFRICACRYPT 2009, Second In-
ternational Conference on Cryptology in Africa, Gammarth, Tunisia, June 21-25,
2009, Lecture Notes in Computer Science, 5580, Springer, 2009. See [2].

[36] Nicolas Sendrier (editor), Post-quantum cryptography, third international work-
shop, PQCrypto, Darmstadt, Germany, May 25-28, 2010, Lecture Notes in Com-
puter Science, 6061, Springer, 2010. See [3], [34].

[37] Nicolas Sendrier, Finding the permutation between equivalent linear codes: the sup-
port splitting algorithm, IEEE Transactions on Information Theory 46 (2000),
1193–1203. MR MR 2001e:94017. URL: http://hal.inria.fr/docs/00/07/30/

37/PDF/RR-3637.pdf. Citations in this document: §6.
[38] Vladimir M. Sidelnikov, Sergey O. Shestakov, On an encoding system constructed

on the basis of generalized Reed-Solomon codes, Discrete Mathematics and Appli-
cations 2 (1992), 439–444. MR 94f:94009. Citations in this document: §1, §2.

[39] William Stein (editor), Sage Mathematics Software (Version 4.4.3), The Sage
Group, 2010. URL: http://www.sagemath.org. Citations in this document: §5.

[40] Jacques Stern, A method for finding codewords of small weight, in [12] (1989),
106–113. Citations in this document: §6.

[41] Yasuo Sugiyama, Masao Kasahara, Shigeichi Hirasawa, Toshihiko Namekawa, Fur-
ther results on Goppa codes and their applications to constructing efficient binary
codes, IEEE Transactions on Information Theory 22 (1976), 518–526. Citations in
this document: §1, §4, §4, §4.

[42] David Wagner, A generalized birthday problem (extended abstract), in [45] (2002),
288–303; see also newer version [43]. URL: http://www.cs.berkeley.edu/~daw/
papers/genbday.html.

[43] David Wagner, A generalized birthday problem (extended abstract) (long version)
(2002); see also older version [42]. URL: http://www.cs.berkeley.edu/~daw/

papers/genbday.html. Citations in this document: §6.
[44] Michael Wirtz, On the parameters of Goppa codes, IEEE Transactions on Infor-

mation Theory 34 (1988), 1341-1343. Citations in this document: §4.
[45] Moti Yung (editor), Advances in cryptology — CRYPTO 2002: 22nd annual in-

ternational cryptology conference, Santa Barbara, California, USA, August 2002,
proceedings, Lecture Notes in Computer Science, 2442, Springer-Verlag, Berlin,
2002. ISBN 3-540-44050-X. See [42].

http://eprint.iacr.org/2009/589
http://hal.inria.fr/docs/00/07/30/37/PDF/RR-3637.pdf
http://hal.inria.fr/docs/00/07/30/37/PDF/RR-3637.pdf
http://www.sagemath.org
http://www.cs.berkeley.edu/~daw/papers/genbday.html
http://www.cs.berkeley.edu/~daw/papers/genbday.html
http://www.cs.berkeley.edu/~daw/papers/genbday.html
http://www.cs.berkeley.edu/~daw/papers/genbday.html

