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Distinguishing Properties of Higher Order Derivatives of
Boolean Functions

Ming Duan, Xuejia Lai, Mohan Yang, Xiaorui Sun, Bo Zhu

Abstract—Higher order differential cryptanalysis is based on the
property of higher order derivatives of Boolean functions that the degree
of a Boolean function can be reduced by at least 1 by taking a derivative
on the function at any point. We define fast point as the point at which
the degree can be reduced by at least 2. In this paper, we show that
the fast points of a n-variable Boolean function form a linear subspace
and its dimension plus the algebraic degree of the function is at most
n. We also show that non-trivial fast point exists in every n-variable
Boolean function of degree n− 1, every symmetric Boolean function of
degree d where n 6≡ d (mod 2) and every quadratic Boolean function
of odd number variables. Moreover we show the property of fast points
for n-variable Boolean functions of degree n− 2.

Index Terms—Algebraic Degree, Boolean Function, Higher Order
Derivative, Higher Order Differential, Linear Structure.

I. INTRODUCTION

The technique of higher order differentials is an efficient method
of using differences among many associated texts in cryptanalysis.
Its essential idea is that the sum of some related differences is zero,
which is base on the properties of higher order derivatives of Boolean
functions that the degree of a Boolean function can be reduced by at
least 1 by taking a derivative on the function and that continuously
taking derivatives eventually yields a zero function.

Higher order derivatives was introduced into cryptography by
Lai in 1994[1]. He introduced the basic properties of higher order
derivatives on discrete functions and proposed the idea of higher
order differentials, which is a generalization from differential attack
developed by Biham and Shamir [2], an attack against block ciphers.
While ordinary differential attack analyses the differences between
two texts, the higher order variant considers differences among many
associated texts.

Knudsen used higher order differentials in block cipher cryptanal-
ysis first in [3]. Jakobsen and Knudsen showed that the KN cipher
[4], which is provable secure against differential attack and linear
attack, can be broken by higher order differential attack[5]. Since
then, higher order differential attack has frequently been used in
cryptanalysis [6][7][8][9], and there are many attacking techniques
related to higher order differentials, such as Integral Attack [10] [11]
[12], AIDA [13], Cube Attack [14] and Zero-sum Distinguisher [15].

The data complexity of the attacks related to higher order differ-
entials depends not only on the degree of the corresponding Boolean
function, but also on how quickly the degree can be reduced by taking
derivatives, a quicker reduction means a lower data complexity.

For example, we compute the derivative of Boolean function
f(x1, x2, x3, x4) = x1x2x3 ⊕ x1x2x4 ⊕ x2x3x4 (the example used
in [1]) at 1011,

∆1011f = x1x2x3 ⊕ x1x2x4 ⊕ x2x3x4 ⊕ (x1 ⊕ 1)x2(x3 ⊕ 1)

⊕ (x1 ⊕ 1)x2(x4 ⊕ 1)⊕ x2(x3 ⊕ 1)(x4 ⊕ 1)

= x2.

In this example, the degree of f is decreased by 2 when taking the
derivative at point 1011, i.e., the 2nd derivative of the 4 variable
cubic Boolean function can be a constant.
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If there is one less derivative point used in an attack related to
higher order differentials, the data complexity of the attack is a half
of the original one. It is useful in cryptanalysis to study that for any
given Boolean function whether its degree can be reduced by at least
2 by taking a derivative on the function at some non-zero point. The
most interesting thing is that for what Boolean functions the answer
is always true. As far as we know, no one has shown these properties.

For convenience, we define fast point (shorted by FP for the
simplicity) of a Boolean function as the point at which the degree
of the derivative is at least 2 less than the degree of the Boolean
function. Zero point is the trivial FP for any Boolean function.

In this paper, we show some properties of FPs, the rest of the
paper is organized as follows. In Section II, we recall the concept
and basic properties of higher order derivatives of Boolean functions.
In Section III, we give our new properties of FPs of Boolean function.
We conclude the results in section IV.

II. PRELIMINARIES

In this section, we recall the notions of higher order derivatives of
Boolean functions, more details are advised to [1], and propose the
definition of FP.

Definition Let f(x) be a Boolean function from Fn
2 to F2, the

derivative of f at point a ∈ Fn
2 is defined as

∆af(x) = f(x⊕ a)⊕ f(x)

The i-th(i > 1) derivative of the f at points (a1, a2, · · · , ai) is
defined as

∆(i)
a1,a2,··· ,ai

f(x) = ∆ai(∆
(i−1)
a1,a2,··· ,ai−1

),

where ∆
(i−1)
a1,a2,··· ,ai−1

is the (i − 1)-th derivative of f at points
(a1, a2, · · · , ai−1). The 0-th derivative of f is defined to be f itself.

Higher order derivatives should be computed at the points that are
linearly independent otherwise it will be trivially zero such cases are
of no interest for cryptanalysis.

Proposition 2.1: Let deg(f) denote the nonlinear algebraic degree
of a Boolean function f , then deg(∆af) ≤ deg(f)− 1.

Proposition 2.2: For any Boolean function f : Fn
2 → F2, the n-

th derivative of f is a constant. If f : Fn
2 → F2 is invertible, then

(n− 1)-th derivative of f is a constant.

Definition For a Boolean function f : Fn
2 → F2, if a point c ∈ Fn
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satisfies deg(∆cf) < deg(f)− 1, then c is called a fast point (FP)
of f .

It is clear that 0 is a FP of every Boolean function. If a non-zero
point c is a FP of a Boolean function, we call it a non-trivial FP. In
the following section, we mainly focus on the functions who have
non-trivial FPs.

III. NEW PROPERTIES OF FPS OF BOOLEAN FUNCTION

In this section, we show that the FPs of a Boolean function form
a linear subspace and give the upper bound of the number of FPs for
a Boolean function. Then we show some kind of functions who have
non-trivial FPs.

A. Basic Properties of FPs

Theorem 3.1: The XORs of any two FPs of a Boolean function is
still a FP of the function.

Proof: Let f(x) be a n-variable Boolean function of degree
d and the coefficient of d-th term

∏n
t=1 xt/xi1xi2 · · ·xin−d be
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ai1,··· ,in−d . If c = (c1, · · · , cn) is a FP of f , then the coefficients
of all (d− 1)-th terms in ∆cf are 0, i.e.,

ci1ai2,··· ,in−d+1⊕ci2ai1,i3,··· ,in−d+1⊕· · ·⊕cin−d+1ai1,··· ,in−d = 0
(1)

where 1 ≤ i1 < i2 < · · · < in−d+1 ≤ n. So c is a FP of f if
and only if c is a solution to (1). As the solutions of a system of
linear equations form a linear subspace, the sum (XOR) of any two
solutions is still a solution, i.e., the XORs of any two FPs of f is
still a FP of f .

Denote the set of FPs of a Boolean function f as FPf , then we
have:

Theorem 3.2: For a n-variable Boolean function f , deg(f) +
dim(FPf ) ≤ n.

Proof: Following the proof of Theorem 3.1, a point c is a FP
of f if and only if c is a solution to (1)(denote the coefficient matrix
as A). As deg(f) = d, there exists a monomial of degree d whose
coefficient is 1. Without loss of generality, suppose a1,··· ,n−d = 1.
Considering d equations for i1 = 1, i2 = 2, · · · , in−d = n − d and
in−d+1 ∈ {n − d + 1, · · · , n}. The coefficient matrix of these d
equations can be written as

a2,··· ,n−d+1 · · · a1,··· ,n−d−1,n−d+1 1 0 · · · 0
a2,··· ,n−d,n−d+2 · · · a1,··· ,n−d−1,n−d+2 0 1 · · · 0

...
. . .

...
...

...
. . .

...
a2,··· ,n−d,n · · · a1,··· ,n−d−1,n 0 0 · · · 1


(2)

The rank of the above matrix is at least d, so the rank of A is also
at least d. As the number of solutions to (1) is 2n−r(A) ≤ 2n−d, we
have dim(FPf ) ≤ n− d or deg(f) + dim(FPf ) ≤ n.

Corollary 3.3: Every n-variable Boolean function of degree n has
no non-trivial FPs.

B. When deg(f) = n− 1

A n-bit block cipher is a bijection from Fn
2 to Fn

2 which can be
viewed as n balanced component functions from Fn

2 to F2. The degree
of each component function is at most n− 1. For Boolean function
of degree n− 1, we have

Theorem 3.4: Every n-variable Boolean function f of degree n−1
has a unique non-trivial FP.

Proof: Let f =
∑n

i=1 ai
X
xi

where X =
∏n

i=1 xi, then c is a
non-trivial FP of f if and only if the coefficients of all (n − 2)-th
terms in ∆cf are 0, i.e.,

aicj ⊕ ajci = 0, ∀1 ≤ i 6= j ≤ n (3)

a) If ai = 0, pick j which satisfies aj = 1(as a 6= 0), then (3)
implies ci = 0.

b) If ai = 1, then (3) implies ci = cj for all aj = 1. So for all
i ∈ {1, ..., n} such that ai = 1, the values of ci are the same. As
c 6= 0, ci = 1 for all i ∈ {0, 1, ..., n} such that ai = 1.

To sum up, c = a is the unique non-zero solution of (3) and
a = (a1, a2, · · · , an) is exactly the non-trivial FP of f .

C. When deg(f) = n− 2

Theorem 3.5: For a n-variable Boolean function f (n ≥ 3) with
only (n − 2)-th terms, let the coefficient of term

∏n
t=1 xt/xixj

be ai,j . The number of f which has at least a non-trivial FP is
(2n − 1)(2n−1 − 1)/3. Each f has exactly 3 FPs and any two of
them (namely c and c′) satisfy cic′j ⊕ cjc′i = ai,j , ∀1 ≤ i < j ≤ n.

Proof: We proof by induction. When n = 3, we can enumerate
all possible 7 Boolean functions to verify the theorem. Now suppose
that the theorem holds when n = k(k ≥ 3).

When n = k + 1, every (k + 1)-variable Boolean function
f(x1, · · · , xk+1) with only (k − 1)-th terms can be represented as
one of the following three forms: xk+1g(x1, · · · , xk), r(x1, · · · , xk)
and xk+1g(x1, · · · , xk) ⊕ r(x1, · · · , xk), where g is a k-variable
Boolean function with only (k − 2)-th terms and r is a k-variable
Boolean function with only (k− 1)-th terms. Let (c1, · · · , ck, ck+1)
be a non-trivial FP of f . Denote c = (c1, · · · , ck) and x =
(x1, · · · , xk), then the derivative of f at (c1, · · · , ck, ck+1) is one
of the following three forms: xk+1∆cg ⊕ ck+1g(x ⊕ c), ∆cr and
xk+1∆cg ⊕ ck+1g(x⊕ c)⊕∆cr.

a) If f can be represented as xk+1g(x1, · · · , xk), then the deriva-
tive function xk+1∆cg ⊕ ck+1g(x ⊕ c) is a Boolean function of
degree no more than k−3. xk+1∆cg is the only part which contains
xk+1, so the degree of ∆cg is at most k − 4 which means c is
a non-trivial FP of g. According to the induction hypothesis, the
number of satisfiable g is (2k − 1)(2k−1 − 1)/3 and each has 3
correspondent c. ck+1g(x ⊕ c) is the rest part in the derivative
function. As deg(g) = k − 2, so we have ck+1 = 0. So the number
of satisfiable f is (2k − 1)(2k−1 − 1)/3 while each of them has 3
non-trivial FP. For the last condition, it is only necessary to verify
cic
′
k+1 ⊕ ck+1c

′
i = ai,k+1. As ck+1 = c′k+1 = 0 and ai,k+1 = 0,

the equation holds.
b) If f can be represented as r(x1, · · · , xk), then the derivative

function ∆cr is a Boolean function of degree no more than k − 3.
When ck+1 = 1, the derivative function is 0 when c = 0. If c takes a
non-zero value while the degree of the derivative function is at most
k−3, then c is determined by the (k−1)-th terms of r according to
Theorem 3.4. When ck+1 = 0, c is also determined by the (k−1)-th
terms of r. So for a specific r, the non-trivial FPs of f are (0k, 1),
(a, 1) and (a, 0) where a is the vector corresponds to the (k− 1)-th
terms of r. In this case, ai,k+1 = ai while the rest ai,js are all 0. It is
easy to verify the last condition also holds. The number of different
r is 2k − 1, so the number of f is 2k − 1.

c) If f can be represented as xk+1g(x1, · · · , xk)⊕r(x1, · · · , xk),
then the derivative function is xk+1∆cg ⊕ ck+1g(x ⊕ c) ⊕ ∆cr.
Since xk+1∆cg is the only part which contains xk+1, then c is a
non-trivial FP of g. When ck+1 = 0, then the derivative function
becomes xk+1∆cg ⊕∆cr. So the degree of ∆cr is at most k − 3,
then c is uniquely determined by the (n − 1)-th terms of r. When
c is determined, r and f are also fixed. According to the induction
hypothesis, g has another two non-trivial FPs namely c′ and c′′, and
relation c′ ⊕ c′′ = c holds. Now we prove (c, 0),(c′, 1) and (c′′, 1)
are the only 3 non-trivial FPs of f . The derivative of f at (c′, 1)
is xk+1∆c′g ⊕ g(x⊕ c′)⊕∆c′r where xk+1∆c′g is the only part
which contains xk+1 and deg(xk+1∆c′g) ≤ k − 3. The rest part is
a (k− 2)-th function about x while the coefficient of the (k− 2)-th
term

∏k
t=1 xt/xixj is ai,j ⊕ cic′j ⊕ cjc′i. According to the induction

hypothesis, this coefficient is 0, i.e., (c′, 1) is a non-trivial FP of f .
Similarly, we have (c′′, 1) is also a non-trivial FP of f . For the last
condition condition, it is only necessary to verify the situation where
j = k+ 1. As ai,k+1 = ci, it is easy to verify that (c, 0),(c′, 1) and
(c′′, 1) satisfy the equation. As every satisfiable g has 3 correspondent
c, so we have (2k − 1)(2k−1 − 1)/3 × 3 = (2k − 1)(2k−1 − 1)
satisfiable f .

To sum up, when n = k + 1, the number of f which has at least
one non-trivial FPs is

(2k − 1)(2k−1 − 1)

3
+2k−1+(2k−1)(2k−1−1) =

(2k+1 − 1)(2k − 1)

3

Each f has exactly 3 non-trivial FPs and any two of them satisfy
cic
′
j ⊕ cjc′i = ai,j , ∀1 ≤ i < j ≤ k + 1.
We complete the proof by mathematical induction.
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D. When f is Symmetric

Symmetric Boolean function is a special kind of Boolean function
whose value depends only on the Hamming weight of the input.
Symmetric Boolean function can be represented as [16]

f(x1, · · · , xn) =

n⊕
i=0

[
λi

⊕
u ∈ Fn

2
wt(u) = i

n∏
j=1

x
uj

j

]
.

Theorem 3.6: f is a n-variable symmetric Boolean function of
degree d, 1n is the unique non-trivial FP of f if and only if n 6≡ d
(mod 2).

Proof: Note that deg(∆cf) ≤ d−2 if and only if the (d−1)-th
terms in ∆cf are all 0. So we have

ci1 ⊕ ci2 ⊕ · · · ⊕ cin−d+1 = 0, ∀1 ≤ i1 < · · · < in−d+1 ≤ n (4)

It is easy to prove that c1 = c2 = · · · = cn from the randomicity
of (4). If c is a non-trivial FP, then c 6= 0. So we have ci = 1 for all
i ∈ {1, ..., n} or c = 1n. Then (4) becomes n−d+1 ≡ 0 (mod 2).
Thus deg(∆cf) ≤ d− 2 has a unique non-zero solution c = 1n (1n

is the unique non-trivial FP of f ) if and only if n 6≡ d (mod 2).

E. When deg(f) = 2

For quadratic Boolean function, we have the following theorem.
Theorem 3.7: Let f(x) = a0⊕

∑n
i=1 aixi⊕

∑
1≤i<j≤n aijxixj ,

then f has a non-trivial FP if and only if matrix A is singular over

F2 where A =


0 a1,2 · · · a1,n
a1,2 0 · · · a2,n

...
...

. . .
...

a1,n a2,n · · · 0

.

Proof: If c is a non-trivial FP of f , then ∃b ∈ F2 such that
f(x⊕ c)⊕ f(x) = b or{ ∑n

i=1 aici ⊕
∑

1≤i<j≤n aijcicj = b∑
1≤i<j≤n aij(xicj ⊕ xjci) = 0

The second equation can be rewritten as A · cT = 0. As c 6= 0,
then equation Ax = 0 has a non-zero solution. So A is singular over
F2.

If A is singular, let a non-zero solution of Ax = 0 be cT and
b =

∑n
i=1 aici ⊕

∑
1≤i<j≤n aijcicj , then f(x ⊕ c) ⊕ f(x) = b is

satisfied.
Over the binary field, a symmetric matrix A is also a skew-

symmetric matrix. When n is odd, |A| is always 0 as |A| = |AT | =
| −A| = (−1)n|A|. So we have the following corollary.

Corollary 3.8: A quadratic Boolean function of odd number vari-
ables has a non-trivial FP.

Actually, for a quadratic Boolean function f(x), f(x⊕c)⊕f(x) =
b means that c is a linear structure [17] of f . So our Theorem 3.7
is also a necessary and sufficient condition for the existence of a
non-trivial linear structure, which has already been proved in [18].

IV. CONCLUSION

In this paper, we showed that every n-variable Boolean function of
degree n− 1, every symmetric Boolean function of degree d where
n 6≡ d (mod 2) or every quadratic Boolean function of odd number
variable has at least 1 FP, so searching for FPs in the above Boolean
functions to improve the attacks related to higher order differentials
is meaningful. However It is a difficult thing to find the FPs although
they exist and even be unique for some Boolean functions. We expect
that the new properties can be used in practical attack on some ciphers
in the future.
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