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Abstract

We use security in the Universal Composition framework as a means to study the “cryp-
tographic complexity” of 2-party secure computation tasks (functionalities). We say that a
functionality F reduces to another functionality G if there is a UC-secure protocol for F using
ideal access to G. This reduction is a natural and fine-grained way to compare the relative
complexities of cryptographic tasks. There are two natural “extremes” of complexity under the
reduction: the trivial functionalities, which can be reduced to any other functionality; and the
complete functionalities, to which any other functionality can be reduced.

In this work we show that under a natural computational assumption (the existence of
a protocol for oblivious transfer secure against semi-honest adversaries), there is a zero-one
law for the cryptographic complexity of 2-party deterministic functionalities. Namely, every
such functionality is either trivial or complete. No other qualitative distinctions exist among
functionalities, under this computational assumption.

While nearly all previous work classifying multi-party computation functionalities has been
restricted to the case of secure function evaluation, our results are the first to consider com-
pleteness of arbitrary reactive functionalities, which receive input and give output repeatedly
throughout several rounds of interaction. One important technical contribution in this work is
to initiate the comprehensive study of the cryptographic properties of reactive functionalities.
We model these functionalities as finite automata and develop an automata-theoretic method-
ology for classifying and studying their cryptographic properties. Consequently, we completely
characterize the reactive behaviors that lead to cryptographic non-triviality. Another contri-
bution of independent interest is to optimize the hardness assumption used by Canetti et al.
(STOC 2002) in showing that the common random string functionality is complete (a result
independently obtained by Damg̊ard et al. (TCC 2010)).
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1 Introduction

Secure multi-party computation (MPC) is one of the most surprising computational phenomena
known. In fact, the paradigm encompasses not one, but a wide range of phenomena, depending on
the MPC task (functionality) in question. One may ask whether, within this vast range of tasks,
some tasks have more cryptographic sophistication than others, in terms of how easily they can be
securely realized.

In a highly influential piece of work, Goldreich, Micali, and Wigderson [gmw87] showed that
under a natural computational assumption, there is no qualitative distinction among the MPC
functionalities: they are all securely realizable. However, in another influential work, Canetti [c01]
showed that under a more demanding but more realistic model of security, at least one qualitative
distinction exists among MPC functionalities, regardless of any computational assumption: the
separation between “trivial” and “non-trivial” functionalities. That is, there are functionalities
which are unconditionally impossible to securely realize in the model. In this paper we show that,
under the same intractability assumption needed for the results in [gmw87], the distinction between
trivial and non-trivial functionalities is the only qualitative distinction among deterministic 2-party
functionalities in Canetti’s stronger security framework for MPC.

More formally, we use a natural complexity-theoretic reduction to compare the qualitative “cryp-
tographic complexities” of MPC functionalities. We say that a functionality F reduces to G (written
F vppt G) if there is a secure protocol for F that uses ideal access to G. We use the strong definition
of security from the the framework of Universal Composability (UC) [c01]. Under this reduction,
there are two natural extremes of cryptographic complexity: we call a functionality “trivial” if it
can be reduced to every other functionality (equivalently, if it has a secure protocol without any
trusted setup) and “complete” if every functionality can be reduced to it. Stated in these terms,
our main result is the following:

The following two statements are equivalent:

Zero-One Law: Every deterministic, finite 2-party functionality is either trivial or
complete.

sh-OT Assumption: There exists a 2-party protocol that securely realizes the oblivi-
ous transfer functionality against semi-honest (a.k.a., passive, honest-but-curious)
PPT adversaries.

The zero-one law applies not just to secure function evaluation functionalities, but also to reactive
functionalities that receive input and give output repeatedly over many rounds of interaction,
maintaining private state between rounds. To the best of our knowledge, ours is the first work
that considers how to use arbitrary reactive functionalities for other cryptographic purposes. In
comparison, previous feasibility results like [gmw87, clos02] only give protocols to securely realize
arbitrary reactive functionalities. Other works exclusively considered non-reactive functionalities,
or else constructed protocols that use only specific reactive functionalities, like commitment.

Behavioral Components of Functionalities. To establish the zero-one law, we advance on two
technical fronts in the study of complexity of secure multi-party computation. The first front focuses
on understanding distinct non-trivial behavioral components of (possibly reactive) functionalities.
We identify a list of four qualitatively distinct such components. For each one we can associate a
familiar “canonical” functionality which is non-trivial for only that reason:
• Allowing simultaneous exchange of information, exemplified by the boolean xor functionality
Fxor.
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• Selectively hiding one party’s inputs from the other, exemplified by a simple SFE functionality
we introduce called simple cut-and-choose (Fcc).
• Selectively hiding both party’s inputs simultaneously, exemplified by the oblivious transfer

functionality Fot.
• Holding meaningful information hidden in internal memory between rounds, exemplified by

the commitment functionality Fcom. (This component can appear only in a reactive func-
tionality.)

Formally defining each of these components, particularly the last one, requires us to develop new
automata-theoretic tools for reasoning about the behavior of reactive functionalities. A more
detailed overview of these techniques is given in Section 2.

We show that these four fundamental behaviors are in fact an exhaustive characterization of
non-triviality: in Theorems 1 and 4, we show that a reactive functionality G is non-trivial if and only
if F v G unconditionally for some F ∈ {Fxor,Fcc,Fot,Fcom}.1 In other words, every non-trivial
functionality must include at least one of the above four behaviors above. Since our definitions
of these four component behaviors are all combinatorial, we are able to give the first complete
combinatorial characterization of non-triviality (and consequently completeness) for reactive func-
tionalities.

Demonstrating Completeness. Our second technical front focuses on building protocols un-
der minimal computational intractability assumptions. To establish the zero-one law, it suffices
to show that each of the four canonical non-trivial functionalities is complete. Two of these —
oblivious transfer and commitment — are already known to be complete under the reduction we
consider [gmw87, k88, clos02, ips08]. We show that Fxor and Fcc are also complete under the
minimal sh-OT assumption. The techniques used in these new protocols are summarized in more
detail in Section 2.

It is instructive to compare our new protocol constructions to that of [clos02], which has been
the closest to an analogue of the [gmw87] result for the stronger security definition in [c01]. While
[clos02] only shows the completeness of one specific functionality, we show that every deterministic
non-trivial functionality is complete (under sh-OT assumption). Even for the complete functionality
considered in [clos02] (coin-tossing), we improve over their protocol, because the computational
intractability assumption used there is not known to follow from the sh-OT assumption. However,
the protocol in [clos02] provides security against adaptive corruption, whereas we do not know
whether the zero-one law extends to that setting (even under a stronger intractability assumption).

A Framework for Computational Intractability Assumptions. An important contribution
of this work is that, in concert with subsequent results in a companion paper [mpr10], it forms
the foundations for a framework to study the computational intractability assumptions necessary for
cryptography by relating them to secure multi-party computation functionalities. While our results
in this work focus on the sufficiency of various assumptions for reductions of the form F vppt G, the
complementary results of [mpr10] classify the necessity of various assumptions for such reductions.

Since several reductions of the form F vppt G turn out to be exactly equivalent to well-known
computational assumptions, this motivates an approach of defining computational assumptions in
terms of such reductions. Such assumptions must be of a fundamental nature for MPC, since they

1Indeed just Fxor and Fcc by themselves are an exhaustive characterization of non-triviality, as they can both be
unconditionally obtained from Fot and Fcom. However, we include all four functionalities in our list of fundamental
behavioral components because completeness is established differently for each of them.
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are not introduced to prove security of protocols, but are derived directly from the definitions of
MPC functionalities themselves.

While our results in this work imply that the sh-OT assumption is the maximal assumption that
emerges in this framework, we conjecture that the existence of one-way functions is the minimal
assumption emerging in the framework. A more intriguing question is whether there are other
intermediate assumptions. We conjecture that there are, but for a broad class of reductions con-
sidered in [mpr10], all such assumptions are equivalent to one of the two mentioned above. Put
differently, one likely outcome of this line of investigation is to discover new cryptographically in-
teresting worlds in “Impagliazzo’s multiverse” [i95] between Cryptomania (which we interpret as
a world where the sh-OT assumption is true) and Minicrypt (where only one-way functions exist),
or to show there are none. The classification and protocols here and the lower bounds in [mpr10]
form the basic results in such an investigation.

Related Work. In Appendix A we briefly survey some of the important works relevant to our
study of 2-party functionalities. Here we focus on describing important differences between previous
work and our own. The bulk of the work on complexity of 2-party functionalities considers the
computationally unbounded setting [k88, ck89, k89b, b89, k91, k00, kkmo00, kmqr09, mpr09].

In the computationally bounded setting, there have been fewer relevant results: For the special
case of SFE functionalities in which only one party receives the output, Beimel et al. [bmm99]
showed that the sh-OT assumption is implied by the existence of a semi-honest secure protocol for
any functionality that is not unconditionally trivial. [hnrr06] partially extends this result beyond
finite functionalities, but is still restricted to the case of asymmetric-output.2

The above results were in the standalone setting, and are not true for the setting with an ar-
bitrary environment. Since [c01] introduced the Universal Composition framework to formalize
security in arbitrary environments, there have been several works on cryptographic complexity of
functionalities in this setting. In particular, [c01, cf01, ckl03, pr08] characterize trivial func-
tionalities. On the other hand, [clos02] showed that the “coin-tossing” functionality is complete,
assuming the existence of enhanced trapdoor permutations and dense cryptosystems. [dno10] in-
dependently show the completeness of the coin-tossing functionality under the minimal assumption,
as we do. Their construction is similar in spirit to our protocol for the same task, though more
complicated due to the use of an intermediate “public-key infrastructure” functionality. In fact
our current protocol is the result of a simplification to a protocol in an earlier draft of this work,
motivated by the result of [dno10].

We stress that virtually all the above mentioned prior results are either restricted to character-
izing triviality (not completeness), characterizing only non-reactive functionalities, or considering
only specific and not arbitrary reactive functionalities. Ours is the first characterization of com-
pleteness for arbitrary reactive functionalities.

Finally, in subsequent work we use the results in this paper, in conjunction with new lower
bounds, to initiate a foundational study of cryptographically relevant intractability assumptions
[mpr10] using secure multi-party functionalities.

2 Overview of Our Techniques

In proving our main result, the more interesting direction is to show that sh-OT assumption implies
the zero-one law. That is, we must construct protocols to demonstrate the completeness of every

2In Section 7 we show that, as in [hnrr06], there is a gap between triviality and completeness when our results
are extended to unbounded-memory functionalities.
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non-trivial functionality, using only the sh-OT assumption. We do this in a series of steps, outlined
in Figure 1.

Non-
trivial

function-
alities

Non-
trivial
SFE

Function-
alities

Fcc

Fot

Fxor

Fextcom Fcom
Any func-
tionality

[k88, ips08]

Theorem 3

OWF

Theorem 2

sh-OT

Theorem 3

OWF

[gmw87,
clos02]

sh-OT

Theorem 4

Theorem 1

Figure 1: Overview of protocol constructions used in proving main result. An arrow from functionality
F to G denotes a secure protocol for G using ideal access to F . Arrows not labeled by a computational
assumption indicate unconditionally secure protocols.

The Non-Reactive Case. In Section 4, we first prove the main result for the special case of non-
reactive (also known as secure function evaluation, or SFE) functionalities, which simply evaluate
a function on the two parties’ inputs and then stop responding.

As described in the introduction, we identify Fxor, Fot, and Fcc as the canonical components
of non-triviality for SFE functionalities. Fcc is defined as the secure evaluation of the symmetric-
output function whose function table is 0 2

1 2
; note that Bob (whose input corresponds to the choice

of columns) can choose whether to learn Alice’s input (the choice of rows), and Alice always learns
Bob’s choice. Thus Fcc exemplifies a selective hiding of information about just one party’s inputs.

In Theorem 1 we show that every non-trivial SFE functionality F must unconditionally (i.e.,
via a statistically-secure protocol) satisfy either Fxor vppt F , Fot vppt F , or Fcc vppt F . Our
analysis involves a characterization of important 2× 2 minors in the function table of F . For each
of Fxor, Fot, and Fcc, we introduce a general form (in which parties may receive different outputs)
of a 2 × 2 minor which succinctly captures the general behavior that causes each functionality to
be non-trivial.

To establish the zero-one law for this special case, we must therefore show that each of these
three canonical functionalities is complete. It is well-known that Fot is (unconditionally) complete,
even under the strong notion of reduction that we consider [k88, ips08]. For the other two cases,
we use the fact that the commitment functionality Fcom is complete the UC framework under the
sh-OT assumption. This follows from the well-known CLOS result [clos02]. Thus, to complete
our claim it suffices to show that Fcom vppt Fcc and Fcom vppt Fxor.

We give a new commitment protocol in the Fxor-hybrid model (Theorem 2). We note that
[clos02] show (implicitly) that Fxor is complete;3 however, their protocol focuses on achieving
adaptive security and, as such, depends on a hardness assumption that is not known to be implied
by sh-OT assumption. Our new protocol achieves static security using a novel non-black-box usage
of the minimal sh-OT assumption.

We also give a new commitment protocol in the Fcc-hybrid model (Theorem 3). Fcc is a less
sophisticated functionality than Fxor; consequently, our protocol using Fcc is more involved. We
first define an intermediate commitment functionality called Fextcom which captures the require-

3They show that the coin-tossing functionality, for which there is an elementary protocol using Fxor, is complete.
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ments of a standalone-secure commitment protocol with a straight-line extracting simulator, and
we show that this intermediate functionality can be securely realized using Fcc. We then use a
technique similar to the

(
2
1

)
commitments of [nv06] to show that Fextcom can be used to obtain

a full-fledged Fcom protocol. Interestingly, both of these protocols require only the existence of
one-way functions.

Dealing with reactive functionalities. Our next main technical contribution is to develop
tools for classifying and reasoning about arbitrary reactive functionalities. We model reactive func-
tionalities as finite-state automata, and initiate an automata-theoretic analysis of their behaviors.
More specifically, we identify the states of an automaton which are cryptographically non-trivial,
a notion that we define in terms of secure protocols but that also has a purely combinatorial
characterization.

Given the appropriate automata-theoretic definitions, we are then able to show that a reactive
functionality can only be non-trivial for two reasons:
• having input/output behavior (in a single round) like that of a non-trivial SFE, or
• keeping relevant information about a party’s inputs “hidden” in its memory between rounds

More formally, we show in Theorem 4 that every non-trivial reactive functionality can either be
used to obtain some non-trivial SFE (i.e., the first case above), or can be used to achieve the
commitment functionality Fcom (the canonical functionality which exemplifies the second case
above). In this way, we reduce the zero-one law for reactive functionalities to the zero-one law
for SFE functionalities, since Fcom is complete. We note that formally defining non-trivial usage
of internal memory by a reactive functionality is very challenging, and comprises the bulk of our
contributions for reactive functionalities. However, as a result of our new analysis, we obtain the
first complete combinatorial characterization for triviality or completeness of arbitrary reactive
functionalities.

3 Preliminaries

Model and Security Definition. Our security definitions are grounded in the framework of
Universal Composable (UC) security [c01], with which we assume the reader has slight familiarity.
For concreteness we consider the model used in [pr08], which in turn is based on that in [p05].
However, we emphasize that very few specifics of the model (including ideal functionalities, an
interactive environment and simulation based security) are important for the results.

The UC model allows a large class of MPC functionalities, not all of which are “natural.”
For instance, a functionality that announces the identities of the corrupt parties is not natural; a
reactive functionality which introduces a race condition depending on the order in which it receives
inputs from parties is also not natural. Following the convention in all previous works (to the best
of our knowledge), we do not consider such functionalities. We formally define the exact class of
functionalities considered in this work in Appendices B and E. We note that the functionalities in
this class do not offer a guarantee of output fairness; that is, they allow the adversary to control
the delivery of outputs.

We write F v G if there is a protocol that securely realizes F in the “G-hybrid model;” see [c01]
or [p05] for a formal definition. In the G-hybrid model, the parties in the protocol can interact
with any number of (asynchronous) copies of G, and can access G in any “role”. This second
convention is crucial to our results (see Section 7). We consider only efficient protocols, but make
a notational distinction between unconditionally (statistically) secure protocols (denoted by vstat)
and protocols whose security depends on a computational assumption (denoted by vppt). As is
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standard, we require security against active (i.e., malicious) adversaries. However, as we point out
in Section 7, our results extend to a stronger definition where security is required against both
active and semi-honest adversaries.4

By default, we also allow protocols access to a communication channel. Following [pr08], we
consider the natural model of a private communication channel, in which parties can send fixed-
length messages (with the adversary controlling delivery). The choice of public vs. private channel
is not crucial to our results (see Section 7).

All results in this work are restricted to static corruption (where the adversary has to corrupt
any parties before the protocol begins). In fact, we leave open the possibility that our main theorem
breaks down in the case of adaptive corruption.

The sh-OT assumption. The primary computational assumption we consider is the existence of
a protocol for Fot secure against semi-honest, PPT adversaries (sh-OT assumption, for short). It
is possible to express this assumption using the definition of UC security restricted to semi-honest
adversaries (in both the real and the ideal executions). However, we point out that the traditional
(standalone) security definition is equivalent to the UC security definition, since the simulation
required by semi-honest security does not, and need not, extract the inputs of the corrupt players;
it simply uses the input given by the environment.

Some of our protocol constructions additionally rely on statistically binding (standalone secure)
commitment schemes, pseudorandom generators, (standalone secure) witness-indistinguishable proofs
or zero-knowledge proofs of knowledge for NP. All of these primitives have well-known constructions
assuming the existence of one-way functions [n91, hill99, g01]. One-way functions are in turn
implied by the sh-OT assumption [il89].

4 Zero-One Law for Non-Reactive Functionalities

In this section we prove the zero-one law for the special case of non-reactive finite functionalities,
also known as secure function evaluation (SFE) functionalities. An SFE functionality is parame-
terized by a pair of functions (fA, fB) with input domains X × Y , where X and Y are finite sets.
The functionality waits to receive input x ∈ X from Alice and y ∈ Y from Bob, then outputs
fA(x, y) to Alice and fB(x, y) to Bob. In Appendix B we give a complete formal definition of SFE
functionalities, which explicitly models adversarial control over output delivery, as is standard in
the UC framework.

Three “Canonical” Non-Reactive Functionalities. Our main characterization in this section
demonstrates that an SFE functionality can be non-trivial for only one of three simple reasons, as
outlined in Section 2. The following three SFE functionalities exemplify the three different cases,
respectively:

Fxor (exclusive-or): Alice gives input x ∈ {0, 1} and Bob gives input y ∈ {0, 1}. Both parties
receive output x⊕ y.

Fcc (simple cut-and-choose): Alice gives input x ∈ {0, 1} and Bob gives input y ∈ {0, 1}. If y = 0,
then both parties receive output x. If y = 1, then both parties receive output 2. Intuitively,
Bob decides whether to learn Alice’s bit, and Alice learns Bob’s choice.

Fot (oblivious transfer): Alice gives inputs x0, x1 ∈ {0, 1} and Bob gives input y ∈ {0, 1}. Bob
receives output xy and Alice receives no output.

4Note that when considering security against semi-honest adversaries, the simulator must also be semi-honest.
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We show that these three fundamental properties exhaustively characterize non-triviality, as follows:

Theorem 1. Let F be an SFE functionality. Then F is non-trivial if and only if Fxor vstat F or
Fcc vstat F or Fot vstat F .

Proof Sketch. (⇐) Each of Fxor, Fcc, and Fot is unconditionally non-trivial, from the characteri-
zation of trivial SFE functionalities in [pr08].

(⇒) Here we give an overview of the proof, deferring the full details to Appendix B. Kraschewski
and Müller-Quade [kmq08] identify a 2 × 2 minor within the function table of an SFE, which
generalizes the (symmetric-output) boolean or functionality 0 1

1 1
that is known to be complete.

They show that an SFE with such a minor can be used to construct an unconditionally UC-secure
protocol for Fot.

Similarly, we also identify another important 2 × 2 minor called a generalized-cc minor. In-
tuitively, a minor is a generalized-cc minor if one party can choose whether to learn the other’s
input, and this choice is made public in the function’s output. We show that if F has such a minor,
then the protocol in which the parties simply restrict their inputs to that minor while accessing F
is a UC-secure protocol for Fcc.5

Finally, if F does not have either kind of 2 × 2 minor mentioned above, then we show that F
must simply be (equivalent to) a function that takes inputs x ∈ X from Alice and y ∈ Y from Bob,
then outputs (x, y) to both parties. If max{|X|, |Y |} ≥ 2, then there is an elementary UC-secure
protocol for Fxor in the F-hybrid model. Otherwise, F is trivial: the protocol in which one party
simply sends their input to the other party is a UC-secure (plain) protocol for F .

Completeness of the Three Canonical Non-Reactive Functionalities. Since Fot is uncon-
ditionally complete (even with respect to UC secure protocols) [k88, ips08], and the commitment
functionality Fcom is complete under the sh-OT assumption [clos02], it suffices to prove the fol-
lowing two theorems:

Theorem 2. If the sh-OT assumption is true, then Fcom vppt Fxor.

Proof Sketch. We first observe that the coin-tossing functionality Fcoin
6 has an elementary, uncon-

ditionally secure protocol in the Fxor-hybrid model. Thus it suffices to show that Fcom vppt Fcoin.
The well-known CLOS result [clos02] proves exactly this; however, their focus was on achieving
adaptive security, and their protocol relied on a stronger computational assumption than the sh-OT
assumption. Thus we must use an entirely different approach for achieving Fcom (with static se-
curity) from Fcoin. We give an overview of our protocol, whose complete description and security
proof are given in Appendix C.

Suppose ψsh is the semi-honest protocol for Fot guaranteed by the sh-OT assumption. We
suppose that the sender in ψsh provides two bits (x0, x1), the receiver provides a bit y, and the
receiver learns xy.

Our commitment protocol is as follows, when Alice is committing to b ∈ {0, 1}. First, both
parties use Fcoin to generate a sequence of random coins σ. The sender Alice and receiver Bob
interact in an instance of ψsh, with Alice using inputs (x0 = 0, x1 = b), and Bob using input y = 0.
To ensure that both parties provide inputs of the required form, we “compile” the ψsh subprotocol

5Note that, in general, restricting inputs to a minor of F does not give a secure protocol (against malicious
adversaries) for the SFE corresponding to that minor, since a malicious adversary may send inputs to F outside of
the prescribed minor.

6Fcoin is a functionality which, upon activation, samples an unbiased coin b ← {0, 1} and outputs it to both
parties.
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using a variant of the standard GMW compiler [gmw87]. Unlike the GMW compiler, at each
step we make the parties give a witness-indistinguishable proof that either they are following the
protocol honestly with the appropriate inputs, or the public coins σ are from a pseudorandom
distribution. In the reveal phase, Alice gives a witness-indistinguishable proof that either σ was
from a pseudorandom distribution, or all her messages in the ψsh subprotocol were consistent with
her having input x1 = b.

Intuitively, in the real interaction (where σ is generated honestly using Fcoin), the GMW com-
pilation ensures that both parties are executing the ψsh subprotocol honestly and appropriately.
Thus, Bob learns nothing about b in the commit phase, and Alice can only open the commitment
to the value of b that she used in the commit phase.

However, when the simulator is corrupt it can choose σ from a pseudorandom distribution. If
Alice is corrupt, the simulator can act as Bob using input y = 1 to the ψsh subprotocol, while still
giving convincing GMW proofs. By the correctness and security of the ψsh protocol, the simulator
correctly extracts b in the commit phase, and the simulation is indistinguishable from the real
interaction.

If Bob is corrupt, the simulator can give a commitment to 0 in the commit phase, but open it
to any value in the reveal phase (using the clause in the witness-indistinguishable proof related to
σ). Thus the simulator can successfully equivocate to a corrupt Bob.

To show that both of these simulations are sound, we must apply the semi-honest security of
ψsh, which is the most delicate part of the proof, since the simulator exists in the UC setting.
We construct a sequence of hybrid interactions between the real and ideal UC (straight-line) in-
teractions, and show that if any adversary can distinguish between certain hybrids, then we can
construct a corresponding adversary (possibly using rewinding) which violates the semi-honest
security properties of ψsh.

Theorem 3. If one-way functions exist, then Fcom vppt Fcc.

Proof Sketch. In many respects, Fcc is a less cryptographically sophisticated functionality than
Fxor (we provide some evidence for this fact in Section 7). Consequently, our protocol for obtaining
Fcom from Fcc is more complicated than the one using Fxor. On the other hand, our protocol
in the Fcc-hybrid model uses only the assumption of one-way functions, which is weaker than the
sh-OT assumption.

The simulator for a UC-secure commitment protocol has two main tasks: (1) to extract the
committed value from a corrupt sender during the commit phase, and (2) to give an equivocal
commitment to a corrupt receiver that can be convincingly opened to any value during the reveal
phase. Our construction of a UC-secure commitment protocol is broken into two major conceptual
steps, which tackle these two properties in a somewhat modular fashion.

We first define an intermediate “extractable commitment” functionality called Fextcom. The
complete formulation of Fextcom is highly non-trivial, and is contained in Appendix D.1. Fextcom

succinctly expresses the requirements of a statistically binding, computationally hiding commitment
scheme (in the traditional standalone-secure sense) which also admits a straight-line extracting
simulator. We believe that this method of expressing a combination of standalone and universally
composable security properties may be of independent interest. Using a technique similar in spirit
to the

(
2
1

)
-commitments of Nguyen and Vadhan [nv06], we show that if one-way functions exist,

then Fcom vppt Fextcom (Lemma 4).
Thus it suffices to construct a commitment protocol which has a UC extraction property, but

only a standalone-secure hiding property. This commitment protocol is as follows. To commit to
a bit b, Alice first chooses a random bitstring s and then applies a good linear error-correcting
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code to obtain a codeword t. She commits to t using a statistically binding (standalone-secure)
commitment protocol. For each bit ti of t, Alice gives ti as input to Fcc, and Bob chooses to
learn it with some probability. Recall that in Fcc, Alice learns which bits Bob chose to see. Alice
ensures that Bob only learned sufficiently few bits of t so that some uncertainty about s remains.
This remaining uncertainty can be deterministically extracted (as a linear function of s), and Alice
uses it as a one-time pad to mask b. She sends the masked b to Bob to complete the commitment
phase. In the reveal phase, Alice opens the commitment to t, and Bob checks for consistency with
the bits that he learned in the commit phase. The full details and security proof are provided in
Appendix D.2.

Intuitively, the protocol is computationally hiding and statistically binding because the deter-
ministic extraction of the mask is perfect (using a simple linear function). The only information
about the mask is given in a statistically-binding standalone-secure commitment to t.

However, the simulator provides the interface for Fcc to a corrupt Alice. Consequently, the
simulator can see all of Alice’s inputs to Fcc, which are the (purported) bits of t. Because Bob
has a certain probability of revealing each one of the bits of t and he verifies them against Alice’s
statistically binding commitment to t, we argue that Alice cannot supply too many incorrect values
of to Fcc. In particular, Alice cannot give more incorrect bits than can be corrected by the error
correcting code, except with negligible probability. Thus the simulator can perform a noisy decoding
to obtain s and then easily extract b.

5 Classifying Reactive Functionalities

We model reactive functionalities as finite automata. Each state transition is labeled by a tuple in
X × Y × Z × Z, where X, Y , and Z are finite sets. A transition from q to q′ with label (x, y, s, t)
means that upon receiving input x from Alice and y from Bob in state q, the functionality will
deliver output s to Alice and t to Bob, and change to state q′. We require the automaton to be
deterministic; that is, for every state q and every (x, y) ∈ X × Y , there is at most one transition
leaving q whose label begins with (x, y). The formal definition is given in Definition 8, and it
explicitly models adversarial control over output delivery.

As outlined in Section 2, we show that a reactive functionality can be non-trivial only for two
simple reasons: (1) behaving like a non-trivial SFE functionality during a single round, or (2) using
its internal memory in a non-trivial way. Formally defining this second condition requires a careful
new automata-theoretic analysis of reactive behaviors. Intuitively, memory is used in a non-trivial
way when some part of the memory is both hidden (has not yet affected its external behavior) and
meaningful (may eventually influence its future external behavior). The commitment functionality
Fcom represents the canonical functionality which uses its internal memory in such a way (between
the commit and reveal phases).

Automata-theoretic Characterization. To formally define these intuitive non-triviality con-
ditions, we develop three new important properties, all defined automata-theoretically.

Say that an input x̂ dominates another input x if (informally) Alice can use x̂ as her input to
F in the first round of interaction, but then convince any environment that she had really used x
(Definition 9). In other words, any behavior that can be induced by sending x to F in the first
round can also be induced by instead sending x̂ and thereafter engaging in some local “translation”
protocol. We emphasize that Alice must perform this translation online, without knowledge of the
inputs that the environment will provide in future rounds. When x̂ dominates x, Alice can use x̂
in place of x in the first round without loss of generality.
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The input-output behavior of each state in the functionality naturally defines a corresponding
SFE. Take any SFE and say that x ∼ x′ if Alice inputs x and x′ always induce the same output for
Bob. When an SFE is trivial, then Bob’s output from the SFE always reveals the ∼-equivalence
class of Alice’s input (and vice-versa, exchanging the roles of Alice and Bob).7 We say that the
start state of F is simple if its associated SFE is a trivial SFE, and if each equivalence class of ∼
(over Alice inputs and Bob inputs) contains some input that dominates all other inputs in its class
(Definition 13).

Intuitively, when the start state is simple, then just by looking at the output from the first
round, Bob can determine the ∼-class of the input Alice used. Consequently, Bob can safely
assume that Alice used the input x that dominates that ∼-class, since x is the input that gives
Alice the maximal flexibility over influencing the functionality’s future behavior. The same is true
for Alice determining Bob’s likely input. Suppose x and y are inputs for Alice and Bob, respectively,
which are each maximally dominant for their ∼-equivalence classes. We call the transition from the
start state on inputs (x, y) a safe transition (Definition 14). Intuitively, only such safe transitions
are relevant; furthermore, after a safe transition, neither party has meaningful uncertainty about
the other party’s input in the previous round, or the functionality’s resulting state.

These automata-theoretic properties characterize non-triviality as follows:

Theorem 4. Let F be a deterministic, finite (reactive) functionality. Then the following are
equivalent:

1. F is non-trivial.
2. Fcom vstat F or G vstat F for some non-trivial SFE functionality G.
3. There is a non-simple state in F that is reachable from the start state via a sequence of safe

transitions.

Condition (3) of this theorem can be expressed completely combinatorially, giving the first com-
binatorial characterization of triviality (and thus completeness) for any class of arbitrary reactive
functionalities.

Proof Sketch. The full proof is given in Appendix E. 2⇒ 1 follows from the non-triviality of Fcom.
(1 ⇒ 3) We consider all the states of the machine that are reachable by a sequence of safe

transitions; intuitively, these are the only states that are of any significance. If all such states are
simple, then F has a trivial protocol (Lemma 10). Intuitively, if at each state F evaluates a a
trivial SFE, and if after each round, both parties have no uncertainty about the next state of F ,
then the protocol for F is a straight-forward composition of trivial SFE protocols.

(3 ⇒ 2) Assume that one of the safely reachable states of F is non-simple. Without loss of
generality, we can assume that the start state of F is non-simple (Lemma 8). If the start state
is non-simple because of its input-output behavior, then there is an elementary protocol which
securely realizes that associated SFE in the F-hybrid model. Otherwise, the start state is non-
simple because there exist two inputs for (by symmetry) Alice, say x0 and x1, which are in the
same ∼-class, but no Alice input dominates both of {x0, x1}. In other words, Alice’s first-round
input “binds” her to the behaviors consistent with x0 or to those consistent with x1, but not both.

We formalize this natural connection to commitment by constructing a protocol for Fcom, as
follows (Lemma 9). Alice commits to b by sending xb to F in the first round. The commitment

7In fact, this is true whenever the SFE is (isomorphic to) a simultaneous exchange function F(x, y) = (x, y). Thus
our protocol for Fcom (from Theorem 4) which exploits these automata-theoretic properties can also be used when
the functionality is comprised of simultaneous exchange SFEs instead of trivial SFEs, as observed and applied in
[mpr10].
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is perfectly hiding since x0 ∼ x1. To reveal, it suffices for Alice to convince Bob that in the first
round she used an input that dominates xb, since no input can dominate both x0 and x1.

To show the binding property of this commitment protocol, suppose Alice attempts to open
the commitment to b but has sent an input to F in the commit phase which doesn’t dominate xb.
We show in Lemma 7 that for each functionality F , there exists a fixed environment that has a
constant probability detecting whether Alice sent x or x′, provided that x does not dominate x′.8

Thus our protocol instructs Bob to play the role of such an environment, sending a sequence inputs
to F himself and sending a sequence of inputs to Alice. Just like in the definition of domination,
Alice must report back to Bob her own purported responses from F , in an online manner, and an
equivocating Alice (whose first-round input did not dominate xb) is guaranteed to be caught with
constant probability. By repeating this basic protocol in parallel an appropriate number of times,
Bob can be assured of catching an equivocating Alice with overwhelming probability.

6 Necessity of the sh-OT Assumption

Finally, we show that the sh-OT assumption is not only sufficient but also necessary for the zero-one
law to hold.

Theorem 5. If the zero-one law is true, then the sh-OT assumption is true.

Proof. If the zero-one law holds, then Fxor is complete, since it is unconditionally non-trivial. Thus
Fot vppt Fxor. Fot has the property that any protocol that securely realizes Fot (against active
adversaries) is also secure against semi-honest adversaries (see [pr08] for more details). Hence
the given Fot protocol is secure against semi-honest adversaries, in the Fxor-hybrid model. Since
Fxor has an elementary plain protocol unconditionally secure against semi-honest adversaries, we
can compose these two protocols to obtain a plain protocol that securely realizes Fot against
semi-honest adversaries.

More generally, if F has an unconditionally secure protocol against semi-honest adversaries,
then the vppt-completeness of F implies the sh-OT assumption.

We remark that we use the sh-OT assumption not only to implement oblivious transfer, but
even to implement Fcom using Fxor. The above argument implies nothing about the necessity of
the sh-OT assumption for Fcom vppt Fxor. However, we point out that sh-OT assumption is in
fact a necessary condition for the existence of such a protocol [dg03]. Further, in [mpr10] it is
shown that for any (deterministic, finite) functionality F , F vppt Fxor is either unconditionally
true/false, or else F vppt Fxor implies the sh-OT assumption. As such, our dependence on sh-OT
assumption to demonstrate the completeness of Fxor was necessary.

7 Extensions, Limitations, and Open Problems

We discuss several natural extensions of our main theorem:
8We show a generic environment whose detection probability is at least a (very small) positive constant. While

this is sufficient to demonstrate the feasibility of a protocol for Fcom, the protocol’s O(k) efficiency hides very large
constants. However, it is usually possible to tailor such a distinguishing environment for a particular F to achieve a
relatively high detection probability (say, 1/2 or 1/4). In that case, our commitment protocol is very practical.
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Strengthening the Reduction. In general, as one tightens the notion of a reduction, fewer
functionalities remain complete. In the extreme, the reduction could be made so restrictive that no
functionality reduces to another. In Appendix F we discuss several possible strengthenings of the
vppt reduction. We first note that the zero-one law still applies if protocols are given only public
channels instead of private channels, or if security is simultaneously required against both active
and semi-honest adversaries.

However, if the reduction notion is strengthened to require security against computationally
unbounded adversaries, then the zero-one law breaks down. Even in the case of SFE functionali-
ties, there exist infinitely many qualitative distinctions among functionalities with respect to this
stronger reduction [mpr09].

In Appendix G.1, we show that if the reduction requires parties to use the given ideal functional-
ity with only fixed roles (i.e., Alice can access F only in the role of Alice), then Fcom 6v Fcc (indeed,
the behavior of Fcc is not symmetric with respect to the two parties). Since Fcc is unconditionally
non-trivial, the zero-one law no longer holds under this strong reduction. This impossibility high-
lights the fact that Fcc indeed has rather low complexity, and justifies our somewhat complicated
protocol used to realize Fcom using Fcc.

Finally, if the reduction is strengthened to require security against adaptive corruption, we are
unsure whether the zero-one law still holds, even for the class of deterministic, finite functionalities.

Larger Classes of Functionalities. In Appendix G.2 we show that the zero-one law does not
extend to deterministic, unbounded-memory functionalities. Let F be a channel which accepts
an arbitrary-length string x from Alice and sends f(x) to Bob for a fixed function f . Assuming
one-way functions exist, we construct an efficient f that is hard to invert on infinitely many input
lengths (thus F is non-trivial), yet trivially invertible for very long stretches of input lengths (thus
F is cryptographically useless by protocols with certain security parameters). Of course, if one-
way functions do not exist, then the sh-OT assumption is false and the zero-one law must still
break down, so the break-down of the zero-one law is unconditional. While our construction of
f is admittedly contrived, this impossibility result does illustrate the necessity of making some
restriction on the class of functionalities. We leave open the problem of identifying the largest
“natural” class of unbounded-memory functionalities that does satisfy the zero-one law.

The other natural way to extend the scope of our results is to consider randomized functionalities.
However, very little is known about randomized functionalities, even in the simplest case of SFE
functionalities and considering perfect security against computationally unbounded, semi-honest
adversaries (for comparison, the corresponding characterization for deterministic SFE has been
known for 20 years [k89b, b89]).

Optimizing Hardness Assumptions. While our main theorem relies on the minimal sh-OT
assumption, our use of the assumption itself is non-black-box. In both of our new commitment
protocols, we use standalone zero-knowledge and witness-indistinguishable proofs of statements
regarding various cryptographic primitives (which are derived eventually from the sh-OT assump-
tion). We do not know whether such non-black-box usage of the assumption is necessary, although
it appears that a fundamentally different approach would be required to avoid the use of interactive
proofs.
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A Related Work

Some of the earliest works in secure multi-party computation already established that under reason-
able computational assumptions, all functionalities are realizable [y86, gmw87].9 In our parlance,
this would suggest that every functionality has the same cryptographic complexity — namely, being
both trivial and complete. This is indeed the case (under those computational assumptions), if we
restrict to security against semi-honest adversaries or standalone security (and polynomial time
entities) as was done in [y86, gmw87].

However, shortly afterwards, a finer study of cryptographic complexity emerged by using
stronger security notions. One strengthening was made by removing computational restrictions. In
the computationally unbounded setting (a.k.a., information-theoretic or statistical security setting),

9Many of the results in secure multi-party computation, including [gmw87], address the setting of more than two
parties. In this work we restrict our attention to the 2-party setting.
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not all functionalities are realizable (or “trivial”), and hence it becomes possible to distinguish the
complexity of functionalities as trivial and complete (and more generally, to consider degrees of
various functionalities).

One of the earliest, and most important results along this line is that SFE functionality of
Oblivious Transfer (OT) [r81, egl85, c87] is complete [k88], unconditionally.10 All subsequent
completeness results crucially rely on this result. These include the characterization of complete
SFE functionalities with asymmetric output [k00] and with arbitrary output [kmq08].

However, much of the initial progress — apart from the completeness of OT — was in the
context of security against semi-honest (a.k.a., honest-but-curious, passive) adversaries. Further
— and this has been true for almost all the prior work discussed here — only non-reactive (a.k.a.,
secure function evaluation, or SFE) functionalities were considered. Building on early work by
[ck89, k89b, b89] (who consider only the case of perfect security), recently [mpr09] characterized
realizable symmetric11 SFEs. Independently, [kmqr09] extended this characterization to general
SFEs. [k91, k00] characterize complete symmetric and asymmetric SFEs. For symmetric SFEs
with symmetric boolean output, [kkmo00] show a zero-one law: that every such functionality is
either trivial or complete.

Additional significant progress has been in the setting of standalone security. When considering
active corruption, composability is significant, and the results in the standalone setting typically do
not extend to the UC setting.12 Nevertheless, studying standalone security does provide important
insight into the cryptographic complexity of functionalities. In particular, [bmm99] provided a zero-
one law that if any non-trivial asymmetric SFE is securely realizable, then so is every asymmetric
SFE. The notion of security in [bmm99] is weak in that it does not consider composability, and is
restricted to polynomial-time entities; however it is strong in that a protocol is considered secure
only if it is simultaneously secure against both active and semi-honest corruption. (Our main
theorem extends unaltered with this notion of reduction.) [bmm99] shows that every asymmetric
SFE is securely realizable (trivial, in our terminology) if and only if there is a semi-honest secure
protocol for OT (sh-OT assumption). While it bears some similarity with our results, there are
important aspects in which our results provide a very different picture of cryptographic complexity
compared to what [bmm99] obtains by considering standalone security. In particular, under the
(widely believed) cryptographic assumption that a sh-OT protocol does exist, there is only one level
of complexity for all asymmetric SFE functionalities (i.e., all are trivial) by [bmm99], whereas in
our picture, even restricted to asymmetric SFEs, there are two distinct complexity levels (trivial
and complete), no matter what computational assumptions are made.

We remark that [hnrr06] extends results of [bmm99] beyond constant-sized functionalities (but
still restricted to asymmetric SFE functionalities). In [hnrr06], as in our own work, the collapse
of qualitative complexity levels is not comprehensive for non-constant-sized functionalities. In
fact, in our case, when considering non-constant-sized SFE functionalities, we can unconditionally
demonstrate the existence of SFE functionalities which are neither trivial nor complete. We leave
further exploration of this space for future work.

The introduction of the UC model, as a culmination of a long line of work on composable
security, gave a whole new way to understand the cryptographic complexity of functionalities. Right

10The protocol in [k88] is not UC-secure, though an extension presented in [k89a] is likely to be. The construction
was significantly simplified, and proven secure in the UC setting in [ips08].

11In a symmetric SFE, both parties receive the same output f(x, y), where x, y stand for their inputs. In an
asymmetric SFE only one party receives the output (and the other party is given no output). A general SFE provides
two, possibly different, outputs fA(x, y) and fB(x, y) to the two parties.

12Some important exceptions are the key completeness results in information theoretic setting, like the ones in
[k88] and [k00].
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from the beginning, unconditional impossibilities (or non-trivial functionalities) were observed [c01,
cf01], which were extended to a large class of SFE functionalities in [ckl03]; subsequently [pr08]
provided an exact characterization of all trivial functionalities (as “splittable” functionalities).

In the computationally unbounded setting, [mpr09] showed that there is an infinite hierarchy
of increasing levels of cryptographic complexity even among symmetric SFE functionalities, as well
as functionalities with incomparable complexities. However, this does not give any indication of the
complexity landscape in the computationally bounded setting. In [pr08] it was conjectured that
under some standard cryptographic assumptions, there should be only two levels of complexity in
the computationally bounded setting. Our main result is a sharp resolution of this conjecture, by
giving a necessary and sufficient complexity assumption under which the conjecture is true.

It was already known that some functionalities are not complete in the computationally un-
bounded setting but are complete in the computationally bounded setting, under an appropriate
complexity assumption. In particular, [clos02] provided the first such result, that the “coin-
tossing” functionality is complete, assuming the existence of enhanced trapdoor permutations and
dense cryptosystems. The approach in [clos02], following that of [gmw87], is to first observe that
if a sh-OT protocol exists, then the commitment functionality (which is a reactive functionality)
is complete; then the commitment functionality is reduced to the coin-tossing functionality under
the computational assumptions described above. Our approach follows [gmw87, clos02] in that
to establish the completeness of a given functionality, we need only reduce the commitment func-
tionality to it. However, our reductions are much more general than that in [clos02] in that we
can reduce commitment to any non-trivial (deterministic, constant-sized) functionality. Secondly,
we rely only on the minimal assumption (existence of a sh-OT protocol); for the completeness of
the coin-tossing functionality, such a result was obtained independently by [dno10].

We point out that all the above mentioned prior results, except [pr08], are restricted to SFE
functionalities, whereas an important contribution of this work is to develop tools and techniques
for analysing reactive functionalities. On the other hand, the current set of results do share some
restrictions common to prior work: for most part, we consider the complexity of deterministic
functionalities (the exceptions in prior work being [pr08] and the semi-honest security results
of [k00]); secondly, we consider only static corruption (a notable exception in prior work being
[clos02]).

B Non-Reactive Functionalities

B.1 Definitions

A secure function evaluation (SFE) functionality F is fully specified by a pair of functions (fA, fB)
over a finite input domain X × Y . The behavior of F as an ideal functionality is defined formally
in Figure 2. We emphasize that an SFE functionality provides no guarantee about output fairness
— the adversary is in complete control over the delivery of outputs.

1. Wait for input x ∈ X from Alice and input y ∈ Y from Bob.
2. If Alice is corrupt, then send (output, fA(x, y)) to the adversary; if Bob is corrupt, then

send (output, fB(x, y)) to the adversary; otherwise, send output to the adversary.
3. On input deliver from the adversary, or if neither party is corrupt, send fA(x, y) to

Alice and fB(x, y) to Bob.

Figure 2: Semantics of the SFE functionality F = (fA, fB)
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Definition 1. Let F = (fA, fB) be a 2-party SFE. We say that x is a redundant input for Alice if
there exists x′ 6= x such that:

fA(x, y) 6= fA(x, y′)⇒ fA(x′, y) 6= fA(x′, y′) and fB(x, ·) ≡ fB(x′, ·).

That is, by changing her input from x to x′, Alice learns no less about Bob’s input, but Bob’s output
is unaffected. We define redundancy for Bob’s inputs symmetrically.

It is easy to see that it is never in the best interests of a malicious party to supply a redundant
input.

Definition 2. Let F = (fA, fB) and G = (gA, gB) be 2-party SFEs. We say that F and G are
isomorphic if G can be obtained from F via repeated applications of the following operations:

• Adding or removing a redundant input,
• Injectively re-labeling a party’s input domain,
• Injectively re-labeling the outputs of fA(x, ·) for any x, or of fB(·, y) for any y,
• Reversing the roles of Alice and Bob.

It is easy to see that if F and G are isomorphic, then F can be securely realized in the G-
hybrid model (and vice-versa). Thus, we hereafter consider only SFE functionalities that have all
redundant inputs removed.

B.2 2× 2 Minors

Our primary classification of SFE functionalities is combinatorial, and relies on identifying crucial
2× 2 minors in the function table of the SFE.

Definition 3. Let F = (fA, fB) be a 2-party SFE. We say that F has a generalized cc-minor at
{x, x′} × {y, y′} if F has the following form:

fA y y′

x a a
x′ b c

fB y y′

x h j
x′ i k

where b 6= c and h 6= i and j 6= k

or the symmetric condition with the roles of Alice and Bob exchanged.

In a generalized cc-minor, Alice chooses input x if she wants no information about Bob’s input
(y or y′), and chooses input x′ if she wants to receive Bob’s input. Bob learns which option Alice
chose.

We call the following (symmetric-output) function the symmetric cut-and-choose function Fcc:

fA = fB 0 1
0 0 0
1 1 2

It is the canonical function that contains a generalized cc-minor, and it plays an important role in
our results.

Definition 4 ([kmq08]). Let F = (fA, fB) be a 2-party SFE. We say that F has a generalized
or-minor at {x, x′} × {y, y′} if F has the following form:

fA y y′

x a a
x′ b c

fB y y′

x h j
x′ h k

where b 6= c or j 6= k

18



Lemma 1 ([kmq08]). If F is a 2-party SFE functionality that contains a generalized or-minor
after removing all redundant inputs, then F is complete under vstat reductions.

In fact, the lemma proven by Kraschewski and Müller-Quade [kmq08] is stronger, giving a
complete characterization of completeness against computationally unbounded adversaries. That
is, they prove that F is vstat-complete if and only if it contains a generalized or-minor. We note
that the protocol and simulator in their reduction are both efficient when F has constant size, but
the security holds even against computationally unbounded adversaries. Of course, in this work we
show that many other functionalities are also complete under the vppt reduction.

Definition 5. F = (fA, fB) is a symmetric exchange function if F is isomorphic to the symmetric
function F(x, y) = (x, y) for some input domain X × Y .

In a symmetric exchange function, each party learns the other party’s input (the function’s
output also includes that party’s own input, which it already knows). The cryptographic non-
triviality of symmetric exchange functions is due to the fact that each party’s input is chosen
independently of the other party’s input.

B.3 Combinatorial Classification

We now prove the first characterization of SFE functionalities, using two technical lemmas:

Lemma 2. Let F = (fA, fB) be an SFE functionality. If F has a generalized cc-minor and no
generalized or-minor, then Fcc vstat F .

Proof. Suppose F has a generalized cc-minor at {x, x′}×{y, y′}. We will show that the protocol in
which parties simply restrict their inputs to this 2×2 minor is a UC-secure protocol for computing
that minor.13 If the output from F is not consistent with the party’s input and one of the two
allowed inputs for the other party, then we abort. Since every generalized cc-minor is isomorphic
to symmetric cc, the claim will be established.

Suppose the function table of F is as follows for the cc-minor:

fA y y′

x a a
x′ b c

fB y y′

x h j
x′ i k

where b 6= c, h 6= i, and j 6= k

We first consider the case where Alice is corrupt. If Alice provides input x or x′, then the simulator
also gives the same input in the ideal world, and returns the output to Alice. Otherwise, suppose
Alice sends some other input x′′:

fA y y′

x a a
x′ b c
x′′ p q

fB y y′

x h j
x′ i k
x′′ r s

where b 6= c, h 6= i, and j 6= k

We consider several cases, depending on the values of p, q, r, s:

• If r 6∈ {h, i} and s 6∈ {j, k}, then honest Bob will always abort in the real world. The simulator
sends input x′ in the ideal world. The simulator can determine from its output whether Bob’s
input was y or y′, and simulate either output p or q to Alice accordingly, and finally abort.

13Note that for an arbitrary F , it does not necessarily follow that restricting inputs is a secure protocol for evaluating
that minor, since adversaries may carefully choose other inputs to send to F .
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• If [r = h and s = j and p 6= q] or [r = h and s 6= j] or [r 6= h and s = j]. then {x, x′′}×{y, y′}
is a generalized or-minor in F . This is not possible in F .
• If r = h and s = j and p = q, then the simulator sends input x in the ideal world. Bob

receives the same output as in the real world, and the simulator gives Alice output p = q.
• If r = i and s = k, then the simulator sends input x′ in the ideal world. Bob receives the

same output as in the real world, the simulator can determine from its output whether Bob’s
input was y or y′, and simulate either output p or q to Bob, accordingly.
• If r = i and s 6∈ {j, k}, then Bob will abort in the real world if his input was y′. The simulator

sends input x′ in the ideal world. If Bob’s input is y, then Bob receives the same output as
in the real world. The simulator can determine from its output whether Bob’s input was y
or y′, and simulate either output p or q to Bob, accordingly. The simulator aborts if Bob’s
input is y′.

The definition of generalized cc-minor is symmetric with respect to y and y′, so all other cases are
obtained by symmetry.

The other case to consider is when Bob is corrupt. Similarly, the simulation is trivial when Bob
uses either y or y′. Otherwise, suppose Bob uses some other input y′′:

fA y y′ y′′

x a a p
x′ b c q

fB y y′ y′′

x h j r
x′ i k s

where b 6= c, h 6= i, and j 6= k

We again consider several cases:

• If p 6= a and q 6∈ {b, c}, then similar to above, Alice will always abort in the real world. The
simulator sends input y in the ideal world. It can determine from its output whether Alice’s
input was x or x′, and simulate either output r or s to Bob accordingly, and finally abort.
• If p = a and q = b, then the simulator sends input y in the ideal world. Alice receives the

same output as in the real world. The simulator can determine from its output whether
Alice’s input was x or x′, and simulate either output r or s to Bob, accordingly.
• If p = a and q = c, the simulation is identical to the previous case, except the simulator sends

input y′ in the ideal world.
• If p = a and q 6∈ {b, c}, then Alice aborts in the real world if her input was x′. The simulator

sends input y in the ideal world. Alice receives the same output as in the real world if her
input was x. The simulator can determine from its output whether Alice’s input was x or x′,
and simulate either output r or s to Bob, accordingly. The simulator aborts if Alice’s input
was x′.
• If p 6= a and q = b, then Alice aborts in the real world if her input was x. Similar to above,

the simulator sends input y in the ideal world, simulates the appropriate output for Bob, and
aborts if Alice’s input was x.
• If p 6= a and q = c, then the simulation is identical to the previous case, except the simulator

sends input y′ in the ideal world.

Lemma 3. If F = (fA, fB) has no generalized cc-minor and no generalized or-minor, then F is
a symmetric exchange function.

Proof. If F is not a symmetric exchange function, then different inputs to F for (without loss of
generality) Alice let her learn different distinctions among Bob’s inputs. That is, for some x, x′, y, y′,
we have: fA(x, y) = fA(x, y′) and fA(x′, y) 6= fA(x′, y′). Now no matter how fB behaves on inputs
{x, x′} × {y, y′}, that 2× 2 minor is either a generalized cc-minor or generalized or-minor.
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Finally, we prove our main classification of SFE functionalities:

Theorem 1 (restated). Let F be an SFE functionality. Then F is non-trivial if and only if
Fxor vstat F or Fcc vstat F or Fot vstat F .

Proof. If F contains no generalized or-minor, but contains a generalized cc-minor, then Fcc vstat

F (by Lemma 2). Otherwise, if F contains neither a generalized cc-minor nor a generalized or-
minor, then F is a symmetric exchange function (Lemma 3). Suppose F is (isomorphic to) the
symmetric function F(x, y) = (x, y), where F has input domain X × Y . If min{|X|, |Y |} < 2,
then F is trivial, by the unconditional, complete characterization of UC triviality from [pr08] (F
is trivially realizable via a protocol in which one party simply sends their input to the other party).

Otherwise, suppose min{|X|, |Y |} > 2. Then let x0 6= x1 ∈ X and y0 6= y1 ∈ Y . A secure
protocol for Fxor in the F-hybrid model is as follows: On input a ∈ {0, 1}, Alice sends xa; on input
b ∈ {0, 1}, Bob sends input yb. Both parties obtain output F(xa, yb) = (xa, yb) and output a ⊕ b.
Alice aborts if she observes that Bob did not use y0 or y1 as his input, and likewise Bob aborts
if he observes that Alice did not use x0 or x1 as her input. It is straight-forward to see that this
protocol is UC-secure.

C Obtaining Fcom from Fxor

In this section, we show how Fcom can be directly realized using Fxor. We first observe that
Fcoin vstat Fxor via an elementary and well-known protocol. Thus we focus on proving that
Fcom vppt Fcoin.

Parameters. Our construction depends on the sh-OT assumption, so let ψsh denote a semi-honest
protocol for OT.

sh-OT assumption implies the existence of one-way functions, and our construction also relies
on the following components, each of which exists given one-way functions alone:

• Let Com be a statistically binding, standalone-secure commitment scheme with a non-interactive
reveal phase (for instance, Naor’s commitment scheme [n91]).
• Let G : {0, 1}k → {0, 1}2k be a pseudorandom generator.
• A standalone-secure zero-knowledge proof of knowledge protocol for NP statements.
• A standalone-secure witness-indistinguishable proof for NP statements.

The protocol. We define the following interactive protocol ρ in the Fcoin-hybrid model. The
security parameter is κ. Suppose the ψsh protocol uses R(κ) bits of randomness when executed
with security parameter κ.

1. (Commit phase.) Both parties obtain random coins σA, σB ∈ {0, 1}2κ from Fcoin.

2. On input (commit, b), for b ∈ {0, 1}, Alice first commits to b using the Com protocol.

3. Alice and Bob both choose random coin shares, rA, rB ← {0, 1}R(κ) respectively, for use in
the ψsh protocol. Each party commits to its respective coins using the Com protocol.

4. Both parties use a ZK proof of knowledge protocol to prove knowledge of the values underlying
their commitments (for Alice, the commitments to b and rA; for Bob, the commitment to
rB).
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5. Alice chooses random coins r′B ← {0, 1}R(κ) and sends them to Bob. Bob chooses random
coins r′A ← {0, 1}R(κ) and sends them to Alice.

6. Both parties engage in the OT protocol ψsh, with Alice acting as the sender with inputs
x0 = 0 and x1 = b, and Bob acting as the receiver with input (choice bit) y = 0.

(a) For each of Alice’s turns in the ψsh protocol, suppose that the protocol instructs her to
send message m. She sends m to Bob and then proves using a witness-indistinguishable
proof protocol the following statement: Either there exists d such that G(d) = σA,
or else there exists values rA and b that are consistent with the commitments to rA
and b, and the ψsh protocol prescribes that the sender send m when running on input
(x0 = 0, x1 = b) and random coins rA ⊕ r′A, given the ψsh transcript so far.

(b) For each of Bob’s turns in the ψsh protocol, suppose that the protocol instructs him to
send message m. He sends m to Alice and then proves using a witness-indistinguishable
proof protocol the following statement: Either there exists d such that G(d) = σB, or
else there exists coins rB that are consistent with his commitment to rB, and the ψsh

protocol prescribes that the receiver send m when running on input y = 0 and random
coins rB ⊕ r′B, given the ψsh transcript so far.

7. If any of the interactive proofs in the previous steps fail, then the parties abort. Otherwise
Bob outputs committed.

8. (Reveal phase.) On input reveal, Alice sends b to Bob. She then proves using a witness-
indistinguishable proof that either there exists a non-interactive opening of Alice’s Com-
commitment from step (2) to the value b, or else there exists d such that G(d) = σA. Bob
outputs (reveal, b) if this proof verifies.

Overview and Motivation. Intuitively, the protocol is for Alice to commit to b in a standalone-
secure commitment scheme, and then use b as an input to the ψsh OT protocol. However, Bob will
choose not to pick up b in the OT subprotocol, so that he is still oblivious to its value.

The rest of the protocol (most importantly steps 3–6) essentially “compiles” the ψsh protocol
using the standard GMW paradigm to enforce that Alice indeed uses b as an input to ψsh, and that
Bob indeed chooses not to pick it up. However, for technical reasons we deviate slightly from the
GMW paradigm in the following ways:

• In step (5), the parties prove knowledge of the commitments to their private inputs to ψsh

and their random-tape shares. This is important because we eventually reduce an adversary
running ρ to a semi-honest adversary running ψsh. For technical reasons, we need to extract
inputs and the random tape share in this step, but a rewinding extraction is sufficient.
• Bob does not prove the standard GMW-style statement in step (6a). Instead, he proves a

statement containing a trapdoor clause related to the public coins σ. This extra trapdoor
allows a straight-line simulator for a corrupt Bob to prove false statements about its interac-
tion using ψsh (by choosing σ from the range of G and using the trapdoor witness), which is
crucial in our subsequent security reductions.

Finally, in the reveal phase Alice does not simply reveal the standalone-secure commitment
to b made in step (2). Instead, she proves it with a witness-indistinguishable proof that has a
“trapdoor” clause regarding the public coins σ. This extra clause allows a straight-line simulator
for a corrupt Alice to open a commitment to either value.
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Theorem 2 (restated). The protocol ρ is a secure realization of Fcom in the Fcoin-hybrid model.

Proof. We must demonstrate a suitable simulator for any adversary. The construction is trivial in
the cases where both or neither of the parties are corrupt. The correctness of the protocol follows
straight-forwardly from the security properties of the various components used in ρ. We focus on
the other two cases, in which only one party is corrupt.

Simulation when Alice is corrupt. In this case the primary task of the simulator is to ex-
tract Alice’s bit during the commit phase. We construct the simulator via a sequence of hybrid
interactions, as follows:

Real interaction: The simulator honestly plays the role of Fcoin and Bob (who has no input) in the
ρ protocol. This is exactly what happens in the real interaction with Alice.

Hybrid 1: Same as above, except that the simulator generates coins σB by choosing a random
d ∈ {0, 1}κ and setting σB = G(d). The coins σA remain honestly generated. This hybrid is
indistinguishable from the previous by the pseudorandomness of G.

Hybrid 2: Same as above, except that each time in step (6b), the simulator uses d as a witness to
the witness-indistinguishable proofs. This hybrid is indistinguishable from the previous by
the witness indistinguishability property of the interactive proof.

To obtain hybrid 3, we now define a sequence of intermediate hybrids which use rewinding
simulation. This is necessary to eventually reduce the indistinguishability of consecutive
hybrids to a semi-honest security guarantee. However, the final hybrid 3 is a straight-line
simulator for corrupt Alice.

Hybrid 2a: Same as hybrid 2, except that the simulator uses the (possibly rewinding) knowl-
edge extractor to extract Alice’s commitments to rA and b from step (4). By the sound-
ness of the proof of knowledge protocol and the statistical binding property of Com,
these values are with overwhelming probability the only values to which the commit-
ments could be opened. This hybrid is indistinguishable from the previous by the security
of the ZK proof scheme used in step (4).

Hybrid 2b: Same as hybrid 2a, except that the simulator honestly chooses random coins
R ∈ {0, 1}R(κ) and sends r′A = R⊕ rA in step (5), where rA is the value extracted in the
previous step. This interaction is distributed exactly as the previous hybrid.

Hybrid 2c: Same as hybrid 2b, except that each time in step (6a), the simulator computes
the next-message function of ψsh for Alice, given input x0 = 0, x1 = b, random tape
R, and the ψsh transcript so far. If this next message does not match the m given by
Alice in step (6a), then the simulator aborts. This hybrid is indistinguishable from the
previous by the soundness property of Alice’s interactive proofs in step (6a).14 Note that
hereafter we can be sure that the corrupt Alice is executing ψsh honestly.15

14Only with negligible probability is σA in the range of the pseudorandom generator G. Thus, that clause of the
WI proof is false, and the soundness property implies the correctness of the other clause being proved.

15Here it is important that Alice is executing ψsh honestly on honestly sampled random tape R. In other words, it is
not enough that Alice’s random tape be randomly distributed, since she may be able to sample with some trapdoor.
We must have Alice execute the protocol on a random tape that was sampled entirely honestly.
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Hybrid 2d: Same as hybrid 2c, except that each time in step (6b), the simulator uses y = 1
instead of y = 0 as its input to the ψsh protocol (still executing the protocol honestly).
This hybrid is indistinguishable from the previous by the semi-honest security of ψsh,
since Alice’s interactions in the ψsh protocol can be simulated by a semi-honest adversary.
Additionally, by the correctness of the ψsh protocol, the simulator obtains x1 = b as
output from this subprotocol. Recall that by the statistical binding property of Com,
and the soundness of the interactive proofs in step (6a), this value b is with overwhelming
probability the only value to which the commitment in step (2) can be opened.16

Hybrid 2e: Same as hybrid 2d, except that the simulator does not extract Alice’s inputs b and
rA in step (4), chooses r′A uniformly in step (5), and does not compare Alice’s messages
in step (6a) to the “correct” value prescribed by ψsh. This hybrid is indistinguishable
from the previous by applying the arguments in the previous three hybrids in reverse.

Hybrid 3: Exactly the same as hybrid 2e. Overall, this hybrid differs from hybrid 2 only in that
the simulator uses y = 1 as its honest input to the ψsh protocol instead of y = 0. It then
learns the value of b. Although hybrids 2a through 2d used rewinding simulation (to reduce
a property to the semi-honest security of ψsh), hybrid 3 itself uses no rewinding.

Hybrid 3 defines our final simulator. After learning the value of b after step (6), the simulator
sends (commit, b) to Fcom in the ideal world. Recall that this extracted value of b is with over-
whelming probability the only value to which the commitment in step (2) can be opened. Then,
since σA is not in the pseudorandom distribution except with negligible probability, and by the
soundness of the witness-indistinguishable proof in step (8), b is with overwhelming probability the
only value for which Alice can make Bob output (reveal, b) in the real-interaction reveal phase.

We see that our simulation is indistinguishable from the real interaction, as desired.

Simulation when Bob is corrupt. In this case the primary task of the simulator is to give
an equivocal commitment that can be opened to either value. We construct the simulator via a
sequence of hybrid interactions, as follows:

Real interaction: We consider an interaction in the ideal world with a variant of Fcom which reveals
b in the commit phase. When receiving (committed, b) from Fcom, the simulator for Bob
honestly simulates Fcoin and the behavior of Alice on input b in the commit phase of ρ. When
receiving (reveal, b) from Fcom, the simulator honestly simulates the behavior of Alice in
the reveal phase of ρ. The outcome of this interaction is identical to the real interaction.

Hybrid 1: Same as above, except that the simulator generates σA by choosing a random d ∈ {0, 1}κ
and setting σA = G(d). This interaction is indistinguishable from the previous hybrid by the
pseudorandomness of G.

Hybrid 2: Same as above, except that in step (8) and each time in step (6a), the simulator uses the
witness d for the witness-indistinguishable proof. This interaction is indistinguishable from
the previous hybrid by the witness indistinguishability of the interactive proof used in step
(8).

16The simulator has already extracted b previously in step (4), but subsequent hybrids will not perform such an
extraction. Subsequent hybrids will, however, obtain b from the ψsh subprotocol.
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Hybrid 3: Same as above, except that the simulator commits to 0 in step (2). However, the simula-
tor will still use b as an input to the ψsh subprotocol. Since the opening of this commitment is
never used (as a witness in any of the interactive proofs), this interaction is indistinguishable
from the previous hybrid by the standalone hiding property of Com.

Hybrid 4: Same as above, except that the simulator executes step (6) using x0 = 0, x1 = 0 as
inputs to the ψsh subprotocol. This interaction is indistinguishable from the previous hybrid
by the semi-honest security of ψsh. We sketch the sequence of intermediate hybrids between
hybrid 3 and 4; the formal details closely follow the techniques applied earlier in this proof,
and are omitted:

◦ Starting from hybrid 3, first, let the simulator extract rB from Bob in step (4), possibly
by rewinding.

◦ Next, let the simulator choose r′B = R⊕ rB (in step (5)) for an honestly sampled R.

◦ Next, let the simulator abort if Bob sends a message in step (6b) that is not prescribed
by the ψsh protocol on input y = 0 and random tape R.

◦ Now, let the simulator change its input to ψsh from x1 = b to x1 = 0. Since Bob is
interacting honestly within the ψsh protocol, this difference is indistinguishable by the
sender’s semi-honest privacy guarantee of ψsh.

◦ Finally, let the simulator “roll back” these first three changes in reverse order, resulting
in the final hybrid 4.

Hybrid 4 defines our final simulation. Note that since the hybrid 4 simulator does not use b until
the reveal phase (i.e., the simulated commit phase is completely independent of b), this simulator
is a valid simulator in the ideal interaction with Fcom (in which it does not receive b from Fcom in
the commit phase). We see that the simulation is indistinguishable from the real world interaction,
as desired.

D Obtaining Fcom from Fcc

We first define an intermediate functionality which we call extractable commitment. It captures the
requirements of a statistically binding, computationally (standalone) hiding commitment protocol
with a straight-line extracting simulation.

D.1 Extractable Commitment

We start off by introducing some convenient terminology.

Definition 6. A protocol is a syntactic commitment protocol if:

• It is a two phase protocol between a sender and a receiver (using only plain communication
channels).
• At the end of the first phase (commitment phase), the sender and the receiver output a tran-

script τ . Further the sender receives an output γ (which will be used for opening the commit-
ment).
• In the reveal phase the sender sends a message γ to the receiver, who extracts an output value

opening(τ, γ) ∈ {0, 1}κ ∪ {⊥}.
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In the above description, as is implicit in all our protocol specifications, the parties may choose
to abort at any point in the protocol.

Definition 7. We say that two syntactic commitment protocols (ωL, ωR) form a pair of comple-
mentary statistically binding commitment protocols if the following hold:

• ωR is a statistically binding commitment scheme (with standalone security).
• In ωL, at the end of the commitment phase the receiver outputs a string z ∈ {0, 1}κ. If

the the receiver is honest, it is only with negligible probability that there exists γ such that
opening(τ, γ) 6= ⊥ and opening(τ, γ) 6= z.

Note that ωL by itself is not an interesting cryptographic goal, as the sender can simply send the
committed string in the clear during the commitment phase; however, in defining F (ωL,ωR)

extcom below,
we will require a single protocol to satisfy both the security guarantees.

We define the extractable commitment functionality F (ωL,ωR)
extcom in Figure 3. The functionality is

parameterized by a pair of complementary statistically binding commitment protocols.

We name the two parties Sender and Receiver. The functionality’s behavior depends on who
is corrupt.

If both Sender and Receiver are honest, the functionality behaves as follows:

1. (Commitment phase.) It accepts (commit, x) from Sender. Then it internally simulates
a session of ωR (simulating both the sender and the receiver in ωR), with the sender’s
input being x. It gives (transcript, τ, γ) to Sender and (committed, τ) to Receiver.

2. (Reveal phase.) On receiving the message reveal from Sender, it sends (reveal, x) to
Receiver.

If Sender is corrupt and Receiver is honest, the functionality does the following:

1. (Commitment phase.) It runs the commitment phase of ωL with Sender, playing the
part of the receiver in ωL, to obtain (τ, z). It sends (committed, τ) to Receiver and
internally records z.

2. (Reveal phase.) It receives (reveal, γ) from Sender. If opening(τ, γ) = z, it sends
(reveal, z) to Receiver.

If Sender is honest and Receiver is corrupt, the functionality does the following:

1. (Commitment phase.) It accepts (commit, x) from Sender. Then it runs the com-
mitment phase of ωR with Receiver, playing the sender’s role in ωR, with x as input.
It obtains the output (τ, γ) at the end of this phase, and sends (transcript, τ, γ) to
Sender.

2. (Reveal phase.) it sends (γ, x) to Receiver.

(We do not define the behavior of the functionality when both Sender and Receiver are cor-
rupt.)

Figure 3: Functionality F (ωL,ωR)
extcom : Extractable commitment, parameterized by two syntactic com-

mitment protocols ωL and ωR.

Our main result in this section is that extractable commitment can be used to securely realize
full-fledged commitment:
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Lemma 4. If (ωL, ωR) form a pair of complementary statistically binding commitment protocols
(and one-way functions exist), then Fcom vp F (ωL,ωR)

extcom .

Proof. Our protocol uses additional witness-indistinguishable proofs, which are guaranteed to exist
if standalone-secure commitment schemes exist. The protocol uses a “1-out-of-2 binding commit-
ment” scheme, similar to the notion introduced by Nguyen and Vadhan [nv06].

Our protocol for Fcom is as follows, with security parameter κ. It uses ideal access to 3 inde-
pendent instances of F (ωL,ωR)

extcom , which for clarity we will name F0,F1,F2. Bob is identified as the
sender in F0, and the receiver in F1 and F2.

1. (Commit phase, on Alice input (commit, x)) Bob chooses a random string r ← {0, 1}κ and
sends (commit, r) to F0. Alice receives output (committed, τ0) and Bob receives output
(transcript, τ0, γ0).

2. Alice sends (commit, x) to F1. Alice receives output (transcript, τ1, γ1) and Bob receives
output (committed, τ1).

3. Alice sends (commit, 0κ) to F2. Alice receives output (transcript, τ2, γ2) and Bob receives
output (committed, τ2).

4. Bob sends reveal to F0, and Alice receives output (reveal, γ0, r). Bob outputs committed.

5. (Reveal phase, on Alice input reveal) Alice sends x to Bob, then uses a WI proof to prove
the following statement S(x, r, τ1, τ2):

There exists γ such that either opening(τ1, γ) = x or opening(τ2, γ) = r.

Bob outputs (reveal, x) if the proof verifies.

It is straight-forward to see that the protocol is correct; i.e., simulation is trivial when both
parties are honest. Simulation is trivial when both parties are corrupt, too. We consider the other
two cases.

Simulation when Alice is corrupt: Since Bob has no private inputs to Fcom, the simulator
faithfully simulates the honest Bob protocol and honest functionalities F0,F1,F2. If the simulated
Bob ever aborts, then the simulation also aborts. In step (2), the simulator obtains the value
z1 the value recorded by F1. When the commit phase finishes, the simulator sends (commit, z1)
to Fcom. Later, in the reveal phase, if the simulated ever Bob outputs (reveal, z1), then the
simulator sends reveal to Fcom; if the simulated Bob outputs (reveal, x) for some x 6= z1, then
the simulation aborts. The simulation is clearly perfect except in the case where the simulated Bob
outputs (reveal, x) for some x 6= z1. We will show that this event happens with only negligible
probability.

First, we argue that at the end of the commitment phase, the probability that there exists γ
such that opening(τ2, γ) = r is negligible. By the security property of ωL, the functionality F2

records a value z2 such that (except with negligible probability) there does not exist γ such that
opening(τ2, γ) 6= z2. Hence, it suffices to show that F2 records z2 = r with at most negligible
probability. However, consider an adversary A attacking the standalone hiding property of ωR.
Adversary A internally simulates Alice and the functionality instances F0 and F2. It simulates
Alice’s interaction with F1 by interacting in a challenge commit phase of ωR, to a random value
r. After the commit phase, A outputs the value z2 output by its internally simulated F2. By the
standalone hiding property of ωR, this output can equal r with only negligible probability.
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Given this, with overwhelming probability, the second clause of the WI proof statement is false.
By the security property of ωL, the first clause is only true when Alice is attempting to reveal to
x = z1, except with negligible probability. Thus by the soundness of WI proof, if the simulated
Bob outputs (reveal, x), then x = z1 except for negligible probability, as desired.

Simulation when Bob is corrupt: Here, the simulator will simulate F0, F1 and F2 during the
commitment phase, as follows:

1. First, it carries out an honest simulation of step (1), where it faithfully runs F0 and the
receiver’s protocol with F0. At the end of this it obtains a value z0 as the value recorded by
F0.

2. Then it simulates step (2) by internally simulating F1 and the honest sender, but with the
sender’s input as 0κ (instead of Alice’s input x, which it does not know yet).

3. It simulates step (3) similarly, but this time using z0 as the sender’s input (instead of 0κ);
note that this yields (τ2, γ2) such that opening(τ2, γ2) = z0.

4. Then it simulates step (4), the reveal phase of F2. If the simulated F2 outputs (reveal, r)
to the simulated sender, then the simulator ensures that r = z0. If this is not the case, then
the simulator fails.

The reveal phase is simulated as follows:

1. First the simulator obtains (reveal, x) from Fcom. It simulates the protocol execution by
sending x and then gives a WI proof for the statement S(x, r, τ1, τ2), by using the witness γ2

and the fact that opening(τ2, γ) = r.

First, we observe that the probability of the simulator failing (in step (4)) of commitment is
negligible (by the security of ωL). To show that the simulation is indistinguishable from the real
protocol execution (conditioned on the simulator not failing), we shall rely on the hiding property
of ωR and the witness indistinguishability of the WI proof. In more detail, we employ the following
hybrid simulators:

Hybrid 1: Same as the simulation, except that in step (2) the simulator uses Alice’s true input x
rather than 0κ as the input to the (simulated) sender in its interaction with (simulated) F1.
The entire interaction can be carried out by an adversary in the standalone hiding experiment
for ωR: the adversary receives either a commitment to x or to 0κ, and it can simulate the
rest of the interaction without receiving the opening of that commitment (the opening is not
used as a witness to the WI proof later). Thus these two interactions are indistinguishable.

Hybrid 2: Same as above, except that in the reveal phase, the simulator uses the witness γ1 in the
WI proof, since opening(τ1, γ1) = x. This interaction is indistinguishable from the previous
by a straightforward application of the witness-indistinguishability property in the WI proof.

Real world: Same as above, except that the simulator sends 0κ to F2 instead of z0, in step (3).
This interaction is indistinguishable from the previous hybrid, by an identical argument as
was used to show that Hybrid 1 and the simulation are indistinguishable.

D.2 Obtaining Extractable Commitment from Fcc

In this section, we show how Fextcom can be securely realized using Fcc. We first show a protocol
π in the Fcc-hybrid model, and then define appropriate (πL, πR) protocols such that π is a secure
realization of F (πL,πR)

extcom .
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Parameters. Let Com be a statistically binding, standalone-secure commitment scheme with a
non-interactive reveal phase (for instance, Naor’s commitment scheme [n91], which relies only on
the existence of one-way functions). Let C1, . . . be a family of error-correcting codes, with the
following properties:

• Ci is a linear (ni, ki) code over GF (2), with generator matrix Mi.
• ki, ni ∈ Θ(i).
• It is possible to efficiently (polynomial time in i) correct Θ(ni) errors in Ci.

These parameters can be easily achieved, for instance, by a Justesen code [ms83].

The protocol. We define the following interactive protocol π in the Fcc-hybrid model. The
security parameter is κ.

1. (Commit phase.) On input (commit, b) (for b ∈ {0, 1}), Alice chooses random string s ∈
{0, 1}kκ and computes the associated codeword t = (Mκ)s. She commits to t using Com.

2. Bob chooses a string y ∈ {0, 1}nκ by setting each yi = 0 with probability kκ/2nκ = Θ(1).
3. For i ∈ {1, . . . , nκ}, do:

(a) Alice and Bob invoke a session of Fcc with Alice as sender. Alice sends ti, the ith bit of
t, as her input to Fcc, and Bob sends input yi.
Recall that in Fcc, Alice learns yi; Bob learns ti whenever yi = 0.

(b) If Alice sees that Bob has set yi = 0 as many as kκ times so far, then Alice aborts the
protocol.

4. The bits of t that Bob has picked up are a linear function of s (a subset of the rows of
Mκ), but are insufficient to completely determine s. Let g be a vector in {0, 1}kκ linearly
independent of all the rows of Mκ for which Alice has revealed the corresponding bits of t. g
can be computed by both parties in some canonical way. Then Alice sends c = b ⊕ 〈g, s〉 to
Bob.

5. Both parties locally output τ to consist of y, y∧ t, g, c, and the transcript of the commitment
to t in step (1).

6. Alice locally outputs γ to consist of s, t and the non-interactive opening to the commitment
t.

7. (Reveal phase) Alice sends γ to Bob. We define opening(τ, γ) = ⊥ if it does not contain a
valid opening of the commitment of t to a valid codeword Mκs, or if the bits of t are not
consistent with y and y ∧ t computed in step (3). Otherwise, opening(τ, γ) = c⊕ 〈g, s〉.

We define two protocols πL and πR (in the plain model, without access to Fcc), as follows.

• πL is identical to π, except that Bob honestly plays the role of Fcc. Thus in step (3), Alice
sends every bit ti to Bob, and Bob responds by sending yi to Alice.

After the commit phase, Bob uses the error-decoding algorithm of Cκ to decode the sequence
of bits t = t1t2 · · · to its maximum likelihood dataword s̃, and locally outputs the extracted
value z = c⊕ 〈g, s̃〉.

• πR is identical to π, except that Alice honestly plays the role of Fcc. Thus in step (3), Bob
sends each yi to Alice and Alice responds appropriately according to ti.
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Lemma 5.

1. If Com is a statistically binding commitment scheme with non-interactive reveal, then (πL, πR)
are a pair of complementary statistically binding commitment protocols.

2. The protocol π securely realizes F (πL,πR)
extcom in the Fcc-hybrid model.

Proof. Given that part (1) is true, part (2) is easily demonstrated via a trivial simulation, since
(πL, πR) are simply π with Fcc honestly “collapsed” into the responsibilities of one party. The
non-trivial step is to show that part (1) is true.

First, we claim that πR is a statistically binding standalone commitment scheme. This is
straight-forward by the security of the component Com commitment scheme. We remark that, by
applying a standard Chernoff bound, we see that an honest Bob will request to see more than kκ
bits of t only with exponentially low probability κ.

Next, we must show that πL is extractable. As in Definition 7, we consider an interaction
between a corrupt Alice and honest Bob. Let t̃ be the sequence of inputs sent by Alice in step
(3). After step (4), Bob decodes t̃ to obtain maximum likelihood dataword s̃, and locally outputs
z = c⊕ 〈g, s̃〉.

We now argue that the extracted value z is correct. In step (1) of πR, Alice gives a statistically
binding commitment, so with overwhelming probability there is a well-defined unique value t∗ such
that the commitment can be successfully opened only to t∗. We condition on this overwhelming-
probability event. If t∗ is not a codeword of Cκ, then Bob will never accept in the reveal phase of
π̂, and our extraction is trivially correct. Otherwise, assume t∗ is a codeword, t∗ = (Mκ)s∗. If s∗

is equal to s̃ computed by Bob, then the extraction is also correct.
However, if s̃ 6= s∗, then the Hamming distance between t̃ and codeword t∗ is at least the

minimum distance of Cκ, which is d = Θ(nκ). With overwhelming probability 1 − (kκ/2nκ)d =
1−O(1)Θ(κ), one of these d positions would have appeared in τ as a result of Bob choosing yi = 0.
When this happens, Bob will never accept in the reveal phase and our extraction is correct.

E Classification of Reactive Functionalities

E.1 Definitions

Definition 8. A deterministic finite functionality (DFF) is a tuple F = (Q,X, Y, δ, fA, fB, q0),
where

• Q is a finite set of states,
• X and Y are finite input sets,
• δ : Q×X × Y → Q is the (partial) state transition function,
• fA, fB : Q×X × Y → {0, 1}∗ are two output functions, and
• q0 ∈ Q is the start state.

The behavior of F as an ideal functionality is defined formally in Figure 4.
For simplicity, we often use the above standard variable names (Q, X, Y , δ, fA, fB, q0) when

the context of F is clear.

We emphasize that, like an SFE, a DFF provides no guarantee about output fairness — the
adversary is in complete control over the delivery of outputs.
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1. Set variable q to be the initial state q0. Then repeatedly do:
2. Wait for input x ∈ X from Alice and input y ∈ Y from Bob. If δ(q, x, y) is undefined,

then simply stop responding.
3. Set s = fA(q, x, y) and t = fB(q, x, y). If Alice is corrupt, send (output, s) to the

adversary; if Bob is corrupt, send (output, t) to the adversary; otherwise send output
to the adversary.

4. On input deliver from the adversary, deliver s to Alice and t to Bob. Then update
variable q ← δ(q, x, y) and repeat from step (2).

Figure 4: Semantics of the DFF functionality F = (Q,X, Y, δ, fA, fB, q0)

E.2 Dominating Inputs

In arguing security, it is often convenient for Alice to assume that Bob will supply an input that
is the “worst possible” for Alice, among all inputs that achieve the same effect. Towards that end,
we develop the notion of dominating inputs to formally define when one input x “achieves the same
effect” as another input x′, in the context of a reactive functionality. Intuitively, this happens when
every behavior that can be induced by sending x at a certain point can also be induced by sending
x′ instead, and thereafter appropriately translating subsequent inputs and outputs. More formally:

Definition 9. Let F be a finite functionality, and let x, x′ ∈ X be inputs for Alice. We say that
x dominates x′ in the first round of F , and write x ≥A x′, if there is a secure protocol for F in
the F-hybrid model, where the protocol for Bob is to run the dummy protocol (as Bob), and the
protocol for Alice has the property that whenever the environment provides input x′ for Alice in the
first round, the protocol instead sends x to the functionality in the first round.

We define domination for Bob inputs analogously, with the roles of Alice and Bob reversed.
Without loss of generality, the secure protocol from the definition above may be just the dummy
protocol, except possibly when the environment provides x′ as Alice’s first input. In this case, the
definition requires that any behavior of F that is possible when Alice uses x′ as her first input can
also be induced in an online fashion by using x as her first input (and subsequently translating
inputs/outputs according to some strategy).

Note that domination is trivially reflexive, and due to the universal composition theorem, it is
also transitive. Also note that if x dominates x′, then both x and x′ must induce the same output
for Bob in the first round, regardless of Bob’s input.

Combinatorial characterization. We now show that there is also an alternative characteriza-
tion of dominating inputs that is purely combinatorial. The previous definition in terms of secure
protocols is more intuitive, but the combinatorial criteria will be useful in proving Lemma 7, which
is crucially used in Theorem 4.

Definition 10. Let F be a DFF, S ⊆ Q2, let x, x′ ∈ X, and let z be a possible output of fA. We
define:

next(S, x, x′, z) =
{(
δ(q, x, y), δ(q′, x′, y)

) ∣∣∣ ∃(q, q′) ∈ S, y ∈ Y : fA(q, x, y) = z
}
.

The intuition behind this definition is as follows. Suppose that in some protocol that uses F ,
Alice has received inputs x′1, x

′
2, . . . from the environment but has instead sent x1, x2, . . . to F .

Suppose Alice is keeping track of S, the set of pairs (q, q′), such that:

31



• There is a sequence of inputs for Bob, y1, y2, . . ., such that Alice’s view of F is consistent with
F ’s behavior on input sequence (x′1, y1), (x′2, y2), . . .
• The input sequence (x1, y1), (x2, y2), . . . would put F in state q.
• The input sequence (x′1, y1), (x′2, y2), . . . would put F in state q′.

Then next(S, x, x′, r) defines the subsequent value of S if the environment then provides input x′

but the protocol instead sends x to F and receives output z.

Definition 11. Let F be a DFF, S ⊆ Q2, and x, x′ ∈ X. We say that (x, x′) is good for S if the
following are true:

1. For all (q, q′) ∈ S, we have fB(q, x, ·) ≡ fB(q′, x′, ·),
2. For all outputs z, we have

∣∣{fA(q′, x′, y) | ∃(q, q′) ∈ S, y ∈ Y such that fA(q, x, y) = z}
∣∣ = 1,

3. For all outputs z and all x′ ∈ X, there exists x ∈ X such that (x, x′) is good for next(S, x, x′, z).

Intuitively, suppose Alice has been sending different inputs to F than requested by the environ-
ment, but is trying to make the behavior of F reflect the environment’s requests. If S represents
Alice’s knowledge about F ’s state so far (as defined above), and S is not good for x, x′, then Alice
has a chance of being caught in the future if in the next round the environment asks her to send x
but she sends x′ instead.

In case (1), there is a chance (depending on Bob’s sequence of inputs) that Alice may induce
the wrong output for Bob in this round. In case (2), Alice might send x to F and get response z as
the response, but this new view might be consistent with at least 2 states which would require Alice
to send conflicting outputs to the environment. In case (3), Alice may be able to induce correct
outputs in this round, but she has a chance of being caught in the next round if the environment
happens to provide input x′.

Lemma 6. x ≥A x′ if and only if (x, x′) is good for {(q0, q0)}.

Proof. (⇐) Suppose (x, x′) is good for {(q0, q0)}. We must describe a strategy for Alice to send x
in the first round, but make it appear as if she had sent x′ and is running the dummy protocol.
Without loss of generality, suppose the environment internally simulates an instance of F , with
the inputs of its choice, and compares the parties’ outputs with the expected outputs from this
simulated instance of F .

Then the protocol for Alice is to maintain a state of knowledge S according to her view, as
above, starting with S = {(q0, q0)}. She maintains the following invariants:

• For all x′ ∈ X that the environment might supply in the next round, there is some x ∈ X
such that (x, x′) is good for S.

• If the external instance of F is in state q and the environment’s internally simulated instance
of F is in state q′, then (q, q′) ∈ S.

The claim is true for the base case of S = {(q0, q0)}, since the environment will send x′ in the first
round, and (x, x′) is good for S.

The protocol proceeds as follows: If the environment provides input x′ for Alice, then Alice sends
input x to F such that (x, x′) is good for S. Such an x must exist by the inductive hypothesis.
Then we have:

• Bob reports the correct output in this round, since his output is fB(q, x, y), and the environ-
ment is expecting fB(q′, x′, y), and fB(q, x, ·) ≡ fB(q′, x′, ·) from case (1) of Definition 11.
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• Alice receives input z = fA(q, x, y), and the environment is expecting z′ = fA(q′, x′, y). By
case (2) of Definition 11, given S, x, x′, and z, Alice can compute a singleton set which
contains z′, so she reports this output to the environment.

• Alice updates S ← next(S, x, x′, z). By case (3) of Definition 11 and the definition of next(·),
the inductive invariants are maintained for the next round.

(⇒) Assume that (x, x′) is not good for {(q0, q0)}, and consider any Alice protocol that replaces
x′ by x in the first round. It suffices to construct an environment that successfully distinguishes
this interaction from an interaction in which Alice uses the dummy protocol.

Let n be the minimum number of times that case (3) of Definition 11 needs to be applied to
show that (x, x′) is not good for {(q0, q0)}. We note that n is always at most m = 2|Q|

2 |X|2, a
constant.

We will construct Z0, which sends x′ to Alice in the first round, and otherwise sends randomly
chosen inputs, for a total of m rounds. As usual, it also internally simulates an instance of F , to
which it sends the inputs that it has chosen for Alice and Bob. Z0 outputs 1 if Alice and Bob’s
outputs always match that of its simulated instance of F , and 0 otherwise.

Clearly Z0 outputs 1 with probability 1 when both parties run the dummy protocol. It suffices to
show that when Alice runs a protocol which in the first round sends x instead of x′, the environment
Z0 outputs 0 with at least some constant probability. We will prove via induction that Z0 outputs
0 with probability at least 2(|Y ||X|)−n, where n is defined as above. Let qk be the state of the
external instance of F after k rounds, and q′k be the state of the internally simulated instance of
F after k rounds. As before, we let Sk ⊆ Q2 denote the set of pairs (q, q′) that are consistent with
Alice’s view after k rounds.

We first claim that Pr[(qk, q′k) = (q, q′) | (q, q′) ∈ Sk] ≥ |Y |−k. In other words, after k rounds
of interacting with F , every (q, q′) ∈ Sk has some constant probability of being the “correct” pair,
from Alice’s point of view. The claim is trivially true for k = 0. For the inductive step, observe
that by the definition of next(·), every (p, p′) ∈ Sk+1 is in the set owing to at least one particular
predecessor (q, q′) ∈ Sk and Bob input y ∈ Y . Thus the probability that (p, p′) is correct is at least
the probability that the predecessor (q, q′) is correct, and the appropriate y ∈ Y is chosen, which
is |Y |−k−1 as desired.

We will prove the claim about Z0’s distinguishing probability inductively in n. We will maintain
the invariant that (xk+1, x

′
k+1) is not good for Sk, which is true in the base case.

Suppose (xk+1, x
′
k+1) is not good for Sk due to case (1) of Definition 11. Then with probability

at least |Y |−k, the two instances of F are in the “bad” states (q, q′) from the negation of case (1).
Conditioned on this event, then with probability 1/|Y |, the environment chooses input yk such that
Bob’s output and expected output disagree. The environment outputs 0 with probability at least
|Y |−k−1.

Suppose (xk+1, x
′
k+1) is not good for Sk due to case (2) of Definition 11. Then there are two

triples (q, q′, y) such that if the two instances of F are in states q and q′ respectively, and Bob’s
input is chosen as y, then Alice’s output is the same, but her expected output is different. The
correct value of (qk, q′k, yk) is indeed one of these triples (q, q′, y) with probability at least 2/|Y |k+1,
and conditioned on this being the case, Alice’s reported output is incorrect with probability 1/2.
Overall, the environment outputs 0 with probability at least |Y |−k−1.

Suppose (xk+1, x
′
k+1) is not good for Sk due to case (3) of Definition 11. Then with probability

at least 1/|X||Y |, the environment chooses x′k+2 and yk+2 to be among the “bad” ones so that
Alice receives output z and for all xk+2, (xk+2, x

′
k+2) is not good for next(Sk, xk+1, x

′
k+1, z). We

may condition on this event and apply the inductive hypothesis.
We see that the total probability that Z0 outputs 0 is at least |X|−n|Y |−2n.
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The first half of the above proof also immediately implies the following useful lemma:

Lemma 7. Let F be a DFF. Then there is an environment Z0 with the following properties:

• Z0 sends a constant number of inputs to F ,
• Z0 always outputs 1 when interacting with two parties running the dummy protocol on an

instance of F ,
• For every x, x′ ∈ X, if x 6≥A x′, then Z0 has a constant probability of outputting 0 when

interacting with an Alice protocol that sends x instead of x′ in the first round.

The Z0 in question is the environment that simply chooses random inputs, and compares the
responses to the known, deterministic behavior of F . From the proof of Lemma 6, we see that Z0

needs to execute for only m rounds, where m is a constant that depends only on the size of F . The
distinguishing probability of Z0 is at least |X|−m|Y |−2m, a constant.

E.3 Simple States & Safe Transitions

Definition 12. Let F be a DFF, and let q be one of its states. We define F [q] as the functionality
obtained by modifying F so that its start state is q.

Definition 13. Let F be a DFF, and let q be one of its states. We say that q is a simple state if:

• The input/output behavior of F at state q — (fA(q, ·, ·), fB(q, ·, ·)) — is a trivial SFE; and
• For all Alice inputs x, x′ ∈ X such that fB(q, x, ·) ≡ fB(q, x′, ·), there exists an Alice input
x∗ ∈ X such that x∗ ≥A x and x∗ ≥A x′ in F [q]; and
• For all Bob inputs y, y′ ∈ Y such that fA(q, ·, y) ≡ fA(q, ·, y′), there exists a Bob input y∗ ∈ Y

such that y∗ ≥B y and y∗ ≥B y′ in F [q].

Suppose q is a simple state. We write x
q∼ x′ if fB(q, x, ·) ≡ fB(q, x′, ·). The relation

q∼ induces
equivalence classes over X. When q is a simple state, then within each such equivalence class, there
exists at least one input x∗ which dominates all other members of its class. For each equivalence
class, we arbitrarily pick a single such input x∗ and call it a master input for state q. Similarly we
define master inputs for Bob by exchanging the roles of Alice and Bob.

Definition 14. Let F be a DFF, We say that a transition is safe if it leaves a simple state q on
inputs (x, y), where x and y are both master inputs for state q.

We define r(F) to be the functionality which runs F , except that in the first round only, it
allows only safe transitions to be taken. r(F) can be written as a copy of F plus a new start state.
The new start state of r(F) duplicates all the safe transitions of F ’s start state.

Observation 1. If a safe transition was just taken in F , then Alice (resp. Bob) can uniquely
determine Bob’s (resp. Alice’s) input in the previous round and the current state of F , given only
the previous state of F and Alice’s (resp. Bob’s) input and output in the previous round.

Proof. We will show that Alice has no uncertainty about which master input Bob used, thus no
uncertainty about the resulting state of F . If a safe transition was just taken from q, then q
was a simple state and its associated SFE (fA(q, ·, ·), fB(q, ·, ·)) is trivial. Thus either fA(q, ·, ·) is
insensitive to Bob’s input, or fB(q, ·, ·) is insensitive to Alice’s input.

If fA(q, ·, ·) is insensitive to Bob’s input, then Bob has a single master input y for q (all of his
inputs are in a single equivalence class under

q∼). There is no uncertainty for Alice regarding which
master input Bob used.
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If fB(q, ·, ·) is insensitive to Alice’s input, then let x∗ be Alice’s unique master input. If y, y′

are distinct master inputs for Bob, then fA(q, ·, y) 6≡ fA(q, ·, y′). In other words, fA(q, x, y) 6=
fA(q, x, y′) for some s. Since x∗ ≥A x, we must have fA(q, x∗, y) 6= fA(q, x∗, y′), so Alice (who must
have used input x∗) has no uncertainty about which master input Bob used.

Lemma 8. If the start state of F is simple, then r(F) vstat F vstat r(F). Furthermore, if q is
reachable from the start state of F via a safe transition, then F [q] vstat F .

Proof. The protocol for r(F) vstat F is the dummy protocol, since r(F) implements simply a
subset of the behavior of F . Simulation is trivial unless in the first round, the corrupt party (say,
Alice) sends an input x to F which is not a master input for q0. The simulator must send the
corresponding master input x∗ (from the

q0∼ equivalence class of x) in the ideal world, and then it
uses the translation protocol guaranteed by the definition of x∗ ≥A x to provide a consistent view
to Alice and induce correct outputs for Bob.

Similarly, the protocol for F vstat r(F) is simply the dual of the above protocol. On input x in
the first round, Alice sends x∗ to r(F), where x∗ is the master input from the

q0∼-equivalence class
of x. Thereafter, Alice runs the protocol guaranteed by the fact that x∗ ≥A x. Bob’s protocol is
analogous. Simulation is a trivial dummy simulation, since any valid sequence of inputs to r(F) in
the real world also produces the same outcome in the F-ideal world (r(F) implements a subset of
the behavior of F).

Note that in r(F), the added start state has no incoming transitions; thus (r(F))[q] = F [q] if
q is a state in F . So to show F [q] vstat F , it suffices to show that (r(F))[q] vstat r(F). Suppose
q is reachable in F from the start state via safe transition on master inputs x∗, y∗. The protocol
for F [q] is for Alice and Bob to send x∗ and y∗ to r(F), respectively, as a “preamble”. Each party
can determine with certainty, given their input and output in this preamble, whether r(F) is in
state q (since only safe transitions can be taken from the start state of r(F)). If the functionality
is not in q, then the parties abort. Otherwise, the functionality is r(F) in state q as desired, so
the parties thereafter run the dummy protocol. Simulation is trivial – the simulator aborts if the
corrupt party does not send its specified input (x∗ or y∗) in the preamble; otherwise it runs a
dummy simulation.

E.4 Complete Characterization of DFFs

We now prove our main classification regarding reactive functionalities, which is a useful alterna-
tive characterization of secure realizability for DFFs. Interestingly, though this chapter focuses
exclusively on the PPT setting, our characterization of DFFs in this section also applies in the
unbounded setting. Our characterization is as follows:

Theorem 4 (restated). Let F be a DFF. Then the following are equivalent:
1. F is non-trivial.
2. Fcom vstat F or G vstat F for some non-trivial SFE functionality G.
3. There is a non-simple state in F that is reachable from the start state via a sequence of safe

transitions.

To prove Theorem 4, we construct two protocols in the following lemmas, both of which are
unconditionally secure. Also, the definition of triviality for SFE functionalities is the same in
both the PPT and unbounded settings. Thus, the lemma provides a complete characterization of
secure realizability for DFFs in both settings. Finally, note that condition (3) of Theorem 4 can be
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expressed completely combinatorially (automata-theoretically) using Lemma 6, giving the first such
alternate characterization of realizability for any large class of arbitrary reactive functionalities.

We have that (2) ⇒ (1) of Theorem 4, by the fact that Fcom is unconditionally non-trivial. We
prove (3) ⇒ (2) and (1) ⇒ (3) in the following two lemmas:

Lemma 9. If a non-simple state in F is reachable via a sequence of safe transitions from F ’s start
state, then either Fcom vstat F or G vstat F for some non-trivial SFE functionality G.

Proof. Without loss of generality (by Lemma 8) we assume that the start state of F is non-simple.
First, suppose the start state q0 of F is non-simple because its input/output behavior in the

first round is non-trivial. Then in the F-hybrid model we can easily securely realize the SFE
functionality G = (fA(q0, ·, ·), fB(q0, ·, ·)), by the simple dummy protocol. Even though F may
keep in its memory arbitrary information about the first-round inputs, the information can never
be accessed since honest parties never send inputs to F after its first round, and F waits for inputs
from both parties before giving any output. Thus G vstat F .

Otherwise, assume that the input/output behavior in the first round is a trivial SFE, and that
q0 is non-simple for one of the other reasons in Definition 13. The two cases are symmetric, and
we present the case where Alice can commit to Bob. Suppose there are Alice inputs x∗0, x

∗
1 ∈ X

such that fB(q0, x
∗
0, ·) ≡ fB(q0, x

∗
1, ·), but for all x ∈ X, either x 6≥A x∗0 or x 6≥A x∗1. Intuitively,

this means that F binds Alice to her choice between inputs x∗0 and x∗1 — there are behaviors of F
possible when her first input is x∗b , which are not possible when her first input is x∗1−b. We formalize
this intuition by using the first input round of F to let Alice commit a bit to Bob.

Recall the “complete” environment Z0 from Lemma 7, and suppose it runs for m rounds and has
a distinguishing probability p > 0. Our protocol for Fcom is to instantiate N = 2dlog1−p 0.5eκ =
Θ(κ) independent instances of F , where κ is the security parameter. We will write Fi to refer to
the ith instance of F . The protocol is as follows:

1. (Commit phase, on Alice input (commit, b), where b ∈ {0, 1}) Alice sends x∗b to each Fi. For
each i, Bob sends a random yi1 ∈ Y to Fi and waits for output fB(q0, yi1, x

∗
0) = fB(q0, yi1, x

∗
1).

If he receives a different input, he aborts. Otherwise, he outputs committed.
2. (Reveal phase, on Alice input reveal) Alice sends b to Bob. For each i, Alice sends her

input/output view of Fi to Bob (x∗b and the first-round response from Fi). If any of these
reported views involve Alice sending something other than x∗b to Fi, then Bob aborts. Oth-
erwise, Bob sets xi1 = x∗b for all i.

3. For j = 2 to m:

(a) Bob sends Alice a randomly chosen xij ∈ X. Alice sends xij to Fi.
(b) Bob sends a randomly chosen input yij ∈ Y to Fi.
(c) For each i, Alice reports to Bob her output from Fi in this round.

4. If for any i, Alice’s reported view or Bob’s outputs from Fi does not match the (deterministic)
behavior of F on input sequence (xi1, yi1), (xi2, yi2), . . ., then Bob aborts. Otherwise, he
outputs (reveal, b).

When Bob is corrupt, the simulation is to do the following for each i: When Bob sends yi1 to F in
the commit phase, simulate Fi’s response as fB(q0, x

∗
0, yi1) = fB(q0, x

∗
1, yi1). In the reveal phase,

to open to a bit b, simulate that Alice sent Bob x∗b and the view that is consistent with that input:
fA(q0, x

∗
b , yi1). Maintain the corresponding state qi of Fi after seeing inputs (x∗b , yi1). Then when

Bob sends xij to Alice and yij to Fi, simulate that Fi gave the correct output to Bob and that Alice
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reported back the correct output from Fi that is consistent with F receiving inputs xij , yij in state
qi. Each time, also update the state qi according to those inputs. It is clear that the simulation is
perfect.

When Alice is corrupt, the simulation is as follows: The simulator faithfully simulates each
instance of F and the behavior of an honest Bob. If at any point, the simulated Bob aborts, then
the simulation aborts. Suppose Alice sends x̃i1 to each Fi in the commit phase, and that the
simulation has not aborted at the end of the commit phase. If the majority of x̃i1 values satisfy
x̃i1 ≥A x∗0, then the simulator sends (commit, 0) to Fcom; otherwise it sends (commit, 1). Note
that by the properties of F , each x̃i1 cannot dominate both x∗0 and x∗1. Let b be the bit that the
simulator sent to Fcom.

If the simulated Bob ever outputs (reveal, b), then the simulator sends reveal to Fcom. The
simulation is perfect except for the case where the simulated Bob outputs (reveal, 1− b) (in this
case, the real world interaction ends with Bob outputting (reveal, 1 − b), while the ideal world
interaction aborts). We show that this event happens with negligible probability, and thus our
overall simulation is statistically sound.

Suppose Alice sends b′ = 1− b at the beginning of the reveal phase. Say that an instance Fi is
bad if x̃i1 6≥A x∗1−b. Note that at least half of the instances of Fi are bad. When an instance Fi is
bad, Z0 can distinguish with probability at least p between the cases of F receiving first input x̃i1
and x∗1−b from Alice. However, in each instance of Fi, Bob is sending random inputs to Alice (who
sent x̃i1 as the first input to Fi), sending random inputs himself to Fi, obtaining his own output
and Alice’s reported output from Fi in an on-line fashion, and comparing the result to the known
behavior of F (when x∗1−b is the first input of Alice). This is exactly what Z0 does in the definition
of x̃i1 ≥A x∗1−b, so Bob will detect an error with probability p in each bad instance. In the real
world, Bob would accept in this reveal phase with probability at most (1− p)−N/2 ≤ 2−κ, which is
negligible as desired.

Lemma 10. If no non-simple state in F is reachable via a sequence of safe transitions from F ’s
start state, then F is trivial.

Proof. We first define an intermediate functionality R(F), which is F with all its non-safe transi-
tions removed. We first observe that R(F) is trivial (in fact, R(F) is trivial for all F). Only safe
transitions may be taken in R(F), thus both parties’ views uniquely determine the state of R(F).
If the current state q was non-simple in F , then q is a dead state in R(F) and the protocol is trivial.
Otherwise, note that restricting a simple state’s transition function to its safe transitions preserves
the triviality of the SFE round function. Thus the protocol’s behavior when in state q is to simply
evaluate a trivial SFE.

Next, to prove the main claim it suffices to show that F vstat R(F), since R(F) is trivial. We
prove a strengthened claim; namely that if q is safely reachable (i.e., reachable from the start state
by a sequence of safe transitions) in F , then F [q] vstat (R(F))[q]. To prove this stronger claim,
we construct a family of protocols π̂q, for every such q.

First, let πq denote the protocol guaranteed by F [q] vstat r(F [q]) (Lemma 8). Then the
protocol π̂q is as follows:

1. Run πq to interact with the functionality.
2. After the first round, we will have sent an input to the functionality and received an out-

put. Assuming that the functionality was (R(F))[q], use the first round’s input/output to
determine the next state q′ (Observation 1)

37



3. Continue running πq, but hereafter, instead of letting it interact directly with the functionality,
we recursively instantiate π̂q′ . We let our πq instance interface with π̂q′ , which we let interact
directly with the functionality.

The protocol is recursive, and after k rounds, must maintain a stack depth of size k. We prove by
induction on k that π̂q is a secure protocol for F [q] using (R(F))[q], against environments that run
the protocol for k ≥ 0 steps. The claim is trivially true for k = 0.

Note that simulation is trivial if either party is corrupt. Such an adversary is running the
protocol interacting with (R(F))[q], which is a subset of the functionality F [q]. Thus the simulator
is a dummy simulator. It suffices to show that the output of the protocol is correct (indistinguishable
from the ideal interaction) when both parties are honest.

In the first round, both parties are running πq, interacting with (R(F))[q]. Although πq is
designed to interact with r(F [q]), the behavior of both these functionalities is identical in the first
round (including the next-state function). Thus the first round of outputs is correct, by the security
of πq. For the same reason, step 2 of π̂q correctly identifies the next state q′ of (R(F))[q]. Clearly
(R(F))[q][q′] = (R(F))[q′], so after step 1 of the protocol, the functionality is identical to a fresh
instantiation of (R(F))[q′]. At the same time, we also instantiate a fresh instance of π̂q′ to interact
with this functionality. By the inductive hypothesis, hereafter πq is interacting with an interface
that is indistinguishable from an ideal interaction with F [q′]. However, an external functionality
which behaves like R(F)[q] in the first round, then after transitioning to state q′ behaves like F [q′],
is simply the functionality r(F [q]). In other words, the entire protocol π̂q is indistinguishable from
running πq on r(F [q]). By definition of πq, this is indistinguishable from an ideal interaction with
F [q] itself.

F Extensions of the Zero-One Law

In the Public Channel Model. We formulated our results in the private channel model, where
the two parties can communicate with each other privately via an ideal communication channel.
(However, the adversary is allowed learn the number of bits communicated.) This is perhaps the
natural model for capturing the cryptographic complexity of 2-party computation. Nevertheless,
our main result readily extends to a model where the parties use a public channel completely
controlled by the adversary (as is more natural in the standard UC framework). This follows from
the fact that under sh-OT assumption, the private channel securely reduces to the public channel
(i.e., is a trivial functionality in the public channel model). In particular, [gkm+00] prove the
security of such a construction. (If the public channels are not authenticated channels, then digital
signatures are used to achieve authentication, with identities of the parties being their signature
verification keys. Note that digital signatures also follow from one-way functions [r90], in turn
implied by sh-OT assumption.)

Simultaneous Active and Passive Security. The security definition in [bmm99] considers a
protocol secure only if it is simultaneously secure against active and semi-honest adversaries. Our
notion of reduction, on the other hand, used a security definition which requires security only
against active corruption. It is well-known that these two definitions differ (in the computationally
unbounded setting). However, we can show that under such a tighter notion of reduction too, our
main result holds unaltered. To show this we need to establish, under the sh-OT assumption, the
triviality of those functionalities which in the unconditional setting, are trivial for security against
active corruption, but non-trivial against semi-honest corruption.
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We illustrate how this is done for an asymmetric SFE, in which only Bob receives an output.
First, we build a protocol for the functionality which is secure against semi-honest corruption
(guaranteed by sh-OT assumption). Then we “half-compile” this protocol using standalone secure
commitments and zero-knowledge proofs. That is, at every step of the protocol, Alice has to
prove the correctness of her steps to Bob (but not vice versa). Finally we run this half-compiled
protocol in which Bob uses his real input as the input, but Alice uses a “sanitized” version of her
real input; this sanitization is prescribed by the natural protocol which establishes the triviality
of the functionality in the active-corruption setting. It can be shown that this protocol remains
simultaneously secure against active and semi-honest corruptions. The details and extensions to
non-reactive functionalities, is deferred to the final version of this paper.

G Break-Down of the Zero-One Law

G.1 Fixed-Role Reduction

Note that the Fcc functionality is not symmetric with respect to the roles of Alice and Bob. In
showing that Fcc is complete, our protocol for Fcom uses ideal access to Fcc in “both directions”.
Let us say that a secure protocol for Fcom is a fixed-role reduction to Fcc if the committer (resp.
receiver) always access Fcc in the same role (Alice or Bob) throughout the Fcom protocol.

Theorem 6. There is no fixed-role reduction from Fcom to Fcc.

Proof. Suppose there is a protocol that securely realizes Fcom in the Fcc-hybrid model where
Alice, the committer for Fcom, is always the “sender” in Fcc. Then Alice can equivocate in such
a protocol, as follows: she internally runs the simulator for when Bob is corrupt, playing the role
of corrupt Bob, and relaying the messages from the simulator to Bob. When the protocol requires
Alice and Bob to access Fcc, Alice obtains an input to be sent to Fcc from the simulator by telling
it that Bob’s input to Fcc is 1 (i.e., Bob chooses to see Alice’s input); then Alice sends this input
to Fcc. If it turns out that Bob indeed chooses to see Alice’s input, the simulation is continued
normally. However, if Bob chooses to not see Alice’s input, Alice rewinds the simulator, tells it that
Bob’s input to Fcc is 0; she obtains an input to Fcc from the simulator, but does not forward it to
Fcc (because she has already sent an input). Note that it does not matter if the input to Fcc by
the simulator changes after rewinding, as this input is not revealed to Bob. Thus a corrupt Alice
can faithfully run the simulator, and in particular open the commitment to any bit specified at the
beginning of the opening phase, and the protocol is not secure.

On the other hand, suppose there is a protocol for Fcom in the Fcc-hybrid model, in which
Alice, the committer for Fcom is always the “receiver” in Fcc. In this case, we show that Bob can
learn Alice’s input after the commit phase and before the reveal phase. For this Bob will internally
run the simulator for when Alice is corrupt, relaying the messages from Alice in the actual protocol
to this simulator. Now again, when Alice and Bob are required to access Fcc, Bob (who is the
sender in Fcc) will generate an input for Fcc by telling the simulator that Alice’s input to Fcc is
1. Subsequently, if her input turns out to be 0, Bob will rewind the simulator, give it 0 as Alice’s
input, as above. In this case, Bob obtains Alice’s input as the bit extracted by the simulator at the
end of the commitment phase.
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G.2 Unbounded-Memory Functionalities

Theorem 7. Let g : {0, 1}∗ → {0, 1}∗ be a one-way function, and define

f(x) =

{
g(x) if |x| is of the form 22n for some n
x otherwise.

Let F be the functionality that takes input x from Alice and delivers f(x) to Bob. Then F is neither
complete nor trivial under the vppt reduction.

Proof. First, F is not trivial. This can be seen by an appeal to the splittability characterization of
[pr08]. F is not completely invertible; in particular it is non-invertible on security parameters of
the form 22n .

On the other hand, F is not complete. Consider any purported protocol for Fot in the F-hybrid
model. For most values of the security parameter k, access to F is equivalent to a plain private
communication channel, since messages of length 22n are either superpolynomially long in k (and
thus can never be sent to F), or sub-logarithmically short in k (and thus f can be efficiently inverted
to a canonical pre-image). As such, for these values of k, a real-world adversary has exactly as
much power as a simulator. Thus, a corrupt receiver can run the simulator algorithm for a corrupt
sender, to extract both of the honest sender’s inputs. This violates the security of Fot for these
values of the security parameter, so the purported protocol is not secure.
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