
Adaptive Concurrent Non-Malleability with Bare Public-Keys

Andrew C. Yao∗ Moti Yung† Yunlei Zhao‡

Abstract

Coin-tossing (CT) is one of the earliest and most fundamental protocol problems in the literature
[10, 2, 58, 12, 52]. In this work, we formalize and construct (constant-round) concurrent non-malleable
coin-tossing (CNMCT) in the bare public-key (BPK) model. The CNMCT protocol can, in particular,
be used to transform CNM zero-knowledge (CNMZK) in the common random string (CRS) model into
the BPK model with full adaptive input (statements and language) selection. Here, full adaptive input
selection in the public-key model means that the concurrent man-in-the-middle (CMIM) adversary
can adaptively set statements to all sessions at any point of the concurrent execution evolution (not
necessarily at the beginning of each session), and can set the underlying language based upon honest
players’ public-keys.

1 Introduction

Concurrent non-malleability is central to independence of protocol players’ actions and to security
against concurrent man-in-the-middle (CMIM) attacks [30]. In the CMIM setting, polynomially many
concurrent executing instances (sessions) of a protocol ⟨L,R⟩ take place in an asynchronous setting
(appropriate for environments such as over the Internet), and all the unauthenticated communication
channels (among all the concurrent sessions) are controlled by a probabilistic polynomial-time (PPT)
CMIM adversary A. Specifically, the polynomially many executing instances of ⟨P, V ⟩ can be viewed
to be divided into two parts: the CMIM left part, in which the CMIM adversary A interacts with
polynomially many instances of the prover P by playing the role of the verifier V , where the interactions
with each instance of P is referred to as a left session; And the CMIM right part, in which the CMIM
adversary A simultaneously interacts with polynomially many instances of the verifier V by playing
the role of the prover, where the interactions with each instance of V is referred to as a right session.
In this setting, honest players are assumed oblivious to each other’s existence, nor do they generally
know the topology of the network, and thus cannot coordinate their executions. The CMIM adversary
A (controlling the communication channels) can do whatever it wishes. When we consider “CNM with
adaptive input selection”, we allow A to also adaptively set input to each (particularly left) session.

Unfortunately, in the stringent CMIM setting, large classes of cryptographic functionalities cannot
be securely implemented round-efficiently [15, 62, 60]. In such cases, some setup assumptions are
necessary. Establishing the general feasibility of round-efficient concurrent non-malleable cryptography
with adaptive input selection, with as minimal as possible setups, has been a central problem which has
attracted intensive research efforts. More discussions on related works are referred to in Appendix A.

Our Results: In this work, we investigate coin-tossing and zero-knowledge (with focus on coin-
tossing), both of which are central and fundamental to modern cryptography, in the BPK model (a very
weak form of PKI setting) introduced in [14]. Specifically, we define and construct (constant-round)
CNMCT in the BPK model. The formulation and protocol construction of CNMCT are of independent
interest, but we also show, specifically, how it can be used as a compiler that transforms CNMZK in
the CRS model into the BPK model with full adaptive input selection.

2 Preliminaries

In this section, we briefly recall the building tools, the CMIM setting in the BPK model, and present
the motivation for full adaptive input selection. More details are referred to Appendix B.

∗Institute for Theoretical Computer Science (ITCS), Tsinghua University, Beijing, China.
andrewcyao@tsinghua.eud.cn

†Google Inc. and Columbia University, New York, NY, USA. moti@cs.columbia.edu
‡Contact author. Software School, Fudan University, Shanghai 200433, China. ylzhao@fudan.edu.cn

1

2.1 Building Tools

Pseudorandom functions (PRF) can be constructed under any one-way function (OWF) [42, 40]. A OWF
f : {0, 1}∗ → {0, 1}∗ is called linear, if for sufficiently large n and any x ∈ {0, 1}n |f(x)| = O(n), where
|f(x)| denotes the length of f(x).

Non-interactive statistically-binding commitments can be based on any one-way permutation (OWP)
[10, 44]. Practical perfectly-binding non-interactive (string) commitment scheme can be based on the
decisional Diffie-Hellman (DDH) assumption. A commitment scheme C is called linear, if for sufficiently
large n and any string x ∈ {0, 1}n both |C(x, s)| (i.e., the length of the commitment to x using ran-
dom coins s) and |s| (i.e., the length of s) are bounded by O(n). In particular, the perfectly-binding
commitment scheme over prime order groups based on [33] is linear.

Very roughly, adaptive tag-based one-left-many-right non-malleable statistical zero-knowledge argument
of knowledge (NMSZKAOK) is non-malleable against any one-left-many-right PPT man-in-the-middle
adversary A who involves one left session with the prover and many right sessions with verifiers; each
session is indexed by a string (called a tag) and A is allowed to set the input and tag to the left session
(besides those of right sessions). Then, the security says that for any PPT one-left-many-right MIM
adversary A, there exists an (expected) polynomial-time simulator S such that S outputs a simulated
transcript that is statistically indistinguishable from the real view of A; Moreover, for any successful
right session on a input in the simulated transcript w.r.t. a tag different from that of the left session, a
valid NP-witness (to the statement set adaptively by A to this session) is also extracted.

The Pass-Rosen ZK (PRZK, in short) [72, 73], with some specified length parameters l(n) where l(·)
is a positive polynomial and n is the security parameter, is a constant-round adaptive tag-based one-
left-many-right NMSZKAOK. Furthermore, PRZK is public-coin and can be perfect ZK. In [72, 73], the
tag and input length is just specified to be the security parameter n (in this case, the length parameter
is specified to be l(n) ≥ 2n3 + n), and the works [72, 73] did not explicitly consider adaptive input and
tag selection for the one left-session. But a closer investigation shows that the PRZK can be extended
to work for tags of length O(n) (and inputs of length poly(n)) with length parameter l(n) ≥ O(n3) (the
actual length parameter l(n) is specific to the tag length), and for the more general case of adaptive
left-session tag and input selection.

2.2 The CMIM Setting in the BPK Model

Briefly speaking, a protocol in the BPK model simply assumes that all players have each deposited a
public-key in a public file before any interaction takes place among the users. Note that, no assumption
is made on whether the public-keys deposited are unique or valid (i.e., public keys can even be “non-
sensical,” where no corresponding secret-keys exist or are known) [14]. That is, no trusted third party
is assumed, and the underlying communication network is assumed to be adversarially asynchronous.
In many cryptographic settings, availability of a public key infrastructure (PKI) is assumed or required
and in these settings the BPK model is, both, natural and attractive (note that the BPK model is, in
fact, a weaker version of PKI where in the later added key certification is assumed). It was pointed out
that BPK is, in fact, applicable to interactive systems in general [65].

We next briefly describe the CMIM setting in the BPK model for any two-party protocol ⟨L,R⟩.
When it comes to zero-knowledge protocols, L stands for the prover P and R stands for the verifier
V . Throughout this work, we abuse the notations L and R. Specifically, L stands for the left-player
(e.g., a prover) and in some context we may explicitly indicates L to be a language, R stands for the
right-player (e.g., a verifier) and in some context we may explicitly indicates R to be a relation.

We say a class of NP-languages L is admissible to an interactive proof (IP) protocol ⟨L,R⟩ (e.g., a
ZK protocol), if the protocol can work (or, be instantiated) for any language L ∈ L. Typically, L can
be the set of all NP-languages or the set of any languages admitting Σ-protocols [20] (in the latter case
⟨L,R⟩ could be instantiated efficiently without going through general NP-reductions).

Each player in the BPK model works in two stages: the key-generation stage in which it generates
and registers a public-key in a public file F ; and the proof stage between two players specified by a
key pair (PKL, PKR) in F . The file F output at the end of the key-generation stage is denoted as

{PK
(1)
I , PK

(2)
I , · · · , PK

(poly(n))
I } that is to be used and remain intact during the proof stage, where

2

PK
(j)
I denotes a left-player key if I = L or a right-player key if I = R. We also denote by RI

KEY the
NP-relation validating the key pair (PKI , SKI), i.e., whether SKI is a valid secret-key w.r.t. PKI .
For an IP protocol ⟨L,R⟩ with adaptive language selection in the BPK model, there exists also a PPT
language-selecting machine, denoted ML, that on inputs (1n, F) outputs the description of an NP-
relation RL for a language L ∈ L, on which the proof stage is to be conducted. We require that given
the description of RL, the admissibility of L (i.e., the membership of L ∈ L) can be efficiently decided.

The CMIM adversary A. In the key-generation stage, on 1n and some auxiliary input z ∈ {0, 1}∗
and a pair of honestly generated public-keys (PKL, PKR), A outputs a set of public-keys F ′ (and an
admissible language L ∈ L, if ⟨L,R⟩ is an IP protocol). Then the public file F for the proof stage is
set to be F ′ ∪ {PKL, PKR}. Here, we remark that, in general, the input to A in order to generate
F ′ could be a set of public-keys generated by many left and right players, rather than a single pair of
honestly generated public-keys (PKL, PKR). Our CNM analysis works also for this general case, to
be addressed later (at the end of Section 4). The formulation with a single pair of honestly generated
public-keys is only for presentation simplicity.

In the proof stage, A can concurrently interact with any polynomial number of instances of the
honest left-player of public-key PKL in the left CMIM interaction part. The interactions with each
instance of the honest left-player is called a left session, in which A plays the role of the right-player

with a public-key PK
(j)
R ∈ F ; Simultaneously, A interacts with any polynomial number of instances

of the honest right-player of public-key PKR in the right CMIM interaction part. The interactions
with each instance of the honest right-player is called a right session, in which A plays the role of the

left-player with a public-key PK
(j)
L ∈ F . For CMIM adversary with full adaptive input selection, A can

further set statements to all sessions on the fly at any point of the concurrent session run and adaptively
base this action on its view. A CMIM adversary is called s-CMIM adversary, for a positive polynomial
s(·), if the adversary involves, on security parameter 1n, at most s(n) concurrent sessions in each CMIM
interaction part and registers at most s(n) public-keys in F ′.

For any (PKL, SKL) ∈ RL
KEY and (PKR, SKR) ∈ RR

KEY , we denote by view
L(SKL),R(SKR)
A (1n, z, PKL,

PKR) the random variable describing the view of A specific to (PKL, PKR), which includes its random
tape, the auxiliary string z ∈ {0, 1}∗, the (specific) (PKL, PKR), and all messages it receives from the
instances of L(1n, SKL) and R(1n, SKR) in the proof stages.

We next describe a more detailed experiment, referred to as ExptACMIM (1n, z), for the full adaptive
input selection CMIM setting w.r.t. an IP protocol ⟨P, V ⟩ and an s(n)-CMIM adversary A.
Honest player key generation. (PKP , SKP)←− P1(1

n), (PKV , SKV)←− V1(1
n), where P1 (resp.,

V1) denotes the key-generation stage of P (resp., V).
Preprocessing stage of the CMIM. A(1n, PKP , PKV , z) outputs (F

′,RL, τ), where F ′ consists of
a list of, at most s(n), public-keys, RL specifies an admissible language L ∈ L, and τ ∈ {0, 1}∗
is some auxiliary information to be transferred to the proof stage of A. Then, the public file and
language to be used in the proof stage are set to be : F = F ′ ∪ {PKP , PKV } and L ∈ L.

Proof stage of the CMIM. At any time during this stage, A can do one of the following actions.
• Deliver to V a message for an already started right session, or deliver to P a message for an

already started left session.
• Full adaptive statement selection: A sets a statement x̃i ∈ {0, 1}poly(n) for the i-th left or

right session, 1 ≤ i ≤ s(n). We stress that if x̃i ∈ {0, 1}poly(n) is set to the i-th left session, it
is required that x̃i ∈ L ∪ {0, 1}poly(n), i.e., A is restricted to set only true statements for left
sessions (otherwise, the experiment may render an NP-membership oracle to A), and then
a witness w̃i such that (x̃i, w̃i) ∈ RL is given (e.g., by an exponential-time machine [55]) to
the prover instance of P . Though the adversary is allowed to set statement at any point of
the concurrent execution evolution, whenever at some point the subsequent activities of an
honest player in a session may utilize the statement of the session while the adversary did
not provide it, the honest player just simply aborts the session.

• Session initiation: A starts a new i-th left (resp., right) session, 1 ≤ i ≤ s(n) by indicating

a key PK
(j)
V ∈ F (resp., PK

(j)
P ∈ F) to the honest prover P of public-key PKP (resp., the

honest verifier V of public-key PKV). Then, P (resp., V) initiates a new session with the

verifier of PK
(j)
V (resp., the prover of PK

(j)
P) pretended by the CMIM A. We remark that full

3

adaptive input selection and session initiation can be merged, if the statement to a session
is mandated to be presented at the start of the session.

• Output a special “end attack” symbol within time polynomial in n.

We remark that the original specification of the BPK model does allow key registrations for both
verifiers and provers. But, when dealing with some specific cryptographic problems, e.g., ZK and
commitments, or adversaries without the capability of full adaptive input selection, all previous works
in the BPK model only require verifiers to register public-keys. Note also that we strengthen the BPK
model by allowing adaptive language selection.

2.3 Motivation for CNM with Full Adaptive Input Selection

In the traditional formulations of CNM with adaptive statement selection, the CMIM adversary A is
required (limited) to set the statement to each (either left or right) session at the beginning of that
session. Also, most previous works in the BPK model implicitly assume that the underlying language
is fixed and cannot be adaptively set by the adversary. We note that such requirements, on input
(i.e., statements and language) selection, could limit the applicability of CNMZK or the power of the
CMIM adversary in certain natural settings. We give some concrete examples below. For presentation
simplicity, throughout this work, we use “input” to refer to “both statements and language” in the
public-key setting, and only to “statements” in other settings.

Though we can always mandate each honest prover (and also the CMIM adversary) to determine
the statement to be proved at the beginning of each session, such a requirement limits the applicability
of CNMZK in some natural settings. For example, when ZK is used for identification, the statement
being proved is prover’s identity information. However, in many scenarios (e.g., E-commerce over the
Internet), for privacy preserving reasons an honest prover would like not to hastily reveal the statement
to be proved (e.g., its digital identity like a card number) until the session run has successfully reached a
certain point (even just the last round, so that the identity information is revealed only for successfully
completed sessions). Note that for such privacy-preserving honest provers, the CMIM adversary can in
particular set statements to right sessions not necessarily at the beginning of each right session. Though
an honest prover can also send a commitment to its identity (i.e., the statement being proved) on the
top of the session run to preserve its privacy, but such an approach incurs additional complexity to the
system and is less common in practice. In such settings, it is thus more desirable to achieve CNMZK
with full adaptive input selection. Note that most existing CNMZK protocols, in the plain model or in
the BPK model, are composed of several sub-protocols, where the statement to be proved is only used
in the last sub-protocol [7, 70, 56, 55].

Consider any protocol resulted from the composition of a coin-tossing protocol (referred to as the
CT sub-protocol) and a protocol in the common random string (CRS) model (referred to as the CRS
sub-protocol). In most prevalent cases, the input to the CRS sub-protocol is also the input to the
entire composed protocol, and can be set after the CT sub-protocol is finished and even just at the last
round of the composed protocol. In particular, ZK protocols resulted from such composition well fit the
scenario of privacy preserving identifications as clarified above. We remark that an adaptive adversary
in the CRS model is allowed to set statements and language (particularly if the protocol works for any
language in NP) based on the CRS. Though we can always mandate honest players to determine their
inputs on the top of each session run of the composed protocol, from our view it is still desirable for
the composed protocol to be applicable to some privacy-preserving scenarios (with statements to be
revealed not necessarily on the top of each session run) and to remain CNM secure against the more
powerful CMIM adversaries who can set statements and language being proved based upon the output
of the CT-protocol. Also note that, if the above CRS sub-protocol is an IP protocol working for a set
of admissible languages without going through NP-reductions, the composed protocol is also without
going through NP-reductions.

For cryptographic protocols running concurrently in the public-key model, it is a far more realistic
strategy for an adversary to mix the public-key structure as part of the underlying languages (on
which the protocols are conducted). This issue of adaptive language selection may not be applicable to
protocols in the BPK model that work only for a fixed pre-determined language (e.g., a generic NP-
complete language). But in real executions when the protocols in the BPK model can be instantiated

4

to work for a set of admissible languages (e.g., languages that admit Σ-protocols particularly without
going through general NP-reductions), as demonstrated in [75, 76, 78] and in this work, adaptive
language selection based upon honest players’ public-keys can render strictly stronger power to the
CMIM adversary. In this work, as in [78], we strengthen the BPK model by allowing adaptive language
selection based upon honest players’ public-keys. To further justify adaptive language selection in
the public-key setting, we demonstrate a concrete attack (presented in Appendix C) on the CNMZK
protocol proposed in [24]. This attack allows a CMIM, capable adaptive language selection based on
honest players’ public-keys, to successfully convince the honest verifier of some NP statements but
without knowing any witnesses to the statements being proved.

In contrast, by CMIM with full adaptive input selection (CNM-FINS in short), we mean that a
CMIM adversary can set statements to both left sessions and right sessions, besides adaptive language
selection in the public-key setting; furthermore, the adversary does not necessarily set the statement
to each session at the beginning of the session; Rather, the statement may be set on the way of the
session, and is based on the whole transcript evolution. By CMIM with predetermined left-session inputs
but full adaptive input selection on the right, we refer to that the statements to left sessions are fixed and
the CMIM adversary only sets statements to right sessions in the above fully adaptive manner (besides
adaptive language selection in the public-key setting).

3 Formulations and Discussions of CNMZK and CNMCT in the
Public-Key Model

On formulating CNMZK in the public-key model. Motivated by concrete attacks against existing
protocols in the BPK model, we highlight a key difference between CNM in the standard model and
CNM in the public-key model, which standard simulation/extraction formulation of CNM does not
capture. For the CMIM setting in the standard model, honest verifiers are PPT algorithms. In this case,
traditional CNM formulation only considers the extra advantages the CMIM can get from concurrent left
sessions, as the actions of honest verifiers in right sessions can be efficiently and perfectly emulated. But,
for the CMIM setting in the public-key model, honest verifiers possess secret values (i.e, secret-keys) that
can not be efficiently computed out. That is, for protocols in the public-key model, the CMIM adversary
can get extra advantages both from the left sessions and from the right sessions. To emulate the actions
of honest verifiers in the public-key model, as clarified in [78], the simulator/extractor has to simulate the
key-generation stages of honest verifiers and thus possesses the secret-keys of the simulated verifiers;
otherwise, concurrent transcript simulation and knowledge extraction w.r.t. the real public-keys of
honest verifiers in this setting amounts to constant-round CNMZK in the plain model (by viewing
verifiers’ public-keys as protocol inputs) [78]. However, for simulation/extraction w.r.t. simulated
public-keys, traditional knowledge extraction [4, 9] does not guarantee that the CMIM adversary does
indeed “know” the extracted witnesses to successful right sessions. Specifically, the knowledge extracted
may be dependent on (even just equal to) the secret-keys possessed by the simulator/extractor itself in
order to emulate honest verifiers.

With the above key difference in mind, we investigate reformulating CNMZK in the public-key model.
Besides the ability of simulation/extraction, we require that for any CMIM adversary the witnesses
extracted for (different) statements of successful right sessions are “independent” of the secret-keys
used by the simulator/extractor S (who emulates honest verifiers in the simulation/extraction). Such
property is named concurrent non-malleable knowledge-extraction independence (CNMKEI), which is an
extension of the formulation of knowledge extraction independence (KEI) [78] into the more complicated
CMIM setting. The formal definition of CNMZK in the BPK model, together with discussions and
clarifications, is presented in Appendix C. Below, we mainly formulate CNMCT in the BPK model, as
is the focus of this work. We note that the CNMZK [70] in the BPK model seems also to be CNMKEI
secure, though the KEI issue was not explicitly formulated there.

On the subtleties of achieving CNM with full adaptive input selection. We briefly note
that no previous ZK protocols in the BPK model or the plain model were proved to be CNM secure
against even CMIM with predetermined left-session inputs but full adaptive input selection on the right,
let alone to be CNM secure against CMIM with full adaptive input selection. Specifically, the standard

5

simulation-extraction paradigm (e.g., [58, 2, 72, 73, 7, 70, 71, 56, 55]) for showing CNM security fails, in
general, when the CMIM is allowed the capability of full adaptive statement selection for right sessions.

In more detail, the standard simulation-extraction paradigm for establishing CNM security works
as follows: the simulator first outputs an indistinguishable simulated transcript; and then extracts the
witnesses to (different) inputs of successful right sessions appearing in the simulated transcript, one by
one sequentially, by applying some assured underlying knowledge-extractor. This paradigm can work
for CMIM adversary with the capability of traditional adaptive input selection, as the input to each
right session is fixed at the beginning of the right session; Thus, applying knowledge-extractor on a
right session does not change the statement of that session. But, for CMIM adversary of fully adaptive
input selection, the standard simulation-extraction paradigm fails in general. The reason is, when we
apply knowledge-extractor on a successful right session, the statement of this session may however also
be changed, which means that the extractor may never extract the witness to the same statement
appearing and being fixed in the simulated transcript.

3.1 Formulation and Discussion of CNMCT in the BPK Model

Legitimate CRS-simulating algorithm MCRS. Let (r, τr)←−MCRS(1
n), whereMCRS is a PPT

algorithm. The PPT algorithmMCRS is called a legitimate CRS-simulating algorithm with respect to a
polynomial-time computable CRS-trapdoorness validating relation RCRS , if the distribution of its first
output, i.e., r, is computationally indistinguishable from Un (the uniform distribution over strings of
length n), andRCRS(r, τr) = 1 for all outputs ofMCRS (typically, τr is some trapdoor information about

r). For a positive polynomial s(·), we denote by ({r1, r2, ·, rs(n)}, {τr1 , τr2 , · · · , τrs(n)
})←−Ms(n)

CRS(1
n) the

output of the experiment of runningMCRS(1
n) independently s(n) times, where for any i, 1 ≤ i ≤ s(n),

(ri, τri) denotes the output of the i-th independent execution ofMCRS .
MCRS trivially achievable distribution. Let G be a set of pairs of integers {(i1, j1), (i2, j2), · · · ,

(it, jt)}, where 1 ≤ i1 < i2 < · · · < it ≤ s(n) and 1 ≤ j1, j2, · · · , jt ≤ s(n) are distinct inte-
gers, and 0 ≤ t ≤ s(n) such that G is defined to be the empty set when t = 0. Let Ms,n,G be
the probability distribution over ({0, 1}n)2s(n), obtained by first generating 2s(n) − t n-bit strings
{xm, yk|m ∈ {1, 2, · · · , s(n)}, k ∈ {1, 2, · · · , s(n)} − {j1, j2, · · · , jt}}, by running M(1n) independently
2s(n)− t times, and then defining yjd = xid for 1 ≤ d ≤ t and taking (x1, x2, · · · , xs(n), y1, y2, · · · , ys(n))
as the output. A probability distribution over ({0, 1}n)2s(n) is called M-trivially achievable, if it is a
convex combination of Us,n,G over all G’s.

Definition 3.1 (concurrently non-malleable coin-tossing CNMCT) Let Π = ⟨L,R⟩ be a two-
party protocol in the BPK model, where L = (LKEY , LPROOF) and R = (RKEY , RPROOF). We say
that Π is a concurrently non-malleable coin-tossing protocol in the BPK model w.r.t. some key-validating
relations RL

KEY and RR
KEY , if for any PPT s(n)-CMIM adversary A in the BPK model there exists a

probabilistic (expected) polynomial-time algorithm S = (SKEY , SPROOF) such that, for any sufficiently
large n, any auxiliary input z ∈ {0, 1}∗, any PPT CRS-simulating algorithmMCRS and any polynomial-
time computable (CRS-trapdoor validating) relation RCRS, and any polynomial-time computable (SK-
independence distinguishing) relation R (with components drawn from {0, 1}∗∪{⊥}), the following hold,
in accordance with the experiment ExptCNMCT(1

n, z) described below (page 7):

• Simulatability. The following ensembles are computationally indistinguishable:
{S(1n, z, PKL, PKR, SKR)}1n,PKL∈KL,(PKR,SKR)∈RR

KEY ,z∈{0,1}∗ and

{viewL(SKL),R(SKR)
A (1n, z, PKL, PKR)}1n,PKL∈KL,(PKR,SKR)∈RR

KEY ,z∈{0,1}∗.

• Strategy-restricted and predefinable randomness. With overwhelming probability, both the

distribution of (RL, staL) and that of (RR, staR) are identical to the distribution of Ms(n)
CRS(1

n);
furthermore, the distribution of (RL, RR) isM-trivially achievable.

• Secret-key independence. |Pr[R(SKR, str, sta) = 1]− Pr[R(SK ′
R, str, sta) = 1]| is negligible.

The probabilities are taken over the randomness of S in the key-generation stage (i.e., the randomness
for generating (PKR, SKR, SK

′
R)) and in all proof stages, the randomness of LKEY , the randomness

ofMCRS, and the randomness of A.

6

ExptCNMCT(1
n, z)

Honest left-player key-generation:
(PKL, SKL) ←− LKEY (1

n). Denote by KL the set of all legitimate public-keys generated by
LKEY (1

n).

The simulator S = (SKEY , SPROOF):
(PKR, SKR, SK

′
R) ←− SKEY (1

n), where the distribution of (PKR, SKR) is identical
with that of the output of RKEY , RR

KEY (PKR, SKR) = RR
KEY (PKR, SK

′
R) = 1 and the

distributions of SKR and SK ′
R are identical and independent.

(str, sta) ←− S
A(1n, PKL, PKR, z)
PROOF (1n, z, PKL, PKR, SKR). That is, on inputs

(1n, z, PKL, PKR, SKR) and with oracle access to A(1n, PKL, PKR, z) (by providing
random coins to A and running A as a subroutine), the simulator S outputs a simulated

transcript str and some state information sta. Denote by RL = {R(1)
L , R

(2)
L , · · · , R(s(n))

L }
the set of outputs of the s(n) left sessions in str and by RR = {R(1)

R , R
(2)
R , · · · , R(s(n))

R } the
set of outputs of the s(n) right sessions in str. The state information sta consists, among

others, of two sub-sets (of s(n) components each): staL = {sta(1)L , sta
(2)
L , · · · , sta(s(n))L } and

staR = {sta(1)R , sta
(2)
R , · · · , sta(s(n))R)}. Note that S does not know secret-key SKL of honest left

player, that is, S can emulate the honest left-player only from its public-key PKL.

For any z ∈ {0, 1}∗, any PKL ∈ KL and (PKR, SKR) ∈ RR
KEY , we denote by

S(1n, z, PKL, PKR, SKR) the random variable str specific to (z, PKL, PKR, SKR).

Discussion on the CNMCT definition. The property of strategy-restricted and predefinable
randomness is a formal definition of the following informal statements: the coin-tossing output of each left
(resp., right) session is either independent of the outputs of all other sessions OR copied from the output
of one right (resp., left) session on the opposite CMIM part; furthermore, the output of each session in
one CMIM part can be copied into the opposite CMIM part at most once. Moreover, the simulator S
sets and controls, at the same time in an online fashion, the coin-tossing outputs of all left and right
sessions in the simulated transcript (in the sense that S knows the corresponding trapdoor information
of all the coin-tossing outputs appearing in the simulated transcript). To justify this strategy-restricted
randomness property, we consider some alternative formulations: One formulation is to require that all
coin-tossing outputs are independent random strings. Such formulation rules out the natural copying
strategy by definition, and thus is too strong to capture naturally secure protocols. On the other
hand, in order to allow the copying strategy to the CMIM, an alternative relaxed formulation is to
only require that the coin-tossing output of each individual session is random. But, this alternative
formalization may be too weak to rule out naturally insecure protocols. For instance, consider that the
CMIM manages to set the outputs of some sessions to be maliciously correlated (e.g., the XOR of two
right-session outputs equals one left-session output, though each individual session output is random
itself), or even just to be identical.

The ability of S in online setting (and learning the trapdoor information of) all coin-tossing outputs
is critical to transforming CNM protocols with straight-line simulation/extraction in the CRS model
into the BPK model with full adaptive input selection.

The secret-key independence property is necessary to guarantee that A knows what it claims to
know in its CMIM attack in the BPK model, as (str, sta) implies straight-line knowledge-extraction.

In comparison, the Barak’s approach [2] deals with stand-alone NMCT in the plain model. The
NMCT formulation in [2] essentially says that the right-session coin-tossing output is either identical to
or independent of the coin-tossing output of the left-session. But, the NMCT formulation [2] does not
require online learning the trapdoor information of the coin-tossing outputs (in the simulated transcript
that is indistinguishable from the real view of MIM). When composing an NMZK in the CRS model with
the NMCT protocol of [2], the (stand-alone) non-malleability of the whole composed protocol is still
proved via standard knowledge-extraction technique with rewindings, which particularly implies that
the NMZK implied by [2] is not w.r.t. full adaptive input selection. This suggests that our approach for
composing protocols in the CRS model with CNMCT may be considered more modular or powerful.

On achieving CNMZK with full adaptive input selection in the BPK model. When com-

7

posing CNMCT with the robust non-interactive zero-knowledge (NIZK) of [23], which is also universal
composable ZK (UCZK) against static adversaries [16], or the UCZK protocol of [13, 16] in the CRS
model, CNMCT implies CNMZK argument of knowledge with full adaptive input selection in the BPK
model. Note that both of the ZK protocols in [23, 13, 16] enjoy straight-line simulation/extraction in
the CRS model, where straight-line simulation/extraction is enabled by the trapdoor information (of
the CRS) possessed by the simulator/extractor which simulates CRS in the security analysis.

Specifically, we can view the composed protocol as a special version of coin-tossing, and note that in
this case (str, sta) implies knowledge-extraction. Then, the property of simulatability and the property
of strategy-restricted and predetermined randomness of CNMCT imply simulation-extraction against
CMIM capable of full adaptive input selection, by viewingMCRS as the CRS simulator of the underlying
ZK protocols in the CRS model. The CNMKEI property of the composed protocol is derived from
the property of secret-key independence of CNMCT. In the rest of this paper, we focus on achieving
constant-round CNMCT protocols in the BPK model.

4 Constant-Round CNM Coin-Tossing in the BPK Model

High-level overview of the CNMCT construction. We design a coin-tossing mechanism in the
BPK model, which allows each player to set the coin-tossing output whenever it learns its peers’s
secret-key. The starting point is the basic Blum-Lindell coin-tossing [10, 58]: the left-player L commits
a random string σ, using randomness sσ, to c = C(σ, sσ) with a statistically-binding commitment
scheme C; The right-player R responds with a random string rr; L sends back r = σ⊕rl and proves the
knowledge of (σ, sσ). To render the simulator the ability of online setting coin-tossing outputs against
malicious right-players, R proves its knowledge of its secret-key SKR (using the key-pair technique of
[69]), and L accordingly proves the knowledge of either (σ, sσ) or SKR. To render the ability of online
setting coin-tossing outputs against malicious left-players, L registers c = C(σ, sσ) as its public-key and
treats σ as the seed of a pseudorandom function PRF; L firstly sends r′l that commits to rl = PRFσ(r

′
l);

after receiving rr from R, it returns back r = rl ⊕ rr and proves the knowledge of either its secret-
key SKL = (σ, sσ) (such that r = rr ⊕ PRFσ(r

′
l)) or the right-player’s secret-key SKR. To ensure

correct knowledge-extraction against CMIM in the BPK model, the underlying proof of knowledge
is implemented with the composed protocol of statistically-binding commitment and PRZK, referred
to as commit-then-PRZK [73, 70, 57]. The commit-then-PRZK is regular witness indistinguishable
(actually, as shown by Proposition B.1 in Appendix B, page 22, the composition of statistically-binding
commitment and any strong witness indistinguishable protocol [40, 41] is itself regular WI), and is also
non-malleable witness indistinguishable argument-of-knowledge (NMWIAOK) [70].

The constant-round CNMCT protocol ⟨L,R⟩ in the BPK model, is depicted in Figure 1 (page 9).
Here, for presentation simplicity, we often write L and R to denote the left and right players directly
without explicitly indicating the key-generation algorithm and the proof algorithm (which are implicitly
clear from the context). Note that in the CNMCT construction, the protocol of commit-then-PRZK is
used as a building block tool and is composed with other sub-protocols, and that the left-tag of PRZK
in Stage-5 is set interactively. The actual statements to be proved by commit-then-PRZK and PRZK
(in Stage-1 and Stage-5) are achieved by applying NP-reductions, while the tags remaining the same.
Note that the tags of the underlying PRZK in Stage-1 and Stage-5 can be equal, both of which are O(n)
as both the OWF f and the statistically-binding commitment scheme C are required to be linear. For
PRZK to work with the CNMCT construction, we should require the length parameter l(n) ≥ O(n3)
which are specific to the underlying tools f and C (in particular, l(n) = n4 sufficies for this work).

We reminder some differences between the uses of commit-then-PRZK in [70] and in this work.
Above all, commit-then-PRZK is used in [70] to achieve CNMZK in the BPK model, while commit-then-
PRZK is used for achieving CNMCT in this work. Secondly, when achieving tag-based NMWIAOK with
commit-then-PRZK in [70], commit-then-PRZK is also accompanied with a one-time strong signature,
which is however waived for our purpose of achieving CNMCT in the BPK model (see the notes in
page 32). Thirdly, the CNMZK in [70] involves merely the sequential composition of two NMWIAOK
protocols, while in the CNMCT construction commit-then-PRZK is composed with other protocols (say,
the interactions in Stages 2-4). Finally, the left-tag and statement of commit-then-PRZK in Stage-5 is
set interactively with our CNMCT construction, while in the CNMZK of [70] the tag and the statement

8

Right-player key registration: Let f : {0, 1}∗ → {0, 1}∗ be a linear one-way function. On a security
parameter n, the right-player R (actually RKEY) randomly selects s0, s1 from {0, 1}n, computes y0 =
f(s0), y1 = f(s1). R publishes PKR = (y0, y1) as its public-key, and keeps SKR = sb as its secret-
key for a random bit b ∈ {0, 1} while discarding SK ′ = s1−b. Define RR

KEY = {((y0, y1), x)|y0 =
f(x) ∨ y1 = f(x)}, and KR the corresponding NP-language.

Left-player key registration: Let C be a non-interactive statistically-binding linear commitment
scheme. Each left-player L (actually LKEY) selects σ ∈ {0, 1}n and sσ ∈ {0, 1}poly(n) uniformly
at random, computes c = C(σ, sσ) (i.e., committing to σ using randomness sσ). Set PKL = c
and SKL = (σ, sσ), where σ serves as the random seed of a pseudorandom function PRF . Define
KL = {c|∃(x, s) s. t. c = C(x, s)}.

Stage-1. The right-player R (actually RPROOF) computes and sends csk = C(SKR, ssk), where C is the
statistically-binding commitment scheme and ssk is the randomness used for commitment; Define
LSK = {((y0, y1), csk)|∃(ssk, SK) s.t. csk = C(SK, ssk) ∧ (y0 = f(SK) ∨ y1 = f(SK))}. Then, R
proves to the left-player L the knowledge of (SKR, ssk) such that ((PKR, csk), (SKR, csk)) ∈ RLSK ,
by running the PRZK for NP with the tag set to be (PKL, PKR = (y0, y1)) that is referred to
as the right tag. The composed protocol of statistically-binding commitment and PRZK is called
commit-then-PRZK.

Stage-2. The left player L (actually LPROOF) randomly selects r′l ← {0, 1}n, and sends r′l to R.

Stage-3. The right player R randomly selects rr ← {0, 1}n and sends rr to the left player.

Stage-4. The left player computes rl = PRFσ(r
′
l) (where σ is the random seed of PRF committed in L’s

public-key PKL), and sends r = rl ⊕ rr to the right player.

Stage-5. L computes and sends ccrs = C(σ||sσ, scrs), where “||” denotes the operation of string con-
catenation. Define LCRS = {(PKL = C(σ, sσ), PKR = (y0, y1), r

′
l, rr, r, ccrs)|∃(x, s, scrs) s.t. ccrs =

C(x||s, scrs)∧ [(PKL = C(x, s)∧PRFx(r
′
l) = r⊕ rr)∨y0 = f(x)∨y1 = f(x)]}. Then, L proves to R

the knowledge (σ, sσ, scrs) such that ((PKL, PKR, r
′
l, rr, r, ccrs), (σ, sσ, scrs)) ∈ RLCRS , by running

the PRZK for NP with the tag set to be (PKL, rr, r) that is referred to as the left tag. That is, L
proves to R that either the value committed in ccrs is SKL = (σ, sσ) such that PRFσ(r

′
l) = r⊕rr OR

the n-bit prefix of the committed value is the preimage of either y0 or y1. W.l.o.g., we can assume
the left-tag (PKL, rr, r) and the right-tag (PKL, y0, y1) are of the same length (e.g., f is simply a
one-way permutation).

The result of the protocol is the string r. We will use the convention that if one of the parties aborts (or
fails to provide a valid proof) then the other party determines the result of the protocol.

Figure 1: Constant-round CNMCT in the BPK model

to the second NMWIAOK are fixed. In view of these differences and the subtleties of CNMCT in the
BPK model, we preferred to present the CNMCT construction and analysis from scratch.
Theorem 4.1 Under linear OWF, (non-interactive) linear statistically-binding commitments, and PRZK,
the protocol Π = ⟨L,R⟩ depicted in Figure 1 is a constant-round CNMCT protocol in the BPK model.

The proof details of Theorem 4.1 are given in Appendix D. We present the analysis outline below.
The (high-level) description of the CNM simulation. For any s-CMIM adversary A in the

BPK model, consider a mental simulator M who, on input (1n, z, PKL, PKR, SKR, F
′), additionally

knows secret-keys corresponding to all public-keys registered by A in F ′. For any i, 1 ≤ i ≤ s(n),

in the i-th left-session w.r.t. a (right-player) public-key PK
(j)
R ∈ F = F ′ ∪ {PKL, PKR}, the Stage-4

message r(i) and the state-information are set to be (S
(i)
L , τ

(i)
L) by running the CRS-simulating algorithm

MCRS(1
n); then M commits the secret-key SK

(j)
R (assumed known to it) to c

(i)
crs and finishes the PRZK

with SK
(j)
R as the witness in Stage-5. For the i-th right-session w.r.t. PK

(j)
L (with SK

(j)
L = (σ(j), s

(j)
σ)),

after receiving Stage-2 message r̃
(i)′
l , M runs MCRS(1

n) to get the output denoted (S
(i)
R , τ

(i)
R), sends

r
(i)
r = PRFσ(j)(r̃

(i)′
l)⊕S

(i)
R at Stage-3. Here, the notation of m denotes a message sent by the simulator

(emulating honest players), and m̃ denotes the arbitrary message sent by A. To build up the simulator
S from scratch, we resort to the key-coverage techniques of [14, 5, 43]. Specifically, S(sb) with simulated
SKR = sb, works in at most s(n) + 1 repetitions. In each simulation repetition, it either successfully
finishes the simulation or “covers” a new public-key. But, key-coverage in the complex CMIM setting
with bare public-keys turns out to be much more complicated and subtler.

9

The CNM simulation is described in Figure 2 (page 11). Note that in Case-R2 of right-session

simulation w.r.t. the uncovered left-player key PK
(j)
L = PKL, S does not try to extract the secret-key

of PKL. In the following analysis, we show that in this case, with overwhelming probability, the tag
of Stage-5 of this successful right session is identical to that of Stage-5 of a left-session. As the tag
of Stage-5 of a session consists of the session output (i.e., the coin-tossing output), this implies that
the session output of the right-session is identical to that of one of left-sessions. Moreover, we show
that with overwhelming probability each left-session output can appear, as session output, in at most
one successful right-session. In the unlikely event that A finishes a right session and the Stage-1 of
a left-session simultaneously, both of which are w.r.t. uncovered public-keys, extracting SKR in left
simulation part takes priority.

Simulatability. Assuming truly random first output ofMCRS (the analysis to the pseudorandom
case is direct), there are two differences between the output of the mental simulator M and the real view
of A: (1) Truly random (in simulation) vs. pseudorandom (in real execution) Stage-4 messages of left-
sessions. The distinguishable gap caused by such difference can be ruled out, using hybrid arguments,
by the pseudorandomness of PRF and the hiding property of PKL that commits to the seed of PRF; (2)

Witness difference in Stage-5 of left sessions: M always uses the (right-player) secret-key SK
(j)
R , while

the honest left-player L always uses SKL in real execution. The second difference can be ruled out,
using hybrid arguments, by the regular WI property of commit-then-PRZK. For the simulator S(sb)
from scratch with key-coverage, the subtle point here is: the value extracted from successful Stage-5 of

a right session w.r.t. an uncovered PK
(j)
L , by the argument of knowledge (AOK) of PRZK, may not

necessarily be SK
(j)
L , but may possibly be the preimage of yb = f(sb) (due to the one-wayness of y1−b,

the value extracted cannot be the preimage of y1−b). This is called key-coverage failure (i.e., the Case-
R2 failure in Figure 2). All left (to establish the simulatability property) is to show that key-coverage
failure occurs with negligible probability, which is also the core of the whole analysis and is heavily rely
upon the one-left-many-right non-malleability of PRZK.

We first present some observations on commit-then-PRZK with restricted input selection and indis-
tinguishable auxiliary information. Specifically, consider the following experiments: EXPT(1n, wb, auxb),
where wb ∈ {0, 1}n for b ∈ {0, 1}. In EXPT(1n, wb, auxb), the commit-then-PRZK for NP is run
concurrently, and an m-CMIM adversary A for some polynomial m(·), possessing auxiliary infor-
mation auxb, can set the inputs and tags to prover instances in left sessions with the restriction:
for any xi, 1 ≤ i ≤ m(n), set by A for the i-th left session, the fixed value wb is always a valid

NP-witness. Denote by transb the transcript of the experiment EXPT(1n, wb, auxb), and by Ŵ b =
{ŵb

1, · · · , ŵb
s(n)} the witnesses encoded (determined) by the statistically-binding commitments (at the

beginning) of successful right sessions (of the commit-then-PRZK) in transb with tags different from
those of left-sessions. By a series of hybrid arguments, we can get: if {aux0}n∈N,w0∈{0,1}n,w1∈{0,1}n and

{aux1}n∈N,w0∈{0,1}n,w1∈{0,1}n are indistinguishable, the ensembles {(trans0, Ŵ 0)} and {(trans1, Ŵ 1)},
indexed by {n ∈ N,w0 ∈ {0, 1}n, w1 ∈ {0, 1}n}, are also indistinguishable.

Denote by Ckb the set of covered key-pairs, corresponding to public-keys in F −{PKR}, which is used
by S(1n, sb) in its k-th simulation repetition. Note that Ckb does not include the simulated (PKR, SKR)
now. The key observation here is: by viewing the messages involving SKR = sb from the simulator S
(in Stage-1 of right sessions, or Stage-5 of left sessions in case A impersonates the honest right-player of
PKR) in the simulation as from the instances of the prover P (1n, sb) of commit-then-PRZK, and viewing
the interactions of Stage-1 of left-sessions and Stage-5 of right-sessions in the simulation (in which the
underlying CMIM adversary A serves as the prover of commit-then-PRZK) are relayed by another PPT
algorithm Ŝ between the underlying CMIM adversary A and external commit-then-PRZK verifiers
(who actually just send random coins, as PRZK is public-coin), the k-th simulation repetition actually
amounts to the experiment of EXPT(1n, wb, auxb), with wb set to be sb and auxb set to be Ckb and Ŝ
playing the role of CMIM. Here, a point of worthy noting is: though commit-then-PRZK is composed
with other interactions (say, the interactions at Stage-2, Stage-3 and Stage-4), all interactions other
than the interactions with the prover P (sb) of commit-then-PRZK can be internally emulated by Ŝ. By
inductive steps, we can get {Ck0}n,s0,s1 and {Ck1}n,s0,s1 are indistinguishable, for any k, 1 ≤ k ≤ s(n)+1.

Suppose key-coverage failure occurs in the successful i-th right session w.r.t. an uncovered PK
(j)
L during

10

External honest left-player key-generation: Let (PKL, SKL) ←− LKEY (1
n), where PKL = c and

SKL = (σ, sσ) such that σ ∈ {0, 1}n and sσ ∈ {0, 1}t(n) and c = C(σ, sσ). This captures the fact that S
does not know SKL and can emulate the honest left-player with the same public-key PKL.

Public-key file generation:
SKEY (1

n) perfectly emulates the key-generation stage of the honest right-player, getting PKR =
(y0 = f(s0), y1 = f(s1)) and SKR = sb and SK ′

R = s1−b for a random bit b. Then, SKEY runs
A(1n, PKL, PKR, z) to get (F ′, τ), where F ′ is a set of at most s(n) public-keys and τ is the state
information to be used by the proof stage of A. The public-key file to be used in the proof-stage is
F = F ′ ∪ {PKL, PKR}.

S ← {(PKR, SKR)} (i.e. initiate the set of covered keys S to be {(PKR, SKR)}).
On input (1n, F ′, PKL, PKR, SKR, τ) and running A(PKL, PKR, F

′, τ) as a subroutine, the fol-
lowing process is run by SPROOF repeatedly at most s(n) + 1 times. In each simulation repetition, S
uses fresh randomness and tries to either end with a successful simulation or cover a new public-key in F−S.

Straight-line left simulation:
In the i-th left concurrent session (ordered by

the time-step in which the first round of each
left-session is played) between S and A in the
left CMIM interaction part w.r.t. a public-key

PK
(j)
R = (y

(j)
0 , y

(j)
1) ∈ KR, 1 ≤ i, j ≤ s(n), S acts

as follows:

In case A successfully finishes Stage-1 and

PK
(j)
R ∈ F ′ − S, the simulator ends the

current repetition of simulation trial, and

starts to extract a secret-key SK
(j)
R such that

RR
KEY (PK

(j)
R , SK

(j)
R) = 1, which is guaranteed

by the AOK property of PRZK. Then, let S ←
S ∪ {(PK

(j)
R , SK

(j)
R)}, and move to the next rep-

etition (with the accumulated covered-key set S).
In case A successfully finishes Stage-1 and

PK
(j)
R ∈ S (i.e., S has already learnt the secret-

key SK
(j)
R), S randomly selects r

(i)′
l ← {0, 1}n

and sends r
(i)′
l to A at Stage-2. After receiv-

ing Stage-3 message, denoted r̃
(i)
r , from A, S in-

vokes MCRS(1
n) and gets the output denoted

(S
(i)
L , τ

(i)
L). S then sends r(i) = S

(i)
L as the

Stage-4 message (rather than sending back r(i) =

PRFσ(r
(i)′
l)⊕ r̃

(i)
r as the honest left-player does),

and sets sta
(i)
L = τ

(i)
L . In Stage-5, S computes and

sends c
(i)
crs = C(SK

(j)
R ||0t(n), s

(i)
crs) to A (rather

than sending back c
(i)
crs = C(σ||sσ) as the hon-

est left-player does), where t(n) is the length
of sσ in SKL. Finally, S finishes the PRZK

of Stage-5 with (SK
(j)
R , s

(i)
crs) as its witness and

(PKL, r̃
(i)
r , S

(i)
L) as the tag.

Straight-line right simulation:
In the i-th right concurrent session (ordered by the
time-step in which the first round of each right-session is
played) between S and A in the right CMIM interaction

part with respect to a public-key PK
(j)
L = c(j) ∈ KL,

1 ≤ i, j ≤ s(n), S acts as follows:

S perfectly emulates honest right-player in Stage-1 of
any right session, with SKR as the witness to commit-

then-PRZK and (PK
(j)
L , PKR) as the tag.

Case-R1: If PK
(j)
L ∈ S (i.e., S has already learnt

the secret-key SK
(j)
L = (σ(j), s

(j)
σ)), after receiving r̃

(i)′
l

from A at Stage-2, S runs MCRS(1
n) and gets the out-

put denoted (S
(i)
R , τ

(i)
R), and then computes and sends

PRFσ(j)(r̃
(i)′
l)⊕S

(i)
R as Stage-3 message, and goes further

as the honest right-player does.

Case-R2: If PK
(j)
L ̸∈ S ∪ {PKL}, and A successfully

finishes the i-th right session, then S ends the current
repetition of simulation trial, and starts to extract a

secret-key SK
(j)
L such that RL

KEY (PK
(j)
L , SK

(j)
L) = 1. In

case S fails to extract such SK
(j)
L , S stops the simulation,

and outputs a special symbol ⊥ indicating simulation
failure. Such simulation failure is called Case-R2 failure.

In case S successfully extracts such SK
(j)
L , then let

S ← S ∪ {(PK
(j)
L , SK

(j)
L)}, and move to the next

repetition. If PK
(j)
L = PKL, S just works as the honest

right-player does.

Setting staR: For successful i-th right session, if the

Stage-4 message r̃(i) is S
(i)
R or S

(k)
L for some k, 1 ≤ k ≤

s(n), then sta
(i)
R is set accordingly to τ

(i)
R or τ

(k)
L ; other-

wise, sta
(i)
R is set to be ⊥.

Figure 2: The CNM simulation

the k-th simulation repetition, by the tag-setting mechanism, the Stage-5 tag used by A in the i-th right
session must be distinct (i.e., different from all tags used by the simulator for Stage-1 of right sessions

and Stage-5 of left sessions). This means that the value committed to c̃
(i)
crs, and extracted efficiently,

cannot be the preimage of yb (as otherwise the indistinguishability between Ck0 and C1k is violated), from
which key-coverage failure is ruled out.

Secret-key independence. For any pair (s0, s1) in the (simulated right-player) key-generation

11

stage, denote by (strb, stab) the output of S(1n, sb) with SKR = sb. Suppose the secret-key inde-
pendence property does not hold, there must exist a bit α ∈ {0, 1} such that the difference between
Pr[R(sα, str0, sta0) = 1|S uses s0 in generating (str0, sta0)] and Pr[R(sα, str1, sta1) = 1|S uses s1 in
generating (str1, sta1)] is non-negligible. This implies (sα, str

0, sta0) and (sα, str
1, sta1) are distin-

guishable. But, the preceding analysis has already established that the ensembles {(str0, sta0)} and
{(str1, sta1)}, indexed by {n ∈ N, s0 ∈ {0, 1}n, s1 ∈ {0, 1}n}, are indistinguishable.

Strategy-restricted and predefinable randomness. This is essentially to show, with over-

whelming probability, for any i, the output of the successful i-th right session w.r.t. PK
(j)
L is either S

(i)
R

or S
(k)
L for some k, 1 ≤ i, k ≤ s(n); furthermore, any left-session output S

(k)
L can be the output for at

most one successful right session.

As key-coverage failure occurs with negligible probability, we get PK
(j)
L ∈ Cb ∪{PKR, PKL}, where

Cb denotes the set of extracted-keys (corresponding to public-keys in F − {PKR}) used by S(sb) in its

last simulation repetition. If PK
(j)
L = PKL, we show that the Stage-5 tag of the successful i-th right

session must be identical to that of Stage-5 of a left session, which means the coin-tossing output is
identical to the output of the left-session (note that each Stage-5 tag contains coin-tossing output of
the session). Otherwise (i.e., the Stage-5 tag of the i-th right session is different from Stage-5 tags of
all left-sessions), the Stage-5 tag of the i-th right session is distinct, which violates one of the following

(by considering the possibilities of the value committed to c̃
(i)
crs that can be efficiently extracted): one-

wayness of PKL (note S never uses SKL in simulation), one-wayness of y1−b, the one-left-many-right
non-malleability of PRZK (by the above analysis of key-coverage failure).

For the case of PK
(j)
L ̸= PKL, similar analysis shows that the coin-tossing output is either S

(i)
R or

S
(k)
L for some k. Otherwise, by the tag setting mechanism, the Stage-5 tag used by A in the successful

i-th right session must be distinct (recall Stage-5 tags of left sessions always include PKL). Again, we

consider the value committed to c̃
(i)
crs that can be extracted by the AOK property of PRZK. As S always

sets r
(i)
r = PRF

SK
(j)
L

(r̃
(i)′
l)⊕ S

(i)
R , suppose the coin-tossing output is not S

(i)
R then the value committed

to c̃
(i)
crs cannot be SK

(j)
L , as otherwise the NP-statement to be proved by PRZK in Stage-5 of the i-th

right session is false. But, the value committed to c̃
(i)
crs also cannot be the preimage of either y1−b (which

violates the one-wayness of y1−b) or yb (which violates the one-left-many-right non-malleability of PRZK
by the above analysis of key-coverage failure).

Finally, suppose there are two successful right sessions that are of the same left-session output S
(k)
L ,

one of the two sessions, referred to as the ib-th right session, must be of distinct Stage-5 tag. This

implies that the public-key PK
(j)
L used by A in the ib-th right session is covered and is not PKL, as

any right-session w.r.t. PKL is of a tag identical to that of one left-session. For the value committed

to c̃
(ib)
crs (at the beginning of Stage-5 of the ib-th right session), we can show it is neither SK

(j)
L (as,

otherwise, the NP-statement being proved by PRZK in the Stage-5 of the ib-th right session is false)

nor the preimage of y1−b (due to the one-wayness of f); Also, the value committed to c̃
(ib)
crs cannot be

the preimage of yb in accordance with the analysis of key-coverage failure.
Remark. The above security analysis can be straightforwardly extended to the general case of

multiple public-keys input to the key-generation stage of A. The differences caused by “truly random vs.
pseudorandom Stage-4 messages” and “witness difference of Stage-5 of left sessions” in the general case
can be ruled out by simple hybrid arguments. That “key-coverage failure” occurs still with negligible
probability in the general case is from the observation: the analysis w.r.t. EXPT(1n, wb, auxb), for
commit-then-PRZK with restricted input selection and indistinguishable auxiliary inputs, holds also
w.r.t. the extended experiment EXPT(1n, wb, auxb), where wb is a fixed vector, such that for any xi
set by A for the i-th left session of commit-then-PRZK, there always exists a component in wb that
is a valid NP-witness for xi. This establishes the simulatability property in the general case, from
which other properties in the general case are also straightforwardly derived. The reader is referred to
Appendix D for details. We prefer the simplified analysis w.r.t. a single public-key pair (PKL, PKR)
as it allows us to focus upon the most essential parts of the analysis.

12

References

[1] B. Barak. How to Go Beyond the Black-Box Simulation Barrier. In IEEE Symposium on Founda-
tions of Computer Science, pages 106-115, 2001.

[2] B. Barak. Constant-Round Coin-Tossing With a Man in the Middle or Realizing the Shared
Random String Model. In IEEE Symposium on Foundations of Computer Science, pages , 2002.

[3] B. Barak, R. Canetti, J. B. Nielsen and R. Pass. Universally Composable Protocols with Relaxed
Set-Up Assumptions. In IEEE Symposium on Foundations of Computer Science, pages 186-195,
2004.

[4] B. Barak and O. Goldreich. Universal Arguments and Their Applications. InIEEE Conference on
Computational Complexity, pages 194-203, 2002.

[5] B. Barak, O. Goldreich, S. Goldwasser and Y. Lindell. Resettably-Sound Zero-Knowledge and Its
Applications. In IEEE Symposium on Foundations of Computer Science, pages 116-125, 2001.

[6] B. Barak and Y. Lindell. Strict Polynomial-Time in Simulation and Extraction. newblockSIAM
Journal on Computing, 33(4): 783-818, 2004.

[7] B. Barak, M. Prabhakaran and A. Sahai. Concurrent Non-Malleable Zero-Knowledge In IEEE
Symposium on Foundations of Computer Science, 2006.

[8] M. Bellare and O. Goldreich. On Defining Proofs of Knowledge. In E. F. Brickell (Ed.): Advances
in Cryptology-Proceedings of CRYPTO 1992, LNCS 740, pages 390-420. Springer-Verlag, 1992.

[9] M. Bellare and O. Goldreich. On Probabilistic versus Deterministic Provers in the Definition of
Proofs Of Knowledge. Electronic Colloquium on Computational Complexity, 13(136), 2006.

[10] M. Blum. Coin Flipping by Telephone. In proc. IEEE Spring COMPCOM, pages 133-137, 1982.

[11] M. Blum. How to Prove a Theorem so No One Else can Claim It. In Proceedings of the International
Congress of Mathematicians, Berkeley, California, USA, 1986, pp. 1444-1451.

[12] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In
IEEE Symposium on Foundations of Computer Science, pages 136-145, 2001.

[13] R. Canetti and M. Fischlin. Universally Composable Commitments. CRYPTO 2001: 19-40 In
Advances in Cryptology-Proceedings of CRYPTO 1994, LNCS 2139, pages 19-40, Springer-Verlag,
2001.

[14] R. Canetti, O. Goldreich, S. Goldwasser and S. Micali. Resettable Zero-Knowledge. In ACM
Symposium on Theory of Computing, pages 235-244, 2000.

[15] R. Canetti, J. Kilian, E. Petrank and A. Rosen. Black-Box Concurrent Zero-Knowledge Requires
Ω̃(log n) Rounds. In ACM Symposium on Theory of Computing, pages 570-579, 2001.

[16] R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally Composable Two-Party and Multi-
Party Secure Computation. In ACM Symposium on Theory of Computing, pages 494-503, 2002.

[17] R. Cramer, I. Damgard and B. Schoenmakers. Proofs of Partial Knowledge and Simplified Design of
Witness Hiding Protocols. In Y. Desmedt (Ed.): Advances in Cryptology-Proceedings of CRYPTO
1994, LNCS 839, pages 174-187. Springer-Verlag, 1994.

[18] I. Damg̊ard. On the Existence of Bit Commitment Schemes and Zero-Knowledge Proofs. In G.
Brassard (Ed.): Advances in Cryptology-Proceedings of CRYPTO 1989, LNCS 435, pages 17-27.
Springer-Verlag, 1989.

13

[19] I. Damgard. Efficient Concurrent Zero-Knowledge in the Auxiliary String Model. In B. Preneel
(Ed.): Advances in Cryptology-Proceedings of EUROCRYPT 2000, LNCS 1807, pages 418-430.
Springer-Verlag, 2000.

[20] I. Damgard. On Σ-protocols. A lecture note for the course of Cryptographic Protocol Theory at
Aarhus University, 2003. Available from: http://www.daimi.au.dk/∼ivan/CPT.html

[21] I. Damgard and J. Groth. Non-interactive and reusable non-malleable commitment schemes. In
ACM Symposium on Theory of Computing, pages 426-437, 2003.

[22] I. Damgard, T. Pedersen and B. Pfitzmann. On the Existence of Statistically Hiding Bit Commit-
ment Schemes and Fail-Stop Signatures. Journal of Cryptology, 10(3): 163-194, 1997. Preliminary
version appears in Crypto 1993.

[23] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano and A. Sahai. Robust Non-Interactive
Zero-Knowledge. In J. Kilian (Ed.): Advances in Cryptology-Proceedings of CRYPTO 2001, LNCS
2139, pages 566-598. Springer-Verlag, 2001.

[24] Y. Deng, G. Di Crescenzo, D. Lin and D. Feng. Concurrently Non-Malleable Black-Box Zero-
Knowledge in the Bare Public-Key Model. CSR 2009, LNCS 5675, pages 80-91, 2009. Full version
available from Cryptology ePrint Archive, Report No. 2006/314, September, 2006.

[25] G. Di Crescenzo and I. Visconti. Concurrent Zero-Knowledge in the Public-Key Model. In L.
Caires et al. (Ed.): ICALP 2005, LNCS 3580, pages 816-827. Springer-Verlag, 2005.

[26] G. Di Crescenzo and I. Visconti. On Defining Proofs of Knowledge in the Bare Public-Key Model.
In ICTCS, 2007.

[27] G. Di Crescenzo, Y. Ishai and R. Ostrovsky. Non-Interactive and Non-Malleable Commitment. In
ACM Symposium on Theory of Computing, pages 141-150, 1998.

[28] G. Di Crescenzo, J. Katz, R. Ostrovsky and A. Smith. Efficient and Non-Interactive Non-Malleable
Commitments. In B. Pfitzmann (Ed.): Advances in Cryptology-Proceedings of EUROCRYPT 2001,
LNCS 2045, pages 40-59. Springer-Verlag, 2001.

[29] G. Di Crescenzo and R. Ostrovsky. On Concurrent Zero-Knowledge with Pre-Processing. In M. J.
Wiener (Ed.): Advances in Cryptology-Proceedings of CRYPTO 1999, LNCS 1666, pages 485-502.
Springer-Verlag, 1999.

[30] D. Dolev, C. Dwork and M. Naor. Non-Malleable Cryptography. In ACM Symposium on Theory
of Computing, pages 542-552, 1991.

[31] C. Dwork, M. Naor and A. Sahai. Concurrent Zero-Knowledge. In ACM Symposium on Theory of
Computing, pages 409-418, 1998.

[32] C. Dwork and A. Sahai. Concurrent Zero-Knowledge: Reducing the Need for Timing Constraints.
In H. Krawczyk (Ed.): Advances in Cryptology-Proceedings of CRYPTO 1998, LNCS 1462, pages
442-457. Springer-Verlag, 1998.

[33] T. El Gamal. A Public-Key Cryptosystem and Signature Scheme Based on Discrete Logarithms.
IEEE Transactions on Information Theory, 31: 469-472, 1985.

[34] U. Feige. Alternative Models for Zero-Knowledge Interactive Proofs. Ph.D. Thesis, Department
of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel,
1990. Available from: http://www.wisdom.weizmann.ac.il/∼feige.

[35] U. Feige and Shamir. Zero-Knowledge Proofs of Knowledge in Two Rounds. In G. Brassard (Ed.):
Advances in Cryptology-Proceedings of CRYPTO 1989, LNCS 435, pages 526-544. Springer-Verlag,
1989.

14

[36] U. Feige. Alternative Models for Zero-Knowledge Interactive Proofs. Ph.D Thesis, Weizmann
Institute of Science, 1990.

[37] U. Feige and A. Shamir. Witness Indistinguishable and Witness Hiding Protocols. In ACM Sym-
posium on Theory of Computing, pages 416-426, 1990.

[38] U.Feige, D. Lapidot and A. Shamir. Multiple Non-Interactive Zero-Knowledge Proofs Under Gen-
eral Assumptions. SIAM Journal on Computing, 29(1): 1-28, 1999.

[39] M. Fischlin and R. Fischlin. Efficient Non-Malleable Commitment Schemes. In M. Bellare (Ed.):
Advances in Cryptology-Proceedings of CRYPTO 2000, LNCS 1880, pages 413-431. Springer-
Verlag, 2000.

[40] O. Goldreich. Foundation of Cryptography-Basic Tools. Cambridge University Press, 2001.

[41] O. Goldreich. Foundations of Cryptography-Basic Applications. Cambridge University Press, 2002.

[42] O. Goldreich, S. Goldwasser and S. Micali. How to Construct Random Functions. Journal of the
Association for Computing Machinery, 33(4):792–807, 1986.

[43] O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge Proof Systems
for NP. Journal of Cryptology, 9(2): 167-189, 1996.

[44] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing But Their Validity or All
language in NP Have Zero-Knowledge Proof Systems. Journal of the Association for Computing
Machinery, 38(1): 691-729, 1991.

[45] S. Goldwasser, S. Micali and R. L. Rivest. A Digital Signature Scheme Secure Against Adaptive
Chosen Message Attacks. SIAM Journal on Computing, 17(2): 281-308, 1988.

[46] S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive Proof System.
SIAM Journal on Computing, 18(1): 186-208, 1989.

[47] I. Haitner and O. Reingold. Statistically-Hiding Commitment from Any One-Way Function. Cryp-
tology ePrint Archive, Report No. 2006/436.

[48] I. Haitner, O. Horvitz, J. Katz, C. Koo, R. Morselli and R. Shaltiel. Reducing Complexity As-
sumptions for Statistically-Hiding Commitments. In R. Cramer (Ed.): Advances in Cryptology-
Proceedings of EUROCRYPT 2005, LNCS 3494, pages 58-77. Springer-Verlag, 2005.

[49] S. Halevi and S. Micali. Practical and Provably-Secure Commitment Schemes From Collision-Free
Hashing. In N. Koblitz (Ed.): Advances in Cryptology-Proceedings of CRYPTO 1996, LNCS 1109,
pages 201-215. Springer-Verlag, 1996.

[50] J. H̊astad, R. Impagliazzo, L. A. Levin and M. Luby. Construction of a Pseudorandom Generator
from Any One-Way Function. SIAM Journal on Computing, 28(4): 1364-1396, 1999.

[51] Y. T. Kalai, Y. Lindell and M. Prabhakaran. Concurrent Composition of Secure Protocols in the
Timing Model. In ACM Symposium on Theory of Computing, pages 644-653, 2005.

[52] J. Katz, R. Ostrovsky, and A. Smith. Round Efficiency of Multi-party Computation with a Dishon-
est Majority. In Advances in Cryptology-Proceedings of EUROCRYPT 2003, LNCS 2656, pages
578-595, Springer-Verlag, 2003.

[53] K. Kidron and Y. Lindell. Impossibility Results for Universal Composability in Public-Key Models
and with Fixed Inputs. Cryptology ePrint Archive, Report No. 2007/478.

[54] D. Lapidot and A. Shamir. Publicly-Verifiable Non-Interactive Zero-Knowledge Proofs. In A.J.
Menezes and S. A. Vanstone (Ed.): Advances in Cryptology-Proceedings of CRYPTO 1990, LNCS
537, pages 353-365. Springer-Verlag, 1990.

15

[55] H. Lin and R. Pass. Concurrent Non-Malleable Zero-Knowledge with Adaptive Inputs. TCC 2011,
to appear.

[56] H. Lin, R. Pass, W.L. Tseng, and M. Venkitasubramaniam. Concurrent Non-Malleable Zero-
Knowledge Proofs. In Advances in Cryptology-Proceedings of CRYPTO 2010, LNCS 6223, pages
429-446, Springer-Verlag, 2010.

[57] H. Lin, R. Pass, and M. Venkitasubramaniam. A Unified Framework for Concurrent Security:
Universal Composability from Stand-alone Non-malleability. In ACM Symposium on Theory of
Computing, 2009.

[58] Y. Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation. Journal
of Cryptology, 16(3): 143-184, 2003.

[59] Y. Lindell. Bounded-Concurrent Secure Two-Party Computation Without Setup Assumptions. In
ACM Symposium on Theory of Computing, pages 683-692, 2003.

[60] Y. Lindell. General Composition and Universal Composability in Secure Multi-Party Computation.
In IEEE Symposium on Foundations of Computer Science, pages 394-403, 2003.

[61] Y. Lindell. Lower Bounds for Concurrent Self Composition. In Theory of Cryptography (TCC)
2004, LNCS 2951, pages 203-222, Springer-Verlag, 2004.

[62] Y. Lindell. Lower Bounds and Impossibility Results for Concurrenet Self Composition. Journal of
Cryptology, 21(2): 200-249, 2008. Preliminary versions appear in [59] and [61].

[63] D. Micciancio and E. Petrank. Simulatable Commitments and Efficient Concurrent Zero-
Knowledge. In E. Biham (Ed.): Advances in Cryptology-Proceedings of EUROCRYPT 2003, LNCS
2656 , pages 140-159. Springer-Verlag, 2003.

[64] S. Micali, R. pass and A. Rosen. Input-Indistinguishable Computation. In IEEE Symposium on
Foundations of Computer Science, pages 3136-145, 2006.

[65] S. Micali and L. Reyzin. Soundness in the Public-Key Model. In J. Kilian (Ed.): Advances in
Cryptology-Proceedings of CRYPTO 2001, LNCS 2139, pages 542–565. Springer-Verlag, 2001.

[66] M. Naor. Bit Commitment Using Pseudorandomness. Journal of Cryptology, 4(2): 151-158, 1991.

[67] M. Naor, R. Ostrovsky, R. Venkatesan and M. Yung. Perfect Zero-Knowledge Arguments for NP
Using Any One-Way Permutation. Journal of Cryptology, 11(2): 87-108, 1998.

[68] M. Naor and O. Reingold. Number-Theoretic Constructions of Efficient Pseudo-Random Functions.
Journal of the ACM, 1(2): 231-262 (2004).

[69] M. Naor and M. Yung. Public-Key Cryptosystems Provably Secure Against Chosen Ciphertext
Attacks. In ACM Symposium on Theory of Computing, pages 427-437, 1990.

[70] R. Ostrovsky, G. Persiano and I. Visconti. Constant-Round Concurrent Non-malleable Zero Knowl-
edge in the Bare Public-Key Model. ICALP(2) 2008, LNCS 5126, pages 548-559, 2008. Full version
available from ECCC Report No. 2006/095.

[71] R. Ostrovsky, O. Pandey and I. Visconti. Efficiency Preserving Transformations for Concurrent
Non-Malleable Zero-Knowledge. In Theory of Cryptography (TCC), 2010, LNCS 5978, pages 535-
552, 2010.

[72] R. Pass and A. Rosen. New and Improved Constructions of Non-Malleable Cryptographic Protocols.
In ACM Symposium on Theory of Computing, pages 533-542, 2005.

[73] R. Pass and A. Rosen. Concurrent Non-Malleable Commitments. In IEEE Symposium on Foun-
dations of Computer Science, pages 563-572, 2005.

16

[74] A. C. Yao. How to Generate and Exchange Secrets. In IEEE Symposium on Foundations of
Computer Science, pages 162-167, 1986.

[75] M. Yung and Y. Zhao. Interactive Zero-Knowledge with Restricted Random Oracles. In S. Halevi
and T. Rabin (Ed.): Theory of Cryptography (TCC) 2006, LNCS 3876, pages 21-40, Springer-
Verlag, 2006.

[76] M. Yung and Y. Zhao. Generic and Practical Resettable Zero-Knowledge in the Bare Public-Key
Model. In M. Naor (Ed.): Advances in Cryptology-Proceedings of EUROCRYPT 2007, LNCS
4515, pages 116-134. Springer-Verlag, 2007.

[77] Y. Zhao, J. B. Nielsen, R. Deng and D. Feng. Generic yet Practical ZK Arguments from any
Public-Coin HVZK. Electronic Colloquium on Computational Complexity, 12(162), 2005.

[78] A. C. Yao, M. Yung and Y. Zhao. Concurrent Knowledge-Extraction in the Public-Key Model.
ICALP 2010, Part I, LNCS 6198, pages 702-714. Full version available at ECCC Report No.
2007/002.

A Related Works

The concept of non-malleability is introduced by Dolve, Dwork and Naor in the seminal work of [30]. The
work of [30] also presents non-constant-round non-malleable commitment and zero-knowledge protocols.
CNMZK with a poly-logarithmic round complexity is achieved in the plain model [7]. Constant-round
non-malleable coin-tossing protocol in the plain model (and accordingly, constant-round non-malleable
zero-knowledge arguments for NP and commitment schemes by combining the result of [23]) is achieved
by Barak [2]. The non-malleable coin-tossing protocol of [2] employs non-black-box techniques (intro-
duced in [1]) in a critical way. Parallel coin-tossing, which can be viewed as a restricted version of
concurrent non-malleable coin-tossing, was studied in [58, 52] in the plain model. In particular, parallel
non-malleable coin-tossing (PNMCT) was studied in [52]. We were ever informed of the work [52] only
after our this work is finished. In backward comparison, the work [52] considers parallel non-malleable
coin-tossing in the setting of secure multi-party computation, assuming synchronous network and per-
fectly secure communication channels. For our CNMCT formulation and the PNMCT formulation of
[52], besides the secret-key independence property formulated for CNMCT in the public-key model,
we also strengthen the “strategy-restricted randomness” property by requiring that each left-session
output can appear as session output in at most one right-session. The work [52] only formalizes that
the right-session output may be one left-session output, without forbidding multiple right-sessions have
the same session output identical to one left-session output (see more detailed discussion in Section 3).

A large number of concurrent non-malleable (and the strongest, universal composable) crypto-
graphic protocols are developed in the common reference/random string model, where a common ref-
erence/random string is selected trustily by a trusted third party and is known to all players (e.g.,
[27, 39, 28, 23, 16, 21], etc). In particular, concurrent non-malleability for any functionality can be
implemented in the common random string (CRS) model [23, 16].

There are some works that deal with the specific CNMZK protocols in the plain model or in the BPK
model [7, 70, 71, 56, 55]. In particular, (non-constant round) CNMZK with adaptive input selection is
recently achieved in [55]. But, no previous protocols in the BPK model or the plain model are known to
be CNM secure against even CMIM with predetermined left-session inputs but full adaptive input selection
on the right (where the statements to left sessions are predetermined and the CMIM adversary can
only set statements to right sessions in the manner of full adaptive input selection, particularly not
necessarily at the beginning of each right session), needless to say to be CNM secure against CMIM with
full adaptive input selection. Also, the more basic CNMCT protocols were not studied there.

17

B Basic Definitions and Tools

We use standard notations and conventions below for writing probabilistic algorithms, experiments and
interactive protocols. If A is a probabilistic algorithm, then A(x1, x2, · · · ; r) is the result of running A on
inputs x1, x2, · · · and coins r. We let y ← A(x1, x2, · · ·) denote the experiment of picking r at random
and letting y be A(x1, x2, · · · ; r). If S is a finite set then x← S is the operation of picking an element
uniformly from S. If α is neither an algorithm nor a set then x← α is a simple assignment statement.
By [R1; · · · ;Rn : v] we denote the set of values of v that a random variable can assume, due to the
distribution determined by the sequence of random processes R1, R2, · · · , Rn. By Pr[R1; · · · ;Rn : E]
we denote the probability of event E, after the ordered execution of random processes R1, · · · , Rn.

Let ⟨P, V ⟩ be a probabilistic interactive protocol, then the notation (y1, y2) ← ⟨P (x1), V (x2)⟩(x)
denotes the random process of running interactive protocol ⟨P, V ⟩ on common input x, where P has
private input x1, V has private input x2, y1 is P ’s output and y2 is V ’s output. We assume w.l.o.g.
that the output of both parties P and V at the end of an execution of the protocol ⟨P, V ⟩ contains a
transcript of the communication exchanged between P and V during such execution.

The security of cryptographic primitives and tools, presented throughout this work, is defined with
respect to uniform polynomial-time algorithms (equivalently, polynomial-size circuits). When it comes
to non-uniform security, we refer to non-uniform polynomial-time algorithms (equivalently, families of
polynomial-size circuits).

On a security parameter n (also written as 1n), a function µ(·) is negligible if for every polynomial p(·),
there exists a valueN such that for all n > N it holds that µ(n) < 1/p(n). LetX = {X(n, z)}n∈N,z∈{0,1}∗
and Y = {Y (n, z)}n∈N,z∈{0,1}∗ be distribution ensembles. Then we say thatX and Y are computationally
(resp., statistically) indistinguishable, if for every probabilistic polynomial-time (resp., any, even power-
unbounded) algorithm D, for all sufficiently large n’s, and every z ∈ {0, 1}∗, |Pr[D(n, z,X(n, z)) =
1]− Pr[D(n, z, Y (n, z)) = 1]| is negligible in n.

Definition B.1 (one-way function) A function f : {0, 1}∗ −→ {0, 1}∗ is called a one-way function
(OWF) if the following conditions hold:

1. Easy to compute: There exists a (deterministic) polynomial-time algorithm A such that on input
x algorithm A outputs f(x) (i.e., A(x) = f(x)).

2. Hard to invert: For every probabilistic polynomial-time PPT algorithm A′, every positive polyno-
mial p(·), and all sufficiently large n’s, it holds Pr[A′(f(Un), 1

n) ∈ f−1(f(Un))] <
1

p(n) , where Un

denotes a random variable uniformly distributed over {0, 1}n.

Definition B.2 (interactive argument/proof system) A pair of interactive machines, ⟨P, V ⟩, is
called an interactive argument system for a language L if both are probabilistic polynomial-time (PPT)
machines and the following conditions hold:

• Completeness. For every x ∈ L, there exists a string w such that for every string z,
Pr[⟨P (w), V (z)⟩(x) = 1] = 1.

• Soundness. For every polynomial-time interactive machine P ∗, and for all sufficiently large n’s
and every x /∈ L of length n and every w and z, Pr[⟨P ∗(w), V (z)⟩(x) = 1] is negligible in n.

An interactive protocol is called a proof for L, if the soundness condition holds against any (even power-
unbounded) P ∗ (rather than only PPT P ∗). An interactive system is called a public-coin system if at
each round the prescribed verifier can only toss coins and send their outcome to the prover.

Definition B.3 (witness indistinguishability WI [37]) Let ⟨P, V ⟩ be an interactive system for a
language L ∈ NP, and let RL be the fixed NP witness relation for L. That is, x ∈ L if there exists

a w such that (x, w) ∈ RL. We denote by view
P (w)
V ∗(z)(x) a random variable describing the transcript

of all messages exchanged between a (possibly malicious) PPT verifier V ∗ and the honest prover P
in an execution of the protocol on common input x, when P has auxiliary input w and V ∗ has aux-
iliary input z. We say that ⟨P, V ⟩ is witness indistinguishable for RL if for every PPT interactive

18

machine V ∗, and every two sequences W 1 = {w1
x}x∈L and W 2 = {w2

x}x∈L for sufficiently long x,
so that (x, w1

x) ∈ RL and (x, w2
x) ∈ RL, the following two probability distributions are computation-

ally indistinguishable by any non-uniform polynomial-time algorithm: {x, viewP (w1
x)

V ∗(z) (x)}x∈L, z∈{0, 1}∗ and

{x, viewP (w2
x)

V ∗(z) (x)}x∈L, z∈{0, 1}∗. Namely, for every non-uniform polynomial-time distinguishing algorithm

D, every polynomial p(·), all sufficiently long x ∈ L, and all z ∈ {0, 1}∗, it holds that

|Pr[D(x, z, view
P (w1

x)
V ∗(z) (x) = 1]− Pr[D(x, z, view

P (w2
x)

V ∗(z) (x) = 1]| < 1

p(|x|)

It is interesting to note that the WI property preserves against adaptive concurrent composition [37,
36, 38, 23].

Definition B.4 (strong witness indistinguishability SWI [40]) Let ⟨P, V ⟩ and all other notations
be as in Definition B.3. We say that ⟨P, V ⟩ is strongly witness-indistinguishable forRL if for every PPT
interactive machine V ∗ and for every two probability ensembles {X1

n, Y
1
n , Z

1
n}n∈N and {X2

n, Y
2
n , Z

2
n}n∈N ,

such that each {Xi
n, Y

i
n, Z

i
n}n∈N ranges over (RL × {0, 1}∗) ∩ ({0, 1}n × {0, 1}∗ × {0, 1}∗), the fol-

lowing holds: If {X1
n, Z

1
n}n∈N and {X2

n, Z
2
n}n∈N are computationally indistinguishable, then so are

{⟨P (Y 1
n), V

∗(Z1
n)⟩(X1

n)}n∈N and {⟨P (Y 2
n), V

∗(Z2
n)⟩(X2

n)}n∈N .

WI vs. SWI: It is clarified in [41] that the notion of SWI actually refers to issues that are
fundamentally different from WI. Specifically, the issue is whether the interaction with the prover helps
V ∗ to distinguish some auxiliary information (which is indistinguishable without such an interaction).
Significantly different from WI, SWI does not preserve under concurrent composition. More details
about SWI are referred to [41]. An interesting observation, as clarified later, is: the protocol composing
commitments and SWI can be itself regular WI. Also note that any zero-knowledge protocol is itself
SWI [41].

Definition B.5 (zero-knowledge ZK [46, 40]) Let ⟨P, V ⟩ be an interactive system for a language
L ∈ NP, and let RL be the fixed NP witness relation for L. That is, x ∈ L if there exists a w such

that (x, w) ∈ RL. We denote by view
P (w)
V ∗(z)(x) a random variable describing the contents of the random

tape of V ∗ and the messages V ∗ receives from P during an execution of the protocol on common input
x, when P has auxiliary input w and V ∗ has auxiliary input z. Then we say that ⟨P, V ⟩ is zero-
knowledge if for every probabilistic polynomial-time interactive machine V ∗ there exists a probabilistic
(expected) polynomial-time oracle machine S, such that for all sufficiently long x ∈ L the ensembles

{viewP (w)
V ∗ (x)}x∈L and {SV ∗

(x)}x∈L are computationally indistinguishable. Machine S is called a ZK
simulator for ⟨P, V ⟩. The protocol is called statistical ZK if the above two ensembles are statistically
close (i.e., the variation distance is eventually smaller than 1

p(|x|) for any positive polynomial p). The

protocol is called perfect ZK if the above two ensembles are actually identical (i.e., except for negligible
probabilities, the two ensembles are equal).

Definition B.6 (system for argument/proof of knowledge [40, 9]) Let R be a binary relation
and κ : N → [0, 1]. We say that a probabilistic polynomial-time (PPT) interactive machine V is a
knowledge verifier for the relation R with knowledge error κ if the following two conditions hold:

• Non-triviality: There exists an interactive machine P such that for every (x,w) ∈ R all possible
interactions of V with P on common input x and auxiliary input w are accepting.

• Validity (with error κ): There exists a polynomial q(·) and a probabilistic oracle machine K such
that for every interactive machine P ∗, every x ∈ LR, and every w, r ∈ {0, 1}∗, machine K satisfies
the following condition:

Denote by p(x,w, r) the probability that the interactive machine V accepts, on input x, when
interacting with the prover specified by P ∗

x,w,r (where P ∗
x,w,r denotes the strategy of P ∗ on common

input x, auxiliary input w and random-tape r). If p(x,w, r) > κ(|x|), then, on input x and with

19

oracle access to P ∗
x,w,r, machine K outputs a solution w′ ∈ R(x) within an expected number of

steps bounded by
q(|x|)

p(x,w, r)− κ(|x|)
The oracle machine K is called a knowledge extractor.

An interactive argument/proof system ⟨P, V ⟩ such that V is a knowledge verifier for a relation R and
P is a machine satisfying the non-triviality condition (with respect to V and R) is called a system for
argument/proof of knowledge (AOK/POK) for the relation R.

The above definition of POK is with respect to deterministic prover strategy. POK also can be
defined with respect to probabilistic prover strategy. It is recently shown that the two definitions are
equivalent for all natural cases (e.g., POK for NP-relations) [9].

Σ-protocols are very useful cryptographic tools that are 3-round public-coin protocols satisfying a
special honest-verifier zero-knowledge (SHVZK) property and a special soundness property in the sense
of knowledge extraction.

Definition B.7 (Σ-protocol [20]) A 3-round public-coin protocol ⟨P, V ⟩ is said to be a Σ-protocol for
an NP-language with relation RL if the following hold:

• Completeness. If P , V follow the protocol, the verifier always accepts.

• Special soundness. From any common input x of length poly(n) and any pair of accepting conver-
sations on input x, (a, e, z) and (a, e′, z′) where e ̸= e′, one can efficiently compute w such that
(x,w) ∈ RL. Here a, e, z stand for the first, the second and the third message respectively and e is
assumed to be a string of length k (such that 1k is polynomially related to the security parameter
1n) selected uniformly at random in {0, 1}k.

• Special honest verifier zero-knowledge (SHVZK). There exists a probabilistic polynomial-time (PPT)
simulator S, which on input x (where there exists a w such that (x,w) ∈ RL) and a random
challenge string ê, outputs an accepting conversation of the form (â, ê, ẑ), with the probability dis-
tribution that is indistinguishable from that of the real conversation (a, e, z) between the honest
P (w) and V on input x.

A very large number of Σ-protocols have been developed in the literature. Most Σ-protocols for
number-theoretical languages are practical and without going through general NP-reductions. For a
good survey of Σ-protocols and their applications, the reader is referred to [20].

Definition B.8 (pseudorandom functions PRF) On a security parameter n, let d(·) and r(·) be
two positive polynomials in n. We say that

{fs : {0, 1}d(n) −→ {0, 1}r(n)}s∈{0,1}n

is a pseudorandom function ensemble if the following two conditions hold:

1. Efficient evaluation: There exists a polynomial-time algorithm that on input s and x ∈ {0, 1}d(|s|)
returns fs(x).

2. Pseudorandomness: For every probabilistic polynomial-time oracle machine A, every polynomial
p(·), and all sufficiently large n’s, it holds:

|Pr[AFn(1n) = 1]− Pr[AHn(1n) = 1]| < 1

p(n)

where Fn is a random variable uniformly distributed over the multi-set {fs}s∈{0,1}n, and Hn is
uniformly distributed among all functions mapping d(n)-bit-long strings to r(n)-bit-long strings.

20

PRFs can be constructed under any one-way function [42, 40]. The current most practical PRFs are
the Naor-Reingold implementations under the factoring (Blum integers) or the decisional Diffie-Hellman
hardness assumptions [68]. The computational complexity of computing the value of the Naor-Reingold
functions at a given point is about two modular exponentiations and can be further reduced to only two
multiple products modulo a prime (without any exponentiations!) with natural preprocessing, which is
great for practices involving PRFs.

Definition B.9 (statistically/perfectly binding bit commitment scheme) A pair of PPT in-
teractive machines, ⟨P, V ⟩, is called a perfectly binding bit commitment scheme, if it satisfies the fol-
lowing:

Completeness. For any security parameter n, and any bit b ∈ {0, 1}, it holds that
Pr[(α, β)← ⟨P (b), V ⟩(1n); (t, (t, v))← ⟨P (α), V (β)⟩(1n) : v = b] = 1.

Computationally hiding. For all sufficiently large n’s, any PPT adversary V ∗, the following two
probability distributions are computationally indistinguishable: [(α, β) ← ⟨P (0), V ∗⟩(1n) : β] and
[(α′, β′)← ⟨P (1), V ∗⟩(1n) : β′].

Perfectly Binding. For all sufficiently large n’s, and any adversary P ∗, the following probability is
negligible (or equals 0 for perfectly-binding commitments): Pr[(α, β) ← ⟨P ∗, V ⟩(1n); (t, (t, v)) ←
⟨P ∗(α), V (β)⟩(1n); (t′, (t′, v′))← ⟨P ∗(α), V (β)⟩(1n) : v, v′ ∈ {0, 1}

∧
v ̸= v′].

That is, no (even computational power unbounded) adversary P ∗ can decommit the same tran-
script of the commitment stage both to 0 and 1.

Below, we recall some classic perfectly-binding commitment schemes.
One-round perfectly-binding (computationally-hiding) commitments can be based on any one-way

permutation OWP [10, 44]. Loosely speaking, given a OWP f with a hard-core predict b (cf. [40]), on a
security parameter n one commits a bit σ by uniformly selecting x ∈ {0, 1}n and sending (f(x), b(x)⊕σ)
as a commitment, while keeping x as the decommitment information.

Statistically-binding commitments can be based on any one-way function (OWF) but run in two
rounds [66, 50]. On a security parameter n, let PRG : {0, 1}n −→ {0, 1}3n be a pseudorandom generator,
the Naor’s OWF-based two-round public-coin perfectly-binding commitment scheme works as follows:
In the first round, the commitment receiver sends a random string R ∈ {0, 1}3n to the committer. In
the second round, the committer uniformly selects a string s ∈ {0, 1}n at first; then to commit a bit 0
the committer sends PRG(s) as the commitment; to commit a bit 1 the committer sends PRG(s)⊕R
as the commitment.

One-round perfectly-binding (computationally-hiding) commitments can be based on any one-way
permutation OWP. Loosely speaking, given a OWP f with a hard-core predict b, on a security parameter
n one commits a bit σ by uniformly selecting x ∈ {0, 1}n and sending (f(x), b(x)⊕σ) as a commitment,
while keeping x as the decommitment information.

For practical perfectly-binding commitment scheme, in this work we use the DDH-based ElGamal
non-interactive commitment scheme [33]. To commit to a value v ∈ Zq, the committer randomly
selects u, r ∈ Zq, computes h = gu mod p and sends (h, ḡ = gr, h̄ = gvhr) as the commitment. The
decommitment information is (r, v). Upon receiving the commitment (h, ḡ, h̄), the receiver checks that
h, ḡ, h̄ are elements of order q in Z∗

p . It is easy to see that the commitment scheme is of perfectly-
binding. The computational hiding property is from the DDH assumption on the subgroup of order
q of Z∗

p . We also note that Micciancio and Petrank presented another implementation of DDH-based
perfectly-binding commitment scheme with advanced security properties [63].

A commitment scheme C is called linear, if for sufficiently large n and any string x ∈ {0, 1}n both
|C(x, s)| (i.e., the length of the commitment to x using random coins s) and |s| (i.e., the length of s)
are bounded by O(n).

Commit-then-SWI: Consider the following protocol composing a statistically-binding commit-
ment and SWI:

Common input: x ∈ L for an NP-language L with corresponding NP-relation RL.

21

Prover auxiliary input: w such that (x,w) ∈ RL.

The protocol: consisting of two stages:

Stage-1: The prover P computes and sends cw = C(w, rw), where C is a statistically-binding
commitment and rw is the randomness used for commitment.

Stage-2: Define a new language L′ = {(x, cw)|∃(w, rw) s.t. cw = C(w, rw)∧RL(x,w) = 1}. Then,
P proves to V that it knows a witness to (x, cw) ∈ L′, by running a SWI protocol for NP.

One interesting observation for the above commit-then-SWI protocol is that commit-then-SWI is
itself a regular WI for L.

Proposition B.1 Commit-then-SWI is itself a regular WI for the language L.

Proof (of Proposition B.1). For any PPT malicious verifier V ∗, possessing some auxiliary input
z ∈ {0, 1}∗, and for any x ∈ L and two (possibly different) witnesses (w0, w1) such that (x,wb) ∈ RL for
both b ∈ {0, 1}, consider the executions of commit-then-SWI: ⟨P (w0), V

∗(z)⟩(x) and ⟨P (w1), V
∗(z)⟩(x).

Note that for ⟨P (wb), V
∗(z)⟩(x), b ∈ {0, 1}, the input to SWI of Stage-2 is (x, cwb

= C(wb, rwb
)),

and the auxiliary input to V ∗ at the beginning of Stage-2 is (x, cwb
, z). Note that (x, cw0 , z) is indistin-

guishable from (x, cw1 , z). Then, the regular WI property of the whole composed protocol is followed
from the SWI property of Stage-2. �

B.1 Adaptive tag-based one-left-many-right non-malleable statistical zero-knowledge
argument of knowledge (SZKAOK)

Let {⟨PTAG, VTAG⟩(1n)}n∈N,TAG∈{0,1}O(n) be a family of argument systems for an NP-language L spec-

ified by NP-relation RL. For each security parameter n and TAG ∈ {0, 1}O(n), ⟨PTAG, VTAG⟩(1n) is an
instance of the protocol ⟨P, V ⟩, which is indexed by TAG and works for inputs in L ∪ {0, 1}p(n), where
p(·) is some polynomial.

We consider an experiment EXPE(1n, x, TAG, z), where 1n is the security parameter, x ∈ L ∪
{0, 1}p(n), TAG ∈ {0, 1}O(n) and z ∈ {0, 1}∗. (The input (x, TAG) captures the predetermined input
and tag of the prover instance in the following left MIM part, and the string z ∈ {0, 1}∗ captures the
auxiliary input to the following MIM adversary A.) In the experiment EXPE(1n, x, TAG, z), on input
(1n, x, TAG, z), an adaptive input-selecting one-left-many-right MIM adversary A is simultaneously
participating in two interaction parts:

The left MIM part: in which A chooses (x̃l, T̃AG
l
) based on its view from both the left session and

all right sessions, satisfying that: the membership of x̃l ∈ L ∪ {0, 1}p(n) can be efficiently checked

(otherwise, the experiment may render an NP-membership oracle to A). and T̃AG
l
∈ {0, 1}O(n);

In case x̃l ∈ L∪{0, 1}p(n) (that can be efficiently checked), then a witness w̃l such that (x̃l, w̃l) ∈ RL
is given to the prover instance P

T̃AG
l , and A interacts, playing the role of the verifier V

T̃AG
l , with

the prover instance P
T̃AG

l(x̃, w̃) on common input x̃l . The interactions with P
T̃AG

l(x̃l, w̃l) is

called the left session. Note that, A can just set (x̃l, T̃AG
l
) to be (x, TAG), which captures the

case of predetermined input and tag to left session.

The right CMIM part: in which A concurrently interacts with s(n), for a polynomial s(·), verifier
instances: V

T̃AG
r

1
(x̃r1), VT̃AG

r

2
(x̃r2), · · · , VT̃AG

r

s(n)
(x̃rs(n)), where (T̃AG

r

i , x̃
r
i), 1 ≤ i ≤ s(n), are set

by A (at the beginning of each session) adaptively based on its view (in both the left session and

all the right sessions) satisfying x̃ri ∈ {0, 1}p(n) and T̃AG
r

i ∈ {0, 1}O(n). The interactions with the
instance V

T̃AG
r

i
(x̃ri) is called the i-th right session, in which A plays the role of P

T̃AG
r

i
.

22

Denote by viewA(1
n, x, TAG, z) the random variable describing the view of A in the above experi-

ment EXPE(1n, x, TAG, z), which includes the input (1n, x, TAG, z), its random tape, and all messages
received in the one left session and the s(n) right sessions.

Then, we say that the family of argument systems {⟨PTAG, VTAG⟩(1n)}n∈N,TAG∈{0,1}O(n) is adaptive
tag-based one-left-many-right non-malleable SZKAOK with respect to tags of length O(n), if for any PPT
adaptive input-selecting one-left-many-right MIM adversary A defined above, there exists an expected
polynomial-time algorithm S, such that for any sufficiently large n, any x ∈ L ∪ {0, 1}p(n) and TAG ∈
{0, 1}O(n), and any z ∈ {0, 1}∗, the output of S(1n, x, TAG, z) consists of two parts (str, sta) such that
the following hold, where we denote by S1(1

n, x, TAG, z) (the distribution of) its first output str.

• Statistical simulatability. The following ensembles are statistically indistinguishable:
{viewA(1

n, x, TAG, z)}n∈N,x∈L∪{0,1}p(n),TAG∈{0,1}O(n),z∈{0,1}∗ and
{S1(1

n, x, TAG, z)}n∈N,x∈L∪{0,1}p(n),TAG∈{0,1}O(n),z∈{0,1}∗

• Knowledge extraction. sta consists of a set of s(n) strings, {w1, w2, · · · , ws(n)}, satisfying the
following:

– For any i, 1 ≤ i ≤ s(n), if the i-th right session in str is aborted or with a tag identical to
that of the left session, then wi = ⊥;

– Otherwise, i.e., the i-th right session in str is successful with T̃AG
r

i ̸= T̃AG
l
, then (x̃ri , wi) ∈

RL, where x̃ri is the input to the i-th right session in str.

Pass-Rosen ZK (PRZK). The PRZK (with some specified length parameter l(n) ≥ O(n3))
developed in [72, 73] is the only known constant-round adaptive tag-based one-left-many-right non-
malleable SZKAOK. Furthermore, PRZK is public-coin and can be of perfect ZK. We note that in
[72, 73], the tag length is just specified to be the security parameter n (in this case, the length parameter
is specified as l(n) ≥ 2n3+n), but a closer investigation shows that the PRZK can be extended to work
for tags of length O(n) and inputs of length poly(n). The works of [72, 73] do not explicitly consider
adaptive input and tag selection for the one left-session, but a closer investigation shows that the security
analysis presented in [72, 73] works also for this more general case.

C Formulation and Discussion of CNMZK in the Public-Key Model

Definition C.1 (CNMZK in the public-key model) We say that a protocol ⟨P, V ⟩, where P =
(PKEY , PPROOF) and V = (VKEY , VPROOF), is concurrently non-malleable zero-knowledge (against
CMIM capable of full adaptive input selection) in the BPK model w.r.t. a class of admissible lan-
guages L and some key-validating relations RP

KEY and RV
KEY , if for any positive polynomial s(·), any

s-CMIM adversary A (defined in accordance with the experiment ExptACMIM (1n, z) in Section 2), there
exist a pair of (expected) polynomial-time algorithms S = (SKEY , SPROOF) (the simulator) and E (the
extractor) such that for any sufficiently large n, any auxiliary input z ∈ {0, 1}∗, and any polynomial-time
computable relation R (with components drawn from {0, 1}∗ ∪ {⊥}), the following hold, in accordance
with the experiment ExptCNMZK(1n, z) described below (page 24):

• Simulatability. The following ensembles are indistinguishable:
{S(1n, PKP , PKV , SKV , z)}PKP∈KP ,(PKV ,SKV)∈RV

KEY ,z∈{0,1}∗ and

{viewP (SKP),V (SKV)
A (1n, PKP , PKV , z)}PKP∈KP ,(PK,SK)∈RKEY ,z∈{0,1}∗.

• Secret-key independent knowledge-extraction. Specifically, E outputs a list of strings Ŵ =
(ŵ1, ŵ2, · · · , ŵs(n)), satisfying the following:

– ŵi is set to be ⊥, if the i-th right session in str is not accepting (due to abortion or verifier
verification failure) or the common input of the i-th right session is identical to that of one
of left sessions, where 1 ≤ i ≤ s(n).

23

ExptCNMZK(1n, z)

Honest prover key-generation:
(PKP , SKP) ←− PKEY (1

n). Denote by KP the set of all legitimate public-keys generated by
PKEY (1

n).

The simulator S = (SKEY , SPROOF):
(PKV , SKV , SK

′
V) ←− SKEY (1

n), where the distribution of (PKV , SKV) is identical
with that of the output of VKEY , RV

KEY (PKV , SKV) = RV
KEY (PKV , SK

′
V) = 1 and the

distributions of SKV and SK ′
V are identical and independent.

(str, sta) ←− S
A(1n,PKP ,PKV ,z)
PROOF (1n, PKP , PKV , SKV , z). That is, on inputs

(1n, PKP , PKV , SKV , z) and with oracle access to A(1n, PKP , PKV , z) (by providing
random coins to A and running A as a subroutine) the simulator S outputs a simulated
transcript str, and some state information sta to be transformed to the knowledge-extractor
E. Note that S does not know the secret-key SKP of honest prover, that is, S can emulate the
honest prover only from its public-key PKP .

For any PKP ∈ KP and (PKV , SKV) ∈ RV
KEY and any z ∈ {0, 1}∗, we denote by

S(1n, PKP , PKV , SKV , z) the random variable describing the first output (i.e., str) of

S
A(1n,PKP ,PKV ,z)
PROOF (1n, PKP , PKV , SKV , z).

The knowledge-extractor E:
Ŵ ←− E(1n, sta, str). On (sta, str), E outputs a list of witnesses to (different right) state-
ments whose validations are successfully conveyed in right sessions in str, where each of these
statements is different from the statements of left sessions.

– Correct knowledge-extraction for (individual) statements: In all other cases, with overwhelming
probability (x̂i, ŵi) ∈ RL, where x̂i is the statement set by A for the i-th right session in str
and RL is the NP-relation for the admissible language L ∈ L (set by P ∗ for proof stages)
that may be dependent upon the public-keys of honest players.

– concurrent non-malleable knowledge extraction independence (CNMKEI): Pr[R(SKV , Ŵ , str) =

1] is negligibly close to Pr[R(SK ′
V , Ŵ , str) = 1].

The probabilities are taken over the randomness of PKEY , the randomness of S, the randomness
of E, and the randomness of A.

The above CNMZK formulation in the BPK model implies both concurrent ZK for concurrent
prover security in the BPK model (as S emulates the honest prover without knowing its secret-key),
and concurrent knowledge-extraction (CKE) for concurrent verifier security in the public-key model
formulated in [78]. The above CNMZK formulation can also be trivially extended to a tag-based
formalization version.

The CNMZK formulation follows the traditional simulation-extraction approach, and extends the
formulation of knowledge-extraction independence (KEI) [78] into the more complex CMIM setting.
The reader is referred to [78] for detailed clarifications and justification of the KEI formulation. We
remark that, as clarified, mandating the CNMKEI property is crucial for correctly formulating CNM
security in the public-key model. We also remind that, as clarified in [78] for the KEI formulation,
the CNMKEI formulation implicitly assumes that verifier’s public-key corresponds to multiple secret-
keys (in the sense protocols with a single public-key for each verifier may trivially not satisfy the KEI
property), which however can typically be achieved with the common key-pair trick [69]. In general,
cryptography literature should welcome diversified approaches for modeling and achieving security goals
of cryptographic systems, particularly witnessed by the evolution history of public-key encryption.

We briefly note that no previous protocols in the BPK model were proved to be CNM-secure against
even CMIM with predetermined left-session inputs but full adaptive input selection on the right (i.e., the
inputs to left sessions are predetermined and the CMIM adversary only sets inputs to right sessions
in the fully adaptive way, particularly not necessarily at the beginning of each right session), needless
to say to be CNM secure against CMIM with full adaptive input selection. Specifically, the standard
simulation-extraction paradigm for showing CNM security fails, in general, when the CMIM adversary
is allowed the capability of full adaptive input selection. In particular, we show a concrete attack on the
protocol proposed in [24]. This attack allows an CMIM adversary, capable adaptive language selection

24

based upon the public-key of honest players, to successfully convince the honest verifier of some NP
statements but without knowing any witness to the statement being proved.

C.1 CMIM attacks on the CNMZK proposed in [24]

Let us first recall the protocol structure of the protocol of [24].

Key-generation. Let (KG0, Sig0, V er0) and (KG1, Sig1, V er1) be two signature schemes that secure
against adaptive chosen message attacks. On a security parameter 1n, each verifier V randomly
generates two pair (verk0, sigk0) and (verk1, sigk1) by running KG0 and KG1 respectively, where
verk is the signature verification key and sigk is the signing key. V publishes (verk0, verk1) as its
public-key while keeping sigkb as its secret-key for a randomly chosen b from {0, 1} (V discards
sigk1−b). The prover does not possess public-key.

Common input. An element x ∈ L of length poly(n), where L is an NP-language that admits Σ-
protocols.

The main-body of the protocol. The main-body of the protocol consists of the following three
phases:

Phase-1. The verifier V proves to P that it knows either sigk0 or sigk1, by executing the (partial
witness-independent) ΣOR-protocol [17] on (verk0, verk1) in which V plays the role of knowl-
edge prover. Denote by aV , eV , zV , the first-round, the second-round and the third-round
message of the ΣOR-protocol of this phase respectively. Here eV is the random challenge sent
by the prover to the verifier.

If V successfully finishes the ΣOR-protocol of this phase and P accepts, then goto Phase-2.
Otherwise, P aborts.

Phase-2. P generates a key pair (sk, vk) for a one-time strong signature scheme. Let COM be
a commitment scheme. The prover randomly selects random strings s, r ∈ {0, 1}poly(n), and
computes C = COM(s, r) (that is, P commits to s using randomness r). Finally, P sends
(C, vk) to the verifier V .

Phase-3. By running a ΣOR-protocol, P proves to V that it knows either a witness w for x ∈ L
OR the value committed in C is a signature on the message of vk under either verk0 or verk1.
Denote by aP , eP , zP , the first-round, the second-round and the third-round message of the
ΣOR of Phase-3. Finally, P computes a one-time strong signature δ on the whole transcript
with the signing key sk generated in Phase-2.

Verifier’s decision. V accepts if and only if the ΣOR-protocol of Phase-3 is accepting, and δ is
a valid signature on the whole transcript under vk.

Note: The actual implementation of the DDL protocol combines rounds of the above protocol. But,
it is easy to see that round-combination does not invalidate the following attacks.

C.1.1 The CMIM attack

We show a special CMIM attack in which the adversary A only participate the right concurrent in-
teractions with honest verifiers (i.e., there are no concurrent left interactions in which A concurrently
interacts with honest provers).

The following CMIM attack enables A to malleate the interactions of Phase-1 of one session into
a successful conversation of another concurrent session for different (but verifier’s public-key related)
statements without knowing any corresponding NP-witnesses.

Let L̂ be any NP-language admitting a Σ-protocol that is denoted by ΣL̂ (in particular, L̂ can be an
empty set). For an honest verifier V with its public-key PK = (verk0, verk1), we define a new language
L = {(x̂, verk0, verk1)|∃w s.t. (x̂, w) ∈ RL̂ OR w = sigkb for b ∈ {0, 1}}. Note that for any string x̂

(whether x̂ ∈ L̂ or not), the statement “(x̂, verk0, verk1) ∈ L” is always true as PK = (verk0, verk1) is

25

honestly generated. Also note that L is a language that admits Σ-protocols (as ΣOR-protocol is itself a
Σ-protocol). Now, we describe the concurrent interleaving and malleating attack, in whichA successfully
convinces the honest verifier of the statement “(x̂, verk0, verk1) ∈ L” for any arbitrary poly(n)-bit string
x̂ (even when x̂ ̸∈ L̂) by concurrently interacting with V (with public-key (verk0, verk1)) in two sessions
as follows.

1. A initiates the first session with V . After receiving the first-round message, denoted by a′V , of the
ΣOR-protocol of Phase-1 of the first session on common input (verk0, verk1) (i.e., V ’s public-key),
A suspends the first session.

2. A initiates a second session with V , and works just as the honest prover does in Phase-1 and
Phase-2 of the second session. We denote by C, vk the Phase-2 message of the second session,
where C is the commitment to a random string and vk is the verification key of the one-time
strong signature scheme generated by A (note that A knows the corresponding signing key sk as
(vk, sk) is generated by itself). When A moves into Phase-3 of the second session and needs to
send V the first-round message, denoted by aP , of the ΣOR-protocol of Phase-3 of the second
session on common input (x̂, verk0, verk1), A does the following:

• A first runs the SHVZK simulator of ΣL̂ (i.e., the Σ-protocol for L̂) [20] on x̂ to get a

simulated conversation, denoted by (ax̂, ex̂, zx̂), for the (possibly false) statement “x̂ ∈ L̂”.

• A runs the SHVZK simulator of the Σ-protocol for showing that the value committed in C
is a signature on vk under one of (verk0, verk1) to get a simulated conversation, denoted by
(aC , eC , zC).

• A sets aP = (ax̂, a
′
V , aC) and sends aP to V as the first-round message of the ΣOR-protocol

of Phase-3 of the second session, where a′V is the one received by A in the first session.

• After receiving the second-round message of Phase-3 of the second session, i.e., the random
challenge eP from V , A suspends the second session.

3. A continues the first session, and sends e′V = eP ⊕ ex̂ ⊕ eC as the second-round message of the
ΣOR-protocol of Phase-1 of the first session.

4. After receiving the third-round message of the ΣOR-protocol of Phase-1 of the first session, denoted
by z′V , A suspends the first session again.

5. A continues the execution of the second session again, sends to zP = ((ex̂, zx̂), (e
′
V , z

′
V), (eC , zC))

to V as the third-round message of the ΣOR-protocol of the second session.

6. Finally, A applies sk on the whole transcript of the second session to get a (one-time strong)
signature δ, and sends δ to V

Note that (ax̂, ex̂, zx̂) is an accepting conversation for the (possibly false) statement “x̂ ∈ L̂”,
(a′V , e

′
V , z

′
V) is an accepting conversation for showing the knowledge of either sigk0 or sigk1, (aC , eC , zC)

is an accepting conversation for showing that the value committed in C is a signature on vk under one
of (verk0, verk1). Furthermore, ex̂ ⊕ e′V ⊕ eC = eP , and δ is a valid (one-time strong) signature on the
transcript of the second session.This means that, from the viewpoint of V , A successfully convinced V
of the statement “(x̂, verk0, verk1) ∈ L” in the second session but without knowing any corresponding
NP-witness!

D Proof Details of Theorem 4.1

The description of the simulator. On security parameter 1n, for any positive polynomial s(·)
and any PPT s(n)-CMIM adversary A in the BPK model with auxiliary information z ∈ {0, 1}∗, the
simulator S = (SKEY , SPROOF), with respect to the honest left-player key-registration algorithm LKEY

and a CRS simulating algorithmMCRS , is re-depicted in Figure 2 (page 11) in order to ease reference.

26

In the description, the notation ofm denotes a message sent by the simulator (emulating honest players),
and m̃ denotes the arbitrary message sent by the CMIM-adversary A.

Notes on the CNM simulation: For any i, 1 ≤ i ≤ s(n), if in the i-th left (resp., right) session of
the simulation A does not act accordingly or fails to provide a valid proof, then S aborts that session,

and sets the output just to be S
(i)
L (resp., S

(i)
R) and the state information to be τ

(i)
L (resp., τ

(i)
R).

Note that in the right-session simulation, when a successful right-session is w.r.t. a left-player key

PK
(j)
L = PKL the simulator does not try to extract the secret-key of PKL. In the following analysis,

we show that in this case, with overwhelming probability, the tag of Stage-5 of this successful right
session is identical to that of Stage-5 of a left-session. As the tag of Stage-5 of a session consists of the
session output (i.e., the coin-tossing output), this implies that the session output of this right-session
is identical to that of one of left-sessions. Moreover, we show that with overwhelming probability each
left-session output can appear, as session output, in at most one successful right-session.

In the unlikely event that A finishes a right session and the Stage-1 of a left-session simultaneously,
both of which are w.r.t. uncovered public-keys, extracting SKR in left simulation part takes priority
(in this case, SKL extraction in right simulation part is ignored in the current simulation repetition).

During any (of the at most s(n) + 1) simulation repetition, if S does not encounter secret-key
extraction and does not stop due to Case-R1 failure or Case-R2 failure, then S stops whenever A stops,
and sets str to be F and the view of A in this simulation repetition and sta = (staL, staR) to be the
according state-information.

Analysis of the CNM simulation
In order to establish the CNM security of the coin-tossing protocol depicted in Figure 1, according to

the CNMCT definition of Definition 3.1, we need to show the following properties of the CNM simulator
S described in Figure 2:

• S works in expected polynomial-time.

• The simulatability property, i.e., the output of S is computationally indistinguishable from the view of
A in real CMIM attack.

• The property of strategy-restricted and predefinable randomness.

• The secret-key independence property.

In the following, we analyze the above four properties of the CNM simulator S case by case.

• S works in expected polynomial-time

Note that S works for at most s(n) + 1 repetitions. Then, pending on the ability of S to extract
secret-key of uncovered public-keys in expected polynomial-time during each repetition (equivalently,
within running-time inversely propositional to the probability of secret-key extraction event occurs), S
will work in expected polynomial-time. The technique for covering public-keys follows that of [14, 5].
Below, we specify the secret-key extraction procedures in more details.

Right-player key coverage. Whenever S needs to extract the secret-key SK
(j)
R corresponding

to an uncovered public-key PK
(j)
R , due to successful Stage-1 of the i-th left session during the k-th

simulation repetition w.r.t. covered key set S(k), 1 ≤ i, j ≤ s(n) and 1 ≤ k ≤ s(n) + 1, we combine
the CMIM adversary A and the simulation other than Stage-1 of the i-th left session (i.e., the public
file F , the covered key set S(k), the randomness rA of A, and the randomness rS used by S except
for that to be used in Stage-1 of the i-th left session) into an imaginary (deterministic) knowledge

prover P̂
(i,j)

(S(k),rA,rS)
. Note that, by the description of the CNM simulation depicted in Figure 2, the

Stage-1 of the i-th left session is the first successful Stage-1 of a left session finished by A (during the
k-th simulation repetition) with respect to an uncovered public-key not in S(k). The knowledge-prover

P̂
(i,j)

(S(k),rA,rS)
only interacts with a stand-alone knowledge-verifier of commit-then-PRZK, by running A

internally and mimicking S with respect to S(k) but with the following exceptions: (1) the messages
belonging to the Stage-1 of the i-th left session are relayed between the internal A and the external

27

stand-alone knowledge-verifier of PRZK; (2) P̂
(i,j)

(S(k),rA,rS)
ignores the events of secret-key extraction in

right simulation part, i.e., successful right sessions with respect to uncovered (left-player) public-keys;

(3) whenever A (run internally by P̂
(i,j)

(S(k),rA,rS)
) successfully finishes, for the first time, Stage-1 of a left

session w.r.t. an uncovered (right-player) public-key not in S(k), P̂ (i,j)

(S(k),rA,rS)
just stops.

For any intermediate S(k) used in the k-th simulation repetition, any PK
(j)
R ̸∈ S(k), any randomness

rA of A and any randomness rS used by S except for that to be used in Stage-1 of the i-th left session,
denote by p the probability (taken over the coins used by S for Stage-1 of the i-th left session) that

the public-key used by A in Stage-1 of the i-th left session is PK
(j)
R , and furthermore, the Stage-1 of

the i-th left session is the first successful execution of PRZK w.r.t. an uncovered public-key during
the simulation of S w.r.t. covered-key set S(k). That is, p is the probability, taken over the coins used
by S for Stage-1 of the i-th left session (but for fixed other coins), of the event that S needs to cover

PK
(j)
R ̸∈ S(k) in the i-th left session in its simulation w.r.t. S(k). Clearly, with probability at least p, the

knowledge prover P̂
(i,j)

(S(k),rA,rS)
successfully convinces the stand-alone knowledge verifier of PK

(j)
R . By

the AOK property of PRZK and applying the knowledge-extractor on P̂
(i,j)

(S(k),rA,rS)
, the secret-key SK

(j)
R

will be extracted within running-time inversely propositional to p. Here, when p is negligible, standard
technique, originally proposed in [43] and then deliberated in [58], has to be applied here (to estimate
the value of p) in order to make sure expected polynomial-time knowledge-extraction. In more detail,
the running-time of the naive approach to directly applying knowledge-extractor whenever such events
occur is bounded by T (n) = p · q(n)

p−κ(n) , where κ(n) is the knowledge-error and q(·) is the polynomial

related to the running time of the knowledge-extractor that is q(n)
p−κ(n) . The subtle point is: when p

is negligible, T (n) is not necessarily to be polynomial in n. The reader is referred to [43, 58] for the
technical details of dealing with this issue.

Left-player key coverage.
The coverage procedure for uncovered (left-player) public-keys used by A in successful Stage-5 of

right sessions can be described accordingly, similar to above right-player key coverage. The key point
to note here is: for a successful right session with respect to an uncovered (left-player) public-key

PK
(j)
L , the value extracted in expected polynomial-time is not necessarily to be the secret-key SK

(j)
L ,

though the value extracted must be either SK
(j)
L or SKR (i.e., the preimage of either y0 or y1) , where

PKR = (y0, y1) is the simulated (right-player) public-key. That is, S may abort due to Case-R2 failure
(though it works in expected polynomial-time). We show, in the following analysis of the simulatability
property, Case-R2 failure occurs with at most negligible probability.

• Simulatability

For presentation simplicity, in the following analysis of simulatability we assume the first output

of MCRS is truly random string of length n, i.e., all S
(i)
L ’s and S

(i)
R ’s are truly random strings. The

extension of the simulatability analysis to the case of pseudorandom output ofMCRS is direct.
Assuming truly random output of MCRS , there are three differences between the simulated tran-

script output by S and the view of A in real CMIM attack against the honest left-player of PKL and
the honest right-player of PKR:

Truly random vs. pseudorandom Stage-4 messages: In simulation, the simulator S sends truly

random string r(i) = S
(i)
L at Stage-4 of the i-th left session, for any i, 1 ≤ i ≤ s(n). But, the

honest left-player sends a pseudorandom Stage-4 message, i.e., r(i) = PRFσ(r
(i)′
l) ⊕ r̃

(i)
r , where

r
(i)′
l and r̃

(i)
r are the Stage-2 and Stage-3 messages of the i-th left session.

Witness difference of Stage-5 of left sessions: For any i-th left session w.r.t. a public-key PK
(j)
R ∈

S, the witness used by S in the commit-then-PRZK of Stage-5 is always the extracted secret-key

SK
(j)
R , while the witness used by the honest left-player is always its secret-key SKL.

28

Case-R2 failure: S may stop with simulation failure, due to invalid secret-key extraction in Case-R2
in the right simulation part.

We first show that, conditioned on Case-R2 failure does not occur, the output of S is indistinguishable
from the real view of A. Specifically, we have the following lemma:

Lemma D.1 Conditioned on Case-R2 failure does not occur, the following ensembles are indistin-
guishable: {S(1n, z, PKL, PKR, SKR)}1n,PKL∈KL,(PKR,SKR)∈RR

KEY ,z∈{0,1}∗ (defined in Definition 3.1)

and {viewL(SKL),R(SKR)
A (1n, z, PKL, PKR)}1n,PKL∈KL,(PKR,SKR)∈RR

KEY ,z∈{0,1}∗ (defined in accordance

with the experiment ExptACMIM (1n, z) described in Section 2).

Proof (of Lemma D.1). We first note that, conditioned on Case-R2 failure does not occur and
assuming the truly random output of MCRS , S perfectly emulates the honest right-player of PKR in
right simulation part.

The left two differences all are w.r.t. left session simulation. Intuitively, in real interaction the seed
σ of PRF is committed into left-player public-key PKL and is re-committed and proved concurrently
in Stage-5 of left sessions, the CMIM adversary may potentially gain some knowledge about the random
seed σ by concurrent interaction, which enabling it to set its Stage-3 messages of left sessions maliciously
depending on the output of PRFσ. Note that in real interaction, the Stage-4 messages sent by honest
left-player are determined by the PRF seed and the Stage-2 messages. Thus, the Stage-4 messages of left
sessions in real interaction may be distinguishable from truly random strings as sent by the simulator
S in simulation. The still indistinguishability between the simulated transcript and the real view of A
is proved by hybrid arguments.

We consider a hybrid mental experiment H. H mimics S(1n, z, PKL, PKR, SKR), with additionally
possessing SKL = (σ, sσ) and with the following exception: At Stage-4 of any left session, H just

emulates the honest left-player by setting the Stage-4 message r(i) to be PRFσ(r
(i)′
l)⊕ r̃

(i)
r (rather than

sending S
(i)
L as S does); In Stage-5 of any left session w.r.t. a covered key PK

(j)
R (for which H has

already learnt the corresponding secret-key SK
(j)
L), H still emulates S by using the extracted secret-

key SK
(j)
R as the witness (specifically, it commits to SK

(j)
R ||0t and finishes PRZK accordingly as the

simulator S does).
The difference between the view of A in H and the view of A in the simulation of S lies in the

difference of Stage-4 messages of left sessions. Suppose that the view of A in H is distinguishable from
the view of A in the simulation of S, then it implies that there exists a PPT algorithm D that, given
the commitment of the PRF seed, i.e., PKL = C(σ, sσ), can distinguish the output of PRFσ from truly
random strings. Specifically, on input PKL, D emulates H or S by having oracle access to PRFσ or a
truly random function; Whenever it needs to send Stage-4 message in a left session, it just queries its
oracle with the Stage-2 message. Clearly, if the oracle is PRFσ, then D perfectly emulates H, otherwise
(i.e., the oracle is a truly random function), it perfectly emulates the simulation of S.

So, we conclude that if the view of A in H is distinguishable from the view of A in the simulation
of S, then the PPT algorithm D that, given the commitment of the PRF seed σ, can distinguish the
output of PRFσ from that of truly random function. Consider the case that D, given the commitment
c = C(σ), has oracle access to an independent PRFσ′ of an independent random seed σ′ or a truly
random function. Due to the pseudorandomness of PRF , the output of D(c) with oracle access to
PRFσ′ is indistinguishable from the output of D(c) with oracle access to a truly random function. It
implies that D, given the commitment c = C(σ), can distinguish the output of PRFσ and the output
of PRFσ′ , where σ and σ′ are independent random seeds. But, this violates the computational hiding
property of the commitment scheme C. Specifically, given two random strings of length n, (s0, s1), and
a commitment cb = C(sb) for a random bit b, the algorithm D can be used to distinguish the value
committed in cb, which violates the computational hiding property of C.

Now, we consider the difference between the output of H and the view of A in real execution. Recall
that, as we have shown the view of A in H is indistinguishable from that in the simulation and we have
assumed Case-R2 failure does not occur in the simulation of S, Case-R2 failure can occur in H with

29

at most negligible probability. Then, the difference between the output of H and the view of A in real
execution lies in the witnesses used in Stage-5 of left sessions. Specifically, H still uses the extracted
right-player secret-keys in Stage-5 of left sessions, while the honest left-player always uses its secret-key
SKL in Stage-5 of left sessions in real execution. By hybrid arguments, the difference can be reduced to
violate the regular WI property of commit-then-PRZK. Note that commit-then-PRZK is itself regular
WI for NP (actually, any commit-then-SWI is itself regular WI).

In more detail, we consider the mental experimentMb, b ∈ {0, 1}. On input {(PKL, SKL), (PKR, SKR)}
and public file F , and auxiliary information z to the CMIM adversary A 1, the mental Mb also takes
as input all secret-keys corresponding to right-player public-keys in the public file F (in case the corre-
sponding secret-keys exist). Mb runs the CMIM adversary A as follows:

1. Mb emulates the honest right-player of PKR (with SKR as the witness) in right sessions. In par-
ticular, M just sends truly random Stage-3 messages in all right sessions, and ignores knowledge-
extraction of left-player secret-keys in right sessions (i.e., in case A successfully finishes a right

session w.r.t an uncovered public-key PK
(j)
L , Mb ignores the need of secret-key extraction and just

moves on);

2. For any i, j, 1 ≤ i ≤ s(n) and 1 ≤ j ≤ s(n)+1, in the i-th left session w.r.t. right-player public-key

PK
(j)
R , Mb emulates the honest left-player of PKL until Stage-4 (in particular, it sets the Stage-4

message r(i) to be PRFσ(r
(i)′
l)⊕ r̃

(i)
r), but with the following exception in Stage-5:

• If b = 0, then Mb just emulates the honest left-player in Stage-5 of the left session, with SKL

as its witness.

• If b = 1, Mb still emulates the simulator by using the secret-key SK
(j)
R , for which we assume

it exists and M knows, as the witness in Stage-5. Specifically, it commits to SK
(j)
R ||0t and

finishes PRZK accordingly as the simulator S does.

It’s easy to see that the output of M0 is identical to the real view of A in real execution, and the
output of M1 is indistinguishable from the output of H. Then, suppose the real view of A in real
execution is distinguishable from the output of H, by hybrid arguments we can break the regular WI
of commit-then-PRZK. �

Now, we show that Case-R2 failure indeed occurs with negligible probability, from which the simu-
latability of the CNM simulation is established.

Lemma D.2 Case-R2 failure occurs with negligible probability.

Proof (of Lemma D.2). Suppose Case-R2 failure occurs with non-negligible probability. That is, for
some polynomial p(n) and infinitely many n’s, with probability of 1

p(n) there exist k, i, j, 1 ≤ k ≤ s(n)+1

and 1 ≤ i, j ≤ s(n), such that in the k-th simulation repetition A successfully finishes the i-th right

session with respect to an uncovered public-key PK
(j)
L ̸∈ S ∪ {PKL}, furthermore, the k-th simulation

repetition is the first one encountering Case-R2 failure and the i-th right session is the first successful
session w.r.t. an uncovered public-key not in S ∪ {PKL} during the k-th simulation repetition, but the

simulator fails in extracting the corresponding secret-key SK
(j)
L . Recall that S makes at most s(n) + 1

simulation trials (repetitions) and each simulation trial uses fresh randomness in the proof stages; S
starts knowledge-extraction whenever it encounters a successful session w.r.t. an uncovered public-key
different from PKL; Whenever Case-R2 failure occurs S aborts the whole simulation, which implies
that the k-th simulation repetition is also the last simulation trial.

Note that, by the AOK property of PRZK (we can combine the k-th simulation repetition except
for the Stage-5 of the i-th right session into a stand-alone knowledge prover of the PRZK), in this case

the simulator still extracts some value that is determined by the statistically-binding commitment c̃
(i)
crs

at the start of Stage-5 of the i-th right session. According to the AOK property of PRZK, there are

two possibilities for the value committed to c̃
(i)
crs and extracted by S assuming Case-R2 failure.

1Recall that, in accordance with the definition of CNMCT, z is a priori information of A that is independent from the
public file F (in particular, PKL and PKR).

30

Case-1. The value committed is the preimage of y1−b. Recall that PKR = (y0, y1) is the simulated
public-key of honest right player, with SKR = sb for a random bit b such that yb = f(sb).

Case-2. The value committed is the preimage of yb.

Due to the one-wayness of the OWF f , it is easy to see that Case-1 can occur only with negligible
probability. Specifically, consider the case that y1−b is given to the simulator, rather than generated by
the simulator itself.

Below, we show that Case-2 occurs also with negligible probability, from which Lemma D.2 is then
established.

We consider the following two experiments: E(1n, z, PKL, PKR, sb), where sb = SKR and b ∈ {0, 1}.
The experiment E(1n, z, PKL, PKR, sb) consists of two phases (or algorithms), denoted by E1 and E2:
In the first phase, E1 just runs S(1n, z, PKL, PKR, sb) until S stops. Denote by Cb the set of extracted-
keys, corresponding to public-keys in F−{PKR}, which are extracted and used by S in its last simulation
trial (recall that the first simulation repetition encountering Case-R2 failure is also the last simulation
repetition). Specifically, suppose S uses SKR = sb in the simulation and stops in the k-th simulation

repetition with respect to covered-key set, denoted S(k)b , then Cb = S(k)b − {(PKR, SKR)}. Note that
Cb does not include (PKR, SKR) now. The set Cb, the public-key file F = F ′ ∪ {PKL, PKR} and the
state information τ are passed on to E2, where (F

′, τ) is the output of (the key-generation stage of) the
underlying CMIM adversary A(1n, z, PKL, PKR) (run by S).

Then, in the second phase of the experiment E, a PPT algorithm E2(1
n, Cb, F, τ) runs (the proof-

stage of) the CMIM adversary A(1n, F, τ) and (re)mimics the simulation of S (to be precise, SPROOF)
at its last simulation trial w.r.t. the set of covered-keys Cb, but with the following exceptions (note that
E2 does not take sb = SKR as input): (1) E2 externally interacts with the prover of commit-then-PRZK
P (1n, sb): Whenever S needs to give a Stage-1 proof of a right session on PKR = (y0, y1), or needs to

give a Stage-5 proof of a left session with respect to PKR
2 on input (PKL, PKR, (r

(i)′
l , r̃

(i)
r , r(i))), E2

just sets the corresponding input, i.e., PKR or (PKL, PKR, (r
(i)′
l , r̃

(i)
r , r

(i)
l)),3 as well as the according

left or right tag, to P (1n, sb), and then relays messages between P (1n, Sb) and the CMIM adversary A;
(2) In case A successfully finishes Stage-1 of a left session with respect to an uncovered public-key not
in Cb ∪ {PKR} in the run of E2(1

n, Cb, F, τ), E2 just stops.
Now, suppose Case-2 of Case-R2 failure occurs with non-negligible probability. That is, with non-

negligible probability, the simulator S aborts due to Case-R2 failure in its last simulation trial with

respect to the covered public-key set Cb, and the value committed in c̃
(i)
crs (in the successful i-th right

session, for some i, 1 ≤ i ≤ s(n), w.r.t. an uncovered public-key PK
(j)
L ̸∈ Cb ∪ {PKL, PKR} during the

simulation trial w.r.t. Cb) is the preimage of yb. Recall that, the successful i-th right session is also the
first successful session w.r.t. an uncovered public-key different from PKL during the simulation trial

w.r.t. Cb. It is easy to see that, with also non-negligible probability, the value committed in c̃
(i)
crs in the i-

th right successful session (which is also the first successful session w.r.t. an uncovered public-key not in
Cb∪{PKL, PKR}) under the run of E2(1

n, Cb, F, τ) is the preimage of yb. We will use this fact to violate
the one-left-many-right simulation/extraction of commit-then-PRZK with adaptively setting input and
tag for the one left-session, where the simulator/extractor of commit-then-PRZK first commits to 0 and
then runs the one-left-many-right simulator/extractor of PRZK.

Before proceeding the analysis, we first present some observations on commit-then-PRZK with re-
stricted input selection and indistinguishable auxiliary information. Consider the following experiments:
EXPT(1n, wb, auxb), where wb ∈ {0, 1}n for b ∈ {0, 1}. In EXPT(1n, wb, auxb), the commit-then-PRZK
for NP is run concurrently, and a many-left-many-right CMIM adversary A, possessing auxiliary infor-
mation auxb and involving at most m(n) left-sessions and at most m(n) right-sessions simultaneously
where m(·) is a positive polynomial, can set the inputs and tags to prover instances of left sessions

2Note that left sessions may be with respect to the simulated public-key PKR, i.e., the CMIM adversary may imper-
sonate the honest right-player of PKR in left sessions.

3Actually, theNP-statements reduced from them for theNP-Complete language for which commit-then-PRZK actually
works.

31

with the following restriction: for any xi, 1 ≤ i ≤ m(n), set by A for the i-th left session of commit-
then-PRZK, the fixed value wb is always a valid NP-witness. In other words, although A has the
power of adaptive input selection for provers, but there exists fixed witness-pair (w0, w1) for all inputs
selected by A. Such adversary is called restricted input-selecting CMIM-adversary. Denote by transb

the transcript of the experiment EXPT(1n, wb, auxb) (i.e., the view of A in EXPT(1n, wb, auxb)), and

by Ŵ b = {ŵb
1, · · · , ŵb

m(n)} the witnesses encoded (determined) by the statistically-binding commit-

ments (at the beginning) of successful right sessions in transb (as in [73], in the unlikely event that a
statistically-binding commitment does not uniquely determine a witness, the corresponding witness is
set to be “⊥”); For a right session that aborts or the tag of the underlying PRZK is identical to that in
one of left sessions, ŵb

i is set to be a special symbol ⊥. We want to show the following proposition:

Proposition D.1 If the ensembles {aux0}n∈N,w0∈{0,1}n,w1∈{0,1}n and {aux1}n∈N,w0∈{0,1}n,w1∈{0,1}n are

indistinguishable, then the ensembles {(trans0, Ŵ 0)}n∈N,w0∈{0,1}n,w1∈{0,1}n in accordance with EXPT(1n,

w0, aux0) and {(trans1, Ŵ 1)}n∈N,w0∈{0,1}n,w1∈{0,1}n in accordance with EXPT(1n, w1, aux1) are also in-
distinguishable.

Proof (of Proposition D.1): This is established by investigating a series of experiments.
First consider two experiments EXPTn

1 (1
n, wb, auxb), where b ∈ {0, 1}. In EXPTn

1 (1
n, wb, auxb), a

one-left-many-right restricted input-selecting MIM adversary A, possessing auxiliary information auxb,
interacts with the prover instance of commit-then-PRZK in one left session and sets the input x of the
left session such that (x,wb) ∈ RL, and concurrently interacts with many honest verifier instances on the
right. From the one-many simulation/extraction SZKAOK property of PRZK (with adaptively setting
input and tag for the one left session) and computational-hiding property of the underlying statistically-
binding commitments, by hybrid arguments, we can conclude that if aux0 is indistinguishable from aux1,
then A’s views and the witnesses encoded (actually extracted) in the two experiments, i.e., (trans0, Ŵ 0)

and (trans1, Ŵ 1)), are indistinguishable.
In more details (as shown in [73]), due to the one-many simulation/extraction perfect ZKAOK prop-

erty of PRZK, for any bit b ∈ {0, 1} (transb, Ŵ b) in EXPTn
1 (1

n, wb, auxb) is identical to (transb, Ŵ b)
in a modified version of EXPTn

1 (1
n, wb, auxb), called commit(wb)-then-simulatedPRZK, in which the

one left-session and many right-sessions are emulated by a PPT algorithm (i.e., the one-left-many-right
simulator/extractor guaranteed by PRZK) with witness extraction for successful right-sessions of dif-
ferent tags (but the witness wb is still committed to the statistically-binding commitment of the left
session). Then, for this experiment, due to the computational hiding property of the statistically-binding

commitment scheme used in commit-then-PRZK, (transb, Ŵ b) of the commit(wb)-then-simulatedPRZK
experiment is computationally indistinguishable from that of the commit(0)-then-simulatedPRZK ex-
periment in which “0” (rather than wb) is committed to the statistically-binding commitment of the
one left session. Note that the commit(0)-then-simulatedPRZK experiment can be performed by a
merely PPT algorithm. The reader is referred to [73] for more details of the hybrid arguments of this
step. Here, we point out that the hybrid arguments of [73] is actually w.r.t. a strengthened version of
commit-then-PRZK, which is referred as signed commit-then-PRZK here. Roughly speaking, the tag
of the underlying PRZK is set to be the public-key of a signature scheme, and the protocol transcript
of commit-then-PRZK is in turn signed by the prover. Some advantages of signed commit-then-PRZK
are: it can work for tags of length poly(n) (rather than O(n) as required by the underlying PRZK), and
it can satisfy some stronger non-malleability requirements w.r.t. session transcripts (rather than only
session tags or inputs). We note this signature-based trick is unnecessary for our purpose in this work.
In particular, the tags of the underlying PRZK in our CNMCT constructions are indeed of length O(n),
and our CNM definitions (for ZK and CT) are based on the normal formulation approach that is not
w.r.t. session transcripts.4

Now we consider the following two experiments: EXPT(1n, w, auxb), where b ∈ {0, 1} and w ∈
{w0, w1}. In EXPT(1n, w, auxb), a many-left-many-right restricted input-selecting MIM adversary A,

4The extension to session-transcript based formulations and protocol implementations of CNMCT and CNMZK are left
for future explorations.

32

possessing auxiliary information auxb, interacts concurrently with many prover instances on the left
(such that w is always a witness for inputs selected adaptively by A for left sessions), and interacts
with many honest verifier instances on the right. Then, the indistinguishability between the ensembles
{(trans0, Ŵ 0)}n∈N,w0∈{0,1}n,w1∈{0,1}n and {(trans1, Ŵ 1)}n∈N,w0∈{0,1}n,w1∈{0,1}n is direct from the indis-
tinguishability between {aux0}n∈N,w0∈{0,1}n,w1∈{0,1}n and {aux1}n∈N,w0∈{0,1}n,w1∈{0,1}n and the adap-
tive one-left-many-right simulation-extractability of PRZK. Specifically, this is derived by a simple
reduction to the above one-left-many-right case. Note that according to the definition of indistinguisha-
bility between ensembles, (w, aux0) and (w, aux1) are indistinguishable. Actually, (w0, w1, aux0) and
(w0, w1, aux1) are indistinguishable. Also, note that all sessions in EXPT(1n, w, auxb) can be emulated
internally by a PPT algorithm given (w, auxb).

In more details, we consider the experiments EXPTn
1 (1

n, w, auxb), where b ∈ {0, 1} and w ∈
{w0, w1}. In the experiment EXPTn

1 (1
n, w, auxb), a one-left-many-right MIM adversary A′ that on

auxiliary input (w, auxb) mimics the CMIM adversary A (of the auxiliary input auxb) in the above
experiment EXPT(1n, w, auxb), with the following modifications: all left-sessions except for the first
left-session are perfectly emulated by A′ by using w as the witness, and A′ externally interacts with
the commit-then-PRZK prover in the first left-session; A′ outputs a simulated view of A that is iden-
tical to the view of A in the experiment EXPT(1n, w, auxb). By the adaptive one-left-many-right
simulation-extractability of PRZK, the view of A and the corresponding witnesses encoded by the
statistically-binding commitments under the run of A′(w, auxb) are indistinguishable from the outputs
of the PPT simulator/extractor guaranteed by PRZK, with auxiliary input (w, auxb), in the commit(0)-
then-simulatedPRZK experiment. As (w, aux0) and (w, aux1) are indistinguishable, we conclude that

{(trans0, Ŵ 0)}n∈N,w0∈{0,1}n,w1∈{0,1}n in accordance with the experiment EXPT(1n, w, aux0) and

{(trans1, Ŵ 1)}n∈N,w0∈{0,1}n,w1∈{0,1}n in accordance with EXPT(1n, w, aux1) are indistinguishable.

We return back to investigate the experiments: EXPT(1n, wb, auxb) with respect to many-left-many-
right restricted input-selecting MIM adversary A. Firstly, the distribution ensemble of
{(trans0, Ŵ 0)}n∈N,w0∈{0,1}n,w1∈{0,1}n in accordance with EXPT(1n, w0, aux0) and the distribution en-

semble of {(trans0, Ŵ 0)}n∈N,w0∈{0,1}n,w1∈{0,1}n in accordance with EXPT(1n, w0, aux1) are indistin-
guishable, if {aux0}n∈N,w0∈{0,1}n,w1∈{0,1}n and {aux1}n∈N,w0∈{0,1}n,w1∈{0,1}n are indistinguishable, where
EXPT(1n, w0, aux1) denotes a hybrid experiment in which the CMIM adversary possesses auxiliary in-
formation aux1 while concurrently interacting on the left with many prover instances of the fixed
witness w0. Then, by a simple hybrid argument to the one-left-many-right case, we get that the
distribution ensemble {(trans0, Ŵ 0)}n∈N,w0∈{0,1}n,w1∈{0,1}n in accordance with EXPT(1n, w0, aux1) is

indistinguishable from the distribution ensemble of {(trans1, Ŵ 1)}n∈N,w0∈{0,1}n,w1∈{0,1}n in accordance
with EXPT(1n, w1, aux1). In more detail, if the above ensembles are distinguishable, then the differ-
ence can be reduced, by hybrid arguments, to the difference of witnesses used in only one left session.
Note that, all sessions other than the one left session can be emulated internally by a PPT algo-
rithm given (w0, w1, aux1). We remark that, here, posing the restricted input selection requirement in
EXPT(1n, wb, auxb), i.e., the fixed w0 and w1 are always the valid witnesses to all statements set by
the CMIM adversary for left-sessions, is critical for the above hybrid arguments to go through.

Proposition D.1 follows. �
Now, we return back to the experiment E(1n, z, PKL, PKR, sb) for finishing the proof of Lemma

D.2. We first prove that {C0}n∈N,s0∈{0,1}n,s1∈{0,1}n is indistinguishable from {C1}n∈N,s0∈{0,1}n,s1∈{0,1}n
according to the analysis of Proposition D.1, where Cb, b ∈ {0, 1}, is the set of extracted-keys (corre-
sponding to public-keys in F −{PKR}) that is used by the simulator S in its last simulation repetition.
Equivalently, Cb is generated by E1 and is passed on to E2. Note that sb = SKR is the simulated
secret-key used by S (equivalently, E1). For presentation simplicity, in the following description we
simply refer to S, E1 and E2 as S(1n, sb), E1(1

n, sb) and E2(1
n, Cb). Actually, we can show that for

any k, 1 ≤ k ≤ s(n) + 1, if the distribution ensemble of the set of extracted-keys used in the (k − 1)-th
simulation repetition of S(1n, s0) using SKR = s0, denoted {Ck−1

0 }n∈N,s0∈{0,1}n,s1∈{0,1}n , is indistin-

guishable from that of {Ck−1
1 }n∈N,s0∈{0,1}n,s1∈{0,1}n (the set of extracted-keys used in the (k − 1)-th

simulation repetition of S(1n, s1)), then the distribution ensembles of {Ck0}n∈N,s0∈{0,1}n,s1∈{0,1}n and

{Ck1}n∈N,s0∈{0,1}n,s1∈{0,1}n are also indistinguishable.

33

We consider another PPT algorithm Ŝ(1n, Ck−1
b) that mimics E2(1

n, Ck−1
b) (with externally inter-

acting with the commit-then-PRZK prover P (1n, sb)) but with the following modifications: the interac-
tions of Stage-1 of left-sessions and Stage-5 of right-sessions, in which the underlying CMIM adversary
A serves as the prover of commit-then-PRZK, are relayed by Ŝ between the underlying CMIM ad-
versary A and external commit-then-PRZK verifiers (who actually just send random coins, as PRZK
is actually public-coin). We remark that the run of Ŝ(1n, Ck−1

b) actually amounts to the experiment

EXPT(1n, wb, auxb) defined in Proposition D.1, where 2s(n) amounts to m(n) as Ŝ can involve at
most 2s(n) sessions in each (left or right) CMIM interaction part, sb amounts to wb, Ck−1

b amounts to
auxb and the interactions with the at most 2s(n) instances of the commit-then-PRZK prover P (1n, sb)
amount to the left-sessions and the interactions between Ŝ (actually A) and the at most 2s(n) in-
stances of the commit-then-PRZK verifier amount to right-sessions. Here, a point of worthy noting
is: though commit-then-PRZK is composed with other interactions (say, the interactions at Stage-2,
Stage-3 and Stage-4), all interactions other than the interactions with the prover P (sb) of commit-
then-PRZK (i.e., the left-sessions of Ŝ) can be internally emulated by Ŝ, though Stage-1 interactions
of left-sessions and Stage-5 interactions of right-sessions (which correspond to the right-sessions of Ŝ
and are just public coins) are not internally emulated by Ŝ. By applying Proposition D.1, we get
that if the ensembles {Ck−1

0 }n∈N,s0∈{0,1}n,s1∈{0,1}n and {Ck−1
1 }n∈N,s0∈{0,1}n,s1∈{0,1}n are distinguishable,

{Ck0}n∈N,s0∈{0,1}n,s1∈{0,1}n and {Ck1}n∈N,s0∈{0,1}n,s1∈{0,1}n are also distinguishable. Finally, note that C00
and C01 (the set of extracted-keys corresponding to F − {PKR} at the beginning of the simulation)
are identical, i.e., both of them are the empty set. By inductive steps, we get that the distribution
ensembles of {Ck0}n∈N,s0∈{0,1}n,s1∈{0,1}n and {Ck1}n∈N,s0∈{0,1}n,s1∈{0,1}n are indistinguishable for any k,
1 ≤ k ≤ s(n) + 1. Here, we note that the above analysis (for showing the indistinguishability between
{Ck0}n∈N,s0∈{0,1}n,s1∈{0,1}n and {Ck1}n∈N,s0∈{0,1}n,s1∈{0,1}n, for any k, 1 ≤ k ≤ s(n) + 1) works also for
the case that C00 = C01 = {sα}, where α ∈ {0, 1} and sα ∈ {s0, s1} is a fixed value and is independent of
sb. This property will be used in the subsequent analysis of secret-key independence.

But, suppose Case-2 of Case-R2 failure occurs with non-negligible probability. Then, with also non-
negligible probability, the value committed to the statistically-binding commitment (at the beginning)
of a (actually the first) successful right-session of commit-then-PRZK w.r.t. an uncovered public-key not
in Cb ∪ {PKL, PKR} under the run of the CMIM algorithm Ŝ (equivalently, E2(1

n, Cb)), with auxiliary
input Cb where b ∈ {0, 1} and C0 and C1 are indistinguishable, is the preimage of yb. Suppose this right-
session is the i-th right-session run by Ŝ(1n, sb), 1 ≤ i ≤ 2s(n), it can be directly checked that, with

overwhelming probability, the tag used by Stage-5 of this i-th right session, denoted (PK
(j)
L , r

(i)
r , r̃(i))

where PK
(j)
L ̸∈ Cb∪{PKL, PKR} and r

(i)
r is a random n-bit string, must be different from the tags used

by the prover P (1n, sb) of commit-then-PRZK. Recall that the tags of Stage-1 of right sessions (run
by P (sb)) is of the form (·, y0, y1) and the tags of Stage-5 of left sessions (run by P (sb)) is of the form
(PKL, ·, ·). This means that, by concurrently interacting with the prover P (sb) of commit-then-PRZK
in left-sessions and with the commit-then-PRZK verifier instances in the right-sessions, Ŝ(1n, Cb) can
successfully commit the preimage of yb in a successful right session that is of a tag different from all
the tags of the left-session interactions with P (1n, sb) and is actually the first right-session w.r.t an
uncovered public-key not in Cb ∪{PKR, PKL}, which violates Proposition D.1. This shows that Case-2
of Case-R2 failure can occur also with negligible probability. Thus, Case-R2 failure can occur with at
most negligible probability. This finishes the proof of Lemma D.2, from which the simulatability of the
CNM simulation depicted in Figure 2 is then established. �

Next, before proceeding the analysis of the property of strategy-restricted and pre-definable ran-
domness, we first investigate the property of secret-key independence which is essentially implied by the
above analysis of Lemma D.2 and Proposition D.1.

• Secret-key independence

Specifically, we need to show that Pr[R(SKR, str, sta) = 1] is negligibly close to Pr[R(SK ′
R, str, sta)

= 1] for any polynomial-time computable relation R. In more details, for any pair (s0, s1) in the
(simulated right-player) key-generation stage, denote by (strb, stab) the output of S(1n, sb) when it
is using SKR = sb. Then, Pr[R(SK, str, sta) = 1] = 1

2 Pr[R(s0, str
0, sta0) = 1|S uses SKR =

34

s0 in generating (str0, sta0)] + 1
2 Pr[R(s1, str

1, sta1) = 1|S uses SKR = s1 in generating (str1, sta1)],
and Pr[R(SK ′

R, str, sta) = 1] = 1
2 Pr[R(s0, str

1, sta1) = 1|S uses SKR = s1in generating (str1, sta1)] +
1
2 Pr[R(s1, str

0, sta0) = 1|S uses SKR = s0 in generating (str0, sta0)]. Suppose the secret-key inde-
pendence property does not hold, it implies that there exists a bit α ∈ {0, 1} such that the differ-
ence between Pr[R(sα, str0, sta0) = 1|S uses s0 in generating (str0, sta0)] and Pr[R(sα, str1, sta1) =
1|S uses s1 in generating (str1, sta1)] is non-negligible. It implies that (sα, str

0, sta0) and (sα, str
1, sta1)

are distinguishable. But, note that the analysis of Lemma D.2 and Proposition D.1 has already estab-
lished that the distribution ensembles of {S(1n, s0) = (str0, sta0)}n∈N,s0∈{0,1}n,s1∈{0,1}n and {S(1n, s1) =
(str1, sta1)}n∈N,s0∈{0,1}n,s1∈{0,1}n are indistinguishable. Specifically, the distribution ensembles of the
sets of extracted-keys corresponding to the public-keys in F − {PKR}, {C0}n∈N,s0∈{0,1}n,s1∈{0,1}n and
{C1}n∈N,s0∈{0,1}n,s1∈{0,1}n used by S(1n, sb) for b ∈ {0, 1} in the last simulation repetition, are indistin-
guishable, and then the indistinguishability between the ensembles {(str0, sta0)}n∈N,s0∈{0,1}n,s1∈{0,1}n
and {(str1, sta1)}n∈N,s0∈{0,1}n,s1∈{0,1}n are from Proposition D.1.

• Strategy-restricted and predefinable randomness

Now, we proceed to show the strategy-restricted and predefinable randomness property of the CNM

simulator S depicted in Figure 2. Denote by RL = {R(1)
L , R

(2)
L , · · ·R(s(n))

L } the coin-tossing outputs of

the s(n) left sessions in str (i.e., the first output of S), and by staL = {sta(1)L , sta
(2)
L , · · · , sta(s(n))L }

the state information corresponding to RL included in sta (i.e., the second output of S). Similarly,

denote by RR = {R(1)
R , R

(2)
R , · · ·R(s(n))

R } the coin-tossing outputs of the s(n) right sessions in str, and

by staL = {sta(1)R , sta
(2)
R , · · · , sta(s(n))R } the state information for RR. We want to show that, with

overwhelming probability, both the distribution of (RL, staL) and that of (RR, staR) are identical to that

ofMs(n)
CRS(1

n). Recall that, ({r1, r2, ·, rs(n)}, {τr1 , τr2 , · · · , τrs(n)
}) ←−Ms(n)

CRS(1
n) denotes the output of

the experiment of runningMCRS(1
n) independently s(n) times.

Note that, according to the CNM simulation described in Figure 2, for any i, 1 ≤ i ≤ s(n), the

output of the i-th left session, i.e., R
(i)
L , in the simulation is always S

(i)
L and sta

(i)
L is always τ

(i)
L , where

(S
(i)
L , τ

(i)
L) is the output of an independent run ofMCRS(1

n). It is directly followed that the distribution

of (RL, staL) is identical to that ofMs(n)
CRS(1

n).
The complicated point here is to show that, with overwhelming probability, the distribution of

(RR, staR) is also identical to that ofMs(n)
CRS(1

n). According to the CNM simulation depicted in Figure
2, if we can prove that, with overwhelming probability, for any i, 1 ≤ i ≤ s(n), the coin-tossing

output of the successful i-th right session R
(i)
R is either S

(i)
R or R

(k)
L = S

(k)
L for some k, 1 ≤ k ≤ s(n);

furthermore, any left-session output S
(k)
L can be the coin-tossing output for at most one successful

right session (which implies the coin-tossing outputs of successful right sessions are independent), then

the distribution of (RR, staR) is also identical to that of Ms(n)
CRS(1

n). In the following description, for
presentation simplicity, we sometimes omit some unlikely events occurring with negligible probability.

For any i, 1 ≤ i ≤ s(n), we consider the successful i-th right session with respect to a public-key

PK
(j)
L . As we have shown that Case-R2 failure occurs with negligible probability, we get PK

(j)
L ∈

Cb ∪ {PKR, PKL}, where Cb is the set of extracted-keys (corresponding to public-keys in F − {PKR})
used by S(sb) in its last simulation repetition.

We first observe that, if PK
(j)
L = PKL then with overwhelming probability the tag of Stage-5 of

the successful i-th right session must be identical to that of Stage-5 of a left session simulated by the
simulator S. Recall that all the Stage-5 tags of right sessions are different strings, as they contain
random Stage-3 strings sent by the simulator. This means that Stage-5 tags of right sessions are also
different from Stage-1 tags of right sessions simulated by S (note that all Stage-1 tags of right sessions
consist of the fixed PRR). Now, suppose the Stage-5 tag of the successful i-th right session is also
different from the Stage-5 tags of all left sessions simulated by S, then it implies that the tag used by
the CMIM adversary for Stage-5 of the i-th right session is different from all tags used by the simulator
(particularly, the prover P (sb) of commit-then-PRZK run by E2(1

n, Cb) or Ŝ(1n, Cb) in the analysis of
Lemma D.2).

35

By the AOK property of PRZK, it implies that the value committed to c̃
(i)
crs (sent by A in Stage-5

of the i-th right session) can be extracted. We consider the possibilities of the value committed to c̃
(i)
crs:

• By the one-wayness of y1−b the value committed cannot be the preimage of y1−b;

• According to the analysis of Lemma D.2, the value also cannot be the preimage of yb.

Thus, the value committed (that can be extracted) will be the secret-key of PKL, which however violates
the one-wayness of PKL as the simulator never knows and uses the secret-key of PKL in its simulation.
Thus, we conclude that, if a successful right session is w.r.t. PKL, the tag used by A for commit-
then-PRZK of Stage-5 must be identical to that of one left-session simulated by S. As the Stage-5 tag
consists of the coin-tossing output, i.e., the Stage-4 message, this means that the coin-tossing output of

the i-th right session must be R
(k)
L = S

(k)
L for some k, 1 ≤ k ≤ s(n).

Now, we consider the case PK
(j)
L ̸= PKL but PK

(j)
L ∈ Cb ∪ {PKR}. In this case, S has already

learnt the corresponding secret-key SK
(j)
L . Now, suppose the coin-tossing output of the successful i-th

right session is neither S
(i)
R nor R

(k)
L = S

(k)
L for all k, 1 ≤ k ≤ s(n). This implies that the Stage-5 tag

used by A in the successful i-th right session is different from Stage-5 tags of all left sessions 5 as well as
the Stage-1 tags of all right sessions simulated by S. Again, by the AOK property of PRZK, we consider

the value committed to c̃
(i)
crs: According to the simulation of S, it always sets Stage-3 message r

(i)
r of

right session to be PRF
SK

(j)
L

(r̃
(i)′
l) ⊕ S

(i)
R , where r̃

(i)′
l is the Stage-2 message of the i-th right session

sent by the CMIM adversary A. Suppose the coin-tossing output of the successful i-th right session

is not S
(i)
R , then (by the AOK of PRZK) the value committed to c̃

(i)
crs cannot be SK

(j)
L , as otherwise

(with overwhelming probability) the NP-statement to be proved by PRZK in Stage-5 of the i-th right

session is false. This means that the value committed to c̃
(i)
crs will be the preimage of either y1−b or yb.

But, each case reaches the contradiction: committing to the preimage of y1−b is impossible due to the
one-wayness of y1−b; committing to the preimage of yb violates the one-left-many-right non-malleability
of PRZK as demonstrated in the analysis of Lemma D.2. So, we conclude that, with overwhelming

probability, for any successful right session the coin-tossing output is either the independent value S
(i)
R

or S
(k)
L for some k, 1 ≤ k ≤ s(n) (i.e., the coin-tossing output of one left session).
To finally establish the property of strategy-restricted and predefinable randomness, we need to

further show, for any S
(k)
L it can occur as Stage-4 message (i.e., the coin-tossing output) for at most one

successful right session. Suppose there are i0, i1, 1 ≤ i0 ̸= i1 ≤ s(n), such that both of the i0-th right

session and the i1-th right session are successful with the same Stage-4 message S
(k)
L . Recall that the

Stage-5 tag of each of the two right sessions includes the same S
(k)
L as well as a random Stage-3 message

sent by the simulator; Also note that the S
(k)
L can appear as a part of Stage-5 tag, as well as coin-tossing

output, for at most one left session, as all coin-tossing outputs (i.e., Stage-4 messages) of left sessions
are independent random strings output by MCRS . This implies that, with overwhelming probability,
there must exist a bit b such that the Stage-5 tag of the ib-th right session is different from all Stage-5
tags of left sessions (run by the simulator) and Stage-1 tags of right sessions (run by the simulator).
According to above clarifications and analysis, with overwhelming probability, the (left-player) public-

key PK
(j)
L used by A in the ib-th successful right session is covered and is not PKL (as any right-session

w.r.t. PKL is of tag identical to that of one left-session), and the value committed in c̃
(ib)
crs is neither

the secret-key of the covered public-key PK
(j)
L (as, otherwise, the NP-statement successfully proved

by PRZK in the Stage-5 of the ib-th right-session is actually false) nor the preimage of y1−b (due to
the one-wayness of f); Also, the value committed cannot be the preimage of yb in accordance with the
analysis of Lemma D.2. Contradiction is reached in either case.

The proof of Theorem 4.1 is finished. �
On extension to multiple public-keys input to the key-generation stage of A. For

the general case of multiple public-keys input to the key generation stage of A, in the definition

5Note that all Stage-5 tags of left sessions are of the form (PKL, ·, ·), and the Stage-5 tag of the successful i-th right

session is of the form (PK
(j)
L , ·, ·) for PK

(j)
L ̸= PKL.

36

of CNMCT each of the values (PKL, SKL) and (PKR, SKR, SK
′
R) will be changed to be a vector

(PKL = {PK
(1)
L , · · · , PK

(k)
L }, SKL = {SK(1)

L , · · · , SK(k)
L } and ((PKR = {PK

(1)
R , · · · , PK

(k)
R }, SKR =

{SK(1)
R , · · · , SK(k)

R }, SK
′
R = {SK(1)′

R , · · · , SK(k)′
R }), where k is polynomial in n. Here, for presentation

simplicity, we have assumed there are equal number of honest left and right players. We remark that,
as the simulator does not know the secret-keys of honest left-players and only simulates key-generations
of honest right-players, we do not need to take secret-keys of honest left-players into account in the
formulation of secret-key independence. We note that the proof of Theorem 4.1 can be easily extended
to this general case.

The proof of Lemma D.1 can be extended to this general case by simple hybrid arguments. Specifi-
cally, we consider the two differences dealt with by the proof Lemma D.1 in this general case:

• Truly random vs. pseudorandom Stage-4 messages: For the general case, we need to show, with

respect to the hybrid experiment H in the proof of Lemma D.1, that given PKL = {PK
(1)
L =

C(σ1, sσ1), · · · , PK
(k)
L = C(σk, sσk

)}, no efficient algorithm A can distinguish the interactions
with a vector of PRFs (PRFσ1 , · · · , PRFσk

) or a vector of truly random functions (H1, · · · ,Hk).
Suppose it is not the case, we consider a series of hybrid experiment H1, · · · ,Hk, where in Hi,
1 ≤ i ≤ k, an efficient algorithm Ai interacts with a vector (PRFσ1 , · · · , PRFσi ,Hi+1, · · · ,Hk).
By hybrid argument, there must exist an i, such that the output of Ai and Ai+1 is distinguishable.

This shows that, given PKL = {PK
(1)
L , · · · , PK

(k)
L)}, there exists an efficient algorithm A′, which

encodes (σ1, · · · , σi) and runs Ai as a subroutine, can distinguish the interactions with PRFσi+1

or a truly random function, which however in turn violates the computational hiding property of
C as shown in the proof of Lemma D.1.

• Witness difference of Stage-5 of left sessions: Specifically, for the general case, for any i-th left

session specified by an honest left-player public-key PK
(i)
L and a covered right-player public-key

PK
(j)
R ∈ S, the witness used by S in the commit-then-PRZK of Stage-5 is always the extracted

secret-key SK
(j)
R , while the witness used by the honest left-player is always its secret-key SKi

L.
The analysis of Lemma D.1 can be straightforwardly extended to this general case, by the regular
WI property of commit-then-PRZK which holds under concurrent self composition.

Now, we consider the proof of Lemma D.2 in the general case. In the general case, the simulator S

simulates a vector of right-player public-key and secret-key pairs {(SK(1)
R , SK

(1)′
R), · · · , (SK(k)

R , SK
(k′)
R)},

and only uses the vector SKR = {SK(1)
R , · · · , SK(k)

R } in its simulation. The Case-R2 failure in this
general case says that the witness extracted for a successful right session, specified by an uncovered

public-key PK
(j)
L and honest right-player public-key PK

(i)
R , is not SK

(j)
L but SK

(i)
R (note that according

to the one-wayness of f , the extracted witness cannot be SK
(i)′
R). That Case-R2 failure occurs with

negligible probability in the general case is from the following observation on an extended experiment
of commit-then-PRZK with restricted input selection and indistinguishable auxiliary inputs.

Consider the following experiments: EXPT(1n, wb, auxb), where wb = (wb
1, · · · , wb

k) ∈ ({0, 1}n)k for

b ∈ {0, 1}. Here, one of (w0, w1) corresponds to SKR, and one corresponds to SK
′
R in the simulation of

S. In EXPT(1n, wb, auxb), the commit-then-PRZK for NP is run concurrently, and a many-left-many-
right CMIM adversary A, possessing auxiliary information auxb and involving at most m(n) left-sessions
and at most m(n) right-sessions simultaneously, can set the inputs and tags to prover instances of left
sessions with the following restriction: for any xi, 1 ≤ i ≤ m(n), set by A for the i-th left session
of commit-then-PRZK, there always exists a component wb

j ∈ wb for some j, 1 ≤ j ≤ k (different xi
may correspond to different wb

j), such that wb
j is a valid NP-witness for xi. In the simulation of S,

for any statement involving the simulated public-key PK
(i)
R , the secret-key SK(i) ∈ SKR used by S is

always a valid NP-witness. Straightforward investigation shows that Proposition D.1 still holds with
respect to the (extended) experiment EXPT(1n, wb, auxb). This establishes the simulatability property
in the general case, from which the properties of secret-key independence, and strategy-restricted and
predefinable randomness, in the general case are also straightforwardly derived.

37

