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Abstract. Canetti’s universal composition theorem and the joint state composition theorems by
Canetti and Rabin are useful and widely employed tools for the modular design and analysis of cryp-
tographic protocols. However, these theorems assume that parties participating in a protocol session
have pre-established a unique session ID (SID). While the use of such SIDs is a good design princi-
ple, existing protocols, in particular real-world security protocols, typically do not use pre-established
SIDs, at least not explicitly and not in the particular way stipulated by the theorems. As a result, the
composition theorems cannot be applied for analyzing such protocols in a modular and faithful way.
In this paper, we therefore present universal and joint state composition theorems which do not assume
pre-established SIDs. In our joint state composition theorem, the joint state is an ideal functionality
which supports several cryptographic operations, including public-key encryption, (authenticated and
unauthenticated) symmetric encryption, MACs, digital signatures, and key derivation. This functional-
ity has recently been proposed by Küsters and Tuengerthal and has been shown to be realizable under
standard cryptographic assumptions and for a reasonable class of environments. We demonstrate the
usefulness of our composition theorems by several case studies on real-world security protocols, includ-
ing IEEE 802.11i, SSL/TLS, SSH, IPsec, and EAP-PSK. While our applications focus on real-world
security protocols, our theorems, models, and techniques should be useful beyond this domain.

1 Introduction

Universal composition theorems, such as Canetti’s composition theorem in the UC model [8] and Küsters’
composition theorem in the IITM model [27], allow to obtain security for multiple sessions of a protocol by
analyzing just a single protocol session. These theorems assume that different protocol sessions have disjoint
state; in particular, each session has to use fresh randomness. This can lead to inefficient and impractical
protocols, since, for example, every session has to use fresh long-term symmetric and public/private keys.
Canetti and Rabin [13] therefore proposed to combine universal composition theorems with what they called
composition theorems with joint state. As the name suggests, such theorems yield systems in which different
sessions may use some joint state, e.g., the same long-term and public/private keys.

However, these theorems, both for universal and joint state composition, assume that parties participating
in a protocol session have pre-established a unique session ID (SID), and as a result (see Section 3), make
heavy use of this SID in a specific way stipulated by the universal and joint state composition theorems.
On the one hand, the use of such SIDs is a good design principle and as discussed by Canetti [9] and Barak
et al. [2] establishing such SIDs is simple. On the other hand, many existing protocols, including most real-
world security protocols, do not make use of such pre-established SIDs, at least not explicitly and not in
the particular way stipulated by the theorems. As a result, these theorems cannot be used for the faithful
modular analysis of such protocols; at most for analyzing idealized variants of the original protocols, which is
unsatisfactory and risky, in the sense that attacks on the original protocols might be missed (see Section 4).
The problems resulting from pre-established SIDs in the existing composition theorems do not seem to have
been brought out in previous work.

The goal of this paper is therefore to obtain general universal composition and joint state composition
theorems that do not assume pre-established SIDs and their use in cryptographic protocols, and hence, to
enable modular, yet faithful analysis of protocols, without the need to modify/idealize these protocols. A
main motivation for our work comes from the analysis of real-world security protocols. While many attacks



on such protocols have been uncovered (see, e.g., [14, 17, 1, 35, 33] for recent examples), their comprehensive
analysis still poses a big challenge, as often pointed out in the literature (see, e.g., [34, 26, 12]). A central
problem is the complexity of these protocols. In order to tame the complexity, modular analysis of such
protocols should be pushed as far as possible, but without giving up on accurate modeling. Our composition
theorems are useful tools for this kind of modular and faithful analysis. They should be of interest also
beyond the analysis of real-world security protocols. More precisely, the main contributions of our work are
as follows:

Contribution of this Paper. Our universal composition theorem without pre-established SIDs states that
if a protocol realizes an ideal functionality for a single session, then it also realizes the ideal functionality
for multiple sessions, subject to mild restrictions on the single-session simulator. The important point is
that a user invokes a protocol instance simply with a local SID, locally chosen and managed by the user
herself, rather than with an SID pre-established with other users for that session. This not only provides the
user with a more common and convenient interface, where the user addresses her protocol instances with
the corresponding local SIDs, but, more importantly, as explained in Section 3, frees the real protocol from
the need to use pre-established SIDs and allows for realizations that faithfully model existing (real-world)
protocols.

In our joint state composition theorem without pre-established SIDs we consider protocols that use an
ideal crypto functionality Fcrypto proposed in [30]. The functionality Fcrypto allows its users to perform several
cryptographic operations in an ideal way, including public-key encryption, authenticated and unauthenticated
symmetric encryption, MACs, digital signatures, key derivation, and establishing pre-shared keys. As shown
in [30], Fcrypto can be realized under standard cryptographic assumptions, subject to reasonable restrictions
on the environment. Now, our joint state composition theorem states that under a certain condition on the
protocol, which we call implicit (session) disjointness, it suffices to show that the protocol (which may use
Fcrypto) realizes an ideal functionality for a single session of the protocol to obtain security for multiple
sessions of the protocol, where all sessions may use the same ideal crypto functionality Fcrypto; again we put
mild restrictions on the single-session simulator. So, Fcrypto (or its realization), with the keys stored in it,
constitutes the joint state across sessions. As in the case of the universal composition theorem, users again
invoke protocol instances with locally chosen and managed SIDs. Unlike joint state composition theorems
with pre-established SIDs, our joint state composition theorem does not modify/idealize the original protocol.

Given our theorems, (real-world) security protocols can be analyzed with a high degree of modularity and
without giving up on precision: Once implicit disjointness is established for a protocol—first proof step—, it
suffices to carry out single-session analysis for the protocols—second proof step—in order to obtain multi-
session security with joint state for the original protocol, not just an idealized version with pre-established
SIDs added in various places, as explained in Sections 3 and 4. We emphasize that, due to the use of Fcrypto,
in all proof steps often merely information-theoretic or purely syntactical reasoning, without reasoning about
probabilities and without reduction proofs, suffices.

We demonstrate the usefulness of our theorems and approach by several case studies on real-world security
protocols, namely (subprotocols of) IEEE 802.11i, SSL/TLS, SSH, IPsec, and EAP-PSK. More precisely,
we show that all these protocols satisfy implicit disjointness, confirming our believe that this property is
satisfied by many (maybe most) real-world security protocols. While proving implicit disjointness requires to
reason about multiple sessions of a protocol, this step is nevertheless relatively easy. In fact, as demonstrated
by our case studies, to prove implicit disjointness, typically the security properties of only a fraction of
the primitives used in a protocol need to be considered. For example, to prove that the SSH key exchange
protocol satisfies implicit disjointness, only collision resistance of the hash function is needed, but not the
security of the encryption scheme, the MAC, or the Diffie-Hellman key exchange used in SSH. Now since
the above mentioned protocols satisfy implicit disjointness, to show that these protocols are secure key
exchange or secure channel protocols, single-session analysis suffices. Performing this single-session analysis
for all these protocols is out of the scope of this paper. (The main point of this paper is to provide the
machinery for faithful and highly modular analysis, not to provide a full-fledged analysis of these protocols.)
However, for some of the mentioned protocols single-session analysis has been carried out in other works
(see Section 5). For example, this has been done for SSL/TLS by Gajek et al. in [19]. However, they used
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the original joint state theorem to lift their security result to the multi-session case, resulting in an idealized
version of SSL/TLS (see Section 5.2). With our theorems and since SSL/TLS satisfies implicit disjointness,
multi-session security follows for the original, unmodified protocol.

Structure of this Paper. In Section 2, we recall basics on simulation-based security and introduce some
notation. Our universal composition and joint state composition theorems without pre-established SIDs are
then presented in Sections 3 and 4, respectively, with applications discussed in Section 5. Full details and
proofs can be found in the appendix.

2 Simulation-based Security

We briefly recall the framework of simulation-based security, following [27] (see also Appendix A). We provide
a quite model-independent account as the details of the model are not important to be able to follow the
rest of this paper.

The General Computational Model. The general computational model is defined in terms of systems of
interactive Turing machines. An interactive Turing machine (shortly, machine) is a probabilistic polynomial-
time Turing machine with named input and output tapes. The names determine how different machines are
connected in a system of machines. A system S of machines is of the form S = M1 | · · · |Mk | !M ′1 | · · · | !M ′k′
where the Mi and M ′j are machines such that the names of input tapes of different machines in the system
are disjoint. We say that the machines M ′j are in the scope of a bang operator. This operator indicates that
in a run of a system an unbounded number of (fresh) copies of a machine may be generated. Conversely,
machines which are not in the scope of a bang operator may not be copied. Systems in which multiple
copies of a machine may be generated are often needed, e.g., in case of multi-party protocols or in case a
system describes the concurrent execution of multiple instances of a protocol. In a run of a system S at any
time only one machine is active and all other machines wait for new input. A (copy of a) machine M can
trigger another (copy of a) machine M ′ by sending a message on an output tape corresponding to an input
tape of M ′. Identifiers, e.g., session or party identifiers, contained in the message can be used to address a
specific copy of M ′. If a new identifier is used, a fresh copy of M ′ would be generated. The first machine to
be triggered is the so-called master machine. This machine is also triggered if a machine does not produce
output. A run stops if the master machine does not produce output or a machine outputs a message on
a tape named decision. Such a message is considered to be the overall output of the system. Systems will
always have polynomial runtime in the security parameter (and possibly the length of auxiliary input).

Two systems P and Q are called indistinguishable (P ≡ Q) iff the difference between the probability
that P outputs 1 (on the decision tape) and the probability that Q outputs 1 is negligible in the security
parameter.

Notions of Simulation-Based Security. We need the following terminology. For a system S, the in-
put/output tapes of machines in S that do not have a matching output/input tape are called external. These
tapes are grouped into I/O and network tapes. We consider three different types of systems, modeling i) real
and ideal protocols/functionalities, ii) adversaries and simulators, and iii) environments: Protocol systems
and environmental systems are systems which have an I/O and network interface, i.e., they may have I/O
and network tapes. Adversarial systems only have a network interface. Environmental systems may contain
a master machine and may produce output on the decision tape. We can now define strong simulatability;
other equivalent security notions, such as (dummy) UC, can be defined in a similar way [27].

Definition 1 ([27]). Let P and F be protocol systems with the same I/O interface, the real and the ideal
protocol, respectively. Then, P realizes F (P ≤ F) iff there exists an adversarial system S (a simulator or an
ideal adversary) such that the systems P and S |F have the same external interface and for all environmental
systems E, connecting only to the external interface of P (and hence, S |F), it holds that E | P ≡ E | S |F .

Composition Theorems. We restate the composition theorems from [27], in a slightly simplified way.
The first composition theorem handles concurrent composition of a fixed number of protocol systems. The
second one guarantees secure composition of an unbounded number of copies of a protocol system.
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Theorem 1 ([27]). Let P1,P2,F1,F2 be protocol systems such that P1 and P2 as well as F1 and F2 only
connect via their I/O interfaces and Pi ≤ Fi, for i ∈ {1, 2}. Then, P1 | P2 ≤ F1 | F2.

Let F and P be protocol systems, which, for example, describe one session of an ideal/real protocol. By F
and P we denote the so-called session versions of F and P, which allow an environment to address different
sessions of F and P, respectively, in the multi-session versions !F and !P of F and P by prefixing messages
with session identifiers (SIDs); an instance of P/F is accessed via a unique SID. Conversely, messages output
by F and P will be prefixed by their respective SID.

Theorem 2 ([27]). Let P,F be protocol systems such that P ≤ F . Then, !P ≤ !F .

These theorems can be applied iteratively to construct more and more complex systems. For example, using
that ≤ is reflexive, we obtain, as a corollary of the above theorems, that for any protocol system Q: P ≤ F
implies Q | !P ≤ Q | !F , i.e., Q using an unbounded number of copies of P realizes Q using an unbounded
number of copies of F . This corollary is in the spirit of Canetti’s universal composition theorem [8].

3 Universal Composition Without Pre-Established SIDs

Universal composition theorems, such as Theorem 2 and Canetti’s composition theorem, allow to obtain
security for multiple sessions of a protocol by analyzing just a single session. Such theorems can therefore
greatly simplify protocol analysis. However, these theorems rely on the setup assumption that the parties
participating in a protocol session agree upon a unique SID and that they invoke their instance of the
protocol with that SID. This is due to the way multi-session versions of ideal functionalities are defined in
these composition theorems: A multi-session version of an ideal functionality F is such that parties which
want to access an instance of F have to agree on a unique SID in order to be able to all invoke the same
instance of F with that SID. As a consequence, the composition theorems implicitly require that a session of
a real protocol with SID s realizes a session of the ideal functionality with SID s. (For example, if a session
of the real protocol consists of two instances, e.g., an initiator instance and a responder instance, then the
initiator with SID s and the responder with SID s together have to realize the ideal functionality with SID
s.) This, in turn, implies that the real protocol has to use the SID s in some way, since otherwise there is
nothing that prevents grouping instances with different SIDs (e.g., an initiator with SID s and a responder
with SID s′) into one session. One usage of the SID s is, for example, to access a resource for the specific
session, e.g., a functionality (with SID s) that provides the parties with fresh keys or certain communication
channels for that specific session. In realizations with joint state, s is typically used in all messages exchanged
between parties in order to prevent interference with other sessions (see also Section 4).

Canetti [9] discusses three methods of how such unique SIDs could be established, including a method
proposed by Barak et al. [2], where parties simply exchange nonces in clear and then form a unique SID
by concatenating these nonces and the party names. We will refer to such uniquely established SIDs (using
whatever method) by pre-established SIDs.1 The use of pre-established SIDs is certainly a good design princi-
ple. However, assuming pre-established SIDs and, as a result, forcing their use in the protocols greatly limits
the scope of the composition theorems for the analysis of existing protocols. In particular, they cannot be
used for the modular analysis of real-world security protocols since such protocols typically do not make use

1 In Canetti’s second method, the initiator of a protocol gets the SID from the I/O interface in the first message.
All other parties get the SID from the first network message. At first glance, it looks as if this might solve some
of the problems described above. However, this is not the case. Every party still gets the SID in the first message
(from I/O or network) and this is still some kind of prior agreement, namely what we call pre-establishment. The
important point—due to the way multi-session ideal functionalities are defined—is that in the real protocol parties
with the same (pre-established) SID have to use this SID in an essential way to realize the session of the ideal
functionality with that SID; the original protocol typically does not use such SIDs (see also the end of Section 3.2
and the beginning of Section 4). Furthermore, Canetti’s second method is impractical: For every SID a party must
not run more than one instance. So, a responder (who receives the SID to be used from an initiator) would have
to remember all SIDs used so far to ensure this.
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of SIDs in this explicit and specific way. In other words, the composition theorems could only be used to an-
alyze idealized/modified versions of such protocols. However, this is dangerous: While the idealized/modified
version of a protocol might be secure, its original version may not be secure (see Section 4). We note that,
alternatively, protocols could of course directly be analyzed in the multi-session settings, instead of first an-
alyzing the single-session setting and then lifting the analysis to the multi-session setting by a composition
theorem. But this kind of analysis would be more involved and would not exploit the potential of modular
analysis, which for the comprehensive analysis of complex protocols, such as real-world security protocols, is
essential.

In this section, we therefore present a general universal composition theorem that does not assume
pre-established SIDs (and their use in protocols). For this purpose, we first provide a new definition of
the multi-session version of an ideal functionality. Our new multi-session version models the more realistic
scenario that a party accesses an instance of an ideal functionality F simply by a local SID, which is locally
chosen and managed by the party itself. It is then left to an adversary (simulator) to determine which group
of local sessions may use one instance of F , where the grouping into what we call a (global) session is subject
to certain restrictions (see below). This seemingly harmless modification not only provides a more realistic
and common interface to the functionality (and its realization), but, as explained above, more importantly
frees the realization from the need to use pre-established SIDs and allows for realizations that faithfully model
existing (real-world) protocols. Before presenting the new multi-session versions of ideal functionalities and
our composition theorem, we fix some notation and terminology for modeling arbitrary real protocols.

3.1 Multi-Session Real Protocols

A multi-session real protocol is an arbitrary real protocol with n roles, for some n ≥ 2, which may use
arbitrary subprotocols/functionalities to perform its tasks. More precisely, a multi-session (real) protocol P
is a protocol system of the form P = !M1 | · · · | !Mn for some n ≥ 2 and machines M1, . . . ,Mn. Each machine
Mr represents one role in the protocol and, since these machines are under the scope of a bang operator,
there can be multiple instances of each machine in a run of the system (see below). Every machine Mr

has i) an I/O input and output tape for communication with the environment (users), ii) a network input
and output tape for communication with the adversary (modeling the network), and iii) an I/O input and
output tape for communication with a subprotocol/ideal functionality F . We require that the I/O interface
of F consists of n pairs of I/O input and output tapes, one for each role. Note that F may include several
subprotocols/functionalities. We say that P uses F .

A machine Mr expects inputs to be prefixed with a tuple of the form (lsid , p) from the environment (user)
and the adversary, and it prefixes all messages it outputs with (lsid , p). Intuitively, p is a party identifier
(PID) and lsid a local SID (LSID), locally chosen and managed by party p. In a run of P there will be at
most one instance of Mr with ID (lsid , p), representing the local session lsid of party p in role r.

To model corruption, we assume that every (instance of) Mr stores a flag corrupted ∈ {false, true} in its
state, which initially is false. At some point, Mr might set it to true in which case we call Mr corrupted. We
require that once Mr sets the flag to true, it stays true. Furthermore, whenever the environment sends the
message (lsid , p,Corrupted?) to Mr (on the I/O tape), Mr replies with (lsid , p,Corrupted, corrupted). This
allows the environment to know which instances are corrupted. (As usual, this is necessary in simulation-based
settings.) However, we do not fix how Mr behaves when corrupted; we leave this entirely up to the definition
of Mr. One possible behavior could be, for example, that when corrupted, Mr gives complete control to
the adversary by forwarding all messages between the environment and the adversary. We note that the
possibility of corrupting single instances of Mr is quite fine-grained and allows several forms corruption,
including complete corruption of a party: the adversary can simply corrupt all instances of that party.

3.2 A New Multi-Session Version of Ideal Functionalities

Let F be any machine, modeling an ideal functionality, with n pairs of input and output I/O tapes, one
for each role, and one pair of input and output network tapes. We now define the new multi-session version
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of F , informally explained above. We call this new multi-session version multi-session local-SID (ideal)
functionality and denote it by F [F ] or simply F (see Figure 4 in the appendix for pseudo-code):

A user of F is identified within F by the tuple (p, lsid , r), where p is a party identifier (PID), r ≤ n a
role, and lsid a local SID (LSID), which can be chosen and managed by the party itself. In particular, on the
tape for role r, F expects requests to be prefixed by tuples of the form (lsid , p), and conversely, F prefixes
answers sent on that tape with a tuple of the form (lsid , p).

A user of F , say (p, lsid , r), can initiate a session by sending a session-start message of the form
(lsid , p,Start,m) where m is an optional bit string, which can be used to set parameters of the session,
e.g., the desired partners or the name of a key distribution server. For example, in the case of two-party key
exchange, a user with PID p who wants to exchange a key with party p′ could set m = (p, p′). We emphasize
that the interpretation of m is left to F . Upon such a session-start request, F records this request (if it is
the first such request from (p, lsid , r)) as a local session for user (p, lsid , r) and forwards this information to
the adversary.

The adversary (simulator) determines to which global session local sessions belong, by sending a session-
create message of the form (Create, sid) to F where sid = (p1, lsid1, 1), . . . , (pn, lsidn, n) contains one local
session for every role. (We note that F could easily be extended to deal with multiple local sessions per
role.) The machine F only accepts such a message if it is consistent with the local sessions: The mentioned
local sessions all exist, are not corrupted (see below), and are not already part of another global session. If F
accepts such a session-create message, F internally creates a new instance of F identifying it by sid . Then,
F sends the message (Create,m1, . . . ,mn) to this instance of F where, for all r ≤ n, mr is the optional bit
string contained in the session-start message of user (pr, lsidr, r). The adversary can address this instance
of F (via the network interface) by prefixing messages with sid ; conversely, messages output by F on its
network interface are prefixed with sid .

For a message m of a user (p, lsid , r), which is not a session-start message or a message of the form
Corrupted? (see below), F checks whether (p, lsid , r) is part of a global session. If not, F drops m, i.e., this
message is ignored. Otherwise, F forwards m to the corresponding instance of F . Conversely, F forwards all
messages from an instance of F on tape r to the corresponding user in role r.

We model corruption as follows in F . The adversary can send a corrupt message of the form (Corrupt,
(p, lsid , r)) for a local session (p, lsid , r) to F . The machine F only accepts this message if the local session
(p, lsid , r) is not already part of a global session, and in this case records (p, lsid , r) as corrupted. For every
corrupted local session, F forwards all messages from a user of that local session to the adversary (instead
of forwarding them to F ) and vice versa. This models that the adversary has full control over corrupted
local sessions. Note that once a local session is part of a global session, the local session or its corresponding
global session can still be corrupted at any time according to the way corruption is defined in F , which we
do not restrict.

Finally, a user may ask F whether or not a local session was corrupted before being part of a global
session by sending the message (lsid , p,Corrupted?). Then, F replies accordingly with true or false. This, as
usual, guarantees that the environment is aware of who is corrupted, preventing the simulator from simply
corrupting all local sessions. Whether or not a user can ask about the corruption status of F is completely
up to the definition of F , which, again, we do not restrict.

We note that the above definition of a multi-session version of an ideal functionality applies to any ideal
functionality F .

Technically, for a real protocol to realize a multi-session local-SID functionality the simulator must be
able to group instances of the simulated real protocol into a global session before interaction with the
functionality F is possible. This means that a real protocol needs to allow for the grouping of instances
by whatever mechanism (where the mechanisms is typically intertwined with the rest of the protocol). In
particular, the grouping is part of the protocol, and hence, can now be precisely modeled and analyzed. For
example, for authentication, key exchange, secure channel protocols and the like, being able to tell which
instances are grouped together is an essential part of what these protocols (have to) guarantee and different
protocols use different mechanisms; these mechanisms should be part of the analysis. Conversely, before
there was one fixed mechanism for grouping instances, namely pre-established SIDs. Real protocols needed
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to make sure that they in fact can be grouped according to the SID they obtained, and hence, they had to
use the SID in some essential way. Moreover, the SIDs came from outside of the protocol, and hence, their
establishment was not part of the protocol.

3.3 The Universal Composition Theorem Without Pre-Established SIDs

We now present our universal composition theorem. Let P be a multi-session protocol using a multi-session
local-SID functionality F ′ and let F be a multi-session local-SID functionality. Informally, our theorem states
that if P |F ′ realizes F in the single-session setting, then P |F ′ realizes F in the multi-session setting. The
important point here is that, by definition of multi-session local-SID functionalities, no pre-established SIDs
(nor their use in the protocol) are required.

To formulate this theorem, we consider a machine Fsingle that is put on top of P |F ′ and F , respectively,
and that allows an environment to create at most one session, i.e., only one user is allowed per role. We note
that an alternative to using Fsingle would be to restrict the environment explicitly.

To be able to prove the composition theorem, we need to restrict the class of simulators used to prove
that P |F ′ realizes F in the single-session case. For this purpose, we define the following simulation relation:
We say that P |F ′ single-session realizes F (denoted by Fsingle | P | F ′ ≤∗ Fsingle | F) if i) Fsingle | P | F ′ ≤
Fsingle | F , i.e., according to Definition 1, there exists a simulator Sim such that for all E it holds that
E |Fsingle | P | F ′ ≡ E |Sim |Fsingle | F , and ii) Sim is a machine which operators in two stages as follows: In
the first stage, Sim simply emulates the system P |F ′, where session-start messages from F are forward to
the emulated P. If Sim receives a) a session-create message for the emulated F ′ from the adversary and this
message is accepted by F ′ or b) the corrupted flag of an emulated instance Mr in P is set to true, then
Sim enters its second stage. Once in the second stage, Sim is not restricted whatsoever. If, in the first stage,
the emulated P |F ′ produces I/O output, then Sim terminates. (In this case the simulation fails.) This is in
fact not a restriction: Every protocol that produces I/O output if Sim is in its first stage would not realize
F , i.e., Fsingle | P | F ′ 6≤ Fsingle | F . The reason is that in the first stage, the instances in P run independently.
Now, if an environment emulated all but one instance, in Fsingle | F no session would be created, and hence,
no output at the I/O interface would be produced.

So, altogether the only restriction we put on Sim is that it emulates the real protocol in its first stage. This
is what simulators would typically do anyway. In fact, we think that for most applications Fsingle | P | F ′ ≤
Fsingle | F implies Fsingle | P | F ′ ≤∗ Fsingle | F .

Moreover, our restriction seems unavoidable in order to prove our composition theorem. First recall that
for the classical universal composition theorems (Theorem 2 and Canetti’s composition theorem) the proof
is by a hybrid argument. In the i-th hybrid system the environment emulates the first < i sessions as real
protocols (real sessions) and the last > i sessions as ideal (single-session simulator plus ideal functionality).
The i-th session is external. Since every session is identified by a pre-established SID, the environment knows
exactly and from the start on which instances of machines form one session. In particular, it knows from the
start on whether a session should be emulated as real or ideal and which messages must be relayed to the
external session. In our setting, this does not work since we do not assume pre-established SIDs: Initially, the
(hybrid) environment does not know to which session an instance (p, lsid , r) will belong. In particular, it does
not know whether it will belong to an ideal or real session. This is only determined if (p, lsid , r) is included
in a (valid) session-create message to F ′. So unless an instance (p, lsid , r) does not behave the same in the
ideal and real session up to this point, consistent simulation would not be possible. Now, by our assumption
that the simulator in its first stage simulates the real protocol, the environment can first simulate the real
protocol for the instance (p, lsid , r). Once this instance is included in a (valid) session-create message to F ′,
and hence, the environment knows whether the instance belongs to an ideal or real session, the simulation
can be continued accordingly. More concretely, if it turns out that (p, lsid , r) belongs to an ideal session,
the environment starts the emulation of the simulator for that session with the current configurations of
all emulated instances for that session. Again, this is possible because up to this point the simulator too
would have only simulated these instance as real protocols. For the i-th session, the environment guesses the
instances that shall belong to it. Following this idea, we proved our composition theorem stated next (see
Appendix B for the proof).
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original modified
1. A→ B: {|NA, pA|}kB {|sid , NA, pA|}kB
2. B → A: {|NA, NB |}kA {|sid , NA, NB |}kA
3. A→ B: {|NB |}kB {|sid , NB |}kB

Fig. 1. The original Needham-Schroeder Public-Key (NSPK) protocol is insecure [31]. Its modified version, result-
ing from the joint-state construction, which prefixes every plaintext with a pre-established SID sid is secure (see
Appendix D.2 for details).

Theorem 3. Let F and F ′ be two multi-session local-SID functionalities and let P be a multi-session real
protocol that uses F ′. If Fsingle | P | F ′ ≤∗ Fsingle | F , then P |F ′ ≤ F .

We note that Theorem 3 can be applied iteratively: For example, if we have that Fsingle | P1 | F1 ≤∗
Fsingle | F2 and Fsingle | P2 | F2 ≤∗ Fsingle | F3, then, by Theorem 3 and Theorem 1, P2 | P1 | F1 ≤ F3.

4 Joint State Composition Without Pre-Established SIDs

Universal composition theorems, such as Theorem 2 and Canetti’s composition theorem, assume that different
protocol sessions have disjoint state; in particular, each session has to use fresh randomness. (Theorem 3
makes this assumption too, but we exclude this theorem from the following discussion since it does not
assume pre-established SIDs.) This can lead to inefficient and impractical protocols, since, for example,
in every session fresh long-term symmetric and public/private keys have to be used. Canetti and Rabin
[13] therefore proposed to combine the universal composition theorems with what they called composition
theorems with joint state. By now, joint state composition theorems for several cryptographic primitives are
available, including joint state composition theorems for digital signatures [13, 28] and public-key encryption
[28] as well as encryption with long-term symmetric keys [29]. These theorems provide mechanisms that
allow to turn a system with independent sessions (i.e., sessions with disjoint state) into a system where
the same (long-term symmetric and public/private) keys may be used in different sessions. This joint state
comes “for free” in the sense that it does not require additional proofs. However, there is a price to pay:
Just as the universal composition theorems, the joint state composition theorems assume pre-established
SIDs. Moreover, the mechanisms used by existing joint state theorems for specific cryptographic primitives,
such as encryption and digital signatures, prefix all plaintexts to be encrypted (with long-term symmetric
or public/private keys) and messages to be signed by the unique pre-established SIDs; by this, interference
between different sessions is prevented. While this is a good design principle, these theorems are unsuitable
for the modular analysis of an existing protocol that does not employ these mechanisms: If such a protocol is
secure in the single-session setting, then its multi-session version obtained by combining universal composition
with joint state composition, and hence, the version of the protocol in which messages are prefixed with pre-
established SIDs, is secure as well. But from this it does in general not follow that the original protocol,
which may be drastically different, is also secure in the multi-session setting. In fact, by the above joint-state
constructions insecure protocols can be turned into secure ones (see Figure 1). In particular, since real-world
security protocols typically do not use pre-established SIDs, at least not explicitly and not in the particular
way stipulated by the theorems, the joint state composition theorems are unsuitable for the modular and
faithful analysis of such protocols; at most idealized/modified protocols, but not the original real-world
protocols, can be analyzed in this modular way. For example, in Step 3 of the TLS Handshake Protocol (see
Figure 2), the client sends the pre-master key encrypted to the server. In the variant of TLS obtained by the
joint state theorems, a unique SID sid would be included in the plaintext as well. By this alone, unlike the
original version of TLS, this message is bound to session sid .

In this section, we therefore propose a joint state composition theorem which does not require to modify
the protocol under consideration. In particular, it does not rely on pre-established SIDs and the mechanism
of prefixing messages with such SIDs.

In our joint state theorem we consider a multi-session real protocol P which uses an ideal crypto function-
ality Fcrypto proposed in [30]. The functionality Fcrypto allows its users to perform the following operations
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in an ideal way: i) generate symmetric keys, including pre-shared keys, ii) generate public/private keys,
iii) derive symmetric keys from other symmetric keys, iv) encrypt and decrypt messages and ciphertexts,
respectively (public-key encryption and both unauthenticated and authenticated symmetric encryption are
supported), v) compute and verify MACs and digital signatures, and vi) generate fresh nonces. All symmetric
and public keys can be part of plaintexts to be encrypted under other symmetric and public keys. Derived
keys can be used just as freshly generated symmetric keys. As shown in [30], Fcrypto can be realized under
standard cryptographic assumptions, subject to natural restrictions on the environment. We briefly recall
Fcrypto and its realization in Section 4.1.

Every instance of a machine Mr in P has access to Fcrypto. In other words, Fcrypto is the joint state of all
sessions of P: Different sessions may have access to the same public/private and symmetric keys in Fcrypto.

Now, informally speaking, our joint state composition theorem states that under a certain condition on
P, which we call implicit (session) disjointness, it is sufficient to analyze P (which may use Fcrypto) in the
single-session setting to obtain security in the multi-session setting, where all sessions may use the same ideal
crypto functionality Fcrypto. (We note that by the universal composition theorem, Fcrypto can be replaced by
its realization.) It seems that most real-world protocols satisfy implicit disjointness and that this property
can be verified easily, as illustrated by our case studies in Section 5.

In what follows, we first briefly recall the ideal crypto functionality Fcrypto and its realization. We then
introduce the notion of implicit disjointness and present our joint state composition theorem.

4.1 The Ideal Crypto Functionality

We now briefly recall the ideal functionality Fcrypto, proposed in [30], which, as mentioned, supports several
cryptographic operations. More details are given in Appendix C.1. The formulation here is slightly modified
(see below).

Description of Fcrypto. Just as multi-session local-SID functionalities introduced in Section 3, Fcrypto is
parametrized by a number n of roles. For every role, Fcrypto has one I/O input and output tape. Again, a
user of Fcrypto is identified within Fcrypto by a tuple (p, lsid , r), where p is a PID, lsid a LSID, and r a role.

Users of Fcrypto, and its realization, do not get their hands on the actual symmetric keys stored in the
functionality, but only on pointers to these keys, since otherwise no security guarantees could be provided;
users obtain the actual public keys though. A user can perform the operations mentioned above (encryption,
etc.). Upon a key generation request, an adversary can corrupt a key, which is then marked “known” in
Fcrypto (see below). A user can ask whether a key one of her pointers points to is corrupted.

The functionality Fcrypto keeps track of which user has access to which symmetric keys (via pointers) and
which keys are known to the environment/adversary, i.e., have been corrupted or have been encrypted under
a known key, and as a result became known. For this purpose, Fcrypto maintains a set K of all symmetric
keys stored within Fcrypto, a set Kknown ⊆ K of known keys, and a set Kunknown := K \ Kknown of unknown
keys.

To illustrate the internal behavior of Fcrypto and to point out the mentioned modification to the original
version of Fcrypto, we sketch the behavior of Fcrypto for authenticated encryption and decryption, with
requests (Enc, ptr , x) and (Dec, ptr , y): We first consider the case that ptr points to an unknown key, i.e., a
key in Kunknown. The plaintext x may contain pointers to symmetric keys. Before x is actually encrypted,
such pointers are replaced by the keys they refer to, resulting in a message x′. Now, not the actual message,
but a random message of the same length is encrypted. If this results in a ciphertext y′, then the pair (x′, y′)
is stored in Fcrypto and y′ is returned to the user. Decryption of y succeeds only if exactly one pair of the
form (x′′, y) is stored. In this case, x′′ with embedded keys replaced by pointers is returned. In case ptr points
to a key marked known, i.e., a key in Kknown, the adversary is asked for a ciphertext (in case of encryption)
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or a plaintext (in case of decryption).2 Furthermore, all keys contained in x′ are marked known as they are
encrypted under a known key.

Realization of Fcrypto. In [30], a realization Pcrypto of Fcrypto has been proposed based on standard crypto-
graphic assumptions on schemes: IND-CCA2-secure schemes for public-key and unauthenticated symmetric
encryption, an IND-CPA- and INT-CTXT-secure scheme for authenticated symmetric encryption, UF-CMA-
secure MAC and digital signature schemes, and pseudo-random functions for key derivation. These schemes
are used to realize Fcrypto in the expected way. To show that Pcrypto realizes Fcrypto it is necessary to
restrict the environment: Environments should not cause the so-called commitment problem (once an un-
known symmetric key was used for encryption, it should not become known) and should not generate key
cycles; without these restrictions, much stronger cryptographic assumptions would be necessary, which go
beyond what is typically assumed for the security of real-world security protocols. Protocols (in particular,
real-world security protocols) using Fcrypto typically satisfy these restrictions and this is easy to verify for a
given protocol, as discussed and illustrated in [30].

4.2 Our Criterion: Implicit Disjointness

We now introduce the notion of implicit (session) disjointness, already mentioned at the beginning of Sec-
tion 4. Recall that we are interested in the security of the system P |Fcrypto, where P is a multi-session
protocol in which all sessions may use the same Fcrypto. As explained before, implicit disjointness is a con-
dition on P which should allow to analyze the security of P in a single-session setting in order to obtain
security of P in a multi-session setting, without assuming pre-established SIDs and without modifying P.
Intuitively, implicit disjointness is a condition that ensures that different sessions of P cannot “interfere”,
even though they share state, in the form of information stored in Fcrypto, including public/private and
pre-shared keys, and the information stored along with these keys, e.g., plaintext-ciphertext pairs. In order
to define the notion of implicit disjointness, we first introduce some notation and terminology.

Partnering Functions. In the definition of implicit disjointness, we assume the existence of a partnering
function3 which groups users (p, lsid , r), more precisely, the corresponding instances of machines Mr in a run
of P, into sessions. Formally, a partnering function τ for P |Fcrypto is a polynomial-time computable, partial
function that maps every sequence α of configurations of an instance of a machine Mr in P to an SID (which
is an arbitrary bit string) or ⊥. For every environment E , (partial) run ρ of E | P |Fcrypto, and every user
(p, lsid , r), we define τ(p,lsid,r)(ρ) := τ(α) where α is the projection of ρ to the sequence of configurations of
the machine Mr with PID p and LSID lsid . We say that (p, lsid , r) and (p′, lsid ′, r′) are partners (or belong
to the same session) in a (partial) run ρ if τ(p,lsid,r)(ρ) = τ(p′,lsid′,r′)(ρ) 6= ⊥.

We say that τ is valid for P if, for every environment E for P |Fcrypto, the following holds with over-
whelming probability (the probability is taken over runs ρ of E | P |Fcrypto): For every user (p, lsid , r) in ρ,
the following conditions are satisfied. i) Once an SID is assigned, it is fixed, i.e., if τ(p,lsid,r)(ρ

′′) 6= ⊥, then
it holds τ(p,lsid,r)(ρ

′) = τ(p,lsid,r)(ρ
′′) for every prefix ρ′ of ρ and every prefix ρ′′ of ρ′. ii) Corrupted users

do not belong to sessions, i.e., if (p, lsid , r) is corrupted in ρ (i.e., the flag corrupted is set to true in the
corresponding instances of Mr), then τ(p,lsid,r)(ρ) = ⊥. iii) Every session contains at most one user per role,
i.e., for every partner (p′, lsid ′, r′) of (p, lsid , r) in ρ, it holds that r 6= r′ or (p′, lsid ′, r′) = (p, lsid , r).

In practice, partnering functions are typically very simple. In our case studies (Section 5), we use con-
ceptually the same partnering function for all protocols; basically partners are determined based on the
exchanged nonces.

2 This constitutes a slight modification to the original ideal functionality in [30], where in this case encryption and
decryption were performed with algorithms previously provided by the adversary. The new version helps in the
proof of our joint state theorem. It is just as useful for analyzing protocols and can be realized in exactly the same
way as the original version.

3 The concept of partnering functions has been used to define security in game-based definitions, which led to discus-
sions whether the obtained security notions are reasonable [4, 5, 3, 11, 15, 25]. Here, we use partnering functions as
part of our criterion (implicit disjointness) but not as part of the security definition itself; security means realizing
an ideal functionality (see Theorem 4).
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Construction and Destruction Requests. We call an encryption, MAC, and sign request (for Fcrypto by an
instance Mr of P, i.e., a user) a construction request and a decryption, MAC verification, and signature
verification request a destruction request.

Now, roughly speaking, implicit disjointness says that whenever some user sends a destruction request,
then the user who sent the “corresponding” construction request belongs to the same session according to
τ . This formulation is, however, too strong. For example, an adversary could send a ciphertext coming from
one session to a different session where it is successfully decrypted. But further inspection of the plaintext
might lead to the rejection of the message (e.g., because excepted nonces did not appear or MAC/signature
verification failed). We therefore need to introduce the notion of a successful destruction request. For this
purpose, we also introduce what we call tests.

Tests and Successful Destruction Requests. We imagine that a user (p, lsid , r) (more precisely, the corre-
sponding instance of Mr) after every destruction request runs some deterministic algorithm test which
outputs accept or reject, where, besides the response received, the run of test may depend on and may even
modify the state of (p, lsid , r). We require that test satisfies the following conditions: If the destruction
request is a MAC/signature verification request, then test simply outputs the result of the verification. If
the destruction request is a decryption request, but decryption failed (i.e., Fcrypto returned an error mes-
sage), then test returns reject. Otherwise, if decryption did not fail, and hence, a plaintext was returned,
test is free to output accept or reject. In the latter case—reject—, we require the state of (p, lsid , r) to be
the same as if decryption had failed (i.e., as if Fcrypto had returned an error message) in the first place;
this ensures that the state of (p, lsid , r) does not depend on the plaintext that was returned. The algorithm
test may itself make destruction requests (but no construction requests), e.g., decrypt nested ciphertexts
or verify embedded MACs/signatures, which are subject to the same constraints. Also, key generation and
key derivation are allowed within a test. The requirements on test reflect what protocols typically do (see
Section 5.2 for an example).

Now, we say that a destruction request is accepted if the test performed after the request returns accept.
We say that it is ideal if the key used in the destruction request is marked unknown in Fcrypto or is an
uncorrupted public/private key in Fcrypto and, in case of a decryption request, the ciphertext in that request
is stored in Fcrypto (and hence, it was produced by Fcrypto and the corresponding stored plaintext is returned).

Correspondence Between Construction and Destruction Requests. We now define when a construction request
corresponds to a destruction request. Let ρ be a run of the system E | P |Fcrypto and let mc and md be
construction and destruction request, respectively, such that mc was sent by some instance to Fcrypto before
md was sent by some (possibly other) instance to Fcrypto in ρ. Then, we say that mc corresponds to md in ρ
if i) mc is an encryption and md a decryption request under the same key (for public-key encryption/decryp-
tion, under corresponding public/private keys) such that the ciphertext in the response to mc from Fcrypto

coincides with the ciphertext in md, ii) mc is a MAC/signature and md a MAC/signature verification request
under the same key/corresponding keys such that the message in mc coincides with the message in md (the
MACs/signatures do not need to coincide).

Explicitly Shared (Symmetric) Keys. For implicit disjointness, we only impose restrictions on what we call
explicitly shared (symmetric) keys. These are pre-shared symmetric keys or keys (directly or indirectly)
derived from such keys in different sessions with the same seed. We note that in most protocols pre-shared
keys are the only explicitly shared keys since derived keys are typically derived from seeds that are unique
to the session.

Definition 2 (implicit disjointness). Let P be a multi-session protocol that uses Fcrypto and τ be a
valid partnering function for P |Fcrypto. Then, P satisfies implicit (session) disjointness w.r.t. τ if for every
environment E for P |Fcrypto the following holds with overwhelming probability for runs ρ of E | P |Fcrypto:

(a) Every explicitly shared key is either always marked unknown or always marked known in Fcrypto.
(b) Whenever some user (p, lsid , r) (i.e., an instance of Mr) performed an accepted and ideal destruction

request with an explicitly shared key or a public/private key at some point in ρ, say after the partial run
ρ′, then there exists some user (p′, lsid ′, r′) that has sent a corresponding construction request such that
both users are partners or both users are corrupted in ρ′.
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Most protocols can easily be seen to satisfy (a) because explicitly shared keys are typically not sent around
(i.e., encrypted by other keys), and hence, since they can be corrupted upon generation only, they are
either corrupted (i.e., always known) or always unknown. As already mentioned, our case studies (Section 5)
demonstrate that (b) too is typically satisfied by real-world protocols and can easily be checked. We note
that (b) can be interpreted as a specific correspondence assertion, and it might be possible to check (b) using
automated techniques, such as CryptoVerif [7].

4.3 The Joint State Composition Theorem Without Pre-Established SIDs

In this section, we present our joint state composition theorem. To be able to prove this theorem, we need
to restrict the class of simulators used to prove that P |Fcrypto realizes F in the single-session case. For this
purpose, similarly to Section 3.3, we define the following simulation relation, where τ is a valid partnering
function for P |Fcrypto and F is a multi-session local-SID functionality: We say that P |Fcrypto single-
session realizes F w.r.t. τ (denoted by Fsingle | P | Fcrypto ≤τ Fsingle | F) if i) Fsingle | P | Fcrypto ≤ Fsingle | F ,
i.e., according to Definition 1, there exists a simulator Simτ such that for all E it holds that E |Fsingle | P |
Fcrypto ≡ E |Simτ |Fsingle | F , and ii) Simτ is a machine which operators in two stages: Analogously to
the simulators defined in Section 3.3, in the first stage Simτ emulates the system P |Fcrypto. Just as in
Section 3.3, Simτ enters its second stage, in which Simτ is unrestricted, if an emulated instance of Mr in
P set its corrupted flag to true. In Section 3.3, simulators also entered the second stage if a session-create
message (addressed to F ′) was received. Such messages do not occur here. Instead, whenever activated, Simτ

computes τ(αr) for all r ≤ n, where αr is the current sequence of configurations of the emulated instance of
Mr. If τ signals a session, i.e., τ(α1) = · · · = τ(αn) 6= ⊥, then Simτ enters its second stage, in which it is
unrestricted.

Analogously to Section 3.3, we can observe that the only restriction we put on Simτ is that it emulates
the real protocol in its first stage. As already argued in Section 3.3, this appears to be unavoidable and does
not seem to be a restriction in practice.

We are now ready to present our joint state composition theorem (see Appendix C.2 for the full proof),
with Fcrypto serving as the joint state. Since our theorem does not assume pre-established SIDs, protocols
analyzed using this theorem do not need to be modify/idealize by prefixing SIDs to messages. The usage of
our theorem is discussed in more detail in Section 5.

Theorem 4. Let F be a multi-session local-SID functionality and let P be a multi-session protocol that uses
Fcrypto and satisfies implicit disjointness w.r.t. τ .

If Fsingle | P | Fcrypto ≤τ Fsingle | F , then P |Fcrypto ≤ F .

Proof sketch. We first construct a machine Qτ which simulates P |Fcrypto except that it uses a different copy
of Fcrypto for every session (according to τ). Using implicit disjointness, we can show that E | P |Fcrypto ≡
E |Qτ for every environment E . We then show that Qτ realizes F , using Fsingle | P | Fcrypto ≤τ Fsingle | F . ut

5 Applications

In this section, we discuss, using key exchange and secure channels as an example, how Theorems 3 and 4
can be used to analyze protocols in a modular and faithful way. While our discussion focuses on the analysis
of properties of real-world security protocols, our theorems should be useful beyond this domain.

5.1 Proving Security of Key Exchange and Secure Channel Protocols

We consider a standard secure channel ideal functionality Fsc and an ideal functionality Fkey-use for key
usability. The latter functionality, which is inspired by the notion of key usability proposed in [16], is new
and of independent interest. It is very similar to a standard key exchange functionality. However, parties
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do not obtain the actual exchanged key but only a pointer to this key. They can then use this key to
perform ideal cryptographic operations, e.g., encryption, MACing, key derivation, etc., similarly to Fcrypto.
Compared to the standard key exchange functionality, Fkey-use has two big advantages: i) One can reason
about the session key (and keys derived from it) still in an ideal way, which greatly simplifies the analysis
when used in higher level protocols. ii) Fkey-use can be realized by protocols which use the session key in the
key exchange, e.g., for key confirmation. In what follows, let Fsc = F [Fsc] and Fkey-use = F [Fkey-use] denote
the multi-session local-SID functionalities of Fsc and Fkey-use, respectively.

To illustrate the use of Theorems 3 and 4, consider, for example, the task of proving that a multi-session
protocol Q which is based on a multi-session key exchange protocol P realizes Fsc, where both Q and P
could be real-world security protocols.

While a proof from scratch would, similarly to proofs in a game-based setting, require involved reduction
arguments and would be quite complex, using our framework the proof is very modular, with every proof
step being relatively small and simple: First, instead of using the actual cryptographic schemes, P can use
Fcrypto (at least for the operations supported by Fcrypto). As a result, for the rest of the proof merely
information-theoretic reasoning is needed, often not even probabilistic reasoning, in particular no reduction
proofs (at least as far as the operations supported by Fcrypto are concerned). The remaining proof steps
are to show: i) P |Fcrypto satisfies implicit disjointness, ii) P |Fcrypto single-session realizes Fkey-use, and iii)
Q |Fkey-use single-session realizes Fsc. (Since, the session key established by Fkey-use can be used for ideal
cryptographic operations, the argument for Step iii) is still information-theoretic.) We note that only Step i)
needs some (information-theoretic) reasoning on multiple sessions, but only to show implicit disjointness.
This is easy, as illustrated by our case studies (see below); the proof often merely needs to consider the
security properties of a small fraction of the primitives used in the protocol. Now, by i), ii), and Theorem 4,
we obtain P |Fcrypto ≤ Fkey-use. Theorem 3 and iii) imply Q |Fkey-use ≤ Fsc. By Theorem 1 and since Q ≤ Q,
we have Q |P |Fcrypto ≤ Q |Fkey-use, and hence, Q |P |Fcrypto ≤ Fsc by transitivity of ≤.

5.2 Case Studies

In our case studies (see Appendix D for details), we consider real-world key exchange protocols, namely IEEE
802.11i, SSH, SSL/TLS, IPsec, and EAP-PSK. We show that these protocols, for which we model the crypto-
graphic core, satisfy implicit disjointness (see below); we also give an example of a (secure) protocol, namely
the Needham-Schroeder-Lowe Public-Key Protocol, that does not satisfy implicit disjointness. Step iii) (see
above), and hence, with Theorem 3, also Q |Fkey-use ≤ Fsc, is proved for a generic secure channel protocol
Q of which many real-world protocols are instances (see Appendix D.8). Providing full proofs for Step ii)
for the key exchange protocols of our case studies is beyond the scope of this paper. However, ii) partly
follows from existing work, from [30] for IEEE 802.11i and from [19] for SSL/TLS. For example, in [19]
Gajek et al. showed single-session security of TLS; they use the joint state composition theorem by Canetti
and Rabin to obtain security in the multi-session setting, which, however, as discussed only proves security
of a modified/idealized version of TLS (see the remarks on TLS at the beginning of Section 4 and Figure 2).
Using our theorems and the fact that TLS satisfies implicit disjointness, the result by Gajek et al. now also
implies security of the (original) version of TLS in the multi-session setting, without pre-established SIDs
prefixed to all plaintexts and signed messages.

For SSL/TLS and SSH, we now show that they satisfy implicit disjointness; for details and the proofs for
other protocols see Appendix D.

Implicit Disjointness of SSL/TLS. The cryptographic core of the TLS Handshake Protocol with RSA
encryption is depicted in Figure 2 on the left (we consider the variant where the client authenticates itself
using digital signatures): pC and pS are the PIDs of C and S, respectively; NC and NS are nonces generated
by C and S, respectively; the premaster secret PMS is chosen randomly by C and is encrypted under the
public key of S ({|PMS |}kS ); c0, . . . , c4 are distinct constants; F is a pseudo-random function; the master
secret MS is derived from PMS as follows: MS = F (PMS , c0‖NC‖NS); {m}k1,k2 denotes MAC-then-encrypt,
i.e., {m}k1,k2 = {m,mack1(m)}k2 ; the symmetric encryption and MAC keys EKCS , EKSC , IKCS , IKSC
are derived from MS using F and the nonces NC and NS as a seed; handshake stands for the concatenation
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original modified
1. C → S: c1, NC c1, NC
2. S → C: pS , kS , c2, NS , pS , kS , c2, NS ,
3. C → S: pC , kC , {|PMS |}kS , sigkC (handshake), pC , kC , {|sid ,PMS |}kS , sigkC (sid , handshake),

{F (MS , c3‖handshake)}IKCS,EKCS {F (MS , c3‖handshake)}IKCS,EKCS

4. S → C: {F (MS , c4‖handshake)}IKSC ,EKSC {F (MS , c4‖handshake)}IKSC ,EKSC

Fig. 2. The TLS Handshake Protocol (Key Exchange Method: RSA) and its modified version.

of all previous messages, that is, handshake = c1‖NC‖pS‖kS‖c2‖NS‖pC‖kC‖{|PMS |}kS . In Step 3 of the
protocol, the server performs the following test (as soon as a check fails, the whole message is dropped):
It first decrypts the first ciphertext (using Fcrypto). If successful, it checks that the signature is over the
expected message. If so, it verifies the signature sigkC (handshake) (using Fcrypto). If successful, S derives the
keys MS , EKCS , etc. and decrypts the second ciphertext (using Fcrypto). If this succeeds, the MAC within
the plaintext is verified (using Fcrypto). If successful, the test accepts and S continues the protocol.

Modeling this protocol as a multi-session real protocol PTLS = !MC | !MS that uses Fcrypto for all crypto-
graphic operations (i.e., public-key and symmetric encryption, digital signatures, key derivation, and MAC)
is straightforward. The protocol PTLS is meant to realize Fkey-use, i.e., after the keys are established, the
parties can send encryption and decryption requests to MC and MS which are MACed and encrypted under
the corresponding keys. Corruption is defined such that the adversary can corrupt the public/private keys
of parties (via Fcrypto) and can corrupt instances of MC and MS when they are created. In particular, the
adversary can gain complete control over a party by corrupting her public/private keys and all her instances
of MC and MS .

We provide a proof sketch that PTLS satisfies implicit disjointness (see Appendix D.3 for details). The
proof does not need to exploit security of symmetric encryption. Moreover, the proof merely requires syntactic
arguments (rather than probabilistic reasoning or reduction arguments) since we can use Fcrypto for the
cryptographic primitives.

The partnering function τTLS for PTLS we use is the obvious one: Let ρ be a run of E | PTLS | Fcrypto

for some environment E and α be the projection of ρ to an instance of Mr for some user (p, lsid , r) (where
r ∈ {C, S}). If (p, lsid , r) is corrupted, then τTLS(α) := ⊥. Otherwise, if r = C and α contains at least
the first two messages of the protocol, then τTLS(α) := (NC , NS), where NS is the server’s nonce (p, lsid , r)
received and NC is the nonce (p, lsid , r) generated; analogously for the case r = S. It is easy to see that τTLS

is valid for PTLS because ideal nonces (i.e., nonces generated using Fcrypto) do not collide.

Theorem 5. PTLS satisfies implicit disjointness w.r.t. τTLS.

Proof sketch. All symmetric keys (i.e., the keys PMS , MS , EKSC , etc.) are, by definition, not explicitly
shared: PMS is not a pre-shared key but a freshly generated symmetric key; MS is derived from PMS and all
other keys are derived from MS . Hence, we only have to show (b) of Definition 2 for public-key encryption
and digital signatures. More precisely, the only relevant cases are when the server performs a decryption
request with kS (to obtain PMS ) or when it performs a verification request to verify the signature of the
client.

We now consider the former case (decryption request with kS); the latter follows a similar (even simpler)
argumentation. In this proof sketch, we only consider the case where the server which makes the decryp-
tion request is uncorrupted and where the key kC he received is uncorrupted (in Fcrypto) as well. (See
Appendix D.3 for the case of corruption. The argument there requires a more precise description of our
protocol and corruption model.)

So, let us assume that an uncorrupted instance of the server, say M̂S , performed an accepted and ideal
decryption request. Let NC be the nonce M̂S received, let NS be the nonce generated by M̂S , let kS be its
public key, let kC be the public key received, and ct be the ciphertext received (containing PMS ) and on
which M̂S performed the decryption request under consideration. Since the decryption request is accepted,
by the definition of the test the server performs, we know that the handshake message has the required format
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1. C → S: c1, NC
2. S → C: c2, NS
3. C → S: gx

4. S → C: kS , g
y, sigkS (sid)

5. C → S: {pC , kC , sigkC (sid , pC , kC)}IKCS,EKCS

6. S → C: {“success”}IKSC ,EKSC

Fig. 3. The SSH Key Exchange Protocol.

and the signature verified. From this we can conclude that an uncorrupted instance made a signing request
to Fcrypto with (a pointer to) the private key of kC and the message handshake; a corrupted instance would
not have had access to an uncorrupted signing key. This instance must be in role C (so say the instance is
M̂C), since uncorrupted server instances do not produce signatures. Since handshake contains NC and NS ,
we know that these are the nonces generated and received, respectively, by M̂C . Consequently, M̂C and M̂S

are partners according to τTLS. Since the ciphertext ct and the public key kS are contained in handshake, it
follows that M̂C must have encrypted PMS under kS and obtained the ciphertext ct from Fcrypto. Hence,

we have shown, as desired, that the partner M̂C of M̂S has issued the corresponding encryption request. ut

Implicit Disjointness of SSH. The cryptographic core of the key exchange protocol of SSH—for which
we show implicit disjointness—is depicted in Figure 3, with K = gxy and sid = H(NC , NS , kS , g

x, gy,K),
where H is a hash function. The symmetric encryption and MAC keys EKCS , EKSC , IKCS , IKSC are
derived from K using H and sid as a seed. (The details are not relevant for proving implicit disjointness.)
By {m}k1,k2 we denote encrypt-and-MAC, i.e., {m}k1,k2 = {m}k2 ,mack1(m). The formal model of SSH as a
multi-session real protocol PSSH = !MC | !MS is similar to the one for TLS. However, PSSH only uses Fcrypto

for digital signatures; all other cryptographic operations (i.e., encryption, MAC, hashing) are carried out by
MC and MS itself because Fcrypto does not support Diffie-Hellman key exchange yet, and hence, K (and
all derived keys) cannot be a key in Fcrypto. Still, in the proof that PSSH satisfies implicit disjointness, we
only need to do a reduction argument to the collision resistance of the hash function, since PSSH uses Fcrypto

for digital signatures and security of the encryption scheme, the MAC scheme, or the Diffie-Hellman key
exchange is not needed.

The partnering function τSSH for PSSH is the obvious one: It is defined similarly to TLS except that
the SID is sid = H(NC , NS , kS , g

x, gy,K) instead of (NC , NS). To show that it is valid, we need that the
hash function is collision resistant; alternatively, one could define sid = (NC , NS), in which case collision
resistance is not needed to show that τSSH is valid, but then collision resistance would be necessary to show
implicit disjointness.

With τSSH, implicit disjointness of PSSH follows very easily since sid is part of every signature.

Theorem 6. PSSH satisfies implicit disjointness w.r.t. τSSH.
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A The IITM Model

While our concepts and results are quite model-independent, in our proofs we of course need to consider
a concrete model for simulation-based security. As mentioned in Section 2, we use the model proposed in
[27], called the IITM model. For the readers convenience, we provide some more background on this model,
although the details are not essential to be able to follow the paper.

While being in the spirit of Canetti’s UC model [9], the IITM model resolves some technical problems of
the UC model caused by the way the runtime of interactive Turing machines is defined (see, e.g., discussions
in [27, 28, 21]). As pointed out in [28], these problems also affect the general joint state composition theorem
in the UC model. (We note that, in the IITM model, this theorem is simply a corollary of the universal
composition theorem.)

In the IITM model, security notions and composition theorems are formalized based on a relatively sim-
ple, but expressive general computational model in which so-called inexhaustible interactive Turing machines
(IITMs) and systems of IITMs are defined. We now provide some more information on this general com-
putational model. The security notions and composition theorems based on this model have already been
presented in Section 2. However, we present the definition of a session version of a system, used in Theorem 2

The General Computational Model. The general computational model is defined in terms of systems
of IITMs. An inexhaustible interactive Turing machine (IITM) M is a probabilistic polynomial-time Turing
machine with named input and output tapes. The names determine how different IITMs are connected in a
system of IITMs. An IITM runs in one of two modes, CheckAddress and Compute. The CheckAddress mode
is used as a generic mechanism for addressing copies of IITMs in a system of IITMs, as explained below.
The runtime of an IITM may depend on the length of the input received so far and in every activation an
IITM may perform a polynomial-time computation; this is why these ITMs are called inexhaustible.

A system S of IITMs is of the form S = M1 | · · · |Mk | !M ′1 | · · · | !M ′k′ where the Mi and M ′j are IITMs
such that the names of input tapes of different IITMs in the system are disjoint. We say that the machines
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M ′j are in the scope of a bang operator. This operator indicates that in a run of a system an unbounded
number of (fresh) copies of a machine may be generated. Conversely, machines which are not in the scope
of a bang operator may not be copied. Systems in which multiple copies of a machine may be generated are
often needed, e.g., in case of multi-party protocols or in case a system describes the concurrent execution of
multiple instances of a protocol.

In a run of a system S at any time only one IITM is active and all other IITMs wait for new input;
the first IITM to be activated in a run of S is the so-called master IITM, of which a system has at most
one. To illustrate runs of systems, consider, for example, the system S = M1 | !M2 and assume that M1

has an output tape named c, M2 has an input tape named c, and M1 is the master IITM. (There may be
other tapes connecting M1 and M2.) Assume that in the run of S executed so far, one copy of M2, say M ′2,
has been generated and that M1 just sent a message m on tape c. This message is delivered to M ′2 (as the
first, and, in this case, only copy of M2). First, M ′2 runs in the CheckAddress mode with input m; this is a
deterministic computation which outputs “accept” or “reject”. If M ′2 accepts m, then M ′2 gets to process m
(in the Compute mode) and could, for example, send a message back to M1. Otherwise, a new copy M ′′2 of
M2 with fresh randomness is generated and M ′′2 runs in CheckAddress mode with input m. If M ′′2 accepts
m, then M ′′2 gets to process m. Otherwise, M ′′2 is removed again, the message m is dropped, and the master
IITM (in this case M1) is activated. The master IITM is also activated if the currently active IITM does
not produce output at the end of its activation (and hence, does not trigger another machine). A run stops
if the master IITM does not produce output or an IITM outputs a message on a tape named decision. Such
a message is considered to be the overall output of the system.

Session Versions. We now defined the session version of a system, as used in Theorem 2. A session
version S = M1 | · · · |Mk | !M ′1 | · · · | !M ′k′ of a system S = M1 | · · · |Mk | !M ′1 | · · · | !M ′k′ is obtained from
S by replacing every machine M in S by its session version M , where M simulates M and acts as a “wrapper”
around M : In its CheckAddress mode M only accepts messages prefixed by some specific SID. The SID used
is the one with which M was first activated. Moreover, M prefixes all messages output by M with that SID.
So with M a specific instance of M can be addresses via its SID.

B Universal Composition Without Pre-Established SIDs

In this section, we provide a formal definition of multi-session local-SID (ideal) functionalities in pseudo-code
and prove Theorem 3.

As in Section 3.2, let F be any machine, modeling an ideal functionality, with n pairs of input and output
I/O tapes, one for each role, and one pair of input and output network tapes. For example, F = Fkey-use

or F = Fsc as defined in Appendix D.1. The multi-session local-SID (ideal) functionality F [F ] is given in
pseudocode in Figure 4. We note that the ideal functionality F is not aware of the local SIDs of its users.
Often, this is not needed (e.g., Fkey-use and Fsc do not need this). If it is needed that F is aware of the local
SIDs, then F could be defined such that expects the local SIDs to be given in the optional bit string in the
session-start message. Of course, a protocol using such an F (more precisely: using F [F ]) has to truthfully
include the local SID in this request, but this is just a modeling aspect.

Before proving Theorem 3, we prove the following lemma, which is used in the proof of Theorem 3: Every
multi-session protocol that single-session-realizes a multi-session local-SID functionality, it holds that if a
user produces I/O output, then this user is corrupted or belongs to a (global) session where all users are
uncorrupted. Intuitively, this holds because such I/O output is impossible in the ideal world (i.e., with the
ideal functionality).

Lemma 1. Let F and F ′ be multi-session local-SID functionalities and let P = !M1 | . . . | !Mn be a multi-
session real protocol that uses F ′. If Fsingle | P | F ′ ≤ Fsingle | F , then for every environment E for P |F ′ the
following holds with overwhelming probability, where the probability is over runs ρ of E | P |F ′: If an instance
of Mr, for some r, produces I/O output to E at some point in ρ, then either

i) this instance of Mr is corrupted (i.e., its flag corrupted is true) at that point in ρ or
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F [F ]

Tapes: input: tinr for r = 1, . . . , n (I/O tapes), tinadv (network tape)
output: toutr for r = 1, . . . , n (I/O tapes), toutadv (network tape)

We say that “m is received from user (p, lsid , r)” if the message (lsid , p,m) is received on tape tinr . By “send m
to (p, lsid , r)” we denote that (lsid , p,m) is output on tape toutr . Similarly, we say that “m is received from/sent
to tadv” if m is received on tinadv or m is output on toutadv, respectively.

State: The state of F [F ] is maintained by two mappings LS : {0, 1}∗ → {0, 1}∗ ∪ {⊥} and
S : {0, 1}∗ → {0, 1}∗ ∪ {⊥}. In the initial state, LS and S map every bit string to ⊥. (“LS” stands for “local
sessions” and “S” stands for “(global) sessions” because LS(user) stores the state of the user user = (lsid , p,m)
and S(sid) stores the state of the session identified by sid .)

CheckAddress: Every message on every tape is always accepted.
Compute:
• I/O input from users: Upon receiving a message m from user user = (p, lsid , r) (for some m, p, lsid , r) do:

1. If m = (Start,m′) for some bit string m′ and LS(user) = ⊥, then set LS(user) := (0,m′) and send
(user ,m) to tadv.

2. If m = Corrupted?, then send (Corrupted, true) to user if LS(user) = corrupted, otherwise, send
(Corrupted, false) to user .

3. If m 6= Corrupted? and LS(user) = (1, sid) for some sid = user1, . . . , usern (note that userr = user), then
simulate the instance S(sid) of F with I/O input m for role r (and update the configuration stored in
S(sid)). Let m′ be the output. If m′ = ε is the empty output, then produce empty output as well.
Otherwise, if m′ is I/O output for role r′, then send m′ to userr′ . Otherwise (i.e., m′ 6= ε is network
output), send (sid ,m′) to tadv.

4. If m 6= Corrupted? and LS(user) = corrupted, then send (user ,m) to tadv.
• Network input: Upon receiving a message m from tadv do:

5. If m = (Create, sid) where sid = user1, . . . , usern such that LS(userr) = (0,mr) for some mr, for all
r ≤ n, then set LS(userr) := (1, sid) for all r ≤ n, set S(sid) to be the initial configuration of a new
instance of F , and simulate this new instance of F with I/O input (Create,m1, . . . ,mn) for role 1 as in
rule 3.

6. If m = (Corrupt, user) for some user such that LS(user) = (0,m) for some m, then set
LS(user) := corrupted and send Corrupted to tadv.

7. If m = (Output, user ,m′) for some user and m′ such that LS(user) = corrupted, then send m′ to user .
8. If m = (sid ,m′) for some sid = user1, . . . , usern such that S(sid) 6= ⊥, then simulate the instance S(sid)

of F with network input m′ as in rule 3.
• Upon I/O or network input not matching a rule above, the input is ignored (i.e., produce empty output).

Fig. 4. The multi-session local-SID (ideal) functionality F [F ] of an ideal functionality F (with n roles).

ii) this instance of Mr belongs to a (global) session in F ′ at that point in ρ and all users (i.e., the corre-
sponding instances of Mr) of this session are not corrupted at that point in ρ.

We note that in the assumptions of the above lemma it is not required that Fsingle | P | F ′ ≤∗ Fsingle | F
but only that Fsingle | P | F ′ ≤ Fsingle | F . As mentioned in Section 3.3, this lemma in particularly shows that
the simulator for Fsingle | P | F ′ ≤∗ Fsingle | F is not restricted because it terminates in the first stage when
the emulated P outputs a message at its I/O interface.

Proof. Assume that there exists an environment E for P |F ′ such that with non-negligible probability (in
the security parameter), say ε, in a run of E | P |F ′, the statement of the lemma does not hold. That is, some
instance Mr produces I/O output to E at some point in ρ such that

i) Mr is not corrupted at that point in ρ and
ii) Mr does not belong to a session in F ′ at that point in ρ or there exists a user that is in the same session

in F ′ as Mr and this user is corrupted at that point in ρ.

Let pE be the polynomial (in the security parameter) that bounds the runtime of E (such a polynomial
exists because E is polynomially bounded). In particular, pE also bounds the number of instances of Mr in
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every run of E | P |F ′. Furthermore, let Sim be a simulator for Fsingle | F such that

E |Fsingle | P | F ′ ≡ E |Sim |Fsingle | F (1)

for every environment E for Fsingle | P | F ′.
We now construct an environment E ′ for Fsingle | P | F ′ (and, hence, for Sim |Fsingle | F), which distin-

guishes between Fsingle | P | F ′ and Sim |Fsingle | F with non-negligible probability (i.e., this contradicts (1)),
as we show below. The system Fsingle | P | F ′ or Sim |Fsingle | F , respectively, is called the external system
and the users in the external system are called external users in the following description of E ′.

At first E ′ chooses a bit b ∈ {0, 1} uniformly at random. Intuitively, E ′ tries to guess which of the cases—
Mr does not belong to a session (case b = 0) or some user in Mr’s session is corrupted (case b = 1)—occurs.
First, we describe E ′ in the case where b = 0: Then, E ′ chooses a number i ≤ pE uniformly at random. (E ′
tries to guess the instance of Mr that produces I/O output before it is corrupted or belongs to a session.)
Then, E ′ exactly emulates E | P |F ′ except that all (I/O and network) messages from E to the i-th user
(i.e., the user which receives the i-th session-start message from E) are sent to the external system. Vice
versa, network messages from the external system are forwarded to E . Note that only one user exists in the
external system. If E ′ receives an I/O message from the external system, i.e., from the external user, then E ′
checks whether the external user is corrupted by sending a Corrupted? request to the external system. If the
external user is corrupted, then E ′ outputs 0 on the decision tape (which stops the run with overall output
0). Otherwise, E ′ outputs 1 on the decision tape. If E ′ never received I/O output from the external system
and the emulation of E | P |F ′ stopped, then E ′ outputs 0 on the decision tape.

Second, if b = 1, then E ′ chooses i1, . . . , in ≤ pE uniformly at random. (E ′ tries to guess the session
Mr belongs to where some user is corrupted.) Then, E ′ exactly emulates E | P |F ′ except that all (I/O and
network) messages from E to the ir-th user for some r ≤ n (i.e., the user which receives the ir-th session-start
message from E) are sent to the external system. Vice versa, network messages from the external system
are forwarded to E . Furthermore, if E sends a valid session-create message to F ′ where the user of role
r is the ir-th user, for all r ≤ n, then E ′ sends this session-create message to the external system. If E ′
receives an I/O message m from the external system, i.e., from some external user, then E ′ checks whether
the external user is corrupted by sending a Corrupted? request for this user to the external system. If this
user is corrupted, then E ′ forwards m to E . Otherwise, E ′ checks whether some external user is corrupted
(by sending a Corrupted? request for all other external users to the external system). If this is the case, then
E ′ outputs 1 on the decision tape. Otherwise, E ′ outputs 0 on the decision tape. If E ′ never received I/O
output from the external system from an uncorrupted external user and the emulation of E | P |F ′ stopped,
then E ′ outputs 0 on the decision tape.

Next, we show that E ′ distinguishes between Fsingle | P | F ′ and Sim |Fsingle | F with non-negligible prob-
ability which is a contradiction to (1).

It is easy to see that E ′ when running together with Sim |Fsingle | F never outputs 1 on the decision tape:
In the case where b = 0, by definition of multi-session local-SID functionalities, Fsingle | F only produces I/O
output after a local session (i.e., user) in F is corrupted or a session has been created. But F only contains
one local session (which corresponds to the external user) and E ′ verifies that this local session is uncorrupted
before outputting 1. Furthermore, F never creates a session (i.e., accepts a session-create message from Sim)
because n ≥ 2 and F only contains one local session. In the case where b = 1, E ′ would only output 1 on
the decision tape if there exists an external user that is corrupted and there exists an external user that is
uncorrupted and produces I/O output to E . But this is impossible by definition of multi-session local-SID
functionalities because F contains at most one local session per role. Furthermore, these local sessions either
belong to a (global) session in which case none is corrupted or a local session is corrupted in which case
every local session that produces I/O output to E must be corrupted.

On the other hand, in a run of E ′ |Fsingle | P | F ′, E ′ outputs 1 with probability at least ε
2pn+1

E
because E ′

outputs 1 if it guessed b and the external user(s) such that the statement of the lemma does hold for this
user(s). Since ε is non-negligible and pE is a polynomial, ε

2pn+1
E

also is non-negligible. ut
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Proof of Theorem 3. To prove Theorem 3, we first define a simulator Sim for F and then show that
E | P |F ′ ≡ E |Sim | F for every environment E for P |F ′.

In the following definition of Sim, let Sim ′ be the simulator for Fsingle | P | F ′ ≤∗ Fsingle | F , i.e., it holds
that E |Fsingle | P | F ′ ≡ E |Sim ′ |Fsingle | F for every environment E for Fsingle | P | F ′ and, as described in
Section 3.3, Sim ′ exactly simulates P |F ′ until the session is created (in F ′) or an instance gets corrupted.
Throughout this proof, we use the following abbreviations:

R := Fsingle | P | F ′

I := Sim ′ |Fsingle | F .

So, we have:
E ′ |R ≡ E ′ | I (2)

for every environment E ′ for R.
There is a strong correspondence between (global) sessions in F ′ and (global) session in F . But there are

sessions in F ′ which do not correspond to a session in F . Namely, these are sessions in F ′ where some of
the users (i.e., the instances of Mr in P) that belong to this session are corrupted (i.e., the flag corrupted
of Mr is true). In F this cannot be a session because corrupted users must not belong to sessions. This does
not break simulation because the simulator Sim can corrupt these users in F . Furthermore, by Lemma 1,
uncorrupted users in such sessions do not produce I/O output to the environment until they are corrupted.
To be able to talk about these sessions easier in the following, we call the session-create messages that
create such sessions session-create messages with corrupted users. More formally, we say that a session-cre-
ate messages m is a session-create message with corrupted users (at some point in a run of P |F ′ for some
environment) if at that point in the run m is valid for F ′ (i.e., F ′ would accept m and the session would
be created) and there exists a user (p, lsid , r) in m such that the instance of Mr corresponding to (p, lsid , r)
is corrupted (i.e., the flag corrupted of this instance of Mr is true). All other session-create messages are
called session-create message without corrupted users.

Definition 3 (The Simulator Sim). The IITM Sim has the same network interface as P |F ′ and connects
to the network interface of F (i.e., Sim | F has the same external interface as P |F ′). Upon a session-start
message for a user (which is forwarded by F to Sim), Sim starts the simulation of an instance of Mr (in P)
and F ′ for this user. It forwards all network output/input of this instance to/from the environment and vice
versa. If Mr produces I/O output, Sim terminates (in this case the simulation fails but we will show that
this occurs only with negligible probability). If this instance gets corrupted, Sim corrupts the corresponding
local session in F and continues the simulation of Mr; Sim now also forwards all I/O output/input of this
instance to/from the user which is now possible because the corresponding local session in F is corrupted.
If the simulated F ′ receives a valid session-create message m, then Sim does the following: If m is a ses-
sion-create message with corrupted users (as defined above), then Sim simply continues the simulation for
the users of this session, i.e., Sim forwards m to the simulated F ′. Otherwise, Sim continues the simulation
for the users of this session by a simulated instance of Sim ′. Because Sim ′ in its first stage exactly simulated
P |F ′, Sim can adjust the state of Sim ′ appropriately.

For the rest of the proof, we fix an environment E for P |F ′. Let pE be a polynomial (in the security
parameter) that bounds the overall runtime (i.e., taken steps) of E . (By definition of environmental systems
in the IITM model such a polynomial exists.) Since only E can create new instances of machines in P by
sending requests to them, the overall number of these instances is bounded by pE .

Next, we define hybrid systems Hi for all i ∈ N. Basically, Hi emulates E interacting with P |F ′ and
Sim | F such that the first i− 1 sessions are handled by P |F ′ and all later session are handled by Sim | F .
But all sessions where some users are corrupted are handled by P |F ′, i.e., we are only counting sessions
created by session-create messages without corrupted users.

Definition 4 (The Hybrid System Hi). The IITM Hi for every i ∈ N has only two external tapes: start
and decision. It emulates E | P |F ′ as follows.
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For every user (p, lsid , r), as long as E has not sent a valid session-create message without corrupted users
(as defined above) which contains the user (p, lsid , r), Hi emulates an instance of Mr for this user (just as
in P |F ′). If such an instance of Mr produces I/O output to E before it is corrupted, then Hi terminates; we
say that Hi terminates with an error. (We will show that this only happens with negligible probability.)

Next, we define what happens if E sends the j-th session-create message m without corrupted users to F ′,
for some j ∈ N. (That is, j = 1 for the first such session-create message output by E, j = 2 for the second,
etc.) Then, Hi does the following:

i) If j < i, then Hi simply continues the emulation of E | P |F ′, i.e., Hi forwards m to the emulated F ′.
(Note that, from now on, the users of this session may produces I/O output to E without being corrupted.)

ii) Otherwise (i.e., j ≥ i), Hi creates a new copy of Sim ′ |Fsingle | F for this (global) session where the state
of Sim ′, Fsingle, and F is set as if this system was used from the beginning for simulating the users
of this session. Because Sim ′ in its first stage exactly simulated P |F ′, Hi can adjust the state of Sim ′

appropriately. (This is exactly what Sim does, see Definition 3.) From then on, Hi forwards all messages
from E to this session and users of this session to this copy of Sim ′ |Fsingle | F . Vice versa, Hi forwards
all messages from this copy of Sim ′ |Fsingle | F to E.

Finally, if E produces output m on the decision tape (which then terminates the run with overall output m),
then Hi outputs m on the decision tape.

By construction of H1 and definition of Sim, it is easy to see that

H1 ≡ E |Sim | F (3)

because every session in H1 is treated as in Sim | F (it always holds that j ≥ 1). Moreover, by construction of
HpE+1 and by Lemma 1 (note that obviously Fsingle | P | F ′ ≤∗ Fsingle | F implies Fsingle | P | F ′ ≤ Fsingle | F),
one can show that

HpE+1 ≡ E |P |F ′ (4)

because all sessions in HpE+1 are handled as in P |F ′ (it always holds that j < pE + 1 because E is bounded
by pE). Note that, by Lemma 1, HpE+1 terminates with an error only with negligible probability.

Given a run of Hi (for some i ∈ N), we say that the j-th user is the user corresponding to the j-th
instance of Mr which is created by E (by sending a session-start message for this user).

To show that Hi is indistinguishable from Hi+1, for all i ∈ N, we introduce hybrid systems Ĥi,i1,...,in ,

for all i, i1, . . . , in ∈ N, which are supposed to run with either R or I. Similar to Hi, Ĥi,i1,...,in emulates E
interacting with P |F ′ and Sim | F but the i-th session is handled by R or I, respectively. To successfully
outsource the i-th session, Ĥi,i1,...,in has to know which users belong to this session even before this session

is created. Therefore, Ĥi,i1,...,in is additionally parametrized by i1, . . . , in which tells Ĥi,i1,...,in that the ir-th
user plays role r in the i-th session.

Definition 5 (The Hybrid System Ĥi,i1,...,in). The IITM Ĥi,i1,...,in for every i, i1, . . . , in ∈ N is an
environment for Fsingle | P | F ′ (and, hence, for Sim ′ |Fsingle | F).

Similar to Hi, Ĥi,i1,...,in simulates E | P |F ′ as follows.
For every user (p, lsid , r) who is not the ir-th user, as long as E has not sent a valid session-create

message without corrupted users (as defined above) which contains the user (p, lsid , r), Hi,i1,...,in emulates
an instance of Mr for this user (just as in P |F ′). If such an instance of Mr produces I/O output to E before
it is corrupted, then Hi,i1,...,in outputs a special error message to the decision tape (i.e., the run stops and
the overall output is this error message); we say that Hi,i1,...,in terminates with an error. (We will show that
this only happens with negligible probability.)

Messages from E to the ir-th user, for every r ≤ n, are forwarded by Ĥi,i1,...,in to the external session

(i.e., to R or I, respectively). Vice versa, Ĥi,i1,...,in forwards messages from the external session to E.
Next, we define what happens if E sends the j-th session-create message m without corrupted users to

F ′, for some j ∈ N. Then, Ĥi,i1,...,in does the following:
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i) If j = i, then Hi,i1,...,in performs the following check: For all r ≤ n, Hi,i1,...,in verifies that the user in
role r in m is the ir-th user and that this user is uncorrupted in the external session (Hi,i1,...,in can
do this by sending a request of the form Corrupted? for this user to the external session). If this check
fails, then Hi,i1,...,in terminates with an error (because the external session does not consist of the users
i1, . . . , in or some of these users are corrupted when the session is created). Otherwise (i.e., the check
succeeds), Ĥi,i1,...,in forwards m to the external session. From then on, Ĥi,i1,...,in forwards all messages

from E to the this session to the external session. Vice versa, Ĥi,i1,...,in forwards all messages from the
external session to E.

ii) Otherwise (i.e., j 6= i), if some user in m is the ir-th user (for some r ≤ n), then Hi,i1,...,in terminates
with an error (because the external session is not the i-th session or does not consist of the users
i1, . . . , in).

iii) Otherwise (i.e., in particular, j 6= i), Ĥi,i1,...,in behaves like Hi, see Definition 4 i–ii).

Finally, if E produces output m on tape decision (which then terminates the run with overall output m), then
Ĥi,i1,...,in verifies that the i-th session exists, i.e., that (at some point) Ĥi,i1,...,in has forwarded a session-

create message to the external session. If this is the case, then Ĥi,i1,...,in outputs m on decision. Otherwise,

Ĥi,i1,...,in outputs 0 on decision. (We note that this is needed in the proof of Lemma 2).

Next, we basically show that (under the condition that i1, . . . , in correctly specify the i-th session) Hi is
indistinguishable from Ĥi,i1,...,in | I and that Hi+1 is indistinguishable from Ĥi,i1,...,in |R.

First, we define events to reason about the i-th session in a run of the hybrid systems and we develop
further notation: For every i, i′, i1, . . . , in ∈ N, we define BHi′ (i, i1, . . . , in) to be the set of runs of Hi′ where
at some point in the run E sends the i-th session-create message without corrupted users (as defined above),
say this message is m, and the user in role r in m is the ir-th user (as defined above), for every r ≤ n.
(That is, in particularly, the i-th session has been created.) Furthermore, for every i, i′ ∈ N, we define
BHi′ (i) to be the set of runs of Hi′ where the i-th session is never created, i.e., where E never sends an i-th
session-create message without corrupted users (as defined above). We note that because E is bounded by
pE , BHi′ (i, i1, . . . , in) = ∅ for all i, i′, i1, . . . , in where ir > pE for some r ≤ n. Hence, for all i, i′ ∈ N, it holds
that

BHi′ (i) ∪
⋃

i1,...,in≤pE

BHi′ (i, i1, . . . , in) (5)

is the disjoint union of all runs of Hi′ .
By Pr[S  1], we denote the probability that the a run of the system S produces overall output 1 (i.e.,

the output on the decision tape is 1). Furthermore, given a set A of runs of S, by Pr[A] we denote the sum
of the probabilities of the runs in A. We consider {S  1} as the set of all runs of S that produce overall
output 1, i.e., Pr[S  1] = Pr[{S  1}]. We will often omit the curly braces around {S  1}. For example,
we write Pr[S  1 ∩A] to denote Pr[{S  1} ∩A] (i.e., the probability of all runs in A that produce overall
output 1).

Lemma 2. For all i, i1, . . . , in ∈ N it holds that

Pr[Ĥi,i1,...,in | I  1] = Pr[Hi  1 ∩BHi(i, i1, . . . , in)] (6)

Pr[Ĥi,i1,...,in |R 1] = Pr[Hi+1  1 ∩BHi+1
(i, i1, . . . , in)] . (7)

Proof. We first show (6). In both systems Hi and Ĥi,i1,...,in | I, the i-th session is treated as I. It is easy to
define an injective mapping β from BHi

(i, i1, . . . , in) (i.e., the set of runs of Hi where the i-th session exists
and consists of the users i1, . . . , in) to runs of Ĥi,i1,...,in | I such that for every run ρ ∈ BHi

(i, i1, . . . , in), the
probability of ρ and β(ρ) is the same and ρ outputs 1 (i.e., the overall output on the decision tape is 1)
iff β(ρ) outputs 1. The run β(ρ) is obtained from ρ by outsourcing the i-th session to I. This can be done
without changing the view of the environment or anything else because it is independent from any other
session. Let rng(β) be the range of β, i.e., rng(β) is the set of runs ρ′ of Ĥi,i1,...,in | I such that there exists
a run ρ ∈ BHi

(i, i1, . . . , in) with β(ρ) = ρ′. That is, by β, we have shown that

Pr[Hi  1 ∩BHi
(i, i1, . . . , in)] = Pr[{Ĥi,i1,...,in | I  1} ∩ rng(β)] . (8)
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Note that not every run of Ĥi,i1,...,in | I is in the range of β, i.e., β is not surjective. Next, we show that every

such run does not output 1: Therefore, let ρ′ be a run of Ĥi,i1,...,in | I such that ρ′ /∈ rng(β), i.e., there does
not exist a run ρ ∈ BHi

(i, i1, . . . , in) with α(ρ) = ρ′. First, we note that if the i-th session does not exists
in ρ′, then by definition of Ĥi,i1,...,in , Ĥi,i1,...,in never outputs 1. So, in the following, assume that the i-th
session has been created. If the i-th session in ρ′ would consist of the users i1, . . . , in (i.e., let m be the i-th
session-create message without corrupted users that E sends to F ′ in ρ′, then the user for role r in m is the
ir-th user in ρ′, for all r ≤ n), then there would exist ρ ∈ BHi

(i, i1, . . . , in) with α(ρ) = ρ′. (This ρ could
easily be constructed from ρ′.) Hence, we can conclude that, by definition of Ĥi,i1,...,in , that Ĥi,i1,...,in | I
terminates with an error. In particular, the output of ρ′ is not 1. We have now shown that

Pr[{Ĥi,i1,...,in | I  1} \ rng(β)] = 0 . (9)

Since the probability that a run of Ĥi,i1,...,in | I outputs 1 (i.e., Pr[Ĥi,i1,...,in | I  1]) is the sum of the

probability that a run in the range of β outputs 1 plus the probability that a run of Ĥi,i1,...,in | I that is not
in the range of β outputs 1, by the above, we conclude as follows:

Pr[Ĥi,i1,...,in | I  1] = Pr[{Ĥi,i1,...,in | I} 1 ∩ rng(β)] + Pr[{Ĥi,i1,...,in | I  1} \ rng(β)]

(8),(9)
= Pr[Hi  1 ∩BHi(i, i1, . . . , in)] .

The proof of (7) is similar to the proof of (6). We only have to replace the external system I by R. ut

Finally, to prove Theorem 3, we combine (3), (4), (6), and (7) to show that E | P |F ′ ≡ E |Sim | F . For
all i, i1, . . . , in ∈ N, let δi,i1,...,in be the advantage of Ĥi,i1,...,in in distinguishing between I and R. More
formally:

δi,i1,...,in :=
∣∣Pr[Ĥi,i1,...,in |R 1]− Pr[Ĥi,i1,...,in | I  1]

∣∣ .
Next, we define an environment Ĥ$ for R (and, hence, for I). We define Ĥ$ to be the IITM that chooses
i, i1, . . . , in ≤ pE such that it maximizes δi,i1,...,in (this can easily be done in polynomial-time by computing all

pn+1
E possible values δi,i1,...,in) and then, Ĥ$ emulates Ĥi,i1,...,in . By construction of Ĥ$, for all i, i1, . . . , in ≤
pE , we have that

δi,i1,...,in ≤
∣∣Pr[Ĥ$ |R 1]− Pr[Ĥ$ | I  1]

∣∣ . (10)

Now, we have that∣∣Pr[H1  1]− Pr[HpE+1  1]
∣∣

≤
∑
i≤pE

∣∣Pr[Hi  1]− Pr[Hi+1  1]
∣∣

(5)

≤
∑

i,i1,...,in≤pE

∣∣Pr[Hi  1 ∩BHi
(i, i1, . . . , in)]− Pr[Hi+1  1 ∩BHi+1

(i, i1, . . . , in)]
∣∣

+
∑
i≤pE

∣∣Pr[Hi  1 ∩BHi
(i)]− Pr[Hi+1  1 ∩BHi+1

(i)]
∣∣ .

It is easy to see that Pr[Hi  1 ∩BHi
(i)] − Pr[Hi+1  1 ∩BHi+1

(i)] = 0 for all i ≤ pE because, in runs
where there exists no i-th session, the systems behave identically. Using Lemma 2, we can further conclude
that ∑

i,i1,...,in≤pE

∣∣Pr[Hi  1 ∩BHi
(i, i1, . . . , in)]− Pr[Hi+1  1 ∩BHi+1

(i, i1, . . . , in)]
∣∣

(6),(7)
=

∑
i,i1,...,in≤pE

∣∣Pr[Ĥi,i1,...,in | I  1]− Pr[Ĥi,i1,...,in |R 1]
∣∣

(10)

≤ pn+1
E ·

∣∣Pr[Ĥ$ |R 1]− Pr[Ĥ$ | I  1]
∣∣ .
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By (2), we have that Ĥ$ |R ≡ Ĥ$ | I, i.e., the above is negligible (as a function in the security parameter)
because the number of roles n is constant (it does not depend on the security parameter) and pE is a
polynomial (in the security parameter). So, we have shown that H1 ≡ HpE+1. By (3) and (4), we further
conclude that E |Sim | F ≡ E |P |F ′, i.e., P |F ′ ≤ F . This concludes the proof of Theorem 3.

C Joint State Composition Without Pre-Established SIDs

In this section, we provide more details for Section 4 and the proof of Theorem 4.

C.1 The Ideal Crypto Functionality

Here, we present more details of the ideal crypto functionality Fcrypto so that the proof of Theorem 4 can
be fully understood. Full details of Fcrypto can be found in [30].

As mentioned in Section 4.1, parties can use Fcrypto i) to generate symmetric keys, including pre-shared
keys, ii) to derive symmetric keys from other symmetric keys, iii) to encrypt and decrypt bit strings (public-
key encryption and both unauthenticated and authenticated symmetric encryption is supported), iv) to
compute and verify MACs and digital signatures, and v) to generate fresh nonces, where all the above
operations are done in an ideal way. All symmetric and public keys can be part of plaintexts to be encrypted
under other symmetric and public keys. We emphasize that derived keys can be used just as other symmetric
keys. It is left up to the protocol that uses Fcrypto how to interpret (parts of) bit strings, e.g., as length
fields, nonces, ciphertexts, MACs, digital signatures, non-interactive zero-knowledge proofs, etc.

The ideal crypto functionality Fcrypto is parametrized by what is called a leakage algorithm L, a proba-
bilistic polynomial time algorithm which takes as input a security parameter η and a message x, and returns
the information that may be leaked about x. Typical examples are i) L(1η, x) = 0|x| and ii) the algorithm
that returns a random bit string of length |x|. Both leakage algorithms leak exactly the length of x. In this
paper, we always use the leakage algorithm given in the second example which returns a random bit string
of the length of the message. In the proof of Theorem 4, we need that collisions among ciphertexts that have
been ideally produced, i.e., are the result of encrypting x = L(1η, x′) instead of the actual plaintext x′ (see
below), occur only with negligible probability. As discussed in [28], this can be guaranteed by our choice of
the leakage algorithm and assuming that the domain of plaintexts only contains long messages, i.e., of length
at least η. We assume this in this paper.4 The functionality Fcrypto is also parameterized by a number n ≥ 2
which defines the number of roles in a protocol that uses Fcrypto; Fcrypto has one I/O input and output tape
for each role.

In Fcrypto, symmetric keys are equipped with types. Keys that may be used for authenticated encryption
have type authenc-key, those for unauthenticated encryption have type unauthenc-key. We have the types
mac-key for MAC keys and pre-key for keys from which new keys can be derived. All types are disjoint, i.e.,
a key can only have one type, reflecting common practice that a symmetric key only serves one purpose. For
example, a MAC key is not used for encryption and keys from which other keys are derived are typically not
used as encryption/MAC keys.

While users of Fcrypto, and its realization, are provided with the actual public keys generated within
Fcrypto (the corresponding private keys remain in Fcrypto), they do not get their hands on the actual sym-
metric keys stored in the functionality, but only on pointers to these keys, since otherwise no security
guarantees could be provided. These pointers may be part of the messages given to Fcrypto for encryption.
Before a message is actually encrypted, the pointers are replaced by the keys they refer to. Upon decryption
of a ciphertext, keys embedded in the plaintext are first turned into pointers before the plaintext is given to
the user. In order to be able to identify pointers/keys, we assume pointers/keys in plaintexts to be tagged
according to their types. Such messages are called well-tagged messages. As discussed in [30], for real-world
protocols, it is typically possible to define tagging in such a way that the message formats used in these

4 Alternatively, one could assume that the encryption schemes provided by the adversary guarantee this property.
Since IND-CPA security implies this property, this assumption would be fulfilled by the realization of Fcrypto.

25



protocols is captured precisely on the bit level. Furthermore, if one considers protocols which use the same
keys but different tagging schemes, even then in most cases it should be possible to define tagging such that
both protocols are precisely modeled. In particular, this is the case if the message formats of the protocols
have a syntactically different structure because the tagging function can then branch on the protocol and
implement different tagging schemes for each protocol.

A user of Fcrypto is identified, within Fcrypto, by the tuple (p, lsid , r), where p is a party name, r ≤ n
a role, and lsid a local SID; similar to multi-session protocols and local-SID functionalities. In particular,
on the tape for role r, Fcrypto expects requests to be prefixed by tuples of the form (lsid , p), and conversely
Fcrypto prefixes answers with (lsid , p).

The functionality Fcrypto keeps track of which user has access to which symmetric keys (via pointers) and
which keys are known to the environment/adversary, i.e., have been corrupted or have been encrypted under
a known key, and as a result became known. For this purpose, among others, Fcrypto maintains a set K of
all symmetric keys stored within Fcrypto, a set Kknown ⊆ K of known keys, and a set Kunknown := K\Kknown

of unknown keys.
Before any cryptographic operation can be performed, Fcrypto expects to receive (descriptions of) algo-

rithms from the ideal adversary for symmetric and public-key encryption/decryption as well as the generation
and verification of MACs and digital signatures. Also, Fcrypto expects to receive public/private keys for en-
cryption/decryption and verifying/signing from the ideal adversary. In the realization of Fcrypto, we assume
that parties know the public keys of the other parties, e.g., because they use some kind of public-key infras-
tructure. We do not put any restrictions on these algorithms; all security guarantees that Fcrypto provides
are made explicit within Fcrypto without relying on specific properties of these algorithms. As a result, when
using Fcrypto in the analysis of systems, one can abstract from these algorithms entirely. We now sketch the
operations that Fcrypto provides.

Generating fresh, symmetric keys [(New, t)]. A user (p, lsid , r) can ask Fcrypto to generate a new key
of type t ∈ {authenc-key, unauthenc-key,mac-key, pre-key}. The request is forwarded to the adversary who is
supposed to provide such a key, say the bit string k. The adversary can decide to corrupt k right away, in
which case k is added to Kknown, and otherwise k is added to Kunknown. However, before adding k to a set,
Fcrypto ensures that k is fresh and key guessing is prevented, i.e., in case k is uncorrupted, it may not belong
to K, and in case k is corrupted, it may not belong to Kunknown. If Fcrypto accepts k, a new pointer ptr to k
is created (by increasing a counter) and returned to (p, lsid , r).

Establishing pre-shared keys [(GetPSK, t,name)]. This request is similar to (New, t). However, if Fcrypto

already recorded a key under (t, name), a new pointer to this key is returned. In particular, if different users
invoke this command with the same name and type, they are provided with pointers to the same key. This
allows users to establish shared keys: For example, users (p, lsid , r) and (p′, lsid ′, r′) can obtain pointers to
a fresh key k shared between p and p′ by each sending the request (GetPSK, t, (p, p′)) to Fcrypto. While, by
such a request, p (p′) gets a new pointer in every local session and role, this pointer will point to the same
key k.

Key derivation [(Derive, ptr , t, s)]. A user (p, lsid , r) can ask to derive a key of type t ∈ {authenc-key,
unauthenc-key, mac-key, pre-key} from a seed s (an arbitrary bit string) and a key, say k, of type pre-key the
pointer ptr , which has to belong to the user, points to. This request is forwarded to the adversary, who is
supposed to provide a new key, similarly to the request (New, t). However, the adversary may not corrupt
this key; it is considered to be unknown if and only if k is unknown. Furthermore, if there already exists a
key k′ derived from k and s—a fact that Fcrypto keeps track of—, the adversary has to provide exactly this
key k′. This guarantees that key derivation requests with the same key, type, and seed yield a pointer to the
same key.

Encryption [(Enc, ptr , x), (PKEnc, p′, pk , x)] and decryption [(Dec, ptr , y), (PKDec, y)]. We concentrate
on unauthenticated encryption/decryption (see Section 4.1 for authenticated encryption/decryption; public-
key encryption under the public key of party p′ and decryption under the private key of party p is similar
to unauthenticated encryption/decryption). A user (p, lsid , r) can ask to encrypt a well-tagged message x
using a pointer ptr that has to belong to the user and points to a key, say k, of type unauthenc-key. We
first consider the case that k ∈ Kunknown. First, all pointers in x, which again have to belong to the user,
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are replaced by the actual keys, resulting in a message x′. Then, the leakage x = L(1η, x′) of x′ is encrypted
under k using the encryption algorithm previously provided by the adversary (see above). The resulting
ciphertext y′ (if any) is returned to the user and (x′, y′) is stored by Fcrypto for later decryption of y′ under
k. Upon decryption of y, Fcrypto first checks if exactly one pair of the form (x′′, y) is stored. In this case,
x′′ with embedded keys replaced by pointers is returned to the user. If there are more than one such a pair,
then an error is returned to the user because unique decryption is impossible. If no such pair is stored, the
adversary is asked for a plaintext x′′ which is returned to the user as above.5 However, Fcrypto only accepts x′′

if no embedded key is marked unknown, i.e., is in Kunknown (this prevents “guessing” of keys). Furthermore,
Fcrypto adds every key embedded in x′′ to Kknown (if it is not already in Kknown). In case ptr points to a
key marked known, i.e., a key in Kknown, the adversary is asked for a ciphertext (in case of encryption) or
a plaintext (in case of decryption). In case of decryption, this plaintext is treated exactly as the plaintext
provided by the adversary above.

Computing and verifying MACs and digital signatures [(Mac, ptr , x), (MacVerify, ptr , x, σ), (Sign, x),
(SigVerify, p′, pk , x, σ)]. We concentrate on computing and verifying MACs (signing with the private key of
party p and verifying signatures under the public key pk of party p′ are similar). A user (p, lsid , r) can ask
Fcrypto to MAC an arbitrary (uninterpreted) bit string x using a pointer ptr that has to belong to the user
and points to a key, say k, of type mac-key. Then, Fcrypto computes the MAC of x under k using the MAC
algorithm previously provided by the adversary. The resulting MAC σ (if any) is returned to the user. If
k ∈ Kunknown, Fcrypto records x for later verification with k; σ is not recorded since we allow an adversary
to derive a new MAC from a given one on the same message.

For verification, Fcrypto runs the MAC verification algorithm previously provided by the adversary on x,
σ, and k. If k ∈ Kknown, Fcrypto returns the result of the verification to the user. If k ∈ Kunknown, this is done
too, but success is only returned if x previously has been recorded for k.

Generating fresh nonces [(NewNonce)]. Similarly to generating fresh keys, nonces can be generated by
users, where nonces are guaranteed to not collide.

Store [(Store, t, k)]. A user (p, lsid , r) can ask Fcrypto to store some bit string k with some type t ∈
{authenc-key, unauthenc-key,mac-key, pre-key} as a key. Then, Fcrypto forwards this request to the adversary
who is supposed to reply with fail ∈ {false, true}. If fail = true or k belongs to Kunknown, Fcrypto will return
an error message to the user.6 Otherwise, Fcrypto creates a new pointer to k which is given to the user. The
key k is added to Kknown.

Retrieve [(Retrieve, ptr)]. A user (p, lsid , r) can ask Fcrypto to retrieve a key k pointer ptr points to for
user (p, lsid , r). Then, Fcrypto informs the adversary that k is retrieved7, adds k to Kknown, and returns k to
the user.

Further operations For further operations, including the request for public keys, checking the corruption
status of keys, and checking whether two pointers point to the same key we refer the reader to [30].

This concludes the description of Fcrypto. Next, we further comment on the slight modifications to the original
Fcrypto in [30]. The modifications comprise non-ideal encryption/decryption (e.g., under known keys) and
storing and retrieving of keys, see above. In the proof of Theorem 4 (more precisely in the proof of in Lemma 6
in Appendix C.2), we need that the adversary knows which keys are marked known (i.e., in Kknown) and which
are marked unknown (i.e., in Kunknown). Furthermore, the adversary needs to have the ability to prevent the
environment (i.e., some user) to add a particular key to the set of known keys Kknown. Our modifications
enable the adversary to do this. We note that since we only strengthen the abilities of the adversary, every
realization of the original version of Fcrypto is a realization of our modified version of Fcrypto. But we did

5 As already mentioned in Section 4.1 for authenticated encryption, this constitutes a slight modification to the
original ideal functionality in [30]. See below for further remarks.

6 This constitutes a slight modification to the original ideal functionality in [30], where the adversary is not asked
before storing. See below for further remarks.

7 This constitutes a slight modification to the original ideal functionality in [30], where the adversary is not informed
about retrieve requests. See below for further remarks.
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not strengthen the adversary too much, i.e., our version of Fcrypto is just as useful for analyzing protocols
as the original version.

C.2 The Joint State Composition Theorem without Pre-Established SIDs

Before we prove Theorem 4, we formally define the notion of explicitly shared symmetric keys, which has
informally been introduced in Section 4.2.

Definition 6. Let P be a multi-session protocol that uses Fcrypto, τ be a partnering function for P |Fcrypto,
and E be an environment for P |Fcrypto. We (inductively) define that a symmetric key k in Fcrypto is explicitly
shared in a run ρ of E | P |Fcrypto w.r.t. τ if there exist two distinct users (p, lsid , r) and (p′, lsid ′, r′) which
are not partners (i.e., τ(p,lsid,r)(ρ) 6= τ(p′,lsid′,r′)(ρ) or τ(p,lsid,r)(ρ) = τ(p′,lsid′,r′)(ρ) = ⊥) and not both
corrupted in ρ (i.e., the flag corrupted is set to false in at least one of the corresponding instances of Mr

or Mr′ , respectively) such that

i) both users have sent a request to Fcrypto to setup a pre-shared key and both obtained a pointer to k (i.e.,
the names used in the two requests coincided) or

ii) both users have sent a request to Fcrypto to derive a key from the same explicitly shared key using the
same seed and both obtained a pointer to k.

Proof of Theorem 4. The proof is structured into two steps: First, we show that P |Fcrypto is indis-
tinguishable from the IITM Qτ which simulates P |Fcrypto except that it uses a different copy of Fcrypto

for every session (according to τ). Second, we show that Qτ realizes F . We note that these two steps
are independent from each other. The first step only requires that P satisfies implicit disjointness but not
that Fsingle | P | Fcrypto ≤τ Fsingle | F . In contrast, the second step only requires that Fsingle | P | Fcrypto ≤τ
Fsingle | F but not that P satisfies implicit disjointness. We also note that Qτ is very similar to a multi-session
protocol that uses a multi-session local-SID functionality as in Theorem 3. The proof that Qτ realizes F is
indeed similar to the proof of Theorem 3.

Throughout this proof, we fix a multi-session protocol P that uses Fcrypto and a partnering function τ
such that τ is valid for P. Furthermore, let E be an environment for P |Fcrypto and let pE be a polynomial
(in the security parameter η) that bounds the overall runtime (i.e., taken steps) of E . (By definition of
environmental systems in the IITM model such a polynomial exists.) Since only E can create new instances
of machines in P by sending requests to them, the overall number of these instances is bounded by pE . In
the following, we explicitly mention where the assumptions that P satisfies implicit disjointness w.r.t. τ and
that Fsingle | P | Fcrypto ≤τ Fsingle | F are needed.

Collisions of Ciphertexts. First, we prove a general lemma that shows that ciphertext produced by Fcrypto

do not collide in our setting (except with negligible probability). We say that an instance of Fcrypto is
(ciphertext) collision free if there does not exist bit strings x, x′, y such that x 6= x′, (x, y) is recorded (upon
ideal encryption, i.e., under a unknown/uncorrupted key) for the some (symmetric or public/private) key,
and (x′, y) is recorded for some (possibly different) key. The next lemma shows that Fcrypto is collision free
with overwhelming probability.

Lemma 3. The probability that, in a run of E | P |Fcrypto, Fcrypto is always collision free is overwhelming
(in the security parameter).

Proof. First, we note that we do not need to consider non-ideally produced ciphertext (i.e., ciphertexts
provided by the environment) because they are not stored in Fcrypto. Only ideally produced ciphertexts, i.e.,
ciphertexts which are the encryption of the leakage of a message, are stored in Fcrypto. The leakage algorithm
L, given x, outputs a random message of length |x|. Furthermore, as mentioned in Appendix C.1, we assume
that the domain of plaintexts contains only long messages, i.e., of length ≥ η (where η is the security
parameter). Hence, the probability that two leakages (i.e., messages returned by the leakage algorithm) are
the same is negligible. Since the decryption of an encryption of a leakage yields the leakage, different leakages
encrypt to different ciphertexts. So, such ciphertexts collide only with negligible probability. ut
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No Implicitly Shared (Symmetric) Keys. The next lemma basically says that unknown symmetric keys that
are not explicitly shared are not shared among sessions. This lemma holds because an unknown symmetric
key k which is not explicitly shared is either a freshly generated key or derived (directly or indirectly) from
a freshly generated key. Hence, k originates from one user. Since k is unknown, another user can only obtain
a pointer to k by decrypting a ciphertext which contains k (or a key in the chain of derivations). Implicit
disjointness guarantees that only users in the same session decrypt a ciphertext containing k and accept.
Hence, only users of the same session can have a pointer to k.

Lemma 4. If P satisfies implicit disjointness w.r.t. τ , then the following holds with overwhelming probability,
where the probability is over runs ρ of E | P |Fcrypto: If two distinct users (p, lsid , r) and (p′, lsid ′, r′) both
have a pointer to a key k which is marked unknown in Fcrypto and k is not explicitly shared (in ρ), then both
users are partners in ρ (i.e., τ(p,lsid,r)(ρ) = τ(p′,lsid′,r′)(ρ) 6= ⊥) or both users are corrupted.

Proof. Let ρ be a run of E | P |Fcrypto such that Fcrypto in ρ is always collision free and (a) and (b) in
Definition 2 are satisfied. We show that for ρ the statement of the lemma holds. By Lemma 3 and because P
satisfies implicit disjointness w.r.t. τ , we then have shown the statement of the lemma for an overwhelming
set of runs.

We show this by the method of considering a minimal counterexample. Assume that there exist a sym-
metric key k (in Fcrypto in ρ) such that i) k is marked unknown in Fcrypto, ii) k is not explicitly shared, iii)
there exists two distinct users (p, lsid , r) and (p′, lsid ′, r′) that both have a pointer to k, and iv) not both
users are partners or not both users are corrupted. Furthermore, we assume that k is the first such key in ρ,
i.e., for every other such a key k′, it holds that k′ has been added to K (the set of all keys in Fcrypto) after
k has been added to K. We will lead this to a contradiction, which proves the lemma.

Let (p, lsid , r) be the user that obtained the first pointer to k in ρ. Furthermore, let m be the request
that (p, lsid , r) sent to Fcrypto such that the response of Fcrypto contained the first pointer to k. Furthermore,
let (p′, lsid ′, r′) 6= (p, lsid , r) be the first user that obtained a pointer to k in ρ such that (p′, lsid ′, r′) and
(p, lsid , r) are not partners or not both (p′, lsid ′, r′) and (p, lsid , r) are corrupted. (By assumption such a user
(p′, lsid ′, r′) exists.) Let m′ be the first request that (p′, lsid ′, r′) sent to Fcrypto such that the response of
Fcrypto contained the first pointer to k for (p′, lsid ′, r′). By definition of Fcrypto, new pointers are only gen-
erated upon the following requests: (New, t), (Store, t, k), (GetPSK, t,name), (Derive, ptr , t, s), (Dec, ptr , y),
or (PKDec, y). Next, we show that m′ cannot be such a requests, which is the desired contradiction.

Of course, by definition of Fcrypto and because k is unknown, m′ is not of the form (New, t) or (Store, t, k).
If m′ is of the form (GetPSK, t,name), then, by definition of Fcrypto and because k is unknown, m is of

the form (GetPSK, t,name) too, because the response of m contained the first pointer to k. Since k is not
explicitly shared, (p, lsid , r) and (p′, lsid ′, r′) are partners or both are corrupted. Contradiction. Hence, m′

is not of the form (GetPSK, t,name).
If m′ is of the form (Derive, ptr ′, t, s), then, by definition of Fcrypto and because k is unknown, m is of

the form (Derive, ptr , t, s) and the pointers ptr (of (p, lsid , r)) and ptr ′ (of (p′, lsid ′, r′)) point to the same
key, say k′, in Fcrypto. Furthermore, k′ is unknown, i.e., i) holds for k′. If k′ would be explicitly shared, then
k also would be explicitly shared. Hence, ii) holds for k′. Also, iii) and iv) hold for k′ because (p, lsid , r)
and (p′, lsid ′, r′) have a pointer to k′. But this contradicts the minimality of k. Hence, m′ is not of the form
(Derive, ptr ′, t, s).

If m′ is of the form (PKDec, y), then, by definition of Fcrypto and because k is unknown, the decryption
request m′ was performed ideally by Fcrypto, i.e., m′ is an ideal destruction request. Furthermore, m′ is an
accepted destruction request of user (p′, lsid ′, r′). By (b) in Definition 2 (implicit disjointness), there exists
some user (p′′, lsid ′′, r′′) that has sent a corresponding (to m′) construction request such that (p′, lsid ′, r′)
and (p′′, lsid ′′, r′′) are partners or both (p′, lsid ′, r′) and (p′′, lsid ′′, r′′) are corrupted. That is, (p′′, lsid ′′, r′′)
has a pointer to k and encrypted k under the public key of p′. Since (p′, lsid ′, r′) does not has a pointer
to k before it receives the response to m′, it holds that (p′′, lsid ′′, r′′) 6= (p′, lsid ′, r′). Since (p′, lsid ′, r′) and
(p′′, lsid ′′, r′′) are partners or both (p′, lsid ′, r′) and (p′′, lsid ′′, r′′) are corrupted, it holds that (p, lsid , r) and
(p′′, lsid ′′, r′′) are not partners or not both (p, lsid , r) and (p′′, lsid ′′, r′′) are corrupted. But this contradicts
the assumption that (p′, lsid ′, r′) is the first such user. Hence, m′ is not of the form (PKDec, y).
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Similarly to the case of public-key encryption, if m′ is of the form (Dec, ptr , y), then, by definition of
Fcrypto and because k is unknown, the decryption request m′ was performed ideally by Fcrypto, i.e., m′ is an
ideal destruction request; in particular, the key, say k′, pointer ptr points to is unknown. Furthermore, m′ is
an accepted destruction request of user (p′, lsid ′, r′). If k′ is an explicitly shared key, then (b) in Definition 2
(implicit disjointness) holds for k′ and exactly as above, we can show that m′ is not of the form (Dec, ptr , y).
Now, assume that k′ is not an explicitly shared key. Then i) and ii) hold for k′. Also, iii) and iv) hold for k′

because (p, lsid , r) and (p′, lsid ′, r′) have a pointer to k′. But this contradicts the minimality of k. Hence, m′

is not of the form (Dec, ptr , y).
Altogether, we conclude that m′ is not a request of the form (New, t), (Store, t, k), (GetPSK, t,name),

(Derive, ptr , t, s), (Dec, ptr , y), or (PKDec, y), which is a contradiction. ut

Definition of Qτ . Before we define Qτ we introduce additional notation. We say that two collision free

instances F (1)
crypto and F (2)

crypto of Fcrypto have compatible states if they correspond on the algorithms (provided

by the environment) and on the status of keys. More formally, we say that F (1)
crypto and F (2)

crypto have compatible
states if the following holds:

i) F (1)
crypto and F (2)

crypto correspond on all algorithms (e.g., for symmetric and public-key encryption/decryp-
tion) which have been provided by the environment.

ii) A public/private key of some party is corrupted in F (1)
crypto iff it is corrupted in F (2)

crypto.

iii) For every symmetric key k (of some type t) that exists in both F (1)
crypto and F (2)

crypto, k is known in F (1)
crypto

iff k is known in F (2)
crypto. Furthermore, ciphertexts do not collide, i.e., there does not exist bit strings

x, x′, y such that x 6= x′, (x, y) is recorded for k in F (1)
crypto, and (x′, y) is recorded for k in F (2)

crypto.

iv) There is no nonce that occurs in both F (1)
crypto and F (2)

crypto.

v) For every pre-shared key name (of some type t) that exists in both F (1)
crypto and F (2)

crypto, it holds that

(t,name) is corrupted in F (1)
crypto iff (t,name) is corrupted in F (2)

crypto and it holds that F (1)
crypto and F (2)

crypto

correspond on the value of the key (in case it is not corrupted).

vi) If the key k′ (of some type t) is derived from a key k in F (1)
crypto using seed s and k′′ (of the same type

t) is derived from k in F (2)
crypto using the same seed s, then k′ = k′′.

Two collision free instances of Fcrypto that have compatible states can be merged in the obvious way. The
merged instance just contains all keys and, e.g., all recorded pairs of plaintexts/ciphertexts. By definition,
the merged instance is collision free as well. Furthermore, several collision free instances of Fcrypto that have
pairwise compatible states can all be merge.

Now, we define the IITM Qτ .

Definition 7 (The IITM Qτ). The IITM Qτ has the same I/O and network interface as P |Fcrypto. It
emulates P and several instances of Fcrypto (basically one for every session). For every instance (p, lsid , r)
(by (p, lsid , r) we denote the emulated instance of Mr in P with PID p and LSID lsid), Qτ creates an instance

of Fcrypto, denoted by F (p,lsid,r)
crypto .

Whenever some (emulated) instance of Fcrypto produces (I/O or network) output, Qτ checks that all
instances of Fcrypto are collision free and have pairwise compatible states. If this is not the case, Qτ termi-
nates. (In this case the environment could distinguish between P |Fcrypto and Qτ but this happens only with
negligible probability.)

Whenever (p, lsid , r) produces (I/O or network) output, Qτ whether (p, lsid , r) is corrupted (i.e., the
corrupted flag in (p, lsid , r) is true) or (p, lsid , r) belongs to some session (i.e., τ(α) 6= ⊥ where α is the
sequence of configurations of (p, lsid , r) so far). If this is the case, Qτ sets s := corrupted (where corrupted

is a special symbol distinct from any bit string and ⊥) or s := τ(α), respectively. If F (p,lsid,r)
crypto exists (i.e., it

has not been merged with some other instances of Fcrypto and removed afterwards) and Fscrypto does not exist,

then Qτ sets Fscrypto := F (p,lsid,r)
crypto and removes F (p,lsid,r)

crypto . Otherwise, if F (p,lsid,r)
crypto and Fscrypto exist, then Qτ
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merges F (p,lsid,r)
crypto and Fscrypto and replaces Fscrypto by the merged instance of Fcrypto. (If F (p,lsid,r)

crypto does not
exists, then Qτ does nothing because it already has been merged with Fscrypto and removed afterwards.)

Considering the above, Qτ performs the emulation as follows:

(a) Messages from environment to (p, lsid , r): If Qτ receives (I/O or network) input from the environment
for (p, lsid , r), then it just forwards it to (p, lsid , r).

(b) Messages from (p, lsid , r) to the environment: If (p, lsid , r) sends a message m to then environment, then
Qτ first merges instances of Fcrypto as described above and then forwards m to the environment.

(c) Requests of (p, lsid , r) to Fcrypto: Upon a request m of (p, lsid , r) to Fcrypto, Qτ first merges instances
of Fcrypto as described above and then forwards m to the instance of Fcrypto corresponding to (p, lsid , r)

(i.e., to Fcorrupted
crypto if (p, lsid , r) is corrupted, to Fscrypto if (p, lsid , r) has SID s according to τ , or to

F (p,lsid,r)
crypto otherwise).

(d) Responses of Fcrypto to (p, lsid , r): If some instance of Fcrypto produces I/O output to (p, lsid , r), then
Qτ just forwards it to (p, lsid , r).

(e) Messages from Fcrypto to the environment: If some instance F ′crypto of Fcrypto produces network output
m to the environment, then Qτ does the following:

i) If m was triggered by a symmetric decryption request (of some instance (p, lsid , r)), i.e., m asks the
environment to provide a plaintext and m contains a decryption key k and a ciphertext y, then Qτ
checks if (x, y) (for some x) has been recorded for the key k in some other instance of Fcrypto. If this
is the case, then Qτ sends an error message to F ′crypto (in response to m). This will trigger F ′crypto
to send an error message to (p, lsid , r) signaling that decryption failed. (Note that in P |Fcrypto, in
contrast to Qτ , here x would be returned to (p, lsid , r) as the plaintext instead of an error message.
But this y has been produced in a different session, hence, because of implicit disjointness, (p, lsid , r)
would reject it and its state would be the same as if decryption failed.) Otherwise, Qτ forwards m
to the environment.

ii) Similarly, if m was triggered by a public-key decryption request (i.e., under the private key of party
p), Qτ sends an error message to F ′crypto if the ciphertext y in m is recorded in some other instance
of Fcrypto for the public/private key of party p. Otherwise, Qτ forwards m to the environment.

iii) In any other case (e.g., m was triggered by a symmetric key generation request and asks the envi-
ronment to provide a fresh key), Qτ forwards m to the environment.

(f) Messages from the environment to Fcrypto: If Qτ receives network input m from the environment for
Fcrypto, then it does everything to preserve compatible states between the instances of Fcrypto. More
precisely, Qτ does the following:

i) If m contains algorithms for (symmetric or public-key) encryption, MAC, or signature schemes,

then Qτ sends m to every instance of Fcrypto. Furthermore, if Qτ creates a new instance F (p,lsid,r)
crypto

for new instances (p, lsid , r), then F (p,lsid,r)
crypto first obtains all algorithms that have been sent by the

environment.
ii) Otherwise, m is the answer to a message sent from some instance of Fcrypto to the environment,

e.g., to generate a new symmetric key. Because m contains (p, lsid , r), Qτ knows to which instance
of Fcrypto, say F ′crypto, m is addressed. (Every (p, lsid , r) belongs to exactly one instance of Fcrypto.)
Note that Fcrypto when receiving a message from the adversary checks whether this message is valid,
e.g., upon key generation, Fcrypto checks whether the key is fresh (i.e., not in K) if it is uncorrupted
or, if it is corrupted, that is either fresh or known (i.e., not in Kunknown). If the message is not valid,
Fcrypto ignores it (i.e., produces empty output and waits for the next message to receive). Now, Qτ
(before forwarding m to F ′crypto) itself checks whether m would be valid for the instance of Fcrypto

which is obtained from merging all instances of Fcrypto that Qτ emulates. For example, in case of
uncorrupted key generation, Qτ verifies that the key is fresh in all instances of Fcrypto. If this check
fails, then Qτ ignores m. Otherwise, Qτ forwards m to F ′crypto. (This guarantees that the instances
of Fcrypto still have pairwise compatible states.)

Next, we show that P |Fcrypto is indistinguishable from Qτ . As mentioned above, this does not require that
Fsingle | P | Fcrypto ≤τ Fsingle | F .
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Lemma 5. If P satisfies implicit disjointness w.r.t. τ , then E | P |Fcrypto ≡ E |Qτ .

Proof. To prove Lemma 5, we define a one-to-one mapping between runs (or at least an overwhelming set of
runs) of E | P |Fcrypto and runs of E |Qτ such that corresponding runs have the same probability and overall
output.

Therefore, let ρ be a run of E | P |Fcrypto such that Fcrypto in ρ is always collision free, (a) and (b) in
Definition 2 are satisfied for ρ, and there exists no implicitly shared keys that are unknown in ρ, i.e., the
statement of Lemma 4 holds for ρ. Given such a run ρ, we first define the corresponding run ρ′ of E |Qτ .
Then, we show that the probability of ρ is the same as the probability of ρ′ and that the overall output
(i.e., the output on tape decision) is the same in ρ and ρ′. By Lemma 3, Lemma 4, and because P satisfies
implicitly disjointness w.r.t. τ , the set of runs of E | P |Fcrypto that we consider has overwhelming probability
and, hence, we can conclude that E | P |Fcrypto ≡ E |Qτ .

We define ρ′ to be the run of E |Qτ where the following holds:

i) E uses the same random coins as E in ρ.
ii) The random coins of Qτ are defined such that:

– The emulated P uses the same random coins as P in ρ.
– The emulated copies of Fcrypto jointly use the same random coins as Fcrypto in ρ.

By construction, the probabilities of ρ and ρ′ are equal. W.l.o.g., in the following, we assume that P |Fcrypto

in the run ρ is a single IITM. Furthermore, we assume that E is a single IITM. In [27], it has been shown that
every system of IITMs can be emulated by a single IITM. This simplifies the proof because Qτ is a single
IITM in ρ′ and, hence, the structure of ρ and ρ′ is more similar. In particular, now, every configuration in ρ
is either E sending output to P |Fcrypto or tape decision (which of course can only be the last configuration
of ρ), P |Fcrypto sending output to E , or E or P |Fcrypto producing empty output. Otherwise, we would have
to talk about intermediate configurations, e.g., where P sends requests to Fcrypto, which do not exist in ρ′.

By induction on the length of prefixes of ρ, we show that the following holds for every prefix ρ̂ of ρ (the
corresponding prefix ρ̂′ of ρ′ is defined analogously to ρ′):

(∗) (a) The view of E in ρ̂ is the same as the view of E in ρ̂′.
(b) The last configuration of E in ρ̂ is the same as the last configuration of E in ρ̂′.
(c) The last configuration of P in ρ̂ is the same as the configuration of the emulated P in the last

configuration of Qτ in ρ̂′.
(d) All emulated copies of Fcrypto in the last configuration of Qτ in ρ̂′ have compatible states.
(e) The last configuration of Fcrypto in ρ̂ is the same as the merged (see above) configuration of all

emulated copies of Fcrypto in the last configuration of Qτ in ρ̂′.

After we have shown this, we can conclude as follows: Since (∗) in particularly holds for ρ̂ = ρ, only E might
produce output to decision, and E uses the same randomness in both runs, the overall output of ρ is the same
as the one of ρ′.

Clearly, (∗) holds if ρ̂ has length 1, i.e., where P |Fcrypto has never been activated in ρ̂. Now, let ρ̂ be
a prefix of ρ of length > 1 and assume that (∗) holds for the prefix ρ̃ of ρ̂ which is by one shorter than ρ̂.
There are two cases: In the last configuration of ρ̃ the last IITM that has been active (and possibly produced
output) is either i) P |Fcrypto or ii) E . In case i), by (∗) for ρ̃, it trivially follows that the output of P |Fcrypto

in ρ̃ equals the output of Qτ in ρ̂′. Hence, (∗) holds for ρ̂. Next, we consider case ii). If E produces empty
output or output to tape decision, then the run stops and nothing is to show. Now, assume that E produces
output, say m, to P |Fcrypto. Note that the message m might trigger P and Fcrypto to send multiple messages
between each other before output P or Fcrypto outputs a message m′ to E . We show that (∗) is satisfied for
every such in-between message.

If m is sent to P, then (∗) trivially holds for the configuration that is reached when P outputs a message
(either to E or to Fcrypto) because of (∗) (c) for ρ̃ and P uses the same randomness in ρ and ρ′.

On the other hand, if m is sent to Fcrypto (i.e., to the network interface of Fcrypto), than, by definition
of Qτ (Qτ accepts m if and only if the copy of Fcrypto which is obtained from merging all copies of Fcrypto
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would accept m), one can show that (∗) (d) and (e) still hold when Fcrypto produces output (either to E or
to P). Of course (∗) (a), (b), and (c) hold as well because the configuration of E and P did not change at
all.

Now, if P sends a request m′ to Fcrypto, then we have to show that (∗) holds after Fcrypto has processed
this request and either returned a response to P or send a message to E . It is easy to see that this is satisfied
if m′ is not a destruction request (i.e., m′ is not of the form (Dec, ptr , y), (PKDec, y), (MacVerify, ptr , x, σ), or
(SigVerify, p′, pk , x, σ)). For construction requests, e.g., m′ is an encryption request, it holds because Fcrypto

in ρ and the corresponding copy of Fcrypto in ρ′ use the same randomness to produce the ciphertext. Request
of the form (Retrieve, ptr), (Enc, ptr , x), and (PKEnc, p′, pk , x) might turn unknown keys into known keys in
Fcrypto. By (a) in Definition 2 (i.e., explicitly shared keys do not change the known/unknown status) and
because there are no implicitly shared keys (Lemma 4), we can conclude that if a key, say k, in ρ changes
from unknown to known in Fcrypto, then k only exists in ρ′ in the emulated copy of Fcrypto that receives
m′ and, hence, it remains true that the copies of Fcrypto in ρ′ have compatible states ((∗) (d)). Next, we
distinguish the three remaining cases:

– MAC verification, i.e., m′ is of the form (MacVerify, ptr , x, σ): Let (p, lsid , r) be the user that sent m′ to
Fcrypto. By (∗) (e), we have that the key, say k, ptr points to is marked unknown in ρ iff it is marked
unknown in ρ′. If k is marked known, then the same happens in ρ and ρ′. So, in the following, we assume
that k is marked unknown.
First, consider the case where verification in ρ succeeds, i.e., x is recorded as MACed under k in ρ. If k
is an explicitly shared key, then, by (b) in Definition 2, x has been MACed by a user in the same session
as (p, lsid , r) (or both users are corrupted) and, hence, x is recorded as MACed under k in the copy of
Fcrypto that (p, lsid , r) uses. It follows that m′ is processed equally in ρ and ρ′ and, hence, (∗) remains
satisfied. If k is not an explicitly shared key, then it is not shared at all (Lemma 4). Hence, similarly, x is
recorded as MACed under k in the copy of Fcrypto that (p, lsid , r) uses and, hence, (∗) remains satisfied.
Second, consider the case where verification in ρ does not succeed. Then, either Fcrypto prevents forgery
(i.e., the MAC verification algorithm say that the MAC verifies but x is not recorded as MACed under
k) or the MAC verification algorithm does not verify the MAC (i.e., returns false). If x is not recorded
as MACed for x in ρ, then it is not recorded as MACed for x in any copy of Fcrypto in ρ′. Furthermore,
if the MAC verification algorithm does not verify the MAC in ρ, then it does not verify it in ρ′ because
the same algorithm is run.
Altogether, we conclude that (∗) remains satisfied after Fcrypto has processed the request m′.

– Signature verification, i.e., m′ is of the form (SigVerify, p′, pk , x, σ): This case is analog to MAC verifica-
tion, see above.

– Symmetric authenticated decryption, i.e., m′ is of the form (Dec, ptr , y) and ptr points to a key k of type
authenc-key in Fcrypto: Let (p, lsid , r) be the user that sent m′ to Fcrypto. By (∗) (e), we have that k is
marked unknown in ρ iff it is marked unknown in ρ′. If k is marked known, then the same happens in
ρ and ρ′. So, in the following, we assume that k is marked unknown, i.e., that decryption is performed
ideally by Fcrypto.
Since ciphertexts do not collide, there are two cases in ρ: There exists a unique x′ such that (x′, y) is
stored in Fcrypto for key k, or there does not exist an x′ such that (x′, y) is stored in Fcrypto for key k.
In the latter case, also in ρ′ it holds that there does not exist an x′ such that (x′, y) is stored for k in
the copy of Fcrypto used by (p, lsid , r). Hence, in both runs ρ and ρ′, an error (signaling that decryption
failed) is returned to the user (p, lsid , r). So, (∗) remains satisfied.
If there exists a unique x′ such that (x′, y) is stored in Fcrypto for key k in ρ and (p, lsid , r) accepts the
response of Fcrypto (which contains x′) in ρ, i.e., the test algorithm test which is run by (p, lsid , r) to
determine whether to accept or reject the response of Fcrypto returns “accept”, then: If k is an explicitly
shared key, then, by (b) in Definition 2, y has been produced by a user in the same session as (p, lsid , r)
(or both users are corrupted) and, hence, (x′, y) is stored for k in the copy of Fcrypto that (p, lsid , r)
uses. It follows that m′ is processed equally in ρ and ρ′ and, hence, (∗) remains satisfied. If k is not an
explicitly shared key, then it is not shared at all (Lemma 4). Hence, similarly, (x′, y) is stored for k in
the copy of Fcrypto that (p, lsid , r) uses and, hence, (∗) remains satisfied.
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On the other hand, if there exists a unique x′ such that (x′, y) is stored in Fcrypto for key k in ρ but
(p, lsid , r) rejects the response of Fcrypto (which contains x′) in ρ, i.e., the test algorithm test which is
run by (p, lsid , r) to determine whether to accept or reject the response of Fcrypto returns “reject”, then:
If (x′, y) is stored for k in the copy of Fcrypto that (p, lsid , r) uses in ρ′, then the same happens in ρ and ρ′.
If (x′, y) is not stored for k in the copy of Fcrypto that (p, lsid , r) uses in ρ′, then in ρ′ the user (p, lsid , r)
receives an error message (signaling that decryption failed). By definition of multi-session protocols and
because (p, lsid , r) rejected the response in ρ, the state of (p, lsid , r) in ρ after test rejected the response
is the same as the state of (p, lsid , r) if an error message would have been received. Hence, the state of
(p, lsid , r) is the same in ρ and ρ′ and, so, (∗) remains satisfied.

– Symmetric unauthenticated decryption, i.e., m′ is of the form (Dec, ptr , y) and ptr points to a key k of
type unauthenc-key in Fcrypto: Let (p, lsid , r) be the user that sent m′ to Fcrypto. This case is similar to
symmetric authenticated decryption, only the following cases differ:
• If there does not exist an x′ such that (x′, y) is stored in Fcrypto for key k in ρ, then also in ρ′ there

does not exist and x′ such that (x′, y) is stored for k in any copy of Fcrypto. Hence, in both runs ρ
and ρ′ a message is sent to the environment (network) to ask for a decryption of y and (∗) remains
satisfied.

• If there exists a unique x′ such that (x′, y) is stored for k in Fcrypto in ρ, (p, lsid , r) rejects the
response of Fcrypto (which contains x′) in ρ, and (x′, y) is not stored for k in the copy of Fcrypto that
(p, lsid , r) uses in ρ′, then: The copy of Fcrypto for user (p, lsid , r) asks the environment to provide
a decryption but, by definition of Qτ , Qτ directly returns an error message to this copy of Fcrypto.
Hence, as above, we can conclude that (∗) remains satisfied.

– Public-key decryption, i.e., m′ is of the form (PKDec, y): This case is analog to symmetric unauthenticated
decryption, see above.

This concludes the proof of Lemma 5. ut

Next, we show that Qτ realizes F . As mentioned above, this does not require that P satisfies implicit
disjointness.

Lemma 6. If Fsingle | P | Fcrypto ≤τ Fsingle | F , then Qτ ≤ F .

Before we prove Lemma 6, we define a simulator Sim for Qτ ≤ F which uses several copies of the
simulator Simτ for Fsingle | P | Fcrypto ≤τ Fsingle | F (i.e., E |Fsingle | P | Fcrypto ≡ E |Simτ |Fsingle | F and
Simτ is a restricted simulator as defined in Section 4.3: Simτ exactly simulates P |Fcrypto in its first stage
and only (possibly) deviates from this in its second stage).

Definition 8 (The Simulator Sim). The IITM Sim has the same network interface as Qτ and connects
to the network interface of F (i.e., Sim | F has the same external interface as Qτ ). It simulates the IITM
Qτ (see Definition 7) as follows.

Every session-start message for a user (which is forwarded by F to Sim), is forwarded by Sim to Qτ .
Also, Sim forwards all network output/input from/to Qτ to/from the environment.

During the simulation of Qτ , Sim always checks whether there exists a new (complete) session, i.e.,
instances M1, . . . ,Mr of P (which are emulated by Qτ ) such that they are partners (according to τ). If Sim
finds such a new session, then Sim continues the simulation of Qτ such that this session (i.e., the instances
M1, . . . ,Mr and the corresponding copy of Fcrypto) is now handled by a new copy of Simτ . The initial state
of this new copy of Simτ is set as if this session has always been handled by Simτ . Because Simτ in its first
stage exactly simulated P |Fcrypto, Sim can adjust the state of Simτ appropriately. Then, Sim forwards all
output/input from/to Simτ to/from F .

Furthermore, Sim always checks whether an instance Mr of P gets corrupted (i.e., the flag corrupted
in the state of Mr is set to true). If this is the case, then Sim corrupts the corresponding local session in F .
For a corrupted instance Mr, Sim forwards all I/O output/input from/to Mr to/from F (which forwards it
to/from the user).

Once an uncorrupted instance Mr belongs to a complete session, it does not produce I/O output because
it is handled by a copy of Simτ which directly interfaces with F . But an uncorrupted instance Mr that does
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not belong to a complete session might produces I/O output. If this happens, then Sim terminates. (In this
case the simulation fails but this happens only with negligible probability.)

Proof of Lemma 6. The proof of Lemma 6 is very similar to the proof of Theorem 3 because Qτ is similar
to P |F ′ for some multi-session local-SID functionality F ′.

Similar to Lemma 1 in the proof of Theorem 3, using Fsingle | P | Fcrypto ≤τ Fsingle | F , we can show that
in every run of E |Qτ for any environment E it holds that Qτ never produces I/O output for a user that is
uncorrupted or does not belong to a complete (i.e., one user per role) global session (according to τ) (except
with negligible probability). Intuitively, this holds because the simulator Simτ for Fsingle | P | Fcrypto ≤τ
Fsingle | F only (possibly) creates a session in F in its second stage, i.e., after τ has signaled a complete
global session, and F guarantees that there is no I/O output of uncorrupted users that do not belong to a
global session.

For the rest of the proof, we fix an environment E for P |F ′. Let pE be a polynomial (in the security
parameter η) that bounds the overall runtime (i.e., taken steps) of E . (By definition of environmental systems
in the IITM model such a polynomial exists.) Since only E can create new instances of machines in P by
sending requests to them, the overall number of these instances is bounded by pE . Also, we use the following
abbreviations:

R := Fsingle | P | Fcrypto

I := Simτ |Fsingle | F .

So, we have that
E ′ |R ≡ E ′ | I (11)

for every environment E ′ for R.
We then define hybrid systems Hi for all i ∈ N similar to the proof of Theorem 3. Basically, Hi emulates

E interacting with Qτ and Sim | F such that the first i− 1 sessions are handled by Qτ and all later session
are handled by Sim | F . Here, the proof here is simpler than the one for Theorem 3 because we do not need
to consider global sessions in F ′ which have corrupted users. Since τ is valid, it only signals sessions for
uncorrupted users. So, the i-th session is simply the i-th complete session that τ signals.

By construction of H1 and definition of Sim, we directly obtain that

H1 ≡ E |Sim | F . (12)

Using that Qτ never produces I/O output for a user that is uncorrupted or does not belong to a complete
global session (see above), we obtain that

HpE+1 ≡ E |Qτ . (13)

Similar to Theorem 3, we define hybrid systems Ĥi,i1,...,in , for all i, i1, . . . , in ∈ N, which are supposed to

run with either R or I. The hybrid Ĥi,i1,...,in emulates E interacting with Qτ and Sim | F but the i-th

session is handled by R or I, respectively. To successfully outsource the i-th session, Ĥi,i1,...,in has to know

which users belong to this session even before this session is created. Therefore, Ĥi,i1,...,in is additionally

parametrized by i1, . . . , in which tells Ĥi,i1,...,in that the ir-th user plays role r in the i-th session. Recall
from Definition 7 (f) ii), that Qτ before forwarding a message from the environment to an instance of Fcrypto

does the following: Qτ verifies that the is valid for the instance of Fcrypto which is obtained by merging all
instances of Fcrypto (because this prevents E , e.g., from providing the same unknown key when a fresh key
is requested; also, this message would be rejected in P |Fcrypto, where there is only one instance of Fcrypto).

Now, Ĥi,i1,...,in has to do the same verification but it does not know the state of Fcrypto in the external

session. But due to our slight modifications of Fcrypto (compared to [30], see Appendix C.1), Ĥi,i1,...,in knows

which keys are known and which are unknown in the external session and this enables Ĥi,i1,...,in to do this
verification exactly as Qτ would do. If the i-th session exists (i.e., has been created at some point) and the
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{|x|}kA – encryption of message x under the public key of party A
sigkA(x) – signature of message x under the private key of party A

{x}k – encryption of message x under the symmetric key k
mack(x) – MAC of message x under the symmetric key k

Table 1. Notation used in protocol descriptions.

parameter i1, . . . , in correctly predict the i-th session, then, at the end of the run, Ĥi,i1,...,in simply outputs
what (the emulated) E would output as the overall output of the run (i.e., on tape decision). Otherwise,
Ĥi,i1,...,in guarantees that the overall output is not 1.

As in the proof of Theorem 3, for all i, i′, i1, . . . , in ∈ N, we define BHi′ (i, i1, . . . , in), to be the set of runs
of Hi′ where the i-th complete session exists (i.e., at some point in the run τ signals the i-th session with
one user per role) and the user in role r is the ir-th user (i.e., for this user the ir-th session-start message
has been sent), for every r ≤ n.

Similar to Lemma 2 in the proof of Theorem 3, for all i, i1, . . . , in ∈ N, we can show that

Pr[Ĥi,i1,...,in | I  1] = Pr[Hi  1 ∩BHi
(i, i1, . . . , in)] (14)

Pr[Ĥi,i1,...,in |R 1] = Pr[Hi+1  1 ∩BHi+1(i, i1, . . . , in)] . (15)

That is, the probability that a run of Ĥi,i1,...,in | I (resp., Ĥi,i1,...,in | I) outputs 1 (i.e., the overall output on
the decision tape is 1) equals the probability that a run of Hi (resp., Hi+1) outputs 1 where the i-th session
consists of the users i1, . . . , in.

Finally, as for Theorem 3, using (14) and (15), we conclude that H1 ≡ HpE+1. By (12) and (13), we
further conclude that E |Sim | F ≡ E |Qτ , i.e., Qτ ≤ F . This concludes the proof of Lemma 6. ut

If P satisfies implicit disjointness w.r.t. τ and Fsingle | P | Fcrypto ≤τ Fsingle | F , then Lemma 5 and
Lemma 6, by transitivity of ≡, directly imply E | P |Fcrypto ≡ E |Sim | F , which concludes the proof of
Theorem 4.

D Applications

First, in Appendix D.1, we define ideal functionalities for key usability and secure channel. In Appendix D.2,
we present an example of an insecure protocol, namely the Needham-Schroeder Public-Key (NSPK) protocol,
which is turned into a secure protocol when prefixing messages with pre-established SIDs as done in previous
joint state theorems. We also give an example of a secure protocol that does not satisfies implicit disjointness,
namely the Needham-Schroeder-Lowe (NSL) protocol. Our case studies on the real-world security protocols
SSL/TLS, IPsec, IEEE 802.11i, and EAP-PSK are presented in Appendix D.3 to D.7. We show that these
real-world protocols all satisfy implicit disjointness. Of course, in this work, we cannot precisely model and
analyze all details and variants of these protocols. Instead, we only model the cryptographic core and sketch
the main ideas. Finally, we prove—in Appendix D.8—that a generic multi-session real protocol that uses
the multi-session local-SID key usability functionality realizes the multi-session local-SID secure channel
functionality.

In the following, to describe the protocols, we use the notation introduced in Table 1.

D.1 Multi-Session Local-SID Ideal Functionalities

Here, we provide definitions of ideal functionalities for key usability and secure channel which are mentioned
in Section 5 and used below. Similar functionalities for other tasks, such as key exchange or authentication,
can be defined analogously.

Key Usability. The ideal functionality for key usability is inspired by the notion of key usability proposed
in [16]. It is very similar to a standard key exchange functionality. However, parties do not obtain the actual
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Fkey-use(n, q, L,D)

Tapes: input: tinr for r = 1, . . . , n (I/O tapes), tinadv (network tape)
output: toutr for r = 1, . . . , n (I/O tapes), toutadv (network tape)

We say that “m is received from tr” if the message m is received on tape tinr . By “send m to tr” we denote that
m is output on tape toutr . Similarly, we say that “m is received from/sent to tadv” if m is received on tinadv or m
is output on toutadv, respectively.

State: The state of Fkey-use is maintained by the following variables
enc,dec,decTable, state1, . . . , staten ∈ {0, 1}∗ ∪ {⊥}. In the initial state, the value of every variable is ⊥. The
variable decTable is interpreted as a set (where ⊥ is the empty set). The variables enc and dec are interpreted
as algorithms. Given a (description of an) algorithm A, by “y ← A(x)” we denote that a probabilistic execution
of A is simulated on input x. If the simulation terminates within at most q(|x|) steps, then y is set to its result,
otherwise, y is set to ⊥. Similarly, by “y := A(x)” we denote (enforced) deterministic execution of A.

CheckAddress: Every message on every tape is always accepted.
Compute:
• I/O input: Upon receiving a message m from tr do:

1. If m = (Create,m1, . . . ,mn) for some bit strings m1, . . . ,mn and r = 1, then: If m1 = · · · = mn, then set
statei := 0 for all i ≤ n, otherwise, set statei := error for all i ≤ n. Then, send m to tadv.
(Note that in the induced multi-session local-SID functionality F [Fkey-use], this Create message is sent by
F and that the bit strings m1, . . . ,mn are the ones from the session-start messages. These bit strings can
be used by an implementing protocol to express the intended partners, e.g., mr = (p1, . . . , pn) for all r ≤ n.
The condition m1 = · · · = mn then guarantees that the users agree on the corresponding partners.)

2. If m = (Enc, x) for some x ∈ D(η) and stater = ok, then do:
(a) Compute x← L(1η, x), y ← enc(k, x), and x′ := dec(k, y).
(b) If x′ 6= x, then y := ⊥.
(c) If y 6= ⊥, then add (x, y) to decTable.
(d) Send y to tr.

3. If m = (Dec, y) for some bit string y and stater = ok, then if exists unique x such that
(x, y) ∈ decTable, then send x to tr, otherwise, send ⊥ to tr.

• Network input: Upon receiving a message m from tadv do:
4. If m = (Alg, enc, dec) for some enc, dec ∈ {0, 1}∗ and enc = ⊥, then set enc := enc, dec := dec, and send

Ack to tadv.
5. If m = (Establish, r) for some r ≤ n, enc 6= ⊥, and stater = 0: set stater := ok and send Established to tr.

• Upon I/O or network input not matching a rule above, the input is ignored (i.e., produce empty output).

Fig. 5. The ideal key usability functionality Fkey-use is parametrized by a number of roles n ∈ N, a polynomial q,
a polynomial-time computable leakage algorithm L (e.g., L(1η,m) = 0|m|), and D = {D(η)}η∈N where D(η) is a
domain of plaintexts which is decidable in polynomial time (in η).

exchanged key but only a pointer to this key. They can then use this key to perform ideal cryptographic
operations, e.g., encryption, MACing, key derivation, etc., similarly to Fcrypto. Here, we only define key
usability for authenticated encryption but this could be easily extended, see below.

The ideal key usability functionality Fkey-use for a single session is defined in pseudocode in Figure 5
and described below. From Fkey-use, by the definition in Section 3.2, we directly obtain the multi-session
local-SID functionality Fkey-use = F [Fkey-use]. The machine Fkey-use is parameterized by a number n of
roles, a polynomial q which bounds the run-time of the encryption and decryption algorithms provided by
the (ideal) adversary, a polynomial-time computable leakage algorithm L (e.g., L(1η,m) = 0|m|), and a
domain D = {D(η)}η∈N of plaintexts where D(η) which is decidable in polynomial-time (in the security
parameter η).

Now, we describe Fkey-use. First, Fkey-use waits for a message of the form (Create,m1, . . . ,mn) on the tape
for role 1. We note that in the induced multi-session local-SID functionality F [Fkey-use], this Create message
is sent by F and that the bit strings m1, . . . ,mn are the ones from the session-start messages. These bit
strings can be used by an implementing protocol to express the intended partners, e.g., mr = (p1, . . . , pn)
for all r ≤ n. If not m1 = · · · = mn, the functionality basically terminates. The condition m1 = · · · = mn

37



Fsc(n)

Tapes: Exactly like Fkey-use (see Figure 5).
State: The state of Fsc is maintained by the following variables statei,queuei,j ∈ {0, 1}∗ ∪ {⊥} for all
i, j ∈ {1, . . . , n}. In the initial state, the value of every variable is ⊥. The variables queuei,j are interpreted as
queues, where ⊥ is the empty queue.

CheckAddress: Every message on every tape is always accepted.
Compute:
• I/O input: Upon receiving a message m from tr do:

1. If m = (Create,m1, . . . ,mn) for some bit strings m1, . . . ,mn and r = 1, then: If m1 = · · · = mn, then set
statei := 0 for all i ≤ n, otherwise, set statei := error for all i ≤ n. Then, send m to tadv.
(See explanations in Figure 5.)

2. If m = (Send, i, x) for some i ≤ n and some bit string x and stater = ok, then append x to the end of
queuer,i and send (r,Send, i, 0|x|) to tadv.

• Network input: Upon receiving a message m from tadv do:
3. If m = (Establish, r) for some r ≤ n and stater = 0, then set stater := ok and send Established to tr.
4. If m = (Deliver, i, j) for some i, j ≤ n, statej = ok, and queuei,j is not empty, then remove the first

message in queuei,j , let x be this message, and send x to tj .
5. If m = (Drop, i, j) for some i, j ≤ n and queuei,j is not empty, then remove the first message in queuei,j

and send Ack to tadv.
• Upon I/O or network input not matching a rule above, the input is ignored (i.e., produce empty output).

Fig. 6. The ideal secure channel functionality Fsc is parameterized by a number of roles n ∈ N. Its strengthened
variant F+

sc differs from Fsc only in that drop requests are ignored.

guarantees that the users agree on the corresponding partners. Then, Fkey-use expects the (ideal) adversary
to provide encryption and decryption algorithms. (Similar to Fcrypto, we do not put any restrictions on
the algorithms provided by the adversary.) Furthermore, the adversary can instruct Fkey-use, for every role
r ≤ n, to tell the user in the r-th role that the session is established. Once a user has received such a
session-established message, the user can use Fkey-use to ideally encrypt and decrypt messages (similar to
Fcrypto).

As mentioned above, we could extend Fkey-use by features of Fcrypto, e.g., generation of fresh keys, key
derivation, and MACs. Then, Fkey-use basically would be a copy of Fcrypto which is set up with one pre-shared
key, namely the session key. This session key could be used to derive other keys, to MAC/verify message, or
to encrypt/decrypt messages just like Fcrypto. Also, derived keys and freshly generated keys could be part
of plaintexts. Altogether, this provides flexibility to a higher-level protocol that uses Fkey-use.

We note that Fkey-use does not define any form of corruption, so, one instance of Fkey-use represents a
single honest session. We could modify Fkey-use to allow the (ideal) adversary to corrupt the functionality but
this is often not necessary if one uses—as we do—Fkey-use as part of the multi-session local-SID functionality
Fkey-use = F [Fkey-use]. Recall from Section 3.2 that Fkey-use defines corruption of local sessions before they
belong to a (global) session, i.e., the (ideal) adversary can take over complete control of a local session before
it belongs to a (global) session.

Secure Channel. We define two variants of secure channel functionalities Fsc and F+
sc . While both func-

tionalities do not allow that messages are replayed or reordered, Fsc allows that messages are dropped while
F+
sc prevents message loss. We note that F+

sc is similar to the ideal secure channel functionality in [9].
The ideal secure channel functionalities Fsc and F+

sc for a single session are defined in pseudocode in
Figure 6 and described below. From these functionalities, by the definition in Section 3.2, we directly obtain
the multi-session local-SID functionalities Fsc = F [Fsc] and F+

sc = F [F+
sc ]. The machines Fsc and F+

sc are
parameterized by a number n of roles.

Now, we describe Fsc (see below for F+
sc ). Similarly to Fkey-use, Fsc at first waits for a message of the

form (Create,m1, . . . ,mn) on the tape for role 1. Then, the (ideal) adversary can instruct Fsc, for every
role r ≤ n, to tell the user in the r-th role that the session is established. Once a user has received such
a session-established message, the user can use Fsc to send messages to other users via the secure channel.
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1. A→ B: {|NA, pA|}kB
2. B → A: {|NA, NB |}kA
3. A→ B: {|NB |}kB

Fig. 7. The NSPK protocol.

1. A→ B: N ′A
2. B → A: N ′B
3. A→ B: {|(pA, pB , N ′A, N ′B), NA, pA|}kB
4. B → A: {|(pA, pB , N ′A, N ′B), NA, NB |}kA
5. A→ B: {|(pA, pB , N ′A, N ′B), NB |}kB

Fig. 8. The idealized NSPK protocol.

1. A→ B: {|NA, pA|}kB
2. B → A: {|NA, NB , pB |}kA
3. A→ B: {|NB |}kB

Fig. 9. The NSL protocol.

The adversary only learns the length of the messages that are sent via the secure channel and can instruct
Fsc to deliver or drop messages. In particular, the adversary does not learn the actual messages and cannot
reorder or replay the messages.

The strengthened variant F+
sc is defined just as Fsc, except that the adversary cannot drop messages.

As for Fkey-use, we note that Fsc (and F+
sc ) does not define any form of corruption, so, one instance of Fsc

represents a single honest session but corruption is defined for Fsc (and F+
sc), see above.

We further remark that one could similarly define ideal functionalities for authenticated channels similar
to the ideal functionality FAUTH in [9]. Instead of 0|x|, the actual message x could be sent to the adversary.
Furthermore, if the secure channel (or authenticated channel) does not guarantee replay protection or does not
guarantee that messages arrive in the correct order, one could easily weaken the functionality appropriately.

D.2 The Needham-Schroeder Public-Key Protocol With and Without Lowe’s Fix

The NSPK Protocol. The Needham-Schroeder Public-Key (NSPK) protocol [32] is sketched in Figure 7.
In this, pA is A’s PID and NA and NB are nonces chosen by A and B, respectively. It can be shown that this
protocol (appropriately modeled as a protocol in the IITM or UC model) is secure in a single session setting
(e.g., realizes a single-session ideal key exchange functionality). Using the joint state composition theorems
for public-key encryption in [28], we obtain security in the multi-session setting of an idealized NSPK protocol
which assumes and uses pre-established SIDs. A concrete instance of such an idealized NSPK protocol where
these SIDs are established by exchanging nonces (N ′A and N ′B), as discussed in [2], is the protocol depicted in
Figure 8. As can be seen, this changes the NSPK protocol dramatically; in particular, while NSPK is insecure
in the multi-session setting, (the protocol in) Figure 8 is secure. We note that Figure 8 in particularly applies
Lowe’s fix [31] (namely adding B’s PID pB to the second plaintext, see Figure 9) but it does much more;
also, it trivially satisfies implicit disjointness.

The NSL Protocol. The Needham-Schroeder-Lowe (NSL) protocol [31] is sketched in Figure 9. In this, pA
and pB are A’s and B’s PID, respectively, and NA and NB are the nonces chosen by A and B, respectively.
This protocol (appropriately modeled as a multi-session protocol that uses Fcrypto for public-key encryption)
does not satisfy implicit disjointness because B would decrypt the first message (i.e., {|NA, pA|}kB ) in any
session. The reason that this protocol is still secure is because the link between the first message and the
session is established by the third protocol message (i.e., {|NB |}kB ), see also [10]. Fortunately, as we see
below, most real-world protocols do not use such kind of authentication but establish a link between every
message (that contains ciphertexts, MACs, or signatures) and the session.

D.3 The SSL/TLS Protocol

The Transport Layer Security (TLS) protocol [18] consists of multiple subprotocols including TLS Handshake
Protocols and the TLS Record Protocol. Basically, the Handshake Protocols are used to establish a session
key and this session key is used in the Record Protocol to provide a secure channel. There are three Handshake
Protocols two thereof are based on Diffie-Hellman key exchange and the third is based RSA encryption. Here,
we only consider the third variant. Also, we consider the variant of the Handshake Protocol where the client
authenticates itself using digital signatures. (There also exists a variant where the client is not authenticated
but only the server.) We note that all other variants of the Handshake Protocols could also be analyzed using
our methods. We assume that the server and client can verify the public key of the other side (e.g., using
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some kind of public key infrastructure). The cryptographic core of the this Handshake Protocol is depicted in
Figure 2. In this, pC and pS are the PIDs of C and S, respectively; NC and NS are C’s and S’s nonce; kC and
kS are C’s and S’s public key; the premaster secret PMS is chosen randomly by C; ci for i ≤ 8 are distinct
constants; c1, c2, which are part of the client and server hello messages, are used to negotiate algorithms, we
model this as constants; F is a pseudo-random function; the master secret MS is derived from PMS as follows:
MS = F (PMS , c0‖NC‖NS); {m}k1,k2 denotes MAC-then-encrypt, i.e., {m}k1,k2 = {m,mack1(m)}k2 ; the
encryption key client to server is EKCS = F (MS , c5‖NC‖NS); the encryption key server to client is EKSC =
F (MS , c6‖NC‖NS); the integrity key client to server is IKCS = F (MS , c7‖NC‖NS); the integrity key server
to client is IKSC = F (MS , c8‖NC‖NS); H is a hash function; handshake stands for the concatenation of all
previous messages, i.e., handshake = c1‖NC‖pS‖kS‖c2‖NS‖pC‖kC‖ {|PMS |}kS . In Step 3 of the protocol, the
server performs the following test (as soon as a check fails, the whole message is dropped): It first decrypts
the first ciphertext (using Fcrypto). If successful, it checks that the signature is over the expected message.
If so, it verifies the signature sigkC (handshake) (using Fcrypto). If successful, S derives the keys MS , EKCS ,
etc. and decrypts the second ciphertext (using Fcrypto). If this succeeds, the MAC within the plaintext is
verified (using Fcrypto). If successful, the test accepts and S continues the protocol.

Modeling this protocol as a multi-session protocol PTLS = !MC | !MS that uses Fcrypto for all crypto-
graphic operations (i.e., public-key and symmetric encryption, digital signatures, key derivation, and MAC)
is straightforward. The protocol PTLS is meant to realize Fkey-use, i.e., after the keys are established, the
parties can send encryption and decryption requests to MC and MS which are MACed and encrypted under
the corresponding keys. Of course, the domain of plaintexts for Fkey-use must not contain plaintexts of the
form in message 3 and 4 of the protocol because, otherwise, trivially PTLS does not realize Fkey-use (decryp-
tion of the ciphertexts sent in message 3 and 4 would only succeed in PTLS but not in Fkey-use). We assume
that all public keys are known to all parties. More precisely, if an instance (of MC or MS) receives the public
key kS or kC , respectively, then the instance checks that this public key is in fact the correct public key of
the desired partner by comparing the received public key with the public key obtained from Fcrypto for the
desired partner. If it is not the correct public key, the instance halts. By this, we model that public keys
are either already distributed (in a secure way) or that there is some reliable public key infrastructure. In
Step 3 of the protocol, the client computes the message {F (MS , c3‖H(handshake))}IKCS ,EKCS as follows:
First, the client derives the keys MS , IKCS , etc. according to the protocol using Fcrypto. Then, the client
derives F (MS , c3‖handshake) using Fcrypto, i.e., the client obtains a pointer to this derived key. The client
then also asks Fcrypto (using a Retrieve-request) for the actual bit string of this derived key (which will mark
this key known in Fcrypto, but this is not a problem). Finally, the client encrypts and MACs the obtained
bit string (using Fcrypto). The server similarly computes the message {F (MS , c4‖handshake)}IKSC ,EKSC in
Step 4 of the protocol.

Corruption in PTLS is modeled as follows. When an instance of MC or MS gets activated for the first
time (i.e., upon receiving a session-start message), it sends a request to the adversary asking whether it
is corrupted or not. If the adversary decides to corrupt this instance, then we call this instance directly
corrupted. The adversary can only corrupt an instance at the beginning, i.e., before the instance starts
executing the protocol. If an instance is not directly corrupted, we still call the instance indirectly corrupted
if the public/private key of the partner (i.e., kC or kS) is corrupted in Fcrypto (note that the instance can
ask Fcrypto for the corruption status of these keys, so it knows if it is indirectly corrupted). An instance that
is not directly or indirectly corrupted is called uncorrupted. An directly or indirectly corrupted instance sets
its flag corrupted to true. An indirectly corrupted or uncorrupted instance follows the protocol normally.
Indirect corruption models that this party is honest but its partner is not (or that the adversary somehow
obtained the private key of the partner). An directly corrupted instance on the other hand, gives complete
control to the adversary by forwarding all messages between the adversary and the environment. Note that,
by this definition, directly corrupted instances never send any requests to Fcrypto.8 For an uncorrupted or
indirectly corrupted instance, we assume that its public/private keys are uncorrupted in Fcrypto and, if this

8 We could allow the adversary to send requests to Fcrypto in the name of a directly corrupted instance but then
all keys this instance creates using Fcrypto should be corrupted (including the public/private key of the party this
instance belongs to). Hence, all keys this instance would have pointers to would be marked known in Fcrypto. Since
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instance plays the role of a client, that the key PMS that it generates using Fcrypto is uncorrupted in Fcrypto.
More precisely, every instance of MC and MS always check that this condition is satisfied (by asking Fcrypto

for the corruption status of these keys) and if the condition is not met, then the instance halts. We note that
(directly or indirectly) corrupted instances of PTLS will, when realizing Fkey-use, correspond to corrupted
local sessions in Fkey-use, i.e., the simulator will corrupt these local sessions in Fkey-use and, hence, can exactly
simulate these instances. This makes sense because even for indirectly corrupted instances, we do not assume
any security guarantees to hold. We further remark that an adversary can gain complete control over a party
by corrupting her public/private key in Fcrypto and all her instances of MC and MS .

We now prove that PTLS satisfies implicit disjointness. The proof does not need to exploit security of
symmetric encryption. Moreover, the proof merely requires syntactic arguments (rather than probabilistic
reasoning or reduction arguments) since we can use Fcrypto for the cryptographic primitives.

The partnering function τTLS for PTLS we use is the obvious one: Let ρ be a run of E | PTLS | Fcrypto

for some environment E and α be the projection of ρ to an instance of Mr for some user (p, lsid , r) (where
r ∈ {C, S}). If (p, lsid , r) is corrupted, then τTLS(α) := ⊥. Otherwise, if r = C and α contains at least
the first two messages of the protocol, then τTLS(α) := (NC , NS), where NS is the server’s nonce (p, lsid , r)
received and NC is the nonce (p, lsid , r) generated; analogously for the case r = S. It is easy to see that τTLS

is valid for PTLS because ideal nonces (i.e., nonces generated using Fcrypto) do not collide.

Proof of Theorem 5. All symmetric keys (i.e., the keys PMS , MS , EKSC , etc.) are, by definition, not
explicitly shared: PMS is not a pre-shared key but a freshly generated symmetric key; MS is derived from
PMS and all other keys are derived from MS . Hence, we only have to show (b) of Definition 2 for public-key
encryption and digital signatures. Since only uncorrupted or indirectly corrupted instances, which follow the
protocol, have access to Fcrypto, the only relevant cases are when the server performs a decryption request
with kS (to obtain PMS ) or when it performs a verification request to verify the signature of the client.

We now consider the former case (decryption request with kS); the latter follows a similar (even simpler)
argumentation (see below). So, let us assume that some uncorrupted or indirectly corrupted instance of
MS , say (pS , lsidS , S), performed an accepted and ideal decryption request (in some run of E | PTLS | Fcrypto

for some environment E). Let pC be the PID of the desired partner of (pS , lsidS , S), let NC be the nonce
(pS , lsidS , S) received, let NS be the nonce generated by (pS , lsidS , S), let kS be its public key (i.e., the public
key of party pS), let kC be the received public key (note that, by our modeling of PTLS, it is guaranteed
that kC equals the public key of party pC in Fcrypto), and ct be the ciphertext received (containing PMS )
and on which (pS , lsidS , S) performed the decryption request under consideration. We distinguish two cases:
i) kC is uncorrupted and ii) kC is corrupted (in Fcrypto). Case i) has already been considered in the proof
sketch in Section 5.2. Now, assume that kC is corrupted, i.e., that (pS , lsidS , S) is indirectly corrupted. We
show that this leads to a contradiction, i.e., that case ii) never occurs.

By definition of ideal and accepted decryption request, some instance of MS or MC must have encrypted
PMS under kS (using Fcrypto) and obtained ct as the ciphertext. This instance can only be an instance of
MC , say (p′C , lsid ′C , C), which is uncorrupted or indirectly corrupted (because directly corrupted instance
do not have access to Fcrypto). Let p′S be the PID of the desired partner of (p′C , lsid ′C , C), let N ′S be the
nonce (p′C , lsid ′C , C) received, let N ′C be the nonce generated by (p′C , lsid ′C , C), let k′C be its public key
(i.e., the public key of party p′C), let k′S be the received public key (note that, by our modeling of PTLS,
it is guaranteed that k′S equals the public key of party p′C in Fcrypto). We note that p′S = pS and k′S = kS
because (p′C , lsid ′C , C) encrypted PMS under the public key kS . In the test for accepting the decryption of ct,
(pS , lsidS , S) verified a MAC over F (MS , c3‖handshake) under the derived key IKCS = F (MS , c7‖NC‖NS)
with MS = F (PMS , c0‖NC‖NS) (using Fcrypto for MAC verification and key derivation). Since (p′C , lsid ′C , C)
is uncorrupted or indirectly corrupted, the key PMS and, hence, also the keys MS , IKCS , etc. are all marked
unknown in Fcrypto. Since i) the MAC verifies, ii) Fcrypto guarantees that keys derived with different seeds do
not collide, and iii) handshake contains kS , kC , and ct, we obtain that (p′C , lsid ′C , C) in fact has created the
MAC which (pS , lsidS , S) verifies and that kC = k′C . But then, by assumption, k′C is corrupted (in Fcrypto)

the adversary can perform all operations under known keys herself (outside of Fcrypto), allowing directly corrupted
instances access to Fcrypto would not give more power to the adversary.
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although (p′C , lsid ′C , C) is uncorrupted or indirectly corrupted. This contradiction shows that case ii) never
occurs.

Finally, let us assume that some uncorrupted or indirectly corrupted instance of MS , say (pS , lsidS , S),
performed an accepted and ideal signature verification request (in some run of E | PTLS | Fcrypto for some
environment E). Let pC , NC , NS , kS and kC be as above. Since this verification is ideal and performed with
the public key kC , kC is uncorrupted (in Fcrypto). Furthermore, the signature is computed over handshake
which contains the nonces NC and NS and the public key kS . From this and because the signature verifies
(the verification request is accepted), we conclude that there exists an instance of MC , say (p′C , lsid ′C , C),
which has created the signature (using Fcrypto). Furthermore, this instance of MC agrees on the public keys
(i.e., its own public key is kC and the received public key is kS) and nonces (i.e., its own nonce is NC
and the received nonce is NS). Hence, p′C = pC and (p′C , lsid ′C , C) is uncorrupted (because kC and kS are
uncorrupted). Hence, this instance of MC is a partner of (pS , lsidS , S) (w.r.t. τTLS) which has performed a
corresponding signature creation request. ut

D.4 The SSH Protocol

The Secure Shell (SSH) protocol, consists of several subprotocols. In this section, we analyze two main parts
of SSH, see below. The SSH Transport Layer Protocol [37] first runs a key exchange protocol (typically Diffie-
Hellman key exchange authenticated by digital signatures) to establishes a unique SID sid and a session key
K. Then, this session key K is then used to derive encryption and MAC keys which are used to encrypt and
MAC all following messages. The Transport Layer Protocol only authenticates the server S (not the client
C), therefore, the SSH Authentication Protocol [36] is run (on top of the SSH Transport Layer Protocol) to
authenticates the client C, e.g., by the Public Key Authentication Method or the Password Authentication
Method. Here, we only consider the Public Key Authentication Method. The cryptographic core of the
authenticated Diffie-Hellman key exchange (messages 1 to 4) with following Public Key Authentication
Method (messages 5 and 6) is depicted in Figure 3. In this, NC and NS denote C’s or S’s nonces; ci for
i ≤ 6 are distinct constants; c1, c2, which are part of first two protocol messages, are used to negotiate
algorithms, we model this as constants; p is a publicly known large safe prime; g is a publicly known
generator for a subgroup of GF(p); q is the order of the subgroup; the numbers x and y are chosen (by C
and S, respectively) uniformly at random from {2, . . . , q − 1}; gx and gy are computed modulo p; kS is S’s
public key; kC is C’s public key; the session key K = gxy mod p; the SID sid = H(NC , NS , kS , g

x, gy,K)
where H is a hash function; {m}k1,k2 denotes encrypt-and-MAC, i.e., {m}k1,k2 = {m}k2 ,mack1(m); the
encryption key client to server is EKCS = H(K‖sid‖c3‖sid); the encryption key server to client is EKSC =
H(K‖sid‖c4‖sid); the integrity key client to server is IKCS = H(K‖sid‖c5‖sid); the encryption key server
to client is IKSC = H(K‖sid‖c6‖sid). After this protocol is completed, a secure channel is established using
the keys EKCS ,EKSC , IKCS , IKSC .

Modeling this protocol as a multi-session real protocol PSSH = !MC | !MS that uses Fcrypto for digital
signatures is straightforward. All other cryptographic operations (i.e., encryption, MAC, hashing) are carried
out by MC and MS itself because Fcrypto does not support Diffie-Hellman key exchange and, hence, K (and
all derived keys) cannot be a key in Fcrypto. The protocol PSSH is meant to realize Fkey-use, i.e., after the
keys are established, the parties can send encryption and decryption requests to MC and MS which are
MACed and encrypted under the corresponding keys. Of course, the domain of plaintexts for Fkey-use must
not contain plaintexts of the form in message 5 and 6 of the protocol because, otherwise, trivially PSSH does
not realize Fkey-use (decryption of the ciphertexts sent in message 5 and 6 would only succeed in PSSH but
not in Fkey-use).

Corruption in PSSH is modeled as follows: When an instance of MC or MS gets activated for the first time
(i.e., upon receiving a session-start message), it sends a request to the adversary asking whether it is corrupted
or not. If the adversary decides to corrupt this instance, then this instance sets its flag corrupted to true.
The adversary can only corrupt an instance at the beginning, i.e., before the instance starts executing the
protocol. A corrupted instance gives complete control to the adversary by forwarding all messages between
the adversary and the environment. Note that, by this definition, corrupted instances never send any requests
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to Fcrypto.9 For an uncorrupted instance, we assume that its own and its intended partner’s public/private
key is uncorrupted in Fcrypto. More precisely, every instance of MC and MS always checks that this condition
is satisfied (by asking Fcrypto for the corruption status of the public/private keys) and if the condition is not
met, then the instance halts.

We now prove that PSSH satisfies implicit disjointness. The proof does not need to exploit security of
the encryption scheme, the MAC scheme, or the Diffie-Hellman key exchange. Moreover, the proof merely
requires syntactic arguments (rather than probabilistic reasoning or reduction arguments) since we can use
Fcrypto for the digital signatures. We only need to assume collision resistance for the hash function H, to
show that the partnering function is valid (see below).

The partnering function τSSH for PSSH we use is the obvious one: Let ρ be a run of E | PSSH | Fcrypto

for some environment E and α be the projection of ρ to an instance of Mr for some user (p, lsid , r) (where
r ∈ {C, S}). If (p, lsid , r) is corrupted, then τSSH(α) := ⊥. Otherwise, if r = C and α contains at least the
first four messages of the protocol, then τSSH(α) := sid where sid = H(NC , NS , kS , g

x, gy,K), NC is the
client’s nonce sent in step 1 (of the protocol), NS is the server’s nonce received in step 2, gx is the value sent
in step 3, kS is the server’s public key received in step 4, gy is the value received in step 4, and K = gxy;
analogously for the case r = S. It is easy to see that τSSH is valid for PSSH if H is collision resistant because
the nonces are part of the hashed message.

Proof of Theorem 6. It is easy to see that PSSH satisfies implicit disjointness w.r.t. τSSH because the signed
messages from C and S contain sid . Since only uncorrupted instances have access to Fcrypto, the only relevant
cases are when the client (or the server) perform a verification request to verify the signature of the server
(or the client, respectively).

First, we consider the case of the client. So, let us assume that some uncorrupted instance of MC ,
say (pC , lsidC , C), performed an accepted and ideal digital signature verification request (in some run of
E | PSSH | Fcrypto for some environment E), say under the public key kS (which belongs to party pS). Since
the request is accepted and ideal, there exists an instance of MC or MS which has created the signature
in this request. Since the format of the signed messages in step 4 and step 5 are different and only uncor-
rupted instances have access to Fcrypto, this can only be an uncorrupted instance of MS , say (pS , lsidS , S).
Furthermore, since the message over which the signature is computed is sid = H(NC , NS , kS , g

x, gy,K), the
instances (pS , lsidS , S) and (pC , lsidC , C) agree on the value of sid and, hence, are partners w.r.t. τSSH.

The case of the server, i.e., where an uncorrupted instance of MS performs an accepted and ideal digital
signature verification request, is analogous. ut

A more detailed analysis and a proof that PSSH realizes Fkey-use is future work. We note that to prove that
PSSH | Fcrypto ≤ Fkey-use, one would need to do reduction arguments for the Diffie-Hellman key exchange, the
hash function H, and the encryption and MAC scheme used for the keys EKCS ,EKSC , IKCS , IKSC . But, by
Theorem 4, it suffices to analyze a single session, i.e., to show that Fsingle | PSSH | Fcrypto ≤τ Fsingle | Fkey-use,
and one can use Fcrypto for digital signatures. If one would extend Fcrypto to support Diffie-Hellman key
exchange, as we plan in future work, then this analysis would be greatly simplified because all cryptographic
operations could be provided by Fcrypto.

D.5 The IKEv2 Protocol (IPsec)

The Internet Key Exchange Protocol Version 2 (IKEv2) [24] is used in the IPsec protocol suite to establish
a session key. It uses Diffie-Hellman key exchange, which, e.g., is authenticated by digital signatures. The
cryptographic core of the IKEv2 protocol is depicted in Figure 10. In this, I is the initiator role; R is the
responder role; ci for i ≤ 4 are distinct constants which model fields of the messages, e.g., to negotiate

9 We could allow the adversary to send requests to Fcrypto in the name of a corrupted instance but then all keys
this instance creates using Fcrypto should be corrupted (including the public/private key of the party this instance
belongs to). Hence, all keys this instance would have pointers to would be marked known in Fcrypto. Since the
adversary can perform all operations under known keys herself (outside of Fcrypto), allowing directly corrupted
instances access to Fcrypto would not give more power to the adversary.
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1. I → R: c1, g
x, NI

2. R→ I: c2, g
y, NR

3. I → R: {pI , pR, sigkI (c1, g
x, NI , NR, F (SK pi , pI)), c3}SKai ,SK ei

4. R→ I: {pR, sigkR(c2, g
y, NR, NI , F (SK pr , pR)), c4}SKar ,SK er

Fig. 10. The IKEv2 Protocol.

algorithms, which we model as constants; p is a publicly known large safe prime; g is a publicly known
generator for a subgroup of GF(p); q is the order of the subgroup; the numbers x and y are chosen (by I
and R, respectively) uniformly at random from {2, . . . , q − 1}; gx, gy, and gxy are computed modulo p; pI
is I’s PID; pR is R’s PID; NI and NR denote I’s and R’s, respectively, nonce; kI is I’s public key; kR is
R’s public key; F is a pseudo-random function; the session key seed is SKEYSEED := F (NI‖NR, gxy); the
key derivation key SK d (see below), the MAC keys SK ai (for direction I to R) and SK ar (for direction
R to I), the encryption keys SK ei and SK er , and the keys SK pi and SK pr (which are used to generate
the authentication payload) are derived from SKEYSEED : SK d‖SK ai‖SK ar‖SK ei‖SK er‖SK pi‖SK pr :=
F (SKEYSEED , NI‖NR‖c1‖c2); {m}k1,k2 denotes encrypt-then-MAC, i.e., {m}k1,k2 = {m}k2 ,mack1({m}k2).
The session key KEYMAT is derived from the key derivation key: KEYMAT := F (SK d, NI‖NR).

Modeling this protocol as a multi-session real protocol PIKEv2 = !MI | !MR that uses Fcrypto for digital
signatures is straightforward. All other cryptographic operations (i.e., encryption, MAC, key derivation) are
carried out by MI and MR itself because Fcrypto does not support Diffie-Hellman key exchange and, hence,
gxy (and all derived keys) cannot be a key in Fcrypto. The protocol PIKEv2 is meant to realize Fkey-use, i.e.,
after the keys are established, the parties can send encryption and decryption requests to MI and MR which
are encrypted under the session key. As shown in Appendix D.8 this implies that PIKEv2 can be used to
build a secure channel.

Corruption in PIKEv2 is modeled as follows: When an instance of MI or MR gets activated for the
first time (i.e., upon receiving a session-start message), it sends a request to the adversary asking whether
it is corrupted or not. If the adversary decides to corrupt this instance, then this instance sets its flag
corrupted to true. The adversary can only corrupt an instance at the beginning, i.e., before the instance
starts executing the protocol. A corrupted instance gives complete control to the adversary by forwarding
all messages between the adversary and the environment. Note that, by this definition, corrupted instances
never send any requests to Fcrypto.10 For an uncorrupted instance, we assume that its own and its intended
partner’s public/private key is uncorrupted in Fcrypto. More precisely, every instance of MI and MR always
checks that this condition is satisfied (by asking Fcrypto for the corruption status of the public/private keys)
and if the condition is not met, then the instance halts.

The proof that PIKEv2 satisfies implicit disjointness, since we use Fcrypto for digital signatures, is com-
pletely syntactic (i.e., no reduction arguments and not even reasoning about probabilities). We note that
implicit disjointness of PIKEv2 does not depend on the security of the encryption scheme, the MAC scheme,
the Diffie-Hellman key exchange, or the pseudo-random function.

The partnering function τIKEv2 for PIKEv2 we use is the obvious one: Let ρ be a run of E | PIKEv2 | Fcrypto

for some environment E and α be the projection of ρ to an instance of Mr for some user (p, lsid , r) (where
r ∈ {I,R}). If (p, lsid , r) is corrupted, then τIKEv2(α) := ⊥. Otherwise, if r = I and α contains at least the
first two messages of the protocol, then τIKEv2(α) := (NI , NR), where NR is the server’s nonce (p, lsid , r)
received and NI is the nonce (p, lsid , r) generated; analogously for the case r = R. It is easy to see that
τIKEv2 is valid for PIKEv2 because ideal nonces (i.e., nonces generated using Fcrypto) do not collide.

Theorem 7. PIKEv2 satisfies implicit disjointness w.r.t. τIKEv2.

10 We could allow the adversary to send requests to Fcrypto in the name of a corrupted instance but then all keys
this instance creates using Fcrypto should be corrupted (including the public/private key of the party this instance
belongs to). Hence, all keys this instance would have pointers to would be marked known in Fcrypto. Since the
adversary can perform all operations under known keys herself (outside of Fcrypto), allowing directly corrupted
instances access to Fcrypto would not give more power to the adversary.
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1. A→ S: pA, NA, c1
2. S → A: pS , NS , c2,macKCK(NS , c2)
3. A→ S: pA, NA, c3,macKCK(NA, c3)
4. S → A: pS , c4,macKCK(c4)

Fig. 11. The 4-Way Handshake Protocol of IEEE 802.11i.

Proof. It is easy to see that PIKEv2 satisfies implicit disjointness w.r.t. τIKEv2 because the signed messages
from I and R contain NI , NR and NR, NI , respectively. Since only uncorrupted instances have access to
Fcrypto, the only relevant cases are when the responder (or the initiator) perform a verification request to
verify the signature of the initiator (or the responder, respectively).

First, we consider the case of the responder. So, let us assume that some uncorrupted instance of MR,
say (pR, lsidR, R), performed an accepted and ideal digital signature verification request (in some run of
E | PIKEv2 | Fcrypto for some environment E), say under the public key kI (which belongs to party pI). Since
the request is accepted and ideal, there exists an instance of MI or MR which has created the signature
in this request. Since c1 6= c2 and only uncorrupted instances have access to Fcrypto, this can only be an
uncorrupted instance of MI , say (pI , lsidI , I). Furthermore, since the message over which the signature is
computed contains the nonces (NI , NR), the instances (pR, lsidR, R) and (pI , lsidI , I) agree on the nonces
and, hence, are partners w.r.t. τIKEv2.

The case of the initiator, i.e., where an uncorrupted instance of MI performs an accepted and ideal digital
signature verification request, is analogous. ut

A more detailed analysis and a proof that PIKEv2 realizes Fkey-use is future work. Similar to PSSH,
we note that to prove that PIKEv2 | Fcrypto ≤ Fkey-use, one would need to do reduction arguments for the
Diffie-Hellman key exchange, the pseudo-random function F , and the encryption and MAC schemes. But, by
Theorem 4, it suffices to analyze a single session, i.e., to show that Fsingle | PIKEv2 | Fcrypto ≤τ Fsingle | Fkey-use,
and one can use Fcrypto for digital signatures. If one would extend Fcrypto to support Diffie-Hellman key
exchange, as we plan in future work, then this analysis would be greatly simplified because all cryptographic
operations could be provided by Fcrypto.

We note that an analysis of PIKEv2 using previous joint state composition theorems [13, 28] would be
somewhat imprecise because the SID NI , NR is not established strictly before the protocol starts but along
with first two protocol messages which are also used for algorithm negotiation and Diffie-Hellman key ex-
change. Furthermore, one of the signed messages does not exactly contain the SID NI , NR (as stipulated
by these joint state theorems) but contains NR, NI instead. We also note that the predecessor of IKEv2,
namely IKE, has been analyzed in [12]. In this analysis, although in a game-based setting, pre-established
SIDs have been assumed similarly as in the UC model.

D.6 The 4-Way Handshake Protocol of IEEE 802.11i

The 4-Way Handshake (4WHS) protocol, which is part of the WPA2 (IEEE standard 802.11i [22, 23]), is a
key exchange protocol where an authenticator A, e.g., an access point, and a supplicant S, e.g., a laptop, use
a pre-shared key PSK to establish a fresh session key TK. The cryptographic core of the protocol is depicted
in Figure 11. In this, NA and NS denote nonces chosen by A and S, respectively, and pA and pS denote the
PIDs of A and S, respectively. From the PSK, A and S derive a Pairwise Transient Key PTK by computing
PTK = F (PSK, “Pairwise key expansion”‖min(pA, pS)‖max(pA, pS)‖min(NA, NS)‖max(NA, NS)) where
F is a pseudo-random function. The PTK is then split into the Key Confirmation Key (KCK) and the
Temporary Key (TK). The key TK is the established session key. The pairwise different constants c1, . . . , c4
are used to indicate different messages.

In [30], it has been shown that the 4WHS protocol realizes an ideal functionality for key exchange (which
is similar to our multi-session ideal functionality Fke in Section D.1) but their analyzes directly considers
the multi-session setting. Furthermore, it has been shown that the CCM Protocol (CCMP), which uses
the 4WHS protocol to establish a secure channel (using the key TK for authenticated encryption), realizes
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an ideal functionality for secure channel (which is similar to our multi-session ideal functionality Fsc in
Section D.1).

In the following, we demonstrate how we could analyze the 4WHS protocol using Theorem 4. The security
of CCMP using 4WHS then follows from our results in Appendix D.8. Modeling the 4WHS protocol as a
multi-session protocol P4WHS = !MA | !MS that uses Fcrypto is straightforward and has similarly been done
in [30]. After the protocol is completed and TK is established, the users are provided with an interface to use
the key TK for (ideal) authenticated encryption and decryption. These requests are performed using Fcrypto.
In other words, P4WHS | Fcrypto is meant to realize the key usability functionality Fkey-use (see Appendix D.1).
Corruption is modeled similar to PTLS: An instance is corrupted if it is directly corrupted (i.e., by a corrupt
message at the beginning) or indirectly corrupted (i.e., the pre-shared key PSK of this instance is corrupted
in Fcrypto).

The proof that P4WHS satisfies implicit disjointness, since we use Fcrypto for all cryptographic operations,
is completely syntactic (i.e., no reduction arguments and not even reasoning about probabilities).

The partnering function τ4WHS for P4WHS we use is the obvious one: Let ρ be a run of E | P4WHS | Fcrypto

for some environment E and α be the projection of ρ to an instance of Mr for some user (p, lsid , r) (where
r ∈ {A,S}). If (p, lsid , r) is corrupted, then τ4WHS(α) := ⊥. Otherwise, if r = A and α contains at least the
first two messages of the protocol, then τ4WHS(α) := (NA, NS), where NS is the nonce (p, lsid , r) received
and NA is the nonce (p, lsid , r) generated; analogously for the case r = S. It is easy to see that τ4WHS is
valid for P4WHS because ideal nonces (i.e., nonces generated using Fcrypto) do not collide.

Theorem 8. P4WHS satisfies implicit disjointness w.r.t. τ4WHS.

Proof. Let E be an environment E of P4WHS | Fcrypto and ρ be a run of E | P4WHS | Fcrypto. First, we show
that (a) and (b) in Definition 2 hold for PSK (which is an explicitly shared key). This key is never encrypted
or retrieved and, hence, it is either corrupted (and always known) or it is unknown, i.e., (a) is satisfied.
Furthermore, it is never used to perform a destruction request (which in fact would be impossible because
it is a key of type pre-key which can only be used for key derivation) and, hence, (b) is satisfied as well.

The only other keys in the protocol are the derived keys KCK and TK. If they are not explicitly shared
(in ρ), then we are done because implicit disjointness only talks about explicitly shared keys. Recall that
KCK and TK are derived from PSK using min(NA, NS)‖max(NA, NS) as part of the seed. If they would
instead be derived using NA‖NS (i.e., with a fixed order of the nonces), we could directly conclude that
implicit disjointness is satisfied because KCK and TK would not be explicitly shared. All instances that
would derive these keys would have SID (NA, NS) (according to τ4WHS) and, hence, they all would belong
to the same session. We note that this design decision has another disadvantage, in a particular (unusual)
setting, it enables a reflection attack on WPA, see below. Next, we show that KCK and TK satisfy (a) and
(b) in Definition 2 if they are explicitly shared.

First, we note that KCK and TK are known (in Fcrypto) iff PSK is known because no user ever encrypts
or retrieves these keys. Because PSK is known iff it is corrupted (a) in Definition 2 is satisfied for KCK and
TK. In the following, we assume that PSK, KCK, and TK are unknown. Assume that there exist two distinct
users (p1, lsid1, r1) and (p2, lsid2, r2) such that both users have a pointer to KCK (and TK) and they belong
to different sessions, i.e., τ4WHS(p1,lsid1,r1)(ρ) 6= τ4WHS(p2,lsid2,r2)(ρ).

First, we consider the case that r1 = A (i.e., the first user plays the role of an authenticator). Let
(N1, N

′
1) := τ4WHS(p1,lsid1,r1)(ρ) (i.e., N1 is the nonce that (p1, lsid1, r1) has generated and N ′1 is the re-

ceived nonces). Since τ4WHS(p1,lsid1,r1)(ρ) 6= τ4WHS(p2,lsid2,r2)(ρ) but both users used the same seed, we
have that τ4WHS(p2,lsid2,r2)(ρ) = (N ′1, N1). Since ideal nonces do not collide, N ′1 is to the nonce generated by
(p2, lsid2, r2). Hence, r2 = A (i.e., the second user also is an authenticator). It is easy to see that no other user
has a pointer to KCK (and TK) because ideal nonces do not collide. Both (p1, lsid1, r1) and (p2, lsid2, r2)
play role A, i.e., in the second protocol message, they expect to receive a MAC macKCK(N ′1, c2) (resp.,
macKCK(N1, c2)) but KCK is never used to MAC a message, hence, the verification always fails (by defini-
tion of Fcrypto). Hence, (b) in Definition 2 is satisfied for KCK and neither (p1, lsid1, r1) nor (p2, lsid2, r2)
complete the protocol. So, TK is never used for encryption or decryption and, hence, (b) in Definition 2 is
satisfied for TK too.
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1. A→ B: NA, pA
2. B → A: NA, NB ,macAK (pB , pA, NA, NB), pB
3. A→ B: NA,macAK (pA, NB), {c1}TEK

4. B → A: NA, {c2}TEK

Fig. 12. The EAP-PSK Protocol.

The case where r1 = B is similar. We can show that r2 = B, i.e., both (p1, lsid1, r1) and (p2, lsid2, r2)
play role B, and that no other instance has a pointer to KCK and TK. Now, (p1, lsid1, r1) and (p2, lsid2, r2)
expect to receive a MAC macKCK(N ′1, c3) (resp., macKCK(N1, c3)) but KCK has only been used to MAC
messages containing c2 6= c3. Hence, we can conclude that (b) in Definition 2 is satisfied for KCK and TK. ut

In the (unusual) setting that the same party plays both the role of an authenticator and a supplicant
with the same pre-shared key PSK, there exists a simple reflection attack (see, e.g., [20]). This setting is
prevented in [30] by assuming disjoint sets of PIDs for authenticators and supplicants. We note that P4WHS

satisfies implicit disjointness even in the setting where the reflection attack would be possible. (The proof of
Theorem 8 does not require this assumption.) But proving security of P4WHS in the single-session setting,
i.e., Fsingle | P4WHS | Fcrypto ≤τ Fsingle | Fkey-use, would fail without this assumption.

To prove that P4WHS realizes Fkey-use in the multi-session setting, i.e., P4WHS | Fcrypto ≤ Fkey-use, by
Theorem 4, it is only left to show that Fsingle | P4WHS | Fcrypto ≤τ Fsingle | Fkey-use, which follows from results
shown in [30]. Since this analysis is based on Fcrypto it can be done by syntactic arguments only (without
reasoning about probabilities at all).

D.7 The EAP-PSK Protocol

The EAP-PSK protocol [6] is an Extensible Authentication Protocol (EAP) which provides mutual authen-
tication and key exchange using a pre-shared key (PSK). It is inspired by AKEP2 [4]. The cryptographic
core of the EAP-PSK protocol is depicted in Figure 12. In this, A is the initiator role; B is the responder
role; pA is A’s PID; pB is B’s PID; NA is A’s nonce; NB is B’s nonce; c1 and c2 are two distinct constants;
F is a pseudo-random function for key derivation; A and B have a pre-shared key PSK ; from PSK the
MAC key AK := F (PSK , 0) and the key derivation key KDK := F (PSK , 1) are derived; the session key
TEK := F (KDK , NB) is derived from KDK using the nonce NB as a seed. We note that the session key
TEK is used in an authenticated encryption scheme for key confirmation in the last two protocol messages.

Modeling this protocol as a multi-session real protocol PEAP-PSK = !MA | !MB that uses Fcrypto for all
cryptographic operations (i.e., key derivation, MAC, symmetric encryption) is straightforward. The key PSK
is a pre-shared key with name (pA, pB) (i.e., shared by the parties with PID pA and pB) of type pre-key (i.e.,
for key derivation). The key AK is a key of type mac-key, the key KDK is of type pre-key, and the session
key TEK is of type authenc-key, i.e., for authenticated encryption. The protocol PEAP-PSK is meant to
realize Fkey-use, i.e., after the session key TEK is established, the parties can send encryption and decryption
requests to MA and MB which are encrypted under the session key. Of course, the domain of plaintexts for
Fkey-use must not contain c1 or c2 because, otherwise, trivially PEAP-PSK does not realize Fkey-use (decryption
of the ciphertexts that are sent in message 3 and 4 would only succeed in PEAP-PSK but not in Fkey-use).
Similar to P4WHS, an instance is corrupted if it is directly corrupted (i.e., by a corrupt message at the
beginning) or indirectly corrupted (i.e., the pre-shared key PSK is corrupted in Fcrypto).

The proof that PEAP-PSK satisfies implicit disjointness, since we use Fcrypto for all cryptographic opera-
tions, is completely syntactic (i.e., no reduction arguments and not even reasoning about probabilities).

The partnering function τEAP-PSK for PEAP-PSK we use is the obvious one: Let ρ be a run of E | PEAP-PSK |
Fcrypto for some environment E and α be the projection of ρ to an instance of Mr for some user (p, lsid , r)
(where r ∈ {A,B}). If (p, lsid , r) is corrupted, then τEAP-PSK(α) := ⊥. Otherwise, if r = A and α contains at
least the first two messages of the protocol, then τEAP-PSK(α) := (NA, NB), where NB is the nonce (p, lsid , r)
received and NA is the nonce (p, lsid , r) generated; analogously for the case r = B. It is easy to see that
τEAP-PSK is valid for PEAP-PSK because ideal nonces (i.e., nonces generated using Fcrypto) do not collide.
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Theorem 9. PEAP-PSK satisfies implicit disjointness w.r.t. τEAP-PSK.

Proof. Let E be an environment for PEAP-PSK | Fcrypto and let ρ be a run of E | PEAP-PSK | Fcrypto. We now
show that implicit disjointness is satisfied for this run, i.e., more precisely, condition (a) or (b) in Definition 2
are satisfied. Let PSK be one pre-shared key in ρ, say for parties pA and pB . This key (potentially) is an
explicitly shared key. Since PSK is never encrypted or retrieved, it is either corrupted (i.e., always known)
or always unknown in ρ. That is, (a) is satisfied for PSK . Furthermore, if PSK is known, then all (directly
or indirectly) derived keys, i.e., AK , KDK , and TEK are always known in ρ. So, (a) is satisfied for all these
keys. Also, for known keys (b) is trivially satisfied, i.e., in the following we assume that PSK is unknown.

Since PSK is a key derivation key, it cannot be used for destruction requests and, hence, (b) is trivially
satisfied for PSK . We note that AK and KDK (potentially) are explicitly shared keys. Just as PSK , they
are never encrypted or retrieved in ρ, i.e., they are always unknown in ρ (because they are derived from the
unknown key PSK ). So, (a) is satisfied for AK and KDK . Trivially, (b) is satisfied for KDK because it is a key
derivation key. Next, we show that (b) is also satisfied for AK and that TEK (which is derived from KDK ) is
not explicitly shared. First, we show that (b) is satisfied for AK , i.e., that AK only successfully verifies MACs
for messages which have been MACed in the same session (according to τEAP-PSK). For the MAC in the
second protocol message (i.e., macAK (pB , pA, NA, NB)) this is obvious because it contains the noncesNA, NB .
Now, let (pB , lsid , B) be an instance of MB talking to pA such that τEAP-PSK(pB ,lsid,B)(ρ) = (NA, NB)
and (pB , lsid , B) has successfully verified the MAC in the third protocol message (i.e., macAK (pA, NB)) in
ρ. Such a message is only MACed by an instance (pA, lsid ′, A) of MA (for some lsid ′) which previously
verified a MAC of the form macAK (pB , pA, N

′
A, NB). Furthermore, only (pB , lsid , B) can have MACed such

a message because it contains NB and, hence, N ′A in fact is NA. We conclude that τEAP-PSK(pA,lsid′,A)(ρ) =

τEAP-PSK(pB ,lsid,B)(ρ) = (NA, NB), i.e., (pB , lsid , B) and (pA, lsid ′, A) are partners in ρ. Hence, (b) is satisfied
for AK . Now, we show that TEK is not explicitly shared. Let (pB , lsid , B) be an instance of MB talking to pA
such that τEAP-PSK(pB ,lsid,B)(ρ) = (NA, NB) and (pB , lsid , B) has derived TEK := F (KDK , NB). Because
NB is the seed, it is easy to see that there exists no other instance of MB which derived this TEK . Assume
that there exists an instance (pA, lsid ′, A) of MA that derived TEK := F (KDK , NB). Exactly as above,
it can be shown that τEAP-PSK(pA,lsid′,A)(ρ) = τEAP-PSK(pB ,lsid,B)(ρ) = (NA, NB) (because (pA, lsid ′, A)

verified the MAC in the second protocol message before it derived TEK ), i.e., (pB , lsid , B) and (pA, lsid ′, A)
are partners in ρ. Altogether, this shows that PEAP-PSK satisfies implicit disjointness. ut

A more detailed analysis and a proof that PEAP-PSK realizes Fkey-use is future work. We only note that it
should be quite easy now to prove this because, to show that PEAP-PSK realizes Fkey-use in the multi-session
setting, i.e., PEAP-PSK | Fcrypto ≤ Fkey-use, by Theorem 4, it suffices to prove Fsingle | PEAP-PSK | Fcrypto ≤τ
Fsingle | Fkey-use. Furthermore, since all cryptographic operations are supported by Fcrypto, proving this should
be possible by syntactic reasoning based on Fcrypto (without reduction arguments or reasoning about prob-
abilities at all).

D.8 Building Secure Channels

In this section, we consider two generic secure channel multi-session real protocols Psc and P+
sc that use

the multi-session local-SID ideal functionality Fkey-use (see Figure 5).11 Then, we show that Psc realizes
Fsc and P+

sc realizes F+
sc , where Fsc and F+

sc are the multi-session local-SID ideal functionalities defined in
Figure 6. For many real-world secure channel protocols these secure channel protocols can be instantiated
appropriately such that Psc (or P+

sc) faithfully models the real-world secure channel protocol. For example,
the CCM Protocol, which is part of IEEE 802.11i and uses the 4WHS protocol to establish a secure channel,
can be modeled by Psc as discussed in [30].

11 We note that (variants of) the protocols Psc and P+
sc have been analyzed in [30] in a different setting. It was

shown—directly in the multi-session setting (i.e., without using composition theorems)—that Psc (resp., P+
sc),

under certain assumptions on the underlying key exchange protocol, realizes a multi-session ideal secure channel
functionality which is similar to Fsc (resp., F+

sc).

48



In a nutshell, a session of Psc (and also P+
sc) runs a session of Fkey-use to establish a session key. This

session key is then used to establish secure channels between the parties of the session, one channel for each
pair of parties in that session. For this purpose, before a message is encrypted under the session key, the
PIDs of the sender and receiver are added to the plaintexts as well as a counter. While Psc tolerates message
loss, P+

sc does not.
The protocols Psc and P+

sc are parametrized by what we call a plaintext construction function f which
takes two PIDs p1, p2, a counter v, and a message x and outputs a plaintext f(p1, p2, v, x). We require that
f(p1, p2, v, x) is in the domain D of plaintexts which is a parameter of Fkey-use, that f is computable and
invertible in polynomial-time, and that f is length regular, i.e., |f(x1, . . . , x4)| = |f(x′1, . . . , x

′
4)| for all bit

strings x1, x
′
1, . . . , x4, x

′
4 where |x1| = |x′1|, . . . , |x4| = |x′4|.

Now, we describe Psc(f) = !M1 | . . . | !Mn in more detail. Recall that the machine Mr for role r ≤ n has
an I/O input and output tape to communicate with the parties and a network input and output tape to
communicate with the adversary, modeling the network. Note that Psc and Fsc have the same I/O interface.
Similarly to Fsc, Psc waits for session-start messages from users. For simplicity, we require that the PIDs
for the roles in the request are pairwise different. For every such request, say from user (p, lsid , r), a new
instance of Mr is created which handles all requests of user (p, lsid , r). Upon receiving a session-start message,
Mr forwards it to Fkey-use and waits for receiving the message Established from Fkey-use. Then, Mr sends
Established to the user.

Every instance of the Mr maintains counters Sj and Rj for counting messages send to/received from role
j, for all j ≤ n, j 6= i. All counters are initialized with 0.

After a session has been established and upon receiving a message (Send, i, x), say from user (p, lsid , r), to
send a message x to the party with role j (in the same session), Mr constructs the message x′ = f(p, p′, Sj , x)
where p′ is the PID of the receiver, increases Sj by one, encrypts x′ using Fkey-use (i.e., Mr sends (Enc, x′)
to Fkey-use), obtains a ciphertext y from Fkey-use, and sends (p, p′, y) to the adversary (network).

Whenever an instance of Mr, say for user (p, lsid , r), receives a message from the adversary (network)
of the form (p′, p, y) where p′ is the PID of an intended partner of (p, lsid , r) for some role, say j 6= r, Mr

decrypts y using Fkey-use (i.e., Mr sends (Dec, y) to Fkey-use). If the decryption succeeds and the plaintext is
of the form f(p′, p, v, x) for some number v ≥ Rj and some message x, then Mr sets Rj = v+ 1 and outputs
x to the user (p, lsid , r). Otherwise, Mr silently discards the message.

An instance of Mr can directly be corrupted by the adversary in which case the adversary controls the
secure channel. However, the corruption needs to occur before Mr has output the message Established. The
instance of Mr is also considered corrupted (i.e., it sets its flag corrupted to true) if the corresponding
local session in Fkey-use is corrupted. The environment may ask whether or not an instance of Mr has been
corrupted as described in Section 3.1.

Unlike Psc, P+
sc discards messages from the adversary if, when decrypted, they are not of the form

f(p′, p, v, x) for v = Rj , i.e., message loss is not tolerated by P+
sc.

The next theorem shows that Psc realizes Fsc and that P+
sc realizes F+

sc . We note that by Theorem 3, in
the proof, we only need to consider the single session case.

Theorem 10. If the leakage algorithm used in Fkey-use leaks only the length of a message (e.g., L(1η, x) =
0|x|), then Psc | Fkey-use ≤ Fsc and P+

sc | Fkey-use ≤ F+
sc.

Before we prove the above theorem, we note that, by this theorem, Theorem 1, and the transitivity of ≤,
it follows that every protocol P that realizes Fkey-use (e.g., P = P4WHS | Fcrypto or P = PTLS | Fcrypto) can
be used as a lower-level protocol for Psc (or P+

sc). More precisely, if P ≤ Fkey-use, then Psc | P ≤ Fsc and
P+
sc | P ≤ F+

sc .

Proof of Theorem 10. First, we consider the case of Fsc, see below for the case of F+
sc . By Theorem 3, it

suffices to show that Fsingle | Psc | Fkey-use ≤∗ Fsingle | Fsc.
First, we define a simulator Sim for Fsc which operates in two stages as described in Section 3.3. The

simulator is the natural simulator which simply emulates the system Psc | Fkey-use. More precisely, Sim
operates as follows: In the first stage Sim emulates a copy of the system Psc | Fkey-use. Upon corruption or
if Fkey-use receives a session-create message, Sim enters its second stage. In the second stage, Sim continues
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the emulation of Psc | Fkey-use as follows. If some instance Mr (in the emulated Psc) with PID p and LSID
lsid is corrupted, then Sim sends (Corrupt, (p, lsid , r)) to Fsession in Fsc (i.e., Sim corrupts the corresponding
user in Fsc). If (the emulated) Fkey-use receives a session-create message (note that in this case, by definition
of Psc, all instances of Mr have received a session-start message and are uncorrupted), then Sim forwards
this message to Fsc. If Mr with PID p and LSID lsid outputs Established to its user (i.e., Fkey-use previously
received (Establish, r)), then Sim sends (Establish, r) to Fsc. If Sim receives (r, Send, i, 0l) from Fsc (because
the user in role r wants to send a message of length l to the user in role i), then Sim sends (Send, i, 0l) to
(the emulated) Mr, i.e., as if the user wants to send 0l. If Mr delivers a message to its user, then Sim checks
how many messages have been dropped and instructs Fsc to drop that many messages. More precisely, if
the delivered message has count value v and Rj is the corresponding counter, then Sim instructs Fsc to
drop v−Rj messages. (Note that, by definition of Psc, v ≥ Rj , otherwise, the message would not have been
delivered.) Then, Sim instructs Fsc to deliver the next message.

Now, we show that Fsingle | Psc | Fkey-use and Sim |Fsingle | Fsc are indistinguishable for every environment
of Fsingle | Psc | Fkey-use. We only sketch the proof. It is easy to see that upon corruption requests from
the environment the systems Fsingle | Psc | Fkey-use and Sim |Fsingle | Fsc do not differ, i.e., the view of the
environment is the same. Hence, in the following we only need to consider the case where every instance
in Psc is uncorrupted, the session in Fkey-use is uncorrupted, and the session in Fsc is uncorrupted. The
systems Fsingle | Psc | Fkey-use and Sim |Fsingle | Fsc potentially only differ i) upon a message send request
for some message, say x, because in Fsingle | Psc | Fkey-use the message f(p′, p, v, x) gets encrypted while in
Sim |Fsingle | Fsc the message f(p′, p, v, 0|x|) gets encrypted or ii) upon delivery of messages to the parties
because Fsingle | Psc | Fkey-use outputs the decrypted received message while Sim |Fsingle | Fsc drops some
messages and outputs the next message in the queue. Next, we show that the systems in fact do not differ.

ad i) By definition of Fkey-use it follows that in Fsingle | Psc | Fkey-use not f(p′, p, v, x) but its leakage
L(1η, f(p′, p, v, x)) is encrypted. Similar, in Sim |Fsingle | Fsc not the plaintext f(p′, p, v, 0|x|) but its leakage
L(1η, f(p′, p, v, 0|x|)) is encrypted. Since |f(p′, p, v, x)| = |f(p′, p, v, 0|x|)| (because f is length regular) and
the leakage algorithm leaks only the length of a message, the distribution of the produced ciphertext is the
same in both systems.

ad ii) Assume that E sends a network message that contains a ciphertext y. In this case, both systems
Fsingle | Psc | Fkey-use and Sim |Fsingle | Fsc decrypt y using Fkey-use (or the emulated Fkey-use in Sim). If the
obtained plaintext is not of the form f(p′, p, v, x) for some v ≥ Rj and some message x then both systems
discard this message. Otherwise, Fsingle | Psc | Fkey-use delivers x to the user for party p while Sim instructs
Fsc to drop v−Rj messages and to deliver the next message, say x′, to p. We need to show that x = x′. By
definition of Fkey-use, only plaintexts are returned that have been previously encrypted using Fkey-use. By
definition of Psc, it must have been the user for party p′ who produced y when sending the v-th message to
p. (Otherwise, the plaintext would not be f(p′, p, v, x).) Note that Rj is exactly the number of messages p
has already received from p′. Since v − Rj messages are dropped, Fsc will deliver the Rj + (v − Rj) = v-th
message that party p′ has sent to p. We conclude that x = x′.

In the case of F+
sc we can use the same simulator Sim except that it emulates P+

sc | Fkey-use instead of
Psc | Fkey-use. Note that Sim will never try to instruct F+

sc to drop messages because, by definition of P+
sc,

v = Rj if a message is delivered. The rest of the proof is analogously to the case of Fsc. ut

50


