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Abstract

In [DNRS99, DNRS03], Dwork et al. opened the fundamental question of existence of com-
mitment schemes that are secure against selective opening attacks (SOA, for short). In [BHY09]
Bellare, Hofheinz, and Yilek, and Hofheinz in [Hof11] solved this problem positively by presenting
a scheme which is based on non-black-box use of a one-way permutation and which has super-
constant number of rounds. The achieved solution however opened other challenging questions
on improvements of round complexity and on possibility of obtaining fully black-box schemes
where access to an underlying primitive and to an adversary are black-box only. Recently, in
TCC 2011, Xiao ([Xia11a]) investigated on how to achieve (nearly) optimal SOA-secure commit-
ment schemes where optimality is in the sense of both the round complexity and the black-box
use of cryptographic primitives. The work of Xiao focuses on a simulation-based security notion
of SOA. Moreover, the various results in [Xia11a] focus only on either parallel or concurrent
SOA.

In this work we first point out various issues in the claims of [Xia11a] that actually re-open
several of the questions left open in [BHY09, Hof11]. Then, we provide new lower bounds and
concrete constructions that produce a very different state-of-the-art compared to the one given
in [Xia11a].

More specifically, denoting by (x, y) the round complexity of a scheme that requires x rounds
in the commitment phase and y rounds in the decommitment phase, and by considering only
(like in [Xia11a]) the setting of black-box simulation for SOA-security, we show that:
1. There is an issue in the result of [Xia11a] on the existence of (3, 1)-round schemes for

parallel SOA; in fact, we are able to contradict their impossibility result by presenting a
(3, 1)-round scheme based on black-box use of trapdoor commitments. Moreover, we can
instantiate such a scheme with a non-black-box use of a one-way function, thus producing
a (3, 1)-round scheme based on any one-way function that improves the result of [BHY09,
Hof11] from logarithmic round complexity to 3 (optimal), also under optimal complexity
assumptions. We also show a (3, 3)-round scheme based on black-box use of any one-way
permutation.

2. There is an issue in the proof of security for parallel composition of the (4, 1)-round scheme
given in [Xia11a]; thus such scheme may not be secure. We show instead a (4, 1)-round
scheme based on black-box use of any weak trapdoor commitment scheme, and a (5, 1)-
round scheme based on black-box use of any one-way permutation.

3. There is an issue in the proof of security of the concurrent SOA-secure scheme of [Xia11a].
This issue emerges under the case where the simulator cannot itself efficiently sample from
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the distribution of committed messages. In fact, we contradict the claimed security of
this scheme by showing that there can not exist such a scheme, regardless of its round
complexity and of the (black-box or non-black-box) use of cryptographic primitives.

All our schemes are secure for parallel SOA composition and also secure for concurrent SOA
composition under the restriction that all commitment phases are played before any decom-
mitment phase. Moreover, in all our constructions the simulator does not need to know the
distribution of the messages committed to by the sender. In light of our result on the impos-
sibility of a scheme that is SOA-secure under full-fledged concurrent composition (see Item 3
above), the concurrency achieved by our schemes is essentially optimal.

1 Introduction
Commitment schemes are a fundamental building block in cryptographic protocols. While their
binding property guarantees that a committed message can not be opened to two distinct messages,
their hiding property guarantees that before the decommitment phase begins, no information about
the committed message is revealed. Binding and hiding are preserved under concurrent composition,
in the sense that even a concurrent malicious sender will not be able to open a committed message
in two ways, and even a concurrent malicious receiver will not be able to detect any relevant
information about committed messages as long as only commitment phases have been played so far.

In [DNRS99], Dwork et al. pointed out a more subtle definition of security for hiding where the
malicious receiver is allowed to ask for the opening of some of the committed messages, with the
goal of breaking the hiding of the remaining committed messages, thus opening the fundamental
question of existence of commitment schemes that are secure against selective opening attacks (SOA,
for short). We stress that the question is particularly important since commitments are often used
in larger protocols, where often only some commitments are opened but the security of the whole
scheme still relies on the hiding of the unopened commitments. For instance, the importance of
SOA-secure commitments for constructing zero-knowledge sets is discussed in [GM06]1.

The above challenging open question was solved affirmatively in [BHY09] by Bellare, Hofheinz,
and Yilek (see also the extended version of Hofheinz [Hof11]) who presented a SOA-secure scheme
based on non-black-box (NBB, for short) use of any one-way permutation (OWP, for short) and
super-constant number of rounds. However, the above result left open several other questions on
round optimality and (black-box) use of the underlying cryptographic primitives. The notion of
black-box use of cryptographic primitives has attracted much attention and significant progress has
been achieved in recent years [CDSMW09, PW09, Wee10].

In TCC 2011 [Xia11a], Xiao addressed the above open questions and investigated on how to
achieve nearly optimal schemes where optimality concerns both the round complexity and black-
box (BB, for short) use of cryptographic primitives. In particular, Xiao addressed SOA-security of
commitment schemes for both parallel composition and concurrent composition and all his results
concern a simulation-based definition. The subsequent work [Xia12b], shows a black-box construc-
tion of 4-round statistically-binding SOA commitment secure only for parallel composition. As we
shall see later, our (3, 1)-round and (4, 1)-round schemes are only computationally binding, but in
the stronger setting of concurrent-with-barrier composition.

In [BDWY12] Bellare et al., showed that the existence of CRHFs implies that non-interactive
SOA-secure commitments are impossible. This holds, even if the simulator is non black-box and
knows the distribution of the message space. An implication of such results is that, standard security

1In [GM06] some forms of zero-knowledge sets were proposed, and their strongest definition required SOA-secure
commitments.
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does not imply SOA-security. Previous results [BHY09, Hof11] only showed the impossibility for
the case of black-box reductions. [BDWY12] also studied the SOA-security notions for public-key
encryption schemes. In particular, they showed that for public-key encryption schemes, IND-CPA
security does not imply simulation-based SOA-security.

Continuing on this line of research, recently, [BHK12] almost completed the picture of the rela-
tionship between different notions of SOA-security of public-key encryption schemes. In particular,
they showed that indistinguishability-based SOA-security and simulation-based SOA-security do
not imply each other.

1.1 Our Contribution

In this work we focus on black-box simulation-based SOA-secure commitment schemes. Firstly we
point out various issues in the claims of [Xia11a]. These issues essentially re-open all the major
open questions that were supposed to be answered in [Xia11a]. We next show how to solve (in many
cases in a nearly optimal way) all of them. Interestingly, our final claims render quite a different
state-of-the-art from (and in some cases also in contrast to) the state-of-the-art set by the claims
of [Xia11a].

In detail, by specifying as (x, y) the round complexity of a commitment scheme when the com-
mitment phase takes x rounds and the decommitment phase takes y rounds, and by considering
only the definition of BB simulation for SOA security, we revisit [Xia11a] claims and re-open some
challenging open questions as follows:
1. There is an issue in the impossibility result of [Xia11a] on the existence of (3, 1)-round schemes

secure under parallel composition. This re-opens the question of the achievability of (3, 1)-
round SOA-secure schemes.

2. There are issues in the proof of security of the (4, 1)-round scheme of [Xia11a] for parallel
composition, and thus this scheme may not be secure. This re-opens the question of obtaining
a constant-round scheme that is provably SOA-secure.

3. There is an issue in the proof of security of the construction of [Xia11a] that is claimed to
be SOA-secure under concurrent composition in the strong sense; i.e., composition can be
fully concurrent, allowing even the commitment and decommitment phases to be interleaved
together. This issue arises for the distributions where the simulator by itself cannot efficiently
sample from the distribution of messages committed to by the honest sender (but needs to
query an external party for it).2 An example of such a distribution can be signatures on
some public verification key (the simulator will not be able to efficiently sample from this
distribution as it does not have the corresponding secret key). This issue in [Xia11a] re-opens
the possibility of achieving schemes that are SOA-secure under fully concurrent composition
for any round complexity.

With this, the state-of-the-art almost rolls back to the works of [BHY09] and [Hof11]. In this
paper we solve the above open problems (still sticking to the notion of black-box simulation as
formalized in [Xia11a]) as follows.
1. We present a (3, 1)-round scheme based on BB use of any trapdoor commitments (TCom, for

short), a (3, 3)-round scheme based on BB use of any OWP, a (4, 1)-round scheme based on
BB use of any weak trapdoor commitment (wTCom, for short)3, and a (5, 1)-round scheme

2For simplicity, we shall hereafter refer to this case as the simulator not knowing the distribution.
3This result indeed requires a relaxed definition of trapdoor commitment where the trapdoor is required to be

known already during the commitment phase in order to later equivocate. We call it “weak” because any TCom is
also a wTCom.
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based on BB use of any OWP.
2. We show that when the simulator does not know the distribution of the messages committed

to by the honest sender, there exists no scheme that achieves fully concurrent SOA-security,
regardless of the round complexity and of the BB use of cryptographic primitives. Notice that
this lower bound contradicts the claimed security of the construction given in [Xia11a].

3. As a corollary of our (3, 1)-round scheme based on BB use of any TCom, there exists a (3, 1)-
round scheme based on NBB use of any one-way function (OWF). Moreover, since we show that
there does not exist a (2, 1)-round scheme regardless of the use of the underlying cryptographic
primitive, our (3, 1)-round scheme is essentially round-optimal. This improves the round
complexity in [BHY09] from logarithmic in the security parameter to only 3 rounds and using
minimal complexity-theoretic assumptions.

Notice that both our (3, 1)-round protocols - the one based on BB use of TCom and the other
based on NBB use of OWFs - contradict the impossibility given in [Xia11a]. Moreover, note that
our (3, 1)-round protocol based on BB use of TCom (as well as our (4, 1)-round protocol based on
BB use of wTCom) does not require NP reductions, in contrast to our (3, 1)-round protocol that
is based on NBB use of OWFs.

All our constructions are in fact secure under concurrent composition as long as all commitment
phases are played before the beginning of any decommitment phase; we shall refer to this form of
composition as “concurrency-with-barrier” and it obviously implies parallel composition too. Fur-
thermore, our simulators do not need to know the distribution of the messages committed to by the
honest sender. In light of our impossibility for the fully concurrent composition (see Item 2 of the
above list), the concurrency achieved by our schemes seems to be optimal. Therefore we achieve
the strongest form of security against SOA attacks, as specified in [Xia11a] (see the paragraph
“Stronger definitions of hiding” in [Xia11a]) and in [Hof11] (see Item 3 in paragraph “Discussion of
the Definitional Choices” in [Hof11]).

As an additional application, we also show that our (3, 1)-round schemes can be used to obtain
non-interactive (concurrent) zero knowledge [DNS98] with 3 rounds of pre-processing. This improves
upon [CO99] where (at least) 3 rounds of interactions are needed both in the pre-processing phase
and in the proof phase. Moreover, the simulator of [CO99] works only with non-aborting verifiers,
while our simulator does not have this limitation.

We further compare our results with the previous state-of-the-art in the table below. Here, for
instance, (3, 1) PAR in the “Impossible” row under [Xia11a] means that [Xia11a] claims impossibility
for a (3, 1)-round scheme that is SOA-secure under parallel composition; NBB (log n, 1) CwB OWP
in the “Achieved” row under [BHY09] means that [BHY09] shows a (log n, 1)-round scheme based on
NBB use of OWPs that is SOA-secure under concurrent-with-barrier composition; CC is shorthand
for concurrent composition (as per definition of [Xia11a]), t-SH refers to a (t, 1)-round statistically-
hiding commitment scheme. In the last column, we list the results of [Xia11a] that we contradict.

[BHY09, Hof11] [Xia11a] This Paper This Paper on [Xia11a]
Impossible BB (1, 1) (3, 1) PAR (3,1) PAR

(o(log n/ log log n), 1) CC (any, any) CC – unknown distribution –
Achieved NBB (log n, 1) CwB OWP BB (4, 1) PAR OWP BB (3, 1) TCom; NBB (3, 1) OWF BB (4, 1) PAR OWP

BB (ω(t log n), 1) CC t-SH BB (4, 1) wTCom ; BB (3, 3) OWP BB (ω(t log n), 1) CC t-SH
BB (5, 1) OWP (all CwB) – unknown distribution –

We stress that all issues we point out in this submission about the claims of [Xia11a] have been
later confirmed by Xiao in his last revision of his work [Xia12a].
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2 Preliminaries
Notation. We denote by n ∈ N the security parameter and by PPT the property of an algorithm
of running in probabilistic polynomial-time. A function ε is negligible (negl., for short) in n (or just
negligible) if for every polynomial p(·) there exists a value n0 ∈ N such that for all n > n0 it holds
that ε(n) < 1/p(n). We denote by [k] the set {1, . . . , k}; poly(n) stands for polynomial in n. We
denote by x ← D the sampling of an element x from the distribution D. We also use x $← A to
indicate that the element x is uniformly sampled from set A. We denote by (vA, vB) ← 〈A(), B()〉
the pair of outputs of parties A and B, respectively, after the completion of their interaction. We
use v $← A() when the algorithm A is randomized. Finally, let P1 and P2 be two parties running a
protocol that uses protocol 〈A,B〉 as a sub-routine. When we say that party “P1 runs 〈A(·), B(·)〉
with P2” we always mean that P1 executes the procedure of party A and P2 executes the procedure
of party B. In the paper we use the words decommitment and opening interchangeably.

2.1 Commitment Schemes

In the following definitions we assume that parties are stateful and that malicious parties obtain
auxiliary inputs, although for better readability we omit them.

Definition 1 (Bit Commitment Scheme). A commitment scheme is a tuple of PPT algorithms
Com = (Gen, S,R) implementing the following two-phase functionality. Gen takes as input a random
n-bit string r and outputs the public parameters pk. Given to S an input b ∈ {0, 1}, in the first
phase (commitment phase) S interacts with R to commit to the bit b; we denote this interaction as
〈S(pk, com, b),R(recv)〉. In the second phase (opening phase) S interacts with R to reveal the bit b,
we denote this interaction as 〈S(open),R(open)〉 and R finally outputs a bit b′ or ⊥. Consider the
following two experiments:

Experiment Expbinding
Com,S∗(n): Experiment Exphiding-b

Com,R∗ (n):
R runs (pk)← Gen(r) and sends pk to S∗; pk∗ ← R∗(1n);
〈S∗(pk, com, b),R(recv)〉; (·, b′) $← 〈S(pk∗, com, b),R∗(recv)〉;
(·, b0)

$← 〈S∗(open, 0),R(open)〉; output b′.
rewind S∗ and R back after the second step;
(·, b1)

$← 〈S∗(open, 1),R(open)〉;
output 1 iff ⊥ 6= b0 6= b1 6=⊥ .

Com = (Gen, S,R) is a commitment scheme if the following conditions hold:

Completeness. If S and R are honest, for any S’s input b ∈ {0, 1} the output of R in the opening
phase is b′ = b.

Hiding. For any PPT malicious receiver R∗, there exists a negligible function ε such that the fol-
lowing holds:

Advhiding
Com,R∗ = |Pr[(Exphiding-0

Com,R∗ (n)→ 1)]− Pr[Exphiding-1
Com,R∗ (n)→ 1)]| ≤ ε(n).

Binding. For any PPT malicious sender S∗ there exists a negl. function ε such that: Pr[Expbinding
Com,S∗ →

1] ≤ ε(n).
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The above probabilities are taken over the choice of the randomness r for the algorithm Gen and the
random coins of the parties. A commitment scheme is statistically hiding (resp., binding) if hiding
(resp., binding) condition holds even against an unbounded malicious Receiver (resp., Sender).

The above definition is a slight modification of the one provided in [BHY09, Hof11] and is
more general in the fact the it includes the algorithm Gen used by R to generate the parameters
for the commitment. Such a definition is convenient when one aims to use commitment schemes
as sub-protocols in a black-box way. However, for better readability, when we construct or use
as sub-protocol a commitment scheme that does not use public parameters we refer to it only as
Com = (S,R) omitting the algorithm Gen. In particular we shall denote by ComNI = (SNI,RNI) a
non-interactive commitment scheme. Such commitment schemes exist based on any OWP [GL89].

Remark 1 (Hiding definition). We stress that, the definition of hiding formalized through the hiding
experiment Exphiding-b

Com,R∗ (n), guarantees that indistinguishability holds even when the public parameter
pk∗ is adversarially chosen (by R∗). As a consequence, in our proofs we deal with possibly bad
parameters pk∗ by relying on the fact that hiding is guaranteed even for such possibly bad pk∗s (i.e.,
as can be seen in the proofs, no additional procedure for verifying the correctness of the parameters
will be required).

Remark 2 (Binding definition). The binding property states that there exists no efficient S∗ that can
produce two distinct accepting openings for the same commitment phase with non-negl. probability.
Since we consider also interactive decommitments, we formalize this notion as a game following the
definition given in [BHY09, Hof11]. That is, S∗ is run twice in the decommitment phase, but with
an additional input necessary to obtain two distinct openings (indeed S∗ is run twice with the same
randomness), i.e., S∗ is invoked as S∗(open, b).

For the definitions of trapdoor commitments we borrow some notation from [MY04, Rey01].

Definition 2 (Trapdoor Commitment). A tuple of PPT algorithms TC = (TCGen,S,R,TCFakeDec)
is a trapdoor commitment scheme if TCGen, on input a random n-bit string r, outputs a public
key/secret key pair (pk,sk), TCGenpk is the related functionality that restricts the output of TCGen
to the public key, (TCGenpk,S,R) is a commitment scheme, and (S,TCFakeDec) are such that:

Trapdoor Property. There exists b? ∈ {0, 1}, such that for any b ∈ {0, 1}, for all (pk, sk) ←
TCGen(r), and for any PPT malicious receiver R∗ there exists a negl. function ε such that the
following holds:

Advtrapdoor
TC,R∗ = Pr[ExpTrap

TC (n)→ 1]− Pr[ExpCom
TC (n)→ 1] ≤ ε(n).

The probability is taken over the choice of r for the algorithm TCGen and the random coins of
the players.

Experiment ExpCom
TC (n) : Experiment ExpTrap

TC (n):
R∗ chooses a bit b; R∗ chooses a bit b;
〈S(pk, com, b),R∗(pk, sk, b, recv)〉; (ξ, ·)← 〈S(pk, com, b?),R∗(pk, sk, b, recv)〉;
(·, b′) $← 〈S(open),R∗(open)〉; (·, b′) $← 〈TCFakeDec(sk, open, b, ξ),R∗(open)〉;
output b′; output b′;
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In the experiment ExpTrap
TC (n) S runs the procedure of the honest sender on input b?. The

variable ξ contains the randomness used by S to compute the commitment phase and it is used
by TCFakeDec to compute the decommitment. The knowledge of the trapdoor is required only in
decommitment phase. In the trapdoor commitment of Pedersen [Ped92], the trapdoor property
holds for any b?, namely one can use the honest sender procedure to commit an arbitrary bit b? and
use the trapdoor to decommit to any b 6= b?. Instead, in the trapdoor commitment proposed by
Feige and Shamir [FS89], as we show next, the trapdoor property holds only if the honest procedure
was used to commit to bit b? = 0. In both commitment schemes the trapdoor is used only in the
decommitment phase.

We stress that, according to the standard definition, while the hiding property must hold for all
pk possibly maliciously generated by R∗, the trapdoor property must hold only for the pairs (pk, sk)
honestly generated. In some definitions [Rey01] it is required that hiding holds for all the malicious
keys that pass the test of an additional verification algorithm TCVer, however, w.l.o.g. one can
assume that the commitment procedure runs the verification algorithm as a first step. Note that
implementations of a trapdoor commitment enjoying all the properties above do exist, one example
is Pedersen’s Trapdoor Commitment [Ped92], in which once the public parameter pk are given, the
commitment procedure is non-interactive. We mention below a construction based on any OWF.

It is possible to consider a weaker4 definition of trapdoor commitment (see Appendix A.1.1) in
which, in order to be able to later equivocate, the trapdoor is needed already in the commitment
phase. The trapdoor commitment proposed in [PW09] uses such a definition.

Trapdoor Commitment Scheme based on Non-black-box use of a OWF. In [FS89] Feige
and Shamir presented a construction of trapdoor commitments based on NBB access to OWFs.
The commitment procedure consists of running the simulator of Blum’s protocol [Blu86] for Graph
Hamiltonicity (HC) where the challenge is the bit to commit to. For completeness we recall the
construction. Let f : {0, 1}n → {0, 1}∗ be a OWF.

• (G,C)← TCGen(r): pick a random x and compute y ← f(x). From y obtain a hard instance
G ∈ HC and let C be one of the Hamiltonian cycles of G. This transformation requires
non-black-box access to f . Set the public key pk = G and the trapdoor sk = C.

• S(G, com, b): if b = 0, pick a random permutation π and commit to π(G). If b = 1, commit to a
random n-vertex cycle H. Both commitments are performed using Naor Commitment [Nao91]
that is based on BB access to OWFs.

• 〈S(open, b),R(open)〉: S sends b and the opening according to b, i.e., if b = 0 it sends π and
opens all commitments, if b = 1 it opens the cycle H. R checks whether the openings are
correct according to challenge b and the procedure of the verifier of Blum’s protocol.

• ξ ← S(G, com, b?): S runs as S(G, com, 0). The variable ξ contains the randomness used to run
S.

• 〈TCFakeDec(C, open, b, ξ),R(open)〉: to open to 0 send π and open all the commitments, to
open to 1 open the cycle C in π(G). The opening information is taken from ξ.

4The definition is weaker in the sense that it is implied by the previous definition, but could be a strictly weaker
primitive achievable under better assumptions and with better efficiency.
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Hiding comes from the hiding of Naor commitments, and binding from the hardness of the OWF.
A commitment can be equivocated only if it was computed following the procedure to commit 0.
Thus, the above protocol satisfies the trapdoor property for b? = 0.

Definition 3 (Hiding in the presence of Selective Opening Attacks (slight variation of [BHY09,
Hof11])). Let k = poly(n), let B be a k-bit message distribution and b

$← B be a k-bit vector, let
I = {Ik}k∈N be a family of sets, where each Ik is a set of subsets of [k] denoting the set of legal
subsets of (indexes of) commitments that the receiver (honest or malicious) is allowed to ask for the
opening. A commitment scheme Com = (Gen, S,R) is secure against selective opening attacks if for
all k, all sets I ∈ I, all k-bit message distributions B, all PPT relations R, there exists an expected
PPT machine Sim such that for any PPT malicious receiver R∗ there exists a negl. function ε such
that:

Advsoa
Com =

∣∣Pr[Expreal
Com,S,R∗(n)→ 1]− Pr[Expideal

Com,Sim,R∗(n)→ 1]
∣∣ ≤ ε(n).

The probability is taken over the choice of the random coins of the parties.

Experiment Expreal
Com,S,R∗(n): Experiment Expideal

Com,Sim,R∗(n):
pk

$← R∗(1n); pk
$← R∗(1n);

b
$← B; b

$← B;
I

$← 〈Si(pk, com,b[i])i∈[k],R
∗(pk, recv)〉; I

$← SimR∗(pk);
(·, ext) $← 〈Si(open)i∈I ,R

∗(open)〉; ext
$← SimR∗(b[i])i∈I ;

output R(I,b, ext). output R(I,b, ext).

We denote by (·, ext) $← 〈Si(·),R∗(·)〉 the output of R∗ after having interacted concurrently with k
instances of S each one denoted by Si. In the paper an instance of the protocol is called session.
A malicious receiver R∗ can run many sessions in concurrency with the following limitation. R∗

runs commitment phases concurrently for polynomially many sessions, but it can initiate the first
decommitment phase only after the commitment phases of all the sessions have been completed (and
therefore after the set of indexes has been requested). This means that the set of indexes I (i.e.,
the commitments asked to be opened), depends only of the transcript of the commitment phase. We
call this definition concurrent-with-barrier (CwB, for short), meaning that many commitment
phases (decommitment phases) can be run concurrently but the commitment phase of any session
cannot be interleaved with the decommitment of any other session. Notice that as in [Xia11a], our
definition assumes that the honest receiver chooses to open only a subset of the commitments, but
this is done independently of the transcript (i.e., I $← I). This means that in the “SOA-commitment”
functionality (differently from traditional commitment functionality) the receiver also has an input
that corresponds to opening/not opening.

Remark 3. In this paper, unless otherwise mentioned, a SOA-secure commitment scheme is a
commitment scheme that is SOA-secure under CwB composition. In fact, all our positive results
are for the setting of CwB composition.

We now discuss the main motivations behind the choices that we made to obtain the above
definitions.
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Concurrency-with-barrier composition vs. Parallel and Concurrent Composition. In
[Xia11a] Xiao provides two main definitions: SOA-security under parallel (PAR) composition and
SOA-security under “fully” concurrent composition (CC). In the fully concurrent definition there
is no barrier between commitment and decommitment phase: R∗ is allowed to interleave the com-
mitment phase of one session with the decommitment phase of another, basically having the power
of deciding which decommitment/commitment to execute, depending on the transcript of the com-
mitment and decommitment of other sessions. This definition is pretty general, but unfortunately,
as we show in this paper, achieving this result is impossible (under the assumption that the sim-
ulator does not know the distribution of the messages committed to by the honest sender); this is
in contrast to [Xia11a] where it is claimed that this definition is achievable. The concurrent-with-
barrier composition that we adopted (following [Hof11]) implies security under parallel composition
while due to the barrier between commitment and decommitment phase, it is weaker than the fully
concurrent definition of [Xia11a].

Decommitment Phase can be interactive. Following [Hof11] our definition is more general
than the one of [Xia11a] since it allows also the decommitment phase to be interactive.

Honest Party Behaviour. We follow [Xia11a] in defining the behaviour of the honest receiver
i.e, R chooses the subset of commitments to be opened according to some distribution I. To see why
this definition makes sense, think about extractable commitments where the sender and receiver
engage in many commitments of pairs of shares of a message but finally only one share per pair is
required to be opened in the commitment phase.

Concerning the honest sender, we assume that R∗ interacts with k independent senders, that are
oblivious to each other, and play with input b[j], while [Xia11a] considers a single sender Sk who
gets as input the complete k-bit string and plays k independent sessions with R∗. This variation is
cosmetic only.

Comparison with the definitions of [BHY09, Hof11]. In [BHY09, Hof11] the behaviour of
the honest receiver is not explicitly defined, implying that the honest receiver always obtains all
the openings. In order to be more general and to make SOA-secure commitments useful in more
general scenarios, we deviate from this definition allowing the honest receiver to ask for the opening
of a subset of the commitments. Moreover, the set of indexes I chosen by the (possibly malicious)
receiver is explicitly given as input to the relation R.

Summing up, the definition that we adopt mainly follows the one of [BHY09, Hof11] and is more
general than the one of [Xia11a] in the fact that it allows interaction also during the decommitment
phase, and provides concurrency-with-barrier that implies the definition of security under parallel
composition. Moreover, our definition is more general than the one of [Hof11] since it allows also
the honest receiver to choose the commitments to be opened. However, our definition is weaker
than the concurrent definition of [Xia11a] that however we show to be impossible to achieve (when
the distribution of the messages committed by S is unknown to Sim).

3 Upper Bounds

3.1 SOA-secure Commitment Scheme based on BB use of Trapdoor Commitments

We present a construction of a round-optimal SOA-secure commitment scheme based on BB use of
trapdoor commitments. In particular we show that if 2-round (where the first round only serves for
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the receiver to send the public parameters) trapdoor commitment schemes exist5 then a 3-round
commitment scheme that is secure under selective opening attack exists. Under the assumption
that weak trapdoor commitment schemes exist, in Appendix C.1 we present a 4-round construction.

The main idea behind both protocols is to require the sender to commit to its private input
using a trapdoor commitment scheme and to make the trapdoor information extractable to the
black-box simulator. This allows the simulator to cheat in the opening phase without changing the
transcript of the commitment phase. Obviously, the parameters of the trapdoor commitment are
generated by the receiver (if this was not the case then a malicious sender can cheat in decommitment
phase using the trapdoor), and are made extractable through cut-and-choose techniques. In more
details, the protocol goes as follows. R runs the generation algorithm of the trapdoor commitment
scheme (TCGen) to generate the public parameters used by S to commit to its private bit. To allow
extraction of the trapdoor, we require that R provides 2n public parameters and S asks to “reveal”
the trapdoor of a random n-size subset of them. S will use the remaining n parameters (for which
the trapdoors are still hidden) to commit to n shares of its secret input. In this way the equivocation
requires the knowledge of one trapdoor only among the set of the remaining n keys that were not
revealed. Thus, the simulator first commits to n random bits, then through rewinding threads it will
extract from R at least one trapdoor of the remaining unrevealed keys. One trapdoor is sufficient
to equivocate one of the shares already committed, and in turn, to decommit to any bit.

In Protocol 1, that uses trapdoor commitments, the simulator can commit without knowing the
trapdoor, thus the commitment of the shares can be merged with the cut-and-choose phase, therefore
yielding a 3-rounds commitment phase. In the protocol that uses weak trapdoor commitments (see
Protocol 4 in Appendix C.1), the simulator needs to extract the trapdoor before committing (since
it will be able to equivocate only commitments that are computed using the trapdoor), therefore
the commitment must be postponed after the completion of the cut-and-choose phase. This adds
one more round to the commitment phase.

Finally, binding follows straight-forwardly from the binding of the trapdoor commitment scheme
used as sub-protocol.

(3,1)-round SOA-secure Scheme based on BB use of Trapdoor Commitments. Let us
denote as TC = (TCGen, STC, RTC, S, TCFakeDec) a trapdoor commitment scheme. In the following
we show a protocol SOACom = (Ssoa,Rsoa) that uses TC as sub-protocol in a black-box fashion. If
the commitment phase of TC is non-interactive (given the public parameters in input) then the
following construction yields a (3,1)-round commitment scheme. We denote by 〈STCd̄ii ,RTC

d̄i
i 〉 the

i-th invocation of sub-protocol TC run with public key pkd̄i . Here di denotes the ith challenge for
the cut-and-choose, i.e., Ssoa computes the trapdoor associated to the key pkdi , while it commits to
the ith share of the input using key pkd̄i (for which the trapdoor will not be revealed).

Protocol 1. [(3,1)-Round SOA-Secure Commitment Scheme] [SOACom = (Ssoa,Rsoa)]

Commitment phase.
Rsoa: For i = 1, . . . , n:

1. r0
i , r

1
i

$← {0, 1}n; (pk0
i , sk

0
i ) ← TCGen(r0

i ); (pk1
i , sk

1
i )← TCGen(r1

i );
2. send (pk0

i , pk
1
i ) to Ssoa;

5[Ped92] is an example of a trapdoor commitment scheme where the public parameters pk are generated by the
receiver and sent to the sender in the first round. Given pk, the commitment procedure is non-interactive.
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Ssoa: On input a bit b. Upon receiving {pk0
i , pk

1
i }i∈[n]:

1. secret share the bit b: for i = 1, . . . , n: bi
$← {0, 1}, such that b = (

⊕n
i=1 bi);

2. for i = 1, . . . , n do in parallel:
- send di

$← {0, 1} to Rsoa;
- run 〈STCd̄ii (pkd̄ii , com, bi),RTC

d̄i
i (pkd̄ii , recv)〉 with Rsoa;

Rsoa: Upon receiving d1, . . . , dn: if all commitment phases of protocol TC were successfully completed,
send {rdii }i∈[n] to Ssoa;

Ssoa: Upon receiving {rdii }i∈[n] check consistency: for i = 1, . . . , n: (pk′dii , sk′dii ) ← TCGen(rdii ); if
pk′dii 6= pkdii then abort.

Decommitment phase.

Ssoa: for i = 1, . . . , n: run (·, b′i)← 〈STCd̄ii (open),RTC
d̄i
i (open)〉 with Rsoa;

Rsoa: If all opening phases were successful completed output b′ ←⊕n
i=1 b

′
i. Otherwise, output ⊥.

Theorem 1 (Protocol 1 is secure under selective opening attacks). If TC = (TCGen, STC, RTC,
TCFakeDec) is a trapdoor commitment scheme, then Protocol 1 is a commitment scheme secure
against selective opening attacks.

The proof appears in Appendix D.1. The case of a (4, 1)-round construction is very similar, and
only deviates in the fact that the commitments of the shares are sent in the 4th round instead of
the 2nd round. Further details appear in Appendix C.1.

(3,1)-round SOA-secure Scheme based on NBB use of OWFs. We observe that, by in-
stantiating Protocol 1 with the Feige-Shamir trapdoor commitment scheme described in Section 2.1,
one can obtain a (3,1) SOA-secure scheme with non-black-box access to OWFs.

3.2 (3,3)-round SOA-secure Scheme based on BB use of OWPs

In this section we present a (3, 3)-round SOA-secure commitment scheme based on BB use of any
OWP. As a main ingredient, we use an extractable commitment scheme ExtCom. As shown in
Protocol 3 (Appendix A.4), ExtCom can be constructed with a BB use of statistically-binding
commitments that in turn can be constructed with a BB use of OWPs.

The idea behind the protocol is as follows. The sender and the receiver first engage in a coin-
flipping protocol where the receiver commits to its random-string, then the sender sends its random
string in the clear, and finally the receiver reveals its random string. Simultaneously, the sender
commits to its input bit b, n pairs of times (with the two commitments in each pair indexed by
0 and 1). In the decommitment phase, at the completion of the coin-flipping protocol, the sender
opens only one of the commitments in each pair according to the outcome of the coin-flipping.

To allow for simulation (while arguing hiding), the commitment of the receiver in the coin-
flipping protocol is implemented via extractable commitment scheme, so that the simulator can
extract the receiver’s string in the commitment phase itself. Furthermore, we require that the sender
sends its random string for the coin-flipping only in the decommitment phase; by the beginning of
the decommitment phase, the simulator will have received the bit b to open to, and this gives the
simulator an opportunity to craft its random string to point to the commitments of b. To see
why, first note that if the simulator somehow knows the receiver’s random string before it sends
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its own, then it can easily open the commitment to either 0 or 1: in each pair, it just commits
to 0 in one of the commitments and 1 in the other. Then, with the knowledge of the receiver’s
random string and the bit b, it can craft its own random string such that the xor with the string
of R points to the commitments of b. Since the receiver commits via an extractable commitment
scheme, the simulator is able to extract the receiver’s random string and hence is able to equivocate
in the opening phase. Furthermore, as it will appear more clearly in the protocol, since the sender
would send its commitments (resp., decommitments) always after it receives commitments (resp.,
decommitments) from the receiver, we require that the sender’s 2n commitments to its input bit
are implemented via extractable commitment scheme so that we avoid malleability issues that may
compromise the binding property.

We prove binding of SOACom by reducing it to the statistical binding property of ExtCom (due to
the ExtCom commitments played by Ssoa) and to the computational hiding property of ExtCom (due
to the ExtCom commitments played by Rsoa). At a high level, we show that if an adversarial sender
breaks binding, then it should have been able to bias outcome of the coin-flipping by predicting the
randomness committed to by the receiver using ExtCom, before the sender sends its own ExtCom
commitments. Then in the reduction, we make use of this fact to break computational hiding of
ExtCom. Here, we would like to give a heads-up to the reader that there would be a few subtleties
that need attention in constructing the reduction; the subtleties and the new techniques that we
will use to resolve them would become clear as we proceed along the proof.

We prove the binding property of SOACom using the statistical binding property of ExtCom (due
to the ExtCom commitments played by Ssoa) and the computational hiding property of ExtCom (due
to the ExtCom commitments played by Rsoa).

Details follow in Protocol 2.
In the following we denote by 〈Sexti(com, ai),Rext

i(recv)〉 the i-th of the n parallel executions of
the extractable commitment scheme run by Rsoa to commit to its random string for coin-flipping,
while we denote by 〈Sexti,σ(com, b),Rext

i,σ(recv)〉 the commitment in position σ of the i-th pair
(among the n pairs) of parallel executions run by Ssoa to commit to its input b.

Protocol 2. [SOACom = (Ssoa,Rsoa)]
Commitment phase.
Rsoa : For i = 1, . . . , n do in parallel:

1. ai
$← {0, 1};

2. run 〈Sexti(com, ai),Rext
i(recv)〉 with Ssoa;

Ssoa : on input a bit b. For i = 1, . . . , n do in parallel:

1. run 〈Sexti,0(com, b),Rext
i,0(recv)〉 with Rsoa;

2. run 〈Sexti,1(com, b),Rext
i,1(recv)〉 with Rsoa;

Decommitment phase.

Ssoa : If all extractable commitments played with Rsoa are successfully completed, send d $← {0, 1}n
to Rsoa;

Rsoa : Open all commitments:

for i = 1 . . . , n: run 〈Sexti(open),Rext
i(open)〉 with Ssoa;
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Ssoa : If all openings provided by Rsoa are valid, for i = 1, . . . , n:

1. σi ← di ⊕ ai;
2. run 〈Sexti,σi(open),Rext

i,σi(open)〉 with Rsoa;

Rsoa : If all the corresponding openings provided by Ssoa open to the same bit b, and if for every i,
σi = di ⊕ ai, then output b. Otherwise, output ⊥.

Note that the commitment phase of the protocol above (Protocol 2) basically consists of running
the commitment phase of an extractable commitment scheme ExtCom in both directions (i.e. from
Ssoa to Rsoa and vice versa). Implementing ExtCom using the (3, 1)-round extractable commitment
scheme described in Protocol 3 (Appendix A.4), it seems that the commitment phase requires 4-
rounds. However, by merging the third round of the extractable commitment played by Ssoa with
the first round of the opening phase (played by Ssoa as well), we obtain a 3-round commitment
phase.

Theorem 2 (Protocol 2 is secure under selective opening attacks). If ExtCom is an extractable
commitment scheme, then Protocol 2 is a commitment scheme secure against selective opening at-
tacks.

The proof can be found in Appendix D.3.

(5, 1)-round SOA-secure Scheme based on BB use of OWPs. Our (5, 1)-round SOA-secure
commitment scheme on BB use of any OWP is very similar to the (3, 3)-round scheme presented in
Protocol 2 and is essentially based on shifting the first two rounds of the opening phase of Protocol 2
to the commitment phase. However, the opening strategy is slightly different to allow for simulation.
The opening phase indeed is such that sender can open either the extractable commitments that
are always in the positions defined by the coin flipping or the extractable commitments that are
always in the positions defined by the binary negation of it.

Intuitively, this modification in the opening strategy is due to the following fact. Note that
in the (3, 3)-round scheme the sender sends its share of randomness d in the first round of the
decommitment phase. Thus, in the proof of hiding of our (3, 3)-round scheme, the simulator knows
the bit to be opened to before it sends its share of randomness d. However, when we shift the first
two rounds of the decommitment phase of the (3, 3)-round scheme to the commitment phase, the
simulator in the hiding experiment, (which needs to output commitment phase transcripts before
receiving the bits it needs to open them to), when it needs to send d it does not know yet as to
which bit to open to and hence it does not know whether to bias the outcome of coin-flipping to
the ExtCom commitments of 1 or to the ExtCom commitments of 0. Hence, the aforementioned
modification of giving the sender the freedom of opening at either the outcome of coin flipping or
its negation later facilitates simulation, as explained in further detail in the proof.

Further details appear in Appendix C.2.

4 Issues in Some of the Claims of [Xia11a]
In this section we point out some issues regarding some of the main results in [Xia11a].

Revisiting proof of Theorem 3.3 in [Xia11a]. Theorem 3.3 in [Xia11a] claims that their
(4, 1)-round protocol is SOA-secure under parallel composition with BB use of OWPs. The protocol
recalls the equivocal commitment scheme of [CO99]. There is a preamble for coin flipping followed by
Naor’s commitment. In the preamble, firstly, the receiver commits to a random string α using a non-
interactive (therefore computationally hiding only) commitment scheme; secondly, the sender sends
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a random string β in the clear to the receiver; finally, the receiver opens its commitment. Theorem
3.3 in [Xia11a] claims that the resulting protocol is a computationally hiding, computationally
binding SOA-secure under parallel composition with BB use of a OWP. The first problem is that
it is not clear how one can prove the binding of such commitment scheme. The authors mention
that binding follows from the same arguments of Naor’s commitment [Nao91]. However it does not
seem to be the case. While in Naor’s commitment scheme the receiver sends a random string, here
there is a coin flipping where the receiver first commits in a computationally hiding way. Therefore
the malicious sender could have an advantage in biasing the outcome of the coin flipping, due to
the computational hiding only. Therefore if one wants to prove computational binding of the SOA
scheme, there should be a reduction to the hiding of the commitment played by the receiver in the
coin flipping. Such a reduction seems to be very unlikely since the reduction should be completed
without opening the commitment played in the first round of the coin flipping, therefore only 2
rounds can be played. From 2 rounds the only information that an adversary for the hiding of the
commitment of the coin flipping can get is the random string received from the adversarial sender
of the SOA scheme. With this sole information, it is not possible to check in polynomial time if
the xor of such a string received from the sender with one of the possible strings committed in the
first round of the coin flipping produces a string that is the output of the pseudo-random generator
(this is indeed the sole way that allows a malicious sender of the SOA scheme of Theorem 3.3 to
equivocate). We do not see how this reduction can be completed. The proof of binding for Theorem
3.3 in [Xia11a] is essentially missing, indeed one can not rely on the arguments of [CO99] since
they are based on the use of a perfectly hiding commitment in the first round of the coin flipping.
However such a commitment scheme can not be implemented in one round in the standard model
(not to mention the issue of using OWPs only in a BB manner).

Beyond the above major problem with the proof of binding, there are also issues with the proof
of SOA security due to difficulties about applying the Goldreich and Kahan [GK96] simulation
strategy when multiple sessions are played in parallel with possibly different abort probabilities.
For further details, see Appendix E.

We remark that although the (4, 1)-round scheme of [Xia11a] is not simulatable directly via the
Goldreich-Kahan simulation strategy, the author of [Xia11a], elaborated an alternative simulation
strategy for the same protocol [Xia11b]. The proof of binding however as remarked above is still
missing and unlikely to exist.

Revisiting proof of Theorem 3.5 in [Xia11a]. Theorem 3.5 of [Xia11a] claims that if a coin-
flipping preamble implemented via the ω(log(n))-round preamble of [PRS02], is followed by Naor’s
commitment, then the resulting protocol is an ω(log(n))-round scheme that is SOA-secure under
concurrent composition with BB use of OWPs. Moreover, Theorem 3.5 also applies to the strong
definition where the same simulator must work with respect to all distribution of messages, including
the ones selected by the adversary and unknown to the simulator.

According to their proof, the simulatability of the protocol follows from the simulation strategy
of [PRS02]. Specifically, if the coin-flipping is implemented with [PRS02]’s preamble, the claim
of [Xia11a] is that the simulator shown in [PRS02] obtains the random string committed to by
the receiver, by the end of the coin-flipping, and this values can be used by the SOA-simulator to
equivocate. Now, firstly, like we mentioned in the discussion above, there could exist adversarial
receivers who always abort some specific sessions thus rendering the above claim to be immediately
untrue. This itself would not be a problem because a session that is always aborted does not require
to be “solved” by the simulator. However, a direct use of the simulator of [PRS02] would lead to
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other problems.
To see why, we first observe that, in the fully concurrent setting, a receiver may adaptively

select which sessions it would query to receive decommitments for, as long as, by the end, the set
of indices I that it would query to open belongs to I. On the other hand, the proof of concurrent
zero knowledge of [PRS02] (used by [Xia11a]) critically relies on the fact that the simulator aborts
(i.e., reaches the end of a preamble without solving the session) with negligible probability only.
In the setting of SOA-security, a malicious verifier who can adaptively decide I, may query, in the
rewinding threads, for openings of sessions that were not queried in the main-thread. The simulator
could handle such sessions in two possible ways. For one, it can query the external oracle for the
bit corresponding to such a session6. This would lead to a deviation in the distribution of the
resulting set of indexes I queried to the external party, since the number of queries performed in
the simulation will be larger with respect to the real game. On the other hand, it can simply abort
the rewinding threads containing new sessions that require new queries. This would immediately
counteract the necessary condition (i.e., the simulator should abort with negligible probability only)
for the results of [PRS02] to be usable. Note that these two observations crucially rely on the fact
that the protocol is claimed to be SOA-secure in the strong sense, namely, the simulator does
not know the distribution of the messages committed to by the honest sender, and it is supposed
to work for all message distributions. Similar to the previous issues, we do not fix the protocol
itself. However, no fix is possible at all in this case - irrespective of the round complexity. Indeed,
we present a negative result (in Theorem 3) that establishes the impossibility of schemes (with
any round complexity) that satisfy SOA-security under concurrent composition, unknown message
distributions, and black-box simulation.

Revisiting proof of Theorem 4.4 in [Xia11a]. Theorem 4.4 in [Xia11a] states that, there ex-
ists no (3, 1)-round commitment scheme that is SOA-secure even under parallel composition, when
security is proved using a black-box simulator. The proof essentially assumes that the structure of
the commitment phase is such that the sender speaks first. However, we argue that this assumption
loses generality. In fact, we present a (3, 1)-round commitment scheme (Protocol 1) in which the re-
ceiver speaks first, such that security in the concurrent-with-barrier setting (that is strictly stronger
than the parallel composition setting [Xia11a]) is proved using a black-box simulator. Furthermore,
Protocol 1 only requires BB use of trapdoor commitments. As we explain in Appendix B, the proof
of Theorem 4.4. of [Xia11a] implies the impossibility of a 2-round protocol.

5 Impossibility of Fully Concurrent Black-Box SOA-Security
The protocols presented in our paper achieve security under concurrent-with-barrier composition
in the “strong” sense, that is, assuming that the simulator does not know the distribution of the
messages committed to by the sender. The last question to answer is whether there exist protocols
that actually achieve the definition of security under strong fully (i.e., without barrier) concurrent
composition (as defined in [Xia11a]), or if the concurrent-with-barrier security definition is the best
one can hope to achieve (when black-box simulation is taken into account). In this section we
show that in contrast to the claim of Theorem 3.5 of [Xia11a], the strong fully concurrent security
definition of [Xia11a] is impossible to achieve. This holds regardless of the round complexity of the

6Note that here we are critically considering the case in which the distribution is not known to the simulator, and
therefore the only way to answer consistently for it is to query the oracle. If instead the distribution is known, the
simulator could sample from the distribution and therefore manage in some way the opening of new sessions started
during rewinding thread.
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protocol 7 and of the black-box use of cryptographic primitives. Under the assumption that OWFs
exist, the only requirements that we use for the impossibility is that the simulator is black-box and
does not know the distribution of the messages committed by the sender. Both requirements are
already specified in the strong fully concurrent security definition of [Xia11a]. In the following, we
first recall the definition provided in [Xia11a] for completeness, then we give the intuitions behind
the proof.

Definition of hiding under SOA - concurrent composition (from [Xia11a]). Let B, I, k
be as defined in Definition 3 and b

$← B be the input given to the honest sender S.
Security is defined as comparison of two experiments. In the real world experiment R∗ interacts

with S in k concurrent sessions and is allowed to pick the set I incrementally. For example, the
receiver can generate one commit-phase transcript, ask the sender to decommit that instance, then
use this information in its interaction to generate the second commit-phase transcript, and so
forth. The output of this experiment is defined as 〈Sk(b),R∗〉 = (τk, I, {bi, wi}i∈I), where τk is the
transcript of the commitment phases of the k concurrent sessions, I is the final subset of positions
asked incrementally by R∗ during the execution, {bi, wi}i∈I are pairs such that bi is the bit committed
to and wi is the opening data (recall that this definition assumes that the decommitment is non-
interactive, however our impossibility result holds even for protocol with interactive decommitment
phase). In the ideal game, an expected PPT simulator Sim without the knowledge of the vector b
interacts with R∗ while incrementally giving as output a set I for which it receives the bits {bi}i∈I .
Finally, Sim outputs τk and {bi, wi}i∈I . This can be seen as if Sim has access to an oracle O that
knows the vector b and answers to a query j with the value b[j]. The output (SimR∗

k |b) of this
experiment is (τk,I, {bi, wi}i∈I) where τk,{bi, wi}i∈I are outputs of Sim while I is the set containing
the indexes queried by Sim to the oracle O.

A bit commitment scheme Π is SOA-secure under concurrent composition if, for every I,B and
k, there exists Sim such that for all R∗ it holds that 〈Sk(b),R∗〉 and (SimR∗

k |b) are computationally
indistinguishable. As stated in [Xia11a], the above definition is the weakest one since the order
of the quantifier is such that the simulator knows the message distribution B. Such a definition is
motivated by the fact the it makes the lower bounds proved in [Xia11a] stronger. If instead there
exists Sim that works for all B, I and R∗ then the protocol is said SOA-secure under fully concurrent
composition. All the constructions shown in [Xia11a] are claimed to achieve this strong(er) definition
in which the message distribution B is not known by Sim. The same definition can be extended to
concurrent SOA-secure string commitment scheme.

From the definition shown above note the following. The set I given as output in the ideal game
is not controlled by Sim but corresponds to the set of queries made by Sim to the oracle. If this
was not the case then a simulator can just ask for all the openings at the very beginning, perfectly
simulate the sender and give as output the set asked by R∗ instead of the queries actually made to
the oracle. This restriction essentially means that Sim should be very careful in querying the oracle
since each query will appear in the final output and there is no possibility to abort or rewind the
simulation, as instead it is possible with the transcript of the conversation with R∗.

Theorem 3. If OWF exists, then no string commitment scheme can be SOA-secure under fully
concurrent composition.

Proof Idea. Our proof consists in adapting a proof provided by Lindell in [Lin03].[Lin03] shows
that there exist functionalities for which proving that a protocol is secure under m-concurrent

7This is therefore different from the case of concurrent zero knowledge [CKPR01, PRS02].
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composition using a black-box simulator requires that the protocol has at least m rounds. As
corollary it holds that for such functionalities unbounded concurrency proved using a black-box
simulator is impossible to achieve. Such a theorem cannot be directly applied to the case of SOA-
secure commitments since it is provided only for two functionalities in which both parties have
private inputs, such as, blind signatures and OT functionalities. In the setting of SOA-secure
commitments the receiver has no private input and there is no ideal functionality involved. In our
proof, we convert the role of the oracle O into the role of the functionality, and when deriving the
contradiction we do not break the privacy of the receiver but the correctness of the protocol (i.e.
the binding).

The full proof is shown in Appendix D.5 and is based on the following two observations. First of
all, since the simulator is black-box the only advantage that it can exploit to carry out a successful
simulation is to rewind the adversary. Moreover, rewinds must be effective, in the sense that upon
each rewind the simulator should change the transcript in order to “extract” information from the
adversary (obviously if the transcript is not changed then the rewind is useless). The second crucial
observation is that in SOA the adversary R∗ chooses the sessions to decommitment adaptively on
the transcript, and in order to obtain the string to provide the decommitment, Sim must query an
external oracle (recall that we are considering the strong definition in which the simulator does not
know the message distribution). Thus, changing the transcript in the rewinding yields to different
sessions asked by R∗, and in turns more queries made by Sim to the oracle. Such additional queries
are caused only by the rewinding attempts and they do not appear in the real world execution.
However, the distribution of I due to Sim in the ideal game should not be distinguishable from the
one due to R∗ interacting with the sender in the real world. Thus the idea of the proof is to show
that there exists an adversarial strategy that makes the rewinding attempts of any black-box Sim
ineffective, unless Sim queries the oracle a number of time that is distinguishable from the number
of openings asked by the adversary in the real experiment. Then the next step is to show that if
nevertheless there exists a simulator that is able to deal with such an adversary (without rewinding),
then such a simulator can be used by a malicious sender to break the binding of the protocol. The
formal proof can be found in Appendix D.5. In Appendix D.5, as a corollary, we show that this
result holds also for bit commitment schemes.

6 Application to cZK with Pre-processing
Additionally, we show how to use SOA-secure commitment schemes to construct concurrent zero-
knowledge (cZK) protocol with pre-processing by using OWFs only, therefore improving a previous
result of [CO99]. We combine our (3, 1)-round SOA-secure computationally binding scheme based
on NBB use of OWPs with the use of the special WIPoK of [LS90]. The preprocessing takes 3
rounds and is composed by two subprotocols played in parallel. The first subprotocol is a coin-
flipping protocol where the prover commits to a random string using the SOA commitment that
ends with the 3rd round of the verifier. In the 3rd round the verifier also sends his random string
and the xor of the two strings is the outcome of this subprotocol. The second subprotocol is a
special WIPoK to prove that x ∈ L or the output of the coin flipping is also the output of a PRG.
Only two rounds of this subprotocol are played during the preprocessing.

At the end of the above preprocessing the prover knows the result of the coin flipping and
later non-interactively can complete the proof by opening his SOA commitment and sending the
last round of the special WIPoK. The simulator will get advantage of the simulator of the SOA
commitment to bias the outcome of all coin-flipping protocols, therefore being able to complete all
proofs running the prover of the special WIPoK using the trapdoor witness.
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A Other Definitions and Tools

A.1 Black-box Reductions

Generally, a reduction from a primitive X to a primitive Y (also referred to as a construction of
primitive X using primitive Y) involves showing that if there exists an implementation A of Y, then
there exists an implementation BA of X . This is equivalent to saying that for every adversary that
breaks BA, there exists an adversary that breaks A. Such a reduction is fully-black-box if it ignores
the internal structure of Y’s implementation and if the proof of correctness is black-box as well (i.e.,
the adversary for breaking Y ignores the internal structure of both Y’s implementation and of the
adversary breaking X ).
A.1.1 Weak Trapdoor Commitment Schemes

Definition 4 (Weak Trapdoor Commitment). A tuple of PPT algorithms wTCom= (wTCGen, S,
R, TCFakeCom, TCFakeDec) is a weak trapdoor commitment scheme if TCGen on input a random
n-bit string r, outputs a public key/secret key pair (pk,sk), wTCGenpk is the related functionality
that restricts the output of wTCGen to the public key, (wTCGenpk,S,R) is a commitment scheme
and TCFakeCom,TCFakeDec are such that:

Weak Trapdoor Property. For any b ∈ {0, 1}, for all (pk, sk)← TCGen(r), for any PPT mali-
cious receiver R∗ there exists a negligible function ε such that the following holds:

Advwtrap
wTCom,R∗ = Pr[ExpwTrap

wTCom(n)→ 1]− Pr[ExpCom
wTCom(n)→ 1] ≤ ε(n)

The probability is taken over the choice of the randomness r for the algorithm TCGen and the
random coins of the parties.

Experiment ExpCom
wTCom(n): Experiment ExpwTrap

wTCom(n):
run 〈S(pk, com, b),R∗(pk, sk, b, recv)〉; run (ξ, ·) $← 〈TCFakeCom(pk, sk, com),R∗(pk, sk, b, recv)〉;
b′

$← 〈S(open),R∗(open)〉; b′
$← 〈TCFakeDec(open, b, ξ),R∗(open)〉;

output b′; output b′;

As before, the variable ξ denotes the state shared by algorithms TCFakeCom and TCFakeDec.
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It is possible to show that there exists a non-interactive weak trapdoor commitment schemes that
is not a “regular” non-interactive trapdoor commitment scheme as follows. Take any “regular” trap-
door commitment scheme in which the decommitment phase is non-interactive. A non-interactive
weak trapdoor commitment scheme can be constructed by using the regular trapdoor commitment
scheme to commit to a bit, and then by adding two (perfectly binding) commitments of the open-
ings. The honest sender will open one of the two perfectly binding commitment chosen at random.
Instead knowledge of the trapdoor from the commitment phase allows one to commit both to a
decommitment of 0 and to a decommitment of 1 (in random order), therefore allowing equivocation
in the opening. The interesting point is that this scheme is not a “regular” trapdoor commitment
scheme, which implies that a weak trapdoor commitment scheme could be in theory constructed
under better assumptions, or with better efficiency. Notice that in [PW09] it is shown a construc-
tion of an interactive weak trapdoor commitment scheme (they called it “look-ahead” trapdoor
commitment) from any black-box use of a one-way permutation.

A.2 Witness Indistinguishable Proof of Knowledge

For a NP-language L let be RL the witness-relation that contains all the pairs (x,w) such that
x ∈ L and w is a witness for that. We indicate with w ∈ RL(x) that RL(x,w) = 1.

Definition 5 (Interactive Proof of Knowledge System [FS90]). A tuple of interactive algorithms
(P,V, E) is an interactive proof of knowledge system for a NP language L, with witness-relation
RL, if the following conditions hold:

• Completeness. ∀x ∈ L, ∀w ∈ RL(x) it holds that Pr[〈P(x,w),V(x)〉 = 1] = 1.

• Soundness (Proof of Knowledge). There exists an expected PPT extractor E such that ∀
malicious provers P∗, there exists a negligible function ε such that for all auxiliary inputs
z ∈ {0, 1}∗ it holds that:

Pr[〈P∗(x, z),V(x)〉 = 1]− Pr[E(x,P∗(x, z)) ∈ RL] ≥ 1− ε(|x|).

The probability is taken over the coin tosses of V, P∗, E. The extractor has black-box access
to the malicious prover P∗.

Definition 6 (Witness Indistinguishable Proof of Knowledge System WIPoK [FS90]). A proof
of knowledge system (P,V, E) for a NP language L and with witness relation RL, is witness-
indistinguishable if for every PPT malicious verifier V∗, there exists a negligible function ε such
that, ∀x,∀w0, w1 ∈ RL(x) and z ∈ {0, 1}∗:

Pr[〈P(x,w0),V∗(x, z)〉 = 1]− Pr[〈P(x,w1),V∗(x, z)〉 = 1] < ε(|x|)
The probability is taken over the coin tossed by V∗ and P (the auxiliary input z given to V∗ could
contain x,w0, w1).

A.2.1 Special 3-round WIPoK [LS90]

In the following we describe the 3-round WIPoK protocol for the NP-complete language graph
Hamiltonicity (HC), provided by Lapidot and Shamir in [LS90], and we will refer to this construction
as FLS protocol. The reason why this construction is special, is that only the size of the statement
need to be known before the last round. The actual statement can therefore be decided during the
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execution of a larger protocol, and this is very important when one aims at optimizing the overall
round complexity.

We now show the protocol assuming that the instance G is known from the beginning, and we
discuss later why its knowledge can be postponed to the very last round.

FLS protocol consists of k parallel executions (with the same input G) of the following
protocol:

Inputs: V, P have as input a graph G, P has as auxiliary input a witness w ∈ RHC(G). Let
n be the number of vertexes of G. G is represented by a n × n adjacency matrix M where
M[i][j] = 1 if there exists an edge between vertexes i and j in G. A non-edge position i, j is a
pair of vertexes that are not connected in G and for which M[i][j] = 0.

FLS1 (P → V): P picks a random n-vertex cycle graph H and commits bit-by-bit to the corre-
sponding adjacency matrix using a statistically binding commitment scheme.

FLS2 (V → P): V responds with a randomly chosen bit b.

FLS3 (P → V):
- if b = 0, P opens all the commitments, showing that the matrix committed in step FLS1

is actually an n-vertex cycle.
- if b = 1, P sends a permutation π mapping the vertex of H in G. Then it opens the

commitment of the adjacency matrix of H corresponding to the non-edges of the graph
G.

- V accepts if and only if all k sessions are accepting.

FLS protocol has the following properties:

Concurrent WI: The protocol enjoys concurrent witness indistinguishability. Indeed, the single
execution is zero-knowledge which implies WI and is preserved under parallel and concurrent
composition.

Proof of knowledge: Getting the answer for both b = 0 and b = 1 allows the extraction of the
cycle. The reason is the following. For b = 0 one gets the random cycle H. Then for b = 1
one gets the permutation mapping the random cycle in the actual cycle w that is given to P
at the beginning (or before the last message of) the protocol.

Knowledge of witness and theorem is required only in Step FLS3: The crucial property is
that the first step is independent of the witness and the theorem, since it only requires the
sampling of a random n-cycle (n is the size of the theorem and must be known in advance).
The witness is used only in the last Step FLS3. Looking ahead this allows the simulator
to equivocate in the decommitment phase in which it will be required to perform FLS3,
without changing the transcript of the commitment phase. This property turns out to be
very important to achieve SOA-secure protocols.

A.3 Concurrent Zero-Knowledge with Pre-processing

Concurrent zero knowledge (cZK, for short) with pre-processing is a variant of concurrent zero
knowledge that consists of two phases as described in [CO99]. In the first phase, called the pre-
processing phase, the prover and the verifier interact possibly without the knowledge of the theorem
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statement. After the completion of the pre-processing phase, both the parties are given a theorem
statement and the prover is also given the witness. Then they interact in the next phase called the
proof phase. The requirements are completeness, soundness and concurrent zero-knowledge, where
the notion of concurrency is that an adversarial verifier can interact with the provers in polynomially
many executions, with the pre-processing phases of all the executions being completed before the
beginning of the proof phase of any execution. The following definition is borrowed from [CO99].

We first give a description of an interactive protocol with pre-processing, and then give a defini-
tion of cZK with pre-processing. An interactive protocol with pre-processing is a pair of interactive
protocols (〈A1, B1〉, 〈A2, B2〉). The mechanics of an interactive protocol with pre-processing is di-
vided in two phases, as follows. In the first phase, called the pre-processing phase, the first pair
〈A1, B1〉 is executed; at the end of this phase a string stateA is output by A1 and given as private
input to A2, and a string stateB is output by B1 and given as private input to B2. Now, an input
string x is given as common input to A2 and B2, and each of A2 and B2 is given a private input
corresponding to x, and the second pair 〈A2, B2〉 is executed. A2 runs on input a valid witness for
x.

Definition 7 (Concurrent Zero Knowledge with Pre-processing ([CO99] generalized)). Let 〈P,V〉=
(〈P1 V1〉, 〈P2,V2〉) be an interactive protocol with pre-processing. We say that 〈P,V〉 is a concur-
rent computational (resp., statistical, perfect) zero-knowledge proof system with pre-processing for
language L if the following conditions hold:

• Completeness. ∀x ∈ L, ∀w ∈ RL(x) it holds that Pr[(stateP , stateV)
$← 〈P1,V1〉(1|x|); (·, accept) $←

〈P2(w, stateP),V2(stateV)〉(x)] = 1.

• Soundness. For any x 6∈ L, and any (P1∗,P2∗), the following probability is negligible:

Pr[(stateP , stateV)
$← 〈P1∗,V1〉(1|x|); (·, accept) $← 〈P2∗(stateP),V2(stateV)〉(x)]

.

• Concurrent Zero-Knowledge: There exists an expected polynomial-time simulator algorithm
Sim such that, for each probabilistic polynomial-time algorithm V∗ = (V1∗,V2∗), for any
polynomial q = q(n), for each x1, . . . , xq ∈ L, for each wi ∈ RL(xi) where i ∈ [q], where
|x1| = . . . = |xq| = n, the two distributions SimV

∗
(x) and ViewV∗(x) are computationally

(resp., statistically, perfectly) indistinguishable, where ViewV∗(x) is the output of V∗ after
playing concurrently with polynomially many honest provers in the pre-processing phase, and
then subsequently in the concurrent phase.

Remark 4. In the above definition, we consider a black-box simulator, in contrast to [CO99] wherein
the definition only requires, for every adversarial verifier, the existence of a simulator.

A.4 Constant-round Extractable Commitment Schemes

A key component of three of our protocols - Protocol 2 and Protocol 5 - is a constant-round
statistically-binding extractable commitment scheme. Roughly speaking, extractability means that
given a black-box access to an adversarial sender, with a restriction that we can execute only
commitment phases, we can extract the bit committed to by the sender. Following are the definition
of extractable commitment schemes and a constant-round construction for the same. Since we would
only need the scheme to be statistically-binding, we shall focus only on the statistically-binding
variant.
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Definition 8 (Extractable Commitment Scheme [PW09]). ExtCom = (Genext, Sext,Rext) is said
to be an extractable commitment scheme if (Genext, Sext,Rext) is a statistically-binding commitment
scheme that satisfies the following property:

Extractability: there exists an expected polynomial-time extractor E that has oracle access to
an adversarial sender S∗ext only for the commitment-phase and outputs a commitment-phase
transcript τ together with a valid opening to a bit b′ such that τ is identically distributed to
the view of the interaction 〈S∗ext(com, ·),Rext(recv)〉 and if τ is accepting then the probability
that b′ = ⊥ is negligible. Moreover, if b′ 6= ⊥ then it is statistically impossible to open τ to
any value other than b′.

We consider the interactive extractable commitment scheme that was used in [PW09]. We remark
here that this is simpler than the concurrently-extractable commitments introduced by [MOSV06],
where the sender may adversarially interleave multiple sessions with a receiver. Indeed, in [MOSV06],
upon rewinding, the sender may initiate new sessions, and it is needed to extract in these new sessions
too. [MOSV06] gave a construction that required a super-logarithmic number of rounds. However,
in our setting, we require only a commitment scheme that is extractable in the stand-alone setting
(as it will be clearer later in the proofs), and such a scheme can be constructed in constant number
of rounds. The crucial difference lies in the fact that even in the case that there are several sessions
and it is needed to extract from all of them, there is no need to extract from the ones that start
during the execution of rewinding threads. This simplification essentially comes from the setting of
concurrency with barrier (while the setting in [MOSV06] is full-fledged concurrency).

Protocol 3. [Extractable Commitment Scheme, ExtCom]
Let ComNI = (SNI,RNI) be any statistically-binding commitment scheme with non-interactive com-
mitment and opening phases. Such schemes can be constructed based on black-box use of any one-way
permutations.
Sext’s input: b ∈ {0, 1}.

Commitment phase.
Sext : For i = 1, . . . , n:

1. sample b0i , b
1
i

$← {0, 1} such that b0i ⊕ b1i = b;
2. run (c0

i , ·)
$← 〈SNI(com, b0i ),RNI(recv)〉 and (c1

i , ·)
$← 〈SNI(com, b1i ), RNI(recv)〉 with Rext;

Rext : Sample e $← {0, 1}n and send it to Sext;

Sext : For i = 1, . . . , n: run (β(ei), ·)← 〈SNI(open, beii ),RNI(open)〉 with Rext;

Rext : If any of the openings is invalid then abort;

Decommitment phase.

Sext : For i = 1, . . . , n: run (γ(ei), ·)← 〈SNI(open, b1−eii ),RNI(open)〉 with Rext;

Rext : If any of the openings is invalid, then output ⊥. Otherwise, if there exists a bit b̃ such that,
∀i ∈ [n], β(ei)⊕ γ(ei) = b̃, then output b̃. Otherwise, output ⊥.
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Remark 5. Following the terminology of [MOSV06] we call the decommitments to ComNI commit-
ments, minor decommitments, and the decommitments to all the 2n ComNI commitments in ExtCom,
major decommitments.

In the rest of the paper we use the above protocol ExtCom as a sub-protocol. In the following we
prove the above protocol is an extractable commitment scheme.

Theorem 4 (ExtCom is a statistically-binding extractable commitment scheme). If ComNI =
(SNI,RNI) is a statistically-binding commitment scheme, then ExtCom is a statistically-binding ex-
tractable commitment scheme.

Proof. Let ComNI be a statistically-binding commitment scheme. We prove that ExtCom satisfies
hiding, binding, and extractability as follows.

In the proof we use the following notation. We denote by α = ((c0
1, c

1
1), . . .,(c0

n, c
1
n)), the vector

of minor commitments generated in the first round of the protocol, by β(e) := (β(e1), . . . , β(en))
the openings (minor decommitments) received in the commitment phase (third round), and by γ(e)
= (γ(e1), . . . , γ(en)) the openings (minor decommitments) received in the decommitment phase.
Hiding. We show that if ComNI satisfies hiding, then ExtCom also satisfies hiding.

Suppose there exists a PPT adversary R∗ext that breaks hiding of ExtCom with probability δ (i.e.,
Advhiding

ExtCom,R∗ext
= δ). Then we construct an efficient adversary R∗NI that breaks hiding of ComNI with

probability δ/2n.
The proof proceeds by a standard hybrid argument. Consider the following series of hybrids,

Hi, for i ∈ [0, n]:
Hi: The sender in this experiment, referred to as Siext, behaves the same as Sext with the

only exception that during the first round message of the commit phase, for j > i it chooses b0j ,

b1j
$← {0, 1} such that of b0j ⊕ b1j = 0, and for j ≤ i it chooses b0j , b1j

$← {0, 1} such that of b0j ⊕ b1j = 1.
Finally, when R∗ext outputs a bit b′, the same is set to be the output of the experiment. We denote
by HybiExtCom,R∗ext → 1 the event that the output of this hybrid experiment is 1.

Observe thatH0 corresponds to 〈Sext(com, 0),Rext(recv)〉 andHn corresponds to 〈Sext(com, 1),Rext(recv)〉.
In the hiding experiment of ComNI, R∗NI is given a commitment (c∗, ·)← 〈SNI(com, b),RNI(recv)〉

for a random bit b, and its objective is to guess b. It does so by interacting with R∗ext as follows:
1. Sample µ $← [n].
2. Compute the first round message as follows:

- For i > µ, sample b0i , b
1
i

$← {0, 1} such that b0i ⊕ b1i = 0.
- For i < µ, sample b0i , b

1
i

$← {0, 1} such that b0i ⊕ b1i = 1.
- Sample θ $← {0, 1} and b1−θµ

$← {0, 1}.
3. For ∀i ∈ [n]−{µ}, ∀j ∈ {0, 1}, and for (i, j) = (µ, 1−θ), run (cji , ·)

$← 〈SNI(com, bji ),RNI(recv)〉
with R∗ext. Also, set cθi ← c∗, the commitment from the external sender, and send it to R∗ext.

4. Upon receiving a challenge e from R∗ext, check whether eµ = θ. If so, then output a random
bit and halt; otherwise, proceed as per the protocol and once R∗ext outputs a bit b′, output
b′ ⊕ b1−θµ .

Denote the event that R∗NI outputs a bit b̃ in the above interaction by Exphiding-b
ComNI,R

∗
NI(R

∗
ext)
→ b̃.

Note that if b⊕ bθµ = 1, then R∗NI has played Hµ; otherwise, it has played Hµ−1.
Now we analyze the success probability of R∗NI, Advhiding

ComNI,R
∗
NI
.
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Advhiding
ComNI,R

∗
NI

=
∣∣∣Pr[Exphiding-0

ComNI,R
∗
NI
→ 1]− Pr[Exphiding-1

ComNI,R
∗
NI
→ 1]

∣∣∣
=

1

n

∣∣∣∣∣
n∑
i=1

(Pr[Exphiding-0
ComNI,R

∗
NI(R

∗
ext)
→ 1|µ = i, b1−θµ = 1, θ 6= eµ].Pr[b1−θµ = 1].Pr[θ 6= eµ]

+ Pr[Exphiding-0
ComNI,R

∗
NI(R

∗
ext)
→ 1|µ = i, b1−θµ = 0, θ 6= eµ].Pr[b1−θµ = 0].Pr[θ 6= eµ])

− 1

n

n∑
i=1

(Pr[Exphiding-1
ComNI,R

∗
NI(R

∗
ext)
→ 1|µ = i, b1−θµ = 1, θ 6= eµ].Pr[b1−θµ = 1].Pr[θ 6= eµ]

+ Pr[Exphiding-1
ComNI,R

∗
NI(R

∗
ext)
→ 1|µ = i, b1−θµ = 0, θ 6= eµ].Pr[b1−θµ = 0].Pr[θ 6= eµ])

∣∣∣
=

1

4n

∣∣∣∣∣
n∑
i=1

(Pr[Exphiding-0
ComNI,R

∗
NI(R

∗
ext)
→ 1|µ = i, b1−θµ = 1, θ 6= eµ]

+ Pr[Exphiding-0
ComNI,R

∗
NI(R

∗
ext)
→ 1|µ = i, b1−θµ = 0, θ 6= eµ])

− 1

4n

n∑
i=1

(Pr[Exphiding-1
ComNI,R

∗
NI(R

∗
ext)
→ 1|µ = i, b1−θµ = 1, θ 6= eµ]

+Pr[Exphiding-1
ComNI,R

∗
NI(R

∗
ext)
→ 1|µ = i, b1−θµ = 0, θ 6= eµ])

∣∣∣
=

1

4n

∣∣∣∣∣
n∑
i=1

(Pr[HybiExtCom,R∗ext → 0] + Pr[Hybi−1
ExtCom,R∗ext

→ 1])

− 1

4n

n∑
i=1

(Pr[Hybi−1
ExtCom,R∗ext

→ 0] + Pr[HybiExtCom,R∗ext → 1])

∣∣∣∣∣
=

1

4n

∣∣∣(Pr[Hyb0
ExtCom,R∗ext

→ 1]− Pr[HybnExtCom,R∗ext → 1])

+
1

4n
(Pr[HybnExtCom,R∗ext → 0]− Pr[Hyb0

ExtCom,R∗ext
→ 0])

∣∣∣∣
≤ 2δ

4n
=

δ

2n

That proves the hiding property of ExtCom.
Binding. Breaking binding of ExtCom (i.e., producing two valid openings, one for 0 and another
for 1, for a single commitment phase transcript) necessarily means producing two valid openings 0
and 1 respectively of at least one of the ComNI commitments, thus breaking statistical binding of
ComNI. Hence, such an event can occur with at most negligible probability.
Extractability. We show that ExtCom satisfies extractability by constructing an expected polynomial-
time extractor E that having black-box access to the adversary S∗ext in the commitment phase
outputs a transcript that is statistically indistinguishable from the transcript of the interaction
〈S∗ext(com),Rext(recv)〉 and (if the commitment phase transcript passes the consistency check of
Rext) a bit b so that it is statistically impossible to open it to any other value.
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The extractor works as follows:

Extractor E
Initialization phase. Choose random tapes ranS and ranE , respectively, for S∗ext and for the

main thread below.
Invoke S∗ext(ranS).

Main thread (E1). Run Rext with randomness ranE in 〈S∗ext(com),Rext(recv)〉 to result in a
transcript τcom = (α, e, β(e)). If the consistency check of Rext fails, then output (τcom,⊥) and
halt.

Rewinding threads (E2). If τcom is accepting, then keep running Rext with S∗ext(ranS) in
〈S∗ext(com),Rext(recv)〉, each time with freshly chosen randomness, until it receives another
accepting response β(e′) from S∗ext(ranS) with some challenge e′. If e′ = e, then output
(τcom,⊥) and halt. Otherwise, run the following procedure:
1. Choose i $← [n] such that ei 6= e′i.
2. Let bi and b′i be the bits opened to in the openings β(ei) and β(e′i), respectively.
3. Output (τcom, β(ei), bi ⊕ b′i).

Now, let q be the probability over e that we obtain an accepting transcript τcom. Then the expected
number of queries E makes to S∗ext is (1−q)+q ·1/q ≤ 2. Also, the probability that E fails to extract
(i.e., the probability that τcom is accepting and e = e′) is at most 2−n. Furthermore, an opening to
a bit different from the extracted bit directly breaks statistical binding of ExtCom, and hence can
be produced with at most negligible probability. This completes the description and analysis of the
extractor.

Remark 6 (Extractable string-commitment scheme). The extractable bit-commitment scheme in
Protocol 3 can be trivially extended to an extractable string-commitment scheme just by replac-
ing the shares of the bit to be committed to shares of the string to be committed and by using a
non-interactive statistically-binding string-commitment scheme in place of the non-interactive bit-
commitment scheme. The expected number of rewindings by the extractor and its failure probability
will remain the same and the other properties - hiding and binding - would also trivially follow.

B Round Optimality of Our (3, 1)-Round Protocols
We observe that even though as we have shown previously, there is an issue in the proof of impossi-
bility of [Xia11a] for (3, 1)-round SOA-secure commitments, the arguments in the proof can be used
to claim the impossibility of (2, 1)-round SOA-secure commitments. Indeed, as we have already
discussed, the issue in the proof concerns the fact that only the case where the sender speaks first is
considered. However, the case in which the sender speaks first, the receiver answers back and then
the sender completes the communication properly contain the two possible 2-round communications:
1) sender first, then receiver; 2) receiver first, then sender. Therefore the (incomplete) proof given
in [Xia11a] for the impossibility of (3, 1)-round SOA-secure commitments proves the impossibility
of SOA-secure (2, 1)-round commitments.

C Further Protocols

C.1 (4,1)-round SOA-secure Scheme based on BB use of Weak Trapdoor Commit-
ments

Let us denote as wTCom = (wTCGen, STC, RTC, TCFakeCom, TCFakeDec) a weak-trapdoor com-
mitment scheme. In the following we show a construction SOACom = (Ssoa,Rsoa) that uses wTCom
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as a black-box. If wTCom is (2,1)-round weak trapdoor commitment scheme the following con-
struction is a (4,1)-round commitment scheme. As in the previous construction, we indicate with
〈STCσi ,RTC

σ
i 〉 the i-th invocation of the algorithms of protocol wTCom using the public key pkσi .

The sender Ssoa has as input a bit b.

Protocol 4. [(4,1)-round SOA-secure commitment scheme based on BB use of weak trapdoor com-
mitment] [SOACom = (Ssoa,Rsoa)]
Commitment phase.

Rsoa: For i = 1, . . . , n:

1. r0
i , r

1
i

$← {0, 1}n; (pk0
i , sk

0
i ) ← wTCGen(r0

i );(pk
1
i , sk

1
i )← wTCGen(r1

i );
2. send {pk0

i , pk
1
i } to Ssoa;

Ssoa: Upon receiving {pk0
i , pk

1
i }i∈[n]: send d1, . . . , dn to Rsoa where di

$← {0, 1};

Rsoa: Upon receiving d1, . . . , dn send {rdii }i∈[n] to Ssoa;

Ssoa: Upon receiving {rdii }i∈[n]:

1. check consistency: for i = 1, . . . , n: (pk′dii , sk′dii ) ← wTCGen(rdii ); if pk′dii 6= pkdii then
ABORT.

2. secret share the bit b: for i = 1, . . . , n: bi
$← {0, 1}, such that b = (

⊕n
i=1 bi);

3. run 〈STCd̄ii (pkd̄ii , com, bi),RTC
d̄i
i (pkd̄ii , recv)〉 with Rsoa;

Decommitment phase.

Ssoa: For i = 1, . . . , n: run (·, b′i)← 〈STCd̄ii (open),RTC
d̄i
i (open)〉 with Rsoa;

Rsoa: If all opening phases were successfully completed output b′ ←⊕n
i=1 b

′
i. Else output ⊥.

The above protocol can be instantiated with the weak trapdoor commitment scheme based on
BB access to OWPs shown in [PW09]. In such a protocol the commitment is interactive, and
follows the commit-challenge-response structure. The commitment is such that if the sender knows
the challenge in advance, it can commit in a way that allows equivocation. In such a scheme the
trapdoor is the challenge sent by the receiver, and in turn, the public parameter is the (statistically
hiding) commitment of the challenge. One can plug such protocol in our (4,1)-round SOA-secure
protocol and obtain a (6,1)-round protocol (the commitment phase in [PW09] is interactive).

Theorem 5 (Protocol 4 is secure under selective opening attacks). If wTCom = (wTCGen, STC, RTC,
TCFakeCom, TCFakeDec) is a weak-trapdoor commitment scheme, then protocol 4 is a commitment
scheme secure under selective opening attacks.

The formal proof can be found in Appendix D.2.

C.2 (5,1)-round SOA-secure Scheme on BB use of OWPs.

In this section we present a (5, 1)-round SOA-secure commitment scheme based on BB use of a OWP.
This scheme is a slight modification of our (3, 3)-round scheme given in Protocol 2. More specifically,
recall that in the previous construction the sender sends n pairs of extractable commitments to b
to the receiver and simultaneously engages in a coin-flipping protocol. Finally, the outcome of
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coin-flipping would dictate which one of the two commitments in every pair would be opened by
the sender. The modification here is that the sender is allowed to take either the outcome of
coin-flipping or its binary-negation. Intuitively, we introduce this modification particularly since
the decommitment phase begins after the sender sends the string d to the receiver. The simulator
would proceed similarly as (3, 3)-round counterpart, but here it crafts its random-string so as to
point to the extractable-commitments of a random bit θ. Once it receives the bit b to which it
needs to open, depending on θ it will either open as per the outcome of the coin-flipping protocol
or its binary-negation. The rest of the protocol remains the same as Protocol 2. Details to follow
in Protocol 5.

Protocol 5. [(5,1)-round SOA-secure Scheme based on BB use of OWPs.] [SOACom = (Ssoa,Rsoa)]
Ssoa’s input: b ∈ {0, 1}

Commitment phase.
Rsoa : For i = 1, . . . , n:

1. ai
$← {0, 1};

2. run 〈Sexti(com, ai),Rext
i(recv)〉 with Ssoa;

Ssoa : For i = 1, . . . , n:

1. run 〈Sexti,0(com, b),Rext
i,1(recv)〉 with Rsoa;

2. run 〈Sexti,1(com, b),Rext
i,1(recv)〉 with Rsoa;

Ssoa : If all extractable commitments played with Rsoa are successfully completed, send d $← {0, 1}n
to Rsoa;

Rsoa : Open all commitments:

for i = 1 . . . , n: run 〈Sexti(open),Rext
i(open)〉 with Ssoa;

Decommitment phase.

Ssoa : If all openings provided by Rsoa are valid, sample θ $← {0, 1} and send θ to Rsoa. Also, for
i = 1, . . . , n:

1. σi ← di ⊕ ai ⊕ θ;
2. run 〈Sexti,σi(open),Rext

i,σi(open)〉 with Rsoa;

Rsoa : For every i, if σi = di ⊕ ai ⊕ θ and all the corresponding openings provided by Ssoa open to
the same bit b, output b. Otherwise output ⊥.

Theorem 6 (Protocol 5 is secure under selective opening attacks). If ExtCom is an extractable
commitment scheme, then Protocol 5 is a commitment scheme secure against selective opening at-
tacks.

The proof of the theorem is provided in Appendix D.4.
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D Proofs

D.1 Proof of Theorem 1

Proof. In the following, we prove completeness, binding and hiding under selective-opening-attacks
of the (3, 1) round protocol presented in Protocol 1.

We refer to the execution of the commitment (resp., decommitment) procedure of the sub-
protocol TC as sub-commitment (resp., sub-decommitment). The malicious receiver R∗soa plays k
concurrent sessions of SOACom; more precisely, she will run k concurrent executions of the commit-
ment phase, and up to m = |I| concurrent decommitment phases.

Completeness. It follows from the completeness of the sub-protocol TC.

Binding. For the binding property it is sufficient to consider the protocol in the stand-alone setting.
Therefore we focus on one single session of the protocol SOACom.

We have to show that any PPT malicious sender S∗soa is not able to provide two distinct valid
openings for the same commitment transcript with non-negligible probability. Note that the decom-
mitment phase consists only of the opening of n sub-commitments for which S∗soa has not seen the
secret keys 8. Therefore, if S∗soa is able to provide two distinct valid openings, it must be the case
that S∗soa is able to open at least one of the sub-commitments to both 0 and 1, therefore breaking
the binding of TC. Due to the binding of TC this event happens with negligible probability.

Formally the reductions goes as follows. Assume that there exists S∗soa who breaks the binding of
SOACom with non-negligible probability δ. Then there exists at least one pair (i, σ) such that S∗soa
opens the commitment computed using the public key pkσi in two ways; more formally such that:
(·, bi) ← 〈STCi(open, 0),RTCi(open)〉 and (·, b′i) ← 〈STCi(open, 1),RTCi(open)〉 such that ⊥ 6= bi 6=
b′i 6= ⊥. Thus we construct a sender S∗TC breaking the binding of the protocol TC with probability
δ/2n.

S∗TC plays in the experiment Expbinding
TC receiving as input the public key pk and interacting

with the honest receiver RTC. It runs S∗soa as subroutine simulating the receiver Rsoa: it randomly
picks i ∈ [n], σ ∈ {0, 1} and sets pkσi = pk, while it honestly generates 2n− 1 pairs of public/secret
parameters running TCGen. Finally it sends the 2n − 1 public keys along with pkσi to S∗soa. Note
that this message is distributed identically as the one generated by the honest receiver Rsoa. Next,
S∗TC engages in n sub-commitments with S∗soa, except that the messages for the sub-commitment in
position (i, σ) are forwarded to the honest receiver RTC. When S∗soa sends the challenge d1, . . . , dn: if
di = σ, then S∗TC aborts (indeed it is not able to provide the randomness used to generate pk = pkσi ).
Otherwise, S∗TC answers as the honest receiver Rsoa, concluding the commitment phase.

In the opening phase, S∗TC is invoked to execute the opening phase with bits 0 and 1, thus it
invokes S∗soa as well, first with bit 0 and then with bit 1. Each time, S∗TC forwards to RTC the i-th
sub-decommitment received from S∗soa. S∗TC wins the binding experiment for protocol TC if S∗soa
provides two distinct openings for the i-th sub-commitment. Therefore S∗TC wins the binding game
with probability at least δ/2n.

Hiding under selective opening attack. We show a PPT simulator Sim that having black-box
access to the adversary R∗soa generates an output that is distributed as the output generated by the

8We assume that if S∗soa computes a commitment using a public key for which she later asks to see the secret key,
she will be caught by the honest receiver.

30



interaction between R∗soa and Ssoa in the real game.
Let m = |I| be the number of sessions required by R∗soa to be opened. In order to associate the

indexes to the sessions opened we use the following notation: we refer to j` the session corresponding
to the `-th index, where ` = 1, . . . ,m. The simulator works as follows.

SOA-simulator Sim
Initialization phase. Choose random tapes ranR, ranSim respectively for R∗soa and for the com-

mitment phase. Activate R∗soa(ranR).
Commitment phase (S1). (main thread)

- Upon receiving public keys {pk0
i , pk

1
i }i∈[n] from R∗soa for some session j ∈ [k] do:

1. randomly choose bits b1, . . . , bn; d1, . . . , dn;
2. for i = 1, . . . , n: commit to bi with pkd̄ii by invoking STC with R∗soa. Send challenge

d1, . . . , dn to R∗soa. If R∗soa aborts, then abort session j.
- Upon receiving {rdii }i∈[n] for some session j, check their consistency running (skdii , pk

di
i )←

TCGen(rdii ). If the check fails, abort session j. Otherwise store the secret keys {skdii }i∈[n]

for session j.
Commitment phase completion. When the commitment phase of all k sessions is completed,

Sim obtains the set of indexes I from R∗soa. Sim then outputs I and obtains {b[j]}j∈I from
the experiment.

Extraction phase (rewinding thread).
For ` = 1, . . . ,m; for session j` ∈ I that was not-aborted in the main thread do:
1. activate R∗soa with randomness ranR and use ranSim to execute all the sessions except j`.
2. in session j`, uniformly choose bits d′1, . . . , d′n and compute the sub-commitments as in

Step S1 (note that the view of R∗soa generated in this step is distributed identically as in
the main thread). If R∗soa aborts then go to Step 1. If R∗soa starts new sessions, follow
instructions as in Step S1.

3. When R∗soa replies with {rd
′
i
i }i∈[n]: if strings d′1 . . . d′n, d1 . . . dn (the challenge used for

session j` in the main thread) are equal then abort the simulation. Else, if there exists
an rd

′
i
i generating a valid pair (sk

d′i
i , pk

d′i
i ) where pkd

′
i
i appeared in the j`-th session of main

thread, and d′i 6= di then return sk
d′i
i . Otherwise go to Step 1.

Extraction completion. If Sim reaches this point, then for every(not-aborted) session j` ∈ I
there is at least one i for which Sim obtained both trapdoors sk0

i and sk1
i .

Decommitment phase (S2) (main thread). Run R∗soa(ranR) till the completion of the com-
mitment phase using ranSim. Then for non-aborted sessions j` ∈ I, with ` ∈ [m], let b[j`] be
the bit to decommit to in the session j`, let i be the index such that Sim obtained sk0

i , sk
1
i for

the session j`.
When R∗soa asks for the decommitment of the j`-th session proceed as follows:
1. for all l 6= i honestly run the sub-decommitment algorithm, i.e., 〈STCd̄ll (open), RTC

d̄l
l (open)〉,

where dl is the challenge sent in the commitment phase of the main thread. Compute
b′i ← (

⊕n−1
l=1 bl)⊕ b[j].

2. to open the i-th sub-commitment run the sub-fake-decommitment algorithm using the
trapdoor information skd̄ii , i.e., (·, b′i) ← 〈TCFakeDec(skd̄i , open, b′i),RTC

d̄i
i (open)〉; If R∗soa

aborts, then aborts this session.
Finally, output whatever R∗soa outputs.

For simplicity we are assuming that the underlying trapdoor commitment TC satisfies the trap-

31



doorness property for any b? ∈ {0, 1} (Pedersen commitment [Ped92] achieves this property). In
case the trapdoorness holds only for a specific bit b?, then the above simulator should be tweaked
only in the extraction phase adding a further condition. That is, when extracting a new secret key
skdii for a session j, the simulator considers the extraction phase successfully completed for such
session, only if the commitment in position (i, di) is a commitment of b?. If this is not the case,
then Sim continues the rewinding threads. It is easy to see that this further condition is satisfied
w.h.p and similar analysis that we show for the simpler simulator apply.

Proposition 1. The simulator Sim runs in expected polynomial time in n.

Proof. Sim consists of three phases: commitment phase, extraction phase, decommitment phase. Let
us denote as tc, td, tfd, tg the running times required to execute, respectively, the sub-commitment,
the sub-decommitment, the fake-decommitment and the generator algorithm of the protocol TC.
By definition of TC all these running times are polynomial in n.

In the commitment phase, for each session, Sim executes 2n sub-commitments and verifies the
validity of the response of R∗soa running the generation algorithm TCGen n times. Plus there is a
linear time due to the choice of the random challenge. Thus, the running time of the commitment
phase for one session is: tSimCom = tc · 2n + tg · n + Θ(n). Hence, the total running time for the
commitment phase is k · tSimCom, that is polynomial.

After the completion of the commitment phase, Sim launches the rewinding threads, so that it
extracts at least one trapdoor for each session j` that has been asked for the decommitment. The
number of decommitments asked by R∗soa is m = |I|.

Sim extracts the trapdoors one session at time, hence it runs the extraction procedure at most m
times. For each (non-aborting) session j`, Sim forces upon R∗soa the same transcript generated in the
main thread, and it changes only the random challenge and the public keys used in the commitment
phase of session `. Thus, the view of R∗soa is distributed identically as in the main thread. Then it
repeats this procedure rewinding R∗soa until either a secret has been extracted or the fresh challenge
chosen in a rewinding thread is identical to the challenge sent in the main thread. The probability
of the latter event in any of the sessions is at most poly(n)/2n and thus is negligible.

More formally, let us denote by ζj` = ζ(ranR, j`) the probability that R∗soa, activated with ran-
domness ranR, correctly responded to the challenge (i.e., d1, . . . , dn) sent by Sim in the commitment
phase of the j`-th session in the main thread. In each rewinding thread the probability to get
another correct answer (for some d′i, . . . , d

′
n) is still ζj` .

Thus, for each session j`, the expected number of rewinds needed for the extraction of the
trapdoor is bounded by 1/ζj` . Moreover, upon receiving a new challenge, R∗soa may initiate new
sessions (i.e., sessions that did not appear in the main thread). In this case Sim follows the same
procedure of the commitment phase, therefore each possibly new session initiated during the rewind
takes time at most tSimCom. Upon each rewind R∗soa may initiate at most a polynomial number of
sessions, therefore the additional work of the simulator for each rewind, that we denote by trew, is
bounded by poly(n) · tSimCom. Obviously, once the simulator extracts the trapdoor for the target
session, the new sessions are discarded.

In the decommitment phase Sim executes n − 1 sub-decommitments plus one execution of the
fake-decommitment algorithm, for at most m sessions. Each decommitment phase takes running
time: tSimDec = (n− 1) · td + tfd, that is polynomial in n.
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Hence, the total expected running time is:

tSim = k · tSimCom +

m∑
`=1

ζj`
[ 1

ζj`
· trew + tSimDec

]
= poly(n).

Proposition 2. The distribution of the output of the simulator Sim having black-box access to R∗soa
is computationally indistinguishable from the output of R∗soa interacting with the real sender Ssoa.

Proof. Consider the following hybrids:

H0: In this experiment Sim has as input the bit-vector b ← B and follows the code of the honest
sender Ssoa. This is the real game.

H1: This hybrid is the same as H0 except that here, after Sim receives the set I from R∗soa (upon
the completion of the commitment phase), it launches the extraction phase. That is, for each
non-aborted session j` ∈ I, Sim launches the extraction phase to obtain the trapdoor skd̄ii for
at least one i ∈ [n]. Possible new sessions initiated by R∗soa in the rewinding attempts of the
extraction phase are handled by running the honest sender procedure using the knowledge
of b. The extracted trapdoors are never used by Sim. We now argue that H0 and H1 are
indistinguishable. First note that, the extraction phase is initiated only for non-aborting ses-
sions, therefore, only for those in which R∗soa correctly completed the commitment phase with
non-zero probability. Then note that the view of R∗soa in the rewinding thread is distributed
identically to her view in the commitment phase of the main thread. Thus the only differences
between H0 and H1 are: 1) in H1 Sim runs in expected polynomial time and 2) in H1 Sim
aborts with higher probability due to the possible aborts in the rewinding threads.

Concerning 1), the expected running time is not a problem since we are only interested in the
output of the experiment, and it will not be an issue in the reductions shown for the next
hybrids since rewinding threads that take longer than a fixed polynomial can be truncated
without perturbing the non-negligible probability of success. Concerning 2), observe that in
the rewinding threads an abort happens when Sim picks a random challenge that is equal
to the challenge sent in the main thread, and it happens with at most negligible probability
poly(n)/2n. Therefore, hybrids H0 and H1 are statistically indistinguishable.

In the following experiments we first deal with the (potential) new sessions initiated by R∗soa
in the rewinding threads. Recall that Sim tries to extract the secret for one session at time.
For each rewinding attempt for the extraction of a session j`, R∗soa may initiate several new
sessions. We indicate with maxj` the maximum number of new sessions started during the
rewinding threads for the session j`. Note that, for new sessions started during rewinding
threads, Sim is never required to provide the decommitment (therefore those sessions do not
need to be rewound).

Hj`,s+1
2 : for ` = 1, . . . ,m; for s = 0, . . . ,maxj` − 1. In hybrid Hj`,s+1

2 Sim works as in experiment
Hj`,s

2 except that, in the (s + 1)th new session started by R∗soa during the extraction phase
launched for session j`, Sim commits to a random bit.
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Toward showing the indistinguishability of Hj`,s
2 and Hj`,s+1

2 , we first show that Hj`,s
2 is

indistinguishable from a hybrid H̄j`,s+1
2 where the bit committed to in the (s + 1)-th new

session is the negation of the bit used in Hj`,s
2 .

More precisely, hybrid H̄j`,s+1
2 is the same as hybrid Hj`,s

2 except that in the commitment
phase of the (s + 1)-th new session initiated by R∗soa in the extraction phase of session j`,
one of the sub-commitments hides the opposite bit such that the sum of the shares of all
sub-commitments gives 1 − b[t]. We denote the index of the (s + 1)-th new session by t,
where 1 ≤ t ≤ k. More specifically, let b1, . . . , bn be the shares of bit b[t] in the experiment
H̄j`,s+1

2 , Sim flips one of the shares, i.e. there exists one i such that Sim, differently from the
experiment Hj`,s

2 commits to b̄i, thus in turn committing to b̄[t].

Assume that there exists a distinguisher Dsoa that is able to tell apart hybrid H̄j`,s+1
2 from

Hj`,s
2 then it is possible to construct a distinguisher who breaks the hiding of the commitment

scheme TC. The reduction works as follows. R∗TC runs R∗soa as a subroutine and simulates Sim as
in experiment Hj`,s

2 except that, in the new session t, upon receiving the public keys from R∗soa
it forwards pkd̄ii to the external sender STC. We stress that pkd̄ii could be maliciously chosen.
As we explained in Remark 1, the hiding experiment is defined for any public parameter pk∗

maliciously chosen by R∗.

Upon receiving the sub-commitment from STC for the public key pkd̄ii , R
∗
TC randomly chooses

n − 1 random shares b1, . . . , bn − 1 and honestly executes n − 1 sub-commitments using the
remaining public parameters received from R∗soa. Then it forwards all the sub-commitments to
R∗soa. Finally R∗TC forwards the output of the experiment to Dsoa and outputs whatever Dsoa

outputs xored with
⊕

l∈[n],l 6=i bl.

Now, let bi such that
⊕

l∈[n] bl = b[t], if STC has committed to the share bi, then the view
generated by R∗TC is distributed identically to hybrid Hj`,s

2 . Otherwise, if STC has committed
to bit 1−bi then the view generated is distributed identically to hybrid H̄j`,s+1

2 . By the hiding
of protocol TC, we have that Hj`,s

2 and H̄j`,s+1
2 are indistinguishable.

Now, in Hj`,s+1
2 the bit committed in session t (i.e., the (s + 1)-th new session) is a random

bit, and therefore the output of any distinguisher on Hj`,s+1
2 will be indistinguishable from

the one of Hj`,s
2 and H̄j`,s+1

2 .

Therefore, H1 = H1,0
2 and Hjm,maxjm

2 are indistinguishable.

H
j`+1

3 : for ` = 0, . . . ,m− 1: In this sequence of hybrids Sim performs the decommitment phase of
the sessions that have been asked for by R∗soa, using the trapdoor extracted in the extraction
phase, therefore, technically Sim can open to any bit.

More precisely, hybrid H
j`+1

3 is the same as hybrid Hj`
3 except that in H

j`+1

3 in the decom-
mitment phase of the j`+1-th session Sim uses the trapdoor skd̄ii (for some i ∈ [n]) extracted
for this session. That is, in session j`+1 Sim honestly performs n − 1 sub-decommitments
while the i-th sub-decommitment is executed running TCFakeDec on input the bit bi that is
computed as follows: bi ←

⊕
l∈[n],l 6=i b

d̄l
l ⊕ b[j`+1]. Note that now in the opening, bi depends

of the actual input of the sender. However, in this experiment the share bi computed in the
commitment phase is identical to the share bi given in input to the algorithm TCFakeDec.
More precisely, TCFakeDec is not used to open to a different bit, but to the very same bit.
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Assume that there exists a distinguisher Dsoa able to tell apart Hj`+1

3 from Hj`
3 with non-

negligible probability δ, then it is possible to construct an adversary R∗TC against the trapdoor
property of TC. R∗TC runs in the experiment Exp

Trap/Com
TC against a sender STC and works as

follows.

It runs R∗soa as subroutine, it randomly chooses a session s, and then proceeds as follows: for
the commitment phase it simulates all sessions as in experiment Hj`

3 except the session s. In
such session, R∗TC after having received the public keys from R∗soa, performs the secret sharing
of the bit b[j`+1] = b1 ⊕ · · · ⊕ bn, picks challenge d1, . . . , dn, an index i ∈ [n] , and forwards
pkd̄ii ,bi to STC. Then it engages in n−1 sub-commitments of TC with R∗soa for the commitment
of bl, with l 6= i while for the i-th sub-commitment it forwards the messages received by STC.
Once the commitment phase is over, R∗TC runs the extraction phase. If it does not get the
secret key skd̄ii it aborts. Otherwise, it continues executing the decommitment phase.

In the decommitment phase R∗soa asks the opening of m sessions: {j1, . . . , jm}; if s 6= j`+1

then R∗TC aborts. Otherwise it computes the decommitment phase of the first ` sessions (i.e.,
j1, . . . , j`) as in hybrid Hj`

3 , while for the decommitment of session s (that is the j`+1-th session
asked for opening) R∗TC sends skd̄ii to STC and forwards the decommitment received by STC
to R∗soa along with the remaining n− 1 sub-decommitments honestly computed. Finally R∗TC
forwards the output of R∗soa to Dsoa and outputs what Dsoa outputs. Now, if in the j`+1-th
session, the i-th sub-decommitment was computed by algorithm TCFakeDec, then the view of
R∗soa is distributed identically as hybrid Hj`+1

3 , otherwise, if it was computed using the honest
sender procedure, then the view is distributed according to hybrid Hj`

3 . Therefore, if Dsoa

distinguishes the two experiments with non-negligible advantage δ then R∗TC wins the game
Exp

Trap/Com
TC with advantage at least δ · mk · 1

2n that is still non-negligible therefore breaking
the trapdoor property of TC. Hence, Hj`+1

3 and Hj`
3 are computationally indistinguishable.

Therefore Hjm,maxjm
2 = Hj0

3 and Hjm
3 are computationally indistinguishable.

Hj+1
4 : for j = 0, . . . , k − 1. In this sequence of hybrids Sim performs the commitment phase com-

mitting to random bits instead of using the vector b.

More precisely, hybrid Hj+1
4 is the same as Hj

4 except that in Hj+1
4 Sim performs the commit-

ment phase of the session j committing to a random bit instead of b[j]. Due to hiding of the
commitment scheme TC, and following the same arguments for distinguishability of hybrids
Hj`,s

2 and Hj`,s+1
2 , hybrids Hj+1

4 and Hj
4 are indistinguishable.

By noticing H0
4 = Hjm

3 and that Hk
4 corresponds to the game played by the simulator, we

have that the claim holds.

This concludes the proof of Theorem 1.

D.2 Proof of Theorem 5

Proof. In the following, we prove completeness, binding and hiding under selective-opening-attacks
of the (4, 1) round protocol presented in Protocol 4. We use the same notation used in the proof
for Protocol 1.
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Completeness. It follows from the completeness of the sub-protocol wTCom.
Binding. The binding proof follows the same logic of the one provided for Protocol 1, and is
therefore omitted.

Hiding under selective opening attack. We show a PPT simulator Sim that having black-box
access to the adversary R∗soa generates an output that is distributed as the output generated from
the interaction between R∗soa and the real world sender Ssoa. The simulator works as follows:

SOA-simulator Sim
Initialization phase. Choose random tape ranR and activate R∗soa(ranR).
Commitment phase. Main thread.

1. Upon receiving public keys {pk0
i , pk

1
i }i∈[n] for some session j ∈ [k]: pick a random n-bit

string d1, . . . , dn and send it to R∗soa. Label this point as 1-j.

2. Upon receiving {rdii }i∈[n] for some session j, check their consistency by running (skdii , pk
di
i )←

TCGen(rdii ). If the check fails, abort session j. In case there exists a secret key (skd̄ii )
(for some i ∈ [n]) already stored for session j, then the trapdoor for session j has been
extracted, thus go to step 4. Else go to step 3.

3. Extraction of secret keys for session j: start rewinding threads to extract skd̄ii for some
i ∈ [n]:

(a) rewind R∗soa up to point 1-j.
(b) send a randomly chosen challenge string d′1, . . . , d′n to R∗soa. If R∗soa aborts, go to

Step 3a.
(c) if R∗soa starts new commitment sessions, follow the commitment procedure of the

honest sender Ssoa committing to a random bit.

(d) when R∗soa replies with secrets {rd
′
i
i }i∈[n] for the session j: if the random strings

d′1, . . . , d
′
n and d1, . . . , dn are equal, abort. Else, if there exists at least one rd

′
i
i

generating a valid pair (sk
d′i
i , pk

d′i
i ) where pk

d′i
i was received in Step 1-j and d′i 6=

di store the secret key (sk
d′i
i ) for session j, rewind R∗soa up to Step 2 and return.

Otherwise go to Step 3a.

4. Commitment of session j: On input the pair (sk0
i , sk

1
i ) proceeds with the commitments

for the session j;

(a) randomly choose bits b1, . . . , bn;

(b) for all bits bl s.t. l 6= i honestly run the sub-commitment algorithm: (·, bl) $←
〈STCd̄ll (open), RTC

d̄l
l (open)〉 with R∗soa where dl is the challenge sent in Step 1-j.

(c) for the i-th sub-commitment, run the fake commitment procedure using the secret
key skd̄ii : 〈TCFakeCom (pkd̄ii , skd̄ii , com), RTC

d̄i
i (pkd̄ii , recv)〉. If R∗soa aborts, then

aborts this session.

Commitment phase completion. When the commitment phase is completed, Sim obtains
the set of indexes I from R∗soa and obtains {b[j]}j∈I from the experiment.

Decommitment phase. When R∗soa asks for the opening of session j ∈ I, run n sub-decommitments
as follows:
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1. for all sub-commitments l 6= i honestly run the sub-decommitment algorithm: (·, bl) $←
〈STCd̄ll (open), RTC

d̄l
l (open)〉, where dl is the challenge sent in the commitment phase.

Compute b′i ← (
⊕

l∈[n−1] bl)⊕ b[j].
2. for the i-th sub-commitment run the fake-sub-decommitment algorithm using the trapdoor

information skd̄ii : (·, b′i) ← 〈TCFakeDec(skd̄i , open, b′i),RTC
d̄i
i (open)〉. If R∗soa aborts, then

abort this session.
Finally, output whatever R∗soa outputs.

Proposition 3. The simulator Sim runs in expected polynomial time in n.

Proof. As the simulator strategy mainly follows the strategy of the simulator shown in Appendix. D.1,
the analysis of the running time follows the same arguments shown in Proposition 1.

Proposition 4. The distribution of the output of simulator Sim having black-box access to R∗soa is
computationally close to the output of R∗soa interacting with real sender Ssoa.

Proof. Consider the following hybrids:

H0: In this experiment Sim has in input the bit-vector b ← B and follows the code of the honest
sender Ssoa. This is the real game.

In the following hybrids, we denote by κ the number of sessions opened by R∗soa in the main-
thread only. We denote by j` with ` = 0, . . . , κ− 1 the `-th session opened in the main thread
for which Sim obtains a valid second message (i.e., the values {rdii }i∈[n]) from R∗soa, and thus
it has to extract the secret key in order to be able to compute the sub-commitments in such
session.

H
j`+1

1 (for ` = 0, . . . , κ− 1): Experiment Hj`+1

1 is the same as experiment Hj`
1 except that in the

(`+1)-th session for which Sim obtains the values {rdii }i∈[n] from R∗soa, it launches the extraction
phase to extract the trapdoor skd̄ii for some i ∈ [n] for the session j`+1. In the new sessions
initiated by R∗soa during the rewinds, Sim runs as the honest sender using the knowledge of
b. However, the extracted trapdoor is never used by Sim. We now argue that Hj`

1 and Hj`+1

1

are indistinguishable. First note that, the extraction phase is initiated only if R∗soa correctly
completed the second step of the protocol with non-zero probability. Then note that the
view of R∗soa in the rewinding thread is distributed identically to her view in the commitment
phase. Thus the only differences between the two experiments is that 1) in Hj`+1

1 Sim runs
in expected polynomial time, this is not an issue since we are only interested in the output
of the experiment (and it will not be a problem in the reductions shown for the next hybrids
since rewinding threads that take more time than a fixed polynomial, can be truncated,
without perturbing the non-negligible probability of success); 2) in Hj`+1

1 Sim aborts with
higher probability due to the possible aborts in the rewinding threads. These aborts happen
when Sim picks a random challenge that is equal to the challenge sent in the commitment
phase. This event happens with negligible probability (poly(n)/2n). Thus Hj`

1 and Hj`+1

1 are
statistically indistinguishable. Note that Hj0

1 = H0 and Hjκ
1 = Hj0

2

Hj`,s+1
2 : for ` = 1, . . . , κ; for s = 0, . . . ,maxj` − 1. In hybrid Hj`,s+1

2 Sim works as in experiment
Hj`,s

2 except that, in the (s+ 1)th new session started by R∗soa in the rewinding threads (recall
that in each rewinding thread the view of R∗soa changes) for session j`, Sim commits to a
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random bit. Toward showing the indistinguishability of Hj`,s
2 and Hj`,s+1

2 , we first show that
Hj`,s

2 is indistinguishable from an hybrid H̄j`,s+1
2 where the bit committed in the (s + 1)-th

new session is the opposite bit used in Hj`,s
2 .

More precisely hybrid H̄j`,s+1
2 is the same as hybrid Hj`,s

2 except that in the commitment
phase of the (s+ 1)-th new session, which index (in the range between 1 and k of all sessions
played in the current view) we denote by t, initiated by R∗soa in the extraction phase of session
j`, the last sub-commitment hides the opposite bit such that the sum of the shares of all
sub-commitments gives 1 − b[t]. More specifically, let b1, . . . , bn the shares of bit b[t], in
experiment H̄j`,s+1

2 , Sim flips one of the shares, i.e. there exist one i such that Sim, differently
from the experiment Hj`,s

2 commits to b̄i, thus in turn committing to b̄[t].

Assume that there exists a distinguisher Dsoa that is able to tell apart hybrid H̄j`,s+1
2 from

Hj`,s
2 then it is possible to construct a distinguisher who breaks the hiding of the commitment

scheme wTCom. The reduction works as follows. R∗wTCom simulates Sim as in experiment
Hj`,s

2 except that in the new session t, it proceeds as follows: after having received the public
keys from R∗soa, it picks a random n-bit string di, . . . , dn and an index i and it forwards pkd̄ii
to the external sender SwTCom.

Upon receiving the sub-commitment from SwTCom for the public key pkd̄ii , R∗TC randomly
chooses n− 1 random bits b1, . . . , bn − 1 and honestly executes n− 1 sub-commitments using
the remaining public parameters received from R∗soa. Then it forwards all the sub-commitments
to R∗soa. Finally R∗TC forwards the output of the experiment to Dsoa and outputs whatever
Dsoa outputs xored with

⊕
l∈[n],l 6=i bl.

Now, let bi such that
⊕

l∈[n] bl = b[t], if SwTCom has committed to the share bi, then the
view generated by R∗TC is distributed identically to hybrid Hj`,s

2 . Otherwise, if SwTCom has
committed to bit 1 − bi then the view generated is distributed identically to hybrid H̄j`,s+1

2 .
By the hiding of protocol wTCom, it holds hat Hj`,s

2 and H̄j`,s+1
2 are indistinguishable.

Now, in Hj`,s+1
2 the bit committed in session t (i.e., the (s + 1)-th new session) is a random

bit, and therefore the output of any distinguisher on Hj`,s+1
2 will be indistinguishable from

the one of Hj`,s
2 and H̄j`,s+1

2 .

Therefore, H1 = Hj1,0
2 and Hjm,maxjm

2 are indistinguishable.

H
j`+1

3 : for ` = 0, . . . , κ− 1: In this sequence of hybrids Sim uses the trapdoor extracted in the
extraction phase. In each session, it performs the commitment/decommitment phase by using
the algorithms TCFakeCom/TCFakeDec for one of the n the sub-commitments. Therefore, in
this hybrid Sim does not use the knowledge of b anymore.

More precisely, hybrid H
j`+1

3 is the same as hybrid Hj`
3 except that in H

j`+1

3 in the decom-
mitment phase of the j`+1-th session Sim uses the trapdoor skd̄ii (for some i ∈ [n]) extracted
for this session. That is, in session j`+1 Sim honestly performs n − 1 sub-decommitments
while the i-th sub-commitment is computed invoking the fake-sub-commitment algorithm
TCFakeCom and the sub-decommitment (if session j`+1 will be asked to be opened) is com-
puted invoking the trapdoor algorithm TCFakeDec on input the bit bi computed as follows:
b′i ←

⊕
l∈[n],l 6=i b

d̄l
l ⊕ b[j`+1].
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Note that now in the opening, bi depends of the actual input of the sender.

Assume there exists a distinguisher Dsoa who is able to tell apart experiment Hj`+1

3 from
Hj`

3 then it is possible to construct a distinguisher R∗wTCom for the weak trapdoor property of
wTCom. R∗wTCom is running in the experiment Exp

wTrap/Com
wTCom trying to distinguish whether the

messages received from sender SwTCom are computed using the honest or the fake algorithm.
R∗wTCom works as follows: it runs R∗soa as subroutine simulating Sim as in experiment Hj`

3

except that in session j`+1, after having obtained (from the extraction phase) the trapdoor
skd̄i for some i ∈ [n] proceeds as follows. It performs the secret sharing of the bit b[j`+1] =

b1, . . . , bn and forwards pkd̄ii ,sk
d̄i
i , bi to SwTCom (note that if the sender SwTCom is running

TCFakeCom the bit bi is ignored and is given only in the decommitment phase to the algorithm
TCFakeDec.). Then R∗wTCom honestly computes the sub-commitments for bits bl, for l 6= i,
while for the i-th sub-commitment it forwards the commitment received from SwTCom. When
the commitment phase is completed R∗wTCom obtains the set I from R∗soa, if the set does not
contain the session j`+1, it aborts. Otherwise, R∗wTCom performs the decommitment phase
of the session j`+1 as follows: it honestly opens the sub-commitments in position i 6= l,
while it forwards the decommitment received from SwTCom in position i. Finally R∗wTCom
forwards the output of R∗soa to Dsoa and outputs whatever Dsoa outputs. Now, if the i-
th sub-commitment/sub-decommitment was computed by using the trapdoor skd̄ii , then the
view of R∗soa is distributed identically as hybrid Hj`+1

3 , otherwise, if the sub-commitment/sub-
decommitment was honestly computed then the view is distributed according to hybrid Hj`

3 .
Therefore, if Dsoa distinguishes the two experiments with non-negligible advantage δ then
R∗wTCom wins the game Exp

Trap/Com
wTCom with advantage δm

k that is still non-negligible, therefore
breaking the trapdoor property of wTCom.

Hence, Hj`+1

3 and Hj`
3 are computationally indistinguishable.

Therefore Hjm,maxjm
2 = Hj0

3 and Hjk
3 are computationally indistinguishable.

By noticing that Hjk
3 corresponds to the game played by the simulator, we have that the claim

holds.

This concludes the proof of the Theorem 5.

D.3 Proof of Theorem 2

Proof. The proof of completeness, binding, and hiding under selective opening attack of the (3, 3)-
round protocol (Protocol 2) follow.
Completeness. It follows from the completeness of the sub-protocol for extractable commitment.

Binding. We now prove the binding property of SOACom using the statistical binding property of
ExtCom (due to the ExtCom commitments played by Ssoa) and the computational hiding property
of ExtCom (due to the ExtCom commitments played by Rsoa).

In the following we reduce the binding property of SOACom to the hiding property of ExtCom
(due to the ExtCom commitments by Rsoa) with the assumption that the underlying extractable
commitment is statistically binding (due to the ExtCom commitments by Ssoa).
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Suppose there exists a PPT adversary S∗soa that breaks binding of SOACom with probability
δ > 1/P (n), where P (·) is a polynomial; i.e., it outputs a commitment phase transcript τcom, and
two valid opening phase transcripts, τ0

open and τ1
open, that are openings to 0 and 1, respectively.

Then we construct an efficient adversary R∗ext that breaks hiding of ExtCom, such that,

Pr[Expbinding
SOACom,S∗soa

→ 1]

≤ 10 · P (n) · (Advhiding
ExtCom,R∗ext

+ negl(n))
(1)

where, the negligible function negl(·) corresponds to breaking binding of the statistically-binding
extractable commitment.

We shall refer to any message msg sent in a decommitment phase τ ĵopen as τ ĵopen.msg, where
ĵ ∈ {0, 1}. We begin with a high-level sketch of R∗ext.

R∗ext: We first give a simplified description of R∗ext, then describe the technical issue that would
arise, and then describe our solution to fix this issue.

We first observe that if S∗soa can somehow know a = (a1, . . . , an) before sending the string d, then
it can easily break binding of SOACom: S∗soa would begin by generating the n pairs of commitments
such that in every pair one is a commitment to 0 and the other is a commitment to 1. Then,
once it knows a, it chooses τ0

open.d in such a way that a ⊕ τ0
open.d points to positions that are

commitments to 0. In τ1
open, it would set τ1

open.d = 1⊕ τ0
open.d, thus being able to generate valid

τ0
open and τ1

open. Intuitively, since a is random, S∗soa can craft its d this way with any noticeable
probability only by knowing a, i.e., by breaking hiding of ExtCom. This is the case that R∗ext takes
advantage of. We now describe how R∗ext works at a high level. R∗ext begins by trying to identify this
favorable case first by extracting all the 2n commitments with some noticeable probability and then
by observing if the extracted bits and d sent in the first of the openings, say τ ĵopen, are favorable to
this case. Meanwhile, R∗ext would have committed to one of the ais, say am, by using its interaction
with its challenger in the hiding experiment of ExtCom, and the rest of the ais by itself. Thus,
finally it predicts am using all the extracted bits, d = d1, . . . , dn, and all the ais except am, with a
non-negligible probability since the extracted bits are the same as what S∗soa would have opened to
by extractability of ExtCom.

While this completes the high-level description of R∗ext, we point out that we need to design R∗ext
more carefully; this is because of the following fact that will lead to a technical issue: R∗ext cannot
decide whether S∗soa would have broken binding of SOACom, had R∗ext continued the interaction.
This is because R∗ext cannot proceed beyond the step where the sender sends d, as in the next step
R∗ext is required to send the openings of all ais (including am). Due to this fact, R∗ext fails to exploit
the advantage of S∗soa if it proceeds the way as described in the simplified description above. We fix
this issue with the following modification to the above version of R∗ext: Instead of using all known
ais in the checks it makes, R∗ext chooses a random subset of size n/2 from the set of all known ais
and uses only these ais in the checks.

The details follow.
R∗ext: R∗ext interacts with S∗soa in the commitment phase as follows.

1. Sample m $←− [n].
2. For the extractable commitment of am, use the messages from the external sender inExphiding-am

Com,R∗

and send them to S∗soa. Also, messages from S∗soa corresponding to this extractable commitment
are forwarded to the external sender.
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3. To commit to the rest of the ais, follow the honest receiver’s code.
At any point in time till now, if S∗soa aborts, R∗ext outputs a random bit and halts. Otherwise,

R∗ext interacts with S∗soa in the decommitment phase as follows.
1. Let S∗soa enter a decommitment phase, τ ĵopen, for some bit ĵ ∈ {0, 1}. Once S∗soa sends the

random string τ ĵopen.d and completes the commitment phase of the extractable commitments,
run 2n parallel invocations of the extractor E to extract the 2n bits b(i,j) committed to by
S∗soa with an upper-bound on the number of rewindings for extraction to be 2P 2(n).

2. If extraction fails for any of the bits, then output a random bit and halt. Otherwise, perform
the following checks in the order; if any check fails, then output a random bit and halt.
1. Check whether, ∀i ∈ [n], one of the bits b(i,0), b(i,1) is 1 and the other is 0.
2. Choose a random subset Qcheck of n/2 indices i ∈ [n] such that i 6= m; i.e., choose
Qcheck

$←− 2[n] such that |Qcheck| = n/2 and m 6∈ Qcheck. Then, check if ∃bsame ∈ {0, 1}
such that ∀i ∈ Qcheck, j = τ ĵopen.di ⊕ ai, b(i,j) = bsame.

Let CHECK-YES denote the event that both the above checks go through. If CHECK-YES
occurs, then output bit a′m such that, for j = τ ĵopen.dm ⊕ a′m, b(m,j) = bsame.

This completes the description of R∗ext.
Let q(n) be the probability that S∗soa does not abort before entering the opening phase. Note

that q(n) ≥ δ. Let E.fail denote the event that ∃i, j such that E failed to extract b(i,j) in 2P 2(n)
rewindings. In the following we bound the probability of E.fail.

Note that the view of S∗soa in the rewinding threads is identical to that in the main-thread. Thus,
its abort probability in the rewinding threads also continues to be (1 − q(n)). Since q(n) ≥ δ >
1/P (n), we have,

Pr[E.fail] ≤ 1

2P (n)
+

n∑
i=1

1

2n
(2)

The first term in the above bound corresponds to the event when S∗soa aborts in all the rewinding
threads and this term is derived from the Markov’s inequality. The second term corresponds to the
event where, for at least one of the 2n commitments of S∗soa, the challenge in the rewinding thread
for which S∗soa did not abort is equal to the one in the main thread. Thus, we have,

Pr[¬E.fail] > 1

4P (n)

Now consider an algorithm that interacts with S∗soa by running Rsoa (i.e., commits to all ais
by itself) except that it also tries to extract the 2n bits committed to by S∗soa (like R∗ext). Then
denote the event that the extracted bits are the same as the opened bits in τ0

open and τ1
open by

extracted = opened.
Let Qagree ⊂ (2[n]−Qcheck) such that i ∈ Qagree if and only if, for j = τ ĵopen.di⊕ai, b(i,j) = bsame.
We have,
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Pr[Exphiding-1
ExtCom,R∗ext

(n)→ 1)]

≥Pr[Expbinding
SOACom,S∗soa

(n)→ 1 ∧ CHECK-YES ∧ extracted = opened] · Pr[am = 1] · Pr[¬E.fail] (3)

+ Pr[Expbinding
SOACom,S∗soa

(n)→ 0 ∧ CHECK-YES ∧m ∈ Qagree] · Pr[am = 1] · Pr[¬E.fail] (4)

+ Pr[Exphiding-1
ExtCom,R∗ext

(n)→ 1|¬CHECK-YES ∨ E.fail] · Pr[am = 1] · Pr[¬CHECK-YES] · Pr[E.fail]
(5)

and

Pr[Exphiding-0
ExtCom,R∗ext

(n)→ 1]

≤Pr[CHECK-YES ∧ ¬(extracted = opened)] · Pr[am = 0] · Pr[¬E.fail] (6)

+ Pr[Expbinding
SOACom,S∗soa

(n)→ 0 ∧ CHECK-YES ∧m 6∈ Qagree] · Pr[am = 0] · Pr[¬E.fail] (7)

+ Pr[Exphiding-0
ExtCom,R∗ext

(n)→ 1|¬CHECK-YES ∨ E.fail] · Pr[am = 0] · Pr[¬CHECK-YES] · Pr[E.fail]
(8)

Thus,

Advhiding
ExtCom,R∗ext

≥ |Term(3) + Term(4) + Term(5)− Term(6)− Term(7)− Term(8)|

Since R∗ext outputs a random bit if ¬CHECK-YES∨E.fail occurs, Term(5) = Term(8). By statisti-
cal extractability of ExtCom, the event ¬(extracted = opened) is statistically impossible, and hence
Term(6) is negligible. Also, note that by statistical binding of ExtCom, Expbinding

SOACom,S∗soa
(n) → 1 ∧

¬CHECK-YES occurs with only negligible probability. Thus we have that, in Term(3), Pr[Expbinding
SOACom,S∗soa

(n)→
1 ∧ CHECK-YES ∧ extracted = opened] is negligibly close to Pr[Expbinding

SOACom,S∗soa
(n)→ 1].

Hence, we will be done once we prove the following claim:

Claim 1. There exists a negligible function negl() such that Term(4) + negl(n) ≥ Term(7).

Proof. Without loss of generality, Pr[am = 0] = Pr[am = 1] = 1
2 .

Let p = 1
2 · Pr[¬E.fail].(

1

p

)
· (Term(4)− Term(7))

=Pr[Expbinding
SOACom,S∗soa

(n)→ 0 ∧ CHECK-YES ∧m ∈ Qagree ∧ (|Qagree| ≥
(n

4
+ 1
)

)]

+ Pr[Expbinding
SOACom,S∗soa

(n)→ 0 ∧ CHECK-YES ∧m ∈ Qagree ∧ (|Qagree| <
(n

4
+ 1
)

)]

(9)

− Pr[Expbinding
SOACom,S∗soa

(n)→ 0 ∧ CHECK-YES ∧m 6∈ Qagree ∧ (|Qagree| ≥
(n

4
+ 1
)

)]

− Pr[Expbinding
SOACom,S∗soa

(n)→ 0 ∧ CHECK-YES ∧m 6∈ Qagree ∧ (|Qagree| <
(n

4
+ 1
)

)]
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Ignoring Term(9), we have(
1

p

)
· (Term(4)− Term(7))

≥Pr[Expbinding
SOACom,S∗soa

(n)→ 0 ∧ CHECK-YES ∧m ∈ Qagree ∧ (|Qagree| ≥
(n

4
+ 1
)

)] (10)

− Pr[Expbinding
SOACom,S∗soa

(n)→ 0 ∧ CHECK-YES ∧m 6∈ Qagree ∧ (|Qagree| ≥
(n

4
+ 1
)

)]

(11)

− Pr[Expbinding
SOACom,S∗soa

(n)→ 0 ∧ CHECK-YES ∧m 6∈ Qagree ∧ (|Qagree| <
(n

4
+ 1
)

)]

(12)

We note that, if both the events CHECK-YES and |Qagree| ≥
(
n
4 + 1

)
occur, then,

Pr[m ∈ Qagree] ≥
(
n
4 + 1

)
n
2

(13)

Pr[m 6∈ Qagree] ≤ 1−
(
n
4 + 1

)
n
2

(14)

From the bounds (13) and (14), Term(10)− Term(11) ≥ 0.
Now, to complete the proof of Claim 1, it remains to prove that Term(12) is negligible. For

this, roughly, we argue that, for some Qcheck if CHECK-YES occurs and |Qagree| <
(
n
4 + 1

)
, then for

“most other” sets Q′check (chosen as per Check 2 of R∗ext), ∃i ∈ Q′check such that i 6∈ Qcheck ∪Qagree.
For all such Q′check, CHECK-YES does not occur. Since only such Q′check are chosen with all but
negligible probability, we have that Term (12) is negligible. More concretely:

Pr[CHECK-YES ∧ |Qagree| <
(n

4
+ 1
)

]

= PrQ′check [Q′check ∩ ([n]− (Qcheck ∪Qagree)) = {}]

=
(3n/4)! (n/2)!

(n/4)! (n)!

=

∏n/4
i=1(n/4 + i)∏n/4
i=1(3n/4 + i)

≤ (1/2)(n/4)

which is negligible in n. The last inequality follows from the fact that, for any i ∈ [n/4], the fraction
(n/4+i)
(3n/4+i) ≤ 1

2 . To see this, observe that (n/4+i)
(3n/4+i) ≤ 1

2 iff (n/2 + 2i) ≤ (3n/4 + i) iff i ≤ n/4 (which is
the case we are interested in).

This completes the proof of Claim 1 and hence the proof of binding of SOACom given by
Protocol 2.

Hiding under selective opening attack. We construct an expected polynomial-time simulator
Sim that having black-box access to the adversary R∗soa generates an output that is computationally
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indistinguishable from the output generated by the interaction between R∗soa and the honest sender
Ssoa. At a high level, the simulator first interacts with R∗soa in the commitment phase of each
session as follows. Unlike Ssoa which commits to the same bit in all its n pairs of commitments, the
simulator, in every pair, commits to 0 in one commitment and to 1 in the other. At the completion
of commitment phases of all sessions, in each session, Sim extracts a1, . . . , an committed to by R∗soa.
Further, once it receives the bits to which it needs to open, it can equivocate in the opening phase
by carefully crafting the string d (using the knowledge of extracted a1, . . . , an) so that the outcome
of coin-flipping points to the n commitments of 0 (resp., 1) if the bit it needs to open to is 0 (resp.,
1). A formal description follows.

SOA-simulator Sim
Initialization phase. Choose random tapes ranR, ranSim respectively for R∗soa and for the com-

mitment phase below.
Invoke R∗soa(ranR).

Commitment phase (S1). (Main thread)
- In session j ∈ [k]:

1. Sample σ′ $←− {0, 1}n.
2. ∀ i ∈ [n], set b(i,j) := 0 for j = σ′i and set b(i,j) := 1 for j = 1⊕ σ′i.
3. Interact with R∗soa as per the commitment phase of the protocol except for the choice

of b(i,j) as above (This is unlike the honest sender which sets every b(i,j) to the same
bit, namely the bit it wishes to commit to).

4. If R∗soa aborts, then abort session j.
Commitment phase completion. When the commitment phases of all k sessions are com-

pleted, Sim obtains the set of indices I = {j1, j2, . . .}, where |I| ≤ m, from R∗soa and obtains
{b[j`]}j`∈I from the experiment.

Extraction phase. (rewinding threads)
∀j` ∈ I if the j`th session was not-aborted in the main thread, then:
- For c = 1, . . . , n: Run the extractor E of the underlying extractable commitment in order

to extract ac. During this extraction all the other messages of the same session and the
messages in the other sessions (including those in sessions that may be newly begun by
R∗soa in the rewinding threads) are computed as in (S1).

- If E fails to extract any ac, then abort the simulation and halt.
Opening phase (S2)(Main thread). ∀j` ∈ I, if the j`th session is not aborted, then open it

to b[j`] as follows:
- Follow the decommitment phase of the protocol except for the following change. Let σ′ be

the random string chosen in the j`th session in (S1). If b[j`] = 0 then set d := σ′ ⊕ a;
otherwise, set d := σ′ ⊕ a⊕ 1. Send d to R∗soa.

Finally, output the commitment phase transcript from (S1) and the opening phase transcript
from (S2) together with the final output of R∗soa.

Proposition 5. The simulator Sim runs in expected polynomial time in n.

Proof. Sim consists of three phases: commitment phase, extraction phase, opening phase. The
commitment phase (S1) basically is the commitment phase of SOACom (with the only difference
in how the bits b(i,j) committed to using ExtCom are chosen). Thus the running time of Sim in the
commitment phase, tSimCom, is polynomial in n.
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After the completion of the commitment phase Sim is asked for openings of m = |I| sessions, and
for each such session that is not aborted, Sim runs the extractor n times to extract a = (a1, . . . , an).

Let us denote by ζj` = ζ(ranR, j`) the probability that R∗soa, initialized with randomness ranR,
successfully completes the commitment phase of the j`-th session. While running the extractor, since
Sim generates the messages other than those generated by E the same way as in the commitment
phase, the view of R∗soa in the rewinding threads is distributed identically as in the commitment
phase. Hence, in the rewinding threads also, the probability that R∗soa responds without aborting
is also ζj` . As noted in the analysis of the extractor E of ExtCom, its expected running time is
ζj` · 1/ζj` . Further, in each rewinding performed by the extractor, since the number of new sessions
initiated by R∗soa is bounded by a polynomial, the extra running time of Sim due to the newly
initiated sessions for each rewinding is bounded by poly(n) · tSimCom. (Obviously, once the simulator
extracts the trapdoor for the target session, the new sessions are discarded.) With trew denoting
the running time of Sim for each rewinding of the extractor, expected running time of Sim in the
extraction phase is:

m∑
`=1

ζj`
[ 1

ζj`
· trew

]
= poly(n)

In the decommitment phase Sim just executes the decommitment algorithm of SOACom for at
most m sessions. Since the running time of Ssoa in the decommitment phase of SOACom and m
are both polynomial in n, the running time of Sim in the decommitment phase, tSimDec, is also
polynomial in n.

Thus, the total expected running time:

tSim = k · tSimCom +
m∑
`=1

ζj`
[ 1

ζj`
· trew + tSimDec

]
is also polynomial in n.

Proposition 6. The distribution of the output of the simulator Sim having black-box access to R∗soa
is computationally close to the output of R∗soa interacting with the real sender Ssoa.

Proof. The proof is by a series of hybrid arguments, where we prove the indistinguishability of
consecutive hybrids using binding and hiding of the underlying extractable commitment scheme.

Consider the following sequence of hybrids:

H1: In this experiment Sim has as input the bit-vector b← B before it begins interacting with R∗soa
and follows the code of the honest sender Ssoa in committing to these bits. This is the real
game.

H2: This experiment is same as H1, except that Sim also extracts each of the bits a1, . . . , an using
the extractor for every non-aborted session that it is asked to provide opening for. The
extraction is performed for one session after the other as explained in the description of the
original simulator Sim. (If new sessions are initiated by R∗soa in the rewinding threads, then
Sim proceeds the same way as in the commitment phase of the main threads, but does not
extract a1, . . . , an for these new sessions.) Furthermore, Sim aborts the simulation if it fails
to extract any of the bits a1, . . . , an in any such non-aborted session.
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Now note that the statistical distance between the hybrids H1 and H2 is at most the probability
that Sim aborts due to failure in the extraction. Since this probability is at most poly(n)/2n, we
observe that the two hybrids are negligibly close.

H3: This experiment is same as H2, except that Sim also aborts the simulation if in any of the
sessions, any of the extracted bits a1, . . . , an is inconsistent with the corresponding opening
provided by R∗soa in the opening phase.

H2 and H3 are statistically close since an extracted bit is inconsistent with the opening only
with negligible probability by the (statistical) extractability of ExtCom.

Hs,i
4 for s = 0, . . . , k and i = 0, . . . , n: Hs,i

4 differs from H3 as follows:

- For every s′-th session, where s′ > s, Sim behaves the same way as in H3.
- For every s′-th session, where 0 ≤ s′ < s, Sim chooses the bits to be committed as follows:

Choose σ′ $←− {0, 1}n; ∀i′ ∈ [n], set b(i′,j′) := 0 for j′ = σ′i′ and set b(i′,j′) := 1 for
j′ = 1 − σ′i. After the commitment phases of all the sessions, if R∗soa requests for the
decommitment of the s′-th session, then extract a = a1, . . . , an as in H3, and also, d is
set as d := a⊕σ′⊕b[s′]. The rest of the messages are computed the same way as in H3.

- In the s-th session, ∀i′ > i, Sim computes the i′th pair of commitments the same way as
in H3. For every i′th pair of commitments, where 1 ≤ i′ ≤ i, Sim chooses σ′i

$←− {0, 1}
and sets b(i′,j′) := 0 for j′ = σ′i′ , b

(i′,j′) := 1 for j′ = 1− σ′i′ . Also, after the commitment
phases of all the sessions, if R∗soa requests for the decommitment of the s-th session, then
extract a = a1, . . . , ai as in H3, and set di′ := ai′ ⊕ σ′i′ ⊕ b[s]. The rest of the messages
are computed the same way as in H3.

Let � be a total ordering on the set T = {s, i}1≤s≤k,1≤i≤n ∪ {(0, 0)} such that (s′, i′) < (s, i)

iff s′ < s OR (s′ = s AND i′ < i). Note the the hybrids H0,0
4 and H3 are identical. We now

show that if there exists a distinguisher Dsoa that distinguishes any two consecutive hybrids Hs′,i′

4

and Hs,i
4 , where (s′, i′) < (s, i), then we construct an efficient adversary R∗ext that breaks hiding of

ExtCom. R∗ext interacts with R∗soa the same way as Sim in Hs,i
4 , except for the following change. If

b[s] = 0, then commit to b(i,j) for j = 1 − σ′i using the interaction from the external challenger in
Exphiding-b

ExtCom,R∗ext
(n). (Note that R∗ext will not be asked to provide opening for this commitment since

j = 1 − σ′i.) The rest of the messages are computed the same way as in Hs,i
4 . On the other hand,

if b[s] = 1, then commit to b(i,j) for j = σ′i using the interaction from the external challenger in
Exphiding-b

ExtCom,R∗ext
(n). (Similarly, in this case too, R∗ext will not be asked to provide opening for this

commitment since j = σ′i.) Again, rest of the messages are computed the same way as in Hs,i
4 .

Finally, when Dsoa outputs a bit b′, then R∗ext outputs b′ ⊕ b[s].
Note here that if the hiding experiment of R∗ext is Exphiding-b

ExtCom,R∗ext
(n) with b 6= b[s] then R∗ext is

running Hs,i
4 with R∗soa; otherwise, it is running H

s′,i′

4 . Thus, R∗ext breaks hiding of ExtCom with the
same probability that Dsoa distinguishes between Hs′,i′

4 and Hs,i
4 .

Note that the final hybrid is identical to the described simulator. This completes the proof of
indistinguishability of the outputs the real and the simulated experiments.
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D.4 Proof of Theorem 6

Proof. In the following, we prove completeness, binding and hiding of the (5, 1) round protocol
presented in Protocol 5.
Completeness. It follows from the completeness of the sub-protocol for extractable commitment.

Binding. The proof of binding follows on the same lines as the (3, 3) round protocol presented in
the Protocol 2 and is therefore omitted.
Hiding under selective opening attack. We construct an expected polynomial-time simulator
Sim that having black-box access to the adversary R∗soa generates an output that is computationally
indistinguishable from the output generated by the interaction between R∗soa and the honest sender
Ssoa. At a high level, the simulator works in a way similar to the simulator of Protocol 2, with a
slight difference. Namely, the simulator first interacts with R∗soa in the commitment phase of every
session as follows. Like the simulator for Protocol 2, the simulator, in every pair, commits to 0
in one commitment and to 1 in the other (unlike Ssoa which commits to the same bit in all its
n pairs of commitments). Next, recall that the simulator for Protocol 2 first receives the bits to
which it needs to open and then crafts its d so that the outcome of coin-flipping points to the n
commitments to 0 if the bit it needs to open to is 0 or to the n commitments to 1 if the bit it needs to
open to is 1. Now, since the round in which the sender sends d is in the commitment phase for this
protocol, the simulator needs to send d (and complete the entire commitment phase) in every session
before it receives the bits, the same strategy as in the Protocol 2 cannot work directly. Instead,
here, we exploit the flexibility of the sender in choosing either the outcome of coin-flipping or its
binary-negation to dictate which commitments it finally opens (i.e., the sender first chooses either
the outcome of the outcome of coin-flipping or its binary-negation, and the i-th bit of it dictates
whether to open the 0-th or the 1-st commitment in the i-th pair). More specifically, the simulator
first samples a random bit θ and crafts its d so as to get the outcome of coin-flipping to point to the
commitments of θ. Then, once it receives the bits to which it needs to open, it equivocate in the
opening phase by choosing between the outcome of coin-flipping and its binary-negation depending
on the value of θ and the bit to be opened to. A formal description follows.

SOA-simulator Sim
Initialization phase. Choose random tapes ranR, ranSim respectively for R∗soa and for the com-

mitment phase below.
Invoke R∗soa(ranR).

Commitment phase (S1a). (Main thread)
In session j ∈ [k]:
1. Sample σ′ $←− {0, 1}n.
2. ∀ i ∈ [n], set b(i,j) := 0 for j = σ′i and set b(i,j) := 1 for j = 1⊕ σ′i.
3. Interact with R∗soa as per the commitment phase of the protocol until the point just before

it needs to send d, except for the choice of b(i,j) as above (This is unlike the honest sender
which sets all b(i,j) to the bit it wishes to commit to).

4. If R∗soa aborts, then abort session j. Otherwise, execute the extraction phase of the j-th
session as described below.

Extraction phase. (Rewinding threads)
If the jth session was not aborted in (S1a), then:
- For c = 1, . . . , n: Run the extractor of the underlying extractable commitment scheme in

47



order to extract ac. During this extraction all the other messages of the same session
before sending d and the messages in the other sessions (including those in sessions that
may be newly begun by R∗soa in the rewinding threads) before sending d are computed as
in (S1a) and the rest of the messages are computed the same way as in the protocol.

- If E fails to extract any ac, then abort the simulation and halt. Otherwise, continue with
the interaction in the main thread as described below.

Commitment phase continued (S1b). (Main thread)
- Continue with the commitment phase of the jth session by proceeding as follows: Sample

θ′
$←− {0, 1} and set d := θ′ ⊕ σ′ ⊕ a. Rest of the messages are computed the same way

as in the protocol. Also, check whether the bits opened to by R∗soa in the main thread are
equal to the extracted bits a1, . . . , an; if not, then abort the simulation. If R∗soa aborts,
then abort this session.

Commitment phase completion. When the commitment phases of all k sessions are com-
pleted, Sim obtains the set of indices I = {j1, j2, . . .}, where |I| ≤ m, from R∗soa and obtains
{b[j`]}j`∈I from the experiment.

Opening phase (S2)(Main thread). ∀j` ∈ I, if the j`th session is not aborted, then open it
to b[j`] as follows:
1. If b[j`] = 0 then set θ = θ′; otherwise set θ = 1 − θ′. Define σ := θ ⊕ d ⊕ a. The rest of

the messages are computed the same way as in the protocol.
Finally, output the commitment phase transcripts from (S1a) and (S1b) as well as the opening
phase transcript from (S2) together with the final output of R∗soa.

Proposition 7. The simulator Sim runs in expected polynomial time in n.

Proof. The proof follows on the same lines as in Proposition 5 and is hence omitted.

Proposition 8. The distribution of the output of the simulator Sim having black-box access to R∗soa
is computationally close to the output of R∗soa interacting with the real sender Ssoa.

Proof. The proof follows on the same lines as in Proposition 6 with a few changes. We however
describe the hybrids for clarity and completion.

Consider the following sequence of hybrids:

H1: In this experiment Sim has as input the bit-vector b← B before it begins interacting with R∗soa
and follows the code of the honest sender Ssoa in committing to these bits. This is the real
game.

H2: This experiment is same as H1, except that Sim also extracts each of the bits a1, . . . , an using
the extractor for every non-aborted session. It launches these extractors just before it needs to
send d in that session. During extraction, if new sessions are initiated by R∗soa in the rewinding
threads, then Sim proceeds the same way as in the commitment phase of the main threads,
but does not extract a1, . . . , an for these new sessions. Furthermore, Sim aborts the simulation
if it fails to extract any of the bits a1, . . . , an in any such non-aborted session.

Now note that the statistical distance between the hybrids H1 and H2 is at most the probability
that Sim aborts due to failure in the extraction. Since this probability is at most poly(n)/2n, we
observe that the two hybrids are negligibly close.
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H3: This experiment is same as H2, except that Sim also aborts the simulation if in any of the
sessions, any of the extracted bits a1, . . . , an is inconsistent with the corresponding opening
provided by R∗soa in the opening phase.

H2 and H3 are statistically close since an extracted bit is inconsistent with the opening only
with negligible probability by the (statistical) extractability of ExtCom.

Hs,i
4 for s = 0, . . . , k and i = 0, . . . , n: Hs,i

4 differs from H3 as follows:

- For every s′-th session, where s′ > s, Sim behaves the same way as in H3.
- For every s′-th session, where 0 ≤ s′ < s, Sim chooses the bits to be committed as follows:

Choose σ′ $←− {0, 1}n; ∀i′ ∈ [n], set b(i′,j′) := 0 for j′ = σ′i′ and set b(i′,j′) := 1 for
j′ = 1 − σ′i. After the commitment phases of all the sessions, if R∗soa requests for the
decommitment of the s′-th session, then extract a = a1, . . . , an as in H3, and also,
sample θ′ $←− {0, 1}, set d := a⊕ σ′ ⊕ θ′, σ := d⊕ a, and θ := θ′ ⊕ b[jc]. The rest of the
messages are computed the same way as in H3.

- In the s-th session, sample θ′ $←− {0, 1}. ∀i′ > i, Sim computes the i′th pair of commit-
ments the same way as in H3. For every i′th pair of commitments, where 1 ≤ i′ ≤ i, Sim
chooses σ′i′

$←− {0, 1}, sets b(i′,j′) := 0 for j′ = σ′i′ and b
(i′,j′) := 1 for j′ = 1− σ′i′ . Also,

after the commitment phases of all the sessions, if R∗soa requests for the decommitment of
the s-th session, then it extracts a = a1, . . . , ai as in H3, and sets di′ as di′ := ai′⊕σ′i′⊕θ′
and θ := θ′ ⊕ b[s]. The rest of the messages are computed the same way as in H3.

Let � be a total ordering on the set T = {s, i}1≤s≤k,1≤i≤n ∪ {(0, 0)} such that (s′, i′) < (s, i)

iff s′ < s OR (s′ = s AND i′ < i). Note the the hybrids H0,0
4 and H3 are identical. We now

show that if there exists a distinguisher Dsoa that distinguishes any two consecutive hybrids Hs′,i′

4

and Hs,i
4 , where (s′, i′) < (s, i), then we construct an efficient adversary R∗ext that breaks hiding of

the extractable commitment. R∗ext interacts with R∗soa the same way as Sim in Hs,i
4 , except for the

following change. In the sth session: Choose σ′i
$←− {0, 1}, set di := ai ⊕ σ′i ⊕ b[s]. If b[s] = 0,

commit to b(i,j) for j = 1−σ′i using the interaction from the external challenger in Exphiding-b
ExtCom,R∗ext

(n).
(Note that R∗ext will not be asked to provide opening for this commitment since j = 1 − σ′i.) The
rest of the messages are computed the same way as in Hs,i

4 . On the other hand, if b[s] = 1, then
commit to b(i,j) for j = σ′i using the interaction from the external challenger in Exphiding-b

ExtCom,R∗ext
(n).

(Similarly, in this case too, R∗ext will not be asked to provide opening for this commitment since
j = σ′i.) Again, rest of the messages are computed the same way as in Hs,i

4 . Finally, when Dsoa

outputs a bit b′, then R∗ext outputs b′ ⊕ b[s].
Note here that if the hiding experiment of R∗ext is Exphiding-b

ExtCom,R∗ext
(n) with b 6= b[s] then R∗ext is

running Hs,i
4 with R∗soa; otherwise, it is running H

s′,i′

4 . Thus, R∗ext breaks hiding of ExtCom with the
same probability that Dsoa distinguishes between Hs′,i′

4 and Hs,i
4 .

Note that the final hybrid is identical to the described simulator. This completes the proof of
indistinguishability of the outputs the real and the simulated experiments.
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D.5 Proof of Theorem 3

Proof. In the following we prove the impossibility of fully concurrent SOA-security. In our proof
we assume the existence of OWFs, which is implied by the existence of any commitment scheme.
Let Π = (S,R) be a r-round string-commitment protocol that is SOA-secure (with a black-box
simulation strategy) under concurrent composition. By definition there exists a black-box simulator
Sim that for all R∗ is able to produce a view (τk, I, {bi, wi}i∈I) that is indistinguishable from the
view of the interaction between R∗ and S. In the next part of the proof we will use Sim as a
sub-routine to contradict in strict polynomial time some hardness assumptions. Since Sim is only
expected polynomial time, we are implicitly assuming that we run it up to some strict polynomial
number of steps (obviously greater than the expected polynomial time), and our results will still
work since Sim is often successful in that polynomial number of steps.

The formal proof consists of the following steps. First, we define the family of message distri-
butions B. Then we define a pair of adversaries R∗0,R

∗
1 and we show that such adversaries make

the rewinding strategy of any black-box Sim ineffective for one protocol execution. Still, by the
concurrent SOA-security of Π it must be the case that Sim is able to successfully carry out the sim-
ulation of such execution even without rewinding R∗p, for p = 0, 1. Finally we construct a malicious
sender that runs such a simulator as sub-routine to break the binding of Π, thus contradicting the
hypothesis that Π is a commitment scheme.
Distribution B. Recall that B is the set of distribution over ({0, 1}n)k, where k is the number of
sessions. In order to define our particular set B we use a signature scheme. A signature scheme is a
tuple of algorithms (Gen, Sign,Vrfy) where Gen is the generation algorithm that on input the security
parameter outputs a pair vk, sk where sk is the secret key and vk is the verification key. Sign is a
randomized signing algorithm and Vrfy is the verification algorithm. The correctness requirement
states that for all (vk, sk)

$← Gen(1n), all messages x, all randomness r, Vrfy(vk, x, Sign(sk, x, r)) =
1. The security requirement (called unforgeability) states that no efficient algorithm M , even after
having seen polynomially many signatures of messages of her choice is able to produce a new pair
(x∗, σ∗) such that Vrfy(vk, x∗, σ∗) = 1 without knowing sk. We define our set B = {Bsk}

sk
$←Gen(1n)

where:
Bsk = {σ1, . . . , σk : σi = Sign(sk, i, r), for r ∈ {0, 1}n}

Thus we define the message space as a set of signatures under a secret key sk, in particular the
message committed to in session j is the signature of j under sk. Then we assume that the
adversarial receiver is given in auxiliary input the verification key vk, such that, it is allowed to
check whether messages obtained in the opening phase belong to the distribution Bsk. Notice that,
having defined B in this way, we have that a query made by Sim to oracle O to receive the opening
of an index j, correspond to a query to a signing oracle Osk for the signature Sign(sk, j, r). Such
definition of B allows us to formally claim that in order to simulate the honest sender Sim is forced
to ask O, unless it is able to forge the signatures. Having fixed Bsk we are ready to define the
adversaries {R∗p}p∈{0,1}.
Adversary’s strategy. R∗p, for p = 0, 1 runs k = r(2n) + 1 protocol executions, where r is the
number of rounds of protocol Π. Let us denote by Π1, . . . ,Πk the k protocol executions, by Πj(i)
the i-th round of the protocol Πj , and by Πj(i)S and Πj(i)R the messages sent by S and R in that
round of the protocol. Let Fk : {0, 1}∗ → {0, 1}n be a PRF for k $← {0, 1}n.

The adversary’s strategy is the following. R∗p plays the first round of Π1 (i.e Π1(1)) follow-
ing the procedure of the honest receiver and then it starts a block of 2n executions in parallel
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(Π2, . . . ,Π2n+1). In this block of executions R∗p honestly completes the 2n commitment phases
while the selection for the sessions to open (denoted as I1) is computed as follows: consider the
2n executions as a sequence of n pairs (each pair consists of left and right execution) then: 1. R∗p
computes an n-bit string s1 ← Fk(Π1(1)S); 2. consider the `-th pair with ` ∈ [n], among the n pairs
of executions, R∗p asks to open the left execution of the `-th pair if the `-th bit of s1 is 0 and the
right execution otherwise. We denote this process of selecting the set of positions I according to the
output of Fk by I1 
 Fk(Π1(1)S). Then R∗p sends I1 to S and obtains the openings σj1 , . . . , σjn with
ji ∈ I1 and checks if Vrfy(vk, ji, σji) = 1 for all ji ∈ I1. If any check fails, then it aborts. Otherwise,
R∗ runs Π1(2) (the second round of Π1) and starts another block of 2n executions till completion as
described before. In general, after the ith round of Π1, R∗p initiates a block of 2n parallel executions
of Π (Π2(i−1)n+i+1, . . . ,Π2in+i) and selects the subset of positions Ii according to F (Π1(i)S).

Finally, when the commitment phase of the execution Π1 is completed, R∗p asks for the opening
with probability p. In Fig. 1 we show the diagram of the schedule.

Ideal-World Simulator. By the assumption that Π is black-box secure we have that there
exists a black-box simulator Sim such that the output of the ideal execution with Sim is indistin-
guishable from the result of a real execution of {R∗p}p∈{0,1} running Π1, . . . ,Πk with S. As black-box
simulator Sim must work for all malicious R∗ and therefore also for R∗0 and R∗1 defined above. Recall
that Sim is given oracle access to R∗p, namely Sim is given a next message function that receives
a sequence of messages and computes R∗p’s response. If any prefix of the query is such that R∗p
would abort upon that message, then the output for the entire query is ⊥. We now prove a special
property of all oracle calls in which R∗p does not abort.

Claim 2. For every i let Qi be the set of all queries sent by Sim to R∗p during the ideal world execution
which includes all messages from the block of executions activated after the message Π1(i)S (i.e.,
from Π2(i−1)n+i+1 to Π2(i)n+i) and where R∗p does not abort9. Then, the same message Π1(i)S appears
in every q ∈ Qi, except with negligible probability.

Proof. The proof of this claim follows almost identically the claim proved in [Lin03] except that
here we use signature scheme instead of one-time signature scheme and between each round of the
protocol Π1 here the adversary opens a bunch of 2n new executions instead of only one. As discussed
in the paragraph of the proof intuition, the main reason we have these differences is that in the
SOA-secure setting we cannot exploit the fact that both parties have private inputs. The proof
is based on the unforgeability of the signature scheme and the collision resistance property of the
PRF.

First, we claim that Sim does not produce two oracle queries q and q′ containing Π1(i)S 6= Π1(i)′S
such that Fk(Π1(i)S) = Fk(Π1(i)′S) with non negligible probability. Otherwise we can construct a
machine M that has oracle access to a random function and distinguishes if the oracle is Fk (for
a random k) or a truly random function. Machine M works by emulating the entire experiment
between R∗ and Sim except that instead of R∗ computing si = Fk(Π1(i)S), machine M queries
the oracle with Π1(i)S. Now, if the oracle is Fk then the emulation is perfect. Therefore with
non-negligible probability M obtains from Sim two messages Π1(i)S 6= Π1(i)′S such that the oracle
responses is the same. On the other hand, if the oracle is a truly random function then the collision
happens with negligible probability. Thus M distinguishes with non-negligible probability.

9That is, we consider all of the oracle queries made by Sim to R∗p throughout the simulation and take the subset of
those queries which include all the messages belonging to the executions of Π2(i−1)n+i+1 to Π2in+i. By the scheduling
described in Fig. 1, such a query defines the ith message of Π1 that is sent by R∗, (i.e., Π1(i)R.)
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Now we prove that Sim cannot produce two non-aborting queries q, q′ such that q contains
message Π1(i)S and q′ contains message Π1(i)′S. This claim follows from the unforgeability of the
signature scheme, and by the fact that Sim cannot ask to the oracle more openings that R∗p would
ask in the real world attack. The intuition is the following. By the proof given above, if there exist
q, q′ such that Π1(i)S 6= Π1(i)′S then it must be that si ← Fk(Π1(i)S) 6= s′i ← Fk(Π1(i)′S). Hence,
since si, s′i differ in at least one bit, due to the way R∗p chooses Ii, we have that Ii chosen after
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query q is distinct from I ′i for the query q′ in at least one index. Note also that, by construction
|Ii| = |I ′i| = n, thus there exist at least one index j` that is in I ′i but is not in Ii. If both queries
q, q′ were not aborting, then Sim was able to provide signatures for both sets of indexes, thus Sim
provided signature for at least n + 1 indexes. Recall that, Sim cannot ask the oracle with more
indexes that R∗p would ask in the real world experiment. In particular, for each block of parallel
executions, Sim must ask exactly n signatures, according to R∗p strategy (indeed the strategy of R∗p
is such that R∗0 always asks exactly n openings at each block and rn openings in total, while R∗1
asks for a total of rn+ 1 openings). Thus if R∗p did not abort in both q, q′ this means that Sim was
able to provide a total of at least n + 1 valid signatures to R∗p, still by asking only n signatures to
O, thus Sim has generated a forgery.

Formally the reduction works as follows. We construct a signature-forgery algorithm M that
given vk simulates R∗p and the oracle O to Sim. M perfectly emulates R∗p and answers the queries
that Sim makes to the oracle by forwarding them to its signing oracle. Note that the emulation
is perfect. Now assume that with non-negligible probability there exist q, q′ ∈ Qi with different
messages Π1(i)S, Π1(i)′S yielding to different set of indexes Ii, I ′i. Since R∗ does not abort it must
have seen (σj1 , . . . , σjn) with j` ∈ Ii and (σj′1 , . . . , σj′n) with j′` ∈ I ′i. Since there exists at least one
index j∗ that is not in both sets, R∗ gets at least n + 1 signatures. Recall that for each block Sim
is allowed to ask only for n signatures. Thus there exists at least a signature σ∗j∗ that was not
provided by the oracle, hence M outputs (j∗, σ∗j∗) thus contradicting the security of the signature
scheme.

In Claim 2 we proved that against adversaries {R∗p}p∈{0,1} any Sim cannot make effective rewinds
for the execution Π1, and thus if Sim exists then it is able to equivocate the first execution without
rewinding R∗p. Since R∗p in first execution basically follows the procedure of the honest receiver we
want to argue that the same strategy used by Sim to equivocate can be adopted by a malicious
sender that wants to equivocate but cannot rewind the honest party.

The idea is to construct a malicious sender S∗ that runs Sim as subroutine and simulates the
same attack of R∗1 except that for the execution Π1 it forwards the messages to the honest R such
that, when Sim asks the oracle for the opening of session 1, S∗ replies with the string that it wants
to open to R. In particular, it sends the first string and obtains the opening by Sim, then it rewinds
Sim and it sends a distinct string, for which it will obtain another valid opening (this is true due to
the existence of Sim). Note however that in this reduction we are assuming that Sim asks for the
queries only after the execution of Π1 is completed. Indeed, if Sim queries the oracle for the opening
of Π1 any time before the commitment phase of Π1 is completed we cannot use Sim as a sub-routine
to break binding since Sim could change the transcript of the commitment phase according to the
response received from O, and thus in turn if S∗ rewinds Sim and changes the string to open, it could
obtain a distinct commitment transcript, therefore not violating the binding property. Therefore,
before proceeding with the construction of the malicious adversary we need to prove another claim
on Sim.

Claim 3. In the execution Π1, except with negligible probability, Sim queries the oracle O only after
receiving the query by {R∗p}p∈{0,1}.

Proof. Since Sim is black-box, it must work for all R∗. In particular Sim must successfully simulate
adversaries R∗0 and R∗1. Adversary R∗0 does not query for the opening the first execution Π1 (i.e.,
the probability of opening is p = 0), therefore Sim is not required to provide an opening and can
simulate Π1 without interacting with O. Adversary R∗1 always asks to see the opening of Π1. In this
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case, Sim could ask for the opening of session 1 to O at the very beginning of the simulation and thus
run the first execution as an honest sender (i.e., with no need of equivocation). The output of Sim
would be indistinguishable from the output of S. However, the definition of black-box simulation
requires that the same simulation strategy should work for all adversarial strategies. Thus the
decision on whether to ask for the opening to O can be made only after the R∗p has sent the request
of opening. Indeed, if Sim asks the oracle any time before it has received the query from R∗0, then
the set of indexes I asked by Sim in the ideal execution is clearly distinguishable since in the real
world execution the set I requested by R∗0 does not contain index of Π1.

The last case to consider is the case that, Sim does not query the oracle for session 1. (Recall
that if Sim does not ask the oracle then the malicious sender in the reduction would not be able to
exploit Sim to open two distinct strings). Due to the unforgeability of the signature scheme, this
case happens with negligible probability. The reduction works as in Claim 2.

Claim 4. In the execution Π1, when dealing with adversary R∗1, Sim provides a valid opening with
all but negligible probability.

Proof. In Π1 the adversary R∗1 is playing as the honest receiver, thus always gets a valid opening
when interacting with S. By the assumption that Π is SOA-secure under concurrent composition it
must holds that also Sim provides a valid opening with all but negligible probability.

Now we are ready to show the formal construction of the adversary for binding S∗ that uses Sim
as a sub-routine.
Malicious Sender. S∗ playing the binding game, externally interacts with an honest receiver R

while internally interacts with Sim. S∗ generates a pair (vk, sk)
$← Gen(1n), thus defining the set Bsk

and gives vk to Sim and R. S∗ emulates R∗1 and the oracle O to Sim for all executions Π2, . . . ,Πk.
This emulation can be perfectly carried out since it has all the secrets. S∗ plays the execution Π1

by forwarding the messages to the external receiver R. That is, let q be an oracle query from Sim to
R∗1 such that R∗1’s response is the i-th message of execution Π1. Then, if R∗1 would abort receiving
q or any prefix of q, S∗ emulates it by aborting. Otherwise, if q is such that R∗1 does not abort but
rather replies with the i-th message of Π1 then S∗ extracts the message (Π1(i)S) of the simulator
from q, and then, if R has already sent the response Π1(i)R according to the extracted message, then
R∗p replies this same message to Sim. If R has already sent the answer Π1(i)R according to another
message Π′1(i− 1)S then S∗ halts. We call this event as failure. Finally, if R did not reply to Π1(i)S
yet, then S∗ forwards it to R and stores the pair Π1(i)S, Π1(i)R. Finally, when Sim makes queries
to the oracle O for a set of indexes Ii, the sender responds via the signatures σj = Sign(j, sk) for
all j ∈ I.

When Sim queries the oracle for the opening of the execution Π1, if the commitment phase of
the execution with the honest receiver is not completed yet, then S∗ aborts and halts. We call this
event too as failure. Else, S∗ provides a string α0 ← Sign(1, sk, r0) and obtains the opening α0, w0

from Sim. Then S∗ rewinds Sim up to the point in which it asks the opening for session Π1 and
provides a distinct string α1 ← Sign(1, sk, r1) to obtain the opening α1, w1 from Sim. If Sim never
asks the oracle for session Π1 then S∗ aborts and halts. Again we call this event as failure.

Finally S∗ obtains two openings for the protocol executions Π1 played with the honest R.
First note that if S∗ does not abort then S∗ perfectly emulates the attack of R∗1. Indeed it plays

all but the first execution following R∗1 procedure, while for the message of the first execution it
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forwards the messages receiver by the honest receiver. Again, this is consistent with the strategy of
R∗1 since she plays the first execution of Π as an honest receiver.

By Claim 2 we have that the event failure happens only with negligible probability. By Claim 3
we have that, except with negligible probability, Sim makes the oracle query for the opening of
execution Π1 only after the commitment phase has been completed. By Claim 4 we have that with
all but negligible probability S∗ gets two valid openings when interacting with Sim. Thus with high
probability S∗ provides two valid openings for the commitment phase transcript obtained by playing
with R.

Corollary 1. There exists no bit commitment protocol that is SOA-secure under strong concurrent
composition.

Proof. Toward a contradiction assume that there exists a bit commitment scheme Γ = (SΓ,RΓ) that
is SOA-secure under concurrent composition. Then it is possible to construct a string commitment
scheme Π = (S,R) as follows. Let m = m0| . . . |mn be the n-bit message that S wants to commit
to. The commitment phase consists of n-parallel executions of the commitments phase of Γ, (i.e.,
〈SiΓ(com,mi),R

i
Γ(recv)〉 for i = 1, . . . , n). The commitment phase of Π is over when all commitments

phases of Γ are successfully completed. The opening phase consists of the parallel execution of the
n decommitment phases of Γ (i.e., 〈SiΓ(open),RiΓ(open)〉 for i = 1, . . . , n). Basically, Π consists only
of executions of Γ, and since Γ is SOA-secure under concurrent composition, so is Π.

E Further Potential Issues in the Proof of Theorem 3.3 of [Xia11a]
The proof of Theorem 3.3. in [Xia11a] also claims that one can build an expected polynomial-time
simulator by borrowing the simulation strategy of Goldreich and Kahan [GK96]; i.e., the simulator
learns the random strings committed to by the receiver in each of the parallel session and then
rewinds the receiver to send new challenges in every session that would enable the simulator to
equivocate in the opening phase.

Unfortunately, as we argue below, this simulation strategy of [GK96] can not be directly applied
in the SOA setting. Firstly, note that the simulator of [GK96] was built for a stand-alone zero-
knowledge protocol where an atomic sub-protocol is repeated several times. Then if the verifier
aborts in any execution of the atomic sub-protocol, it automatically does so in the whole stand-
alone protocol (i.e., it can not selectively abort in a few sub-protocols proceeding ahead in the rest of
the sub-protocols). This marks a crucial difference between the stand-alone zero-knowledge setting
and selective-opening attacks. This is because in the SOA-setting the adversarial receiver interacts
with multiple senders and can decide to abort only a subset of the sessions of its choice adaptively
based on the commitment-phase transcript. However for the non-aborted session the simulator is
still required to carry-out the simulation. In fact, as also explained in [CO99] (see paragraph “The
Simulator Sim”, Section 5.1), the simulator in [CO99] first checks whether the verifier decommits all
the commitments in a proper way. If this is the case, then the simulator continues the simulation;
otherwise, namely, if there exists at least one commitment that is not opened properly by the verifier,
simulator outputs the transcript seen until then and halts. Therefore the above simulator works
only against a non-aborting concurrent verifier, which is precisely the opposite case with SOA, since
aborts are a major mechanism to attack the simulator.

The above observation clarifies that in contrast to what is claimed in the proof of [Xia11a], the
simulator does not necessarily learn the random strings committed to by the receiver in each of the
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sessions, since there could exist receivers that always abort some specific sessions. Moreover, even if
we try to implement the same simulation strategy of [GK96] after taking into account the fact that
an adversarial receiver can selectively abort, the problem still persists and the resulting simulator
does not run in expected polynomial-time. Specifically, as in [GK96], suppose that the simulator
first, in every session, honestly plays the sender in the coin-flipping preamble and continues to
rewind the receiver until the latter aborts exactly those sessions that it aborted in the main-thread.
Such a simulator obviously does not run in expected polynomial-time; to see why, observe that the
simulator may need to handle the receiver distinctly for every distinct subset of sessions that the
receiver may abort; also one needs to take into account the fact that the receiver may abort distinct
subsets of sessions with distinct probabilities.

Subsequently to announcement of our results, a different and more involved simulation strategy
has been presented in [Xia12b].

F Application to Concurrent Zero-Knowledge with Pre-processing
As an interesting application of SOA-secure commitment schemes, we present a construction of cZK
with pre-processing. We first present a construction that uses in a black-box manner any SOA-secure
commitment scheme with non-interactive opening phase. This construction also uses the 3-round
FLS protocol defined in Appendix A.2.1 as a main ingredient. If the underlying SOA-secure scheme
is statistically binding, then resulting protocol is a cZK proof system with pre-processing, while,
if it is only computationally binding, then resulting protocol is a cZK argument system with pre-
processing.

As a corollary, due to our (3, 1)-round SOA-secure computationally binding scheme based on
NBB use of OWPs, we have a cZK argument system with pre-processing, where the pre-processing
takes 3 rounds and the proof phase is non-interactive.

The construction (P,V) follows below as Protocol 6 for a language L.
Let SOACom = (Ssoa,Rsoa) be a SOA-secure commitment scheme with non-interactive opening

phase. Let G be a pseudo-random generator (PRG). Let FLS = (FLS1,FLS2,FLS3) be the special
WIPoK protocol described in Section A.2.1 for the following language ΛL,G: (x, y) ∈ ΛL,G if x ∈ L
OR there exists a seed s such that y = G(s).

Protocol 6. [(P,V)]

Pre-processing phase.

Common input: 1n.

P1 : 1. Sample σP
$← {0, 1}f(n).

2. Run 〈Ssoa(com, σP ),Rsoa(recv)〉 with V1; if Ssoa aborts, then abort.
3. Run FLS1 with V1.

V1 : 1. If Rsoa aborts, then abort; otherwise, sample σV
$← {0, 1}f(n) and send it to P1.

2. Run FLS2 with P1.

Set stateP = stateS and stateV = (σV , stateR), where stateS and stateR are the states of Ssoa and
Rsoa, respectively, after the commitment phase.
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Proof Phase.

Common input: x ∈ L.
P2′s input: w ∈ RL(x), stateP .
V2′s input: stateV .

P2 : If the pre-processing phase is successfully completed, then:

1. run 〈Ssoa(open),Rsoa(open)〉 with V2;
2. send σ = σP ⊕ σV to V2;
3. run FLS3 for the theorem (x, σ) ∈ ΛL,G using the witness w with V2.

V2 : Check whether Rsoa did not abort in the opening phase, FLS3 is accepting, and σ = σ′P ⊕ σV ,
where σ′P is the string received correctly by Rsoa. If so, then output accept; otherwise, output
⊥.

Assuming that FLS is a specialWIPoK for ΛL,G, in the following, we prove that if SOACom is a
statistically binding SOA-secure commitment scheme, then (P,V) is a cZK proof system with pre-
processing for the language L. Also, on the other hand, if SOACom is an SOA-secure commitment
scheme that is only computationally binding, then (P,V) is a cZK argument system with pre-
processing for the language L.

Theorem 7 ((P,V) is a cZK proof/argument system with pre-processing.). If SOACom is a sta-
tistically binding (resp., computationally binding) SOA-secure commitment scheme and FLS is a
special WIPoK for ΛL,G, then (P,V) is a cZK proof (resp., argument) system with pre-processing.

Proof Sketch:

• Completeness. Completeness directly follows from that of the commitment scheme SOACom
and the WIPoK, FLS.

• Soundness. Soundness follows from the binding property of SOACom and the proof of knowl-
edge property of the FLS protocol, (i.e., a valid witness can be extracted from what any prover
in FLS protocol is able to prove). Assume for contradiction that there exists an adversarial
prover P∗ that breaks soundness of (P,V) with non-negligible probability; i.e., P∗ interacts
with V and produces an accepting transcript for x 6∈ L. Then we can construct an adversarial
sender S∗soa that can break binding of SOACom also with non-negligible probability. Intu-
itively, the reduction works as follows. S∗soa first interacts with P∗ by running the code of the
honest verifier V. From the proof of knowledge property of the FLS protocol, if V accepts
the proof then, with all but negligible probability, there exists a witness for (x, σ) ∈ ΛL,G for
which the FLS proof is given. Since x 6∈ L, the witness is s such that σ = G(s). Now, S∗soa
rewinds P∗ to a point just before V sent σV and continues to interact with the same messages
as in the main thread except for using σ′V

$← {0, 1}f(n) sampled with fresh randomness. S∗soa
continues to rewind P∗ for at most η many times, until P∗ opens to a string different from
the one it opened in the main thread. We can argue that if η = η(n) is set to be a polynomial
that is large enough (depending on the success probability of P∗), then, with non-negligible
probability, S∗soa obtains openings to two distinct values within η rewinds. This is because,
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since in each rewinding S∗soa chooses σ′V freshly at random, and if the opened string σP re-
mains the same in every rewinding, then P∗ can succeed at most with negligible probability
as σ = G(s) for random σ only with negligible probability. Since we assume that P∗ succeeds
with non-negligible probability, we have that S∗soa obtains openings to two distinct strings σP
and σ′P in η rewinds with non-negligible probability, thus breaking binding of SOACom.

• Concurrent Zero-Knowledge. We argue that (P,V) satisfies the property of concurrent
zero-knowledge by showing the existence of an expected polynomial time simulator algorithm
Sim. With any adversarial verifier V∗ = (V1∗,V2∗), Sim interacts in the pre-processing phase
by running the simulator of SOACom in the commitment phase. Meanwhile, Sim also interacts
in the first two rounds of the FLS protocol in the same way as in (P,V). Once pre-processing
phases of all q concurrent executions are completed, to complete the proof phase of the i-th
session, Sim first samples a random seed s′i, sets σ

′
i = G(s′i), and computes a proof π′i for the

statement (xi, σ′i) ∈ ΛL,G. Then, it computes the string it needs to open to, σiP , as σ
i
P = σ′i⊕σiV

and runs the simulator of SOACom in the decommitment phase to open the commitment run
in the i-th session to σiP . Finally, Sim outputs the output of the SOACom’s simulator, {σiV }i∈[q]

sent by V∗, the messages of the FLS protocol, and {(σ′i, π′i)}i∈[q]. By a hybrid argument, we can
show that the output of Sim is indistinguishable from the view output by V∗. In particular, if
the output of the simulator of SOACom is statistically (resp., computationally) indistinguish-
able from the interaction of the honest sender with any (possibly malicious) receiver, and if
FLS proof is statistically (resp., computationally) witness-indistinguishable, then the simu-
lated output produced by Sim is also statistically (resp., computationally) indistinguishable
from the view of any (possibly malicious) verifier that interacts with the honest prover P in
q concurrent sessions.

Observe that FLS can be run in parallel with SOACom (i.e., 1st round of FLS played along with
the 2nd round of SOACom). Therefore we have that when SOACom is our (3, 1)-round scheme based
on NBB use of OWFs the pre-processing phase can be run in 3 rounds and the opening phase in
one round only. Moreover, in the 1st round of the pre-processing phase, the receiver can also send
the first round of Naor’s commitment scheme, therefore FLS can be run under the sole assumptions
that OWFs exist. We have therefore the following corollary.

Corollary 2. There exists a concurrent non-interactive zero-knowledge argument system with 3
rounds of pre-processing for L based on non-black-box use of OWFs.

Then, by observing that in the 1st round of the pre-processing phase the receiver can send
the first round of a 2-round statistically hiding commitment scheme, we have that FLS can be
implemented so that it is a statistical WIPoK and that SOACom can be implemented to yield a
statistically hiding SOA-secure commitment scheme. We have therefore the following corollary.

Corollary 3. There exists a concurrent statistical non-interactive zero-knowledge argument system
with 3 rounds of pre-processing for L based on the existence of collision-resistant hash functions.
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