
Minimalism in Cryptography: The

Even-Mansour Scheme Revisited

Orr Dunkelman1,2, Nathan Keller2, and Adi Shamir2

1 Computer Science Department
University of Haifa
Haifa 31905, Israel

orrd@cs.haifa.ac.il
2 Faculty of Mathematics and Computer Science

Weizmann Institute of Science
P.O. Box 26, Rehovot 76100, Israel

{nathan.keller,adi.shamir}@weizmann.ac.il

Abstract. In this paper we consider the following fundamental prob-
lem: What is the simplest possible construction of a block cipher which
is provably secure in some formal sense? This problem motivated Even
and Mansour to develop their scheme in 1991, but its exact security re-
mained open for more than 20 years in the sense that the lower bound
proof considered known plaintexts, whereas the best published attack
(which was based on differential cryptanalysis) required chosen plain-
texts. In this paper we solve this long standing open problem by describ-
ing the new Slidex attack which matches the T = Ω(2n/D) lower bound
on the time T for any number of known plaintexts D. Once we obtain
this tight bound, we can show that the original two-key Even-Mansour
scheme is not minimal in the sense that it can be simplified into a single
key scheme with half as many key bits which provides exactly the same
security, and which can be argued to be the simplest conceivable provably
secure block cipher. We then show that there can be no comparable lower
bound on the memory requirements of such attacks, by developing a new
memoryless attack which can be applied with the same time complexity
but only in the special case of D = 2n/2. In the last part of the paper
we analyze the security of several other variants of the Even-Mansour
scheme, showing that some of them provide the same level of security
while in others the lower bound proof fails for very delicate reasons.

Keywords: Even-Mansour block cipher, whitening keys, minimalism, prov-
able security, tight security bounds, slide attacks, slidex attack.

1 Introduction

A major theme in cryptographic research over the last thirty years was the
analysis of minimal constructions. For example, many papers were published on
the minimal cryptographic assumptions which are necessary and sufficient in

order to construct various types of secure primitives. Other examples analyzed
the smallest number of rounds required to make Feistel structures with truly
random functions secure, the smallest possible size of shares in various types of
secret sharing schemes, and the simplest way to transform one primitive into
another by using an appropriate mode of operation. Since the vague notion
of conceptual simplicity only partially orders all the possible schemes, in many
cases we have to consider minimal schemes (which are local minima that become
insecure when we eliminate any one of their elements) rather than minimum
schemes (which are global minima among all the possible constructions).

In the case of stream ciphers, one can convincingly argue that the simplest
possible secure scheme is the one-time pad, since any encryption algorithm re-
quires a secret key, and XOR’ing is the simplest conceivable way to mix it with
the plaintext bits. The natural question we address in this paper is its dual:
What is the simplest possible construction of a block cipher which has a formal
proof of security?

This problem was first addressed by Even and Mansour [7, 8] in 1991. They
were motivated by the DESX construction proposed by Ron Rivest in 1984, in
which he proposed to protect DES against exhaustive search attacks by XOR’ing
two independent prewhitening and postwhitening keys to the plaintext and ci-
phertext (respectively). The resultant scheme increased the key size from 56 to
184 bits without changing the definition of DES and with almost no additional
complexity. The Even-Mansour scheme used such whitening keys but eliminated
the keyed block cipher in the middle, replacing it with a fixed random permu-
tation that everyone can share. The resultant scheme is extremely simple: To
encrypt a plaintext, XOR it with one key, apply to it a publicly known permu-
tation, and XOR the result with a second key.

To argue that the Even-Mansour scheme is minimal, its designers noted in [8]
that eliminating either one of the two XOR’ed keys makes it easy to invert the
known effect of permutation on the plaintext or ciphertext, and thus to recover
the other key from a single known plaintext/ciphertext pair. Eliminating the
permutation is also disastrous, since it makes the scheme completely linear.
However, as we show in this paper, the two-key EM block cipher is not minimal
in the sense that it can be further simplified into a single-key variant with half
as many key bits which has exactly the same provable security.

To compare various variants of the Even-Mansour scheme, we need tight
bounds on the exact level of security they provide. Unfortunately, all the bounds
published so far are not tight in the sense that the lower bound allows known
message attacks whereas the best known upper bounds require either chosen
plaintexts or an extremely large number of known plaintexts.

One of the main tools used in previous attacks was the slide attack [3]. Origi-
nally, slide attacks were developed in order to break iterated cryptosystems with
an arbitrarily large number of rounds by exploiting their self similarity under
small shifts. The attack searched the given data for a slid pair of encryptions
which have identical values along their common part (see Section 3.2 for formal
definitions). For each candidate pair, the attack uses the two known plaintexts

and two known ciphertexts to analyze the two short non-common parts in order
to verify the assumption that the two encryptions are indeed a slid pair, and if so
to derive some key material. A different variant of this attack, called slide with a

twist [4], tries to find a slid pair consisting of one encryption and one decryption,
which have identical values along their common parts (i.e., the attack considers
both shifts and reversals of the encryption rounds). In both cases, the existence
of slid pairs is a random event which is expected to have a sharp threshold: Re-
gardless of whether we use known or chosen messages, we do not expect to find
any slid pairs if we are given fewer than 2n/2 encryptions where n is the size of
the internal state.1 Consequently, we cannot apply the regular or twisted slide
attack unless we are given a sufficiently large number of encryptions, even if we
are willing to trade off the lower amount of data with higher time and space
complexities.

In this paper we propose the slidex attack, which is a new extended version
of the slide attack that can efficiently use any amount of given data, even when
it is well below the 2n/2 threshold for the existence of slid pairs. Its main novelty
is that we no longer require equality between the values along the common part,
but only the existence of some known relationship between these values. By
using this new attack, we can finally close the gap between the upper and lower
bounds on the security of the Even-Mansour scheme, solving this long standing
open problem.

To demonstrate the usefulness and versatility of the new slidex attack, we
apply it to several additional schemes which are unrelated to Even-Mansour. In
particular, we show how to break 20 rounds of GOST using 233 known plaintexts
in 277 time, and how to use the complementation property of DES in order to
attack it with a slide attack even when it is surrounded by Vaudenay’s decorre-
lation modules.

The paper is organized as follows. In Section 2 we introduce the Even-
Mansour scheme, describe its formal proof of security, and survey all the previ-
ously published attacks on the scheme. In Section 3 we describe the known types
of slide attacks, and explain why they cannot efficiently exploit a small number
of known plaintexts. We then introduce our new Slidex attack, and use it to
develop a new upper bound for the security of the Even-Mansour scheme which
matches the proven lower bound for any number of known plaintexts. In Sec-
tion 4 we develop our new variant of the Even-Mansour scheme, which is strictly
simpler but has the same level of provable security. In Section 5 we analyze the
security of several other variants of the Even-Mansour scheme, demonstrating
both the generality and the fragility of its formal proof of security. Another lim-
itation of the proof technique is described in Section 6, where we show that no
comparable lower bound on the memory complexity of our attacks can exist.
Finally, in the Appendix we introduce some generalizations of the slidex attack
(such as the mirror slide attack), and show how to use them in order to improve

1 We note that for specific block cipher structures, e.g., Feistel networks, a dedicated
slide attack can require fewer than 2n/2 plaintexts. However, there is no such method
that works for general structures.

the best known attacks on several variants of well known block ciphers such as
GOST and DES.

2 The Even-Mansour Scheme

In this section we present the Even-Mansour (EM) scheme, review its security
proof given in [8] and describe previous attacks on it presented in [5] and [4].

2.1 Definition of the EM Scheme and its Notation

The Even-Mansour scheme is a block cipher which consists of a single publicly
known permutation F over n-bit strings, preceded and followed by n-bit whiten-
ing keys K1 and K2, respectively, i.e.,

EMF

K1,K2
(P) = F(P ⊕K1)⊕K2.

It is assumed that the adversary is allowed to perform two types of queries:

– Queries to a full encryption/decryption oracle, called an E-oracle, that com-
putes either E(P) = EMF

K1,K2
(P) or D(C) = (EMF

K1,K2
)−1(C).

– Queries to an F -oracle, that computes either F(x) or F−1(y).

The designers of EM considered two types of attacks. In the first type, called
existential forgery attack, the adversary tries to find a new pair (P,C) such that
E(P) = C. The second type is the more standard security game, where the
adversary tries to decrypt a message C, i.e., to find P for which E(P) = C.
The data complexity of an attack on the scheme is determined by the number D
of queries to the E-oracle and their type (i.e., known/chosen/adaptively chosen
etc.), and the time complexity of the attack is lower bounded by the number T of
queries to the F -oracle.2 The success probability of an attack is the probability
that the single guess it produces (either a pair (P,C) for the first type of attack,
or a plaintext P for the second type) is correct.

2.2 The Lower Bound Security Proof

The main rigorously proven result in [8] was an upper bound of O(DT/2n) on
the success probability of any cryptanalytic attack (of either type) on EM that
uses at most D queries to the E-oracle and T queries to the F -oracle. This
result implies that in order to attack EM with a constant probability of success,
we must have DT = Ω(2n). Since this security proof is crucial for some of our
results, we briefly describe its main steps.

2 In concrete implementations, this oracle is usually replaced by some publicly known
program which the attacker can run on its own. In this case the type of query (e.g.,
whether the inputs are adaptively chosen or not) can determine whether the attack
can be parallelized on multiple processors, but we ignore such low level details in
our analysis.

The proof requires several definitions. Consider a cryptanalytic attack on EM,
and assume that at some stage of the attack, the adversary already performed
s queries to the E-oracle and t queries to the F -oracle, and obtained sets S and
T of E-pairs and F -pairs, respectively, i.e.,

S = {(Pi, Ci)}i=1,...,s, and T = {(Xj , Yj)}j=1,...,t.

We say that the key K1 is bad with respect to the sets of queries S and T , if
there exist i, j such that Pi ⊕ K1 = Xj. Otherwise, K1 is good with respect
to S, T . Intuitively, a good key is one whose feasibility can not be deduced
from the available data, whereas a bad key is one whose feasibility has to be
analyzed further (but not necessarily discarded). Similarly, K2 is bad w.r.t. S, T
if there exist i, j such that Yj ⊕ K2 = Ci, and K2 is good otherwise. The key
K = (K1,K2) is good with respect to S, T if both K1 and K2 are good. It is easy
to show that the number of good keys w.r.t. S and T is at least 22n − 2st · 2n. A
pair (K = (K1,K2),F) is consistent w.r.t. S and T if for any pair (Pi, Ci) ∈ S we
have Ci = K2⊕F(Pi⊕K1), and for any pair (Xj , Yj) ∈ T , we have F(Xj) = Yj .

The proof consists of two main steps.

1. The first step shows that all good keys are, in some sense, equally likely to
be the correct key. Formally, if the probability over the keys and over the
permutations is uniform, then for all S, T , the probability

Pr
K,F

[

K = k
∣

∣

∣
(K,F) is consistent with S, T

]

is the same for any key k ∈ {0, 1}2n that is good with respect to S, T .
We present the proof of this step, since it will be crucial in the sequel. It
follows from Bayes’ formula that it suffices to prove that the probability

p = Pr
K,F

[

(K,F) is consistent with S, T
∣

∣

∣
K = k

]

(1)

is the same for all good keys. Given a good key k = (k1, k2), it is possible
to transform the set S of E-pairs to an equivalent set S′ of F -pairs by
transforming the E-pair (Pi, Ci) to the F -pair (Pi ⊕ k1, Ci ⊕ k2). Since the
key k is good, the pairs in S′ and T do not overlap, and hence p is simply
the probability of consistency of a random permutation F with s + t given
distinct input/output pairs. This probability clearly does not depend on k,
which proves the assertion.

2. The second step shows that the success probability of any attack is bounded
by the sum of the probability that in some step of the attack, the right key
becomes a bad key, and the probability that the adversary can successfully
generate a “new” consistent E-pair (P,C) if the right key is still amongst
the good keys. The first probability can be bounded by 4DT/(2n − 2DT),
and the second probability can be bounded by 1/(2n −D − T). Hence, the
total success probability of the attack is bounded by O(DT/2n). We omit
the proof of this step since it is not used in the sequel.

We note that obtaining non-trivial information about the key (e.g., that the
least significant bit of the K1 is zero, or the value of K1⊕K2), is also covered by
this proof. Hence, throughout the paper we treat such leakage of information as
a “problem” in the security of the construction (even if the exact keys are not
found).

2.3 Previous Attacks on the Even-Mansour Scheme

The first proposed attack on the Even-Mansour scheme was published by Joan
Daemen at Asiacrypt 1991 [5]. Daemen used the framework of differential crypt-
analysis [2] to develop a chosen plaintext attack which matched the Even-Mansour
lower bound for any amount of given data. The approach is to pickD pairs of cho-
sen plaintexts whose XOR difference is some nonzero constant ∆. This plaintext
difference is preserved by the XOR with the prewhitening key K1, and simi-
larly, the ciphertext difference is preserved by the XOR with the postwhitening
key K2. For a known permutation F , most combinations of input and output
differences suggest only a small number of possible input and output values,
but it is not easy to find them. To carry out the attack, all we have to do is
to sample 2n/D pairs of inputs to F whose difference is ∆, and with constant
non-negligible probability we can find an output difference which already exists
among the chosen data pairs. This equality suggests actual input and output
values to/from F for that pair, and thus recovers the two keys.

This attack matches the time/data relationship of the lower bound, but it
is not tight since it requires chosen plaintexts, whereas the lower bound allows
known plaintexts. This discrepancy was handled ten years later by a new at-
tack called slide with a twist which was developed by Alex Biryukov and David
Wagner, and presented at Eurocrypt 2000 [4]. By taking two Even-Mansour
encryptions, sliding one of them and reversing the other, they showed how to
attack the scheme with known instead of chosen plaintexts.3 However, in or-
der to find at least one slid pair, their attack requires at least Ω(2n/2) known
plaintext/ciphertext pairs, and thus it could not be applied with a reasonable
probability of success given any smaller number of known pairs.

These two cryptanalytic attacks were thus complementary: One of them
matched the full time/data tradeoff curve but required chosen plaintexts, while
the other could use known plaintexts but only if at least Ω(2n/2) of them were
given. In the next section we present the new slidex technique that closes this
gap: it allows to use any number of known plaintexts with the same time/data
tradeoff as in the lower bound proof, thus providing an optimal attack on the
Even-Mansour scheme.

3 The slide with a twist attack on EM is described in detail in Section 3.1.

3 The Slidex Attack and a Tight Bound on the Security

of the Even-Mansour Scheme

In this section we present the new Slidex attack and use it to obtain a tight bound
on the security of the Even-Mansour scheme. We start with a description of the
slide with a twist attack on EM [4] which serves as a basis for our attack, and
then we present the slidex technique and apply it to EM. For more information
on slide attacks, we refer the reader to [1, 3, 4].

3.1 The Slide with a Twist Attack

The main idea of the slide with a twist attack on EM is as follows. Assume that
two plaintexts P, P ∗ satisfy

P ⊕ P ∗ = K1.

In such a case, we have

E(P) = F(P ⊕K1)⊕K2 = F(P ∗)⊕K2,

and similarly,

E(P ∗) = F(P ∗ ⊕K1)⊕K2 = F(P)⊕K2

(see Figure 1(a)). Hence,

E(P)⊕ E(P ∗) = F(P)⊕F(P ∗),

or equivalently,

E(P)⊕F(P) = E(P ∗)⊕F(P ∗).

This relation allows to mount the following attack:

1. Query both the E-oracle and the F -oracle at the same 2(n+1)/2 known values
P1, P2,

4 Store in a hash table the pairs (E(Pi)⊕F(Pi)), i), sorted by the
first coordinate.

2. For each collision in the table, i.e., E(Pi) ⊕ F(Pi) = E(Pj) ⊕ F(Pj), check
the guess K1 = Pi ⊕ Pj and K2 = E(Pi)⊕F(Pj).

By the birthday paradox, it is expected that the data set contains a slid pair,
i.e., a pair satisfying Pi ⊕ Pj = K1, with a non-negligible constant probability.
For a random pair (Pi, Pj), the probability that E(Pi)⊕F(Pi) = E(Pj)⊕F(Pj)
is 2−n, and thus, only a few collisions are expected in the table. These collisions
include the collision induced by the slid pair, which suggests the correct values of
K1 and K2. The data complexity of the attack is D = 2(n+1)/2 known plaintexts,
and the number of queries to F it requires is T = 2(n+1)/2. Thus, DT = 2n+1,
which matches the lower bound up to a constant factor of 2.

4 Formally, the adversary obtains known plaintext/ciphertext pairs (Pi, E(Pi)) and
queries the F-oracle at the value Pi.

(b)(a)

F F

K2 K2

⊕ ⊕

C C∗

V V ∗

⊕ ⊕

K1 K1

P P ∗

∆ ∆

F F

K2 K2

⊕ ⊕

C C∗

P ∗ P

⊕ ⊕

K1 K1

P P ∗

Fig. 1. (a) A twisted-slid pair; (b) A slidex pair

3.2 The New Slidex Attack

The slidex attack is an enhancement of the slide with a twist technique, which
makes it possible to use a smaller number of known plaintexts (i.e., queries to
the E-oracle), in exchange for a higher number of queries to the F -oracle. The
basic idea of the attack is as follows: Assume that a pair of plaintexts P, P ∗

satisfies
P ⊕ P ∗ = K1 ⊕∆,

for some ∆ ∈ {0, 1}n. In such a case,

E(P) = F(P ⊕K1)⊕K2 = F(P ∗ ⊕∆)⊕K2,

and similarly,

E(P ∗) = F(P ∗ ⊕K1)⊕K2 = F(P ⊕∆)⊕K2

(see Figure 1(b)). Hence,

E(P)⊕ E(P ∗) = F(P ∗ ⊕∆)⊕F(P ⊕∆),

or equivalently,

E(P)⊕F(P ⊕∆) = E(P ∗)⊕F(P ∗ ⊕∆).

This allows to mount the following attack, for any d ≤ n:

1. Query theE-oracle at 2(d+1)/2 arbitrary values (i.e., known plaintexts) P1, P2,
2. Choose 2n−d arbitrary values ∆1, ∆2, . . . of ∆. For each ∆ℓ, query the F -

oracle at the values {Pi ⊕∆ℓ}i=1,2,...,2(d+1)/2 , store in a hash table the pairs
(E(Pi) ⊕ F(Pi ⊕ ∆ℓ)), i), sorted by the first coordinate, and search for a
collision.

Known Plaintext Attacks

Attack Data Time Memory Tradeoff

Guess and determine [8] 2 2n 2 —

Slide with a twist [4] 2n/2 2n/2 2n/2 —

Slidex (Sect. 3.2) 2d 2n−d 2d DT = 2n

Chosen Plaintext Attacks

Attack Data Time Memory Tradeoff

Differential [5] 2d 2n−d 2d DT = 2n

Adaptive Chosen Plaintext Attacks

Attack Data Time Memory Tradeoff

Slidex (Sect. 6) 2d 2n−d 1 DT = 2n

(D ≥ 2n/2)

Table 1. Comparison of Results on the Even-Mansour scheme

3. For each collision in any of the hash tables, i.e., when Pi, Pj for which E(Pi)⊕
F(Pi ⊕ ∆ℓ) = E(Pj) ⊕ F(Pj ⊕ ∆ℓ) are detected, check the guess K1 =
Pi ⊕ Pj ⊕∆ℓ and K2 = E(Pi)⊕F(Pj ⊕∆ℓ).

For each triplet (Pi, Pj , ∆ℓ), the probability that Pi ⊕ Pj ⊕∆ℓ = K1 is 2−n.
Since the data contains 2d · 2n−d = 2n such triplets, it is expected that with a
non-negligible constant probability the data contains at least one slidex triplet

(i.e., a triplet for which Pi ⊕ Pj ⊕ ∆ℓ = K1). On the other hand, since the
probability of a collision in each hash table is 2d−n and there are 2n−d tables, it
is expected that only a few collisions occur, and one of them suggests the correct
key guess.

The number of queries to the E-oracle in the attack is D = 2(d+1)/2, and the
number of queries to the F -oracle is T = 2n−(d−1)/2. Thus, DT = 2n+1, which
matches the lower bound of [8] up to a constant factor of 2.

A summary of the complexities of all the old and new attacks on the Even-
Mansour scheme appears in Table 1.

4 The New Single-Key Even-Mansour Scheme

In this section we present the single-key variant of the Even-Mansour scheme
(abbreviated in the sequel as “SEM”), which has the same level of security while
using only n secret key bits (compared to 2n bits in EM). First we define the
scheme and show that the security proof of [8] can be adapted to yield a similar
lower bound on its security, and then we present a simple attack on the new
scheme which matches the lower bound, thus proving its optimality.

4.1 Definition of the Scheme and its Security Proof

Given a publicly known permutation F over n-bit strings and an n-bit secret
key K, the Single-Key Even-Mansour (SEM) scheme is defined as follows:

SEMF

K (P) = F(P ⊕K)⊕K.

The attack model is the same as in the EM scheme. That is, the adversary can
query an encryption/decryption E-oracle and an F -oracle, and the complexity
of an attack is determined by the number D of queries to the E-oracle and their
type (known/chosen etc.), and the number T of queries to the F -oracle.

Surprisingly, the security proof of the EM scheme [8] holds almost without a
change when we apply it to the single-key SEM variant. The only modification
we have to make is to define a key K as bad with respect to sets of oracle queries
S and T if there exist i, j such that either Pi ⊕K = Xj or Ci ⊕ K = Yj , and
K as good otherwise. It is easy to see that if |S| = s and |T | = t, then at least
2n−2st keys are still “good” keys. Exactly the same proof as for EM shows that
all the good keys are equally likely to be the right key, and the bounds on the
success probability of an attack apply without change for SEM.

Therefore, for any successful attack on SEM, we must have DT = Ω(2n),
which means that SEM provides the same security as EM, using only half as
many key bits.

4.2 A Simple Optimal Attack on SEM

The slidex attack presented in Section 3 applies also to SEM, and is optimal
since it uses only known plaintexts and matches everywhere the tradeoff curve
of the security proof.

However, in the case of SEM, there is an even simpler attack (though, with
the same complexity). Consider an encryption of a plaintext P through SEM,
and denote the intermediate values in the encryption process by:

x = P, y = P ⊕K, z = F(P ⊕K), w = E(P) = F(P ⊕K)⊕K.

Note that x ⊕ w = y ⊕ z. This allows to mount the following simple attack,
applicable for any D ≤ 2n:

1. Query the E-oracle at D arbitrary values P1, P2, . . . , PD and store in a hash
table the values (Pi ⊕ E(Pi), i), sorted by the first coordinate.

2. Query the F -oracle at 2n/D arbitrary values X1, X2, . . . , X2n/D, insert the
values Xj ⊕F(Xj) to the hash table and search for a match.

3. If a match is found, i.e., Pi ⊕ E(Pi) = Xj ⊕ F(Xj), check the guess K =
Pi ⊕Xj.

The analysis of the attack is exactly the same as that of the slide with a twist
attack (see Section 3.1).

5 The Security of Other Variants of the Even-Mansour

Scheme

In this section we consider two natural variants of the Even-Mansour scheme,
and analyze their security.

The first variant replaces the XOR operations with modular additions, which
are not involutions and are thus immune to standard slide-type attacks. However,
we show that a new addition slidex attack can break it with the same complexity
as that of the slidex attack on the original EM scheme.

The second variant considers the case in which the mapping F is chosen as an
involution. This is motivated by the fact that in many “real-life” implementations
of the EM scheme we would like to instantiate F by a keyless variant of a block
cipher. Since in Feistel structures and many other schemes (e.g., KHAZAD,
Anubis, Noekeon) the only difference between the encryption and decryption
processes is the key schedule, such schemes become involutions when we make
them keyless. In this section we show that this seemingly mild weakness of F
can be used to mount a devastating attack on the EM scheme. In particular,
we show that even when F is chosen uniformly at random among the set of
all the possible involutions on n-bit strings, the adversary can recover the value
K1⊕K2 with O(2n/2) queries to the E-oracle and no queries at all (!) to the F -
oracle. This clearly violates the lower bound proof that no significant information
about the key can be obtained unlessDT = Ω(2n) (which was proven for random
permutations but seems to be equally applicable to random involutions), and is
achieved by a new variant of the slide attack, which we call the mirror slide

attack.

5.1 Even-Mansour with Addition

Consider the following scheme:

AEMF

K1,K2
(P) = F(P +K1) +K2,

where F is a publicly known permutation over n-bit strings, and ‘+’ denotes
modular addition in the additive group Z2n . In the sequel, we call it “Addition
Even-Mansour” (AEM).

It is clear that the lower bound security proof of EM holds without any
change for AEM. Similarly, it is easy to see that Daemen’s differential attack
on EM [5] can be easily adapted to AEM, by replacing XOR differences with
modular differences.

It may seem that the new variant has better security with respect to slide-
type attacks. As noted in [4], ordinary slide attacks can be applied only for
ciphers in which the secret key is inserted through a symmetric operation such
as XOR, and not through modular addition. In the specific case of EM, the slide
with a twist attack relies on the observation that if for two plaintexts P, P ∗, we
have P ∗ = P ⊕ K1, then surely, P = P ∗ ⊕ K1 as well. This observation fails
for AEM: If P ∗ = P + K1, then P ∗ + K1 = P + 2K1 6= P (unless K1 = 0 or

K = 2n−1). The slidex attack presented in Section 3.2 fails against AEM for
the same reason. Hence, it seems that none of the previously known attacks can
break AEM in the known plaintext model.

We present an extension of the slidex attack, which we call addition slidex,
which can break AEM with data complexity of D known plaintexts and time
complexity of T F -oracle queries, for anyD,T such thatDT = 2n, hence showing
that the security of AEM is identical to that of EM.

The basic idea of the attack is as follows: Assume that a pair of plaintexts
P, P ∗ satisfies P + P ∗ = −K1 +∆. (Note that somewhat counter intuitive, we
consider the modular sum of the plaintexts rather than their modular differ-
ence!). In such a case,

E(P) = F(P +K1) +K2 = F(−P ∗ +∆) +K2,

and similarly,

E(P ∗) = F(P ∗ +K1) +K2 = F(−P +∆) +K2.

Hence,

E(P)− E(P ∗) = F(−P ∗ +∆)−F(−P +∆),

or equivalently,

E(P) + F(−P +∆) = E(P ∗) + F(−P ∗ +∆). (2)

Equation (2) allows us to mount an attack similar to the slidex attack, with the
only change that instead of the values (E(Pi) ⊕ F(Pi ⊕ ∆)), i), the adversary
stores in the hash table the values (E(Pi) + F(−Pi +∆)), i).

We note that actually, the slidex attack can be considered as a special case
of the addition slidex attack, since the addition slidex attack clearly applies to
modular addition in any group, and the XOR operation corresponds to addition
in the group Z2.

5.2 Even-Mansour with a Random Involution as the Permutation

Let Involutional Even-Mansour (IEM) be the following scheme:

IEMI

K1,K2
(P) = I(P ⊕K1)⊕K2,

where I is chosen uniformly at random amongst the set of involutions on n-bit
strings. We present a new technique, which we call mirror slide, that allows to
recover the value K1⊕K2 using 2n/2 queries to the E-oracle, and with no queries
to the I-oracle.

The idea of the technique is as follows. Consider two input/output pairs
(P,C), (P ∗, C∗) for IEM. Assume that we have

P ⊕ C∗ = K1 ⊕K2. (3)

In such case,
P ⊕K1 = C∗ ⊕K2,

and hence, since I is an involution,

I(P ⊕K1) = I−1(C∗ ⊕K2).

However, by the construction we have

C = I(P ⊕K1)⊕K2, and P ∗ = I−1(C∗ ⊕K2)⊕K1,

and thus,
C ⊕K2 = P ∗ ⊕K1,

or equivalently,
P ∗ ⊕ C = K1 ⊕K2 = P ⊕ C∗,

where the last equality follows from Equation (3). Therefore, assuming that
P ⊕ C∗ = K1 ⊕K2, we must have:

P ⊕ C = P ∗ ⊕ C∗.

This allows to mount a simple attack, similar to the slide with a twist attack.
In the attack, the adversary queries the E-oracle at 2(n+1)/2 arbitrary values
P1, P2, . . ., and stores in a hash table the pairs (E(Pi) ⊕ Pi, i), sorted by the
first coordinate. It is expected that only a few collisions exist, and that with
a non-negligible probability, one of them results from a pair (Pi, Pj), for which
Pi ⊕ E(Pj) = K1 ⊕K2.

Therefore, the attack supplies the adversary with only a few possible values
of K1 ⊕ K2, after performing 2(n+1)/2 queries to the E-oracle and no queries
at all to the I-oracle. As we show later, the adversary cannot obtain K1 or
K2 themselves (without additional effort or data), but at the same time, the
adversary does learn a nontrivial information about the key, which contradicts
the security proof of the original EM scheme.

Where the Security Proof Fails One may wonder, which part of the formal
security proof fails when F is an involution. It turns out that the only part that
fails is the argument in the first step of the proof showing that all good keys are
equally likely to be the right key. Recall that in order to show this, one has to
show that the probability

p = Pr
K,F

[(K,F) is consistent with S, T |K = k]

is the same for all good keys. In the case of EM, p is shown to be the probability
of consistence of a random permutation F with s+ t given distinct input/output
pairs, which indeed does not depend on k (since such pairs are independent). In
the case of IEM, the input/output pairs may be dependent, since it may occur
that an encryption query to the E-oracle results in querying I at some value x,

while a decryption query to the E-oracle results in querying I−1 at the same
value x. Since I is an involution, these queries are not independent and thus,
the probability p depends on whether such dependency has occurred, and this
event does depend on k. An examination of the mirror slide attack shows that
this property is exactly the one exploited by the attack.

It is interesting to note that in the single-key case (i.e., for SEM where F
is an involution, which we denote by ISEM), such event cannot occur, as in
order to query I and I−1 at the same value, one must query E and E−1 at the
same value. Since in the single-key case, the entire construction is an involution,
such two queries result in the same answer for any value of the secret key, and
hence, do not create dependence on the key. It can be shown, indeed, that the
security proof does hold for ISEM and yields the same security bound, thus
showing that in the case of involutions, the single-key variant is even stronger
than the original two-key variant! Moreover, it can be noticed that in the case
of EM, after the adversary recovers the value K1 ⊕K2, the encryption scheme
becomes equivalent to a single-key Even-Mansour scheme with the key K1, i.e.,
E′(P) = I(P ⊕K1) ⊕K1. Thus, using two different keys in this case is totally
obsolete, and also creates a security flaw which can be deployed by an adversary
if the keys K1 and K2 are used also in other systems.

5.3 Addition Even-Mansour with an Involution as the Permutation

In this subsection we consider a combination of the two variants discussed in the
previous subsections, i.e., AEM where F is a random involution. We abbreviate
this variant as AIEM.

It can be easily shown that the mirror slide attack can be adapted to the case
of AIEM, by modifying the assumption to C∗−P = K1+K2, and the conclusion
to P +C = P ∗ +C∗. The attack allows to recover the value K1 +K2, and then
the scheme becomes equivalent to a conjugation EM scheme with a single key:
CISEM(P) = I(P +K1)−K1, and it can be shown that the security proof of
EM applies also to CISEM. Thus, the security of AEM under the assumption
that F is an involution is identical to that of the original EM.

An interesting phenomenon is that in the involution case, the security of
single-key AEM (which we denote by AISEM) is much worse than that of AIEM.
Indeed, the mirror slide attack allows to recover K1 +K1 = 2K1, and hence to
find K1 (up to the value of the MSB), which breaks the scheme completely. This
suggests that in the case of addition, the “natural” variant of single-key AEM
is the conjugation variant, i.e., CSEM(P) = F(P + K1) − K1, for which the
security proof of EM indeed applies even if F is an involution, as mentioned
above.

We list in Table 2 all 12 variants of Even-Mansour (single key/two keys, ran-
dom permutation/random involution, and whether the keys are XORed, added,
or conjugated). For each variant we list the obtainable security bound (if possi-
ble), and what attacks are applicable to match the bound.

F is a Random Permutation F is a Random Involution
Single Key Two Keys Single Key Two Keys

Pre/Post-Whitening XOR SEM EM SIEM IEM
Provable Security Bound DT ≥ 2n DT ≥ 2n DT ≥ 2n DT ≥ 2n

Best Attack Slidex (or Sect. 4.2) Slidex Slidex Mirror slide
(matches bound) (matches bound) (matches bound) Retrieves K1 ⊕K2

with D = 2n/2

Pre/Post-Whitening Addition ASEM AEM ASIEM AIEM
Provable Security Bound DT ≥ 2n DT ≥ 2n N/A DT ≥ 2n

Best Attack Addition Slidex Addition Slidex Addition Slidex Addition Slidex
(matches bound) (matches bound) Complete break Retrieves K1 +K2

D = 2n/2 with D = 2n/2

Conjugation Pre/Post-Whitening CSEM CEM CSIEM CIEM
Provable Security Bound DT ≥ 2n DT ≥ 2n N/A DT ≥ 2n

Best Attack Addition Slidex Addition Slidex Addition Slidex Addition Slidex
(matches bound) (matches bound) (matches bound) Retrieves K1 +K2

with D = 2n/2

Table 2. Summary of the Security of the 12 Even-Mansour Variants

6 Memoryless Attacks on the Even-Mansour Scheme

All previous papers on the Even-Mansour scheme, including the lower bounds
proved by the designers [8], Daemen’s attack [5], and Biryukov-Wagner’s slide
attack [4], considered only the data and time complexities of attacks, but not the
memory complexity. Analysis of the previously proposed attacks shows that in all
of them, the memory complexity is min{D,T }, where D is the data complexity
(i.e., the number of E-queries) and T is the time complexity (i.e., the number of
F -queries). Thus, it is natural to ask whether the memory complexity can also be
inserted into the lower bound security proofs, e.g., in the form M ≥ min(D,T).

In this section we show that such a general lower bound can not exist, by
constructing an attack with the particular data and time complexities ofO(2n/2),
and with only a constant memory complexity. The attack is a memoryless variant
of the slide with a twist attack described in Section 3.1. Recall that the main step
of the slide with a twist attack is to find collisions of the form E(P)⊕ F(P) =
E(P ∗)⊕F(P ∗).

We observe that such collisions can be found in a memoryless manner. We
treat the function

G : P → E(P)⊕F(P)

as a random function, and apply Floyd’s cycle finding algorithm [9] (or any of
its variants, such as Nivasch’s algorithm [12]) to find a collision in G. The attack
algorithm is as follows:

1. Query theE-oracle at a sequence ofO(2n/2) adaptively chosen values P1, P2, . . .,
such that P1 is arbitrary and for k > 1, Pk = E(Pk−1) ⊕ F(Pk−1). (Here,

after each query to the E-oracle, the adversary queries the F -oracle at the
same value and uses its answer in choosing the next query to the E-oracle).

2. Use Floyd’s cycle finding algorithm to find Pi, Pj such that E(Pi)⊕F(Pi) =
E(Pj)⊕F(Pj).

3. For each colliding pair, check the guess K1 = Pi ⊕ Pj and K2 = E(Pi) ⊕
F(Pj).

The analysis of the attack is identical to the analysis of the slide with a twist
attack. The memory complexity is negligible, and the data and time complexities
remain O(2n/2). Note that in this case we have to choose the queries to the
E-oracle adaptively, whereas in the slide with a twist attack we could choose
arbitrary queries to the E-oracle.

6.1 The Case D < 2n/2

If the amount of available E-oracle queries is smaller than 2n/2, the adversary
can still apply the slidex attack described in Section 3.2, but there seems to be
no way to convert it into a memoryless attack by using the strategy described
above. The main obstacle is that the adversary has to reuse the data many times
in order to construct the hash tables for different values of ∆, which can be done
only if the data is stored somewhere rather than used in an on-line manner which
discards it after computing the next plaintext. This leads to the following open
problem:

Problem 1. Does there exist a memoryless attack on the Even-Mansour scheme
with D E-oracle queries and 2n/D F -oracle queries, where D ≪ 2n/2?

A similar question can be asked with respect to the Single-Key Even-Mansour
scheme, where in addition to the slidex attack, the simple attack presented in
Section 4.2 can also break the scheme when D ≪ 2n/2. The attack of Section 4.2
can also be transformed to a memoryless attack, by defining a random function:

H(X) =

{

X ⊕ E(X), LSB(X) = 1
X ⊕F(X), LSB(X) = 0,

and using Floyd’s cycle finding algorithm to find a collision of H. In the case
when D and T are both close to 2n/2, with a constant probability such collision
yields a pair (X1, X2) such that X1 ⊕ E(X1) = X2 ⊕ F(X2), concluding the
attack. The problem is that if D ≪ 2n/2, then with overwhelming probability, a
collision in H is of the form X1 ⊕ F(X1) = X2 ⊕ F(X2), which is not useful to
the adversary. Therefore, we state an additional open problem:

Problem 2. Does there exist a memoryless attack on the Single-Key Even-Mansour
scheme with D E-oracle queries and 2n/D F -oracle queries, where D ≪ 2n/2?

If such memoryless attack can be found only for Single-Key EM and not for
the ordinary EM, this will show that at least in some respect, the use of an
additional key in EM does make the scheme stronger.

References

1. Biham, E., Dunkelman, O., Keller, N.: Improved Slide Attacks. In Biryukov, A.,
ed.: FSE. Volume 4593 of Lecture Notes in Computer Science., Springer (2007)
153–166

2. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Stan-
dard. Springer (1993)

3. Biryukov, A., Wagner, D.: Slide Attacks. In Knudsen, L.R., ed.: FSE. Volume
1636 of Lecture Notes in Computer Science., Springer (1999) 245–259

4. Biryukov, A., Wagner, D.: Advanced Slide Attacks. In Preneel, B., ed.: EURO-
CRYPT. Volume 1807 of Lecture Notes in Computer Science., Springer (2000)
589–606

5. Daemen, J.: Limitations of the Even-Mansour Construction. [10] 495–498
6. Dinur, I., Dunkelman, O., Shamir, A.: Improved Attacks on GOST. Technical

report, to appear (2011)
7. Even, S., Mansour, Y.: A Construction of a Cipher From a Single Pseudorandom

Permutation. [10] 210–224
8. Even, S., Mansour, Y.: A Construction of a Cipher from a Single Pseudorandom

Permutation. J. Cryptology 10(3) (1997) 151–162
9. Floyd, R.W.: Nondeterministic Algorithms. J. ACM 14(4) (1967) 636–644

10. Imai, H., Rivest, R.L., Matsumoto, T., eds.: Advances in Cryptology - ASI-
ACRYPT ’91, International Conference on the Theory and Applications of Cryp-
tology, Fujiyoshida, Japan, November 11-14, 1991, Proceedings. In Imai, H., Rivest,
R.L., Matsumoto, T., eds.: ASIACRYPT. Volume 739 of Lecture Notes in Com-
puter Science., Springer (1993)

11. Matsui, M.: The First Experimental Cryptanalysis of the Data Encryption Stan-
dard. In Desmedt, Y., ed.: CRYPTO. Volume 839 of Lecture Notes in Computer
Science., Springer (1994) 1–11

12. Nivasch, G.: Cycle detection using a stack. Inf. Process. Lett. 90(3) (2004) 135–140
13. Rivest, R.L.: DESX. Never published (1984)
14. Russian National Bureau of Standards: Federal Information Processing Standard-

Cryptographic Protection - Cryptographic Algorithm. GOST 28147-89 (1989)
15. Vaudenay, S.: Provable Security for Block Ciphers by Decorrelation. In Morvan,

M., Meinel, C., Krob, D., eds.: STACS. Volume 1373 of Lecture Notes in Computer
Science., Springer (1998) 249–275

16. Vaudenay, S.: Decorrelation: A Theory for Block Cipher Security. J. Cryptology
16(4) (2003) 249–286

17. Wagner, D.: A Generalized Birthday Problem. In Yung, M., ed.: CRYPTO. Volume
2442 of Lecture Notes in Computer Science., Springer (2002) 288–303

A The Mirror Slide Attack

In this section we present the general framework of the mirror slide attack, that
was presented in Section 5.2 in the special case of the Even-Mansour scheme. We
show that the mirror slide attack generalizes the slide with a twist attack [4] and
can be combined with the complementation slide attack [4]. We apply the new
technique to a 20-round variant of the block cipher GOST [14], and to variants
of the DESX cryptosystem [13] in which the subkeys of the internal DES cipher
are replaced by a 2-round or a 4-round self-similar sequence.

A.1 The General Framework

The mirror slide attack applies to block ciphers that can be decomposed as a
cascade of three sub-ciphers: E = E2 ◦E1 ◦E0, where the middle layer E1 is an
involution, i.e., E1 = (E1)

−1.5

Let E be such a cipher, and assume that for two plaintext/ciphertext pairs
(P,C), (P ∗, C∗), we have

E0(P) = E−1
2 (C∗). (4)

In such case, since E1 is an involution,

E1(E0(P)) = E−1
1 (E−1

2 (C∗)).

By the construction, this implies:

E−1
2 (C) = E1(E0(P)) = E−1

1 (E−1
2 (C∗)) = E0(P

∗). (5)

If Equation (4) holds (and thus, Equation (5) also holds, the pair (P, P ∗) is
called a mirror slid pair.

The way to exploit mirror slid pairs in a cryptanalytic attack is similar
to standard slide-type attacks [3, 4]: The adversary asks for the encryption of
2(n+1)/2 known plaintexts P1, P2, . . . (where n is the block size of E) and de-
notes the corresponding ciphertexts by C1, C2, For each pair (Pi, Pj), the
adversary assumes that it is a mirror slid pair and tries to solve the system of
equations:

{

Cj = E2(E0(Pi)),
Ci = E2(E0(Pj))

(which is equivalent to Equations (4) and (5)). If E0 and E2 are “simple enough”,
the adversary can solve the system efficiently and recover the key material used
in E0 and E2.

If the amount of subkey material used in E0 and E2 is at most n bits (in
total), it is expected that at most a few of the systems of equations generated
by the 2n plaintext pairs are consistent (since the equation system is a 2n-bit
condition). One of them is the system generated by the mirror slid pair, which
is expected to exist in the data with a constant probability since the probability
of a random pair to be a mirror slid pair is 2−n. Hence, the adversary obtains
only a few suggestions for the key, which contain the right key with a constant
probability. If the amount of key material used in E0 and E2 is bigger than n
bits, the adversary can still find the right key, by enlarging the data set by a
small factor and using key ranking techniques (exploiting the fact that the right
key is suggested by all mirror slid pairs, while the other pairs suggest “random”
keys).

The data complexity of the attack is O(2n/2) known plaintexts, and its time
complexity is O(2n) (assuming that the system of equations can be solved within
constant time).

5 We note that the attack can be applied also if E1 has some other symmetry proper-
ties, as shown in Appendix A.4 below.

We note that the attack can be applied even when E0 and E2 are not “simple”
ciphers using a meet-in-the-middle attack. If both E0 and E2 use κ ≤ n key bits
at most, one can try and find the solutions to the above set of equations in time
min{O(2n+κ), O(2n/2+2κ)}.6

A.2 The Slide with a Twist Attack and an Application to 20-Round
GOST

The first special case of the mirror slide framework we consider is where in the
subdivision of E, we have E2 = Identity. In such case, the system of equations
presented above is simplified to:

{

Cj = E0(Pi),
Ci = E0(Pj).

(6)

It turns out that in this case, the attack is reduced exactly to the slide with a
twist attack presented in [4]! (Though, in [4] the attack is described in a different
way).

A concrete example of this case is a reduced-round variant of the block cipher
GOST [14], that consists of the last 20 of its 32 rounds. It is well-known that the
last 16 rounds of GOST compose an involution, and hence, this variant can be
represented as E = E1 ◦ E0, where E0 is 4-round GOST, and E1 (which is the
last 16 rounds of GOST) is an involution.7 As shown in [6], a 4-round variant of
GOST can be broken with two plaintext/ciphertext pairs and time complexity
of 212 encryptions. Therefore, the mirror slide attack can break this 20-round
variant of GOST with data complexity of 233 known plaintexts (since the block
size of GOST is 64 bits), and time complexity of 265 · 212 = 277 encryptions.

We note that a similar attack was described in [4] using the slide with a twist
technique, but only on a 20-round version of a modified variant of GOST called
GOST⊕ in which the key addition is replaced by XOR.

A.3 Attacks on Block Ciphers Using Pre/Post Whitening Keys

The second special case we consider is when E0 and E2 consist of XOR with a
subkey, as is the case in involutional block ciphers using pre- and post-whitening

6 One can either take all plaintext/ciphertext pairs and partially encrypt the plaintext
under all 2κ keys for E0 and partially decrypt the ciphertext under all 2κ keys for E2

to find the mirror pairs. Another option is to try for each pair of plaintexts (Pi, Pj)
to solve the system

{

E−1

2
(Cj) = E0(Pi),

E−1

2
(Ci) = E0(Pj)

which can be easily done in a meet-in-the-middle approach in time 2κ for each
(Pi, Pj).

7 We note that due to the Feistel structure of GOST, we do not have E1 ◦ E1 = Id,
but rather E1 ◦ swap ◦E1 = Id. This can be handled easily by inserting swap to the
left hand side of Equation (6). The same correction can be performed in the other
Feistel constructions discussed in the sequel.

keys. In this case, the system of equations is simplified to:

{

Cj = Pi ⊕K0 ⊕K2,
Ci = Pj ⊕K0 ⊕K2,

where K0 and K2 are the subkeys used in E0 and E2, respectively. The system
of equations can be further simplified (by XORing the equations) to Cj ⊕ Ci =
Pi ⊕ Pj , or equivalently,

Pi ⊕ Ci = Pj ⊕ Cj .

As described in Section 5.2, this allows to mount an attack with data and time
complexities of O(2n/2) (compared to time complexity of O(2n) in the general
mirror slide framework) that recovers the value K0 ⊕K2.

The simplest example of this case is the mirror slide attack on the IEM scheme
(Even-Mansour with an involution as the permutation) described in Section 5.2.
A bit more interesting example is the attack on AIEM (Addition Even-Mansour
with involution as the permutation) presented in Section 5.3. As was shown in
that attack, the technique can be easily modified to handle the case where the
subkeys K0 and K2 are inserted through addition (instead of XOR).

In the next subsection we present even more interesting examples, in which
the attack applies to ciphers with pre/post key whitening in which E1 is not an
involution (but rather has some weaker kind of symmetry).

A.4 Combination with the Complementation Slide Attack and
Application to 2K-DESX

In this subsection we consider the case where E1 is not an involution, but rather
a Feistel cipher with 2-round self-similarity (see Figure 2). Such a cipher (but
without the key whitening) was considered in [4], and it was shown that it can
be broken with complexity of O(2n/2), using a technique called complementation

slide.8 We show that the complementation slide technique can be combined with
the mirror slide technique to yield an attack on the scheme including pre- and
post- key whitening, with the same complexity.

A concrete example of such construction one may consider is a variant of
DESX [13] in which the subkeys generated by the DES key schedule are replaced
by the periodic sequence (ka, kb, ka, kb, . . .). Using the terminology of [3, 4], this
variant can be called 2K-DESX. For the sake of simplicity, we demonstrate the
attack on the example of 2K-DESX.

8 We note that in [4], a Feistel cipher with 2-round self-similarity is also attacked using
the slide with a twist technique (with even better results). In the attack, the cipher
is represented as E = E1 ◦ E0, where E0 is a single round and E1 is a 2m − 1-
round Feistel structure with 2-round self-similarity, which can be easily seen to be
an involution. As described in Appendix A.2, such attack can be viewed as a special
case of the mirror slide attack. We do not consider it in this subsection since the
existence of pre- and post-whitening raises its time complexity to Θ(2n), while the
complexity of our attack on this cipher is O(2n/2).

⊕

K0

⊕

ka
⊕

F

⊕

kb
⊕

F

⊕

ka
⊕

F

⊕

kb
⊕

F
· · ·

⊕

kb
⊕

F

⊕

K2

⊕

K0

⊕

ka
⊕

F

⊕

kb
⊕

F

⊕

ka
⊕

F

⊕

kb
⊕

F
· · ·

⊕

kb
⊕

F

⊕

K2

Fig. 2. Pre-/Post-Whitened Cipher with 2-Round Self Similarity

Consider two plaintext/ciphertext pairs (P,C), (P ∗, C∗) of 2K-DESX, and
assume that

P ⊕ C∗ = K0 ⊕K2 ⊕ (ka ⊕ kb||ka ⊕ kb),

where || denotes concatenation of bit strings. In such case,

P ⊕K0 = (C∗ ⊕K2)⊕ (ka ⊕ kb||ka ⊕ kb). (7)

We would like to apply E1 to the left hand side and E−1
1 to the right hand side,

like in the standard mirror slide attack. In our case, E1 is not an involution.
However, this is compensated by the term (ka ⊕ kb||ka ⊕ kb) in the right hand
side of the equation. Indeed, in the first round of E1, the subkey is ka, and thus,
the input to the F -function is PR ⊕K0R ⊕ ka (where XR denotes the right half
of X). On the other side, the subkey in the first round of E−1

1 , which is the
subkey in the last round of E1, is kb, and hence, the input to the F -function is
C∗

R ⊕K2R ⊕ kb. Therefore, by Equation (7), the two inputs are equal. A similar
analysis shows that equality holds for the inputs of the F -functions in all rounds,
and thus,

E1(P ⊕K0) = E−1
1 (C∗ ⊕K2)⊕ (ka ⊕ kb||ka ⊕ kb),

or equivalently,

C ⊕K2 = P ∗ ⊕K0 ⊕ (ka ⊕ kb||ka ⊕ kb). (8)

XORing Equations (7) and (8), we get

C ⊕ C∗ = P ⊕ P ∗.

This allows to apply an attack similar to the attack on IEM and recover the
value K0 ⊕K2 ⊕ (ka ⊕ kb||ka ⊕ kb) with data and time complexities of O(2n/2).

A.5 Application to a Variant of 4K-DESX

The last case we consider is a variant of DESX in which the number of rounds
in DES is changed to 4m + 1, and the subkeys are replaced by the sequence
(ka, kb, kc, kd)

m, ka. We show that another combination of the complementation
slide technique with the mirror slide technique allows to break this variant with
data and time complexity of O(2n/2).

Consider two plaintext/ciphertext pairs (P,C), (P ∗, C∗), and assume that

P ⊕ C∗ = K0 ⊕K2 ⊕ (kb ⊕ kd||0),

where || denotes concatenation of bit strings. In such a case,

P ⊕K0 = (C∗ ⊕K2)⊕ (kb ⊕ kd||0). (9)

We apply E1 to the left hand side of the equation, and E−1
1 to the right hand

side of the equation. In the first round of E1, the subkey is ka, and thus, the
input to the F -function is PR⊕K0R⊕ka. The subkey in the first round of E−1

1 is
also ka, and hence, the input to the F -function in that round is C∗

R ⊕K2R ⊕ ka.
Therefore, by Equation (9), the two inputs are equal. In the second round of E1

and E−1
1 , the subkey in E1 is kb, while the subkey in E−1

1 is kd. However, this
difference is cancelled with the term kb ⊕ kd in Equation (9). A similar analysis
shows that equality holds for the inputs of the F -functions in all rounds, and
thus,

E1(P ⊕K0) = E−1
1 (C∗ ⊕K2)⊕ (kb ⊕ kd||0),

or equivalently,
C ⊕K2 = P ∗ ⊕K0 ⊕ (kb ⊕ kd||0). (10)

XORing Equations (9) and (10), we get

C ⊕ C∗ = P ⊕ P ∗,

and the attack can be concluded as in the previous case and retrieve the value
K0 ⊕K2 ⊕ (kb ⊕ kd||0).

We note that this technique does not apply to the standard variant of 4K-
DESX, in which the subkeys are (ka, kb, kc, kd)

m (without an additional subkey
ka at the end). The reason is that the rate of symmetry between E1 and E−1

1 is
insufficient. While the asymmetry in the first two rounds can be compensated by
adding the term (ka ⊕ kd||kb ⊕ kc) to the equation, the inputs to the F -function
in the third round will not be equal anymore.

B Addition Slide Attack – Application to Variants of

DESX

In Section 5, we presented two new slide-type attacks that are applicable to
ciphers in which the subkeys are inserted through modular addition (rather than
XOR). The first was a variant of the slidex attack that was used in Section 5.1 to

attack AEM, i.e., an Even-Mansour scheme in which the key XOR is replaced by
modular addition. The second was a variant of the mirror slide attack that was
used in Section 5.3 to attack AIEM, i.e., AEM in which the internal permutation
is an involution. These two attacks can be considered as special cases of a more
general technique which we call the addition slide attack. The main feature of the
technique (that appears in both special cases) is that the relation between the
elements of a slid pair concerns their modular sum, rather than their difference
(as one may expect in light of the standard slide-type attacks).

In this section we present another application of the addition slide technique.
The attack targets Addition DESX, i.e., a variant of DESX [13] in which the
whitening keys are inserted using modular addition (instead of XOR). We show
that while this variant seems to be as secure as DESX, it can be broken using only
two related keys and practical complexity of either 234 in the chosen plaintext
model, or 243 in the known plaintext model. The attack exploits the well-known
complementation property of DES, namely, that for any P,K,

DESK(P) = DESK̄(P̄),

where X̄ denotes the bitwise complement of X (i.e., X̄ = X ⊕ FF . . . FFx =
264 − 1−X). It is interesting to note that while in the cases of DES and DESX,
this property can be used only either for a distinguishing attack or for speeding
up exhaustive key search by a factor of 2, in our case it can be deployed to mount
a key recovery attack.

After presenting the attack on Addition DESX, we show that a slightly modi-
fied variant of the attack applies (with the same complexities) to another variant
of DESX in which the key pre/post whitenings are replaced by key-dependent
decorrelation modules [16].

B.1 Attack on Addition DESX

The addition DESX block cipher is defined as:

EK0,K1,K2(P) = K2 +DESK1(P +K0),

where ‘+’ denotes addition modulo 264. The basic idea of the attack is as follows.
Let (P,C), (P ∗, C∗) be two plaintext/ciphertext pairs, such that P is encrypted
under (K0,K1,K2) and P ∗ is encrypted under (K0,K1,K2). Assume that the
pair (P, P ∗) satisfies:

P + P ∗ + 2K0 ≡ 264 − 1 (mod 264). (11)

In such a case, we have
P +K0 = P ∗ +K0.

By the complementation property, this implies:

DESK1(P +K0) = DESK1
(P ∗ +K0),

or equivalently,

DESK1(P +K0) +DESK1
(P ∗ +K0) ≡ 264 − 1 (mod 264).

This, in turn, implies:

C + C∗ = EK0,K1,K2(P) + EK0,K1,K2
(P ∗) ≡ 264 − 1 + 2K2 (mod 264). (12)

Equation (12) cannot be exploited directly (like in all previous attacks) since
the value of K2 is not known to the adversary. However, we observe that since
the right hand side of Equation (12) does not depend on P and P ∗, it can be
cancelled using another pair of plaintexts.

Let (P,C), (P ∗, C∗) be plaintext/ciphertext pairs such that the pair (P, P ∗)
satisfies Equation (11), and let a ∈ Z264 be arbitrary. Consider the encryptions
of P + a and P ∗− a under the keys (K0,K1,K2) and (K0,K1,K2), respectively,
and denote the corresponding ciphertexts by C′ and C′∗. It is clear that the pair
(P + a, P ∗ − a) also satisfies Equation (11). Hence, we have

C′ + C′∗ ≡ 264 − 1 + 2K2 (mod 264). (13)

Combining Equations (12) and (13), we get:

C + C∗ = C′ + C′∗,

or equivalently,
C − C′ = C′∗ − C∗.

This allows to mount the following attack:

1. Choose some arbitrary a ∈ Z264 .
9

2. Ask for the encryption of 232 arbitrary plaintexts P1, P2, . . . under the key
(K0,K1,K2), and denote the corresponding ciphertexts by (C1, C2, . . .). Ask
for the encryption of the 232 plaintexts P1+a, P2+a, . . . under the same key,
and denote the corresponding ciphertexts by (C′

1, C
′
2, . . .). Store in a hash

table the pairs ((Ci − C′
i), i), sorted by the first coordinate.

3. Ask for the encryption of 232 arbitrary plaintexts P ∗
1 , P

∗
2 , . . . under the key

(K0,K1,K2), and denote the corresponding ciphertexts by (C∗
1 , C

∗
2 , . . .). Ask

for the encryption of the 232 plaintexts P ∗
1 − a, P ∗

2 − a, . . . under the same
key, and denote the corresponding ciphertexts by (C′∗

1 , C′∗
2 , . . .). Insert the

values C′∗
j − C∗

j into the hash table and search for collisions.
4. For each collision in the table, i.e., Ci − C′

i = C′∗
j − C∗

j , check the guess

2K0 = 264−1−Pi−P ∗
j (mod 264) and 2K2 = Ci+C∗

j −(264−1) (mod 264).

As in the previous attacks, it is expected that only a few collisions occur, and
that with a constant probability, one of them suggests the right key (K0,K2).
A key guess suggested by the pair (Pi, P

∗
j) can be checked by choosing another

9 For example, if the encryption is performed in counter mode, it may be desirable to
choose a = 1.

a′ ∈ Z264 , asking for the encryption of Pi + a′ and P ∗
j − a′ under the keys

(K0,K1,K2) and (K0,K1,K2), respectively, and checking whether the corre-
sponding ciphertexts (denoted by C′′

i and C′′∗
j) satisfy:

Ci − C′′

i = C′′∗

j − C∗

j .

If the equation is satisfied, then the pair (Pi, P
∗
j) satisfies Equation (11) with

overwhelming probability, and thus, the suggestion for (K0,K2) is correct (with
the same probability). The value of K1 can be found using auxiliary techniques
(e.g., a differential or a linear attack on DES). The data complexity of the
attack is 234 chosen plaintexts encrypted under two keys, and its memory and
time complexities are about 234 (except for the part of recovering K1). As in
the previous cases, the attack can be transformed into a memoryless attack with
the same time complexity, where the data complexity is 234 adaptively chosen
plaintexts.

A known-plaintext variant of the attack A variant of the attack can be
performed in the known plaintext model without enlarging the number of ex-
amined plaintexts, at the expense of enlarging the time complexity. The attack
uses the fact that the procedure described above succeeds for any value of a, and
thus, the adversary can exploit many values of a simultaneously. The algorithm
of the known plaintext attack is as follows:

1. Ask for the encryption of two pools of 232 arbitrary plaintexts each under
the key (K0,K1,K2), and denote the plaintext/ciphertext pairs in the pools
by (P1, C1), (P2, C2), . . ., and (P ′

1, C
′
1), (P

′
2, C

′
2), . . ., respectively.

2. Ask for the encryption of two pools of 232 arbitrary plaintexts each under
the key (K0,K1,K2), and denote the plaintext/ciphertext pairs in the pools
by (P ∗

1 , C
∗
1), (P

∗
2 , C

∗
2), . . ., and (P ′∗

1 , C′∗
1), (P ′∗

2 , C′∗
2), . . ., respectively.

3. Search for a four-collision of 128-bit values, of the form:

(Pi − P ′

j + P ∗

k − P ′∗

ℓ , Ci − C′

j + C∗

k − C′∗

ℓ) = 0. (14)

4. For each such collision, check the guess 2K0 = 264 − 1− Pi − P ∗
j (mod 264)

and 2K2 = Ci + C∗
j − (264 − 1) (mod 264).

It is expected that among the 2128 examined plaintext quartets, about 264

quartets satisfy the equation Pi−P ′
j+P ∗

k −P ′∗

ℓ = 0, and thus can be represented
as (Pi, Pi+a, P ∗

k , P
∗

k −a), for a = P ′
j−Pi. Thus, with a constant probability, in at

least one of these quartets, Pi and P ∗

k satisfy Equation (11). For such a quartet,
we must have Ci−C′

j+C∗

k−C′∗

ℓ = 0, and thus, it generates a collision of the form
needed for the attack. On the other hand, the probability that Equation (14) is
satisfied for a random quartet is 2−128, and hence, it is expected that only a few
collisions exist, and at least one of them suggests the right key.

The data complexity of the attack is 234 known plaintexts encrypted under
two keys, and the memory and time complexities are about 264.

As the collision search performed in the attack is a solution of a standard
generalized birthday problem, one can obtain a time/memory/data tradeoff us-
ing the improved algorithms for the generalized birthday problem presented by
Wagner [17]. For example, if the data complexity is increased to 242.6 known
plaintexts, then the memory and time complexities can be reduced to 242.6. As
the key K1 can be found with about 243 known plaintexts using linear crypt-
analysis [11], this allows to recover the full key (K0,K1,K2) of Addition DESX
with data complexity of about 243 known plaintexts and time and memory com-
plexities of 243 in total.

B.2 Attack on DES Surrounded by Decorrelation Modules

Decorrelation modules, introduced by Vaudenay [16] in 1997, are tools to ensure
security against statistical attacks such as differential and linear cryptanalysis.
One of the basic decorrelation modules (used in COCONUT98 [15]), is the per-
mutation: DMK1,K2(X) = (X ⊕K1) ·K2, where the multiplication is done over
the field GF (2n), and K2 6= 0.

One property of this decorrelation module is that once the key is set, the
decorrelation module is linear, but when the key is random, the probability
of any non-trivial differential going through the module equals 1/(2n − 1) on
average. A similar condition can be proved with respect to linear cryptanalysis
as well. Thus, inserting decorrelation modules as an element in a block cipher is
suggested in order to make it secure against differential and linear cryptanalysis.

It seems that surrounding a block cipher with key-dependent decorrelation
modules is a stronger measure than adding pre/post key whitening. However,
it turns out that in the case of DES, due to the complementation property,
this leads to related-key attacks which are much stronger than the best known
attacks on DESX in the related-key model.

Consider the block cipher Decorrelation-DES, defined as:

E(K0,K1),K2,(K3,K4)(P) = M1(DESK2(M0(P))),

where M0(X) = (X ⊕K0) ·K1, M1(X) = (X ⊕K3) ·K4, and K1 6= 0,K4 6= 0.
Consider two plaintext/ciphertext pairs (P,C) and (P ∗, C∗), encrypted under

the keys (K0,K1,K2,K3,K4) and (K0,K1,K2,K3,K4), respectively. Assume
that the plaintext pair (P, P ∗) satisfies:

M0(P)⊕M0(P
∗) = (P ⊕ P ∗) ·K1 = FF . . . FFx.

Then, by the complementation property of DES, we have

DESK2(M0(P))⊕DESK2
(M0(P

∗)) = FF . . . FFx.

Since for a fixed key, the decorrelation module M1 is linear, this implies:

C ⊕ C∗ = M1(DESK2(M0(P)))⊕M1(DESK2
(M0(P

∗))) = FF . . . FFx ·K4.
(15)

As the right hand side of Equation (15) does not depend on the plaintexts,
one can mount an attack similar to the attack on Addition DESX presented
in Appendix B.1, with the pair (P ⊕ a, P ∗ ⊕ a) considered instead of the pair
(P + a, P ∗ − a). The data and time complexities of the attack are exactly the
same as the complexities of the attack on Addition DESX (including its known
plaintext variant), and the attack allows to recover the subkeys K1 and K4.

Note that after recovering these subkeys, the cipher is equivalent (up to
pre/post multiplication by known constants) to:

EK′

0,K2,K′

3
(P) = DESK2(P ⊕K ′

0)⊕K ′

3,

that is, to DESX!10 Hence, our attack shows that with respect to the related-
key model, surrounding DES by decorrelation modules is weaker than adding
pre/post key whitening, since it does not increase the security and on the other
hand, it allows the adversary to retrieve part of the secret key efficiently.

10 Note that actually, DESX is a special case of Decorrelation-DES, in which K1 =
K4 = 1. Our attack is not effective against DESX since it allows only to recover the
subkeys K1 and K4 which are known in the case of DESX to be equal to 1.

