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Abstract

A zero-knowledge protocol allows a prover to convince a verifier of the correctness of a statement
without disclosing any other information to the verifier. It is a basic tool and widely used in many
other cryptographic applications. However, when stand-alone zero-knowledge protocols are used in
complex environments, e.g., the Internet, the basic properties may not be sufficient. This is why
researchers considered security of zero-knowledge protocols under concurrent composition and man-
in-the-middle attacks. Moreover, it is very likely that an adversary might break computers that run
the protocol and get internal information of the parties. It is thus necessary to take account of the
security of zero-knowledge protocols when adaptive corruptions are allowed.

Previous adaptively secure zero-knowledge protocols work either in a stand-alone setting, or in
a concurrent setting with trusted setup assumptions. In this paper, we study adaptive security of
zero-knowledge protocols under both concurrent self composition and man-in-the-middle attacks in
the plain model (i.e., without any set-up assumptions). We provide a construction of adaptively
secure concurrent non-malleable zero-knowledge proof/argument for every language in NP.
Keywords: Zero-knowledge protocol, concurrent non-malleability, adaptive corruption, commit-
ment schemes

1 Introduction

Zero knowledge proofs, introduced by Goldwasser, Micali and Rockoff [GMRS5], allow a prover to con-
vince a verifier the validity of a statement without disclosing any other information to him. It was shown
that every NP language has a zero-knowledge proof system [GK96]. Zero-knowledge proofs are widely
used in many cryptographic applications and are one of the most fundamental cryptographic building
blocks. As application execution environments change from one to another, stand-alone zero-knowledge
proofs might fail to satisfy security requirements in these various settings.

Consider a setting where there are many instances of protocols which are invoked at arbitrary times.
Here, many verifiers are receiving proofs from various independent provers, and trying to collude together
to learn something non-trivial from the provers. It was shown that a stand-alone zero-knowledge protocol
fails to preserve the zero-knowledge property in the above setting [DNS9§|. Thus, researchers considered
the notion of concurrent zero-knowledge. Another setting is that there are man-in-the-middle attacks.
A man-in-the-middle adversary may convince a verifier of a statement that it otherwise cannot do by
interacting with an honest prover. The notion of non-malleable zero-knowledge proofs was first introduced
by Dolev, Dwork and Naor [DDNO0| to capture security requirements in this setting.

The notion of concurrent non-malleable zero-knowledge (CNMZK) considers both of the above set-
tings. An adversary may interact with many provers while playing the role of the verifier, and si-
multaneously interact with many verifiers while playing the role of the prover. Barak, Prabhakaran
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and Sahai [BPS06] gave the first CNMZK argument in the plain model. Ostrovsky, Pandey and Vis-
conti [OPV10] improved this result and gave more efficient instantiations of CNMZK arguments for a
special class of NP launages. Lin, Pass, Tseng and Venkitasubramanian (LPTV) [LPTVI10] presented
the first construction of CNMZK proofs.

Previous CNMZK protocols in the plain model only considered settings where an adversary is allowed
to control/corrupt parties before the start of protocol executions, but, is not allowed to corrupt parties
during protocol executions. However, in reality, based on the information that was already gathered,
adversaries (e.g., hackers, viruses, insiders) may break into computers, possibly while they are executing
secure protocols. Thus, it is very necessary to model adaptive security of zero-knowledge protocols since
this models realistic security threats better and so provides a better security guarantee. We call a zero-
knowledge protocol secure in this setting an adaptively secure CNMZK, or CNMZK against adaptive
adversaries. Previous results on adaptive security of zero-knowledge protocols either work in the stand-
alone setting [Bea96l [LZ09], or under concurrent composition with trusted setup assumptions [CFOT)
DNO02, [CLOS02, [LZ09]. This raises the following intriguing question:

Does there exist a concurrent non-malleable zero-knowledge proof/argument system for every
NP against adaptive corruptions in the plain model?

To design an adaptively secure protocol is always believed to be a more challenging work than
designing its statically secure counterpart. Therefore, researchers tend to resort to other assumptions
(e.g., parties have tamper proof hardware tokens [Kat07], or parties can reliably erase information [Lin09])
to overcome obstacles and simplify the design. As we focus on the plain model, we intend not to use
these stronger physical assumptions. We will explain the main obstacles in detail in the next section and
show how to overcome them step by step.

1.1 Ouwur Results
In this work, we give a positive answer to the above question and show the following result.

Theorem 1.1. Assume the existence of one-way functions. Then there exists a poly(n)-round adaptively
secure concurrent non-malleable zero-knowledge proof for every NP. Furthermore, assuming the existence
of collision-resistant hash-functions, the round complexity is O(logn).

As an additional contribution, we give a construction of adaptively secure CNMZK argument.

Theorem 1.2. Assume the existence of one-way functions. Then there exists a poly(n)-round adaptively
secure concurrent non-malleable zero-knowledge argument for every NP. Furthermore, assuming the
existence of collision-resistant hash-functions, the round complexity is O(logn).

Other related work. Recently, Yao, Yung and Zhao [YYZI10] presented the first construction of
CNMZK protocol with full adaptive input selection in the bare public-key model. They allow the inputs
of both left and right interactions to be adaptively chosen by an adversary; moreover, the input to an
interaction can be decided adaptively at any time during this interaction. Lin and Pass [LP11a] provided
the first construction of CNMZK protocol with adaptive inputs in the plain model. Furthermore, the
input of an interaction is adaptively chosen by an adversary at the outset of each interaction. They called
this notion adaptive CNMZK, which is a bit confusing with our notion of adaptively secure CNMZK. The
main difference is that we focus on adaptive corruptions by an adversary, whereas Lin and Pass focused
on adaptive inputs selected by an adversary. We believe that our technique might be extended to
design adaptively secure CNMZK protocols with adaptive input selection based on the work of Lin and
Pass [LP11al.

Techniques. Our CNMZK protocol is based on the LPTV protocol [LPTV10]. We first recall the
structures of the LPTV protocol. This protocol roughly contains three phases. In the first phase,
called the preamble phase, the verifier commits to a random value (called trapdoor) using a concurrently
extractable commitment scheme CECom. In the second phase, called the commit phase, the prover
commits to a witness of the proof statement using both a CECom and robust non-malleable commitment
scheme NMCom. Finally, in the third phase, called the proof phase, the prover proves using a stand-
alone zero-knowledge protocol that it has either committed to a valid witness or a valid trapdoor in the



commit phase. To prove security, the LPTV simulator uses rewindings to extract out trapdoors in the
preamble phases and then commits to the trapdoors in the commit phases. Using the “fake witnesses”
(i.e., decommitment information to the commitments in the commit phases), the simulator is able to
run the zero-knowledge proof in a straight-line manner in the proof phases. For all right accepting
interactions, the LPTV simulator again uses rewindings to extract out the witnesses committed to by
the adversary (from CECom in the commit phases).

When considering adaptive corruptions to verifiers on the right, the LPTV simulator can be directly
adjusted to handle this case. As the LPTV simulator follows the honest verifier strategy in all right
interactions and the verifier has no secret information, the simulator just provides randomness for the
simulated verifier when a verifier is corrupted. However, when considering adaptive corruptions to provers
on the left, several problems arise. First, if a prover is corrupted after completion of the CECom in the
commit phase, the simulator is given a witness w to the proof statement x, and now it has to provide the
adversary with the randomness of the simulated prover in the CECom. Recall that the LPTV simulator
commits to a trapdoor instead of the witness w, and the commitment CECom is binding. Now the LPTV
simulator gets stuck in explaining the commitment as to w. Second, the same problem arises for NMCom
in the commit phase. The LPTV simulator again gets stuck if the adversary corrupts a prover after the
completion of NMCom, since it committed to a trapdoor and has to explain the commitment as to w.
Finally, upon corruption of a prover of the zero-knowledge proof in the proof phase, the LPTV simulator
has to explain a proof as one generated using the real witness, whereas it is actually generated using a
“fake witness”. The LPTV simulator again cannot handle this case.

Our idea for circumventing the above three problems can be described as follows:

e For the first problem, we rely on a concurrently extractable commitment CECTCom which is also
concurrent trapdoor. The trapdoor property guarantees that there exists a simulator for the com-
mitment, such that knowing the trapdoor, it is able to open the commitment to arbitrary values.
Using CECTCom, the CNMZK simulator is able to explain a commitment to a trapdoor (i.e., the
value committed by an adversary in the preamble phase) as to the real witness w. Our construction
of CECTCom uses a concurrent trapdoor commitment scheme CTCom which is statistically binding.
At first sight, it seems that it is impossible to design CTCom against fully adaptive corruptions in
the plain model, since we have to achieve seemingly contradicting goals that, on one hand, even an
infinitely powerful committer is not able to equivocate the commitment, and on the other hand, an
expected PPT simulator can equivocate the commitment. However, we overcome this obstacle with
the help of the technique of the work [CO99]. Roughly, we rely on the property of Naor’s commit-
ment scheme which is equivocal if the result of the first message can be programmed/controlled by
the simulator. We let this message be generated by a coin-tossing protocol between the committer
and the receiver. Through this way, the simulator is able to hand the corruption of a committer
after execution of the CTCom (and then CECTCom).

e For the second problem, we rely on a robust non-malleable commitment scheme NMCTCom that is
concurrent trapdoor. The NMCTCom is based on the non-malleable commitment in [LPV08] and
a concurrent trapdoor commitment scheme CTComEI Using similar analysis as above, the trapdoor
property of NMCTCom can be used to handle adaptive corruptions. Another problem related with
NMCTCom is how to handle adaptive corruptions during special-sound witness-indistinguishable
(WI) proofsE| The simulator has to interpret the proof generated using a “fake witness” as one
generated using a real witness. Here we resolve the above problem by requiring an honest prover
to commit using CTCom in each of the special-sound proofsEI Through this way, we ensure that
the simulator is able to provide all the corresponding randomness upon corruption of a committer
after the execution of NMCTCom.

e For the third problem, we rely on an adaptive instance-dependent scheme AIDCom proposed by

LA possible efficient way to design an adaptively secure NMCTCom is to modify the recent constant-round concurrent
non-malleable commitment schemes [LP11bl [Goy11] and make them adaptively secure. However, we cannot work it out
and left it as an open problem.

2In the non-malleable commitment scheme [LPVO08], the receiver first computes a random image s of a one-way function,
then the committer commits to its message and proves using a sequence of special-sound WZ proofs that it knows either
the opening of the commitment or the preimage of s.

3 The proof system is identical to Blum’s basic protocol for Hamiltonicity. It consists of three (or four) rounds. The
prover generates a commitment in the first round, the verifier then sends a random challenge and the prover responds
according to the challenge.



Lindell and Zarosim [LLZ09]. An instance-dependent commitment scheme is a commitment whose
properties depend on whether the instance in question is in the language or not. Lindell and
Zarosim uses AIDCom to construct (stand-alone) zero-knowledge proof systems against adaptive
corruptions. We also use AIDCom to handle adaptive corruptions for the zero-knowledge proof in
the proof phase. However, to make our simulation go through, we are unable to apply the analysis
in [LZ09]. We have to explain a proof generated using a “fake witness” as one generated using a
real witness.

The approaches to solving the above three problems result in a new problem. In the simulation, we have
to run the extractor of CECom in the preamble phases, in addition to the concurrent trapdoor simulator
of both CECTCom and NMCTCom in the commit phases. It seems that we have to compose the (possibly
conflicting) individual rewinding strategies and present a complicated analysis. In order to get rid of
this obstacle, we combine part of commitment CECTCom and NMCTCom (i.e., the part for extraction)
with CECom in the preamble phase, and need only a new uniform rewinding strategy. In the following,
we will present constructions of protocols CECTCom and NMCTCom of which the properties satisfy this
simulation strategy.

Organization. We present the definition of CNMZK in Section [2] In Section [3] we introduce all basic
tools that we use in the construction of CNMZK. In Section |4}, we give a construction of CNMZK proof
systems for all NP.

2 Preliminaries and Definitions

Let N be the set of all positive integers. For any integer n € N, let [n] denote the set {1,2,...,n}. Let
{0,1}™ be the set of n-bit strings. We assume familiarity with computational/statistical indistinguisha-
bility, interactive proofs, zero-knowledge, commitment schemes, and (strong) witness-indistinguishability.

2.1 Adaptively Secure Concurrent Non-Malleable Zero-Knowledge

Adaptively concurrent man-in-the-middle attack. Let (P,V) be an interactive proof for NP
language L with witness relation R . Consider a man-in-the-middle adversary A that participates in
many left and right interactions. Without loss of generality, suppose that at most m = m(n) proofs
take place. Prior to all interactions, all parties in the system receives as common input the security
parameter in unary 1", and A receives as auxiliary input z € {0,1}*. The concurrent man-in-the-middle
setting proceeds as follows. First, the input statements to honest provers, i.e., statements x1,...,z,, €
LN {0,1}", and the corresponding tags idy, ..., id,, € {0,1}*(") are chosen. A interacts with the honest
prover P; with common input z; and id; while playing the role of a verifier. P; receives as local input
the witnesses w; such that w; € Ry (z;). These interactions are called “left” interactions. During the
left interactions, A can corrupt arbitrary honest provers. At any point, A may adaptively choose a new
statement z; and tag id; and start a new proof with a verifier V; while acting as the role of a prover.
These interactions are called the “right” interactions. Furthermore, during the right interactions, A is
able to corrupt arbitrary honest verifiers. Once a party is corrupted, its common input, random input,
and the entire history of the messages sent and received by the party are already known to A. We denote
by X the input vector (z1,...,2m) and ID the tag vector (id1,...,id,,). Let view 4(1™, X,ID, z) be the
view of the adversary A in the above experiment, i.e., it consists of .A’s random coins, all common inputs
and the transcripts of all left and right interactions between A and honest provers and verifies, and all
collected information of corrupted parties. Given a function ¢ = ¢(n), we use the notation {}n R 1D.. 88
shorthand for {-},.eN z,,....e,€LN{0,1}7 id1,....idpm €{0,1}¢,2€{0,1} -

Roughly, an interactive proof is adaptively secure CNMZK if for every man-in-the-middle adaptive
adversary A, there exists a PPT simulator-extractor that can simulate both the left and right interactions
for A, while outputting a witness for every statement proved by A in the right interactions. We emphasize
here that when a prover is corrupted (not at the outset of the protocol), the simulator is then entitled
to the prover’s input and witness, and it need not compute the view of the adversary from scratch. It
only need fill the heretofore unknown portions in the adversary’s view.



Definition 2.1 (Adaptively Secure Concurrent Non-Malleable Zero-Knowledge). An interac-
tive proof (P, V) for membership in an NP language L with witness relation Ry is called adaptively secure
concurrent non-malleable zero-knowledge with tags of length ¢ = ¢(n) if for every PPT man-in-the-middle
adaptive adversary A that participates in at most m = m(n) concurrent executions, there exists a PPT
simulator-extractor S such that,

e The two ensembles {Sl(ln’XvIBvZ)}n,X,Iﬁ,z and {viewA(1”7X,I]_j,z)}n’ ¢ 1D, are computation-
ally indistinguishable over the security parameter n € N, where 81(1”,X , IB, z) denote the first
output of S(1", X, 1D, z).

e Denote by (v, (@1,...,Wy,)) the output of S(l",)?,lﬁ,z). Let (Z1,...,Zm,) be the statements
of right interactions in the view v. Let ial, ceey id,, be the identities of the right interactions in
the view v. For every i € [m], if the verifier V; is not corrupted, the transcript of the ith right
interaction is accepting and id; # id; for all j € [m], then w; is the witness to membership Z; in
the language L N {0,1}™ except with negligible probability, i.e., R (Z;,w;) = 1. Otherwise, w; is
set to L.

3 Basic Tools

3.1 Concurrently Extractable Commitment Schemes

The notion of concurrently extractable commitment scheme is first introduced by Micciancio et al. [MOSV06].
This is an abstraction of the preamble stage of the concurrent zero-knowledge protocol of [PRS02].
Roughly, a commitment scheme is concurrently extractable if there exists an efficient extractor that is
able to generate a view that is statistically indistinguishable with the view of a malicious committer in
the commit phases, and moreover, extract the committed values from any valid commitments sent by
the committer. In this paper, we will use a concurrently extractable statistically hiding commitment
scheme CEComyy, and a concurrently extractable statistically binding commitment scheme CEComygy.

3.2 Concurrent Trapdoor Commitment Schemes

Roughly, a trapdoor commitment is a commitment scheme with an additional property such that there
exists a simulator, with knowledge of some trapdoor information, can overcome the binding property
and open a commitment arbitrarily. We extend this notion to concurrent execution settings and define
concurrent trapdoor commitment schemes.

On a high level view, our concurrent trapdoor commitment scheme is build upon the trapdoor com-
mitment scheme in [CO99] and a concurrently extractable commitment scheme. The committer and the
receiver together first run a coin-tossing protocol to generate a random string r. Then the committer
commits to its value using Naor’s commitment scheme with r as the first message. Let Comyg, be Naor’s
two-round statistically binding commitment scheme. Let CEComy;, be a concurrently extractable sta-
tistically hiding commitment scheme. The commitment scheme CTComy;, is shown in Figure [l Due to
space constraints, the proof of CTComy, is shown in Appendix [B.1]

Protocol CTComygy,
Security parameter: 1"
String to be committed: v € {0,1}"
Commit Phase:
R +— C: Pick a random string 7’ € {0, 1}3"2. Commit to 7’ using CEComygp,.
C —» R: Pick a random string € {0,1}3"". Send 1.
R — C: Decommit to r’. Let r = 1" @ r’”.
C — R: Commit to v using Comg, with r as the first message (bit by bit in parallel).
Reveal Phase:
C — R: Send v. Open the commitments to v.
R : Check that all the openings are valid.

Figure 1: Concurrent trapdoor commitment scheme



To commit to an n-bit string v under scheme CTComyy, the receiver first commits to a random 3n2-bit
string r’ using CEComg;,. Then the committer sends a random string r”’. Next the receiver opens its
random string 7’ and the committer commits to v using Comyg, with v’ @ r” as the first message. In the
reveal phase, the committer just opens its commitment to v.

It would be worth noting explicitly that in the reveal phase, all the randomness used in the commit
phase will be revealed. This property is very useful when proving adaptive property of the concurrent
non-malleable zero-knowledge protocol in Section [4]

3.3 Concurrently Extractable and Concurrent Trapdoor Commitment Schemes

On a high level view, our concurrently extractable and concurrent trapdoor statistically binding com-
mitment scheme CECTComy, follows the structure of the concurrently extractable commitment scheme
in [PRS02, MOSV06]. We simply replace the commitment used by the committer with a concurrent
trapdoor one. The commitment scheme is shown in Figure Due to space constraints, the proof is
shown in Appendix [B.2]

Protocol CECTComyg,,
Security parameter: 1™
Inputs: a value v € {0,1}"
Commit Phase:
C — R: Generate nf pairs of random n-bit strings (af ;, o ;), 7 € [n],j € [¢] such that for
all7,j v = a?,j &) a},j. Commit to v and all nf pairs strings using CTComyg, one by one.
For j =1 to ¢:

R — C: Send a random n-bit string e; = (e1,,...,€n ;).
C' — R: Open the corresponding aff]tj for all ¢ € [n].
Reveal Phase:
The committer opens all the remaining nf 4+ 1 commitments. The receiver checks the correct-
ness of openings and v = af ; ® o ; for all i € [n], j € [{]

9

Figure 2: Concurrently extractable and concurrent trapdoor commitment scheme

Let ¢ = ¢(n) be any super-logarithmic function. To commit to an n-bit string v under scheme of
CECTComygyp, the committer generates nf pairs of random n-bit strings such that each pair is a (2,2)
share of the committed value v, i.e., v = af ; ® o} ; for all i € [n],j € [(]. The committer then commits
to v and each of the 2n/ strings in parallel using CTComyg,. This is followed by ¢ rounds of interactions.
In the jth interaction, the receiver sends a random n-bit challenge e; = (e1,; ... e, ;) and the committer
opens the commitment of affjj for all ¢ € [n]. In the reveal phase, the committer opens all the remaining
nf + 1 commitments, and the receiver checks that all the openings are correct and the opened values
satisfy v = of ; @ aj ; for all i € [n], j € [(].

We also point out a nice property of CECTComy, that in the reveal phase, all the randomness used
in the commit phase will be revealed. This property is very useful when proving adaptive property of

the concurrent non-malleable zero-knowledge protocol in Section

3.4 Non-Malleable Concurrent Trapdoor Commitment Schemes

Roughly speaking, a commitment is non-malleable if an adversary cannot transform a commitment to
a value into a commitment to a related value. This definition is introduced by Dolev, Dwork and
Naor [DDNOO]. A robust non-malleable commitment is non-malleable with respect to any protocol that
has a small round complexity (i.e., less than @(log n) rounds). This definition is introduced by Lin and
Pass [LP09]. A non-malleable concurrent trapdoor commitment is a commitment that is non-malleable
and concurrent trapdoor.

Special-sound proofs. A k-round interactive proof for the language L € NP with witness relation R;
is special-sound with respect to Ry if the following holds: there exists a deterministic polynomial-time
procedure that can extract a witness with overwhelming probability given a randomly sampled (k — 2)-
message prefix @ of the protocol and two independent accepting completions of the prefix (&, 3,~) and



(&,8',v"). By parallel running Blum’s basic protocol for Hamiltonicity, we get a 4-round special-sound
WZ proofs for NP assuming the existence of one-way functions. Moreover, if the commitment scheme
used by the protocol [Blu86] is a CTComygp, then it becomes a k-round special-sound WZ proofs, where
k depends on the round complexity of CTComy,. In the following, unless explicitly mentioned, when we
say special-sound WZ proofs, we actually mean the above k-round one.

We construct a concurrent non-malleable concurrent trapdoor commitment scheme CNMCTCom in
Figure The protocol is based on the commitment in [LPV0§| and adapted to to our setting. The
scheduling in Stage 3 of the protocol is shown in Figure [d] Due to space constraints, the proof is shown

in Appendix [B:3]

Protocol CNMCTCom
Common Input: Security parameter 17, a tag id € {0,1}(").
String to be committed: value v € {0,1}".
Commit Phase:
Stage 1:
C +— R : Commit to v using CTComy,. Let com be the commitment. Let dec be the
decommitment information.
Stage 2:
R — C': Uniformly choose r1,7m9 € {0,1}™. Compute s1 = f(r1),s2 = f(r2). Send sy, so.
R +— C : Prove using a WZ proof of knowledge that there exists a value r € {0,1}" such
that s; = f(r) or so = f(r).
Stage 3:
C <— R : 4t special-sound WZ proofs of the statement:
e Either there exists values v,dec s.t (v,com,dec) is a valid commitment and decommit-
ment transcript for CTComyy,

e or there exists values r € {0,1}" and b € {0,1} s.t s = f(r).
with the following two additional requriments:

1. The prover uses CTComy, instead of Comg, in each proof, and
2. The length of the verifier challenge is 2n in the following schedule:
For j =1 to t: execute designiy, followed by design;_j4 .

Reveal Phase:
C sends v,dec and R checks that v,com, dec is a valid commitment and decommitment

transcript for CTComygy,.

Figure 3: Concurrent non-malleable concurrent trapdoor commitment scheme
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Figure 4: Two schedules

Extension to O(log n)-round non-malleable concurrent trapdoor commitment schemes. Just
as the technique in [LPV08], we show how to construct a O(logn)-round commitment scheme that is
stand-alone non-malleable and concurrent trapdoor using any O(n)-round commitment scheme that is
concurrent non-malleable concurrent trapdoor. The protocol NMCTCom is constructed as follows. To
commit to a value v € {0,1}", a committer chooses random strings v1,...,v, € {0,1}" such that



v=0v1D...0v,. Ifid € {0,1}" is the tag of the protocol NMCTCom, then the committer commits to
v; in parallel using CNMCT Com under tag (4, id;), where id; is the ith bit of id. The protocol NMCT Com
is a non-malleable and concurrent trapdoor commitment scheme. The non-malleability proof is much
similar with that in [LPVO08|. The trapdoor property follows from the concurrent trapdoor property of
CNMCTCom. We defer the proofs to the full version.

Extension to non-malleable concurrent trapdoor commitment scheme robust w.r.t k-round
protocols. Actually, the above O(log n)-round non-malleable commitment scheme is robust w.r.t log n-
round protocols, since it has at least logn rewinding slots. By choosing the parameter carefully, we can
prove the following lemma.

Lemma 3.1. Let ¢(n) be a super-logarithmic function. Then there exists a O(€(n))-round concurrent
trapdoor statistically binding commitment scheme that is robust w.r.t £(n)-round protocols.

3.5 Adaptive Instance-Dependent Commitment Schemes

Instance-dependent commitments were first introduced in [IOS97]. Roughly speaking, an instance-
dependent commitment scheme is a commitment whose properties depend on whether the instance in
question is in the language or not. Typically, it is defined for a language L as follows. Let = be a state-
ment. If x € L then the commitment associated with z is computationally hiding, and if « ¢ L then the
commitment associated with x is statistically binding. The adaptive instance-dependent commitment
scheme AIDCom = (Com, Com’, Adapt) was first introduced by Lindell and Zarosim [[Z09]. Roughly,
it has the additional property that commitments are equivocal. It has a “fake” committing algorithm
Com’ which generates fake commitments. If knowing the witness to the statement, the fake commitment
can be opened to arbitrary value by the adaptive opening algorithm Adapt; otherwise, it cannot neces-
sarily be opened to any value. Due to space constraints, the definition of adaptive instance-dependent
commitment is shown in Appendix

4 Adaptively Secure Concurrent Non-Malleable Zero-Knowledge

In this section, we construct an adaptively secure concurrent non-malleable zero-knowledge proof for
every NP language. Let CEComy;, be a concurrently extractable statistically hiding commitment scheme.
Let CECTComyg, be a concurrently extractable and concurrent trapdoor statistically binding commitment
scheme. Let NMCTCom be a non-malleable concurrent trapdoor commitment scheme. Let AIDCom =
(Com, Com’, Adapt) be an adaptive instance-dependent commitment scheme for the language of Hamil-
tonicity. Let MBZKProof be a modification of Blum’s w(1)-round zero-knowledge proof system for the
language of Hamiltonicity, in which the prover commits to the adjacency matrices using AIDCom. The
instance used by AIDCom is the statement proved in protocol MBZKProof.

Our concurrent non-malleable zero-knowledge protocol CNMZKProof is a variant of the LPTV pro-
tocol in [LPTV10]. The protocol CNMZKProof for an NP language L proceeds in six stages, given a
security parameter n, a common input statement x € {0,1}" NL, a tag id € {0, 1}7"(")7 and a private
input w € R (z) to the prover.

Stage 1: The verifier V chooses a random string r € {0,1}" and commits to r using CEComgy,.

Stage 2: The prover P commits to the witness w using CECTComygy.

Stage 3: The prover P commits to the witness w using NMCTCom under tag id.

Stage 4: The prover P commits to the witness w using NMCTCom under tag id again.

Stage 5: The verifier V decommits its commitment in Stage 1 to value 7.

Stage 6: The prover P proves using MBZKProof that the the commtments in Stage 2, 3 and 4 all
commits to the same value w, and either @ € Ry (x) or w = r.

The main difference between our protocol CNMZKProof and the LPTV protocol is that we replace
primitives used by the prover with corresponding “adaptive” ones on which the simulator relies to handle
adaptive corruptions of provers. A formal description of the protocol CNMZKProof is shown in Figure [5|

Remark 1. For ease of exposition, we divided the protocol CNMZKProof into six stages. Actually,
in the following proof (of simulation-extractability), we have to optimize the above protocol a bit to



Protocol CNMZKProof
Common Input: an instance of z € LN {0,1}", a tag id € {0, 1}*(").
Auxiliary input to prover: a witness w s.t (x,w) € R|.
Stage 1: V uniformly chooses r € {0,1}"™. It commits to r using CEComgj,. Let 77 be the commit-
ment transcript.
Stage 2: P commits to w using CECTComyg;,. Let 72 be the commitment transcript.
Stage 3: P commits to w using NMCTCom and tag id. Let 73 be the commitment transcript.
Stage 4: P commits to w using NMCTCom and tag id. Let 74 be the commitment transcript.
Stage 5: V decommits 77 to value r. P aborts if the decommitment fails.
Stage 6: P <> V : Denote by L’ the language {(z, T2, 73, Ta,7)}, where an instance in L’ satisfies:
there exists w such that
e o is a valid opening of T,
e and w is valid opening of 73 and 74 under tag id,
e and w € R (z) or w =r.
Prove using MBZKProof that (x, 73,73, Ta1,7) € L', i.e., both the prover and the verifier run
a Cook-Levin reduction from L’ to Hamiltonicity, and then invoke MBZKProof.

Figure 5: Adaptively secure concurrent non-malleable zero-knowledge proof for NP

make a better use of the simulation strategy of the LPTV protocol. Roughly, the reason is follows:
in the simulation, we need run the extractor of CEComy, in Stage 1, in addition to the concurrent
trapdoor simulator of both CECTComyg, and NMCTCom. It seems that we have to compose the (possibly
conflicting) individual rewinding strategies and present a complicated analysis. In order to get rid of this
obstacle, we combine the CEComyj, part in CECTComg, and NMCTCom with Stage 1, and need only a
new uniform rewinding strategy. Recall that in the protocol CECTComy;,, a committer first commits to
its value and many independent shares of the value using CTComg,. In the the protocol NMCTCom, a
committer first commits to its value using CTComyg;,, and also commits in the special-sound WZ proof
using CTComg,. The commitment CTComy, requires the receiver first commits to a random challenge
using a CEComygy,. The CEComyy, part of CECTComyy, in Stage 2 and of NMCTCom in Stage 3 and 4 can
be merged into the Stage 1 of protocol CNMZKProof. So, we can view the Stage 1 consisting of four
parts of parallel executions of CEComShE|

Remark 2. For ease of description, we actually use CNMCTCom instead of NMCTCom in the proof. In
the proof, we invoke the concurrent trapdoor simulator of a variant of CNMCTCom, which is denoted
by CNMCTCom’. CNMCTCom’ is the same as CNMCTCom except that all CECom,y, parts are executed
in parallel beforehand. The reader is refereed to Section for details. Here without confusion of
notation, we instead use NMCTCom in the protocol.

Properties of MBZKProof. Note that we use a modification of Blum’s w(1)-round zero-knowledge
proof MBZKProof in Stage 6 (For reference, Blum’s basic protocol for Hamiltonicity is shown in Ap-
pendix @ ). We first show it is still a zero-knowledge proof for the language of Hamiltonicity. The
completeness is straightforward. Recall that in MBZKProof, the prover commits to the adjacency ma-
trix of a random permutation of the graph using an adaptive instance-dependent commitment AIDCom
instead of a statistically binding one. The soundness proof in [Blu86] relies on the binding property
of the commitment, and AIDCom is statistically binding when an input instance is not a Hamiltonian
graph, thus, the soundness property is preserved using almost the same analysis as in [Blu86]. On the
other hand, the zero-knowledge simulation in [BIu86] relies on the hiding property of the commitment.
Moreover, the AIDCom is computationally hiding when an input instance is a Hamiltonian graph. Thus,
the zero-knowledge simulation is the same as that in [Blu86]. Lindell and Zarosim [LZ09] also designed
a ZK simulator when adaptive corruptions are allowed. However, this ZK simulator does not suffice in
the proof of the protocol CNMZKProof. We will design a different ZK simulator for MBZKProof which
is especially suited to handle adaptive corruptions in our case.

Claim 4.1. The protocol CNMZKProof is an adaptively secure concurrent non-malleable zero-knowledge
proof system for NP.

4Note that the third and the fourth part each consists of many parallel executions of CEComgy,.



Proof. We need to prove that the protocol CNMZKProof satisfies the following three properties: com-
pleteness, unconditional soundness, and simulation-extractability. Due to space constraints, we only give
the construction of simulator-extractor S as required by Definition 2.1} and the formal proof is shown in
Appendix [C]

Simulation-extractability. The definition of CNMZK requires a simulator-extractor S that is able
to simulate the view of a man-in-the-middle adaptive adversary A, while simultaneously extracting the
witnesses of statements proved in the right interactions. Roughly, S proceeds as follows.

Simulation of right interactions: S simply runs as honest verifiers in all right interactions.
Simulation of left interactions: In each protocol execution, S proceeds as follows:

1. In Stage 1, S first extracts a “fake witness” r, a challenge e; for CECTComy,, a challenge vector

€3 for NMCTCom in Stage 3 and a challenge vector €4 for NMCTCom in Stage 4 from CEComyy,
committed to by A. (See Remark [1])

. In Stage 2, S commits using the concurrent trapdoor simulator Ts? of CECTComy,. Denote by

72, aux? the simulated view and the auxiliary information, respectively.

. In Stage 3, S commits using the concurrent trapdoor simulator Ts® of NMCTCom. [°| Note

that knowing €; in advance, the construction of the Ts® is straightforward. In more detail, S
simulates Stage 1 of NMCTCom by invoking the concurrent trapdoor simulator of CTComyg,. S
simulates Stage 2 of NMCTCom by following the honest committer strategy. S simulates Stage
3 of NMCTCom as follows. It uses the concurrent trapdoor simulator of CTComy;, to generate
the commitments and answer queries from the adversary. For simplicity and without loss of
generality, we only present the simulation for Blum’s basic protocol for Hamiltonicity (which is
used as the basic special-sound WZ proof). Denote by G the input.

(a) S first picks a random permutation 7 on the vertices and commits to the adjacency matrix
of random graph G’ = m(G) using the concurrent trapdoor simulator of CTComygp.

(b) The adversary picks a random bit challenge b.

(¢c) If b = 0, S sends 7 along with the revealing of all commitments. That is, S invokes the
concurrent trapdoor simulator of CTComy;, to open the commitments to corresponding value,
i.e., for each entry (¢,j) € G, it opens the commitment corresponding to (7(¢),7(j)) to 1,
and for all other entries, it opens to 0. If b =1, S chooses a random cycle C' and reveals to
the adversary only the commitments to entries (7(¢), 7(j)) with (¢,j) € C (and the adversary
checks that all revealed values are 1 and the corresponding entries form a simple n-cycle).

Denote by 72, aux® the simulated view and the auxiliary information, respectively.

. In Stage 4, S commits using the concurrent trapdoor simulator Ts* of NMCTCom. It works

similarly as in Stage 3. Denote by 74, aux* the simulated view and the auxiliary information,
respectively.

. In Stage 5, S receives decommitment information to r from A and checks the correctness of the

opening. If the opening fails, abort the current execution.

. In Stage 6, S invokes Ts® on inputs (r,aux?) and gets the decommitment information to 7. It

also invokes Ts® on inputs (r,aux?) and gets the decommitment information to r. Moreover, it
invokes Ts* on inputs (r,aux?) and gets the decommitment information to 7. S transforms all
the decommitment information to a witness C' (i.e., a Hamiltonian cycle) to the reduced directed
graph G. S executes the MBZKProof protocol using C' as witness. Note that S generates the
commitment in MBZKProof using “fake” commiting algorithm Com’ of AIDCom. For simplicity
and without loss of generality, we only present the simulation for Blum’s basic protocol for

Hamiltonicity.

(a) In the first step, select a random permutation 7 of the vertices of G, and commit to the
adjacency matrix of 7(G) using the fake algorithm Com’ of protocol AIDCom. That is, for
each entry of the matrix, compute Com’(G; Up(n))-

(b) In the second step, receive a challenge bit b from the adversary A.

(¢) In the third step, if b = 0, send decommitments to all entries in the adjacency matrix and .
That is, for the (7(u), 7(v))th entry of the matrix, if (u,v) € G, reveal the commitment to 1.

5The concurrent trapdoor simulator is designed especially for the proof of CNMZK. Please refer to Section for

details.
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Otherwise, reveal the commitment to 0. To interpret the (7(u), 7(v)th entry as a commitment
to e € {0,1}, run algorithm Adapt(G, C, e, Cx(u),x(v), p) of AIDCom where cr(y) r(v) denotes
the commitment to the (7(u),m(v))th entry of the matrix and p is the randomness used in
the computation of ¢y (y) 7 (v)-

If b =1, reveal only the commitments to entries (mw(u),7(v)) with (u,v) € C. That is, open
the commitment to 1 by running algorithm Adapt(G, C, 1, ¢r(u),x(v), p) of AIDCom.

Extraction of the witnesses: In each right interaction that completes successfully and the verifier is
not corrupted, S extracts a witness w from CECTComg, committed to by A in Stage 2.
Handling adaptive corruptions:

Corruption of a verifier: When a verifier V; is corrupted, the simulator S has to fill the view of
A by providing the internal information of V;. Since S simulates V; in the right interactions by
honestly following the honest verifier strategy and the verifier has no secret information, S just
sends the internal randomness of the simulated V; to A.

Corruption of a prover: When a prover P; is corrupted, the simulator S is then entitled to the
prover’s input statement x; and the corresponding witness w;. S hands z; and w; to A. In
addition, S has to fill the heretofore unknown portions in the adversary’s view. According to the
point where P; is corrupted, we consider the following cases.

Corruption at the outset of the protocol: Do nothing.

Corruption in Stage 1: The extraction here uses a PRS simulator of [PRS02], an oblivious
simulator that is identical to the Killian-Petrank (KP) simulator [KP01]. We follow the analysis
of [Ros06]. As the simulator S acts as an honest receiver of CEComyy, in this stage and the
messages are independent of the witness w;, S only provides A with the internal randomness
of the simulated P;.

Corruption in Stage 2: S proceeds as above for the handling of Stage 1. In addition, S has to
interpret 75 as a commitment to the witness w; whereas 75 is a fake commitment. S runs the
concurrent trapdoor simulator of CECTComy;, to open 75 to w;. Finally S provides A with
the random coins generated above.

Corruption in Stage 3: The handling of Stage 1 and 2 is the same as before. In addition, S has
to interpret 73 as a commitment to the witness w; whereas T3 is actually a fake commitment.
Note that it does not suffice to invoke the concurrent trapdoor simulator of NMCTCom alone,
which provides a simulated decommitment information. Moreover, S also has to provide the
randomness used in the special-sound proof. More formally, S proceeds as follows:
Corruption in CTComy,: S has to invoke the concurrent trapdoor simulator of NMCTCom

(which uses the concurrent trapdoor simulator of CTComyy) to explain the commitment as

to w;. Note that knowing €3 in advance, the construction of this simulator is straightfor-

ward. Denote by dec; the decommitment information to w;.

Corruption in the WT proof of knowledge: Since it is public-coin, S runs the proof by

following the honest verifier strategy. S hands the randomness for the simulated P; to A.

Corruption in special-sound WZ proofs: Recall that for each execution of the special-
sound WZ proof, S uses “fake witness” (i.e., concurrent trapdoor simulator of CTComgy).

Now it has to interpret the proof as one generated using the witness w;. Without loss of

generality, we only describe the strategy of S for Blum’s basic protocol for Hamiltonicity.

Corruption after Step 1 and before Step 3: Recall that Step 1 messages consist of
commitments to a randomized permutation of the original graph, and the computation
has no relation with the witness. & now gets the permutation 7 and runs concurrent
trapdoor simulator of CTComy, to provides A with the randomness of the simulated
P; in this step. More precisely, for each edge (i,7) € G, it opens the commitment
corresponding to (mw(i),m(j)) entry of the adjacency matrix of 7(G) to 1, and for all
other entries, it opens to 0.

Corruption after Step 3: The computation of this step needs the use of the real wit-
ness. S first computes this witness C’ based on the witness w; and the decommitment
information dec; (by Cook-Levin reduction). Then S explains the proof as one generated
using C’ as follows. Note that S is able to equivocate the commitments generated in
this step.

If the challenge of the Step 2 is 0, all randomness in this proof has already been revealed.

11



S does nothing. If the challenge of Step 2 is 1, according to the design, only decom-
mitments to a Hamiltonian cycle in the permutated graph are revealed. In addition,
S need provide A with the randomness of the simulated P; used in other part of the
permutated graph except the Hamiltonian cycle. More precisely, S chooses a random
permutation 7* between the two Hamiltonian cycles C' and C’, i.e., C = 7*(C"). Let
7’ = m*om, where o denotes the composition of permutationsﬂ Let H = n'(G). For every
edge (u,v) € H and (u,v) ¢ ©'(C’"), S uses concurrent trapdoor simulator of CTComg,
to obtain random coins such that the appropriate commitment value in the adjacency
matrix is a commitment to 1. For every edge (u,v) ¢ H, S uses the concurrent trapdoor
simulator CTComy;, to obtain random coins such that the appropriate committed value
in the adjacency matrix is a commitment to 0. S provides A with the input w; and the
set of random coins described above as well as 7.

Corruption in Stage 4: S provides the adversary A with the randomness of the simulated P;
in Stage 1, 2 and 3 just as above. In addition, S proceeds as in Stage 3 in the handling of
adaptive corruptions in this stage.

Corruption in Stage 5: The handling of Stage 1, 2, 3 and 4 is the same as above. In addition,
S does nothing.

Corruption in Stage 6: The handling of Stage 1, 2, 3, 4 and 5 is the same as above. Recall
that S simulates this stage using a “fake witness”. Upon corruption, S has to interpret the
proof as one generated using real witness w. Without loss of generality, we only describe the
strategy of S for simulation of the Blum’s basic protocol for Hamiltonicity.

Corruption after Step 1 and before Step 3: Recall that S generates the message in Step
1 using fake committing algorithm Com’ of AIDCom. Upon corruption, S gets the permu-
tation 7 (selected by itself), and uses the adaptive opening algorithm Adapt of AIDCom
to get random coins such that the commitment value of the (m(u),7(v))th entry in the
adjacency matrix of m(G) is e, where e equals 0 if (u,v) € G; otherwise e equals 1. S
provides the A with the input w; and the set of random coins generated by Adapt as well
as with .

Corruption after Step 3: Denote by C’ the new Hamiltonian cycle in G reduced from the
witness w; (in addition to decommitment information of 7Tz, 75, T4 to w;). If e = 0, all
randomness in this proof has already been revealed. S does nothing. If e = 1, S has
to explain the commitments Com’(7(G)) as those generated using the witness C’, i.e.,
there exists a permutation 7', such that «'(C’) maps to m(C), and the commitments
already opened and unopened in Com’(7(G)) are consistent to 7/(G). More precisely, S
proceeds as follows: find a random permutation 7* between the two Hamiltonian cycles
C’ and C, ie., C = 7*(C’). Let 7' = 7#* o7 and compute H = 7'(G). For every edge
(u,v) € H and (u,v) ¢ 7' (C"), S uses algorithm Adapt to obtain random coins such that
the appropriate commitment value in the adjacency matrix is a commitment to 1. For
every edge (u,v) ¢ H, S uses algorithm Adapt to obtain random coins such that the
appropriate commitment value in the adjacency matrix is a commitment to 0. S provides
A with the input w; and the set of random coins described above as well as 7.

Post-execution corruption: S provides the adversary A with randomness of the simulated P;
from Stage 1 to Stage 6 just as above.

O

Completing Theorem and Theorem |1.2l The CNMZKProof is a @(log n)-round adaptively
secure CNMZK proof assuming the existence of collision-resistant hash functions. If we replace the
commitment CEComyy, in Stage 1 with CEComy,, then we get a @(log n)-round adaptively secure CNMZK
argument. Note that the resulting protocol also assumes the existence of collision-resistant hash functions
(needed by NMCTCom or CECTComy;,). In order to get a poly(n)-round adaptively secure CNMZK
proof/argument based on one-way functions, we have to replace the statistically hiding commitment
used in CEComyj,, CECTComy, and NMCTCom with the commitment from one-way functions by Haitner
et al. [HNO™09].

6The notation 7* o 7 means that to apply 7* first and then apply 7.
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A Basic Definitions

We recall the definition of a witness relation for an NP language.

Definition A.1 (Witness Relation). A witness relation for a language L € NP is a binary relation R that
is polynomial bounded, polynomial-time recognizable and characterizes by L = {z| Jw s.t.(z,w) € R_}.

We say that y is a witness for the membership of x in L if (z,y) € R.. We let R (z) denote the set
of witnesses for the membership of z in L, i.e., R.(z) = {y : (z,y) € L}. In the following, we assume a
fixed witness relation R for each language L € NP.

A function p(-), where p: N — [0, 1] is called negligible if for every positive polynomial p(-), for all

sufficiently large n € N, pu(n) < ﬁ. A probability ensemble is a sequence X = {X }scs of random

variables, where S is a set of strings and X is a random variable ranging over {0, 1}1’('5‘) for some
polynomial p(-). We assume the reader is familiar with commitment schemes and interactive proofs.

Definition A.2 (Computational Indistinguishability). Let S be a set of strings. We say that the two
probability ensembles X = {Xs}scs and Y = {V;}secs are computationally indistinguishable, denoted
by X = Y, if for every probabilistic polynomial-time (PPT) distinguisher D, every polynomial p(-), all
sufficiently long s € S and all auxiliary information z € {0, 1}PoY(™),

Pr[D(Xs, s,2)] — Pr[D(Ys, s, 2)] <
p(ls)

Definition A.3 (Statistical Closeness). Let S C {0,1}* be a set of strings. We say that the two proba-

bility ensembles X = {X;}ses and Y = {Y; }ses are statistically close or statistically indistinguishable,

denoted by X = Y, if for all sufficiently long s € S, the statistical distance Yo |IPr[Xs =] = Pr[Y, = o]
is negligible.

A.1 Commitment Schemes

A commitment scheme is a basic cryptographic primitive which is usually seen as a digital analogue of
the sealed envelope. It is a two-phase protocol between a committer and a receiver. In the commit
phase, the committer puts its message in a box, locks the box and hands it to the receiver. Receiving
the box, the receiver does not know the exact message in the box. This is called the hiding property.
In the reveal phase, the committer gives the key to the receiver. The receiver then opens the box and
retrieves the message. The message should be the same as the one chosen by the committer. This is
called the binding property. Commitment schemes come in two different flavors, statistically hiding and
statistically binding. We only sketch the properties of both the flavors.

Statistically binding: In a statistically binding commitment, the binding property holds against un-
bounded adversaries, i.e., even an all-powerful adversary is not able to generate a commitment that
later is opened to two different values. The hiding property holds against computationally bounded
adversaries, i.e., commitments to two different values are computationally indistinguishable.

Statistically hiding: In a statistically hiding commitment scheme, the hiding property holds against
unbounded adversaries, i.e., commitments to any two different values are statistically close. The
binding property holds only against computationally bounded adversaries, i.e., no polynomial-time
adversary is able to open a commitment in two different ways.

Non-interactive statistically binding commitment can be constructed from any 1-1 one-way functions [Gol01].
Based on one-way functions, there exists two-round statistically binding commitment [Nao91]. Statisti-
cally hiding commitment scheme can be constructed from any one-way functions [HNO™09]. However,
constant-round ones are known to exist under the stronger assumptions, such as the certified claw-fee
permutations [GK96], and collision-resistant hash functions [DPP97].
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A.2 Concurrently Extractable Commitment Schemes

The notion of concurrently extractable commitment scheme is first introduced by Micciancio et al. [MOSV06]
and is implicit in [PRS02]. This is an abstraction of the preamble stage of the concurrent zero-knowledge
protocol of [PRS02]. Roughly, a commitment scheme is concurrently extractable if there exists an effi-
cient extractor that is able to generate a view that is statistically indistinguishable with the view of a
malicious committer in the commit phases, and moreover, extract the committed values from any valid
commitment sent by the committer.

Definition A.4 (Concurrently Extractable Commitment Scheme). Let (C, R) be a statistically
hiding (resp. statistically binding) commitment scheme. We say that (C, R) is a concurrently extractable
commitment scheme if there exists an (expected) PPT oracle machine (the extractor) £ such that for
every polynomial p = p(n), for every any unbounded (resp. PPT) p-concurrent adversarial committer
C*, outputs a pair 7,V such that the following properties hold:

Simulation: 7 is identically distributed to the view of C* with an honest receiver R in all commit
phases.

Concurrent extraction: Denote by 7= (74,...,7,), where p = p(n) is a polynomial and 7; is the view
of the committer C* in the ith execution. Denote by V = (v1,...,v,). The probability that there
exists ¢ € [p] such that 7; is accepting and v; =L is negligible.

We say that a commitment scheme is concurrently extractable and trapdoor if it is a concurrently ex-
tractable commitment and a trapdoor commitment. Moreover, we say that a commitment is concurrently
extractable and concurrent trapdoor if it is a concurrently extractable commitment and a concurrent
trapdoor commitment.

Assuming the existence of collision-resistant hash functions, there exists @(log n)-round concurrently
extractable statistically hiding commitment schemes [PRS02, MOSV06]. If we only assume the existence
of one-way functions, the round complexity changes to poly(n) [HNO™09]. Assume the existence of one-
way functions, there exists O(logn)-round concurrently extractable statistically binding commitment
schemes [LPTVI0]. We emphasize here that these constructions all have a non-interactive reveal phase.

A.3 Concurrent Trapdoor Commitment Schemes

Roughly, a trapdoor commitment is a commitment scheme with an additional property such that there
exists a simulator, with knowledge of some trapdoor information, can overcome the binding property
and open a commitment arbitrarily. We extend this notion to concurrent execution setting and define
concurrent trapdoor commitment schemes. Let p = p(n) be a polynomial. We say that R* is a p-
concurrent malicious receiver if it performs at most p concurrent executions with a committer. We use
the notation {-}v . as shorthand for {-}vefo,13n» nen,ze{0,1}+-

Definition A.5 (Concurrent Trapdoor Commitment Scheme). Let (C, R) be a statistically bind-
ing (resp. statistically hiding) commitment scheme. We say that (C, R) is a concurrent trapdoor com-
mitment scheme if there exists an (expected) PPT oracle machine (i.e., concurrent trapdoor simulator)
Ts = (Tsy, Tse) such that for any polynomial p = p(n), for any PPT p-concurrent malicious receiver
R* and for all V = (v1,...,vp),v1,...,v, € {0,1}", the following two probability distributions are
computationally indistinguishable (resp. statistically indistinguishable):

. {stafg’m(l”,v, z)}V,n,z’ where stafg}m(l”,V) denotes the random variable describing the re-
ceiver’s view of the interactions in the commit phases and reveal phases with C(1™,V).

. {(?, aux) « Ts; ™ (17, 2), @ + Tsy(aux, V) : (7, fD)}V ,where 7 = (1q,...,7p) and J = (w1, ..., wp).
N2
Note that 7; is the simulated view for the ith commit phase, and w; is the decommitment informa-

tion for the ith reveal phase.
Remark 3. In the above definition, we only require the concurrent trapdoor simulator to simulate the
view of a PPT (not unbounded) adversary R* interacting with an honest committer.

Considering statistically hiding commitments, D. Crescenzo et al. [CO99] constructed a constant-
round trapdoor commitment scheme based on the hardness of discrete-logarithm problem. Pass and
Wee [PWQ9] gave a black-box construction of trapdoor commitment scheme from any one-way functions.
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Their protocol is only computationally hiding and computationally binding. Considering statistically
binding commitments, we will give constructions of trapdoor commitment schemes in this paper. Pre-
vious work only use computationally binding trapdoor commitments. We find that the statistically
binding ones are also very useful in achieving adaptive security of zero-knowledge protocols. We believe
this variant to be of independent interest.

A.4 Adaptive Instance-Dependent Commitment Schemes

Instance-dependent commitment schemes were first introduced in [[OS97]. Roughly speaking, an instance-
dependent commitment scheme is a commitment whose properties depend on whether the instance in
question is in the language or not. Typically, it is defined for a language L as follows. Let = be a state-
ment. If € L then the commitment associated with z is computationally hiding, and if « ¢ L then the
commitment associated with x is statistically binding. The adaptive instance-dependent commitment
scheme was first introduced by Lindell and Zarosim [LZ09]. Roughly, it has the additional property that
commitments are equivocal. It has a fake algorithm which generates fake commitments. If knowing the
witness to the statement, the fake commitment can be opened to arbitrary value; otherwise, it cannot
necessarily be opened to any value.

Definition A.6 (Adaptive Instance-Dependent Commitment Schemes). Let R be an NP relation
and let L be an NP language associated with R. (Com, Com’, Adapt) is an adaptive instance-dependent
commitment scheme for L if the following conditions hold:

e Efficiency: Com, Com’, Adapt are all probabilistic polynomial-time algorithms.
e Computational Hiding: For every = € L, the following holds:

{Com(z,0)}, ., = {Com(x, D}oa = {Com’(2)}

e Statistical Binding: For every = ¢ L, there exists a negligible function £(-), such that Pr[Com(x, 0;r) =
Com(z, 1;r")] < e(|z|).
e Adaptive Trapdoor: For all z € L, all ¢ = Com'(x; Up(lz|)) and all bit b € {0, 1}, and for all w € R(x)

the fOHOWiIlg hOldS: {c’,Adapt(x,w, b, C/, UP(V‘))}:EELUJER(:U) é {Com(a:, b; Up(\w|))7 b, Up(‘wn}a:eL,weR(a:)'

Note that Com is an ordinary committing algorithm. Com’ is a “fake” committing algorithm. Adapt
is an adaptive opening algorithm. When = € L, Com’ creates commitments that are not associated to
any specific value. However, given a witness w € R(x) to the fact = € L, the algorithm Adapt can explain
every output ¢’ of Com’ as a valid commitment to any bit b. But without such a witness, a commitment
generated by Com’ can not necessarily to be decommitted to any bit.

Lindell and Zarosim [LZ09] constructed an adaptive instance-dependent commitment scheme by
slightly modifying the trapdoor commitment scheme of [FS89]. Their scheme is only for a single bit.
By running their atomic scheme in parallel, they obtained an adaptive instance-dependent commitment
scheme for multiple bits. The reader is referred to the full version of [LZ09|] for the explicit construc-
tions and the formal security definition of adaptive trapdoor property for instance-dependent string
commitment scheme.

A.5 Non-Malleable Commitment Schemes

We recall the definition of non-malleability from [LPV0S|. Let (C,R) be a tag-based commitment
scheme. Consider a man-in-the-middle adversary A that participates in one left interaction and one
right interaction simultaneously. In the left interaction, A interacts with an honest committer under tag
id of its choice. A will receive a commitment to a value v. In the right interaction, A tries to commit
to a related value v under tag id of its choice. If the right commitment fails, or undefined, or id = id,
its value is set to L. Let nmcz“a R) (v, z) be a random variable that describe the value ¢ combined with
the view of A in the above experiment. Given a function ¢t = t(n), we use notation {--- }, 4,/ 2,id as

shorthand for {--- }nEN,vG{O,l}",v’6{0,1}",ze{O,l}*,ide{O,l}"~

Definition A.7 (Non-Malleable Commitments). Let (C,R) be a statistically binding commit-
ment. We say that (C,R) is non-malleable (with respect to itself) with tags of length ¢ = ¢(n) if
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for every PPT man-in-the-middle adversary A, the two ensembles {nmcz“cﬂ> (v, 2,id) } w07 2id and

{nmcf‘c R) (v, 2,id) 0,0 2, are computationally indistinguishable.

We say that a commitment scheme (C, R) is non-malleable (concurrent) trapdoor commitment scheme
if it is non-malleable commitment scheme and a (concurrent) trapdoor commitment scheme.

Non-malleable commitment robust w.r.t k-round protocols. The notion of non-malleability
w.r.t k-round protocols was first introduced by Lin and Pass [LP09]. Previously non-malleability w.r.t
commitment only considers man-in-the-middle adversaries that participates executions of the same pro-
tocols on the left and on the right. Robust non-malleability, on the other hand, considers man-in-
the-middle adversaries that participates in executions of arbitrary protocol on the left. We recall the
definition from [LP09]. The man-in-the-middle adversary A interacts with B on the left, while simulta-
neously acting as a committer using a commitment scheme (C, R). The input to B is y. On the right,
A commits to ¥ using tag of its choice. We let nmc?é’j‘m (y, z) be the random variable that describes
the value ¥ combined with the view of A in the above experiment. Intuitively, we say that (C,R) is
non-malleable w.r.t B if nmcfc’fjlm (y1, 2) and nmcfgj‘ﬁ> (y2, z) are indistinguishable whenever interactions

with B(y1) and B(ysz) are indistinguishable.

Definition A.8 (Non-malleability w.r.t B). Let (C, R) be a statistically binding commitment scheme.
Let B be a PPT machine. We say the commitment scheme (C, R) is non-malleable w.r.t B if for every
two sequences {yl},en and {y!},en, such that for all PPT machine A, it holds that

{Bwh, A)0™} = {(B2), Az)(1") |

neN,ze{0,1}* neN,ze{0,1}*

where (B(y), A(z))(1™) denotes the view of A after interaction with B on common input 1”, and private
inputs y and z respectively, then it also holds that, for every PPT man-in-the-middle adversary A

B,A B,A
{nmc<C’R> (Un Z)} {nmc<C’R> (v, Z)}

We say that (C,R) is non-malleable w.r.t k-round protocols if (C, R) is non-malleable w.r.t any
PPT machine B that interacts with the man-in-the-middle adversary in k rounds. Below, we focus on
commitment schemes that are non-malleable w.r.t itself and arbitrary ¢(n)-round protocols, where £ is a
super-logarithmic function. We say that such a commitment scheme is robust w.r.t £(n)-round protocols.

e

neN,ze{0,1}* neN,ze{0,1}*

B Proofs of the Commitment Schemes

B.1 Concurrent Trapdoor Commitments

Before proving the protocol CTComy, in Figure [1]is a concurrent trapdoor statistically binding commit-
ment scheme, we emphasize that Naor’s commitment scheme is equivocal if the first message is generated
by a coin-tossing protocol between the committer and the receiver. The reader is referred to [CO99] for
details. Here for self-reference, we give a brief introduction to the scheme.

Claim B.1. The protocol CTComgy, in Figure[d]is a concurrent trapdoor statistically binding commitment
scheme.

Proof. We need to prove the protocol CTComyg;, satisfies the following three properties: computational
hiding, statistical binding and concurrent trapdoor.

Computational hiding. The hiding property follows from the hiding property of Comg,. By using
standard hybrid argument, we can show that the protocol CTComy, is computationally hiding. More
formally, fix a cheating receiver R*, two n-bit values vy, v2 and suppose we want to show that CTComg(v1)
and CTComygy,(ve) are indistinguishable. We define a sequence of hybrids. For each 0 <4 < n, in the ith
hybrid, the first ¢ bits are from v; and the last n—1 bits are from vs. It is straightforward that the zeroth
hybrid is identical to CTComg,(vs), and the nth hybrid is identical to CTComg(v1). Next by the hiding
property of Comg, we get that the transcript of the (¢ — 1)th hybrid and ith hybrid are indistinguishable.
By a union bound, we conclude that CTComg,(v1) and CTComg,(vs) are indistinguishable.
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Statistical binding. Roughly, as the commitment of CEComyy, is statistically hiding, even an infinitely
powerful adversary cannot guess the challenge of the receiver. Thus, it cannot program the coin-tossing
result to one which allows equivocation. With all but negligible probability the result r of the coin-
tossing is uniformly random. Then following from the property of Naor’s commitment scheme, we get
the commitment is statistically binding.

Concurrent trapdoor: We construct a PPT concurrent trapdoor simulator Ts = (Tsy, Tsy) such that
for any polynomial p = p(n), for any PPT p-concurrent malicious receiver R* and for all V = (vq,...,vp)
where vy,...,v, € {0,1}", the view of R* in real executions and the output of Ts (i.e., the simulated
transcript) are computationally indistinguishable. More formally, on input the security parameter 17, z,
Ts = (Tsy, Tsa) proceeds as follows.

1. Ts; interacts with the p-concurrent malicious receiver R*(z).

2. Ts; acts as an honest committer and waits commitments from R* (under the CEComg). Ts;
proceeds as follows: Ts; invokes the concurrent extractor of CEComgy,. Denote by 7 = (71,...,7)
the simulated views and 17 = (v}, ... ,7p) the extracted challenges.

3. Ts; next prepares the result of the coin-tossing. For the ith interaction, if ; =1, then Ts; outputs
the transcript up to now and aborts the ith commitment. Otherwise, it chooses a random string
r! such that r} @ r} allows equivocation in the following execution. Ts; records the trapdoor in
aux;. Next if the adversary R* opens its commitment to a value different from 7}, then Ts; outputs
the transcript up to now and aborts the ¢th commitment.

4. Tsy next prepares the commitments to V. For each i € [p], if the ith commitment is not aborted,
Ts; generates a “fake” commitment to v; using Comg,. Ts; records the transcript in the ith commit
phase in 7;.

5. In the ith reveal phase, to open to v;, Tsa(7;,aux;) generates the decommitment information of
Comyy, using aux;. Tsy records the decommitment information in w;.

6. Output 7= (71,...,7p), & = (W1,...,wp).

Next we show that the view of R* with an honest committer and the simulated transcript (7, &) are
indistinguishable. Note that if the extraction of CEComyj succeeds and for each commit phase R* opens
to a challenge the same as the one extracted (i.e., Ts; does not abort), then the view of R* with an
honest committer and the simulated transcripts generated by Ts are computationally indistinguishable
following from the hiding property of the Comg;,. Due to the concurrent extractability property of protocol
CEComyy,, the extraction fails only with negligible probability for valid commitments. Moreover, since
the commitment CEComy,, is computationally binding, R* is able to open its commitment to a challenge
different from the one extracted only with negligible probability. Thus, we conclude that the view of R*
in real executions is indistinguishable from 7, . O

B.2 Concurrently Extractable and Concurrent Trapdoor Commitments

In this section, we give a construction of concurrently extractable and concurrent trapdoor commitment.
Let CTComy, be a statistically binding concurrent trapdoor commitment scheme. Let £ = ¢(n) be any
super logarithmic function. The protocol is shown in Figure 2]

Claim B.2. The protocol CECTComygy, in Figure[dis a concurrently extractable and concurrent trapdoor
statistically binding commitment scheme.

Proof. We need to prove the protocol CECTComyy, satisfies the following four properties: computational
hiding, statistical binding, concurrent extractability and concurrent trapdoor. Note that the commitment
used by the committer is replaced with a concurrent trapdoor one compared with the committer in
protocol CEComyy,. The first three properties are not affected by this change. Thus, the proof of the first
three properties are virtually identical to that in [MOSV06]. We only give a proof sketch for these three
properties.

Computational hiding. The hiding property follows from the hiding property of CTComg,. We give
a hybrid argument. Suppose, on the contrary, there exists a PPT distinguisher D and a polynomial p(n)
such that for infinitely many n € N, there exists strings vy, va, |v1| = |v2| = n, such that D distinguishes
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between the probability ensembles CECTComg(v1) and CECTComgy(v2) with probability at least ﬁ.
We then define the following hybrid committers H;. H; runs as an honest committer C. It commits
to independent random shares of v; for the first ¢ pairs, and independent random shares of vy for the
last n — 4 pairs. It is straightforward that the hybrid Hg is the same as CECTComyg;,(v2) and the hybrid
H,, is identical to CECTComgp(v1). By standard hybrid argument, there exists an ¢ € [n] such that D
distinguishes the view of a receiver in the hybrids H;_; and H; with probability at least 1( - Recall that
the only difference between the hybrids H;_; and H; is that in the former, the ith pair is independent
random shares of vy whereas in the latter it is independent random shares of v;. Since both of the
hybrids only reveal one of their random shares, we break the hiding property of CTComgy.

Statistical binding. Note that the value v (in additional to many shares) is committed to using
CTComyg, in the commit phase and opened in the reveal phase. The binding property follows directly
from the binding property of CTComy,. As CTComy, is statistically binding, the protocol CTComyy, is
also statistically binding.

Concurrent extractability. Recall that the difference between the commitment CEComg, and the
commitment CECTComy,, is that in the former the committer uses Comg, to commit to v and all 2n¢
strings whereas in the latter the committer uses CTComg,. As the trapdoor property of CTComy;, does
not affect the extraction, we can show that CECTComy, is concurrently extractable following from a
similar analysis as in [PRS02, MOSVO06].

Concurrent trapdoor. The trapdoor property follows from the trapdoor property of CTComy,. Next
we construct a PPT concurrent trapdoor simulator Ts = (Tsy, Tso) such that for any polynomial p =
p(n), for any PPT p-concurrent adversary R* and for all V = (vy,...,v,), the view of R* in real
executions and the output of Ts (i.e., the simulated transcript) are computationally indistinguishable.
More formally, on input the security parameter 17, z, Ts proceeds as follows.

1. Ts; interacts with the p-concurrent adversary R* ( ).
2. Ts; invokes the concurrent trapdoor Ts= (Tsl, TSQ) of CTComy, on a p’-bounded adversary, where
p’ = p(1 4 2nf). Denote by 7 = (71,...,7,) and alix = (auxy,...,aux, ) the outputs of Ts;. Let

tran; = (TG—1)(142n0)+15 - - - Ti(1+2ne)) and info; = (aUX(—1)(142n0)+1, - - - » AUXi(142n0)). Note that
tran; is the simulated view in the ith commitment and info; is the auxiliary information for the ith
commitment.

3. Next, Ts; simulates the ¢ rounds of interactions in the ith commitment, where i € [p]. More
formally, for each j € [¢], Ts; proceeds as follows:

(a) Tsq receives a challenge e; from R*.

(b) For each k € [n], choose a random string azkjtj € {0,1}™. This corresponds to the (i — 1)(1 4+
2nl) +142(j — 1)n + 2(k —1) + (1 + eg,;)th commitment of Ts.

(c) Invoke Tsy((af'y,...,a;"),info;) and get outputs w; = (w1j,--.,wn;). Update tran; =
tran;||e;||w; and info; = info;||w;.

(d) Send to R* the decommitment information w;.

4. Set info = (infoy, ..., info,).
5. After all the commit phases complete, Tsy starts the simulation of the reveal phases. On inputs
V = (v1,...,vp),info, for the ith reveal phase, Tsy proceeds as follows:

(a) Extract from info; all the opened strings {azk]?j}ke Je[é] in the ith commit phase.

€k,j

(b) For each k € [n],j € [¢], compute ak
of (i—1)(142n6) +1+2(j — )n+2(k — 1) + (1 + 1 — e ;)th commitment of Ts, and v; is
the opened value of (i — 1)(1 + 2nf) + 1th commitment of Ts.

(c) Invoke ?svg(vi7 ai_lel‘j ey ai}e"’j, info;) and gets w; = (W}, wi1,...,Wne)-

(d) Send R* the decommitment information w;.

(e) Update tran; = tran;||w;.

=v; ® ak . Note that ak %3 is the opened value

6. Output tran = (trany,...,tran,).
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The outputs of Ts(1",V, z) and sta?c*y R) (1™, V, 2) are indistinguishable following from the concurrent
trapdoor property of CTComg,. To prove this, we design a sequence of hybrid simulators {H; }o<;<p. Hy-
brids H; receives inputs of the values V = (v1,...,v,), and proceeds identically as Ts except that for the
last n — ¢ commitments, it generates the commitments by following the honest committer strategy. It di-
rectly follows from the construction that Ho(1",V, 2) = stafc*7R>(1”, V,z) and H,(1™,V, z) = Ts(1™,V, z).
Next we show that the outputs of hybrids H; and H;,; are indistinguishable. Note that the difference
between the execution of H; and H;;1 is that in the former the ith commitment is generated honestly,

whereas in the latter, it is generated by the trapdoor simulator of CTComygy,. It follows from the concurrent
C

trapdoor property of CTComy, that H; (1", V, 2) = H; 1 (1™, V, 2).
O

B.3 Non-Malleable Concurrent Trapdoor Commitments

In this section, we give a construction of non-malleable concurrent trapdoor commitment scheme. The
protocol is shown in Figure [3| The protocol is based on the commitment in [LPV0§| and adapted to to
our setting.

Before presenting the description of the protocol, we give a short introduction of a special-sound
witness-indistinguishable proof system and the message scheduling technique introduced by [DDNQ0Q].

Special-sound proofs. A k-round interactive proof for the language L € NP with witness relation R;
is special-sound with respect to R if the following holds: there exists a deterministic polynomial-time
procedure that can extract a witness with overwhelming probability given a randomly sampled (k — 2)-
message prefix @ of the protocol and two independent accepting completions of the prefix (&, 3,+) and
(@,8',v"). Special-sound WZ proofs for NP languages can be based on the existence of non-interactive
commitment schemes. Assuming only one-way functions, 4-round special-sound WZ proofs for NP lan-
guages exist. More precisely, there is a 3-round special-sound WZ proof for the language of Hamiltonian
Graphs [Blu86], assuming one-way permutation families exist. If the commitment scheme used by the
protocol [Blu86] is replaced by Naor’s commitment scheme [Nao91], then it becomes a 4-round special-
sound WZ proof while the assumption is reduced to the existence of one-way functions. Moreover, if the
commitment scheme used by the protocol [Blu86] is a CTComygy, then it becomes a k-round special-sound
WZ proofs, where k depends on the round complexity of CTComygy,.

1. In Stage 1, the committer commits to v using a concurrent trapdoor commitment CTComyg,. Let
com be the commitment.

2. In Stage 2, the receiver picks two random n-bit strings r1,r2 and sends its image s; = f(r1) and
s2 = f(rz). Then it uses a WZ proof of knowledge that there exists a value r such that s; = f(r)
or so = f(r).

3. In Stage 3, the committer proves that com is either a valid commitment to v, or it knows the
preimage of sg or s;. This is proved by 4t invocations of a special-sound WZ proof that the
messages are scheduled based on the tag id. More precisely, there are ¢ rounds, where in the ¢th
round , the schedule designy is followed by design;_jq4. .

Message scheduling technique. The commitment scheme in Figure [3| relies on a special-sound WZ
scheduling which encodes the tag of the commitment. The scheduling is shown in Figure ] This
scheduling is vital in achieving the non-malleability. The main advantage of this scheduling is that for
the proof given by a man-in-the-middle adversary in the right interaction, there exists a point at which
the adversary cannot answer the challenge from the verifier by simply modifying the proof on the left
interaction. Note that we extend the message scheduling technique in [LPVO0S8] to cover the k-round
special-sound WZ proofs instead of 3-round ones.

Remark 4. There are several differences between our protocol and the commitment scheme in [LPV0S].
First, we exchange the sequence of Stage 1 and Stage 2. In the following, when we design an adaptively
secure CNMZK protocol, we require the Stage 1 to be combined with other part of the zero-knowledge
protocol (See Remark . Second, the committer in Stage 1 and Stage 3 uses a concurrent trapdoor
commitment scheme CTComyy, instead of a statistically binding commitment in [LPV08]. Third, in order
to prove the protocol is hiding, we require the receiver to prove knowledge of either preimage of two
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values under one-way function f using a WZ proof of knowledge system. This two-pair technique is
well-known in the design of zero-knowledge protocols [FS89).

Remark 5. In the design of CNMZK protocols, we merge the CEComyy, part in CTComy, with other parts
of CNMZK | i.e., the receiver runs all of CEComyy, first before the execution of CNMCTCom. This means
that part of execution in Stage 1 and Stage 3 will be executed in parallel ahead of schedule. Denote
by CNMCTCom’ this modified version. We emphasize here that this modification will not affect the
property of CNMCTCom’. We will give the rough idea after the proof of CNMCTCom.

Claim B.3. The protocol CNMCTCom in Figure[3 is a concurrent non-malleable concurrent trapdoor
commitment scheme.

Proof. We need to show that the protocol satisfies the following four properties: computational hiding,
statistical binding, concurrent non-malleability and concurrent trapdoor.

Computational hiding: The hiding property essentially follows from the hiding property of CTComy,
in Stage 2 and the fact that Stage 3 of the protocol is WZ (note that WZ property is preserved under
sequential composition [FS90]). If there exists an adversary R* that violates the hiding property of
CNMCTCom, we design an algorithm R’ that breaks the hiding property of CTCom,,. Without loss of
generality, we assume R* is deterministic. R’ internally runs a copy of R*. It forwards messages in Stage
1 to an external committer of CTComyg,. R’ runs as an honest verifier in Stage 2. After the completion
of Stage 2, R’ keeps rewinding the WZ protocol and extracts a “fake witness”. In Stage 3, R’ gives
WZ proofs using the fake witness. Finally, it outputs whatever R* outputs. From the WZ property of
Stage 3, it follows that R’ distinguishes the commitment made using CTComyg,, if R* distinguishes the
commitment made using NMCT Com.

Statistical binding: The binding property follows directly from the binding property of CTComgy.
As CTComyy, is statistically binding, CNMCTCom is also statistically binding.

Concurrent non-malleability. Pass and Rosen [PRO§| showed that if a commitment scheme is one-
many non-malleable, then it is also concurrent non-malleable. Thus, we only show the scheme is one-
many non-malleable. The proof follows the line of [LPV08]. We present a proof sketch and point out
the main difference with the work [LPVO08]. Before giving the proof, we define a determining message
of a commitment scheme which is from the committer and determines the value committed in the
commitment. For the protocol CNMCTCom, the determining message falls in Stage 1. More precisely, it
is the message in the commitment CTComy, which consists of commitments to v using Comy, i.e., the
last message of CTComyg,. In the following, we sometimes use (C, R) to denote the commitment scheme
CNMCTCom.

Just as the proof of [LPVO0S], for every man-in-the-middle adversary A, we design an expected non-
uniform PPT malicious receiver R* for a variant of the commitment scheme (C, R), which is denoted
by (C’, ]%) We postpone the description of <C‘, R} to a later stage. Upon receiving a commitment to
v using <C‘, ]%), R* outputs what is indistinguishable from the view and the values committed to by A
when receiving a commitment to v using (C, R). By the hiding property of <C', R>7 we then conclude
that nmcz“C’R> (v, z,id) and nmcz“QR> (v', z,id) are indistinguishable.

More formally, R* internally incorporates a simulated copy of A and emulates a one-many man-
in-the-middle execution by simulating all right receivers and emulating the left (C, R) interaction by
requesting the appropriate messages expected by A using (é, R) from outside. For each commitment
in the right interactions, if it fails, nothing has to be done. Otherwise, R* has to internally extract
the committed values for each accepting right commitment as long as its tag is different from the left
commitment. Depending on whether or not the determining message of this commitment completes
before the first message of the left commitment, the extraction is divided into two cases. If yes, there
is no need to do extraction, the value (and the corresponding view in this commitment) is given to R*
as auxiliary inputs or non-uniformly hard-wired into R*. E] Otherwise, R* has to extract the value. This
is done as follows: The message scheduling technique guarantees that there exists a point at which the

"There is a bit more subtlety here. If the determining message of a right commitment but not the whole commitment
completes before the start of the left commitment, then the value committed and the partial joint view of A in this
commitment are also given to R* as auxiliary inputs. R* continues the simulation from this partial joint view.
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adversary cannot answer the challenge from the receiver simply by “mauling” the commitments on the
left as long as it uses a tag different from the left commitment (Otherwise, the value is set to L.). Thus,
R* keeps rewinding from this point and extracts the value. Through careful analysis, this value is the
right one but not the preimage of the one-way function f E|

Left is the description of commitment scheme (C, R), which is a variant of (C, R). Recall that in the
above design of R*, it needs to extract the value for each right commitment whose determining message
is after the start of the left commitment. Thus, the rewinding on the right may rewind CTComy;, in
Stage 1 or special-sound WZ proofs in Stage 3 on the left. We adapt (C’, R) to handle the above two
cases. Furthermore, our goal is to ensure that from the adversary’s point of view, it is interacting with
an honest committer and multiple receivers of (C, R), while actually it is interacting with R* (with the
help of C’) Towards this goal, we make two possible modifications to (C, R). First, this one relates to
the handling of the rewinding of CTComg,. Recall that the commitment scheme CTComyg, in Figure
is a committed-receiver commitment scheme, where the receiver commits and fixes all of its messages
at the start of the protocol. Thus, the rewinding of CTComy;, except the start message has no effect
on the properties of <C‘, R) R* need interacts with C only once in Stage 1 and the response to A in
Stage 1 of left commitment is always the same. Second, this relates to the handling of rewindings of
special-sound WZ proofs. The receiver can ask for an arbitrary number of special-sound WZ designs in
Stage 3. Furthermore, <C' , R} does not have a fixed scheduling in Stage 3; the receiver instead gets to
choose which design to execute in each iteration (by sending bit i to select design; ). Note that, clearly,
any execution of (C, R) can be emulated by an execution of <C’ , R) by simply requesting the appropriate
designs. Using a similar analysis as the proof hiding property of (C, R), we can show that (C’,]%> is
hiding against expected PPT adversaries.

Concurrent trapdoor. The trapdoor property follows from the concurrent trapdoor property of
CTComg,. We construct a PPT oracle machine Ts = (Tsy, Tsg) such that for any polynomial p = p(n),
for any PPT p-concurrent adversary R* and for all V = (v1,...,v,) where vq,...,v, € {0,1}", the
two ensembles {staf(;’m(l",V)}VmJ and {(7,aux) < Ts; (1", 2),& « Tsy(aux,V) : (T,&0)}v.n,» are
computationally indistinguishable. In the following, for brevity, we use notation {Ts(1",V, z)}v., . to
denote the latter ensemble.

More formally, Ts proceeds as follows on input 1",V, z:

1. Ts; interacts with the p-concurrent receiver R*(z).

2. Ts; simulates Stage 1 of CNMCTCom as follows. It invokes the concurrent trapdoor simulator
Ts = (Ts;, Tsy) for p-concurrent adversary R(z) of CTComy,. Let (7,aux) « Ts;(17,2'), where
T = (71,...,Tp).

3. Ts; simulates Stage 2 by following the honest committer strategy. Denote by tr; o the transcript
of Stage 2 in the ith commitment.

4. Ts; simulates Stage 3 of CNMCTCom as follows. It randomly chooses vj,...,v, € {0,1}" and

executes @ '/I'\s/z(vi, -+, Up,aux), where & = (wy,...,wp). For each i € [p], in the i commitment,
Ts; runs the special-sound WZ proofs using w; as the witness. Denote by tr; 35 the transcript of
Stage 3 in the ith commitment.

5. Update 7; = 7;||tr; o||tris-

6. After /avll the commit phases compete, Tsy is given inputs V and proceeds as follows. It invokes
@ + Tsa(V,aux). For the ith reveal phase, Tss sends w;.

7. Output (7,d).

We show that the output of Ts is indistinguishable from the view of the p-concurrent R* in real
executions. We first design a hybrid argument H. On inputs 1",V, z, H acts identically as Ts except
that in Stage 3, it first invokes Tsy on inputs V and aux instead of randomly chosen v}, ... ,v;, and

aux. Then it uses the returned decommitment information from ?512 as the “fake witness” to complete
the WZ proofs. In the reveal phases, H directly uses the above decommitment information. It follows
from the WZ property in Stage 3 that the outputs of Ts(1",V,z) and H(1",V, z) are computationally
indistinguishable.

8The proof that the extracted value is the right one is different from that in [LPV08]. Suppose, on the contrary, this is
not the case. Then we will design an algorithm that breaks the one-wayness of the function f or the WZ property of the
proof in Stage 2.
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Next we show that the outputs of H(1",V,z) and staf‘zc*yﬁ{)(l",v7 z) are computationally indistin-
guishable. Suppose, for contradiction, that this is not the case. Without loss of generality, we assume
that R* is deterministic. Then, there exists a polynomial-time distinguisher D and a polynomial g(n)
such that for infinitely many n € N, there exist strings v1,...,v, € {0,1}",z € {0,1}*, such that D
distinguishes staf(;, R>(1”,V, z) and H(1™,V, z) with probability at least ﬁ. Fix a generic n for which

this happens. We construct a p-concurrent adversary R that breaks the concurrent trapdoor property
of CTCom,;,. R on inputs 17, z,V proceeds as follows. It internally incorporates R* and forwards the
external commitments in Stage 1 of all commit phases. It follows the honest committer strategy in Stage
2. In Stage 3, R receives the decommitment information from external and gives the WZ proofs using
these witnesses. In the reveal phases, R directly uses the above decommitment information. Finally, R
outputs whatever R* outputs. It follows that R violates the concurrent trapdoor property of CTComgy,
with the same probability that R* distinguishes between ensemble stafgﬂ> (1™, V,z) and H(1™,V,z). O

B.3.1 The protocol CNMCTCom’

We give a short introduction of the protocol CNMCTCom’ in Remark We claim that CNMCTCom’ is

still concurrent non-malleable and concurrent trapdoor. Roughly, it is straightforward that the binding
property still holds. The hiding property preserves since the special-sound proofs are still WZ under
concurrent composition [FS90]. (we can regard the 4¢ invocations of special-sound WZ proofs as 4t
concurrent invocations.) For the concurrent trapdoor property, the simulator is almost identical to that
of CNMCTCom with the exception that it just ignores the trapdoor information extracted from the
CEComy, of Stage 3. In the proof of concurrent non-malleability, the modified commitment scheme
<C’, R} is almost the same as that of CNMCTCom with the exception that here the receiver is able to
query polynomial-many special-sound WZ proofs where the first message is fixed once and for all in each
session. Here the receiver is weaker than that of CNMCTCom. Thus, the hiding property of <C‘, ]%) still
holds.

Another concurrent trapdoor simulator. Considering the CNMZK protocol in Figure [§] we want
to use the above concurrent trapdoor simulator in the design of the simulator-extractor for CNMZK.
However, the above trapdoor simulator does not suffice upon adaptive corruptions. The main problem
is how to handle adaptive corruptions during special-sound WZ proofs. The simulator has to interpret
the proof generated using a “fake witness” as one generated using a real witness. Here we solve the
above problem by letting the committer generate commitments using concurrent trapdoor simulator of
CTComygy, in the special-sound WZ proofs. Accordingly, we define another concurrent trapdoor simulator
for CNMCTCom’ which is more suitable to the proof of the CNMZK protocol upon corruptions.

We construct a PPT oracle machine Ts = (Tsy, Tsa) such that for any polynomial p = p(n), for
any PPT p-concurrent adversary R* and for all V = (vy,...,v,) where v1,...,v, € {0,1}", the two
ensembles {staﬁ(; Ry (1", V)} v,z and {Ts(1",V, 2) }v,n,. are computationally indistinguishable.

More formally, Ts proceeds as follows on input 1", V, z:

1. Ts; interacts with the p-concurrent receiver R*(z).

2. Ts; simulates Stage 1 by invoking the concurrent trapdoor simulator Ts = ('?s/l, 1?5,/2) of CTComygy,.
More precisely, it invokes the concurrent extractor £ of CEComyy, for p’-concurrent adversary R(z),
where p’ = p* (1 + 4t). Let 7,V’' be the corresponding view and extracted values. Ts; uses
part of 7, V' to simulate the Stage 1. Denote by aux; the auxiliary information in Stage 1 of ith
commitment, which includes V' and the randomness used by Ts;.

3. Ts; simulates Stage 2 by following the honest committer strategy. Denote by tr; o the transcript
of Stage 2 in the ith commitment.

4. Roughly, Ts; simulates Stage 3 as follows. It uses the concurrent trapdoor simulator of CTComygy,
to generate the commitment and answer the query from the adversary. Note that a nice property
of Blum’s protocol for Hamiltonicity is that the prover only uses a witness in the final round of the
protocol. Thus, we can handle the first two steps a bit easier. More precisely, for simplicity and
without loss of generality, we only describe how to simulate Blum’s basic protocol. Denote by G
the input.

e Ts; first picks a random permutation w on the vertices and commits to a random graph
G’ = 7(G) using the concurrent trapdoor simulator of CTComygy,.
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e The adversary picks a random bit challenge b.

e If b =0, Ts; sends 7w along with the revealing of all commitments. Ts; invokes the concurrent
trapdoor simulator of CTComyg, (with the help of 7, V') to open the commitments to corre-
sponding values, i.e., for each entry (i,j) € G, it opens the commitment corresponding to
(w(i),7(j)) to 1, and for all other entries, it opens to 0. If b = 1, Ts; chooses a random cycle
C' and reveals to the adversary only the commitments to entries (7 (4),n(j)) with (i,5) € C
(and the adversary checks that all revealed values are 1 and the corresponding entries form a
simple n-cycle).

Denote by tr; 3 the transcript of Stage 3 in the ith commitment.
5. Update 7; = 7;||tr; ||tris.
6. After all the commit phases compete, Tsy is given inputs V and proceeds as follows. It invokes

W0 :I—\S;(V7 aux). For the ith reveal phase, Tsy sends w;.
7. Output (7,d).

We show that the output of Ts is indistinguishable from the view of the p-concurrent R* in real
executions. We first design a hybrid argument H. On inputs 1™,V, z, H acts identically as Ts except that
in Stage 1, it runs as honest committer and in the reveal phase, it opens the commitments by revealing
the decommitment information in Stage 1. It follows from the concurrent trapdoor property of CTComygy,
that the outputs of Ts(1™,V, z) and H(1",V, 2) are computationally indistinguishable.

Next we show that the outputs of H(1",V, z) and stafgﬂ> (1™, V, z) are computationally indistinguish-
able. For simplicity, we only consider a basic special-sound WZ proof. Recall that the difference between
H and the real executions lies in that the former generates “fake” commitments and equivocates them,
whereas the latter generates real commitments and opens them. It follows from the concurrent trapdoor
property of CTComyg, that these two outputs are indistinguishable.

B.4 Relations among Commitment Schemes

In the above sections, we give constructions of different kinds of commitment schemes, which will be
used in the construction of adaptively secure CNMZK. In order to better understand these commitment
schemes, we show the relations among them in Figure [6]

A direct line from A to B and a dashed line from C to B mean that the commitment scheme
B is constructed based on the commitment scheme A by replacing part of the primitive in A with
the commitment B. For example, the concurrently extractable and trapdoor commitment scheme in
Figure [2] is almost the same as the concurrently extractable commitment in [MOSV06] except that the
commitment scheme used by the committer is replaced with a concurrent trapdoor one.

Concurrently Extractable
Commitment

1
1
1
1
1
Naor’s Commitment ‘ ’Coin Tossing ‘ 1
1
1
1
1
1

Non-Malleable e == ===
Commitment

}

Concurrent Trapdoor Com-

mitment
Non-Malleable Concurrent Concurrently Extractable
Trapdoor Commitment Concurrent Trapdoor Commitment

Figure 6: Relations among different kinds of commitment schemes.
Dashed line denotes the commitment replaced.
Direct Line denotes the base commitment/tool.
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C The Non-Malleability Proof
Proof of Claim[{.1}

Completeness: It is straightforward. An honest prover knows the witness w and commits to w in
Stage 2, 3 and 4. Thus, it knows w and the decommitment information of commitments in Stage 2, 3
and 4. Moreover, the Cook-Levin reduction from L’ to Hamiltonicity guarantees that given a witness to
2’ € L', the prover is able to compute a witness to the corresponding instance in Hamiltonicity. Thus,
according to the completeness of MBZKProof, the prover is able to execute the ZK proof and convince
the verifier.

Soundness: The soundness property follows from the hiding property of CEComygy,, the binding prop-
erty of CECTComg, and NMCTCom, and the soundness property of MBZKProof in Stage 6. More
formally, if there exists an adversary P* such that for infinitely many n € N, there exist 2 € {0,1}* N L
and a polynomial p(n), such that P* convinces an honest verifier the statement x with probability at
least ﬁ. We then design an unbounded adversary 4 that breaks the soundness property of the protocol
MBZKProof for Hamiltonicity. Without loss of generality, we assume that P* is deterministic. A on
inputs z, 1™ internally runs a copy of P*. A acts as an honest verifier except that in Stage 6, it forwards
the statement 2’ (i.e., the reduction from (z, 73,73, T4,7) to a directed graph G) and messages to an
external verifier of MBZKProof. As A acts as an honest verifier for P* in the protocol CNMZKProof, it
is straightforward that the probability that A convinces the external verifier is at least ﬁ. Next we
argue that G is not a Hamiltonian graph. We then conclude that A breaks the soundness property of
MBZKProof. Note that the commitment CEComgj, in Stage 1 is statistically hiding, P* correctly guesses
the committed value r of A after Stage 1 only with negligible probability. Thus, in Stage 2, 3 and 4,
P* commits to a value r with negligible probability. Moreover, as the CECTComyg, in Stage 2 and the
NMCTCom in Stage 3 and 4 are statistically binding, P* interprets 73,73 and 74 as commitments to
value r only with negligible probability. On the other hand, z is also a false instance for the language
L. Thus, (z,T%, T3, Ts,7) is a false instance for the language L’. Due to the property of the Cook-Levin
reduction, we conclude that the statement G is not a Hamiltonian graph.

Our simulator § is similar to the LPTV protocol except the handling of corruptions. On a high level
view, S attempts to simulate the view of A in one continuously straight-line manner. S will extract the
“fake witnesses” with the help of numerous auxiliary rewinds. E| The simulator strategy guarantees that
the view of S depends on the extracted “fake witnesses”, but is otherwise independent of the interaction
in auxiliary rewinds.

Note that S may abort in two manners. At the end of CEComygy, if S is unable to extract the
committed value, S outputs L. Or, in Stage 5 of a left interaction, if A opens its commitment in
Stage 1 to a value that is different from the extracted value, S outputs Ly;nq. The following claim bounds
the abort probability of S. The proof is essentially the same as the LPTV protocol [LPTV10].

Claim C.1. S outputs Leyr and Lying with negligible probability.

C.1 The View Generated by the Simulator

We next show that the view generated by S is indistinguishable from the real view of A.

Lemma C.2. The following ensembles are computationally indistinguishable over n € N:

. {S (1",X, D, z)}
NEN 1. €{0, 1} il ... iy €{0,1}1 (") 2 {0,1}*

. {viewA (1",X,1D,z) o
NENE 12 €40, 1} i i €{0, 111 2€ (0,1}

To show Lemma, we introduce a series of hybrid simulators {H;}o<i<m. Hybrid H; receives the
witnesses of the statement proved in all left interactions and proceeds as follows.

9The “fake witnesses” here means the extracted value committed by A in Stage 1. It consists of four parts: r, eg for
CECTComygy, €3 and €4 for NMCTCom. In the following, without confusion, we sometimes call r the fake witness.
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Real Execution Phase: Run the simulator S with the man-in-the-middle adaptive adversary A en-
tirely. Output Leys or Lping if S outputs Loy or Lping. Otherwise, let V be the view of A produced
by S and 7;,¢€;2,€;3,€;4 be the values extracted by & from the Stage 1 of jth left interaction,
where 7; is the “fake witness”, and e;,€j3, €54 are the corresponding extracted values for the
CECTComy, in Stage 2, NMCTCom in Stage 3 and 4, respectively. (see Remark )

Simulation Phase: Let V; be the prefix of V up until the ith left interaction has completed Stage 1 of
the protocol. Simulate a man-in-the-middle execution with A, continue from V; in a “straight-line
manner” as follows.

1. Continue of the simulation of right interactions by following the honest verifier strategy (just
like §). Handle adaptive corruptions as S does.

2. For left interaction j < i, simulate the interaction in the same manner as S, i.e., invoke the
concurrent trapdoor simulator of CECTCom to generate the commitment in Stage 2, invoke
the concurrent trapdoor simulator of NMCTCom to generate the commitment in Stage 3 and
4, and run the proof in Stage 6 using the above decommitment information as the witness.
Handle adaptive corruptions as S does.

3. For left interaction j > 4, emulate the interaction by following the honest prover strategy.
Handle adaptive corruptions by providing A with the corresponding randomness.

Output Phase: Output Ly or Lying if S returns Lyt or Lping. Otherwise, output the newly com-
pleted view of A from the simulation phase.

For 0 < i < m, we also define hybrid H;L that proceeds identically as H; except that in the Simulation
Phase, the ith left interaction is simulated by following the honest prover strategy, using the given
real witness (rather than using the concurrent trapdoor simulator). Note that these hybrids are only
concerned with producing the view of A, and do not extract the witnesses of the right interactions.

By construction, H; and HZ'-|r abort when S aborts. Hence by Claim we get the following claim.

Claim C.3. For all 0 <i <m, H; and H]" output L with negligible probability.

By Claim the output of Hy is statistically close to the real view of A (they only differ when Hg
aborts, which occurs with negligible probability). The output of H,,, on the other hand, is identical to
the output of simulator S. Therefore, Lemma follows directly from the Claim and Claim

Claim C.4. For each i € [m], the following ensembles are statistically indistinguishable over integer
n € N:

. {Hi,1 (1",X,Iﬁ,z)}

nEN,z1,...,Tm €{0,1}7id1,...,idn, €{0,1}t(") z€{0,1}*
° {HZ+ (1”,X,I]5,z)} ) _

nEN,z1,...,Tm €{0,1}7,id1,...,idn, €{0,1}t(") z€{0,1}*
Proof. Ignoring the fact that H;r and H;_; may abort, their outputs are identical. This is because H;r and
H;_; differ only in that when generating the output view, from the end of Stage 1 of i — 1st left interaction
until the end of Stage 1 of the ith left interactions, Hj‘ employs rewinds. However, these rewinds do not
extract any new “fake witnesses” for use in the output view, and do not skew the output distribution
because the rewinding schedule is oblivious. Moreover, the corruptions are identically handled in both
hybrids. Since both hybrids abort at most with negligible probability by Claim their outputs are
statistically close.
O

Claim C.5. For each i € [m], the following ensembles are compuationally indistinguishable over integer
n € N:

. {Hj (1",X,ID7z)}
nEN,z1,...,Tm €{0,1}7,id1,...,idn, €{0,1}t(") z€{0,1}*

* {Hi (1",X,ID,z> }neN,rl,‘..,xme{O,l}",idl,...,idme{O,l}f'("),26{0,1}*

Proof. The proof of this claim is very different from the LPTV protocol. We has to argue the indis-
tinguishability between the outputs of the two hybrids when adaptive corruptions happen in Stage 2 to
Stage 6 of the ith left interaction. The main difference between hybrids H and H; is that the ith left
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interaction is generated using a real witness in the former, whereas in the latter it is simulated relying on
the concurrent trapdoor simulator of CECTComy, and NMCTCom. If the adversary A does not corrupt
P; or it corrupts other provers or verifiers, then with similar analysis, the outputs of Hj‘ and H; are
computationally indistinguishable by the concurrent trapdoor property of the commitments in Stage
2, 3 and 4, and the strong witness indistinguishability property of the zero-knowledge proof in Stage
6. Otherwise, according to the point where A corrupts P;, we classify several cases. Note that upon
corruption, H;r provides A with the real randomness of P;, since it runs as honest prover strategy from
Stage 2 to Stage 6.

Corruption in Stage 2: Hybrid H; provides A with the randomness for the simulated P; using the
concurrent trapdoor simulator of CECTComygy,. It follows from the concurrent trapdoor property of
CECTComygy, that the outputs of H; and Hj’ are computationally indistinguishable.

Corruption in Stage 3: Hybrid H; invokes the concurrent trapdoor simulator of NMCTCom and CTComy,
to generate the randomness used by P;. We again emphasize that H; need invokes the concurrent
trapdoor simulator of NMCTCom and provides the randomness used in the special-sound proof (see
the simulator S for details). It follows from the concurrent trapdoor property of Stage 2 and 3,
and the concurrent trapdoor property of CTComyg, in Stage 3 that the outputs of the two hybrids
are computationally indistinguishable.

Corruption in Stage 4: H; handles corruptions as in Stage 3. It follows from the concurrent trapdoor
property of Stage 2,3 and 4 that the outputs of the two hybrids are computationally indistinguish-
able.

Corruption in Stage 6: Recall that H; uses a fake witness to generate the proof. Upon corruption,
it has to explain it as a proof generated using a real witness. It follows from the concurrent
trapdoor property of Stage 2, 3 and 4, and the strong WZ property of MBZKProof (along with the
adaptive trapdoor property of AIDCom) that the outputs of the two hybrids are computationally
indistinguishable.

O

C.2 The Witness Output by the Simulator

Next we show that the extracted witnesses are indeed the NP witnesses of the statements proved in
the right interactions. Note that if 4 commits to a valid witness using CECTComy;, in Stage 2 of a
right interaction, then by Claim the simulator S would extract this witness except with negligible
probability. We argue the correctness of the output witnesses in the following lemma.

Lemma C.6. For every probabilistic polynomial-time adaptive adversary A, for everyn € N,x1,..., 2, €
{0,1}* NL and z € {0,1}*, for every idy, ..., idy € {0, 1} the probability that A fails to commit to a
valid witness in Stage 2 of a right interaction that is accepting for an honest verifier and uses a different
tag from all left interactions, is negligible.

Our proof follows the structure of the proof of LPTV protocol. The LPTV protocol argues the
correctness of the witnesses output by the simulator in the following three steps (Our notation is little
different from theirs and we use our notation to describe their result.).

1. In hybrid Hy (i.e., identical to real execution execept with negligible probability), the adversary .4
commits to a real witness for each right accepting interaction as long as the verifier is not corrupted
and the tag is different from all left interactions.

2. The view and the witnesses output by H;_; and H;“ are statistically indistinguishable.

3. The view and the witnesses output by Hj‘ and H; are computationally indistinguishable.

They then conclude that in H,, (which is the simulator S), A commits to a real witness for each right
accepting interaction with an uncorrupted verifier that uses a tag different from all left interactions. We
also argue the correctness of witnesses output by the simulator following the above three steps. When
no corruptions happen, we can alternatively analyze the above three steps in the same manner as the
LPTYV protocol. But for general cases, we apply a quite different analysis. In the following, we only
consider the above three steps when adaptive corruptions happen. The proof for the first two steps are
simple. We omit the details here. The tricky part is the third step, which is established in Claim
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Claim C.7. The view and the witness output by hybrid Hj and H; are computationally indistinguishable.

The hybrids H; and H;" act identically until the completion of Stage 1 of the ith left interaction.
According to Lin et al. [LPTV10], this point is called the cut-off point. The only difference after the
cut-off point between the two hybrids is the remaining ith left interaction, in which H; uses the “fake
witness” (in addition to the concurrent trapdoor simulator of CECTComg, and NMCTCom), and H;" uses
a real witness. For each right interaction, the message scheduling by A is categorized in the following

three cases, see Figure [7]
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Figure 7: The three scheduling in a man-in-the-middle execution of A

Scheduling 1: A completes the Stage 2 commitment on the right before the cut-off point.

Scheduling 2: A completes the Stage 2 commitment after the cut-off point, but completes the Stage 3
commitment and proof before the start of the Stage 6 of the ith left interaction.

Scheduling 3: A completes the Stage 2 commitment after the cut-off point, and completes the Stage 3
commitment and proof after the start of the Stage 6 of the ith left interaction.

We define H, ; where j € {1,2,3}, which acts identically as H; except that it outputs L if the
scheduling j does not occur in the output view. Define Hj_j correspondingly for Hj. The extracted value
in each right interaction is defined to be L if the interaction is not successfully completed or its tag is
the same as one of the left interaction, or the hybrid fails. Define the output of H;fj correspondingly
for Hj‘. Next we show that for each right interaction and j € {1,2,3}, the output of H; ; and HZ]- are
computationally indistinguishable. In the following, we omit the index of the right interaction explicitly,
as the following claims hold for every right interaction with an uncorrupted verifier that is accepting and
has a tag different from all left interactions.

C.2.1 The Scheduling 1

For the case for Scheduling 1, we get the following claim.

Claim C.8. For every 0 < ¢ < m the outputs of H; 1 and HZ‘l are computationally indistinguishable,

i.e.,
{Hi_1 (1”,)?,15,2)} o {Hjl (1”,)?,115,z)} o
’ n,X,ID,z ’ n,X,ID,z

Proof. Since both hybrids act identically before the cut-off point and the commitment in Stage 2 of right
interaction is before the cut-off point, the extracted value in Stage 2 of right interaction is identical.
By Claim it follows that the view of the adversary in both hybrids are computationally indistin-
guishable. Thus, we conclude that the view and the committed value on the right are computationally

O

lle

indistinguishable.
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C.2.2 The Scheduling 2

For the case for Scheduling 2, we get the following claim.

Claim C.9. For every 0 < ¢ < m, the outputs of H; 2 and HZQ are computationally indistinguishable,

i.e.,
{Hi_2 (1”,)?,15,2)} o {sz (1”,X,Iﬁ,z)} o
’ n,X,ID,z ’ n,X,ID,z

Proof. Note that Stage 3 to Stage 6 of the right interaction in H; 2 and H:Q are simulated completely
after the cut-off point in a straight-line fashion. It follows from the soundness property of Stage 6 that,
except from negligible probability, A always commits to the same value in Stage 2, 3 and 4 on the right,
provided that the right interaction is accepting. Hence, in order to prove Claim it is sufficient to
show that the view and the value v that 4 commits to in Stage 3 are indistinguishable. According to the
point where A corrupts P; (all other corruptions are handled identically in both hybrids), we distinguish
among the following cases: corruption in Stage 2, 3, 4 and 6. We only prove the most complicated case,
i.e., corruption in Stage 6. Other cases can be proved in a similar but simper way. Towards proving this,
we introduce a sequence of hybrids {H?,}o<;<a.

llle

Hybrid HY, proceeds identically to H;, except that in H{,, Stage 6 of the ith left interaction is now

simulated by invoking the simulator of the ZK protocol MBZKProof. Since the Stage 3 commitment
on the right completes before the Stage 6 of the left interaction, the value committed to by the
adversary A in Stage 3 is independent of the ZK proof. Left is the handling of corruptions. Upon
corruption, H?, proceeds identically as H;-':’Q except that in Stage 6, it has to explain the proof as
one generated using real witness.
Recall the simulator of MBZKProof. (The reader is refereed to [LZ09] for details.) The ZK simulator
first guesses the challenge of the adversary and prepares its message accordingly. If the guess is
right, then the simulator proceeds smoothly without difficulty. Otherwise, the simulator keeps on
rewinding the adversary and making a new guess until the guess is right. Next we first discuss
the simulation in Stage 6 in detail and then describe how H?, hands corruptions in Stage 6. For
simplicity, we only give a short description of Blum’s basic protocol for Hamiltonicity.

Step 1: HY, makes a random guess b € {0,1}. If b = 0, H?, selects a random permutation 7 of
the vertices of G, and commits to the adjacency matrix of the w(G) using the algorithm Com
of protocol AIDCom. If b = 1, HY, creates an adjacency matrix of a graph containing only a
random cycle C of length n (all other entries are set to 0). It then uses Com to commit to all
1’s in the adjacency matrix. All other entries are filled with commitment values created by
the fake algorithm Com’.

Step 2: It receives a challenge bit b’ from the adversary A.

Step 3: If b # V', HY, rewinds the adversary to the first step. Otherwise, if b = &' = 0, H?, sets
the prover’s second message to be decommitments to all entries at the adjacency matrix and
m; if b=1b" =1, H}, decommits to all 1’s in the adjacency matrix (i.e., the cycle 7(C).).

Corruption: Denote by C’ the new Hamiltonian cycle in G reduced from the witness w; (in
addition to real decommitment information of 73,73, 71 to w;). If b = b = 0, the first step
message has been created exactly as in a real run of the protocol and the simulator can provide
A with the random coins used to create the commitment. If b = & = 1, S has to make the
commitments except the cycle C' consistent with the witness C’. More precisely, S proceeds
as follows: find a random permutation 7’ between the two Hamiltonian cycles C’ and C,
ie, C = 7'(C"). Compute H = 7'(G). For every edge (u,v) € C, it provides A with the
randomness used by Com to commit to 1. For every edge (u,v) € H and (u,v) ¢ C, S uses
algorithm Adapt to obtain random coins such that the appropriate commitment value in the
adjacency matrix is a commitment to 1. For every edge (u,v) ¢ H, S uses algorithm Adapt
to obtain random coins such that the appropriate commitment value in the adjacency matrix
is a commitment to 0. S provides A with the input w; and the set of random coins described
above as well as 7'.

It follows from the adaptive zero-knowledge property of MBZKProof that the view and the value
A commits to is computationally indistinguishable in H;", and HY,.
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Hybrid H., proceeds identically to H?, except that in Hl,, Stage 2 of the ith left interaction is now a
commitment generated by the concurrent trapdoor simulator of Ts? of CECTComg,. Upon corrup-
tion, Hl, provides A with the simulated randomness for P; in Stage 2 of the ith left interaction by
invoking Ts” and opening the commitment in Stage 2 to w;. Moreover, it uses this decommitment
information as part of the witness (in addition to decommitment information in Stage 3 and 4) to
handle corruption in the zero-knowledge proof. (all other stages are handled identically as H?,.).
It follows from the concurrent trapdoor property of CECTComy, and non-malleability w.r.t £(n)-
round protocols of NMCTCom (and the fact that Stage 2 of the protocol consist of £(n) rounds)
that the view and the value A commits to is computationally indistinguishable in HY, and H.,.

Hybrid H?, (and H?, resp.) proceeds identically to H., (and HZ, resp.) except that in H?, (and
H3, resp.), Stage 3 (and Stage 4 resp.) of the ith left interaction is now a simulated commitment
generated by the concurrent trapdoor simulator Ts® (and Ts? resp.) of NMCTCom. Upon cor-
ruption, Hl, provides A with the simulated randomness for P; in Stage 3 (and Stage 4 resp.) of
the 4th left interaction by invoking Ts® (and Ts* resp.) and opening the commitment in Stage 3
(and Stage 4 resp.) to w; (in addition to the handling of the special-sound proof). Moreover, in
Stage 6, HZ, (and H3, resp.) uses this decommitment information as part of the witness to handle
corruptions in the zero-knowledge proof. (all other stages are handled identically as Hl, (and HZ,
resp.).) It follows from the concurrent trapdoor property of NMCTCom and the non-malleability
w.r.t itself of NMCTCom that the view and the value A commits to in Stage 3 is computationally
indistinguishable in H2, and H?, (and in H3, and H%, resp.).

Hybrid H}, proceeds identically to H?, except that, Stage 6 of the ith left interaction is simulated by
proving the Stage 2, 3 and 4 are valid commitments to the value r; revealed by A in Stage 5 of this
interaction. More precisely, H,, first invokes the concurrent trapdoor simulators of CECTComg, and
NMCTCom and opens the corresponding commitments to r;. Then H?, uses these decommitment
information as the witness to run the zero-knowledge proof in Stage 6 just as the simulator S does
(H%, uses Com’ of AIDCom to generate commitments to the adjacency matrix of the permutated
graph.). Upon corruption, H}, would explain the commitments in Stage 2, 3 and 4 as to the real
witness w; and explain the proof in Stage 6 as one generated using real witness. Note that, by
definition, H}, proceeds identically to the hybrid H;.o. Hybrid H3, and H?, differ only in how the
proof in Stage 6 of the ith left interaction is simulated and handled upon corruption. In Stage 6,
H2, would simulate by invoking the ZK simulator while H}, opens the commitments in Stage 2, 3
and 4 to r; and uses this as the witness to run the ZK protocol. Upon corruption, both H?, and
H?, explain the proof as one generated using real witness w;. Since in Scheduling 2, the Stage
3 commitment on the right completes before the Stage 6 proof starts, the value A commits to in
Stage 3 is independent of the zero-knowledge proof. Therefore, it follows from the WZ property of
the zero-knowledge protocol and the adaptive trapdoor property of AIDCom that the view and the
value A commits to in Stage 3 are computationally indistinguishable in H3, and H}, .

O

Next we formally prove that the outputs of neighbor hybrids above are computationally indistinguish-
able. Without loss of generality, we only prove the most complicated case where corruptions happen in
Stage 6 of the ith left interaction. Other cases can be proved in a similar and simpler way. Note that for
the ith left interactions (except Stage 1) of the above hybrids, we only explicitly deal with corruptions
of P;, since all other corruptions are handled identically in neighbor hybrids.

Claim C.10. For every 0 < i < m, the outputs of H;fz and HY, are computationally indistinguishable.

Proof. Assume, for contradiction, that there exists an adversary A, a distinguisher D and a polynomial
p, such that for infinitely many n,X = (x1,...,2m) where z; € {0,1}" N L, D = (idy,...,id;,) where
id; € {0,1}1") W = (wy, ..., w,) where w; € R.(z;) and z € {0,1}*, D distinguishes H}, (1", X, 1D, 2)
and HY, (17, X, I]_f), z) with probability at least ﬁ. We then show how this violates the adaptive zero-
knowledge property of MBZKProof.

Note that the two hybrids H}, and HY, proceed identically before the Stage 6 commitment of the
ith left interaction. Therefore, there must exist a partial joint view 7 of all parties that defines the
execution before Stage 6 of the ith left interaction, such that D distinguishes {H;, (1", X,1D, )7} and
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{HY, (1", X, 1D, z)|7} with probability at least T%n)’ where {HO, (17, X, 1D, z)|7} denotes the outputs of

HO, (17, X, 1D, z) conditioned on the event that the execution is consistent with joint view 7.

We now construct an adversary A that breaks the adaptive ZK of MBZKProof. [\] A, upon auxiliary
inputs X , W, If), z,T, internally emulates a man-in-the-middle execution with A from 7 as follows. It
emulates the interactions for A just as H;Q with the following exceptions.

e In Stage 6 of the ith left interaction, A hands the statement 2/ = {(z, T2, 73, T1,7)} to the external
party. It also sends to the external party the “fake” witness to 2’. (The non-uniform A has hard-
wired the decommitment information in Stage 2, 3 and 4 or the trapdoor information.) It next
relays the message between the external party and A.

e Upon corruption of P; in Stage 6, A explains the Stage 2, 3 and 4 commitments (in 7) as to w;
and sends the real witness to z’ to the external party. Then it forwards the response to A. All
other corruptions are handled identically as Hj:Q.

Denote by V the view of A in the above executions. Denote by v committed to by A. The distinguisher
D, on input the view of V and the value v, reconstructs the view V4 and the value v committed to by A
in Stage 3 in emulation by A. Finally, D invokes the distinguisher D on V4 and v, and outputs whatever
D outputs. When A interacts with the prover of MBZKProof, the view V4 and the v are identically
distributed to {H%,(1", X, ID, z)|7}. When A interacts with the simulator of MBZKProof, the view V.4
and the v are identically distributed to {HIQ(I”,)? ,ID, 2)|7}. We claim that D distinguishes the two
ensembles with probability ﬁ, which contradicts with the ZK of MBZKProof. O

Claim C.11. For every 0 < i < m, the outputs of HY., and H., are computationally indistinguishable.

Proof. Assume, for contradiction, that there exists an adversary A, a distinguisher D and a polynomial
p, such that for infinitely many n, X = (x1,...,2m) where z; € {0,1}" N L, D = (id,...,id,,) where
id; € {0,1}¢) W= (w1, ..., wy) where w; € Ry (x;) and z € {0,1}*, D distinguishes H9:2(1",)Z,1T),z)
and Hl, (17, X , I]_’)7 z) with probability at least ﬁ. We then show how this violates the robustness of
NMCT Com. []

Note that the two hybrids HY,, and H}, proceed identically before the Stage 2 commitment of the ith
left interaction. It again follows using an averaging argument that, there must exist a partial joint view 7
of all parties that defines the execution before Stage 2 of the ith left interaction, such that D distinguishes
{HO, (1", X, ID, 2)|r} and {HL,(1" X 1D, z)|7} with probability at least m Let e; be the second
extracted value (i.e., the trapdoor information of CECTComygy,) in Stage 1 of the ith left interaction. Let
p be the partial transcript of the CEComyg;, part in CECTComy;, of the ith left interaction. Consider the
machine B(0,) and B(1,). B(0,), on inputs e;, w;, continues the execution from p and commits to w;
using CECTComyg;,. Upon decommitment query, B(0,,) provides the adversary with the randomness used
in generating the commitment. B(1,), on inputs e;, w; and the partial transcript p of the CEComyy, part,
continues the execution from p and generates a commitment using the concurrent trapdoor simulator
Ts® of CECTCom,;,. Upon decommitment query, B(1,,) opens the commitment to w; and provides the
adversary with the simulated randomness used in generating the commitment with the help of Ts%. Due
to the concurrent trapdoor property of CECTComy, no PPT adversary can distinguish interactions with
B(0,) and B(1,).

We now construct an adversary A that breaks the non-malleability w.r.t O(¢(n))-round protocols of
NMCTCom, i.e., the view and the value that A commits to after interacting with B(0,) and B(1,) can
be distinguished by a distinguisher D. A, upon auxiliary inputs X , VTC IE,Z,T, internally emulates a
man-in-the-middle execution with A from 7 as follows. It emulates the interactions for A just as HY,
with the following exceptions.

10We compare between a real execution and a simulated execution. The real execution is slightly different from the
execution between an honest prover and an adversary. Here the prover knows the real witness but cheats in the proof.

1 The non-malleability requirement of NMCTCom here and the Definition differ in two aspects. First, in the com-
mitment on the left interaction, the former is either a regular commitment or a simulated commitment generated by the
trapdoor simulator, moreover, the trapdoor information (as auxiliary input) is known in advance, whereas the latter is
a regular commitment to either values. Second, the internal randomness of the committer on the left might be revealed
upon corruption in the former (both commitments opens to the same value), whereas it is hidden in the latter. Due to the
trapdoor property of NMCTCom, we claim that the non-malleability property still preserves in this case and the proof in
Appendix can be modified to adapt this setting.
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e To emulate the Stage 2 of the ith left interaction, it externally sends B the witness w; and the
extracted value e;. It next forwards the commitment from B to A.

e In Stage 3 of the right interaction, it externally forwards messages from A to an honest receiver of
NMCTCom.

e Upon corruption of P; in Stage 2 and afterwards, A sends the decommitment query to B and
forwards the response to A. All other corruptions are handled identically as HY.,.

Denote by V the view of A in the above executions. Denote by v committed to by A. The distinguisher
D, on input the view of V and the value v, reconstructs the view V4 and the value v committed to by
A in Stage 3 in emulation by A. Finally, D invokes the distinguisher D on V4 and v, and outputs
whatever D outputs. When A interacts with B(b,), the view V4 and the v are identically distributed
to {H%, (1", X,1D, z)|7}. We claim that D distinguishes the view and the values committed by A using
NMCTCom with probability #(n), which contradicts with the robustness of NMCTCom. O
Claim C.12. For every 0 < i < m, the outputs of H., and H2, are computationally indistinguishable.

Proof. Assume, for contradiction, that there exists an adversary A, a distinguisher D and a polynomial
p, such that for infinitely many n, X = (x1,...,2m) where z; € {0,1}" N L, W = (wi, ..., wy) where
w; € Ry(z;), ID = (idy,...,id,,) where id; € {0,1}!™, and z € {0,1}*, D distinguishes Hl{z(l",f, D, 2)
and HZ, (1", X , Iﬁ, z) with probability at least ﬁ We then show how this violates the non-malleability
w.r.t itself of NMCTCom.

Note that the two hybrids H., and H?, proceed identically before the Stage 3 commitment of the
ith left interaction is sent. Using an averaging argument, it follows that there must exist a partial joint
view 7 of all parties that defines the execution before Stage 3 of the ¢th left interaction, such that D
distinguishes {H., (1", X,1D, z)|7} and {H2,(1", X,1D, z)|7} with probability at least %. Let €; be
the third part of the extracted values (i.e., the trapdoor information of NMCTCom) in Stage 1 of the ith
left interaction.

We now construct an adversary A that breaks the non-malleability w.r.t itself of NMCTCom. A,
upon auxiliary inputs X , W, IB, z, T, internally emulates a man-in-the-middle execution with A from 7
as follows. It emulates the interactions for A just as Hl., with the following exceptions.

e To emulate the Stage 3 of the ith left interaction, it externally sends the committer (i.e., honest
committer or trapdoor simulator) of NMCTComg, the witness w; and the extracted value &;. It
next forwards the commitment from the external committer to A.

e In Stage 3 of the right interaction, it externally forwards messages from A to an honest receiver of
NMCTCom.

e Upon corruption of P; in Stage 3 and afterwards, A asks the external committer of NMCTCom to
provide A with the internal randomness, i.e., decommitment information. All other corruptions
are handled identically as H.,.

Denote by V the view of A in the above executions. Denote by v committed to by A. The distinguisher
D, on input the view of V and the value v, reconstructs the view V4 and value v committed to by A
in the emulation by A. Finally, D invokes the distinguisher D on V4 and the committed value v,
and outputs whatever D outputs. From the construction, when A interacts with real committer of
NMCTCom, the view V4 and v is identically distributed to {HL,(1", X,ID, z)|r}. When A interacts
with trapdoor simulator (knowing trapdoor in advance) of NMCTCom, the view V 4 and v is identically
distributed to {H2,(1", X,1D, z)|7}. We claim that D distinguishes the view and the value committed
by A using NMCTCom with probability %, which contradicts with the non-malleability w.r.t itself of
NMCTCom. O

It follows from the same argument as in HZ, that the following claim holds.
Claim C.13. For every 0 < i < m, the outputs of H, and H3, are computationally indistinguishable.
Claim C.14. For every 0 < i < m, the outputs of H3, and H}, are computationally indistinguishable.

Proof. Assume, for contradiction, that there exists an adversary A, a distinguisher D and a polynomial
p, such that for infinitely many n, X = (z1,...,z,,) where ; € {0,1}" NL, W = (wy,...,w,) where
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w; € Ry (x;), ID = (idy, ..., id,,) where id; € {0,1}/(™ and z € {0,1}*, D distinguishes H3,(1", X, 1D, 2)
and H}, (17, X, I]ﬂ:)7 z) with probability at least ﬁ. We then show how this violates the adaptive zero-
knowledge property of MBZKProofE

Note that the two hybrids H?, and H}, proceed identically before the Stage 6 proof of the ith left
interaction is sent. Using an averaging argument, it follows that there must exist a partial joint view 7 of
all parties that defines the execution before Stage 6 of the ith left mteractlon such that D distinguishes
{H3,(1", X,ID, z)|7} and {H%,(1", X, ID, z)|r} with probability at least 5 ( 5- Let decrea (dectake TESD.)
be the whole decommitments information to w; (to r; opened by the adversary in Stage 5 resp.) in Stage
2, 3 and 4 of the ith left interaction. Let v be the value committed to by .4 on the right.

We now construct an adversary A such that the view of the adversary after receiving a simulated
MBZKProof proof (as in HZ ) and a “real” proof (as in H},) can be distinguished by a distinguisher D.
A, upon auxiliary inputs X W ID z, T, internally emulates a man-in-the-middle execution with 4 from
7 as follows. A proceeds as H?, w1th the following exceptions.

e To emulate the Stage 6 of the ith left interaction, it externally sends the party the witnesses to
o' ={(x, T2, T3, Ta,7)}, i.e., the witness reduced from decgpe. It next forwards the proof from the
external to A.

e Upon corruption of P; in Stage 6, A explains the Stage 2, 3 and 4 commitments (in 7) to w; and
sends the real witness to 2’ to the external party, i.e., the witness reduced from dec,es. A asks the
external party to provide the internal A with the randomness, i.e., randomness used in generating
the permutated graph in MBZKProof. All other corruptions are handled identically as H3,.

Denote by V the joint view of all parties in the above executions. The distinguisher D, on input the

view of V, and the value v committed to by A, reconstructs the view V4 and the value v committed
to by A in the emulation of A. D then invokes the distinguisher D on V4 and the committed value v,
and outputs whatever D outputs. From the construction, when A interacts with the external simulator,
the view V4 and the v is identically distributed to {H3,(1", X,ID, z)|r}. When A interacts with the
external prover, the view V4 and the v is identically distributed to {H ,(1", X, 1D, z)|7}. Tt follows that
D distinguishes the view of A using MBZKProof with probability 5 ( i Wthh contradicts the adaptive

zero-knowledge property of MBZKProof (actually, the adaptive trapdoor property of AIDCom.). O

C.2.3 The Scheduling 3

For the case for Scheduling 3, we get the following claim.

Claim C.15. For every 0 < i < m, the outputs of H; 3 and HIS are computationally indistinguishable,

i.e.,
{Hi_3 (1”,)?,15,2)} = {Hj3 (1”,)?,15,,2)} o
’ n,X,ID,z ’ n,X,ID,z

Proof. Due to the soundness property of zero-knowledge protocol, the man-in-the-middle adversary al-
ways commits to the same value in Stage 2, 3 and 4. As the Stage 3 of right interaction completes after
the Stage 6 of the ith left interaction, the Stage 4 of right interaction starts after the Stage 6 of the ith
left interaction. It follows from the non-malleability w.r.t w(1)-round protocols of NMCTCom and the
strong WZ property of the zero-knowledge protocol (in addition to the concurrent trapdoor property of
CECTComy, and NMCTCom) that the outputs of H; 3 and HZ‘?’ are computationally indistinguishable.

More formally, according to the point where A corrupts P;, we distinguish among the following cases:
corruption in Stage 2, 3, 4 and 6. We only prove the most complicated case, i.e., corruption in Stage 6.
Other cases can be proved in a similar but simper way. Note that we only explicitly deal with corruption
of P; in the ith left interaction (except Stage 1), since all other corruptions are handled identically in
hybrids H; 3 and Hj"?).

Assume, for contradiction, that there exists an adversary A, a distinguisher D and a polynomial
p, such that for infinitely many n,X = (z1,...,2m) where z; € {0,1}" N L, W= (w1, ..., wy) where

12Here the MBZKProof is ZK between a “real’ execution and a simulated execution. In the real execution, the prover
generates fake commitments to a permuted graph using Com’ of AIDCom and answers the challenges of the adversary
using Adapt of AIDCom with witness wi. Upon corruptions, the prover provides the adversary with the randomness which
explains the messages as generated using another witness wa (see the simulation strategy of S).
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w; € Ry (), ID = (idy, ... ,id,,) where id; € {0,1}1(™ and z € {0,1}*, D distinguishes H; 3(1", X, 1D, z)
and H;f:,,(l", X , IB, z) with probability ﬁ. We then show how this violates the non-malleability w.r.t

w(1)-round protocols of NMCT Com.

Towards this goal, first note that the two experiment H; s and H;fg proceed identically before the
Stage 2 commitment of the ith left interaction. Using an averaging argument, there must exist a partial
joint view 7 of all parties that defines the execution before Stage 2 of the ith left interaction, such
that D distinguishes {H; 3(1", X,1D, z)|7} and {Hj"?)(l”, X,1D, z)|7} with probability at least #(n). Let
Ti, €2, € 3, €4 be the extracted values in Stage 1 of the ith left interaction. Consider the machine B(0,,)
which upon receiving w;, provides a commitment to CECTComyg, and two commitments to NMCTCom to
w; honestly (Recall that part of these commitments are in Stage 1.). Upon decommitment query, B(0,,)
provides the internal randomness of committer in these commitments. Consider another machine B(1,,)
which upon receiving 7y, €; 2, €; 3, €; 4, provides a commitment CECTComg, and two commitments to
NMCTCom using all the concurrent trapdoor simulator accordingly. Upon decommitment query, B(1,,)
explains these commitments as to w;. It follows from the concurrent trapdoor property of CECTComy,
and NMCTCom that no PPT adversary can distinguish between B(0,,) and B(1,,).

We now construct an adversary A. A, upon receiving wj, 14, €;,2,€; 3, €; 4 and 7T as auxiliary inputs,
internally emulates a man-in-the middle execution with A from 7 as follows. A proceeds as H;.3 with
the following exceptions.

e To emulate the Stage 2, 3 and 4 of the ith left interaction, it externally sends B the values
Wi, Ti, €2, €i.3,€ 4. It next forwards the messages from B to A.

e Upon corruptions of P; in Stage 2, 3 or 4, A sends decommitment query to B and forwards the
messages from B to A, i.e., the simulated randomness of P;. All other corruptions are handled
identically as H;.3.

e A aborts interactions with A at the outset of the Stage 6 of the ith left interaction.

Denote by V,qr: the joint view of all parties in the above executions. Denote by 2’ = (z, T2, T3, Ta, 1)
the proof statement in Stage 6 of the ith left interaction. Denote by w’ the witness for the statement
2’ € L in the above execution. If A interacts with B(0,,), then consider the machine B(0,,), which upon
receiving ', w’ and the trapdoors es, €3, €4 as auxiliary inputs, generates a MBZKProof proof honestly. If
A interacts with B (1,,), then consider the machine B(1,), which upon receiving &', w’ and the trapdoors
r,e9,€3,¢, as auxiliary inputs, generates a MBZKProof proof as S. Upon corruptions, B(1,,) uses the
trapdoors to explain the commitment in Stage 2, 3 and 4 as to w; and explain the MBZKProof proof
as one generated using the real witness. It follows from the strong WZ property of MBZKProof that no
PPT distinguisher can distinguish interactions with B(0,,) and B(1,,).

Next we design an adversary A’ such that the view and the value that A’ commits to after interacting
with B(0,) and B(1,) can be distinguished by a distinguisher D. A’ on input the view of Vpa,, first
emulates the interactions for A from the view Vjpq,;. Then A’ continues the executions of the remaining
interactions for A. It emulates the left provers and right verifiers for A just as H; 3 with the following
exceptions.

e To emulate the Stage 6 of the ith left interaction, A’ sends the proof statement z’ = (x, T2, T3, Ta,7)
to the external B. Then A’ forwards the proof to .A. Here we emphasize that B is given the private
information of prover in the view Vpg.y, i.€., W', €2, €5, €4.

e In Stage 4 of the right interaction, it externally forwards messages from A to an honest receiver of
NMCTCom.

e Upon corruption of P; in Stage 6 of the ith left interaction, A’ asks B to provide the simulated
randomness of P;. All other corruptions are handled identically as H; 3.

The distinguisher D, on input the view and the values v committed to by A’, reconstructs the view
V4 and value v committed to by A in Stage 4 of the above executions. D then invokes the distinguisher
D on the constructed view and the value and outputs whatever D outputs. Note that if A interacts
with B(0,) (B(1,,) resp.), then the reconstructed view V4 and the committed value v are identically
distritbuted to {H%(l",ff,lf),z)h} ( {His(1™, X, 1D, 2)|7} resp.). It follows that D distinguishes the
view and the value committed to by A’ using NMCTCom with probability T%n)’ which contradicts the
non-malleability w.r.t w(1)-round protocols of NMCTCom.

O
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D Blum’s Basic Protocol for Hamiltonicity

Following is the description of Blum’s basic protocol for Hamiltonicity [Blu86]. The protocol is a zero-
knowledge proof with soundness error % By parallel execution of the basic protocol, the soundness error
can be reduced to 27". However, the zero-knowledge property is lost.

Common Input: A directed graph G = (V, E) with n 2ef V|

Auxiliary Input to Prover: A directed Hamiltonian cycle, C' C G, in G

Step 1: The prover selects a random permutation 7 of the vertices V' , and commits (using a
perfectly-binding commitment scheme) the entries of the adjacency matrix of the resulting per-
mutated graph. That is, it sends an n-by-n matrix of commitments so that the (7 (i), (j))"
entry is a commitment to 1 if (4, j) € E, and is a commitment to 0 otherwise.

Step 2: The verifier sends a random chosen bit b € {0,1}.

Step 3: If b = 0 then the prover sends 7 to the verifier along with the revealing of all commitments
(and the verifier checks that the revealed graph is indeed isomorphic to G via 7); If b = 1,
the prover reveals to the verifier only the commitments to entries (7 (¢),7(j)) with (4,j) € C
(and the verifier checks that all revealed values are 1 and the corresponding entries form a
simple n-cycle). In both cases check that the decommitments are valid. Accept if only if the
corresponding conditions holds.

Figure 8: Blum'’s basic protocol for Hamiltonicity
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