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Abstract

We study the problem of constructing concurrently secure computation protocols in the plain
model, where no trust is required in any party or setup. While the well established UC framework
for concurrent security is impossible to achieve in this setting, a meaningful notion of concur-
rent security based on super-polynomial simulation (SPS) is achievable and has been extensively
studied [Pas03, PS04, BS05, LPV09, CLP10]. The recent work of [CLP10] obtains a concurrently
secure computation protocol in the plain model with SPS security under standard assumptions,
but requires a number of rounds of interaction that is polynomial in the security parameter.

In this work, we obtain the first concurrently secure computation protocol in the plain model
with SPS security that uses only a constant number of rounds and requires only standard assump-
tions. To accomplish our result, we introduce a new proof technique that significantly reduces
the demands placed on “rewinding techniques” employed in previous work. We believe that our
techniques are of independent interest and likely to be applicable in other settings related to secure
concurrent composition.
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1 Introduction

The notion of secure computation is central to cryptography. Introduced in the seminal works of
[Yao86, GMW87], secure multi-party computation allows a group of (mutually) distrustful parties
P1, . . . , Pn, with private inputs x1, . . . , xn, to jointly compute any functionality f in such a manner
that the honest parties obtain correct outputs and no group of malicious parties learn anything beyond
their inputs and prescribed outputs. The original definition of secure computation, although very
useful and fundamental to cryptography, is only relevant to the stand-alone setting where security
holds only if a single protocol session is executed in isolation. As it has become increasingly evident
over the last two decades, stand-alone security does not suffice in real-world scenarios where several
protocol sessions may be executed concurrently – a typical example being protocols executed over
modern networked environments such as the Internet.

Concurrent Security. Towards that end, the last decade has seen a push towards obtaining protocols
that have strong concurrent composability properties, i.e., protocols that remain secure even when
executed concurrently with other protocols in an arbitrary manner. The framework of universal
composability (UC) was introduced by Canetti [Can01] to capture the security requirements in such a
setting. Unfortunately, soon after the introduction of the UC framework, strong impossibility results
were shown ruling out the existence of UC secure protocols for most functionalities of interest [CF01,
CKL06]. These results were further generalized [Lin04, BPS06] to rule out the existence of secure
protocols even in various less demanding settings. All these impossibility results refer to the “plain
model,” where parties do not trust any external entity or setup. (The original UC framework inherently
assumes authenticated communication, but this can be avoided by considering the model of [BCL+05]
and using signature schemes, to consider UC security in the “truly plain model.”)

To overcome these impossibility results, UC secure protocols were proposed based on various
“trusted setup assumptions” such as a common random string that is published by a trusted party
[CF01, CLOS02, BCNP04, CPS07, Kat07, CGS08]. In fact, this approach has yielded protocols with
even stronger security guarantees, such as generalized UC security [CDPW07, DKSW09] and resource
fairness [GMPY06]. Nevertheless, a driving goal in cryptographic research is to eliminate the need to
trust other parties1. In the context of UC secure protocols based on setup assumptions, while there
has been some recent effort [GO07, GK08, GGJS11] towards reducing the extent of trust in any single
party (or entity), obviously this approach cannot completely eliminate trust in other parties (since that
is the very premise of a trusted setup assumption). Ideally, we would like to obtain concurrently-secure
protocols in the plain model (which is the main focus of this paper).

Super-Polynomial Simulation. To address the problem of concurrent security for secure computa-
tion in the plain model, a few candidate definitions have been proposed, including input-indistinguishable
security [MPR06] and super-polynomial simulation. The notion of security with super-polynomial sim-
ulators (SPS) is one where the adversary in the ideal world is allowed to run in (fixed) super-polynomial
time. Very informally, SPS security guarantees that any polynomial-time attack in the real execu-
tion can also be mounted in the ideal world execution, albeit in super-polynomial time. This is
directly applicable and meaningful in settings where ideal world security is guaranteed statistically or
information-theoretically (which would be the case in most “end-user” functionalities that have been
considered, from privacy-preserving data mining to electronic voting). As a result, SPS has been ex-
tensively studied. SPS security for concurrently composable zero knowledge proofs was first studied by
[Pas03], and SPS security for concurrently composable secure computation protocols was first studied
by [PS04, BS05]. The SPS definition guarantees security with respect to concurrent self-composition
of the secure computation protocol being studied, and guarantees security with respect to general

1As Bob Dylan puts it, “If you need somebody you can trust, trust yourself.”
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concurrent composition with arbitrary other protocols in the context of super-polynomial adversaries.
In recent years, the design of secure computation protocols in the plain model with SPS security has

been the subject of several works [PS04, BS05, LPV09, CLP10]. Very recently, Canetti, Lin, and Pass
[CLP10] obtained the first secure computation protocol that achieves SPS security based on standard
assumptions2. Unfortunately, however, the improvement in terms of assumptions comes at the cost of
the round complexity of the protocol. Specifically, the protocol of [CLP10] incurs polynomial-round
complexity3.

Round Complexity. The latency of sending messages back and forth has been shown to often be
the dominating factor in the running time of cryptographic protocols [MNPS04, BDNP08]. Therefore,
round complexity is an efficiency parameter of special importance, and often dictates the feasibility
of actual usage of a protocol4. Indeed, round complexity has been the subject of a great deal of re-
search in cryptography. For example, in the context of concurrent zero knowledge (ZK) proofs, round
complexity was improved in a sequence of works [RK99, KP01, PRS02] from polynomial to slightly
super-logarithmic (that nearly matches the lower bound w.r.t. black-box simulation [CKPR01]). In-
deed, achieving constant-round concurrent ZK (with non black-box simulation) is a widely-respected
open problem. The round complexity of non-malleable commitments in the stand-alone and concurrent
settings has also been studied in several works [DDN00, Bar02, PR05b, PR05a, LP09, Wee10, Goy11,
LP11], improving the round complexity from logarithmic rounds to constant rounds under minimal
assumptions. These results are celebrated both for improving round complexity and for introducing
new insights about simulation-based proofs of security. We observe that for the setting of concur-
rently secure computation protocols with SPS security, the situation is much worse since the only
known protocol that achieves SPS security based on standard assumptions incurs polynomial-round
complexity [CLP10]. This suggests the following natural question:

What is the asymptotic round complexity of concurrently composable secure computation protocols
with SPS security, based on standard assumptions?

1.1 Our Results

In this work, we resolve this question by exhibiting a constant-round concurrently composable secure
computation protocol that achieves SPS security based on only standard assumptions. Our construc-
tion only uses black-box simulation techniques. At the heart of our result is a new proof technique
that significantly reduces the demands placed on “rewinding techniques” employed in previous work
(more details below). In contrast to prior works where several powerful tools were employed to obtain
positive results, e.g., CCA-secure commitments [CLP10], our new proof technique allows us to only
use relatively less powerful primitives, such as standard non-malleable commitments. We believe that
our techniques are of independent interest and likely to be applicable in other settings related to secure
concurrent composition (see below).

2In fact, the work of [CLP10], together with [PS04, BS05], considers the stronger “angel-based security model”
of [PS04]. In this work, we focus only on SPS security.

3We note in passing that under standard assumptions, if a protocol uses n10 rounds where n is a computational
security parameter, then one can equivalently say that the protocol uses only kε rounds by setting the security parameter
k = n10/ε. If the original protocol allowed the adversary to succeed with an advantage negligible in n, then the adversary
will also only be able to attain advantage negligible in k.

4One can see the fundamental nature of round complexity as a measure of efficiency by considering the following:
As time goes on, computing power (by means of improvements in speed or parallelism) becomes cheaper and network
pipes become wider, greatly decreasing sensitivity to computational and communication complexities in cryptographic
protocols. Indeed, as the computational power of honest parties and adversaries grows, under standard assumptions like
one-way functions, this heavily favors the honest parties. However, the inefficiency caused by rounds of communication
is tied to the speed of light, which is constant (see e.g. [Ein05]), and therefore beyond the assistance of technological
advances in computing.
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Our positive result relies on the nearly minimal assumptions that constant-round (semi-honest)
oblivious transfer (OT) exists and collision-resistant hash functions (CRHFs) exist.5 Furthermore, we
note that our proof of security is black-box.

1.2 Our Techniques

A ubiquitous technique for simulation-based proofs in cryptography is that of rewinding the adversary.
In the concurrent setting (which is the setting we consider in this paper), where an adversary can
interleave messages from different protocols in any arbitrary manner, rewinding an adversary (to
correctly simulate each session) is often problematic and typically requires a large number of rounds
(in a single protocol). For example, in the context of concurrent zero knowledge, the best known
result [PRS02] requires super-logarithmic round complexity, which nearly matches the lower bound
w.r.t. black-box simulation [CKPR01].

A common technique employed by previous works [BS05, LPV09] to get around this issue (in order
to achieve constant-rounds) is complexity-leveraging [CGGM00]. Roughly speaking, this means that
we assume primitives A and B such that A cannot be broken in polynomial time, but can be broken in
time T (k) for some super-polynomial function T , while we assume thatB cannot be broken even in time
T (k). Unfortunately, however, complexity leveraging inherently relies on non-standard assumptions
(such as sub-exponentially hard one-way functions). Since our focus is on obtaining constant-round
protocols based on standard assumptions, we do not make any use of complexity leveraging. We
therefore instead wrestle with the problem of using rewinding in the concurrent setting.

To deal with the problem of concurrent rewinding, we develop a novel proof technique that, very
crucially, significantly relaxes the properties that we need from our rewinding technique, which in turn
allows us to obtain our result. In the following discussion, we give a more detailed intuition behind
our techniques, where we assume somewhat greater familiarity with recent work in this area.

We first note that all prior works on obtaining secure computation protocols with SPS security
crucially use the super-polynomial time simulator to “break” some cryptographic scheme and extract
some “secret information”. Then, to avoid any complexity-leveraging type technique, and yet argue
security, the technique used in [CLP10] was to replace the super-polynomial time simulator with a
polynomial-time rewinding “hybrid experiment” via a hybrid argument in the security proof. Indeed,
this is why their protocol incurs large round complexity (so as to facilitate concurrent-rewinding). We
also make use of rewinding, but crucially, in a weaker way. The main insights behind our rewinding
technique are explained as follows:

• We first note that (like other works) we will restrict our usage of rewinding only to the creation
of “look-ahead threads”. Very roughly, this means that a rewinding simulator never changes
its actions on the “main thread” of execution; and as such, the rewinding is employed only to
extract some information from the adversary. Here, we again stress that our final simulator
does not perform any rewinding, and that we only perform rewindings in hybrid experiments to
bridge the gap between the real and ideal world executions.

• Now that we use rewindings only to extract some information from the adversary, and only in
hybrid experiments, we make the critical observation that, in fact, we can make use of the secret
inputs of the honest parties in the look-ahead threads. Indeed, in all our intermediate hybrid
experiments, we perform rewindings to create look-ahead threads where we make “judicious” use
of the honest party’s inputs. In this manner, we eventually end up with a rewinding (hybrid)
simulator that simulates the main thread without the honest party’s inputs, but still uses them
in the look-ahead threads (in a manner that guarantees extraction). This is our main conceptual

5We believe that our assumption of CRHFs can be removed by employing techniques from the recent work of [LPTV10],
leaving only the minimal assumption that constant-round OT exists. We leave this for the full version of this paper.
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deviation from prior work, where, to the best of our knowledge, honest party’s inputs were
only used in some intermediary hybrids, with the main goal being to eventually remove their
usage even from the look-ahead threads. We show that this is in fact unnecessary, since our final
simulator does not perform any rewindings, but instead runs in super-polynomial time to extract
the same information that was being earlier extracted via rewinding in the hybrid experiments.
We only need to argue that the main thread output by the rewinding (hybrid) experiment and
the main thread output by the final simulator be indistinguishable. Indeed, we are able to argue
that there is only a small statistical distance between our final simulator (that corresponds to the
ideal execution) and the previous rewinding-based hybrid experiment. This statistical distance
corresponds to the probability that the rewinding-based extraction is unsuccessful, since the SPS
extraction is always successful.

• We further note that since we use the honest party’s inputs in the look-ahead threads, we can
bypass complex recursive rewinding schedules used in previous works and simply use “local
rewindings” that only require constant rounds (in fact, only “one slot”).

• Finally, we observe that since we perform rewindings only in hybrid experiments, we do not need
the rewinding to succeed with probability negligibly close to 1, as is needed for concurrent ZK.
Instead, we only require rewinding to succeed with probability 1 − ε, where ε is related to the
success probability of the distinguisher that is assumed to exist for the sake of contradiction.
This observation, yet again, allows us to use a simpler rewinding strategy.

• Our overall proof strategy only makes use of relatively well understood primitives like standard
non-malleable commitments. This is a departure from [CLP10] which introduces a new primitive
called CCA-secure commitment schemes.

At this point, an informed reader may question the feasibility of a “sound implementation” of
the above approach. Indeed, a-priori it is not immediately clear whether it is even possible for the
simulator to “cheat” on the main thread, yet behave honestly in look-ahead threads at the same time.
In a bit more detail, recall that any given look-ahead thread shares a prefix with the main thread of
execution. Now consider any session i on a look-ahead thread. Note that since some part of session i
may already be executed on the shared prefix, it is not clear how the simulator can continue simulating
session i on the look-ahead thread without ever performing any recursive rewindings if it was already
cheating in session i on the shared prefix.

We address the above issues by a careful protocol design that guarantees that a rewinding simulator
can always extract some “trapdoor” information before it “commits” to cheating in any session. As
a result, during the simulation, whenever a look-ahead thread is forked at any point from the main
thread, the simulator can either always continue cheating, or simply behave honestly (without any
conflict with the main thread) in any session.

We further note that the use of honest party inputs in look-ahead threads leads to some additional
challenges in constructing a “valid” sequence of hybrid arguments for the proof of security. We address
this by creating a novel sequence of hybrid arguments that deviates from the most common approach
of giving a “session-by-session” hybrid argument. Specifically, our sequence of hybrids “touches” each
session i several times, not necessarily in succession, with the exact hybrid changes depending on the
overall scheduling of messages by the adversary. (In contrast, typically such hybrid arguments involve
modifications to any session i by a series of successive hybrids regardless of the scheduling.)

Finally, we believe that our new proof technique will be valuable in other contexts related to
concurrent composition of protocols, including ones that do not consider super-polynomial simulation.
Indeed, note that in our proof, SPS is used only at the very last step.
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Proof Overview. For a more technical overview of the main ideas involved in our proof technique,
we refer the reader to Section 5. This technical overview refers to the technical description of the
protocol, given in Section 4.

Other Related Work. Here we discuss some additional prior work related to the work in this paper.
We note that while the focus of this work is on SPS security as a means to obtain concurrently-secure
protocols in the plain model, some recent works have investigated alternative security models for the
same. Very recently, [GS09, GJO10] considered a model where the ideal world adversary is allowed
to make additional queries (as compared to a single query, as per the standard definition) to the
ideal functionality per session. The techniques we use in our work are related to, but quite different
from, their work (which in turn builds on techniques from the work of [BPS06]). Another model for
concurrent security in the plain model called input indistinguishable computation (IIC), was proposed
by [MPR06], as mentioned above. Very roughly, IIC is a weakening of the standard notion of secure
computation in that we only require that an adversary cannot distinguish between any two different
executions – where the honest parties use different inputs in each execution – as long as the adversary
obtains the same outputs in each execution.

2 UC Security

In this section we briefly review UC security. For full details see [Can00]. For the sake of complete-
ness we include a short introduction that has been taken verbatim from [CLP10] in Appendix A.
Following [GMR89, Gol01], a protocol is represented as an interactive Turing machine (ITM), which
represents the program to be run within each participant.

Security of protocols. Protocols that securely carry out a given task (or, protocol problem) are
defined in three steps, as follows. First, the process of executing a protocol in an adversarial en-
vironment is formalized. Next, an “ideal process” for carrying out the task at hand is formalized.
In the ideal process the parties do not communicate with each other. Instead they have access to
an “ideal functionality,” which is essentially an incorruptible “trusted party” that is programmed to
capture the desired functionality of the task at hand. A protocol is said to securely realize an ideal
functionality if the process of running the protocol amounts to “emulating” the ideal process for that
ideal functionality.

Securely realizing an ideal functionality. We say that a protocol Π emulates protocol φ if for
any adversary A there exists an adversary S such that no environment Z, on any input, can tell with
non-negligible probability whether it is interacting with A and parties running Π, or it is interacting
with S and parties running φ. This means that, from the point of view of the environment, running
protocol Π is ‘just as good’ as interacting with φ. We say that Π securely realizes an ideal functionality
F if it emulates the ideal protocol Π(F). More precise definitions follow. A distribution ensemble is
called binary if it consists of distributions over {0, 1}.

Definition 1 Let Π and φ be protocols. We say that Π UC-emulates φ if for any adversary A there
exists an adversary S such that for any environment Z that obeys the rules of interaction for UC
security we have EXECφ,S,Z ≈ EXECπ,A,Z .

Definition 2 Let F be an ideal functionality and let Π be a protocol. We say that Π UC-realizes F if
Π UC-emulates the ideal process Π(F).

6



UC Security with Super-polynomial Simulation We next provide a relaxed notion of UC secu-
rity by giving the simulator access to super-poly computational resources. The universal composition
theorem generalizes naturally to the case of UC-SPS, the details of which we skip.

Definition 3 Let Π and φ be protocols. We say that Π UC-SPS-emulates φ if for any adversary A
there exists a super-polynomial time adversary S such that for any environment Z that obeys the rules
of interaction for UC security we have EXECφ,S,Z ≈ EXECπ,A,Z .

Definition 4 Let F be an ideal functionality and let Π be a protocol. We say that Π UC-SPS-realizes
F if Π UC-SPS-emulates the ideal process Π(F).

For simplicity of exposition, in the rest of this paper we assume authenticated communication; that
is, the adversary may deliver only messages that were actually sent. (This is however not essential as
shown previously [BCL+05].)

3 Building Blocks

We now discuss the main cryptographic primitives that we use in our construction.

3.1 Statistically Binding String Commitments

In our protocol, we will use a (2-round) statistically binding string commitment scheme, e.g., a parallel
version of Naor’s bit commitment scheme [Nao91] based on one-way functions. For simplicity of
exposition, in the presentation of our results in this manuscript, we will actually use a non-interactive
perfectly binding string commitment.6 Such a scheme can be easily constructed based on a 1-to-1 one
way function. Let com(·) denote the commitment function of the string commitment scheme. For
simplicity of exposition, in the sequel, we will assume that random coins are an implicit input to the
commitment function.

3.2 Extractable Commitment Scheme

We will also use a simple challenge-response based extractable statistically-binding string commitment
scheme 〈C,R〉 that has been used in several prior works, most notably [PRS02, Ros04]. We note that
in contrast to [PRS02] where a multi-slot protocol was used, here (similar to [Ros04]), we only need a
one-slot protocol.

Protocol 〈C,R〉. Let com(·) denote the commitment function of a non-interactive perfectly binding
string commitment scheme (as described in Section 3). Let n denote the security parameter. The
commitment scheme 〈C,R〉 is described as follows.

Commit Phase:

1. To commit to a string str, C chooses k = ω(log(n)) independent random pairs {α0
i , α

1
i }ki=1 of

strings such that ∀i ∈ [k], α0
i ⊕ α1

i = str; and commits to all of them to R using com. Let
B ← com(str), and A0

i ← com(α0
i ), A

1
i ← com(α1

i ) for every i ∈ [k].

2. R sends k uniformly random bits v1, . . . , vn.

6It is easy to see that the construction given in Section 4 does not necessarily require the commitment scheme
to be non-interactive, and that a standard 2-round scheme works as well. As noted above, we choose to work with
non-interactive schemes only for simplicity of exposition.
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3. For every i ∈ [k], if vi = 0, C opens A0
i , otherwise it opens A1

i to R by sending the appropriate
decommitment information.

Open Phase: C opens all the commitments by sending the decommitment information for each one
of them.

This completes the description of 〈C,R〉.

Modified Commitment Scheme. Due to technical reasons, we will also use a minor variant,
denoted 〈C ′, R′〉, of the above commitment scheme. Protocol 〈C ′, R′〉 is the same as 〈C,R〉, except
that for a given receiver challenge string, the committer does not “open” the commitments, but instead
simply reveals the appropriate committed values (without revealing the randomness used to create the
corresponding commitments). More specifically, in protocol 〈C ′, R′〉, on receiving a challenge string
v1, . . . , vn from the receiver, the committer uses the following strategy: for every i ∈ [k], if vi = 0,
C ′ sends α0

i , otherwise it sends α1
i to R′. Note that C ′ does not reveal the decommitment values

associated with the revealed shares.
When we use 〈C ′, R′〉 in our main construction, we will require the committer C ′ to prove the

“correctness” of the values (i.e., the secret shares) it reveals in the last step of the commitment
protocol. In fact, due to technical reasons, we will also require the the committer to prove that the
commitments that it sent in the first step are “well-formed”. Below we formalize both these properties
in the form of a validity condition for the commit phase.

Proving Validity of the Commit Phase. We say that commit phase between C ′ and R′ is valid
with respect to a value ˆstr if there exist values {α̂0

i , α̂
1
i }ki=1 such that:

1. For all i ∈ [k], α̂0
i ⊕ α̂1

i = ˆstr, and

2. Commitments B, {A0
i , A

1
i }ki=1 can be decommitted to ˆstr, {α̂0

i , α̂
1
i }ki=1 respectively.

3. Let ᾱv11 , . . . , ᾱ
vk
k denote the secret shares revealed by C in the commit phase. Then, for all i ∈ [k],

ᾱvii = α̂vii .

We can define validity condition for the commitment protocol 〈C,R〉 in a similar manner.

3.3 Constant-Round Non-Malleable Zero Knowledge Argument

In our main construction, we will use a constant-round non-malleable zero knowledge (NMZK) argu-
ment for every language in NP with perfect completeness and negligible soundness error. In particular,
we will use a specific (stand-alone) NMZK protocol, denoted 〈P, V 〉, based on the concurrent-NMZK
protocol of Barak et al [BPS06]. Specifically, we make the following two changes to Barak et al’s
protocol: (a) Instead of using an ω(log n)-round PRS preamble [PRS02], we simply use the one-slot
commitment scheme 〈C,R〉 (described above). (b) Further, we require that the non-malleable com-
mitment scheme being used in the protocol be constant-round and public-coin w.r.t. receiver. We
note that such commitment schemes are known due to Pass, Rosen [PR05b]. Further, in Section 3.4,
we show how to adapt the scheme of Goyal [Goy11] to incorporate the public-coin property.7 We now
describe the protocol 〈P, V 〉.

7We note that while the commitment scheme of [PR05b] admits a non black-box security proof, the security proof of
Goyal’s scheme is black-box. As such, the resultant NMZK protocol has a black-box security proof as well.
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Protocol 〈P, V 〉. Let P and V denote the prover and the verifier respectively. Let L be an NP lan-
guage with a witness relation R. The common input to P and V is a statement π ∈ L. P additionally
has a private input w (witness for π). Protocol 〈P, V 〉 consists of two main phases: (a) the preamble
phase, where the verifier commits to a random secret (say) σ via an execution of 〈C,R〉 with the
prover, and (b) the post-preamble phase, where the prover proves an NP statement. In more detail,
protocol 〈P, V 〉 proceeds as follows.

Preamble Phase.

1. P and V engage in the execution of 〈C,R〉 where V commits to a random string σ.

Post-preamble Phase.

2. P commits to 0 using a statistically-hiding commitment scheme. Let c be the commitment
string. Additionally, P proves the knowledge of a valid decommitment to c using a statistical
zero-knowledge argument of knowledge (SZKAOK).

3. V now reveals σ and sends the decommitment information relevant to 〈C,R〉 that was executed
in step 1.

4. P commits to the witness w using a constant-round public-coin extractable non-malleable com-
mitment scheme.

5. P now proves the following statement to V using SZKAOK:

(a) either the value committed to in step 4 is a valid witness to π (i.e., R(π,w) = 1, where w
is the committed value), or

(b) the value committed to in step 2 is the trapdoor secret σ.

P uses the witness corresponding to the first part of the statement.

Decoupling the Preamble Phase from the Protocol. Note that the preamble phase in 〈P, V 〉
is independent of the proof statement and can therefore be executed by P and V before the proof
statement is fixed. Indeed, this is the case when we use 〈P, V 〉 in our main construction in Section 4.
Specifically, in our main construction, the parties first engage in multiple executions of 〈C,R〉 at the
beginning of the protocol. Later, when a party (say) Pi wishes to prove the validity of a statement π
to (say) Pj , then Pi and Pj engage in an execution of the post-preamble phase of 〈P, V 〉 for statement
π. The protocol specification fixes a particular instance of 〈C,R〉 that was executed earlier as the
preamble phase of this instance of 〈P, V 〉. In the description of our main construction, we will abuse
notation and sometimes refer to the post-preamble phase as 〈P, V 〉.

Straight-line Simulation of 〈P, V 〉. A nice property of protocol 〈P, V 〉 is that it allows straight-
line simulation of the prover if the trapdoor secret σ is available to the simulator S. (Note that S can
rewind V during the execution of 〈C,R〉 in order to extract σ.) Below we describe the straight-line
simulation strategy for the post-preamble phase (assuming that the simulator S already knows the
trapdoor secret σ).

1. S creates a statistically hiding commitment to σ (instead of a string of all zeros) and follows it
with an honest execution of SZKAOK to prove knowledge of the decommitment value.

2. On receiving the decommitment information corresponding to the preamble phase, S first verifies
its correctness (in the same manner as an honest prover). If the verification fails, S stops the
simulation.
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3. S commits to an all zeros string (instead of a valid witness to π) using the non-malleable com-
mitment scheme.

4. S engages in the execution of SZKAOK with the adversarial verifier, where it uses the (trapdoor)
witness corresponding to the second part of the statement. (Note that the trapdoor witness is
available to S since it committed to σ in step 2 of the protocol.)

3.4 Constant Round Public-Coin Non-Malleable Commitments

In this section, we sketch a modification to Goyal’s commitment scheme to make it public coin. The
main idea is to use a (public-coin) witness-indistinguishable argument (as opposed to a ZK argument)
to prove consistency. More specifically, the idea is to commit to two strings in parallel and then prove
that at least one of them was a valid commit phase. In the opening phase, if both of them were valid,
the receiver simply takes the larger among the two as the committed value. This ensures that the
commitment scheme is still hiding without affecting the proof of non-malleability.

In this section, we describe our basic protocol for “small” tags with one sided non-malleability.
They can be extended to the general case by relying on techniques from [PR05b] (while maintaining the
public-coin property). We assume that each execution has a tag tag ∈ [2n]. Denote by ` the value k·tag .
Let com(m) denote a commitment to the message m with the first message σ under the statistically
binding commitment scheme of Naor. Whenever we need to be explicit about the randomness used to
generate the commitment, we denote it as com(m; r) where r is the said randomness. The commitment
scheme 〈C,R〉 between a committer C trying to commit to ν and a receiver R proceeds as follows.

Commitment Phase.

0. Initialization Message. The receiver R generates the first message σ of the Naor commitment
scheme and sends it to C .

The committer now runs the primary slot phase and the verification message phase (together
called the commit phase) for two strings ν[0] and ν[1] in parallel. It sets ν[0] to be the actual
value ν it wants to commit to and sets ν[1] = 0. For b ∈ {0, 1}, do the following (with fresh
randomness each time):

Primary Slot

1. The committer C generates ` pairs of random strings {α0
i , α

1
i }i∈[`] (with length of each string

determined by the security parameter). C further generates commitments of these strings {A0
i =

com(α0
i ), A

1
i = com(α1

i )}i∈[`] and sends them to R (C uses fresh randomness to generate each
commitment).

2. The receiver R generates and sends to C a random `-bit challenge string ch = (ch1, . . . , ch`).

3. The committer C sends to R the values αch11 , . . . , αch`` . Note that C does not send the openings
associated with the corresponding commitments. R responds with an acknowledgement message
on receiving these values 8.

4. Verification Message. Define ` strings {αi}i∈[`] such that αi = α0
i ⊕ α1

i for all i ∈ [`]. C
generates ` commitments Bi = com(ν[b];αi) for i ∈ [`] and sends them to R . (That is,
randomness αi is used to generate the i-th commitment to ν).

8This is done for technical reasons to ensure that this and the next message by C are in different rounds of the protocol
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5. Consistency Proof. The committer C and the receiver R now engage in a witness indistin-
guishable argument protocol where C proves to R that at least one of the above commit phases
is “valid”. That is, for at least one commit phase (say indexed by b), there exist values ν̂[b],
{α̂i, α̂0

i , α̂
1
i }i∈[`] such that for all i:

• α̂0
i ⊕ α̂1

i = α̂i, and,

• commitments A0
i and A1

i are valid commitments to the strings α̂0
i and α̂1

i respectively under
some random tape, and,

• commitment Bi is a valid commitment to ν̂[b] under the random tape α̂i.

Decommitment Phase. The committer C simply reveals the committed value ν and the random-
ness used in running steps 1 to 4. The receiver R checks if the messages in the primary slot and the
verification message were computed honestly using the revealed randomness for at least one commit
phase. If so, R takes the value committed ν to be the larger among the (either one or two) valid
committed values. If none of the commit phases is valid, R takes the value committed to as ⊥.

Lemma 1 The commitment scheme 〈C,R〉 is computationally hiding (in the stand alone setting).

The proof is this lemma is relies on a standard hybrid argument. To go from one committed value
ν1 to the other ν2, we use the follow strategy. In the first hybrid, use the witness corresponding to
the second commit phase (in which we commit 0) to complete the WI argument. Next, we replace the
value ν1 by ν2 in the first commit phase. Finally, use the witness corresponding to the first commit
phase to complete the WI argument.

Lemma 2 The commitment scheme 〈C,R〉 is statistically binding (in the stand alone setting).

The proof of this lemma is similar to that in the original scheme of Goyal [Goy11].

Theorem 1 The commitment scheme 〈C,R〉 is a one sided non-malleable commitment scheme against
a synchronizing adversary.

The proof of this theorem is similar to that in the original scheme of Goyal [Goy11]. Note that
the proof of non-malleability in [Goy11] only relies on the standalone (computational) hiding property
of the left session as well as the soundness of the consistency phase (and does not additionally rely
on the proof of consistency being a zero-knowledge). Both of these properties are preserved as we
replace the ZK protocol by a WI one. In addition, the second parallel commit phase on the left
(which is a commitment to 0) is essentially independent of the rest of the left session and could have
been generated by the man-in-the-middle on its own. Hence these modifications do not affect the
non-malleability of the commitment scheme. More details will be provided in the final version.

3.5 Constant-Round Statistically Witness Indistinguishable Arguments

In our construction, we shall use a constant-round statistically witness indistinguishable (SWI) argu-
ment 〈Pswi, Vswi〉 for proving membership in any NP language with perfect completeness and negligible
soundness error. Such a protocol can be constructed by using ω(log n) copies of Blum’s Hamiltonicity
protocol [Blu87] in parallel, with the modification that the prover’s commitments in the Hamiltonic-
ity protocol are made using a constant-round statistically hiding commitment scheme [NY89, HM96,
DPP97].
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3.6 Semi-Honest Two Party Computation

We will also use a constant-round semi-honest two party computation protocol 〈P sh
1 , P sh

2 〉 for any
functionality F in the stand-alone setting. The existence of such a protocol follows from the existence
of constant-round semi-honest 1-out-of-2 oblivious transfer [Yao86, GMW87, Kil88].

4 Our Construction

Let F be any well-formed functionality9 that admits a constant round two-party computation protocol
in the semi-honest setting. In particular, F can be a universal functionality. In this section we will give
a protocol Π that UC-SPS-realizes F . Note that in the UC framework any two parties (say Pi and Pj)
might interact as per the protocol Π on initiation by the environment for some session corresponding
to a SID sid. For simplicity of notation, we will describe the protocol in terms of two parties P1 and
P2, where these roles could be taken by any two parties in the system. Further we will skip mentioning
the SID to keep the protocol specification simple.

In order to describe our construction, we first recall the notation associated with the primitives
that we use in our protocol. Let com(·) denote the commitment function of a non-interactive perfectly
binding commitment scheme, and let 〈C,R〉 denote the one-slot extractable commitment scheme, and
〈C ′, R′〉 be its modified version (see Section 3.2). Further, we will use our constant-round NMZK
protocol 〈P, V 〉 (see Section 3.3), a constant-round SWI argument 〈Pswi, Vswi〉, and a constant-round
semi-honest two party computation protocol 〈P sh

1 , P sh
2 〉 that securely computes F as per the standard

simulation-based definition of secure computation.
Let P1 and P2 be two parties with inputs x1 and x2 provided to them by the environment Z. Let

n be the security parameter. Protocol Π = 〈P1, P2〉 proceeds as follows.

I. Trapdoor Creation Phase.

1. P1 ⇒ P2 : P1 samples a random string σ1 (of appropriate length; see below) and engages in an
execution of 〈C,R〉 with P2, where P1 commits to σ1. We will denote this commitment protocol
by 〈C,R〉1→2.

2. P2 ⇒ P1 : P2 now acts symmetrically. That is, P2 samples a random string σ2 and commits it
via an execution of 〈C,R〉 (denoted as 〈C,R〉2→1) with P1.

3. P1 ⇒ P2 : P1 creates a commitment com1 = com(0) to bit 0 and sends com1 to P2. P1 and P2

now engage in an execution of (the post-preamble phase of) 〈P, V 〉, where P1 proves that com1

is a commitment to bit 0. The commitment protocol 〈C,R〉2→1 (executed earlier in step 2) is
fixed as the preamble phase for this instance of 〈P, V 〉 (see Section 3.3).

4. P2 ⇒ P1 : P2 now acts symmetrically.

Informally speaking, the purpose of this phase is to aid the simulator in obtaining a “trapdoor” to
be used during the simulation of the protocol. As discussed earlier in Section 1.2, in order to bypass
the need of recursive rewindings (even though we consider concurrent security), we want to ensure
that a “hybrid” simulator (that performs rewindings) can always extract a “trapdoor” before it begins
cheating in any protocol session. Here, we achieve this effect by de-coupling the preamble phase of
〈P, V 〉 from the post-preamble phase (see Section 3.3) and executing the preamble phase at the very
beginning of our protocol.

9See [CLOS02] for a definition of well-formed functionalities.
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II. Input Commitment Phase. In this phase, the parties commit to their inputs and random
coins (to be used in the next phase) via the commitment protocol 〈C ′, R′〉.

1. P1 ⇒ P2 : P1 first samples a random string r1 (of appropriate length, to be used as P1’s
randomness in the execution of 〈P sh

1 , P sh
2 〉 in phase III) and engages in an execution of 〈C ′, R′〉

(denoted as 〈C ′, R′〉1→2) with P2, where P1 commits to x1‖r1. Next, P1 and P2 engage in an
execution of 〈Pswi, Vswi〉 where P1 proves the following statement to P2: (a) either there exist
values x̂1, r̂1 such that the commitment protocol 〈C ′, R′〉1→2 is valid with respect to the value
x̂1‖r̂1 (see Section 3.2), or (b) com1 is a commitment to bit 1.

2. P2 ⇒ P1 : P2 now acts symmetrically. Let r2 (analogous to r1 chosen by P1) be the random
string chosen by P2 (to be used in the next phase).

Informally speaking, the purpose of this phase is aid the simulator in extracting the adversary’s input
and randomness.

III. Secure Computation Phase. In this phase, P1 and P2 engage in an execution of 〈P sh
1 , P sh

2 〉
where P1 plays the role of P sh

1 , while P2 plays the role of P sh
2 . Since 〈P sh

1 , P sh
2 〉 is secure only against

semi-honest adversaries, we first enforce that the coins of each party are truly random, and then
execute 〈P sh

1 , P sh
2 〉, where with every protocol message, a party gives a proof using 〈Pswi, Vswi〉 of its

honest behavior “so far” in the protocol. We now describe the steps in this phase.

1. P1 ↔ P2 : P1 samples a random string r′2 (of appropriate length) and sends it to P2. Similarly,
P2 samples a random string r′1 and sends it to P1. Let r′′1 = r1 ⊕ r′1 and r′′2 = r2 ⊕ r′2. Now, r′′1
and r′′2 are the random coins that P1 and P2 will use during the execution of 〈P sh

1 , P sh
2 〉.

2. Let t be the number of rounds in 〈P sh
1 , P sh

2 〉, where one round consists of a message from P sh
1

followed by a reply from P sh
2 . Let transcript T1,j (resp., T2,j) be defined to contain all the

messages exchanged between P sh
1 and P sh

2 before the point P sh
1 (resp., P sh

2 ) is supposed to send
a message in round j. For j = 1, . . . , t:

(a) P1 ⇒ P2 : Compute β1,j = P sh
1 (T1,j , x1, r

′′
1) and send it to P2. P1 and P2 now engage in an

execution of 〈Pswi, Vswi〉, where P1 proves the following statement:

i. either there exist values x̂1, r̂1 such that (a) the commitment protocol 〈C ′, R′〉1→2 is
valid with respect to the value x̂1‖r̂1 (see Section 3.2), and (b) β1,j = P sh

1 (T1,j , x̂1, r̂1⊕
r′1)

ii. or, com1 is a commitment to bit 1.

(b) P2 ⇒ P1 : P2 now acts symmetrically.

This completes the description of protocol Π. Note that Π consists of several instances of SWI, such
that the proof statement for each SWI instance consists of two parts. Specifically, the second part of
the statement states that the prover committed to bit 1 in the trapdoor creation phase. In the sequel,
we will refer to the second part of the proof statement as the trapdoor condition. Further, we will call
the witness corresponding to the first part of the statement as real witness and that corresponding to
the second part of the statement as the trapdoor witness. We now claim the following.

Theorem 2 Assume the existence of constant round semi-honest OT and collision resistant hash
functions.Then for every well-formed functionality F , there exists a constant-round protocol that UC-
SPS-realizes F .

We prove the above claim by arguing that the protocol Π = 〈P1, P2〉 described earlier UC-SPS-realizes
F . Note that our simulator will run in sub-exponential time, where the desired parameters can be
obtained by using a “scaled-down” security parameter of the commitment scheme com. We prove this
in the next section.
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5 Proof of Security

In order to prove Theorem 2, we will first construct a super-polynomial time simulator S that simulates
the view of A in the UC setting. We will then argue that the output distributions of environment in the
real and the ideal world executions are computationally indistinguishable, thus satisfying Definition
4. We describe the construction of S in Section 5.1 and give a proof outline in Section 5.2. Finally,
we argue the correctness of simulation in Section 6. We first give some notation.

Notation. In the UC framework, any two parties (say Pi and Pj) might interact as per the protocol
Π on initiation by the environment Z. Simulator has to simulate10 the view of the corrupted party
if exactly one of the two parties is corrupted. In the other case the simulator does not have to do
anything. In the sequel, we will use the notation H to denote the honest party and A to denote the
corrupted party in any session. Let 〈P, V 〉H→A denote the instance of 〈P, V 〉 where H and A play
the roles of prover P and verifier V respectively. Similarly, let 〈Pswi, Vswi〉H→A denote each instance of
〈Pswi, Vswi〉 where H and A plays the roles of prover P and verifier V respectively. Now, recall that H
plays the role of committer C in one instance of 〈C,R〉, where it commits to its preamble secret σH ,
and in one instance of 〈C ′, R′〉, where it commits to its input xH and randomness rH (to be used in the
secure computation phase). We will reserve the notation 〈C,R〉H→A for the former case, and we will
refer to the latter case by 〈C ′, R′〉H→A. Further, we define 〈P, V 〉A→H , 〈Pswi, Vswi〉A→H , 〈C,R〉A→H ,
〈C ′, R′〉A→H in the same manner as above, except that the roles of H and A are interchanged. Also, let
xA and rA denote the input and random coins, respectively, of A (to be used in the secure computation
phase). For the sake of simplicity, we will skip mentioning the session identifier unless necessary.

5.1 Description of Simulator S

The simulator S consists of two parts, Smain and Sext. Informally speaking, Smain is essentially the
main simulator in that it interacts with the adversary A. At various points during the simulation,
Smain invokes Sext in order to extract the following two values in each session: (a) the preamble
secret σA committed by A in 〈C,R〉A→H , and (b) the input xA and randomness rA committed by
A in 〈C ′, R′〉A→H . Sext takes as input the transcript of an instance of the commitment protocol
〈C,R〉A→H (resp. 〈C ′, R′〉A→H) and extracts the committed value xA‖rA (resp., σA) by running in
super-polynomial time and breaking the hiding property of the commitment scheme com (which is
used in the construction of 〈C,R〉; see Section 3.2). We now give more details.

Description of Smain. We first describe the strategy of Smain in each phase of the protocol. For
the sake of simplicity, below we describe the case in which the honest party sends the first message in
the protocol. The other case, in which the adversary sends the first message, can be handled in an
analogous manner and is omitted.

Trapdoor Creation Phase. In Steps 1 and 2 of the Trapdoor Creation Phase, the simulator follows
the protocol specification and behaves exactly like an honest party. However, on the completion of
the preamble 〈C,R〉A→H executed in Step 2, Smain extracts the preamble secret (committed by A) by
invoking Sext. If Sext returns a valid preamble secret σA, then in Step 3, instead of committing to bit
0, Smain sends com1 as a commitment to bit 1 and simulates the post-preamble phase of 〈P, V 〉H→A in
a straight-line manner (by using the preamble secret σA; in the same manner as explained in Section
3.3). On the other hand, if Sext returns ⊥, then Smain executes Step 3 by following the honest party
strategy. Finally, in Step 4, simulator again behaves just like an honest party.

10We only deal with static corruption.
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As explained later in the description of Sext, Sext always succeeds in extracting the preamble secret
σA in super-polynomial time as long as the commitment protocol 〈C,R〉A→H is valid (see Section 3.2)
since 〈C,R〉 is a perfectly binding commitment scheme. In other words, Sext only outputs ⊥ if the
commitment protocol 〈C,R〉A→H is not valid. Note that in this case, when Smain executes Step 3 in
an honest fashion, A would fail with probability 1 in successfully decommitting to the preamble secret
(since 〈C,R〉 is perfectly binding) during the post-preamble phase of 〈P, V 〉H→A. As a consequence,
Smain (who is following the honest party strategy) will abort that session.

Input Commitment Phase.

1. In this phase, Smain first commits to a (sufficiently large) string of all zeros (unlike the honest
party that commits to its input xH and randomness rH) in the execution of the commitment
protocol 〈C,R〉H→A. Smain then engages in an execution of 〈Pswi, Vswi〉H→A with A, where
(unlike the honest party that uses the real witness) Smain uses the trapdoor witness. Note that
the trapdoor witness is available to Smain since it committed to bit 1 in the trapdoor commitment
phase.

2. Next, Smain behaves honestly in Step 2 of the Input Commitment Phase. However at the end of
the phase, Smain extracts the input and randomness committed by A in 〈C ′, R′〉A→H , by invoking
Sext with the transcript of 〈C ′, R′〉A→H . If Sext outputs ⊥, then Smain stops its interaction with
A and outputs a special abort message called I-Abort1. (Later, we show that Smain outputs
I-Abort1 with only negligible probability.)

Secure Computation Phase. Let Ssh denote the simulator for the semi-honest two-party protocol
〈P sh

1 , P sh
2 〉 used in our construction. Smain internally runs the simulator Ssh on adversary’s input xA.

Ssh starts executing, and, at some point, it makes a call to ideal functionality F in the ideal world
with an input string (say) xA. At this point, Smain makes a query (sid, xA)11 to F . The output
value received from F is forwarded to Ssh. Ssh runs further, and finally halts and outputs a transcript
βH,1, βA,1, . . . , βH,t, βA,t of the execution of 〈P sh

1 , P sh
2 〉, and an associated random string r̂A. Smain now

performs the following steps.

1. Smain first computes a random string r̃A such that r̃A = rA ⊕ r̂A and sends it to A.

2. Now, in each round j ∈ [t], Smain sends βH,j . It then engages in an execution of 〈Pswi, Vswi〉H→A
with A where it uses the trapdoor witness (deviating from honest party strategy that used the
real witness). Next, on receiving A’s next message βA,j in the protocol 〈P sh

1 , P sh
2 〉, Smain engages

in an execution of 〈Pswi, Vswi〉A→H with A where it uses the honest verifier strategy. Finally at
any stage, if the jth message of the adversary is not βA,j and the proof 〈Pswi, Vswi〉A→H given
immediately after this messages is accepted, then the simulator aborts all communication and
outputs a special abort message called I-Abort2. (Later, we show that Smain outputs I-Abort2

with only negligible probability.)

Finally, simulator forwards all messages from the environment and the adversary sent to each other
as such. And This completes the description of Smain. We now proceed to describe Sext.

Description of Sext. Sext receives as input the transcript of an instance of either the commitment
protocol 〈C,R〉σA→H or the commitment protocol 〈C ′, R′〉A→H . On receiving such an input, Sext runs
in super-polynomial time and breaks the hiding property of the commitment scheme com to extract

11Note that the session identifier sid corresponds to the specific session in which the parties are interacting. We have
skipped mentioning it everywhere because all messages correspond the same session sid.
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the value committed in the transcript of the commitment protocol. On successful extraction, Sext
returns the extracted value (which is either the preamble secret σA, or the input and randomness xA,
rA, depending upon the transcript received from Smain) to Smain.

In more detail, on receiving an input transcript from Smain, Sext breaks (by running in super-
polynomial time) each commitment in the transcript, including the commitment to the main value
(which is either σA or xA‖rA) and the commitments to its secret shares. Note that each commitment
represents a unique value since com is perfectly binding. Then, if the secret shares thus extracted are
not consistent with the main value (i.e., if the input transcript does not represent a valid commitment
protocol; see Section 3.2), Sext outputs ⊥; otherwise, Sext outputs the extracted value.

5.2 Proof Outline

We presented the description of the simulator in the previous section. For UC-SPS security we need
to argue that for any adversary A there exists an adversary S (running in super-poly time) such that
no environment Z, on any input, can tell with non-negligible probability whether it is interacting with
A and parties running Π (referred to as real world), or it is interacting with S interacting with the
trusted ideal functionality (referred to as ideal world). In order to argue this starting with the real
world we will consider a sequence of hybrid experiments that lead to the ideal world. We will then
argue indistinguishability of consecutive hybrids. Note that in the final hybrid the simulator runs
in super-poly time. Since we are relying on computational assumptions that are secure only against
polynomial time adversaries, the simulator cannot use its super-polynomial power across hybrids that
are only computationally indistinguishable. We deal with this issue by having our simulator run in
polynomial time in all the hybrids except the last one. Further the final switch to the last hybrid
from the penultimate hybrid is based on a statistical argument and therefore the running time of the
simulator in the last hybrid is irrelevant.

We will try to convey the main ideas of our proof by describing the penultimate hybrid (i.e., the last
hybrid that runs in polynomial time) and explaining how it works. Consider the following sequence
of hybrids:

- H0: The real world interaction.

- H1/2
12: This is the final poly-time hybrid. All hybrids before this hybrid will run in poly-time.

The key point in this hybrid is that the simulator does not use the inputs of honest parties in
the main thread. However, it uses the honest parties inputs in the look-ahead threads. The
look-ahead threads are executed to help with extraction of preamble secrets and the inputs used
by the adversary. We describe this hybrid next.

- H1: The simulated interaction, as described in Section 5.1. This hybrid runs in super-poly time.

The penultimate hybrid – H1/2. Before we describe our simulation strategy in this hybrid let us
describe some notation: we will maintain two databases – Databaseσ and Databasex, and our hybrid
will crucially refer to the notions of special messages, honest execution, partial simulation and full
simulation.

Databases. In database Databaseσ we will store tuples of the form (j, σjA), where σjA is the preamble
secret committed by the adversary in session j. Similarly, in database Databasex we will store tuples
of the form (j, xjA), where xjA is the input and the randomness committed by the adversary in session
j.

Special message notation. In our protocol we will demarcate four messages as special messages –

12Same as hybrid H4m:6 in Section 6.
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- The second message of the execution of 〈C,R〉A→H .

- The last message of the execution of 〈C,R〉A→H .

- The second message of the execution of 〈C ′, R′〉A→H .

- The last message of the execution of 〈Pswi, Vswi〉A→H given in the Input Commitment Phase.

Observe that for any session these messages happen in the order they are listed above. We will refer
to the special messages of the jth session by the names – first special message of session j, second
special message of session j, third special message of session j and fourth special message of session j.
A more elaborate description of the special messages and their properties in provided in Section 6.1.

Level of simulation. In order to abstract out some of the details relation to simulation, we start by
describing the levels of simulation (or, the extent of simulation) we will use.

- Honest Execution: Honest execution in a particular session corresponds to the simulator following
the honest party strategy in that session. Note that for this the simulator will need access to
honest party input for that session.

- Partial Simulation: Partial simulation in a particular session corresponds to the simulator cheat-
ing only partially in the execution of that session. In this setting the simulator cheats everywhere
except in the semi-honest 2-PC execution which is a part of the Secure Computation Phase. More
specifically, in this setting our simulator provides a commitment to 1 instead of a commitment
to 0 in the Trapdoor Creation Phase, cheats in the NMZK proof, cheats in all the SWI proofs
and provides a commitment to “junk” (instead of honest party input and randomness) in the
Input Commitment Phase. Note that for this kind of simulation the simulator will still need
access to the honest party input, in addition to knowledge of the preamble secret committed by
the adversary in Trapdoor Creation phase for the session it is partially simulating. We stress
that the preamble secret is only needed after the second special message for the session has
been received. Note that the simulator, however, does not need access to the input and the
randomness committed to by the adversary in the Input Commitment Phase.

- Full Simulation: Full simulation in a particular session corresponds to the simulator cheating
completely in the execution of that session. In this setting the simulator cheats everywhere, i.e.,
everywhere it was cheating in the partial simulation and also in the semi-honest 2-PC execution
which is a part of the Secure Computation Phase. Note that for this kind of simulation the
simulator will not need access to honest party input but will need the preamble secret committed
by the adversary in Trapdoor Creation phase and the input and the randomness of the adversary
committed in the Input Commitment Phase for the session being simulated. Also note that the
preamble secret for a session is only needed after the second special message for the session has
been received. Similarly the adversary’s input and randomness are only needed after the fourth
special message for the session has been received.

Lookup(Databaseσ, Databasex, τ, i) Function: During the simulator’s interaction with the adversary,
which we will refer to as the main thread, it will make multiple calls to the Lookup function. We will
also refer to these function calls as a look-ahead thread. We start by giving a succinct description of
this function. Our lookup function takes as input the two databases (Databaseσ and Databasex), the
state of the adversary/environment τ so far, and a session name i as input. Note that this function
does not itself update the databases in any way; it only uses their contents. The function simulates the
execution (in the manner as explained below) until it receives a well-formed second special message or
fourth special message for session i. If this takes place, it returns the relevant information necessary
for the extraction of either the preamble trapdoor (in the case of a second special message) or the
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adversary’s input and randomness (in the case of a fourth special message). The lookup function
performs the simulation as follows: For each session j ∈ [m], where m is the number of sessions, it
behaves as follows:

- Case 1: (j, ·) 6∈ Databaseσ
∧

(j, ·) 6∈ Databasex: For session j our simulator uses the honest
execution strategy. (In other words, it executes the look ahead thread honestly using the honest
party inputs).

- Case 2: (j, ·) ∈ Databaseσ
∧

(j, ·) 6∈ Databasex: For session j our simulator uses the partial
simulation strategy. Note that partial simulation in the jth session requires access to the ad-
versary’s preamble secret for the jth session and our simulator can obtain it from the database
Databaseσ.13

- Case 3: (j, ·) ∈ Databaseσ
∧

(j, ·) ∈ Databasex: For session j our simulator uses the full sim-
ulation strategy. Note that full simulation in the jth session requires access to the adversary’s
preamble secret and the adversary’s input for the jth session and our simulator can obtain it
from the databases Databaseσ and Databasex, respectively. If (j,⊥) ∈ Databasex then we abort
with I-Abort1.14

We stress that the working of the look-ahead thread depends on the contents of the databases. Fur-
thermore, different look-ahead threads will differ from each other depending on what databases they
are initiated with. Also, note that the Lookup function never calls itself recursively.
The main-thread simulation in hybrid H1/2. Our simulator will perform full simulation in all sessions
on the main thread of execution. However, in order to do this, it will perform some extra steps when
it receives one of the special messages for any session. These steps are performed with the goal of
populating the database Databaseσ (resp., Databasex) with the preamble secret (resp., adversary’s
input) for every session whose second (resp., fourth) special message has been received. As pointed
out earlier, for the full simulation of the main thread, it suffices to obtain the preamble secret (resp.,
adversary’s input) for those sessions whose second (resp., fourth) special message has already been
received. For each session i encountered, the simulation will do the following in addition to the full
simulation described above:

- First or third special message of session i: It starts Lookup(Databaseσ, Databasex, τ, i) function
k times.15 We stress that all these look-ahead threads are executed before returning to the
execution in the main thread. The state of the databases at the time of these function calls is
used as input for the Lookup function. The simulator stores the output of these lookup functions
calls for later use.

- Second or fourth special message of session i: When the simulator receives the second (resp.,
fourth) special message of session i, then our simulator scans the output of the look ahead
threads it had started when it had received the first (resp., third) special message of session i.
In these look-ahead threads it checks to see if it had received a second (resp., fourth) special
message of the ith session in any of the executions of the Lookup function calls. Our simulator
aborts with a Rewind Abort16 if this is not the case. On the other hand if it did receive the
second (resp., fourth) special message of the ith session in at least one of the look-ahead threads

13We argue in Lemma 7 that if (j,⊥) ∈ Databaseσ then we will not need the preamble secret.
14In Lemma 8 we will argue that this happens only with a negligible probability.
15k is a parameter that decides the number of look-ahead threads that we will execute. This number depends specifically

on the proof details and is described in Section 6.
16Our simulator will output Rewind Abort with a small, yet noticeable probability. This probability will depend on

the parameter k that we will adjust to ensure that the abort probability is low enough.
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then it extracts the preamble secret (resp., adversary’s input) of the ith session and adds an
entry for it in the database Databaseσ (resp., Databasex). If the extraction fails even though
it did receive the second (resp., fourth) special message of the ith session in at least one of the
look-ahead threads (this could happen if, e.g., no consistent preamble secret was committed to
by the adversary but still it managed to complete the SWI argument) then it just adds the entry
(i,⊥) to the database Databaseσ (resp., Databasex) and continues17.

We stress that from the above description it is clear that for any session i for which the second
(resp., fourth) special message is received in the main thread (and given that Rewind Abort has not
occurred) an entry of the form (i, ·) is always made in the database Databaseσ (resp., Databasex).
Hence, whenever the simulator will need the preamble secret (resp., adversary’s input) in the main
thread then it will indeed be available in the database Databaseσ (resp., Databasex). Furthermore,
for each call to the Lookup(Databaseσ, Databasex, τ, i) function, for all sessions whose second (resp.,
fourth) special message is already received in the main thread before reaching the state τ , we will
use partial (resp., full) simulation. On the other hand for the rest of the sessions, the second special
message has not been obtained and we will use the honest execution strategy.

From H0 to H1/2: We move from the experiment H0 to experiment H1/2 through a carefully designed
series of hybrid experiments. Very roughly, there are four high level changes that we do for each
session in going from H0 to H1/2: first is the creation of various look ahead threads to help extraction
of preamble secret in the concurrent setting, second is moving from honest execution to partially
simulated execution, third is the creation of various look ahead threads to help extraction of adversary’s
input and randomness in the concurrent setting, and fourth is in moving from partially simulated
execution to fully simulated execution – ultimately avoiding the need of honest party input for the
session. For each session we will do these changes one by one, in this order itself. However, the
changes across different sessions will be interleaved based on the interleaving of special messages among
different sessions. We sequentially consider the special messages across all sessions that occur on the
main thread. Depending on the special message being considered we make the following changes:

- First (resp., third) special messages of some session. We create k look-ahead threads at the
point where this message has been received. Observe that at this point the execution of the
main thread is identical to the execution of the look-ahead threads just started.

- Second special messages of session j. Switch from honest execution to partially simulated exe-
cution for session j in the main thread.

- Fourth special messages of session j. Switch from partially simulated execution to fully simulated
execution for session j in the main thread.

Observe that if these changes are made for each special message then we will finally end up fully
simulating each session in the main thread. We provide more details in Section 6.

Last Step from H1/2 to H1. Note that our simulation never makes use of the inputs of the honest
parties in the main thread. However, these inputs are used in the look-ahead threads. As pointed ear-
lier, we are using rewindings only to populate the databases Databaseσ and Databasex. Therefore, we
can take the last step from the hybrid H1/2 to hybrid H1 by switching from poly-time extraction (using
rewindings) to super-poly time extraction. This avoids the need for all look-ahead threads and the

17We will argue later in Lemma 7 that if an entry (i,⊥) is made to the database Databaseσ then the adversary will
not be able to continue the ith session to a point where the preamble secret is actually needed. In Lemma 8 we will argue
that an entry (i,⊥) is made to the database Databasex with only negligible probability.
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inputs of the honest parties in “one shot.” The distribution of the view of the adversary/environment
in the main thread still remains statistically close enough to the one in the previous hybrid, since the
only difference is that Rewind Aborts do not occur in the final hybrid.

A detailed exposition of the proof of security follows.

6 Indistinguishability of the Views

We consider two experiments H0 and H1, where H0 corresponds to the real world execution of 〈P1, P2〉
while H1 corresponds to the ideal world execution, as described below.

Experiment H0: The simulator S simulates the honest parties H and in doing so it obtains their
inputs and the specification on what sessions to take part in from the environment Z. S does so by
following the honest party algorithm, it generates the outputs of the honest party along with A’s view.
This corresponds to the real execution of the protocol. The output of the hybrid corresponds to the
output of the environment, the outputs of the honest parties and the view of the adversary A.

Experiment H1: S simulates the honest parties (in the same manner as explained in the description
of S in Section 5.1). The honest parties, for each session receive input from the environment, query
the ideal functionality on their input and output the response they receive from the ideal functionality
as their output. Again the output of the hybrid corresponds to the output of the environment, the
outputs of the honest parties and the view of the adversary A.

Let νi be a random variable that represents the output of Hi. We now claim that the output
distributions of H0 and H1 are indistinguishable, as stated below:

Lemma 3 ν0 c≡ ν1

The proof of this lemma requires a careful hybrid argument that departs from previous work such
as [BPS06, GJO10] in several crucial respects, most notably in our handling of look-ahead threads
and our sequence of hybrids. More details are given below.

6.1 Getting started

We will prove Lemma 3 by contradiction. Suppose that the hybrids H0 and H1 are distinguishable in
polynomial time, i.e., there exists a ppt distinguisher D that can distinguish between the two hybrids
with a non-negligible probability (say) ε. More formally,

∣∣Pr[D(ν0) = 1] − Pr[D(ν1) = 1]
∣∣ > ε. Let

k = 6·m
ε , where m is an upper bound on the number of sessions (such an upper bound is the running

time of the adversarial environment). k is a parameter that corresponds to the number of rewindings
(explained later) that we will perform.

We will now consider a series of hybrid experiments Hi:j , where i ∈ [1, 4m], and j ∈ [1, 6]. We
define two additional hybrids – first, a dummy hybridH0:6 that represents the real world execution (i.e.,
H0, as defined above), and second, an additional hybrid H4m+1:1 that corresponds to the simulated
execution in the ideal world (i.e., H1, as defined above). For each intermediate hybrid Hi:j , we define a
random variable νi:j that represents the output (output of the environment, the outputs of the honest
parties and the view of the adversary A) of Hi:j .

Below, we will establish (via the intermediate hybrid arguments) that no polynomial time dis-
tinguisher can distinguish between ν0:6 and ν4m+1:1 with a probability greater than ε, which is a
contradiction. Before we jump into description of our hybrids, we first establish some notation and
terminology.
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In the sequel, we will make use of the notation described in Section 5. We now describe some
additional notation that will be used in the proof. Again recall that we are in the UC setting and
there could be multiple parties in the system and the simulator only needs to simulate the interactions
between parties such that exactly one of them is corrupted. Without loss of generality, in the proof, for
simplicity of notation we will assume that there is only one honest party (referred to as H) and only
one malicious party (referred to as A). Now our simulator must simulate the view of the malicious
party in all the sessions it is a part of. Rather than referring to these sessions by session identification
sid numbers we will use just a session number `. Let m be a total bound on the total number of
sessions. Then, for any session, we will have that ` ∈ [m]. It should be easy to see that a simulator
constructed in this simple setting with proper “book-keeping” will be able to achieve correct simulation
in the general setting.

Special Messages Notation. Among all the m sessions, consider the m executions of 〈C,R〉A→H ,
the m executions of 〈C ′, R′〉A→H and the m executions of 〈Pswi, Vswi〉A→H given in the Input Commit-
ment Phase. In these executions consider the following four messages, which we will refer to as special
messages (denoted by SM):

1. The second message of 〈C,R〉A→H in the Trapdoor Creation Phase: Recall that at this point,
the adversary will have committed to a value σ (in the first message), and the second message
is the challenge sent by the honest party.

2. The last message of 〈C,R〉A→H in the Trapdoor Creation Phase: Recall that this is the response
sent by the adversary to the challenge above. If two valid responses to different challenges can
be obtained by the simulator, this allows the simulator to learn the value σ that the adversary
committed to. Note that this message is only considered a special message if it is well-formed
(that is, the receiver considers the openings of the commitments to be valid openings).

3. The second message of 〈C ′, R′〉A→H in the Input Commitment Phase: Recall that at this point,
the adversary will have committed to its input and randomness x (in the first message), and the
second message is the challenge sent by the honest party.

4. The last message of 〈Pswi, Vswi〉A→H in the Input Commitment Phase: Recall that this is where
the adversary proves that the response it sent to the challenge above was correct. If two valid
responses to different challenges can be obtained by the simulator, this allows the simulator to
learn the input and randomness value x that the adversary committed to. Note that this message
is only considered a special message if it is well-formed (that is, the verifier accepts the proof).

Note that there are exactly 4 SM’s for each one of the m sessions. Consider a numbered ordering of
all the 4m occurrences of special messages across them sessions (excluding any look-up threads, created
in some hybrids). Let SMi denote the ith special message that appears in the interaction between the
simulator and the adversary. Also, let s(i) be the index of the protocol session that contains SMi; that
is, the message SMi occurs during session number s(i). Note that s(i) will correspond to the same
session for 4 distinct values of i ∈ [4m], unless a session aborts and not all messages are scheduled,
in which case fewer than 4 repetitions may occur. We will refer to the SMi’s by one of these 4
names – first special message of session s(i), second special message of session s(i), third special
message of session s(i) and fourth special message of session s(i). These messages correspond to
second message of 〈C,R〉A→H of session s(i), last message of 〈C,R〉A→H of session s(i), the second
messages of 〈C ′, R′〉A→H of session s(i) and the last messages of the 〈Pswi, Vswi〉A→H given in the Input
Commitment Phase of session s(i), respectively. Note that these four messages appear in this order18

(but not necessarily consecutively) in the ordering of the 4m special messages.

18I.e., first messages comes before the second and so on.
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Below when we use the terms A
c≡ B, what we mean is that no PPT distinguisher can distinguish

(except with negligible probability) between A and B. Similarly, when we use the terms A
s≡ B,

what we mean is that no unbounded distinguisher can distinguish (except with negligible probability)
between A and B.

Soundness Condition. Looking ahead, while proving the indistinguishability of the outputs of our
hybrid experiments, we will need to argue that in each session ` ∈ [m], the soundness property holds
for 〈P, V 〉A→H and that the trapdoor condition is false for each instance of 〈Pswi, Vswi〉A→H . In the
sequel, we will refer to this as the soundness condition. Now consider the NMZK instance 〈P, V 〉`A→H
in session `. Let π`A denote the proof statement for 〈P, V 〉`A→H , where, informally speaking, π`A states
that A committed to bit 0 (earlier in the trapdoor creation phase). Note that the soundness condition
“holds” if we prove that in each session ` ∈ [m], A commits to a valid witness to the statement y`

in the non-malleable commitment (NMCOM) inside 〈P, V 〉`A→H . To this end, we define m random
variables, {ρ`i:j}m`=1, where ρ`i:j is the value committed in the NMCOM inside 〈P, V 〉`A→H as per νi:j .
Now, before we proceed to the description of our hybrids, we first claim that the soundness condition
holds in the real execution. We will later argue that the soundness condition still holds as we move
from one hybrid to another.

Lemma 4 Let 〈P, V 〉`A→H and π`A be as described above corresponding to the real execution. Then,
for each session ` ∈ [m], if the honest party does not abort the session (before the first message of the
Secure Computation Phase is sent) in the view ν0:6, then ρ`0:6 is a valid witness to the statement π`A,
except with negligible probability.

Intuitively, the above lemma follows due the knowledge soundness of the statistical zero knowledge
argument of knowledge used in NMZK. We refer the reader to [Claim 2.5, [BPS06]] for a detailed
proof.

Lemma 5 Let 〈P, V 〉`A→H and π`A be as described above corresponding to the execution in any hybrid
Hi:j. Then ∀i ∈ [m], j ∈ [6] , for each session ` ∈ [m], if the honest party does not abort the session
(before the first message of the Secure Computation Phase is sent) in the view νi:j, then ρ`i:j is a valid

witness to the statement π`A, except with negligible probability.

We defer the proof of this lemma until later (see Section 6.2.1), as it will make use of other claims
that we will prove about our hybrids.

Public-coin property of NMCOM. We now describe a strategy that we will repeatedly use in
our proofs in order to argue that for every session ` ∈ [m], the random variable ρ` (i.e., the value com-
mitted by A in the NMCOM inside 〈P, V 〉`A→H) remains indistinguishable as we change our simulation
strategy from one hybrid experiment to another. Intuitively, we will reduce our indistinguishability
argument to a specific cryptographic property (that will be clear from context) that holds in a stand-
alone setting. Specifically, we will consider a stand-alone machine M∗ that runs S and A internally.
Here we explain how for any session ` ∈ [m], M∗ can “expose” the NMCOM inside 〈P, V 〉`A→H to an
external party R (i.e., M∗ will send the commitment messages from A to R and vice-versa, instead of
handling them internally). Note that S will be rewinding A during the simulation. However, since R
is a stand-alone receiver; M∗ can use its responses only on a single thread of execution.

In order to deal with this problem, we will use the following strategy. When A creates the NMCOM
inside 〈P, V 〉`A→H , any message in this NMCOM from A on the main-thread is forwarded externally
to R; the responses from R are forwarded internally to A on the main-thread. On the other hand, any
message in this NMCOM from A on a look-ahead thread is handled internally; M∗ creates a response
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on its own and sends it internally to A on that look-ahead thread. We stress that this is possible
because NMCOM is a public-coin protocol.

In the sequel, whenever we use the above strategy, we will omit the details of the interaction
between M∗ and R.

6.2 Description of the Hybrids

For i ∈ [1, 4m], the hybrid experiments are described as follows. Very roughly, for each i we will
consider the corresponding ith special message SMi that appears and depending on this message we
will decide what hybrids to proceed with. We stress that unlike many previous works, our hybrids
will not proceed “session by session”, but rather we will revisit the same session several times over the
course of the sequence of hybrid experiments. We also stress that in the following hybrid experiments,
we will initiate several look-ahead threads, however once a look-ahead thread is started in a particular
hybrid, the operation of that look-ahead thread is never modified in future hybrids19. Future hybrids
only modify how the simulator deals with the main thread of the simulation.

Further we will maintain two databases: Databaseσ and Databasex. In database Databaseσ we
will store tuples of the form (j, σjA), where σjA is the preamble secret committed by the adversary in

session j. Similarly, in database Databasex we will store tuples of the form (j, xjA), where xjA is the
input and the randomness committed by the adversary in session j.

Experiment Hi:1: Same as hybrid Hi−1,6, unless if SMi is the first (or resp., third) special message
of session s(i), in which case it differs in the following manner: Hybrid Hi:1 is same as hybrid Hi−1:6,
except that the simulator S starts k look-ahead threads at the point SMi with freshly chosen challenge
messages20 in each of the look-ahead threads.21 Note that the simulator strategy in each of the look-
ahead threads is the same as the simulator strategy in the main thread22 from hybrid Hi−1:6, using
the current contents of databases Databaseσ and Databasex. As pointed earlier, in future hybrids we
will make changes to the main thread but look-ahead thread will never be modified. Further observe
that in hybrid Hi−1:6, no look-ahead threads are initiated after SMi has been sent in the main thread
and hence the simulation of the look-ahead threads will not involve any extra rewindings. If A does
not send the second (resp., fourth) special message of session s(i) in any of the look-ahead threads but
it does so in the main thread then our simulator aborts. We specifically refer to this abort as Rewind
Abort.

Note that simulator can use the second (resp, fourth) special messages sent in the main-thread
and in one of the look-ahead threads to extract the preamble secret (resp., input) committed in the

execution 〈C,R〉s(i)A→H (resp., 〈C ′, R′〉s(i)A→H). When this happens then our simulator extracts σ
s(i)
A

(resp., x
s(i)
A ) and adds the entry (s(i), σ

s(i)
A ) (resp., (s(i), x

s(i)
A )) to the database Databaseσ (resp.,

Databasex). However, it might not be possible to extract the corresponding committed value (even
though the simulator does not output Rewind Abort). In this case the simulator proceeds without
the extraction adding a special entry (s(i),⊥) to the Databaseσ (resp., Databasex).

19This is true except for the last hybrid, in which all look-ahead threads are eliminated with super-polynomial simu-
lation.

20There is an negligibly small probability that the freshly chosen challenge message in a look-ahead thread is chosen
to be the same as in the main thread. Because this probability is negligible, we will proceed in the proof under the
assumption that this does not occur.

21The simulator completes all the look-ahead before it returns to continue the main thread.
22It is instructive to note that this strategy is same as the one described in the Lookup(Databaseσ, Databasex, τ, i)

function described in Section 5.2. In this hybrid the main thread and all the look ahead threads follow this strategy.
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We have the following claims:

∀ PPT D
∣∣∣Pr[D(νi−1:6) = 1] − Pr[D(νi:1) = 1]

∣∣∣ ≤ 1

k
+ negl(n) (1)

∀ PPT D
∣∣∣Pr[D(ρ1

i−1:6, . . . , ρ
m
i−1:6) = 1] − Pr[D(ρ1

i:1, . . . , ρ
m
i:1)) = 1]

∣∣∣ ≤ 1

k
+ negl(n) (2)

Proving Equations 1 and 2. Note that the only difference between Hi−1:6 and Hi:1 is that S outputs
a Rewind Abort in case the adversary sends second (resp., fourth) special message of session s(i) in
the main thread but does not do so in any one of the k look-ahead threads. Since the main-thread
and the look-ahead threads are identical, by simple swapping [PRS02] argument, the probability that
the simulator outputs a Rewind Abort is bounded by 1/k. Further assuming that the simulator does
not output Rewind Abort the hybrids Hi−1:6 and Hi:1 are close. Note that in this hybrid, the values
extracted using the new look-ahead threads started in this hybrid are not utilized in any way. Hence
our claim follows.
Looking ahead: Intuition for how look-ahead threads are handled without any recursive rewinding. As
argued in Lemma 6 below, for every j < i, if SMj is a second (resp., fourth) special message of session
s(j) then there exists an entry (s(j), ·) in Databaseσ (resp., Databasex). Hence, for all these sessions
for which an entry exists in the databases we can in fact use the extracted value and cheat (and we
will do so in future hybrids). However, this entry could actually be (s(j),⊥). In Lemma 7 below
we argue that if the tuple (s(j),⊥) is present in Databaseσ, then the adversary will not be able to
continue the jth session, and so there will be no need to simulate it. On the other hand we note that
if (s(j),⊥) is present in Databasex and if our simulator needs to use this value at some point then
it aborts with the special abort message I-Abort1. This event happens with a negligible probability
(argued in Lemma 8 below), and hence will not affect our analysis.

On the other hand, in sessions for which the second (resp., fourth) special message has not been re-
ceived before SMi, in the look-ahead threads we will not have an entry in Databaseσ (resp., Databasex)
and we will behave “honestly,” for such sessions.

Now we state and give the proof for Lemma 6.

Lemma 6 For every j < i if SMj is the second (resp., fourth) special message of session s(j) and
Rewind Abort did not happen, then there exists an entry (s(j), ·) in Databaseσ (resp., Databasex) at
the time that SMi occurs in the main thread.

Proof. This follows immediately from our simulation strategy. Note that for every j < i, if SMj is a
first (resp., third) special message of session s(j) then we have already started its look ahead threads,
and that means that we will be able to extract the preamble secret (resp., adversary’s input) as soon
as the second (resp., fourth) special message of session s(j) is received in the main thread, and then
we always make an entry (s(j), ·) in Databaseσ (resp., Databasex) unless Rewind Abort happens.

Invariant Lemmas. Now we establish two lemmas pertaining to the setting in which extraction
fails even though Rewind Abort did not happen. We note these lemmas hold across all hybrids.

Lemma 7 If (j,⊥) ∈ Databaseσ, then the adversary will not be able to continue the jth session past
the step where it opens all the commitments made in 〈C,R〉jA→H (within Step 3 of Trapdoor Creation
Phase).

Proof. Since the entry (j,⊥) was made to Databaseσ, this means that the extraction of σjA had failed
even though the second special message of session j was reached in the main thread as well as one of
the look ahead threads (as Rewind Abort did not happen). Also note that the commitments used in
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〈C,R〉jA→H are perfectly binding. From these two facts it follows that the commitment 〈C,R〉jA→H is
in fact invalid. Since the adversary has to open the commitment within Step 3 of Trapdoor Creation
Phase, the adversary can not do so legitimately. This completes the proof.

Lemma 8 Let Ej be the event that the simulator receives the fourth special message of session j in the

main thread and in at least one of the look ahead threads, but the commitment 〈C ′, R′〉jA→H completed
in either the main thread or in considered the look-ahead thread is invalid. More formally, Ej is

the event23
(
(j, ·) ∈ Databasex

)∧ (
〈C ′, R′〉jA→H is invalid in main thread ∨〈C ′, R′〉jA→H is invalid in

look-ahead thread
)
, where we consider the specific look-ahead thread that lead to the creation of the

entry (j, ·). Then Ej happens with negligible probability.

Proof. We prove this by contradiction. Lets say that actually for some session j, event Ej happens
with non-negligible probability. We will then contradict the soundness of the SWI proof system.

We first note that by soundness condition (Lemma 5) we have that the adversary always sends
a commitment to the bit 1 in the Trapdoor Creation phase for the jth session. From this it follows
that there is only one witness for the SWI protocol in the Input Commitment Phase. Therefore in
order for an adversary to make an invalid commitment or for extraction to fail (in 〈C ′, R′〉jA→H) it
has to cheat in at least one of the SWI proofs among the ones provided in the main thread and the
look-ahead thread (in which fourth special message of s(i) is reached). Further note that existence of
(j, ·) ∈ Databasex implies that the fourth special message of the jth session was indeed reached in the
main thread and at least one of the look-ahead threads. Finally, it follows from the soundness of the
SWI protocol that the event Ej happens with a negligible probability.

Change from hybrid Hi:1 to hybrid Hi:6. Hybrid Hi:6 is same as hybrid Hi:1 unless SMi is the
second (resp., fourth) special message of session s(i). If this is the case then we change how we
simulate session s(i) in the main thread. More specifically, we start partially simulating (resp., fully
simulating)24 session s(i) in the main thread in hybrid Hi:6. Further note that since second (resp.,
fourth) special message of session s(i) has already been received in the main thread and Rewind Abort

did not happen, therefore there exists an entry (s(i), ·) in Databaseσ (resp., Databasex). However
this entry could actually be (s(i),⊥). We consider this specific case now. If SMi is the second special
message of session s(i) then (as argued in Lemma 7) we will not need this value. On the other hand, if
SMi is the fourth special message of session s(i) then we will abort with the abort message I-Abort1.
By Lemma 8 this happens only with a negligible probability.

Experiment Hi:2: Same as Hi:1, except if SMi is the second special message of session s(i), then

S simulates the post-preamble phase of 〈P, V 〉s(i)H→A in a straight-line manner, as explained in Section
3.3, by making use of the entry in Databaseσ for the session s(i). Recall that no look-ahead threads
are started once the execution reaches SMi on the main thread. All the changes in the main thread,
as explained below, are performed after SMi is reached.

We now claim that,

νi:1
c≡ νi:2 (3)

∀` ∈ [m] ρ`i:1
c≡ ρ`i:2 (4)

The proof of the claim is in Section 7.

23Note that our simulator outputs I-Abort1 if (j,⊥) ∈ Databasex. Note that if entry (j,⊥) ∈ Databasex is made,
then Ej must have happened. And this implies that our simulator outputs I-Abort1 with negligible probability.

24Recall that by partially simulating (resp., fully simulating) a session s(i) we mean “cheating in the commitments,
NMZK and SWI” (resp., “cheating in cheating in the commitments, NMZK, SWI as well as the semi-honest simulation”)
for session s(i). Recall that this intuitive terminology was introduced in Section 5.2 so as to abstract out the details of
the hybrids from Hi:1 to Hi:6.
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Experiment Hi:3: Same as Hi:2, except if SMi is the second special message of session s(i), then

the simulator commits to bit 1 instead of 0 in phase I of session s(i). Let Π
s(i)
com,H→A denote this

commitment.
We now claim that,

νi:2
c≡ νi:3 (5)

∀` ρ`i:2
c≡ ρ`i:3 (6)

The proof of the claim is in Section 7.

Experiment Hi:4: Same as Hi:3, except if SMi is the second special message of session s(i), then S
uses the trapdoor witness (instead of the real witness) in each instance of 〈Pswi, Vswi〉H→A in session
s(i). Note that the trapdoor witness for each of these SWI must be available to the simulator at this
point since it earlier committed to bit 1 in phase I of session s(i).

We now claim that,

νi:3
s≡ νi:4 (7)

∀` ρ`i:3
c≡ ρ`i:4 (8)

The proof of the claim is in Section 7.

Experiment Hi:5: Then, Hi:5 is the same as Hi:4, except if SMi is the second special message
of session s(i), then S uses the following strategy in the execution of 〈C ′, R′〉H→Ax. Recall that
〈C ′, R′〉H→Ax denotes the instance of 〈C ′, R′〉 in session s(i) where the honest party commits to its
input xH and randomness rH (to be used in the secure computation phase).

1. Instead of sending honest commitments to xH‖rH and its secret shares, S sends commitments
to random strings as the first message.

2. On receiving a challenge string from A, instead of honestly revealing the committed shares (as
per the challenge string), S sends random strings to A.

We now claim that,

νi:4
c≡ νi:5 (9)

∀` ∈ [m] ρ`i:4
c≡ ρ`i:5 (10)

The proof of the claim is in Section 7.

Experiment Hi:6: Same as Hi:5, except if SMi is the fourth special message of session s(i), then
S “simulates” the execution of 〈P sh

1 , P sh
2 〉 in session s(i), in the following manner. Let Ssh be the

simulator for the semi-honest two party protocol 〈P sh
1 , P sh

2 〉 used in our construction. S internally
runs the simulator Ssh for the semi-honest two party protocol 〈P sh

1 , P sh
2 〉 on A’s input in session s(i)

that was extracted earlier and is found in Databasex. When Ssh makes a query to the trusted party
with some input, S responds to this query by using its input for session s(i). The response from
the trusted party is passed on to Ssh. Ssh finally halts and outputs a transcript of the execution of
〈P sh

1 , P sh
2 〉, and an associated random string for the adversary.

Now, S forces this transcript and randomness on A and if at any point A responds differently
(than the expected response) but succeeds in making the simulator accept in the SWI proof provided
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immediately after the message is sent, the simulator aborts all communication and outputs I-Abort2.
We claim that during the execution of 〈P sh

1 , P sh
2 〉, each reply of A must be consistent with this tran-

script, except with negligible probability. Note that we have already established from the previous
hybrids that the soundness condition holds (except with negligible probability) at this point25. This

means that the trapdoor condition is false for each instance of 〈Pswi, Vswi〉
s(i)
A→H .

We now claim that,

νi:5
c≡ νi:6 (11)

∀` ∈ [m] ρ`i:5
c≡ ρ`i:6 (12)

The proof of the claim is in Section 7.

6.2.1 Proof of Lemma 5

Proof of Lemma 5. This lemma can be argued by considering the increment in the probability
with which the adversary can violate the soundness condition as we go across hybrids. Lemma 4 shows
that the probability is negligible in the first hybrid. We will show this increment to be negligible for
each pair of consecutive hybrids we consider. Note that the switch from hybrid Hi−1:6 to hybrid Hi:1
is a statistical change and the the entire statistical distance between the two is because in hybrid
Hi:1 the simulator outputs a Rewind Abort for either the first or third special message in session s(i)
with a probability equal (up to negligible additive terms) to the statistical difference between the
two hybrids, whereas the probability of this specific type of Rewind Abort was zero in hybrid Hi−1:6.
Because there is clearly no soundness condition violation when a hybrid outputs Rewind Abort, and
the entire statistical distance between hybrids (up to additive negligible terms) is due to this increased
probability of a Rewind Abort, we immediately have that the probability of a soundness condition
violation can only increase by a negligible amount from hybrids Hi−1:6 to hybrid Hi:1. The argument
for the rest of the hybrids follows based on the indistinguishability of the random variables ρ1

i:j , . . . , ρ
m
i:j

and ρ1
i:j+1, . . . , ρ

m
i:j+1 for every j ∈ {1, . . . , 5} based on Equations 4, 6, 8, 10 and 12.

6.2.2 Finishing the proof of security

So, far: Based on the hybrids, combining the distinguishing advantage of a distinguisher in the
hybrids so far we have that:

∀ PPT D |Pr[D(ν4m:6) = 1] − Pr[D(ν0:6) = 1]| ≤ 2m

k
+ negl(n) (13)

∀ PPT D |Pr[D(ρ1
4m:6, . . . , ρ

m
4m:6) = 1] − Pr[D(ρ1

0:6, . . . , ρ
m
0:6) = 1]| ≤ 2m

k
+ negl(n) (14)

Further note that in hybrid ν0:6 simulator never outputs an Rewind Abort. Therefore the proba-
bility of the simulator outputting Rewind Abort in hybrid ν4m:6 is bounded by 2m

k + negl(n).

Experiment H4m+1:1: In this hybrid we get rid of all the re-windings and instead uses super poly-
nomial simulation (as described in description of the simulator) to obtain all the adversarial preamble
secrets and adversarial inputs. Further, instead of generating the output provided to Ssh on its own,
our simulator obtains the output by querying the trusted party. Note that this hybrid is same as the
simulated execution in the ideal world.

25This is argued in the proof of Lemma 5. Note that there is no circularity here, since the proof of Lemma 5 is given
by showing that for each successive hybrid, the probability of a soundness condition violation can only increase by a
negligible amount.
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Note that in hybrid H4m:6 the simulator outputs Rewind Abort (bounded by 2m
k + negl(n)) but

our simulator (in hybrid H4m+1:1) never outputs Rewind Abort in this hybrid. Further, we consider
the event E as E1 ∨E2 ∨ · · ·Em. Recall that event Ej is the event that the commitment provided by

adversary in 〈C ′, R′〉jA→H for session j ∈ [m] is not valid or that (j,⊥) entry was made to Databaseσ

given that an entry was made (i.e., Rewind Abort did not happen). Further, using Lemma 8 for every
j ∈ [m] Pr[Ej ] is negligible. By union bound we have that Pr[E] is also negligible.

We start our argument by conditioning on the fact that the simulator does not outputs Rewind

Abort and that E does not happen. Next we observe that the commitments that the simulator “breaks”
by running in super-poly time are valid (and simulator was also able to extract it) and therefore
the value extracted via “breaking” must be same as the value simulator obtained by “rewinding.”
Therefore conditioned on the fact that simulator does not output Rewind Abort and E does not
happen the two hybrids – H4m:6 and H4m+1:1 are identical.

On the other hand note that the probability that the simulator outputs Rewind Abort or E happens
in hybrid ν4m:6 is bounded by 2m

k + negl(n). Therefore, we have that:

∀ PPT D |Pr[D(ν4m:6) = 1] − Pr[D(ν4m+1:1) = 1]| ≤ 2m

k
+ negl(n) (15)

∀ PPT D |Pr[D(ρ1
4m:6, . . . , ρ

m
4m:6) = 1] − Pr[D(ρ1

4m+1:1, . . . , ρ
m
4m+1:1) = 1]| ≤ 2m

k
+ negl(n)(16)

Finally, since k = 6m
ε , using Equations 13, 14, 15 and 16, we have that:

∀ PPT D |Pr[D(ν0:6) = 1] − Pr[D(ν4m+1:1) = 1]| ≤ 2ε

3
+ negl(n) (17)

∀ PPT D |Pr[D(ρ1
0:6, . . . , ρ

m
0:6) = 1] − Pr[D(ρ1

4m+1:1, . . . , ρ
m
4m+1:1) = 1]| ≤ 2ε

3
+ negl(n) (18)

Which contradicts our original assumption that there exists a distinguisher D that distinguishes be-
tween H0:6 and H4m+1:1 (same as H0 and H1) with a probability greater than, a non-negligible prob-
ability, ε.

7 Hybrid Indistinguishability Details

The following text is adapted from the proofs in [GJO10], which in turn was based in part on [BPS06].

7.1 Proof of Equation 3 and 4

Let π
s(i)
H denote the proof statement in 〈P, V 〉s(i)H→A. Let σ

s(i)
A denote the trapdoor value committed by

the A in the preamble phase of 〈P, V 〉s(i)H→A that S has already extracted. Then, recall that S performs

the following steps to simulate the post-preamble phase of 〈P, V 〉s(i)H→A in Hi:2:

1. In the post-preamble phase of 〈P, V 〉s(i)H→A, S first commits to σ
s(i)
A (instead of a string of all

zeros) using the statistically hiding commitment scheme SCOM and follows it up with an honest
execution of SZKAOK to prove knowledge of the decommitment.

2. Next, after receiving the decommitment to the preamble phase of 〈P, V 〉s(i)H→A, S commits to

an all zeros string (instead of a valid witness to π
s(i)
H ) using the the non-malleable commitment

scheme NMCOM.
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3. Finally, S proves the following statement using SZKAOK: (a) either the value committed to

in SCOM earlier is a valid witness to π
s(i)
H , or (b) the value committed to in SCOM earlier is

σ
s(i)
A . Here it uses the witness corresponding to the second part of the statement. Note that

this witness is available to S since it already performed step 1 above. Below, we will refer to
this witness as the trapdoor witness, while the witness corresponding to the first part of the
statement will be referred to as the real witness.

Now, to prove equations 3 and 4, we will create three intermediate hybrids Hi:1:1, Hi:1:2, and Hi:1:3.
Hybrid Hi:1:1 is identical to Hi:1, except that it changes its strategy to perform step 1 (as described
above). Hybrid Hi:1:2 is identical to Hi:1:1, except that it changes its strategy to perform step 3.
Finally, hybrid Hi:1:3 is identical to Hi:1:2, except that it changes its strategy to perform step 2. Note
that Hi:1:3 is identical to Hi:2.

We now claim the following:

νi:1
s≡ νi:1:1 (19)

∀` ∈ [m] ρ`i:1
c≡ ρ`i:1:1 (20)

νi:1:1
s≡ νi:1:2 (21)

∀` ∈ [m] ρ`i:1:1
c≡ ρ`i:1:2 (22)

νi:1:2
c≡ νi:1:3 (23)

∀` ∈ [m] ρ`i:1:2
c≡ ρ`i:1:3 (24)

Note that equation 3 follows by combining the results of equations 19, 21, and 23. Similarly, equation
4 follows by combining the results of equations 20, 22, and 24. We now prove the above set of equations.

Proving Equations 19 and 20. We first note that SCOM and SZKAOK can together be viewed as
a statistically hiding commitment scheme. Let SCOM denote this new commitment scheme. Then,
equation 19 simply follows from the (statistical) hiding property of SCOM.

In order to prove equation 20, let us first assume that the claim is false, i.e., ∃` ∈ [m] such that
ρ`i:1 and ρ`i:1:1 are distinguishable by a PPT distinguisher D. We will create a standalone machine M∗

that is identical to Hi:1, except that instead of simply committing to a string of all zeros using SCOM,
M∗ takes this commitment from an external sender C and “forwards” it internally to A. Additionally,
M∗ “exposes” the NMCOM in 〈P, V 〉`A→H to an external receiver R by relying on the public-coin
property of NMCOM, as described earlier. Let us describe the interaction between M∗ and C in more

detail. M∗ first sends the trapdoor secret σ
s(i)
A to C. Now, when C starts the execution of SCOM in

〈P, V 〉s(i)H→A, M∗ forwards the messages from C to A; the responses from A are forwarded externally
to C. Note that if C commits to a string of all zeros in the SCOM execution, then the (C,M∗, R)

system is identical to Hi:1. On the other hand, if C commits to the preamble secret σ
s(i)
A , then the

(C,M∗, R) system is equivalent to Hi:1:1. We will now construct a computationally unbounded distin-
guisher D′ that distinguishes between these two executions, thus contradicting the statistically hiding
property of SCOM. D′ simply extracts the value inside the NMCOM received by R and runs D on
this input. D′ outputs whatever D outputs. By our assumption, D’s output must be different in these
two experiments; this implies that D′ output is different as well, which is a contradiction.

Proving Equations 21 and 22. Equation 21 simply follows due to the statistical witness indistinguisha-
bility property of SZKAOK. Equation 22 also follows from the same fact; the proof details are almost
identical to the proof of equation 20 and therefore omitted.
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Proving Equations 23 and 24. Equation 23 simply follows from the hiding property of NMCOM. To
see this, we can construct a standalone machine M that internally runs S and A and outputs the view

generated by S. M is identical to Hi:1:2 except that in the post-preamble phase of 〈P, V 〉s(i)H→A, instead

of simply committing (using NMCOM) to a valid witness (to the proof statement π
s(i)
H ), it takes this

commitment from an external sender C (who is given the valid witness) and “forwards” it internally
to A. If the external sender C honestly commits to the witness, then the (C,M) system is identical
to Hi:1:2; otherwise if C commits to an all zeros string, then the above system is identical to Hi:1:3.
Equation 23 therefore follows from the hiding property of NMCOM.

In order to prove equation 24, we will use the non-malleability property of NMCOM. Let us assume
that equation 24 is false, i.e., ∃` ∈ [m] such that ρ`i:1:2 and ρ`i:1:3 are distinguishable by a PPT machine.
We will construct a standalone machine M∗ that is identical to the machine M described above, except
that it will “expose” the non-malleable commitment inside 〈P, V 〉`A→H to an external receiver R by
relying on the public-coin property of NMCOM, as described earlier. Now, if C commits to the witness

to π
s(i)
H , then the (C,M∗, R) system is identical to Hi:1:2, whereas if C commits to a random string,

then the (C,M∗, R) system is identical to Hi:1:3. From the non-malleability property of NMCOM, we
establish that the value committed by M∗ to R must be computationally indistinguishable in both
cases.

7.2 Proof of Equation 5 and 6

Equation 5 simply follows from the (computationally) hiding property of the commitment scheme
com.

In order to prove equation 6, we will leverage the hiding property of com and the extractability
property of the non-malleable commitment scheme in NMZK. Let us first assume that equation 6 is
false, i.e., ∃` ∈ [m] such that ρ`i:2 and ρ`i:3 are distinguishable by a PPT distinguisher. Note that it
cannot be the case that the NMCOM inside 〈P, V 〉`A→H concludes before S sends the non-interactive

commitment Π
s(i)
com,H→A in session s(i), since in this case, the execution of NMCOM is independent

of Π
s(i)
com,H→A. Now consider the case when the NMCOM inside 〈P, V 〉`A→H concludes after S sends

Π
s(i)
com,H→A.

We will create a standalone machine M∗ that is identical to Hi:2, except that instead of committing

to bit 0 in Π
s(i)
com,H→A, it takes this commitment from an external sender C and forwards it internally

to A. Additionally, it “exposes” the NMCOM inside 〈P, V 〉`A→H to an external receiver R by relying
on the public-coin property of NMCOM, as described earlier. Note that if C commits to bit 0 then the
(C,M∗, R) system is identical to Hi:2, otherwise it is identical to Hi:3. Now, recall that NMCOM is an
extractable commitment scheme. Therefore, we now run the extractor (say) E of NMCOM on (C,M`)
system. Note that E will rewind M`, which in turn may rewind the interaction between C and M`.
However, since com is a non-interactive commitment scheme, M` simply re-sends the commitment
string received from C to A internally. Now, if the extracted values are different when C commits
to bit 0 as compared to when it commits to bit 1, then we can break the (computationally) hiding
property of com, which is a contradiction.

7.3 Proof of Equation 7 and 8

Equation 7 simply follows from the statistical witness indistinguishability of SWI by a standard hybrid
argument.

In order to prove equation 8, let us first consider the simpler case where S uses the trapdoor
witness only in the first instance (in the order of execution) of SWI in session s(i) where the honest
party plays the role of the prover. In this case, we can leverage the “statistical” nature of the witness
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indistinguishability property of SWI in a similar manner as in the proof of equation 20. Then, by a
standard hybrid argument, we can extend this proof for multiple SWI.

7.4 Proof of Equation 9 and 10

Proving Equations 9 and 10. In order to prove these equations, we will define two intermediate hybrids
Hi:4:1 andHi:4:2. ExperimentHi:4:1 is the same asHi:4, except that S also performs steps 1 as described
above. Experiment Hi:4:2 is the same as Hi:4:1, except that S also performs step 2 as described above.
Therefore, by definition, Hi:4:2 is identical to Hi:5.

We now claim the following:

νi:4
c≡ νi:4:1 (25)

∀` ∈ [m] ρ`i:4
c≡ ρ`i:4:1 (26)

νi:4:1
c≡ νi:4:2 (27)

∀` ∈ [m] ρ`i:4:1
c≡ ρ`i:4:2 (28)

Note that equation 9 follows by combining the results of equations 25 and 27. Similarly, equation 10
follows by combining the results of equations 26 and 28. We now prove the above set of equations.

Proving Equations 25 and 26. Equation 25 simply follows from the (computational) hiding property
of the commitment scheme com.

In order to prove equation 26, let us first consider the simpler case where S only modifies the
first commitment in in 〈C ′, R′〉H→A. In this case, we can leverage the hiding property of com and
the extractability property of the non-malleable commitment scheme in NMZK. The proof details
are the same as the proof of equation 6 (described below) and are therefore omitted. Then, by a
standard hybrid argument, we can extend this proof to the case where S modifies all the commitments
in 〈C ′, R′〉H→A.

Proving Equations 27 and 28. Note that the main-thread is identical in hybrids Hi:4:1 and Hi:4:2 since
we are only changing some random strings to other random strings; furthermore, the strings being
changed are not used elsewhere in the protocol. Equations 27 and 28 follow as a consequence.

7.5 Proof of Equation 11 and 12

Informally speaking, equation 11 follows from the semi-honest security of the two-party computation
protocol 〈P sh

1 , P sh
2 〉 used in our construction. We now give more details.

We will construct a standalone machine M that is identical to Hi:5, except that instead of engaging
in an honest execution of 〈P sh

1 , P sh
2 〉 with A in session s(i), it obtains a protocol transcript from an

external sender C and forces it on A in the following manner. M first queries the ideal world trusted
party on the extracted input of A for session s(i) in the same manner as explained above for S. Let

x
s(i)
A denote the extracted input of A. Let x

s(i)
H denote the input of the honest party in session s(i).

Let O be the output that M receives from the trusted party. Now M sends x
s(i)
H along with x

s(i)
A and

O to C and receives from C a transcript for 〈P sh
1 , P sh

2 〉 and an associated random string. M forces
this transcript and randomness on A in the same manner as S does. Now, the following two cases are
possible:

1. C computed the transcript and randomness by using both the inputs - x
s(i)
H and x

s(i)
A - along

with the output O. In this case, the transcript output by C is a real transcript of an honest
execution of 〈P sh

1 , P sh
2 〉.
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2. C computed the transcript and randomness by using only adversary’s input x
s(i)
A , and the output

O. In this case C simply ran the simulator Ssh on input x
s(i)
A and answered its query with O.

The transcript output by C in this case is a simulated transcript for 〈P sh
1 , P sh

2 〉.

In the first case, the (C,M) system is identical to Hi:5, while in the second case, the (C,M) system
is identical to Hi:6. By the (semi-honest) security of 〈P sh

1 , P sh
2 〉, we establish that the output of M

must be indistinguishable in both the cases, except with negligible probability. This proves equation 11.

Proving Equation 12. We will leverage the semi-honest security of the two-party computation protocol
〈P sh

1 , P sh
2 〉 and the extractability property of the non-malleable commitment scheme in NMZK to prove

equation 12.
Specifically, we will construct a standalone machine M∗ that is identical to M as described above,

except that it “exposes” the NMCOM in 〈P, V 〉`A→H to an external receiver R by relying on the
public-coin property of NMCOM, as described earlier. Note that if C produces a transcript 〈P sh

1 , P sh
2 〉

according to case 1 (as described above), then the (C,M∗, R) system is identical to Hi:5. On the
other hand, if C produces a transcript for 〈P sh

1 , P sh
2 〉 according to case 2, then the (C,M∗, R) system

is identical to Hi:6. We can now run the extractor E of NMCOM on (C,M∗) system. Note that
E will rewind M∗, which in turn may rewind the interaction between C and M∗. However, since
this interaction consists of a single message from C, M∗ simply re-uses (if necessary) the transcript
received from C in order to interact with A internally. Now, if the extracted values are different in
case 1 and case 2, then we can break the semi-honest security of 〈P sh

1 , P sh
2 〉, which is a contradiction.
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A UC Security

In this section we briefly review UC security. For full details see [Can00]. A large part of this
introduction has been taken verbatim from [CLP10]. We first review the model of computation, ideal
protocols, and the general definition of securely realizing an ideal functionality. Next we present hybrid
protocols and the composition theorem.

The basic model of execution. Following [GMR89, Gol01], a protocol is represented as an in-
teractive Turing machine (ITM), which represents the program to be run within each participant.
Specifically, an ITM has three tapes that can be written to by other ITMs: the input and subroutine
output tapes model the inputs from and the outputs to other programs running within the same
“entity” (say, the same physical computer), and the incoming communication tapes and outgoing com-
munication tapes model messages received from and to be sent to the network. It also has an identity
tape that cannot be written to by the ITM itself. The identity tape contains the program of the
ITM (in some standard encoding) plus additional identifying information specified below. Adversarial
entities are also modeled as ITMs.

We distinguish between ITMs (which represent static objects, or programs) and instances of ITMs,
or ITIs, that represent interacting processes in a running system. Specifically, an ITI is an ITM along
with an identifer that distinguishes it from other ITIs in the same system. The identifier consists of
two parts: A session-identifier (SID) which identifies which protocol instance the ITM belongs to, and

35



a party identifier (PID) that distinguishes among the parties in a protocol instance. Typically the PID
is also used to associate ITIs with “parties”, or clusters, that represent some administrative domains
or physical computers.

The model of computation consists of a number of ITIs that can write on each other’s tapes in
certain ways (specified in the model). The pair (SID,PID) is a unique identifier of the ITI in the
system.

With one exception (discussed within) we assume that all ITMs are probabilistic polynomial time
(PPT). An ITM is PPT if there exists a constant c > 0 such that, at any point during its run, the
overall number of steps taken by M is at most nc, where n is the overall number of bits written on the
input tape of M in this run. (In fact, in order to guarantee that the overall protocol execution process
is bounded by a polynomial, we define n as the total number of bits written to the input tape of M ,
minus the overall number of bits written by M to input tapes of other ITMs.; see [Can01].)

Security of protocols. Protocols that securely carry out a given task (or, protocol problem) are
defined in three steps, as follows. First, the process of executing a protocol in an adversarial en-
vironment is formalized. Next, an “ideal process” for carrying out the task at hand is formalized.
In the ideal process the parties do not communicate with each other. Instead they have access to
an “ideal functionality,” which is essentially an incorruptible “trusted party” that is programmed to
capture the desired functionality of the task at hand. A protocol is said to securely realize an ideal
functionality if the process of running the protocol amounts to “emulating” the ideal process for that
ideal functionality. Below we overview the model of protocol execution (called the real-life model), the
ideal process, and the notion of protocol emulation.

The model for protocol execution. The model of computation consists of the parties running an
instance of a protocol Π, an adversary A that controls the communication among the parties, and an
environment Z that controls the inputs to the parties and sees their outputs. We assume that all
parties have a security parameter n ∈ N. (We remark that this is done merely for convenience and
is not essential for the model to make sense). The execution consists of a sequence of activations,
where in each activation a single participant (either Z, A, or some other ITM) is activated, and may
write on a tape of at most one other participant, subject to the rules below. Once the activation of
a participant is complete (i.e., once it enters a special waiting state), the participant whose tape was
written on is activated next. (If no such party exists then the environment is activated next.)

The environment is given an external input z and is the first to be activated. In its first activation,
the environment invokes the adversary A, providing it with some arbitrary input. In the context of UC
security, the environment can from now on invoke (namely, provide input to) only ITMs that consist
of a single instance of protocol Π. That is, all the ITMs invoked by the environment must have the
same SID and the code of Π.

Once the adversary is activated, it may read its own tapes and the outgoing communication tapes
of all parties. It may either deliver a message to some party by writing this message on the party’s
incoming communication tape or report information to Z by writing this information on the subroutine
output tape of Z. For simplicity of exposition, in the rest of this paper we assume authenticated
communication; that is, the adversary may deliver only messages that were actually sent. (This is
however not essential as shown in [Can04, BCL+05].)

Once a protocol party (i.e., an ITI running Π) is activated, either due to an input given by the
environment or due to a message delivered by the adversary, it follows its code and possibly writes
a local output on the subroutine output tape of the environment, or an outgoing message on the
adversary’s incoming communication tape.

The protocol execution ends when the environment halts. The output of the protocol execution is
the output of the environment. Without loss of generality we assume that this output consists of only
a single bit.
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Let EXECπ,A,Z(n, z, r) denote the output of the environment Z when interacting with parties
running protocol Π on security parameter n, input z and random input r = rZ , rA, r1, r2, . . . as
described above (z and rZ for Z; rA for A, ri for party Pi). Let EXECπ,A,Z(n, z) random variable
describing EXECπ,A,Z(n, z, r) where r is uniformly chosen. Let EXECπ,A,Z denote the ensemble
{EXECπ,A,Z(n, z)}n∈N,z∈{0,1}∗ .

Ideal functionalities and ideal protocols. Security of protocols is defined via comparing the
protocol execution to an ideal protocol for carrying out the task at hand. A key ingredient in the
ideal protocol is the ideal functionality that captures the desired functionality, or the specification, of
that task. The ideal functionality is modeled as another ITM (representing a “trusted party”) that
interacts with the parties and the adversary. More specifically, in the ideal protocol for functionality
F all parties simply hand their inputs to an ITI running F . (We will simply call this ITI F . The
SID of F is the same as the SID of the ITIs running the ideal protocol. (the PID of F is null.)) In
addition, F can interact with the adversary according to its code. Whenever F outputs a value to a
party, the party immediately copies this value to its own output tape. We call the parties in the ideal
protocol dummy parties. Let Π(F) denote the ideal protocol for functionality F .

Securely realizing an ideal functionality. We say that a protocol Π emulates protocol φ if for
any adversary A there exists an adversary S such that no environment Z, on any input, can tell with
non-negligible probability whether it is interacting with A and parties running Π, or it is interacting
with S and parties running φ. This means that, from the point of view of the environment, running
protocol Π is ‘just as good’ as interacting with φ. We say that Π securely realizes an ideal functionality
F if it emulates the ideal protocol Π(F). More precise definitions follow. A distribution ensemble is
called binary if it consists of distributions over {0, 1}.

Definition 5 Let Π and φ be protocols. We say that Π UC-emulates φ if for any adversary A there
exists an adversary S such that for any environment Z that obeys the rules of interaction for UC
security we have EXECφ,S,Z ≈ EXECπ,A,Z .

Definition 6 Let F be an ideal functionality and let Π be a protocol. We say that Π UC-realizes F if
Π UC-emulates the ideal process Π(F).

Hybrid protocols. Hybrid protocols are protocols where, in addition to communicating as usual
as in the standard model of execution, the parties also have access to (multiple copies of ) an ideal
functionality. Hybrid protocols represent protocols that use idealizations of underlying primitives,
or alternatively make trust assumptions on the underlying network. They are also instrumental in
stating the universal composition theorem. Specifically, in an F-hybrid protocol (i.e., in a hybrid
protocol with access to an ideal functionality F), the parties may give inputs to and receive outputs
from an unbounded number of copies of F .

The communication between the parties and each one of the copies of F mimics the ideal process.
That is, giving input to a copy of F is done by writing the input value on the input tape of that copy.
Similarly, each copy of F writes the output values to the subroutine output tape of the corresponding
party. It is stressed that the adversary does not see the interaction between the copies of F and the
honest parties.

The copies of F are differentiated using their SIDs. All inputs to each copy and all outputs from
each copy carry the corresponding SID. The model does not specify how the SIDs are generated, nor
does it specify how parties “agree” on the SID of a certain protocol copy that is to be run by them.
These tasks are left to the protocol. This convention seems to simplify formulating ideal functionalities,
and designing protocols that securely realize them, by freeing the functionality from the need to choose
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the SIDs and guarantee their uniqueness. In addition, it seems to reflect common practice of protocol
design in existing networks.

The definition of a protocol securely realizing an ideal functionality is extended to hybrid protocols
in the natural way.

The universal composition operation. We define the universal composition operation and state
the universal composition theorem. Let ρ be an F-hybrid protocol, and let Π be a protocol that
securely realizes F . The composed protocol ρΠ is constructed by modifying the code of each ITM in
ρ so that the first message sent to each copy of F is replaced with an invocation of a new copy of Π
with fresh random input, with the same SID, and with the contents of that message as input. Each
subsequent message to that copy of F is replaced with an activation of the corresponding copy of Π,
with the contents of that message given to Π as new input. Each output value generated by a copy of
Π is treated as a message received from the corresponding copy of F . The copy of Π will start sending
and receiving messages as specified in its code. Notice that if Π is a G-hybrid protocol (i.e., ρ uses
ideal evaluation calls to some functionality G) then so is ρΠ.

The universal composition theorem. Let F be an ideal functionality. In its general form, the
composition theorem basically says that if Π is a protocol that UC-realizes F then, for any F-hybrid
protocol ρ, we have that an execution of the composed protocol ρΠ “emulates” an execution of protocol
ρ. That is, for any adversary A there exists a simulator S such that no environment machine Z can
tell with non-negligible probability whether it is interacting with A and protocol ρΠ or with S and
protocol ρ, in a UC interaction. As a corollary, we get that if protocol ρ UC-realizes F , then so does
protocol ρΠ. 26

Theorem 3 (Universal Composition [Can01].) Let F be an ideal functionality. Let ρ be a F-
hybrid protocol, and let Π be a protocol that UC-realizes F . Then protocol ρΠ UC-emulates ρ.

An immediate corollary of this theorem is that if the protocol ρ UC-realizes some functionality G,
then so does ρΠ.

UC Security with Super-polynomial Simulation We next provide a relaxed notion of UC secu-
rity by giving the simulator access to super-poly computational resources. The universal composition
theorem generalizes naturally to the case of UC-SPS, the details of which we skip.

Definition 7 Let Π and φ be protocols. We say that Π UC-SPS-emulates φ if for any adversary A
there exists a super-polynomial time adversary S such that for any environment Z that obeys the rules
of interaction for UC security we have EXECφ,S,Z ≈ EXECπ,A,Z .

Definition 8 Let F be an ideal functionality and let Π be a protocol. We say that Π UC-SPS-realizes
F if Π UC-SPS-emulates the ideal process Π(F).

26The universal composition theorem in [Can01] applies only to “subroutine respecting protocols”, namely protocols
that do not share subroutines with any other protocol in the system.
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