
A preliminary version of this paper appeared in:
T. Ristenpart, H. Shacham, and T. Shrimpton. Careful with Composition: Limitations of the Indifferentia-
bility Framework. Advances in Cryptology – EUROCRYPT ’11, LNCS vol. 6632, pp. 487–506, Kenneth
Paterson ed., Springer, 2011.

Careful with Composition:
Limitations of Indifferentiability and Universal Composability

Thomas Ristenpart∗ Hovav Shacham† Thomas Shrimpton‡

June 22, 2011

Abstract

We exhibit a hash-based storage auditing scheme which is provably secure in the random-oracle
model (ROM), but easily broken when one instead uses typical indifferentiable hash constructions. This
contradicts the widely accepted belief that the indifferentiability composition theorem applies to any
cryptosystem. We characterize the uncovered limitation of the indifferentiability framework by show-
ing that the formalizations used thus far implicitly exclude security notions captured by experiments
that have multiple, disjoint adversarial stages. Examples include deterministic public-key encryption
(PKE), password-based cryptography, hash function nonmalleability, key-dependent message security,
and more. We formalize a stronger notion, reset indifferentiability, that enables an indifferentiability-
style composition theorem covering such multi-stage security notions, but then show that practical hash
constructions cannot be reset indifferentiable. We discuss how these limitations also affect the universal
composability framework. We finish by showing the chosen-distribution attack security (which requires
a multi-stage game) of some important public-key encryption schemes built using a hash construction
paradigm introduced by Dodis, Ristenpart, and Shrimpton.

1 Introduction

The indifferentiability framework of Maurer, Renner, and Holenstein (MRH) [51] supports modular proofs
of security for cryptosystems. It can be viewed, informally, as a special case of the Universal Composition
(UC) framework [27, 53], which inspired it. A crucial application of the indifferentiability framework has
been to allow proofs in the random oracle model (ROM) [19] to be transferred to other idealized models of
computation, where a monolithic random oracle is replaced by a hash function constructed from (say) an
ideal compression function. This happens via an elegant composition theorem, the usual interpretation of
which is: A proof of security for an arbitrary cryptosystem using functionality F (e.g., a random oracle)
continues to hold when the cryptosystem instead uses a second functionality F ′ (e.g., a hash function built
from an ideal compression function), so long as F ′ is indifferentiable from F .

∗ Department of Computer Sciences, University of Wisconsin–Madison, USA. Email: rist@cs.wisc.edu URL:
http://pages.cs.wisc.edu/˜rist/

† Department of Computer Science and Engineering, University of California, San Diego, USA. Email:
hovav@cs.ucsd.edu URL: http://www.cs.ucsd.edu/˜hovav/

‡ Department of Computer Science, Portland State University, Portland, USA. Email: teshrim@cs.pdx.edu URL:
http://www.cs.pdx.edu/˜teshrim/

1

In this paper, we show that this interpretation is too generous. We uncover an application (in the con-
text of secure distributed storage) for which composition fails completely. For this application there is a
simple scheme provably secure in the ROM, and yet easily broken when using typical indifferentiable hash
constructions. We then begin an exploration of the fall out.

RANDOM ORACLES AND INDIFFERENTIABILITY. Let us give a bit more background on why indifferentia-
bility has proved so useful. A wide range of practical, in-use cryptographic schemes enjoy proofs of security
in the ROM [19]; for some schemes, ROM proofs are the only ones known. But most in-use hash-function
constructions are not suitable for modeling as a RO, even when assuming the primitive underlying the hash
function is ideal (e.g., an ideal compression function), because they admit length-extension attacks [56].
These attacks abuse the structure of the iterative modes-of-operation underlying hash functions such as
MD5, SHA-1, and SHA-2. And the weakness they expose has led to practical insecurities [36]. Of course,
we can build hash functions that resist known length-extension attacks, but it remains unclear whether the
resulting functions would also prevent other, unforeseen structure-abusing attacks.

Coron et al. [31] instead suggest an approach to design hash functions that “behave like” random oracles
in a provable sense. Specifically, this requires that a hash function will provide security anywhere a random
oracle would. The MRH composition theorem seems to give exactly this, taking F = RO and F ′ = Hf , the
latter being a hash function constructed from an (ideal) primitive f . Thus the needed hash function property
is thatHf be indifferentiable from a RO. Importantly, this approach preserves proofs of security as well: the
MRH theorem transports a cryptosystem’s proof of security in the ROM to a proof of security when using
an indifferentiable hash function. A number of recent works prove constructions to be indifferentiable from
a RO (e.g., [5, 18, 21, 30, 34, 35, 41]), including many candidates for the NIST SHA-3 competition. Given
all this, the consensus opinion appears to be that indifferentiability exactly captures “behaving like” a RO,
rules out structure-abusing attacks, and that once a cryptosystem is proven in the ROM it is secure using any
compatible indifferentiable hash construction. We now describe an application that shows this consensus
opinion to be wrong.

HASH-BASED STORAGE AUDITING. In the design of secure distributed systems, the following problem
arises: How can parties in a system verify that a storage server is actually storing the files that it should be?
A malicious server might tamper arbitrarily with the data entrusted to it; a rational one might discard the file
to save space if detection is unlikely. This problem has received much attention since being formalized in
2007 [7, 43]. The particular example we consider in this paper is inspired by a proof-of-storage challenge-
response protocol proposed as part of an earlier system, SafeStore [46]. Consider the following protocol.
The client sends a random challengeC to the server; the server proves possession of the fileM by computing
Z ← Hash(M ‖ C) using a cryptographic hash function Hash and sending Z to the client, who performs
the same computation using her copy of M and compares the result to that sent by the server.

Suppose, for simplicity, that both the file M and the challenge C are d bits long, and consider the case
that Hash = Hf , where f is an ideal compression function outputting strings of length n < d bits and H
returns the first n/2 bits of f(f(IV,M), C). (IV is a fixed constant string.) This construction was shown
indifferentiable from a RO in [31]. Thus, the MRH composition theorem combined with the fact that the
protocol is secure in the ROM assuredly proves that the protocol is secure when using Hf . Quite baffling,
then, is the observation that the server can cheat! The server simply computes Y ← f(IV,M) when it
first gets M , and then deletes M and stores the (shorter) Y . To answer a challenge C, the server computes
Z ← f(Y,C) and returns the first half of Z as its response. The client’s check will succeed even though M
is not stored.

The attack abuses a structural feature of typical hash functions that we call online computability. A
hash function has this property when it can process its input in successive blocks, storing only a small
amount of internal state between blocks. This property is desirable in practice and all indifferentiable hash
constructions suggested for practical use have it (see, e.g., [5, 18, 21, 30, 34, 41]). As our example shows,
however, online computability can be abused.

2

Let us pause to take stock of the situation. In Section 4 we prove that the SafeStore-inspired auditing
scheme is, indeed, secure in the ROM. The proof of indifferentiability for our Hash = Hf provided by
Coron et al. [31] and the proof of the MRH composition theorem are also both correct. But the server is still
somehow able to abuse the structure of Hf . So what is going on here?

CHARACTERIZING THE PROBLEM. The gap is that the MRH theorem does not apply. The problem is
subtle. Carefully revisiting the MRH theorem and its proof, we find that (loosely speaking) they only apply
when a cryptosystem’s security is measured relative to a security game using a single, stateful adversary.
For example, left-or-right indistinguishability [38] for encryption schemes and unforgeability under chosen
message attacks [39] each use just a single, stateful adversary. But the security of the challenge-response
auditing protocol we just described is fundamentally two-stage. In the first stage, the adversary (the server)
receives the message M , derives from M some state st that is smaller than the size of M , and forgets M .
In a second stage it attempts to answer challenges using just st. This is an example of what we call a
multi-stage game, a notion we will make formal.

In prior treatments of indifferentiability, the restriction to single-stage games is implicit in the underlying
formalization of cryptosystems and adversaries. This restriction has not been mentioned in the literature,
and our sense is that no researchers (until now) realized it. For completeness, we restate the MRH indiffer-
entiability composition theorem and give its proof for single-stage games (see Section 3). We note that the
same implicit limitations exist in the Universal Composability (UC) framework [27, 53]. While it has previ-
ously been observed in the context of collusion-free protocols [3, 4, 44] that UC does not cater to multiple,
disjoint adversaries, we are the first to observe the broad implications of this restriction. We discuss UC in
more detail in Section 7.

REPERCUSSIONS. We do not necessarily expect that practitioners would (or have) deployed the hash-based
auditing scheme above. One can simply useHf (C ‖M) to achieve (provable) security, and in fact this is the
actual protocol used in SafeStore [46]. But the flaw this example uncovers is that the common interpretation
of composition might actually encourage use of an insecure auditing mechanism. This is exactly the opposite
of how provable security should guide protocol design.

All of this casts doubt on the security of any scheme relative to a multi-stage game. The scheme may well
have provable security in the ROM, but this does not imply the inexistence of dangerous structure-abusing
attacks, even when using indifferentiable hash constructions. And unfortunately the use of multi-stage
games is widespread. The recent security notions for deterministic [10, 14, 24], hedged [11], and efficiently
searchable [10] public-key encryption (PKE) are all multi-stage. Key-dependent message security [22] is
multi-stage. Related-key attack security [16] when one allows ideal-primitive-dependent related key func-
tions [2] is multi-stage. When formalizing password-based cryptography (e.g. [17, 57]) to allow arbitrary,
hash-dependent password sampling algorithms, one uses multi-stage games. A recently proposed hash func-
tion nonmalleability security notion [23] is multi-stage. Interestingly, this is the only notion (we are aware
of) that formalizes security against length-extension attacks, and so although we expect them to, we do not
have proof that current indifferentiable hash constructions resist length-extension attacks.

STORAGE-AUGMENTED PRIMITIVES. So, we cannot generically use composition to modularly argue secu-
rity in the context of multi-stage games. But it could be that indifferentiability remains a sufficient property
to establish security in settings beyond hash-based challenge-response auditing. One might hope to prove,
without relying on the MRH composition theorem, that a ROM proof of (say) a deterministic PKE scheme
holds still when using any indifferentiable hash construction. This seems reasonable since for the applica-
tions just listed, online computability of the hash function does not obviously compromise security.

We give a simple mechanism to show that such proofs do not exist: augmenting an underlying ideal
primitive f with the extra functionality of adversarial storage easily yields counterexamples. This is because
the ability to store state in the underlying ideal primitive does not affect proving indifferentiability, but it
does enable trivial attacks in all multi-stage settings that we know of. The conclusion, discussed further in
Section 5, is that indifferentiability does not imply security in the multi-stage settings mentioned above.

3

We note that this does leave open the possibility for general results showing that indifferentiability for a
certain restricted class of underlying primitives f is sufficient for security in some multi-stage settings. We
leave finding such general positive results as an important open question.

RESET INDIFFERENTIABILITY. We present a new notion, reset indifferentiability, that does admit a com-
position theorem covering both single-stage and multi-stage games. In the indifferentiability framework,
functionalities have both an honest and an adversarial interface, e.g. F.hon, F.adv and F ′.hon, F ′.adv.
Functionality F ′ is indifferentiable from F if there exists a simulator S such that no distinguisher can de-
termine when it has access to oracles F.hon and F.adv or to F ′.hon and SF ′.adv. Reset indifferentiability
asks that no distinguisher can differentiate those two sets of oracles, but when the distinguisher can reset the
simulator to its initial state at arbitrary times. Randomized simulators use freshly-chosen coins after each
reset.

The inability to distinguish when resets are allowed enables proving a composition theorem for multi-
stage games because the resets allow one to restart the simulator for each stage. We show that establishing
(regular) indifferentiability via a stateless simulator immediately yields a proof of reset indifferentiability.
However, this is of limited applicability since most indifferentiability results, including all those known for
hash constructions, are not stateless. Moreover, our results thus far already rule out typical hash construc-
tions from being reset indifferentiable since they have online computability. Still, that leaves open if other
constructions perform better.

We show that no practical domain extension transforms can be reset indifferentiable from a RO. The
result is quite general, ruling out all known single-pass constructions. We leave open the problem of proving
the existence (or inexistence) of a domain extender, even an impractical one (i.e., one that makes two or
more passes over the message), that is reset indifferentiable.

DIRECT PROOFS. Having lost composition as a general way to transport ROM proofs of security for multi-
stage games to the setting where one uses a hash constructed from an ideal primitive, we take up con-
sideration of a specific security goal from public-key encryption. We prove a theorem establishing the
chosen-distribution attack (CDA) security for a number of related, ROM-secure, PKE schemes when these
are used with any indifferentiable hash function built according to a design paradigm introduced by Dodis,
Ristenpart and Shrimpton [35]. The CDA security notion [11] captures message privacy of a PKE scheme
when messages and randomness are (jointly) unpredictable, but otherwise adversarially controlled. In par-
ticular, this notion is the goal in the context of deterministic PKE [10, 14, 24], hedged PKE (which provides
message privacy even in the face of poor randomness) [11, 55], and efficiently searchable encryption (an
extension of deterministic PKE) [10]. As expected, this direct proof of security is complex because we have
to work directly in the model of the ideal primitive underlying the hash function. This case study shows that
direct security results are possible, restoring confidence that in some multi-stage settings security holds with
proposed indifferentiable hash constructions.

FURTHER ISSUES WITH COMPOSITION. We have focused on hash functions and the ROM, but the limi-
tation of composition to single-stage games affects any use of indifferentiability. Moreover, the limitations
extend to other composition frameworks such as universal composability (UC) [27], which have mechanics
similar to indifferentiability. We discuss UC in Section 7.

Finally, in the course of understanding the hash-based auditing counter-example, we uncovered other
potentially subtle ways in which composition may fail to help one establish security. We catalogue these
issues in Section 8.

DISCUSSION. We emphasize that we are not recommending that indifferentiability be dropped as a target
of hash function design. The class of single-stage games encompasses many important security goals, and
even after our results composition remains, when it applies, an elegant way to analyze security. Rather, the
message here is that one must be very careful when using composition.

4

2 Preliminaries

NOTATION. When X is a non-empty finite set, we write x←$ X to mean that a value is sampled uniformly
at random from X and assigned to x. We overload this notation to extend to probabilistic algorithms, so
that x←$A means that x is assigned a value according to the distribution induced by algorithm A. (More
intuitively, A is run and x is assigned its output.) When X and Y are strings, we write X ‖ Y to mean the
string created by appending Y to X . When n > 0 is an integer we write {0, 1}n for the set of all n-bit
strings, and ({0, 1}n)+ for the set of all strings M such that |M | is a positive multiple of n.

A CODE-BASED GAMES FRAMEWORK. We formalize a version of the code-based games framework of
Bellare and Rogaway [20] for representing security experiments, indifferentiability, and the like. We find
code-based games useful for formalizing security definitions, in particular, because they allow us to specify
execution semantics (i.e. what runs what, and in what order). We use procedures, variables, and typical pro-
gramming statements (operators, loops, procedure calls, etc.). Types are understood from context, and the
names of syntactic objects must be distinct (e.g., a variable and procedure cannot have the same name). Vari-
ables are implicitly set initially to default values, i.e. integer variables are set to 0, arrays are everywhere ⊥,
etc.

A procedure is a sequence of statements together with zero or more inputs (variables) and zero or more
outputs (variables). An unspecified procedure is one whose pseudocode, inputs, and outputs are understood
from context. An adversary is an example of an unspecifired procedure. Calling a procedure P means
providing it with inputs and running its sequence of statements. During its execution P may itself call
other procedures. Say that the code of P expects to be able to call k distinct procedures. We will write
PQ1,Q2,...,Qk to denote that these calls are handled by Q1, Q2, . . . , Qk and implicitly assume (for all i ∈ [k])
that there are no syntactic mismatches between the calls that P makes to Qi and the inputs of Qi, as well as
between the return values of Qi and the return values expected by P . We stress that P does not call Qi by
name, but rather calls to a procedure that is instantiated by Qi.

We assume that all procedures eventually halt, returning their outputs, at which point execution returns
to the calling procedure. Procedures P1 and P2 are said to export the same interface if their inputs and
outputs agree in number and type. This will typically be clear from context.

Variables are by default local, meaning they can only be used within a single procedure. The variables
used within a procedure maintain their state between calls. A collection of procedures is a set of one or more
procedures that may instead share their variables. We denote a collection of procedures by using a common
prefix ending with a period, e.g. (P.x, P.y, . . .) and we use the common prefix P to refer to the collection.
We will sometimes refer to the unique suffixes, e.g. x, y, as interfaces of P .

A main procedure is a distinguished procedure that takes no inputs and has some output. We mark it by
main. No procedure may call main, and main can access all variables of other specified procedures. (But
not other unspecified procedures.)

FUNCTIONALITIES AND GAMES. Collections of procedures will sometimes implement particular abstract
functionalities, for example that of some idealized primitive (e.g. a random oracle). A functionality is a
collection F = (F.hon, F.adv); the names of these interfaces, hon and adv are suggestive as we will see
in a moment. When games and adversaries are given access to a functionality a model of computation is
induced, for example when the functionality is that of a random oracle, we have the random-oracle model.
Thus one can think of functionalities and models somewhat interchangeably. For this work we specifically
designate two models. First RO = (RO.hon,RO.adv), shown on the left-hand side of Figure 1, implements
a random oracle (with two interfaces) and will give rise to the random-oracle model. Second, let P =
(P.hon, P.adv) implement some (ideal) primitive that underlies some understood construction H . Then
IP = (IP.hon, IP.adv) shown on the right-side of Figure 1 gives rise to an (ideal) primitive model. For
notational compactness, each time we use IP we will specify a constructionH and a primitive P and assume
these are the ones referred to in Figure 1.

For any two functionalities F1, F2, we denote by (F1, F2) the functionality that exposes a procedure that

5

procedure RO.hon(x):
If T[x] 6= ⊥ then

T[x]←$ {0, 1}r
Ret T[x]

procedure RO.adv(x):
Ret RO.hon(x)

procedure IP.hon(x):
Ret HP.hon(x)

procedure IP.adv(x):
Ret P.adv(x)

Figure 1: Procedures implementing the functionality of the random oracle model (ROM) (left) and the ideal primitive
model (IPM) (right). The number r is set as appropriate for a given context.

allows querying (F1.hon, F2.hon) and a procedure that gives access to (F1.adv, F2.adv).
A game G consists of a single main procedure, denoted “main G”, together with a set of zero or more

other specified procedures. (See for example Figure 2.) A game can make use of a functionality F and
a number of adversarial procedures A1, . . . ,Am together referred to as the adversary. We denote this by
GF,A1,...,Am . For any F1,A1, . . . ,Am and F ′1,A′1, . . . ,A′m such that F1.hon, F2.hon are interface com-
patible and Ai,A′i are interface compatible for 1 ≤ i ≤ m, we can write GF1,A1,...,Am to mean running
game G with one set of external procedures and GF2,A′1,...,A′m to mean running the same game but now
with the second set of external procedures. Running a game GF,A1,...,Am means executing the sequence of
statements of the game’s main procedure and the output of G is the value returned by main. We denote
by GF,A1,...,Am ⇒ y the event that the game’s output is y, taken over the probability space defined by the
coins used to executeG and the coins used in each invocation of the procedures F.hon, F.adv,A1, . . . ,Am.
ShouldG and the adversary not use F.hon, F.adv then we instead writeGA1,...,Am⇒y. As examples, games
that do not use a functionality F are given in Figure 2 while games that do are given in Figures 3 and 5.

For any fixed functionality F and adversary A1, . . . ,Am, two games G and H are equivalent if

Pr
[
GF,A1,...,Am ⇒ y

]
= Pr

[
HF,A1,...,Am ⇒ y

]
for all values y.

RESOURCES. For simplicity, we fix the convention that each statement of a procedure runs in unit time. The
running time of a procedure, then, is the maximum number of statements executed, where the maximum is
taken over all possible inputs and over all coins used by the procedure. The number of queries of a procedure
is the maximum number of procedure calls it makes in one execution, again with the maximum taken over
all possible inputs and all possible coins used by the procedure.

ENTROPY MEASURES. The min-entropy of a random variable X is H∞(X) = − log (maxx Pr [X = x])
measures the unpredictability of X , and 2−H∞(X) is an upperbound on the probability that any adversary
can guess the value of X . When X and Y are two (possibly correlated) random variables the average
min-entropy of Dodis et al. [33]

H̃∞(X | Y) = − log

(∑
y

(
max
x

Pr [X = x | Y = y]
)

Pr [Y = y]

)
correspondingly measures the unpredictability of X given knowledge of Y , and 2−H̃∞(X | Y) upper bounds
the chance that computationally unbounded adversary can guess X after Y is revealed to it. Lemma 2.2
from [33], which relates average min-entropy and min-entropy, is particularly useful for our work.

Lemma 2.1 (Lemma 2.2 [33]) If Y can take on 2r possible values, then H̃∞(X | Y) ≥ H∞(X)− r.

3 Indifferentiability and Composition for Single-stage Games

We describe the indifferentiablity framework [51] using games, unlike prior treatments that used random
systems [50, 51] or interactive Turing machines [31]. We feel that using explicit code-based games makes
understanding the limitations of indifferentiability easier, because it will enable expressing these limitations

6

main Real

b′←$DFunc,Prim

Ret b′

procedure Func(m):

Ret F1.hon(m)

procedure Prim(u):

Ret F1.adv(u)

main IdealS
b′←$DFunc,Prim

Ret b′

procedure Func(m):

Ret F2.hon(m)

procedure Prim(u):

Ret SF2.adv(u)

Figure 2: The games that define indifferentiability. Adversary D and functionalities F1, F2 are unspecified.
The simulator S is a parameter of the game.

as syntactic conditions on the class of games considered. In addition to defining indifferentiability, we will
provide a concrete version of the composition theorem given in [51] and characterize its limitations.

INDIFFERENTIABILITY. Fix two functionalities F1 and F2. When thinking of indifferentiability from ran-
dom oracles, for example, we use F1 = IP (for some understood H,P) and F2 = RO. A distinguisher D is
an adversary that outputs a bit. A simulator is a procedure, usually denoted S . Figure 2 defines two games
Real and Ideal. Fix some value y (e.g., y = 1). The indifferentiability advantage of D is defined as

Advindiff
F1,F2,S(D) = Pr

[
RealF1,D ⇒ y

]
− Pr

[
IdealF2,D

S ⇒ y
]
.

We use a concrete security approach, i.e. not providing a strict definition of achieving indifferentiability.
However, informally we will say that a functionality F1 is indifferentiable from a functionality F2 if for any
“reasonable” adversary D there exists an “efficient” simulator S such that Advindiff

F1,F2,S(D) is “small”. The
meanings of “reasonable”, “efficient”, and “small” will be clear from context.

To get an asymptotic notion, we can assume an implicit security parameter k throughout, and then use
the definition of [31]: F1 is indifferentiable from F2 if there exists a PT simulator S such that for any PTD it
is the case that Advindiff

F1,F2,S(D) is negligible in the security parameter. Note that in [51] a different quantifier
ordering was used. It said that for all PT D there must exist a PT simulator S such that Advindiff

F1,F2,S(D) is
negligible in the security parameter. We refer to the [51] notion as weak indifferentiability and to the [31]
notion as strong indifferentiability. We will focus on strong indifferentiability here since it implies weak.

TYPES OF GAMES. Before giving the composition theorem from [51] we first give definitions for various
restrictions on games. Let G be the set of all games G, i.e. any that fits our definitions from the previous
section. Then a game G is functionality respecting if the game’s main and specified procedures do not call
F.adv. This means in particular that only adversarial procedure(s) may call F.adv. Let LG ⊂ G be the set
of all functionality respecting games G.

We go on to partition LG into two parts. The first is all gamesG ∈ LG that use only a single adversarial
procedure. We call these single stage games. Let SG ⊂ LG be the set of all single stage games that
are functionality respecting. The second part is all other games in LG, meaning ones that use m ≥ 2
adversarial procedures. LetMG ⊂ LG be the set of all multi-stage games that are functionality respecting.
Then LG = SG ∪MG.

The set SG includes the games defining indifferentiability above, the classic notions of encryption se-
curity such as IND-CPA [38] (see Figure 8) or IND-CCA [52], unforgeability under chosen message attack
UF-CMA [39], and many others. The setMG includes the games defining chosen distribution attack secu-
rity for public-key encryption [11] (see Figure 5), non-malleability of hash functions [23], password-based
key exchange [17], key-dependent message security [22], related-key attack security [2, 16], and others.

We point out that a gameG ∈MG could be equivalent to a gameH ∈ SG. (The definition of equivalent
is given in the previous section.) For example, common formulations of encryption indistinguishability
security [13] are written using several adversarial procedures that pass an arbitrary state string between
theme. It is clear these can be equivalently formulated as a single stage game. For others, such as those listed
above as examples of multi-stage games, there does not appear to be such a translation. We therefore say

7

that an m-stage game G is stage minimal if it is not equivalent to any game H with less than m adversarial
procedures.

COMPOSITION. One goal of indifferentiability is to allow the security analysis of a cryptographic scheme
when using one functionality to imply security holds when using another. This is enabled by the following,
which is a concrete security version of the original composition theorem of Maurer, Renner, and Holen-
stein [51].

Theorem 3.1 Let G ∈ SG. Let F1, F2 be two functionalities with compatible honest interfaces. Let A be
an adversary with one oracle. Let S be a simulator that exports the same interface as F1.adv. Then there
exist adversary B and distinguisher D such that for all values y

Pr
[
GF1,A ⇒ y

]
≤ Pr

[
GF2,B ⇒ y

]
+ Advindiff

F1,F2,S(D) .

Moreover

tB ≤ tA + qA ·tS qB ≤ qA · qS tD ≤ tG + qG,1 ·tA qD ≤ qG,0 + qG,1 ·qA
where tA, tB, tD are the maximum running times of A,B,D; qA, qB are the maximum number of queries
made by A and B in a single execution; and qG,0, qG,1 are the maximum number of queries made by G to
the honest interface and to the adversarial procedure. �

The proof of Theorem 3.1 is readily established by adapting the proof of [51, Th. 1]. We provide a proof
here to help support our upcoming discussion.

Proof: Fix any value y. Let F = (F.hon, F.adv) be some unspecified functionality that export the same
interface as (F1.hon, F1.adv). Let indifferentiability adversary D be defined as follows. Adversary D runs
gameG. WheneverG calls its honest interface, adversaryD queries F.hon and returns the result. Whenever
G calls A, adversary D runs A for G using F.adv to answer any queries made by A. Finally D outputs
whatever G outputs. Then by construction qD ≤ qG,0 + qG,1qA; tD ≤ tG + qG,1tA; and

Pr
[

RealD ⇒ y
]

= Pr
[
GF1,A ⇒ y

]
(1)

in the case that F = F1. Now we define adversary B as follows. Adversary B runs A. When A queries
its oracle, adversary B runs S using its F2.adv oracle to answer any queries S makes. Adversary B outputs
whatever A outputs. By construction, then, we have that qB ≤ qA ·qS ; tB ≤ tA + qA ·tS ; and

Pr
[

IdealDS ⇒ y
]

= Pr
[
GF2,AS ⇒ y

]
= Pr

[
GF2,B ⇒ y

]
(2)

in the case that F = F2. By substituting according to Equations 1 and 2 into the definition of indifferentia-
bility advantage we derive the advantage relation of the theorem statement.

INAPPLICABILITY TO MULTI-STAGE GAMES. The theorem above explicitly restricts attention to games
that only use a single adversarial procedure. At first glance, this restriction may seem artificial. Suppose a
gameG ∈MG expects access to adversarial proceduresA1, . . . ,Am. now consider extending Theorem 3.1
to account for G. Recall that these adversarial procedures do not necessarily share state. In the proof, a key
step is defining the adversary B. Following that proof, for this generalization we could define adversarial
procedures B1, . . . ,Bm by Bi = ASi for all i. One may think a proof has been arrived at. However S is only
guaranteed to simulate properly when it maintains its state across all invocations throughout the course of
the indifferentiability game. Technically, then, the problem is that the analogue of equation (2) for this proof
attempt would fail:

Pr
[
GF2,B1,...,Bm ⇒ y

]
= Pr

[
GF2,AS1 ,...,ASm ⇒ y

]
6= Pr

[
IdealDS ⇒ y

]
.

This is true regardless of how we define D. In the next section, we provide a counterexample showing that
there is no hope of a proof for this generalization.

DISCUSSION. The above makes explicit that existing indifferentiability-style composition only works for

8

main CRPF,A1,A2
p,n,s

M ←$ {0, 1}p

st←$AF.adv1 (M)

If |st| > n then Ret false
C←$ {0, 1}s

Z←$AF.adv2 (st, C)

Ret
(
Z = F.hon(M ‖ C)

)
Figure 3: Game capturing our challenge-response hash function property.

security notions definable via single-stage games. (As mentioned above, a multi-stage game that is equiv-
alent to a single-stage game can also be treated.) We note that some multi-stage games pass some small
amount of state between adversarial procedures. See for example the hash auditing security property for-
malized in Figure 3. Here, however, the state is not arbitrary —its length is a fixed constant— and so this
game is not equivalent to a single stage game.

We do note, however, that we may extend Theorem 3.1 to cover multi-stage games that directly share
some limited amount of state, but an amount sufficient to enable composition. That is, the shared state must
be large enough to transport the state of S between Bi calls (in addition to whatever other state an adversary
might use). We do not know of any examples of such multi-stage games, and so do not spell out the details
of such an extension.

OTHER SUBTLETIES OF COMPOSITION. There are other subtleties of composition that might lead to its
inapplicability. We discuss these further in Section 8.

4 A Counterexample to Multi-stage Composition

In this section we define a simple hash function property that is met by a RO, but not met by a broad class
of hash functions proven to be indifferentiable from a RO. Together these results give a counterexample
disproving the desired generalization of Theorem 3.1 to multi-stage games.

HASH-BASED STORAGE AUDITING. The property we study, denoted CRP, is motivated by challenge-
response auditing protocols for secure distributed storage [46]. Consider that a client wishes to store some
dataM on a remote server. It will later verify thatM is in fact being stored by sending a random challengeC
to the server, and then checking that the server’s response matches the hash H(M ‖ C). Intuitively, if H is
a random oracle, there is no way for the server to “cheat”: It must actually store M , or guess the challenge
in advance, if it is to respond correctly. (Drawing the challenges from a sufficiently large space or repeating
the protocol will make the chance that the server guesses the challenges arbitrarily small.) In particular, if
the server stores some state st instead of M , and |st| � |M |, then we expect the server will fail to respond
properly. The CRP experiment in Figure 3 captures a slightly simplified version of this example.

Informally, a CRP-secure hash function H should not admit the storage of a short string (much shorter
than the file M) that later allows the server to answer auditing challenges C, except with negligible prob-
ability. This guarantees that a rational server interested in saving storage space but subject to auditing will
not store some short digest in place of the file. For completeness, we show in Appendix A that CRP is not
equivalent to the standard notions of hash function security.

The following theorem shows that, as expected, a random oracle possesses property CRP.

Theorem 4.1 Fix p, n, s > 0. Let A = (A1,A2) be an adversary that makes a total of q calls. Then

Pr
[

CRPRO,A1,A2
p,n,s ⇒ true

]
≤ q

2p−n
+

1

2r
+

q

2s

where RO provides the functionality of a random oracle with range {0, 1}r. �

9

Proof: Let Q be the event that the string M ‖ C is queried by either A1 or A2 during execution of CRP.
Then by conditioning on Q we have

Pr
[

CRPRO,A1,A2 ⇒ true
]
≤ Pr [Q] + Pr

[
CRPRO,A1,A2 ⇒ true | ¬Q

]
≤ Pr [Q] +

1

2r

where the final inequality follows because ifM ‖C is not queried, the output of RO.hon(M ‖C) is uniformly
random and independent of the rest of the experiment. Let Q1 be the event that A1 queries M ‖ C, and Q2

the event that A2 queries M ‖ C. Clearly Pr [Q1] ≤ q/2s since C is not sampled until after A1 finishes its
execution. We assume that A1 outputs a string st of length exactly n bits. This is without loss of generality,
since any st of fewer bits can be padded, and if |st| > n the game returns false. Thus ARO.adv

1 (M) is a
random variable taking on at most 2n values, and by Lemma 2.1 we have H̃∞(M | ARO.adv

1 (M)) ≥ p− n.
It follows that Pr [Q2] ≤ q/2p−n, and a union bound yields the claim.

ONLINE COMPUTABILITY AND CRP. We now define a structural property of hash functions, which we
refer to as online computability. Consider a hash function Hf : {0, 1}∗ → {0, 1}r using some under-
lying primitive f . Then we say that Hf is (p, n, s)-online computable if for p, n, s > 0 there exist
functions Hf

1 : {0, 1}p → {0, 1}n and Hf
2 : {0, 1}n × {0, 1}s → {0, 1}r such that Hf (M1 ‖ M2) =

Hf
2 (Hf

1 (M1),M2)) for any (M1,M2) ∈ {0, 1}p × {0, 1}s. Moreover, we require that the time to compute
Hf

1 and Hf
2 is within a small, absolute constant of the time to compute Hf . In words, the hash function Hf

can be computed in two stages, processing M1 and then M2 sequentially.
We note that most iterative hash function constructions are online computable for a variety of values

p, n, s. For example, the so-called NMAC construction from [31]. It uses two underlying ideal objects
f : {0, 1}2n → {0, 1}n and g : {0, 1}n → {0, 1}n. Let f+ : ({0, 1}n)+ → {0, 1}n be the mapping defined
as follows: on input M = M1 ‖ . . . ‖Mb, for each i ∈ {1, . . . , b} compute Vi = f(Vi−1 ‖Mi), where V0

is some fixed n-bit string, and return Vb. Now, let Hf,g(M) = g(f+(M)), where the domain is ({0, 1}n)+.
This construction is (p, n, s)-online computable for any p and s that are multiples of n. Say p = in for any
i and s = n. Then let Hf

1 (M1) = f+(M1) and Hf
2 (V,M2) = g(f(V,M2)). Similarly, many other iterative

constructions are online computable for such parameters, for example EMD [18], MDP [41], the Chop and
so-called HMAC constructions [31], and numerous SHA-3 candidates.

It is clear to see that any (p, n, s)-online computable hash function cannot be CRP for those same
parameters. For the NMAC example above, let A1 output st = Hf

1 (M) = f+(M). Let A2 output
H2(st, C) = g(f(st, C)). The adversary wins with probability 1.

SAFESTORE AND STORAGE AUDITING IN PRACTICE. The SafeStore protocol used exactly the opposite
ordering of N and M , specifying that audit responses be computed by Hf (N ‖M). This construction does
indeed have CRP (though one cannot use composition to establish it). The point is that indifferentiability
appears to imply thatN ‖M andM ‖N are equivalently secure. Given the widespread use of hash functions
as random oracles in practice (implicitly or explicitly), this shows that one must be careful to analyze security
starting (at least) with the setting of the ideal primitive and applying composition only when it applies.

5 Indifferentiability Fails for Many Multi-stage Games

In the last section we saw how indifferentiability-based composition fails for a particular game, this being the
CRP game. Here we extend that negative result to show how indifferentiability-based composition fails for
many multi-stage games, including ones covering security of password-based key exchange, deterministic
public-key encryption, non-malleability of hash functions, and more. To do so, we give a general method to
show that indifferentiability does not imply security for games G ∈MG.

Our approach will be to show that one can augment any ideal primitive to include a storage interface.
This will simply take (key,value) pairs from the adversary and allow retrieving values by looking up a key.

10

This augmentation does not affect any existing indifferentiability results involving the primitive — as we
show below, a simulator for the original ideal primitive is easily converted to a simulator for the augmented
primitive. Finally, we will show how cryptosystems cannot meet some multi-stage notions of security in the
augmented primitive model.

Formally, let F1 be a functionality. Let St be the procedure that exposes a hash table T. That is, on
input a pair of strings (X,Y), it sets T[X] ← Y and returns nothing. On input a string (X,⊥) it outputs
T[X], which is ⊥ if T[X] has yet to be set to another value. Then the storage-augmented functionality
F ∗1 = (F1.hon, F

∗
1 .adv) has the same honest interface as F1 but F ∗1 .adv exposes both F1.adv and St. That

is, F ∗1 .adv = (F1.adv, St).
The following theorem states that if F1 is indifferentiable from some functionality F2, then F ∗1 is also

indifferentiable from F2. Its proof is straightforward and omitted.

Theorem 5.1 Let F1, F2 be functionalities and F ∗1 be the storage-augmented version of F1. Let SB be a
simulator. Then there exists a simulator SA such that for all distinguishers A there exists a distinguisher B
such that

Advindiff
F ∗1 ,F2,SA(A) = Advindiff

F1,F2,SB(B)

B runs in time that of A and uses the same number of queries; SA runs in time that of SB plus a small
constant and uses the same number of queries. �

What Theorem 5.1 shows is that, as far as indifferentiability is concerned, it does not matter if some
portion of the distinguisher’s state is exported to an oracle. The intuition behind this result is straightforward:
distinguishers in indifferentiability maintain state throughout the experiment and so it hardly matters whether
one stores its state in an oracle or locally. But the ability to store data in an oracle obviates security for many
multi-stage games. Here are some examples of cryptographic security goals that are not achievable in a
storage-augmented primitive model.

Example 1: CDA security for public-key encryption. Public-key encryption (PKE) and the chosen-
distribution attack (CDA) security goal are defined in Section 9. CDA generalizes deterministic PKE secu-
rity notions [10, 14, 24], and CDA-secure PKE is also used in the context of efficient search over encrypted
data [10] and defense-in-depth against randomness failures [11, 55]. It is easy to see that if one is working in
the F ∗1 model, this being a storage-augmented primitive model, then the security notion is unachievable. To
attack any scheme, a first-stage adversary A1 picks (m0,m1, r) uniformly, and queries St(0, (m0,m1, r)).
The second-stage adversary A2 queries St(0,⊥) to retrieve (m0,m1, r), encrypts both messages under r,
compares the results with the challenge ciphertext, and outputs the appropriate bit. This adversary wins with
probability one.

We point out that the adaptive version of CDA security as defined in [11] is our first example of a multi-
stage game for m any polynomial. This is because it allows an attacker to adaptively query its oracle with
a message sampling algorithm q times. Each invocation uses fresh, independent coins and has access to the
RO and so we end up in a setting where m = q.

Example 2: Nonmalleable hashing. Boldyreva et al. [23] give a notion of nonmalleability for hash func-
tions. At a high level it requires that no efficient adversary can find a distribution X such that for a message
x sampled from X , the adversary, given H(x), can find another message x∗ and range point y∗ such that
y∗ = H(x∗) and the tuple x, x∗, H(x), H(x∗) satisfies some non-trivial relationship. For example, the rela-
tionship could be that x is a proper prefix of x∗, this relationship corresponding to a length-extension attack.
It is crucial that the adversary does not know the coins used to sample x when it attempts to to find a win-
ning x∗, y∗. In a primitive model we should give X access to the adversarial interface of the primitive. This
models that messages can depend on the hash function description. But in the storage-augmented primitive
model, the adversary could give aX that queries St to save the message x and later retrieve it to trivially win.
This means that, for example, indifferentiability is not a sufficient property to prove resistance to a natural

11

formulation of length extension attack resistance. This is especially troubling because provable resistance
to length extension attacks was a primary motivation for building indifferentiable hash constructions [31].

Example 3: Password-based cryptography. To model arbitrary password selection, one uses an adver-
sarial procedure together with some requirement on the unpredictability of its outputs. Moreover, for full
generality, one should provide this password sampler with access to the ideal functionality used. This allows
consideration of passwords that are computed as a function of a hash function, a situation occurring when,
for example, users hash a large file to derive a password or generate a random password using a system
random number generator (which itself uses the hash function). For example, the password-based authen-
ticated key exchange security notion of Bellare et al. [17] explicitly uses such a functionality-dependent
password sampler. As in the nonmalleable hashing example, it is clear that security cannot be achieved in a
storage-augmented primitive model for such password-based cryptography security notions.

Example 4: Key-dependent message security. In a key-dependent message (KDM) attack [22], the adver-
sary obtains encryptions of messages that are chosen via some adversarially chosen function whose input
is the secret key used by encryption. The first constructions, due to [22], are given in the ROM — the
message-derivation function is assumed to have access to the RO. Of course it is easy to see that no scheme
is secure in the storage-augmented primitive model because the message function could just store the key
(to which it has access) and the distinguishing stage could then retrieve the secret key. While recent results
on KDM secure primitives in the standard model [1, 6, 9, 25, 26, 42] are not directly affected by this prob-
lem, the most efficient constructions to date enjoy analyses only in an idealized model [8, 15, 22, 40]. Here
indifferentiability doesn’t apply, and whether there exist structure-abusing attacks remains an open question.

Example 5: Related-key attacks. Bellare and Kohno first formalized related-key attacks (RKAs) against
block ciphers [16]. In general, an RKA occurs when an adversary can obtain outputs of a cryptographic
construction used with multiple, related secret keys. The adversary chooses the relation, and this relation
should have access to any ideal primitive used by the construction [2]. For primitives like block ciphers, one
does not typically prove RKA resistance but rather establishes it via cryptanalytic analysis. However, for
other primitives like encryption the most practical RKA constructions only have analyses in the ROM [12].
As with KDM security, it is easy to see that in the storage-augmented primitive model security is obviated.
Again, it is unclear if structure abusing attacks exist against typical constructions.

DISCUSSION. The negative results presented in this section rely on augmenting primitives to incorporate
a storage procedure. Of course in the context of hash function design, no one would consider using such a
primitive (nor would there necessarily be any way to instantiate one!). Rather these results are used to show
that indifferentiability cannot imply security in the context of the multi-stage games considered. For these
examples, then, we do not know whether security holds (or not) when using hash constructions built from
more typical underlying primitives (i.e., ones that are not storage augmented). It may be that clever structure
abusing attacks exist. We will rule out such attacks in one setting in Section 9. This leaves the other settings
as important areas for future analysis.

The notions above are only multi-stage because all adversarial algorithms are allowed access to the
random oracle or underlying ideal primitive. We can circumvent the limitations of indifferentiability by tar-
geting weaker security notions for which only one stage is given access to the RO. With CDA, for example,
one could choose a weaker security setting in which the message samplers are not hash dependent. However,
it is unlikely that such weakenings are sufficient in many applications.

Another point is that avoiding ideal primitive models would obviate these concerns, since one wouldn’t
be relying on a random oracle or ideal cipher in the first place. Of course, for many constructions whose
security is meaured by multi-stage games the ROM or ICM remains the only ones in which proofs are known
or (in some cases) appear possible [32, 45].

The examples of multi-stage security games given above are not meant to be exhaustive. We expect
there are many other settings in which multi-stage games are the requisite security target.

12

6 Indifferentiability with Simulator Resets

We propose a strengthening of indifferentiability that supports composition for both single-stage and multi-
stage games. The counter-example of Section 4 indicates that typical indifferentiable hash constructions
cannot enjoy such a notion. Indeed, no online computable hash function can meet a strengthening whose
associated composition theorem covers the CRP game. Nevertheless, we may hope to design new hash
functions that do meet our stronger notion. As we’ll see, though, there doesn’t seem to be much hope for
(efficient) hash domain extensions that support composition for multi-stage games.

RESET INDIFFERENTIABILITY. We define a version of indifferentiability that requires simulators to func-
tion even under resets. For any simulator S we define the procedure pair

x
S = (

x
S.S,

x
S.Rst). The for-

mer procedure is simply a renaming of S. The latter procedure takes no input and when run reinitializes
all of

x
S.S’s internal variables to their initial values. Likewise, let F = (F.hon, F.adv) be any func-

tionality. Let functionality
−→
F = (

−→
F .hon,

−→
F .adv) = (F.hon, (F.adv, nop)) where the procedure pair

−→
F .adv = (F.adv, nop) includes a procedure nop that takes no input and does nothing. Let F1 and F2 be
functionalities. Let D be an adversary that outputs a bit (the distinguisher). Let S be a simulator. Then we
define the reset indifferentiability advantage of D as

Advreset-indiff
F1,F2,S (D) = Pr

[
Real

−→
F 1,D ⇒ y

]
− Pr

[
IdealF2,D

x
S

⇒ y
]
.

For consistency with our definition of the games Real and Ideal (Figure 2), we implicitly assume there is
some distinguished symbol that, when received as input by the procedure Prim, causes the execution of nop
or

x
S.Rst, respectively.
We have the following composition theorem.

Theorem 6.1 Let G ∈ LG. Let F1 and F2 be functionalities. Let A1, . . . ,Am be an adversary and let
SF2.adv be a simulator that exports the same interface as F1.adv. Then there exist an adversary B1, . . . ,Bm
and distinguisher D such that for all values y

Pr
[
GF1,A1,...,Am ⇒ y

]
≤ Pr

[
GF2,B1,...,Bm ⇒ y

]
+ Advreset-indiff

F1,F2,S (D) .

Moreover

tBi ≤ tAi + qAitS qBi ≤ qAi ·qS tD ≤ m+ tG +
m∑
i=1

qG,i ·tAi qD ≤ qG,0 +
m∑
i=1

qG,i ·qAi

where tA, tB, tD are the maximum running times of A,B,D; qA, qB are the maximum number of queries
made by A and B in a single execution; and qG,0, qG,i are the maximum number of queries made by G to
the honest interface and the ith adversarial procedure (respectively). �

The proof of the above is readily established by adapting the proof of Theorem 3.1. For 1 ≤ i ≤ m,
let BF2.adv

i = ASF2.advi . This means in particular that a separate instance of S is used in each procedure Bi.
Then define the distinguisher D, for any compatible functionality F = (F.hon, F.adv), by modifying
DF.hon,F.adv = GF,A1,...,Am so that a reset call immediately precedes each Ai call.

We point out that reset indifferentiability is not only sufficient, but necessary, for secure general com-
position for games in G. Following the reasoning given in [51] for indifferentiability, we note that if a
construction is not reset indifferentiable then there exists a multi-stage game for which the construction
does not yield security.

Reset indifferentiability can be achieved when one establishes (conventional) indifferentiability using
a stateless simulator. This is because it is clear resetting such a simulator does not affect its subsequent
behavior. However most existing indifferentiability results use stateful simulators.

PRACTICAL HASH CONSTRUCTIONS ARE NOT RESET INDIFFERENTIABLE. As mentioned above, online
computable hash functions cannot be reset indifferentiable. This is because the composition theorem would
then imply such a hash function met the CRP property and the results of Section 4 rule this out. But

13

some efficient hash constructions do meet the CRP property, and so the question remains if any efficient
construction meets reset indifferentiability. We rule out the existence of single-pass hash domain extenders
that are reset indifferentiable.

Fix some p, n, s, r > 0 such that p > n and let N = p + s. Let P be an arbitrary ideal primitive.
We restrict our attention to domain-extension constructions Hf : {0, 1}N → {0, 1}r that can be written as
HP (〈M1,M2〉) = HP

2 (HP
1 (M1) ‖M2) for any (M1,M2) ∈ {0, 1}p × {0, 1}s. Here 〈M1,M2〉 represents

a unique encoding of M1,M2 into an N -bit string; H1 : {0, 1}p → {0, 1}n; and H2 : {0, 1}n × {0, 1}s →
{0, 1}r. Importantly, that p > n means that H1 is compressing. We require that the time to compute one
each of the encoding, H1, and H2 is within a small, absolute constant of the time to compute HP . As
concrete examples, all online computable functions are trivially included by setting 〈M1,M2〉 = M1 ‖M2.
But the flexibility endowed by the arbitrary encoding also means we encompass a wider range of H that
do not allow online computing. For example, any single pass hash function that can be written in the form
above. On the other hand, constructions such as the zipper hash [48] (which makes two passes over a
message) are not considered.

The following theorem below shows that no construction fitting the form above is reset indifferentiable,
no matter what underlying primitive P is used.

Theorem 6.2 Let integers p, n, s, r,N , functionality P , and construction HP be as just described. Let
functionality RO implement a random oracle with range {0, 1}r. There exists a reset-indifferentiability
adversary D such that for all simulators S asking at most q queries,

Advreset-indiff
IP,RO,S (D) ≥ 1−

(
q

2s
+

q

2p−n
+

1

2r

)
. �

The general nature of Theorem 6.2 may make it somewhat hard to appreciate, so we give the following
illustrative corollary. Consider the case of a 2n-bit to n-bit ideal compression function P , and a “first”
section H1 that outputs n-bit strings. (Think, for example, of iterative constructions such as EMD, MDP,
and gf+.) Then when HP extends the domain of P to at least 3n bits, we have the following.

Corollary 6.3 Let s = r = n, ` = s+ r = 2n, N ≥ 3n, and let HP be as in Theorem 6.2. Then for any S
making at most q calls, there exists an D such that

Advreset-indiff
IP,RO,S (D) ≥ 1− 2q + 1

2n
. �

Proof of Theorem 6.2: Adversary D begins by selecting M1←$ {0, 1}p and then computes v ← H1(M1)

by making the necessary calls to its right procedure (either the P.adv procedure of
−→
P .adv, or

x
S.S procedure

of
x
S). It then issues a reset call to its right procedure (either nop or

x
S.Rst). After the reset, it samples

M2←$ {0, 1}s. Using v and M2, adversary D proceeds to compute Z ′ ← H2(v ‖ M2) by making the
necessary calls to its right procedure. Finally it calls its left procedure on 〈M1,M2〉, receiving Z in return.
If Z ′ = Z, then D returns 1, otherwise it returns 0. We note immediately that in the case that D’s procedure
calls are serviced by

−→
IP.hon = HP.hon and

−→
IP.adv = (P.adv, nop), it will always be the case thatD returns

1. Thus Pr
[

Real
−→
IP,D⇒ 1

]
= 1.

Now consider the case that RO.hon and
x
S
RO.adv

service D’s calls. Unless
x
S calls RO.adv(〈M1,M2〉)

during its execution (before or after the reset), the value Z = RO.adv(〈M1,M2〉) is independent of all
quantities determined prior to D’s final call, and so the chance that Z = Z ′ is at most 1/2r. Letting bad

indicate the event that
x
S queries RO.adv(〈M1,M2〉), we have

Pr
[

IdealRO,Dx
S

⇒ 1
]
≤ Pr [bad] + Pr

[
IdealRO,Dx

S
⇒ 1 | ¬bad

]
≤ Pr [bad] +

1

2r

and so it remains for us to bound Pr [bad]. Let bad1 indicate the event that
x
S calls RO.adv(〈M1,M2〉)

before the reset. Since M2 is not sampled until after the reset, is easy to see that Pr [bad1] ≤ q/2s. We

14

note that one implication of bad1 not occurring is that the simulator cannot somehow construct its responses
to D pre-reset so that v could reveal Z to the simulator post-reset. (Intuitively, passing Z across the reset
might allow

x
S to respond properly post-reset without querying RO.adv(〈M1 ‖M2〉.) We will now argue

that the simulator likewise cannot use v to leak M1 across the reset.

Recall that H1(M1) is compressing p bits to n bits, and consider the following experiment. Let A =
(A1,A2) be a pair of adversarial procedures. A string M1←$ {0, 1}p is sampled and given to A1 as input.
Procedure A1 ends its execution by outputting a string v ∈ {0, 1}n. Procedure A2 is then run on input v,
outputting a string M ∈ {0, 1}p, and A is said to win if M = M1. Without loss, we assume that A1 has
hardcoded into its description the coins that maximize the probability of A winning this game. Thus A1 is
deterministic, and

Pr [M1←$ {0, 1}p ; v ← A1(M1) ;M ←$A2(v) :M = M1]

is the probability we want to bound. Since A1(M1) is a random variable, the chance that A2 correctly
guesses M1 is at most 2−H̃∞(M1 | A1(M1)); Lemma 2.1 gives us that H̃∞(M1 | A1(M1)) ≥ H∞(M1)−n =
p − n. Thus the chance that A wins the game we’ve described is at most 2−(p−n). Translating this back
to our setting, we can think of A1 and A2 as

x
S before and after the reset (respectively). In fact

x
S is more

restricted, since we assumed thatA1 used the best coins and could output an arbitrary string (without regard
for observing any particular distribution). As M2 is independent of M1, and

x
S makes at most q calls over

its entire execution, we can conclude that that the chance that
x
S calls RO.adv(〈M1,M2〉) after the reset is

at most q/2p−n. Collecting results, we have

Pr
[

IdealRO,Dx
S

⇒ 1
]
≤ Pr [bad] +

1

2r
≤ q

2s
+

q

2p−n
+

1

2r

proving our claim.

7 Universal Composability and Multi-stage Games

The paper thus far has focused on the indifferentiability framework. What about other composition frame-
works? Indifferentiability was inspired by universal composability [27] and reactive simulatability [53]. All
these frameworks share similar mechanics, including the use of simulators, ideal functionalities, and general
composition theorems. We here give a high-level discussion of how one translates our multi-stage counter
example to the setting of universal composability (UC). The limitations seem to extend to other settings as
well, such as the JUC [29] framework. We will then discuss the implications.

The stated goal of UC is to prove that a cryptographic protocol is secure regardless of the environment
it operates within [27]. The approach builds upon the simulation-based paradigm of secure multiparty
computation [37]. One defines an ideal functionality that captures a perfectly secure realization of the
protocol. Then one shows that a protocol UC-emulates this ideal functionality. That is, one shows, for
any environment, that for any attacker against the real protocol there exists an equally successful attacker
(the simulator) against the ideal functionality. Most often the analysis stops here, in the hope that the ideal
functionality by its very nature provides the properties required by applications.

UNIVERSAL COMPOSABILITY FOR SINGLE-STAGE ENVIRONMENTS. UC is typically formalized using
interactive Turing Machines (ITMs). We give a high level discussion of these, define UC execution via
code-based games, and refer the reader to [27] for more details on the ITM-based formulation. The exper-
iment defining UC is parameterized by three ITMs. The challenge protocol ρ is an ITM that may use as
a subroutine some other ITM P . The adversary A is an arbitrary ITM. The environment Z is likewise an
arbitrary ITM. The execution protocol defines how the experiment works, for full details see [27]. Briefly,
the environment Z is first executed, and it may then run just a single adversarial ITMA, and multiple copies
of ρ. For our purposes we will focus on when there is just a single instance of ρ, the discussion lifts to

15

main EXECA1,...,Am
Z,ρ,P

b′←$ ZProt,Adv1,...,Advm

Ret b′

procedure Prot(X):

Ret ρP (X)

procedure Advi(X):

Ret AProt,P
i (X)

main IDEALS1,...,SmZ,F

b′←$ ZProt,Adv1,...,Advm

Ret b′

procedure Prot(X):

Ret F(X)

procedure Advi(X):

Ret SProt
i (X)

Figure 4: Games defining multistage UC (mUC) security for a single protocol instance. The top box is
the execution of the real protocol in the P -hybrid model. The bottom box is the execution for the ideal
functionality.

the more general setting in a natural way. We are in the P -hybrid model if ρ uses as subroutine an ideal
functionality P . The adversary A is also assumed to have access to P . We write ρP to denote that ρ uses P
as a subroutine. We can define this (special case) UC execution using game EXECAZ,ρ,P with m = 1. See
Figure 4.

We also consider execution with an idealized version of a protocol. Here the same environment Z
interacts instead with an ideal functionality F and a simulator adversary S. The adversary here also has
access to F . Note that we do not need P (F does not rely on an underlying primitive). This ideal execution
is defined as the game IDEALSZ,F with m = 1 as shown in Figure 4.

We say that ρ UC-emulates F in the P -hybrid model if for any environment Z and adversary A there
exists a simulator S such that

Pr
[

EXECAZ,ρ,P ⇒ 1
]
− Pr

[
IDEALSZ,F ⇒ 1

]
is bounded by a negligible function in the (implicit) security parameter.

Consider a protocol ITM Π that uses as a subroutine F . Then the protocol ITM Πρ/F is the same as
Π except that all calls to F are replaced by calls to ρ. (It is implicit in the notation that ρ has access to an
underlying primitive P if it needs one.) The following is reproduced from [27] and is a special case of the
main UC composition theorem.

Corollary 7.1 ([27, Cor. 15]) Let ρ,Π,F be ITMs such that ρ UC-emulates F in the P -model. Then Πρ/F

UC-emulates Π.

UNIVERSAL COMPOSABILITY FOR MULTI-STAGE ENVIRONMENTS. The restriction in both the real and
ideal executions to a single adversarial ITM (or, in our games parlance, a single stateful adversarial proce-
dure) gives rise to the implicit restriction on composition that it only applies when one is working relative to
a single-stage environment. Thus we expand the UC executions to allow multi-stage adversaries. We refer
to this as multi-stage UC (mUC).

Now an adversary is a tuple of m ITMs A1, . . . ,Am. An environment is multi-stage if it expects access
to m > 1 adversarial ITMs. Real execution proceeds by first having the multi-stage environment Z run.
It can invoke the different ITMs A1, . . . ,Am as it sees fit. Ideal execution is similarly generalized to work
with m simulator adversaries S1, . . . ,Sm. The adversarial ITMs in either world do not share state, and in
particular all communication between the adversaries must be through Z . This is similar to the UC variant
defined in [3] for collusion-free multi-party computation. We say that a protocol ρ mUC-emulates an ideal
functionality F in the P -hybrid model if

Pr
[

EXECA1,...,Am
Z,ρ,P ⇒ 1

]
− Pr

[
IDEALS1,...,SmZ,F ⇒ 1

]
is negligible in some (implicit) security parameter. The execution protocol implied by our game-based
formulation is just one choice; we leave to future work a fuller treatment of the various ways in which
multi-stage games can be considered in UC-like settings

16

We are now in a position to transport the negative result from indifferentiability to mUC. That is, we
show that even if one UC-emulates an ideal functionality, this does not mean one mUC-emulates the ideal
functionality and, in particular, it may not be secure using the construction at all. Take ρ = H , F = RO,
and P to be a (say) ideal compression function. Then we have the following easy proposition which follows.

Proposition 7.2 (informal) If H is indifferentiable from a random oracle when using primitive P , then
protocol ρ = H UC-emulates F = RO in the P -hybrid model.

To see why, let S ′ be the simulator given byH being indifferentiable from a RO. Then the UC adversary
S works by running the real world adversary A and answering its P queries by executing S ′. This can then
be used to show that H UC-emulates a RO.

But then it is easy to see that, in fact, H does not mUC-emulate a RO. Why? Assume that H is
(p, n, s)-online computable, fix the mUC environment Z = CRPp,n,s. Then the adversary A1,A2 that
works as described in Section 4 causes Z to output 1 (representing a win) with probability 1. However, we
showed that no adversary can cause Z to output 1 with more than negligible probability when using a RO.
Thus, H cannot mUC-emulate a RO.

DISCUSSION. The above is at a high level, and pinning down formal details would require an appropriately
detailed formalization of UC. Such details are beyond the scope of this work. The take away, however, is
that UC does not work for multi-stage games. More precisely: showing an ideal functionality UC-emulates
a protocol does not imply that the protocol is safe to use when security is measured by a multi-stage game.
This stands in contrast to the usual claims made about the generality of UC security.

Others have pointed out limitations of the UC framework. Canetti and Rabin [29] introduce a joint-
state UC (JUC) model to expand UC composition to the setting in which different protocols use common
components. They introduce a joint-state UC (JUC) model which also does not cover multi-stage games.
Canetti et al. [28] point out that for applications like deniability, the environment must have access to setup
functionalities. In normal (J)UC the environment does not, and so they introduce the generalized UC (GUC)
framework. As neither JUC nor GUC allow environments that treat multi-stage games, the limitations we
point out seem to apply. One caveat is that GUC does give the environment direct access to the underlying
primitive P , which in our treatment means they consider games outside of LG. An interesting open problem
is characterizing the extent to which GUC composition covers multi-stage games.

Closer to our work is collusion-free protocols [3, 4, 44]. In this setting separate adversaries are assumed
to only be able to communicate via some (semi-trusted) mediator and the task is to prove collusion-freeness
of a protocol running on top of that channel. In [4] it is pointed out that UC cannot be used to treat collusion-
freeness because it does not include disjoint adversaries. They give their own framework which includes
multiple disjoint adversaries and where showing security requires simulators for each adversary. This frame-
work is conceptually close to reset indifferentiability and may be a good starting point for future work on
results that use composition to analyze multi-stage games. That said, we expect that our negative results
about hash constructions from Section 6 would extend to this kind of setting.

8 Other Limitations of Composition

We discuss other ways that composition might not be applicable. While our discussion below focuses on the
indifferentiability framework, many of these issues apply to reset indifferentiability and the UC framework.

CONCRETE SECURITY. Theorem 3.1 gives a concrete security version of the original MRH theorem. We
felt that concrete security is important, because it is clear that composition increases the looseness of an ideal
model reduction in several ways. One way loss occurs is due to the additive advantage overhead, which in
the setting of hash constructions is often a birthday bound in the security parameter (the output size of the
hash function). If, say, one achieves beyond-the-birthday bound security in the ROM for a cryptosystem,
then using a typical indifferentiable hash construction will reduce the guarantee. (One could use the Maurer

17

and Tessaro [49] construction, which has less additive loss, to potentitally avoid this.) Another loss is in
the running time of the adversary due to the simulator’s overhead. Theorem 3.1 makes clear that if one uses
an inefficient simulator, then after composition security may no longer hold in the case that computational
assumptions are needed to establish security of a cryptosystem in the ROM.

GAMES THAT USE THE F.adv INTERFACE. We only consider games G ∈ LG, meaning that the game
cannot access the adversarial interface of a functionality. In Section 9 we will give the PrA security notion,
which does not abide by this convention. Both Theorem 3.1 and Theorem 6.1 therefore do not apply to the
PrA game. Trying to generalize composition to cover such games proves unsuccessful: the simulator would
have to also be run by the game, and this changes the game behavior.

As another example, consider a formalization of PrA that only has the adversary given direct access
to F.adv. Instead, the security notion restricts attention only to adversaries that output a transcript of all
queries and their responses to F.adv. This notion is equivalent to PrA, and may (at first glance) seem to
avoid violating the convention. But still this should be considered a violation, because the correctness of
the transcript relies on the interface. Another point is that the adversary B built by composition may fail to
abide by the restriction.

GAMES MAKING NON-BLACK-BOX USE OF A FUNCTIONALITY. The composition theorem requires that
the game makes essentially black-box use of the functionality. So if the game instead relies in some non-
black-box way on the functionality, then it is unclear how composition can apply — the game will change
between one functionality and the next. This means that Theorem 3.1 will apply, but that the right-hand side
game GF2,B will not be the one appropriately measuring security for the F2 model.

RESTRICTIONS ON ADVERSARIES. The composition theorem may not explicitly maintain properties of an
adversary desired. For example, one might desire information theoretic security in the ROM, but this would
fail should composition be used with a hash construction enjoying indifferentiability only with respect to
complexity-theoretic adversaries [47, 54]. (This issue was first pointed out in [54].) Precise bounds on
running time may also not be preserved, as mentioned above in the discussion of concrete security.

9 Deterministic, Hedged, and Efficiently-Searchable Encryption

The results thus far reveal that schemes proven secure in the ROM may not be secure when using practical
hash function constructions, when security is measured by a multi-stage game. As seen in Section 5 this
includes numerous important cryptographic tasks. As a first step, we here take one example, that of de-
terministic, hedged, or efficiently-searchable public-key encryption, and provide a proof of security when
using any one of a number of indifferentiable hash constructions. We choose this example due to the exten-
sive use of the ROM in prior results and the practical importance of the schemes [10, 11, 55]. Of course we
cannot rely on Theorem 3.1, so our proof is done directly in the ideal primitive model. Nevertheless, our
main result covers a relatively large mix of PKE schemes and hash functions.

We focus on the hash construction from [35], which composes a preimage-aware function (see below)
with a fixed-input-length RO. While we can do analysis without relying on preimage-awareness, doing
so simplifies and modularizes our result. Let hf : {0, 1}∗ → {0, 1}n be a function using some underly-
ing primitive f . Let g : {0, 1}n → {0, 1}n be a function. Let Hf,g : {0, 1}∗ → {0, 1}n be defined by
Hf,g(M) = g(hf (M)). We point out that many hash functions fall into this form, including the so-called
NMAC construction [31], MCM [54], NIRP [47], and various SHA-3 competitors.

PUBLIC-KEY ENCRYPTION. Recall that a public-key encryption (PKE) scheme AE = (K, E ,D) consists
of three algorithms. Key generation K outputs a public key, secret key pair. Encryption E takes a public
key, a message m, and randomness r and outputs a ciphertext. DecryptionD takes a secret key, a ciphertext,
and outputs a plaintext or a distinguished symbol ⊥. Following [10], we define for any scheme AE the

18

main CDAF,A1,A2
AE

b←$ {0, 1}
(pk, sk)←$K
(m0,m1, r)←$AF.adv1

c← EF.hon(pk,mb ; r)

b′←$AF.adv2 (pk, c)

Ret (b = b′)

main IND-SIMF,A
AE,S

b←$ {0, 1}
(pk, sk)←$K
b′ ← ARoS,F.adv(pk)

Ret (b = b′)

procedure RoS(m, r):

If b = 1 then Ret EF.hon(pk,m ; r)

Ret SF.hon(pk, |m|)

main PrAF,AH,X

x←$APrim,Ext

z ← HF.hon(x)

Ret (x 6= V[z] ∧ Q[z] = 1)

procedure Prim(m):

c← F.adv(m)

α← α ‖ (m, c)
Ret c

procedure Ext(z):

Q[z]← 1

V[z]← X (z, α)
Ret V[z]

Figure 5: (Left) The non-adaptive CDA game. (Right) The IND-SIM and PrA games.

maximum public-key collision probability by

maxpkAE = max
w∈{0,1}∗

Pr [pk = w : (pk, sk)←$K] .

CDA SECURITY. In Figure 5 we detail the security game for (non-adaptive) chosen-distribution attacks [11].
(We conjecture that our main result below, Theorem 9.1, can be extended to cover adaptive adversaries as
well, but do not provide proof.) This notion, orthogonal to the traditional notion of IND-CPA, captures the
security of a PKE scheme when the randomness r used may not be a (sufficiently long) string of uniform
bits. For the remainder of this section, fix a randomness length ρ ≥ 0 and a message length ω > 0.
An (µ, ν)-mmr-sourceM is a randomized algorithm that outputs a triple of vectors (m0,m1, r) such that
|m0| = |m0| = |r| = ν, all components of m0 and m1 are bit strings of length ω, all components of r are
bit strings of length ρ, and (mb[i], r[i]) 6= (mb[j], r[j]) for all 1 ≤ i < j ≤ ν and all b ∈ {0, 1}. Moreover,
the source has min-entropy µ, meaning

Pr
[

(mb[i], r[i]) = (m′, r′) | (m0,m1, r)←$M
]
≤ 2−µ

for all b ∈ {0, 1}, all 1 ≤ i ≤ ν, and all (m′, r′).
A CDA adversary A1,A2 is a pair of procedures, the first of which is a (µ, ν)-mmr-source. The CDA

advantage for a CDA adversary A1,A2 against scheme AE is defined by

Advcda
AE,F (A1,A2) = 2 · Pr

[
CDAF,A1,A2

AE ⇒ true
]
− 1 .

PREIMAGE AWARENESS. Dodis, Ristenpart, and Shrimpton’s preimage awareness notion [35] generalizes
collision resistance to include extractability. Game PrA is defined in Figure 5. We associate to any function-
ality F , hash construction H , extractor X , and adversary A the PrA advantage defined by

Advpra
H,F,X (A) = Pr

[
PrAF,A

H,X ⇒ true
]
.

We point out that the game PrA does not abide by our convention that only the adversary queries F.adv,
meaning PrA /∈ LG. Thus Theorems 3.1 and 6.1 do not apply to PrA. This is not a problem for past
results or for our results below, both of which do not attempt to conclude PrA via indifferentiability-based
composition.

IND-SIM SECURITY. We define a new notion of encryption scheme security that is of technical interest
because it is as an intermediate step in proving Theorem 9.1, shown below. An encryption simulator for a
schemeAE = (K, E ,D) is a procedure S that takes as input a public key and a message length and outputs a
ciphertext. Game IND-SIMAE,S is shown in Figure 5. A IND-SIM adversaryA can make multiple queries,
but cannot repeat any queries. It measures the ability of an adversary to distinguish between encryptions
of a chosen message under chosen randomness and the output of a simulator S. We define the IND-SIM

19

advantage of an adversary A by

Advind-sim
AE,S (A) = 2 · Pr

[
IND-SIMAAE,S ⇒ true

]
− 1 .

Note that the adversary can choose the message and also the randomness used to encrypt it. In the standard
model this security goal is unachievable if E uses no further randomness beyond that input. However, we
will use IND-SIM security in the ROM when the adversary does not make any RO queries. In Appendix 10
we show that for a variety of encryption schemes, IND-SIM security in the ROM against adversaries who
do not query the RO is implied by IND-CPA security of an underlying (randomized) scheme.

CDA SECURITY FOR PKE. Theorem 9.1 below establishes CDA security of PKE schemes that, during
encryption, apply g(hf (M)) once to hash an M including an encoding of the public key, as long as the
scheme meets the IND-SIM notion above (in the ROM). The ROM schemes for deterministic, hedged, or
efficiently-searchable encryption from [10, 11, 55] are of this form and have IND-SIM implied by the IND-
CPA security of an underlying randomized encryption scheme. We make no assumptions about f , so the
result applies both to hash functions based on an ideal cipher and ideal compression function.

We provide some brief intuition regarding the proof. The PrA security of f+ means that, to learn
anything about the value g(f+(M)), the adversary must query f in order to compute f+(M). But the
inclusion of the public key in the message hashed by E means that the source A1 is unlikely to be able
to query any of the messages used in computing the challenge ciphertexts. Essentially this means that E
gets randomness via queries to g(f+(M)) that is hidden from the adversary, and this allows one to use
the IND-SIM property of AE to show that ciphertexts leak no information about the challenge message,
randomness pairs. This means that A2 learns nothing about the coins used by A1, and so the min-entropy
of A1 implies that A2 has little chance of learning g(f+(M)) outputs for M ’s used in computing the
challenges.

Theorem 9.1 Let f be a functionality and g be a FIL RO. LetHf,g(M) = g(hf (M)) for some procedure h.
LetAE be a PKE scheme that queriesHf,g on a single message per E invocation, that message including (an
encoding of) the public key. Let A1,A2 be a CDA adversary making at most qf queries to f and qg queries
to g and where A1 is a (µ, ν)-mmr-source. Then for any encryption simulator S and PrA extractor X there
exists an IND-SIM adversary B and a PrA adversary C such that.

Advcda
AE,(f,g)(A1,A2) ≤ 4 ·Advind-sim

AE,RO,S(B) + 4 ·Advpra
h,f,X (C) +

2νqg
2µ

+ 2qg ·maxpkAE

B makes no random oracle queries, makes ν RoS-queries, and runs in time that of (A1,A2). C makes at
most qf primitive queries and runs in time at most that of (A1,A2). �

Proof: We assume without loss of generality that A1,A2 make no pointless queries (they do not repeat a
query to f or to g). Note that this does not mean that A2 never repeats a query made by A1. We use a
sequence of games and adversaries to show that

Pr
[

CDAA1,A2

AE ⇒ true
]

(3)

= Pr [G0 ⇒ true] (4)

≤ Pr [G1 ⇒ true] + Pr [G1 sets bad3] + Pr [G1 sets bad1 ∨ G1 sets bad2] (5)

≤ Pr [G1 ⇒ true] + Pr [G1 sets bad3] + qg ·maxpkAE + Advpra
h,f,X (C1,2) (6)

≤ Pr [G2 ⇒ true] + Pr [G2 sets bad3] + qg ·maxpkAE + Advpra
h,f,X (C1,2) (7)

≤ Pr [G3 ⇒ true] + Pr [G3 sets bad3] + 2 ·Advind-sim
AE,RO,S(B) + qgmaxpkAE + Advpra

h,f,X (C1,2)(8)

≤ 1

2
+ Pr [G4 sets bad3] + 2 ·Advind-sim

AE,RO,S(B) + qg ·maxpkAE + Advpra
h,f,X (C1,2) (9)

≤ 1

2
+
qgν

2µ
+ 2 ·Advind-sim

AE,RO,S(B) + qg ·maxpkAE + 2 ·Advpra
h,f,X (C) (10)

20

main G0 G1

b←$ {0, 1}
(pk, sk)←$K
(m0,m1, r)←$Af,g11

c← EH(pk,mb ; r)

b′←$Af,g22 (pk, c)

Ret (b = b′)

procedure H(M):

m1 · · ·m` ← Pad(M)

y ← hf (m1 · · ·m`)

z←$ {0, 1}n

If y ∈ G1 then
bad1 ← true ; z ← g(y)

If G[y] 6= ⊥ then
bad2 ← true ; z ← G[y]

G[y]← z

Ret z

procedure g1(u):

v ← g(u) ; G1 ∪← u

Ret v

procedure g2(u):

v ← g(u)

If G[u] 6= ⊥ then
bad3 ← true ; v ← G[u]

Ret v

adversary C1,2:

b←$ {0, 1}
(pk, sk)←$K
(m0,m1, r)←$Af,g11

c← EH(pk,mb ; r)

Ret ⊥

procedure H(M):

m1 · · ·m` ← Pad(M)

y ← hf (m1 · · ·m`)

z←$ {0, 1}n

If y ∈ G1 ∧ M[y] 6=M then
bad1 ← true ; Ret M

If G[y] 6= ⊥ then
bad2 ← true ; Finish()

G[y]← z

Ret z

procedure g1(u):

M[u]← Ext(u)
v ← g(u) ; G1 ∪← u

Ret v

Figure 6: Games G0,G1 and adversary C1,2 used in the proof of Theorem 9.1.

Applying the definition of CDA advantage yields the advantage relation of the theorem statement. We now
justify the inequalities above. Game G0 (Figure 6, boxed statements included) implements exactly the game
CDAAE , justifying (3). To see this, note that the conditionals in proceduresH and g2 ensure that throughout
the game a single random function g is defined. The three bad flags reflect three situations:

• bad1 is set if A1 queried a point to g that matches the output of hf (M) for one of the messages M
queried to H by E .

• bad2 is set if E caused a collision in the output of hf .

• bad3 is set if A2 queries g on a point that matches the output of hf (M) for one of the messages M
queried to H by E .

Game G1 omits the boxed statements of game G0. The two games are therefore identical until one of
bad1, bad2, bad3 is set. Let “Gi sets badj ” be the event that game Gi sets badj . The fundamental lemma of
game-playing [20] and a union bound justifies (5).

We now show that the probability of bad1 or bad2 being set is bounded by the PrA advantage of an adversary
against hf plus the probability of A1 guessing the public key pk. The PrA adversary C1,2 is shown in
Figure 6. It runs game G1 up through the computation of the challenge ciphertexts. It queries its Ext oracle
on every one of A1’s queries to g1, recording the response in a table M. It forwards A1’s queries to f to its
own f oracle. If bad1 is set, this corresponds to one of the messages M queried to H by E as having hf (M)
equal to a value u queried to g1. The Finish() procedure (not shown) finds the colliding pair of messages
M,M ′ queried by E to H , queries Ext on hf (M) and hf (M ′) and finally halts C1,2, outputting whichever
of M,M ′ was not returned by Ext. It is clear that C1,2 wins in the PrA game should bad2 be set. For the
value returned after bad1 is set to be a win for C1,2 in the PrA game, it must be that M[y] 6= M . But this only
happens with probability q1 ·maxpkAE because the pk is included in each query by E to H and the choice
of pk is independent of the queries to f by A1. Let “E” be the event that M[y] = M for some y ∈ G1 during

21

the execution of PrAf,C1,2
h . We have that

Pr [G1 sets bad1 ∨ G1 sets bad2] = Pr [G1 sets bad1 ∨ G1 sets bad2 | E] · Pr [E]

+ Pr
[

G1 sets bad1 ∨ G1 sets bad2 | E
]
· Pr

[
E
]

≤ Pr [E] + Pr
[

G1 sets bad1 ∨ G1 sets bad2 | E
]

≤ qg ·maxpkAE + Advpra
h,f,X (C1,2) .

We have justified (6).

Game G2 (Figure 6, boxed statements omitted) is the same as G1 except that the setting of bad1 and bad2

has been dropped. This doesn’t change the behavior of the game, and so

Pr [G2 ⇒ true] = Pr [G1 ⇒ true] and Pr [G2 sets bad3] = Pr [G1 sets bad3] ,

which justifies (7).

Game G3 replaces ciphertext vector c given to A2 with the output of an algorithm Sν(pk, ω). This runs
the encryption simulator S(pk, ω) a total of ν times and returns the resulting vector of ciphertexts. We
now define two IND-SIM adversaries B′ and B′′ that will be used to bound the first two terms of the right
hand side of equation (3). The adversaries are defined in Figure 7. They simulate the primitives f, g for
the underlying adversary A1,A2 and in computing H . The adversaries are identical except that B′ returns
b = 1 if A2 guessed the correct bit while B′′ returns b = 1 if A2 set bad3. Note that in both adversaries,
EH(pk,mb ; r) is executed (with return value ignored). This is done to merely cause H(M) to be called on
each M value generated by E , as is done in both game G2 and game G3. By construction we have that

Pr
[

IND-SIM1B
′
AE ⇒ 1

]
= Pr [G2 ⇒ true] and Pr

[
IND-SIM0B

′
AE ⇒ 1

]
= Pr [G3 ⇒ true]

and that

Pr
[

IND-SIM1B
′′
AE ⇒ 1

]
= Pr [G2 sets bad3] and Pr

[
IND-SIM0B

′′
AE ⇒ 1

]
= Pr [G3 sets bad3] .

Let B be whichever of B′ and B′′ achieves larger advantage. Then the above equations, together with the
definition of IND advantage (Section 2), justify (8). In game G3 the execution of A2 (including its oracles)
does not rely on the challenge bit b. Thus Pr[G3 ⇒ true] = 1/2, justifying (9).

We now bound the probability that bad3 is set in G3. We first move to a final game G4 (Figure 7). It defers
running of A1 until after A2 and moves the setting of bad3 from g2 to H . We have that Pr[G3 sets bad3] =
Pr[G4 sets bad3] because the executions ofA1 andA2 are independent and the check for bad3 in G4 triggers
on the same event as the condition for setting bad3 in G3.

We now build a PrA adversary C3 against hf . It is shown in Figure 7, and runs G4 with the following
changes. For each g2 query by A2, adversary C3 queries u to its Ext. It forwards all f queries to its own f
oracle. It returns M if a query H(M) by E is such that hf (M) = u for some u previously queried to g2

by A2 and M does not match the value output by Ext on that point. Similarly to the analysis of C1,2 above,
let “E” be the event that M[u] = M for some u queried to g2 by A2 and M queried to H by E during the
execution of PrAf,C3

h . We have that

Pr [G4 sets bad3] = Pr [G4 sets bad3 | E] · Pr [E] + Pr
[

G4 sets bad3 | E
]
· Pr

[
E
]

≤ Pr [E] + Pr
[

G4 sets bad3 | E
]

≤ qgν

2µ
+ Advpra

h,f,X (C3) .

To bound Pr[E] as we did above, we used the fact thatA1 is an mmr-source with min-entropy µ. That means
that any message it outputs will equal some fixed message with probability at most 2−µ. Let C be whichever
of C1,2 and C3 achieves higher advantage. We have justified (10).

22

main G2 G3

b←$ {0, 1}
(pk, sk)←$K
(m0,m1, r)←$Af,g1

c← EH(pk,mb ; r)

c←$ Sν(pk, ω)
b′←$Af,g22 (pk, c)

Ret (b = b′)

procedure H(M):

m1 · · ·m` ← Pad(M)

y ← hf (m1 · · ·m`)

z←$ {0, 1}n

G[y]← z

Ret z

procedure g2(u):

v ← g(u)

If G[u] 6= ⊥ then bad3 ← true

Ret v

adversary B′(pk):
b←$ {0, 1}
(m0,m1, r)←$Af,g1

EH(pk,mb ; r)

c← RoS(mb, r)

b′←$Af,g22 (pk, c)

If (b = b′) then Ret 1
Ret 0

procedure H(M):

m1 · · ·m` ← Pad(M)

y ← hf (m1 · · ·m`)

z←$ {0, 1}n

G[y]← z

Ret z

procedure g2(u):

v ← g(u)

If G[u] 6= ⊥ then bad3 ← true

Ret v

adversary B′′(pk):
b←$ {0, 1}
(m0,m1, r)←$Af,g1

EH(pk,mb ; r)

c← RoS(mb, r)

b′←$Af,g22 (pk, c)

If (bad3 = true) then Ret 1
Ret 0

procedure H(M):

m1 · · ·m` ← Pad(M)

y ← hf (m1 · · ·m`)

z←$ {0, 1}n

G[y]← z

Ret z

procedure g2(u):

v ← g(u)

If G[u] 6= ⊥ then bad3 ← true

Ret v

main G4

b←$ {0, 1}
(pk, sk)←$K
c←$ Sν(pk, ω)
b′←$Af,g22 (pk, c)

(m0,m1, r)←$Af,g1

c← EH(pk,mb ; r)

Ret (b = b′)

procedure H(M):

m1 · · ·m` ← Pad(M)

y ← hf (m1 · · ·m`)

z←$ {0, 1}n

If G[y] 6= ⊥ then bad3 ← true

Ret z

procedure g2(u):

v ← g(u)

G[u]← v

Ret v

adversary C3:

b←$ {0, 1}
(pk, sk)←$K
c←$ Sν(pk, ω)
b′←$Af,g22 (pk, c)

(m0,m1, r)←$Af,g1

c← EH(pk,mb ; r)

Ret ⊥

procedure H(M):

m1 · · ·m` ← Pad(M)

y ← hf (m1 · · ·m`)

z←$ {0, 1}n

If G[y] 6= ⊥ ∧ M[u] 6=M then
bad3 ← true ; Ret M

Ret z

procedure g2(u):

M[u]← Ext(u)
v ← g(u)

G[u]← v

Ret v

Figure 7: Games and adversaries used in the proof of Theorem 9.1.

23

main IND1AAE

b′←$ALoR

Ret b′

procedure LoR(m0,m1):

r←$ {0, 1}ρ

Ret Er(m1 ; r)

main IND0AAE

b′←$ALoR

Ret b′

procedure LoR(m0,m1):

r←$ {0, 1}ρ

Ret Er(m0 ; r)

Figure 8: The games that define IND-CPA security.

10 IND-SIM Security of Some Encryption Schemes

For any PKE scheme AE define IND-SIM1AE,S be defined just as IND-SIMAE,S except that b is set to one
at the beginning of main. Likewise define IND-SIM1AE,S to be IND-SIMAE,S except that b is set to zero
at the beginning of main.

SEMANTIC SECURITY. We define the typical notion of IND-CPA for public key encryption. For a PKE
schemeAE = (K, Er,Dr) with randomness length ρwe define the IND1AE and IND0AE games in Figure 8.
IND-CPA advantage of an adversary A is defined by

Advind
AE(A) = Pr

[
IND1AAE ⇒ 1

]
− Pr

[
IND0AAE ⇒ 1

]
.

THE REwH1 AND EwH SCHEMES. We prove the first Randomized-Encrypt-With-Hash (REwH1) scheme
from [11] and, as a corollary, the Encrypt-With-Hash (EwH) scheme from [10] to be IND-SIM secure in
the case that no random oracle queries are allowed. This is the required security for Theorem 9.1. We
expect other ROM schemes can similarly be analyzed. Let AE = (K, Er,Dr) be a PKE encryption scheme
with randomness length ρ. Let RO have range size ρ bits. The encryption schemes REwH1 = (K, E1,Dr)
from [11] inherits K and Dr from AE and has encryption defined as

ERO1 (pk,m ; r) = Er(pk,m ; RO(pk ‖m ‖ r)) .
This scheme generalizes the Encrypt-with-Hash scheme from [10], the latter derived by setting |ρ| = 0.

Theorem 10.1 Let A be an IND-SIM adversary making no RO queries. Then there exists an encryption
simulator S and IND-CPA adversary B such that

Advind-sim
REwH1,RO,S(A) ≤ Advind

AE(B) .

B runs in time that of A. �

Proof: The encryption simulator S works as follows. On input pk, x it chooses r←$ {0, 1}ρ, then runs
Er(pk, 0

x ; r), and finally outputs the resulting ciphertext. Adversary B works as follows. It implements
IND-SIMRO,A

REwH1,S except for the following two changes. First, it answers an RoS query onm, r by returning
the result of querying LR(0|m|,m). Second, it outputs the bit output by A. Because A never queries RO
and never repeats an RoS query, the output of RO is the same as fresh randomness as used in the LR oracle.
Thus, we have that

Pr
[

IND-SIM1RO,AREwH1,S ⇒ true
]

= Pr
[

IND1BAE ⇒ true
]

and that

Pr
[

IND-SIM0RO,AREwH1,S ⇒ false
]

= Pr
[

IND0BAE ⇒ false
]
,

which together imply the advantage statement of the theorem.

THE EaH SCHEME. We now treat the Encrypt-And-Hash efficiently searchable encryption scheme from [10].
Let AE = (K, Er,Dr) be a PKE encryption scheme with randomness length ρ. Let RO have range size ω
bits. The efficiently-searchable encryption scheme EaH = (K, E2,D2) from [10] inherits K from AE , has

24

randomness length 0 and has encryption defined as

ERO2 (pk,m) = RO(pk ‖m) ‖ Er(pk,m ; r′)

where r′←$ {0, 1}ρ is chosen fresh. Note that E2 is randomized by choice of r′, unlike the schemes above
which take all randomness as external inputs. By setting the “randomness length” of EaH to zero, we
achieve syntactic match with the IND-SIM game — the r value queried is ignored. (Here we just consider
randomness length to cover the portion of randomness controlled by the adversary.) Decryption D2 is
defined in [10].

Theorem 10.2 Let A be an IND-SIM adversary making no RO queries. Then there exists an encryption
simulator S and IND-CPA adversary B such that

Advind-sim
EaH,RO,S(A) ≤ Advind

AE(B) .

B runs in time that of A. �

Proof: The simulator S works as follows. On input pk, x it chooses h←$ {0, 1}ω and r′←$ {0, 1}ρ, runs
c← Er(pk, 0

x ; r′), and outputs h ‖ c. Adversary B works as follows. It implements IND-SIMRO,A
EaH,S except

for the following two changes. First, it answers an RoS query on m by returning the result of querying
LR(0|m|,m). Second, it outputs the bit output by A. Because A never queries RO and never repeats an
RoS query, the output of RO is the same as fresh randomness (as used in the simulator). Thus, we have that

Pr
[

IND-SIM1RO,AREwH1,S ⇒ true
]

= Pr
[

IND1BAE ⇒ true
]

and that

Pr
[

IND-SIM0RO,AREwH1,S ⇒ false
]

= Pr
[

IND0BAE ⇒ false
]
,

which together imply the advantage statement of the theorem.

Acknowledgments

Thomas Ristenpart was supported in part by Mihir Bellare’s NSF grant CCF-0915675 and by a UCSD Center
for Networked Systems grant. Hovav Shacham was supported by the MURI program under AFOSR Grant
No. FA9550-08-1-0352 and (while at the Weizmann Institute) by a Koshland Scholars Program postdoctoral
fellowship. Thomas Shrimpton was supported by NSF CAREER grant CNS-0845610.

We thank Mihir Bellare, Mike Dahlin, Yevgeniy Dodis, Daniele Micciancio, and Moni Naor for helpful
discussions about this work.

References

[1] T. Acar, M. Belenkiy, M. Bellare, and D. Cash. Cryptographic agility and its relation to circular
encryption. In H. Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 403–422, French
Riviera, May 30 – June 3, 2010. Springer, Berlin, Germany.

[2] M. Albrecht, P. Farshim, K. Paterson, and G. Watson. On cipher-dependent related-key attacks in the
ideal cipher model. In Fast Software Encryption, 2011.

[3] J. Alwen, J. Katz, Y. Lindell, G. Persiano, A. Shelat, and I. Visconti. Collusion-free multiparty com-
putation in the mediated model. In S. Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages
524–540, Santa Barbara, CA, USA, Aug. 16–20, 2009. Springer, Berlin, Germany.

25

[4] J. Alwen, A. Shelat, and I. Visconti. Collusion-free protocols in the mediated model. In D. Wagner,
editor, CRYPTO 2008, volume 5157 of LNCS, pages 497–514, Santa Barbara, CA, USA, Aug. 17–21,
2008. Springer, Berlin, Germany.

[5] E. Andreeva, B. Mennink, and B. Preneel. On the indifferentiability of the Grøstl hash function. In
J. A. Garay and R. D. Prisco, editors, SCN 10, volume 6280 of LNCS, pages 88–105, Amalfi, Italy,
Sept. 13–15, 2010. Springer, Berlin, Germany.

[6] B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast cryptographic primitives and circular-secure
encryption based on hard learning problems. In S. Halevi, editor, CRYPTO 2009, volume 5677 of
LNCS, pages 595–618, Santa Barbara, CA, USA, Aug. 16–20, 2009. Springer, Berlin, Germany.

[7] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song. Provable data
possession at untrusted stores. In S. De Capitani di Vimercati and P. Syverson, editors, Proceedings of
CCS 2007, pages 598–609. ACM Press, Oct. 2007.

[8] M. Backes, M. Dürmuth, and D. Unruh. OAEP is secure under key-dependent messages. In J. Pieprzyk,
editor, ASIACRYPT 2008, volume 5350 of LNCS, pages 506–523, Melbourne, Australia, Dec. 7–11,
2008. Springer, Berlin, Germany.

[9] B. Barak, I. Haitner, D. Hofheinz, and Y. Ishai. Bounded key-dependent message security. In
H. Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 423–444, French Riviera,
May 30 – June 3, 2010. Springer, Berlin, Germany.

[10] M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable encryption. In
A. Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 535–552, Santa Barbara, CA, USA,
Aug. 19–23, 2007. Springer, Berlin, Germany.

[11] M. Bellare, Z. Brakerski, M. Naor, T. Ristenpart, G. Segev, H. Shacham, and S. Yilek. Hedged public-
key encryption: How to protect against bad randomness. In M. Matsui, editor, ASIACRYPT 2009,
volume 5912 of LNCS, pages 232–249, Tokyo, Japan, Dec. 6–10, 2009. Springer, Berlin, Germany.

[12] M. Bellare, D. Cash, and R. Miller. A comparitive study of achievability of security against related-key
attack. ePrint Archive, http://eprint.iacr.org/2011/252.

[13] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric encryp-
tion. In 38th FOCS, pages 394–403, Miami Beach, Florida, Oct. 19–22, 1997. IEEE Computer Society
Press.

[14] M. Bellare, M. Fischlin, A. O’Neill, and T. Ristenpart. Deterministic encryption: Definitional equiva-
lences and constructions without random oracles. In D. Wagner, editor, CRYPTO 2008, volume 5157
of LNCS, pages 360–378, Santa Barbara, CA, USA, Aug. 17–21, 2008. Springer, Berlin, Germany.

[15] M. Bellare and S. Keelveedhi. Authenticated and misuse-resistant encryption of key-dependent data.
In P. Rogaway, editor, Advances in Cryptology — CRYPTO 2011. Springer, 2011.

[16] M. Bellare and T. Kohno. A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and
applications. In E. Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 491–506, Warsaw,
Poland, May 4–8, 2003. Springer, Berlin, Germany.

[17] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure against dictionary
attacks. In B. Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 139–155, Bruges,
Belgium, May 14–18, 2000. Springer, Berlin, Germany.

26

[18] M. Bellare and T. Ristenpart. Multi-property-preserving hash domain extension and the EMD trans-
form. In X. Lai and K. Chen, editors, ASIACRYPT 2006, volume 4284 of LNCS, pages 299–314,
Shanghai, China, Dec. 3–7, 2006. Springer, Berlin, Germany.

[19] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient proto-
cols. In V. Ashby, editor, ACM CCS 93, pages 62–73, Fairfax, Virginia, USA, Nov. 3–5, 1993. ACM
Press.

[20] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based game-
playing proofs. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 409–426,
St. Petersburg, Russia, May 28 – June 1, 2006. Springer, Berlin, Germany.

[21] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. On the indifferentiability of the sponge
construction. In N. P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 181–197,
Istanbul, Turkey, Apr. 13–17, 2008. Springer, Berlin, Germany.

[22] J. Black, P. Rogaway, and T. Shrimpton. Encryption-scheme security in the presence of key-dependent
messages. In K. Nyberg and H. M. Heys, editors, SAC 2002, volume 2595 of LNCS, pages 62–75, St.
John’s, Newfoundland, Canada, Aug. 15–16, 2003. Springer, Berlin, Germany.

[23] A. Boldyreva, D. Cash, M. Fischlin, and B. Warinschi. Foundations of non-malleable hash and one-
way functions. In M. Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 524–541, Tokyo,
Japan, Dec. 6–10, 2009. Springer, Berlin, Germany.

[24] A. Boldyreva, S. Fehr, and A. O’Neill. On notions of security for deterministic encryption, and efficient
constructions without random oracles. In D. Wagner, editor, CRYPTO 2008, volume 5157 of LNCS,
pages 335–359, Santa Barbara, CA, USA, Aug. 17–21, 2008. Springer, Berlin, Germany.

[25] D. Boneh, S. Halevi, M. Hamburg, and R. Ostrovsky. Circular-secure encryption from decision diffie-
hellman. In D. Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 108–125, Santa Barbara,
CA, USA, Aug. 17–21, 2008. Springer, Berlin, Germany.

[26] Z. Brakerski and S. Goldwasser. Circular and leakage resilient public-key encryption under subgroup
indistinguishability - (or: Quadratic residuosity strikes back). In CRYPTO 2010, LNCS, pages 1–20,
Santa Barbara, CA, USA, Aug. 2010. Springer, Berlin, Germany.

[27] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
FOCS, pages 136–145, Las Vegas, Nevada, USA, Oct. 14–17, 2001. IEEE Computer Society Press.

[28] R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally composable security with global setup. In
S. P. Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 61–85, Amsterdam, The Netherlands,
Feb. 21–24, 2007. Springer, Berlin, Germany.

[29] R. Canetti and T. Rabin. Universal composition with joint state. In D. Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 265–281, Santa Barbara, CA, USA, Aug. 17–21, 2003. Springer, Berlin,
Germany.

[30] D. Chang and M. Nandi. Improved indifferentiability security analysis of chopMD hash function. In
K. Nyberg, editor, FSE 2008, volume 5086 of LNCS, pages 429–443, Lausanne, Switzerland, Feb. 10–
13, 2008. Springer, Berlin, Germany.

[31] J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damgård revisited: How to construct a hash
function. In V. Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 430–448, Santa Barbara,
CA, USA, Aug. 14–18, 2005. Springer, Berlin, Germany.

27

[32] Y. Dodis, R. Oliveira, and K. Pietrzak. On the generic insecurity of the full domain hash. In V. Shoup,
editor, CRYPTO 2005, volume 3621 of LNCS, pages 449–466, Santa Barbara, CA, USA, Aug. 14–18,
2005. Springer, Berlin, Germany.

[33] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy Extractors: How to Generate Strong Keys
from Biometrics and Other Noisy Data. SIAM Journal of Computing, 38(1):97–139, 2008.

[34] Y. Dodis, L. Reyzin, R. L. Rivest, and E. Shen. Indifferentiability of permutation-based compression
functions and tree-based modes of operation, with applications to MD6. In O. Dunkelman, editor,
FSE 2009, volume 5665 of LNCS, pages 104–121, Leuven, Belgium, Feb. 22–25, 2009. Springer,
Berlin, Germany.

[35] Y. Dodis, T. Ristenpart, and T. Shrimpton. Salvaging Merkle-Damgård for practical applications.
In A. Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 371–388, Cologne, Germany,
Apr. 26–30, 2009. Springer, Berlin, Germany.

[36] J. Franks, P. Hallam-Baker, J. Hostetler, P. Leach, A. Luotonen, E. Sink, and L. Stewart. An Extension
to HTTP: Digest Access Authentication. RFC 2069 (Proposed Standard), Jan. 1997. Obsoleted by
RFC 2617.

[37] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game, or a completeness theorem
for protocols with honest majority. In A. Aho, editor, 19th ACM STOC, pages 218–229, New York
City,, New York, USA, May 25–27, 1987. ACM Press.

[38] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences,
28(2):270–299, 1984.

[39] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adaptive chosen-
message attacks. SIAM Journal on Computing, 17(2):281–308, Apr. 1988.

[40] S. Halevi and H. Krawczyk. Security under key-dependent inputs. In P. Ning, S. D. C. di Vimercati,
and P. F. Syverson, editors, ACM CCS 07, pages 466–475, Alexandria, Virginia, USA, Oct. 28–31,
2007. ACM Press.

[41] S. Hirose, J. H. Park, and A. Yun. A simple variant of the Merkle-Damgård scheme with a permutation.
In K. Kurosawa, editor, ASIACRYPT 2007, volume 4833 of LNCS, pages 113–129, Kuching, Malaysia,
Dec. 2–6, 2007. Springer, Berlin, Germany.

[42] D. Hofheinz and D. Unruh. Towards key-dependent message security in the standard model. In N. P.
Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 108–126, Istanbul, Turkey, Apr. 13–
17, 2008. Springer, Berlin, Germany.

[43] A. Juels and B. Kaliski. PORs: Proofs of retrievability for large files. In S. De Capitani di Vimercati
and P. Syverson, editors, Proceedings of CCS 2007, pages 584–97. ACM Press, Oct. 2007.

[44] S. Kamara, P. Mohassel, and M. Raykova. Outsourcing multi-party computation. Cryptology ePrint
Archive, Report 2011/272, 2011. http://eprint.iacr.org/.

[45] E. Kiltz and K. Pietrzak. On the security of padding-based encryption schemes - or - why we cannot
prove OAEP secure in the standard model. In A. Joux, editor, EUROCRYPT 2009, volume 5479 of
LNCS, pages 389–406, Cologne, Germany, Apr. 26–30, 2009. Springer, Berlin, Germany.

[46] R. Kotla, L. Alvisi, and M. Dahlin. SafeStore: A durable and practical storage system. In J. Chase and
S. Seshan, editors, Proceedings of USENIX Technical 2007, pages 129–42. USENIX, June 2007.

28

[47] A. Lehmann and S. Tessaro. A modular design for hash functions: Towards making the mix-compress-
mix approach practical. In M. Matsui, editor, Advances in Cryptology — ASIACRYPT 2009, volume
5912 of Lecture Notes in Computer Science, pages 364–381. Springer-Verlag, Dec. 2009.

[48] M. Liskov. Constructing an ideal hash function from weak ideal compression functions. In E. Biham
and A. M. Youssef, editors, SAC 2006, volume 4356 of LNCS, pages 358–375, Montreal, Canada,
Aug. 17–18, 2006. Springer, Berlin, Germany.

[49] U. Maurer and S. Tessaro. Basing PRFs on constant-query weak PRFs: Minimizing assumptions for
efficient symmetric cryptography. In J. Pieprzyk, editor, Advances in Cryptology — ASIACRYPT 2008,
volume 5350 of Lecture Notes in Computer Science, pages 161–178. Springer-Verlag, Dec. 2008.

[50] U. M. Maurer. Indistinguishability of random systems. In L. R. Knudsen, editor, EUROCRYPT 2002,
volume 2332 of LNCS, pages 110–132, Amsterdam, The Netherlands, Apr. 28 – May 2, 2002. Springer,
Berlin, Germany.

[51] U. M. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility results on reductions,
and applications to the random oracle methodology. In M. Naor, editor, TCC 2004, volume 2951 of
LNCS, pages 21–39, Cambridge, MA, USA, Feb. 19–21, 2004. Springer, Berlin, Germany.

[52] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks. In
22nd ACM STOC, Baltimore, Maryland, USA, May 14–16, 1990. ACM Press.

[53] B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure reactive systems. In
S. Jajodia and P. Samarati, editors, ACM CCS 00, pages 245–254, Athens, Greece, Nov. 1–4, 2000.
ACM Press.

[54] T. Ristenpart and T. Shrimpton. How to build a hash function from any collision-resistant function. In
K. Kurosawa, editor, ASIACRYPT 2007, volume 4833 of LNCS, pages 147–163, Kuching, Malaysia,
Dec. 2–6, 2007. Springer, Berlin, Germany.

[55] T. Ristenpart and S. Yilek. When good randomness goes bad: Virtual machine reset vulnerabilities
and hedging deployed cryptography. In Network and Distributed Systems Security – NDSS ’10. ISOC,
2010.

[56] G. Tsudik. Message authentication with one-way hash functions. In Proceedings IEEE INFOCOM’92,
volume 3, pages 2055–2059. IEEE, 1992.

[57] F. F. Yao and Y. L. Yin. Design and analysis of password-based key derivation functions. In
A. Menezes, editor, CT-RSA, volume 3376 of LNCS, pages 245–261. Springer, 2005.

A Inequivalence of CRP and Standard Hash Function Security Notions

In this section, we show that the CRP property of hash functions defined in Section 4 is inequivalent to the
standard notions of hash function security. Note that both lemmas apply as well when the challenge hash is
computed asH(C ‖M), meaning that they are relevant also to the challenge hash specified for the SafeStore
system [46].

Lemma A.1 If there exists a hash function that is collision-resistant (resp., first preimage resistant, second
preimage resistant) then there exists a function that is collision-resistant (resp., first preimage resistant) and
not CRP.

29

Proof: Let h : {0, 1}p → {0, 1}r be the collision-resistant (or preimage reistant) function. Define h : {0, 1}p →
{0, 1}s → {0, 1}r + s as

H(M ‖ C) = h(M) ‖ C.

ThenH is collision resistant, first preimage resistant, or second preimage resistant on its input (M‖C) when-
ever h is on its inputM , since any collision or preimage attack onH would also give a collision or preimage
attack on h, the portion of its output that is not one-to-one. But H is clearly (p, n, s)-online computable
for n = r, the output length of h: set st = H1(M) = h(M) and H2(st, C) = st ‖ C. A function that is
(p, n, s)-online computable cannot be (p, n, s)-CRP.

Lemma A.2 If there exists a CRP hash function then there exists a CRP hash function that is not collision-
resistant, first preimage resistant, or second preimage resistant.

Proof: Let h be (p, n, s)-CRP hash function with r-bit output, h : {0, 1}p × {0, 1}s → {0, 1}r. Define
Define H : {0, 1}p × {0, 1}s+r → {0, 1}r as

H
(
M ‖ (C ‖ C ′)

)
= h(M ‖ C)⊕ C ′.

We can easily see that H is not collision-resistant, first preimage resistant, or second preimage resistant on
its input (M,C,C ′). For any desired output value x, pick M and C at random and set C ′ ← h(M ‖C)⊕ x;
now H

(
M ‖ (C ‖C ′)

)
= x. This procedure computes (random) first preimages and can trivially be used to

compute second preimages and collisions.

But H is (p, n, s + r)-CRP. Suppose it were not. Then by definition there exists an adversary (A1,A2)
such that, for M ←$ {0, 1}p, C←$ {0, 1}s, and C ′←$ {0, 1}r, A1(M) outputs state st (with |st| ≤ n)
and A2

(
st, (C ‖ C ′)

)
outputs Z where Z = H

(
M ‖ (C ‖ C ′)

)
with nonnegligible probability. Using

(A1,A2), we build an adversary (A′1,A′2) that shows that h is not (p, n, s)-CRP, a contradiction. Algorithm
A′1 is simply A1. Algorithm A′2, on input st and C, chooses C ′ at random from {0, 1}r and outputs
A2(st, C)⊕ C ′. Then clearly The state output by (A′1,A′2) is of the same length as the state output by
(A1,A2), and A′2(A′1(M), C) = h(M ‖ C) whenever A2

(
A1(M), (C ‖ C ′)

)
= H

(
M ‖ (C ‖ C ′)

)
.

30

