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Abstract. Over the years, various security notions have been proposed in order
to cope with a wide range of security scenarios. Recently, the study of security
notions has been extended towards comparing cryptographic definitions of secure
implementation with game-theoretic definitions of universal implementation of a
trusted mediator. In this work we go a step further: We define the notion of game
universal implementation and we show it is equivalent to weak stand-alone security.
Thus, we are able to answer positively the open question from [20,19] regarding
the existence of game-theoretic definitions that are equivalent to cryptographic
security notions for which the ideal world simulator does not depend on both the
distinguisher and the input distribution.
Moreover, we investigate the propagation of the weak stand-alone security notion
through the existing security hierarchy, from stand-alone to universal composability.
Our main achievement in this direction is a separation result between two variants
of the UC security definition: 1-bit specialized simulator UC security and specialized
simulator UC security. This solves an open question from [25] and comes in contrast
with the well known equivalence result between 1-bit UC security and UC security.
We also show that weak security under 1-bounded concurrent general composition
is equivalent to 1-bit specialized simulator UC security. As a consequence, we
obtain that the notion of weak stand-alone security and the notion of stand-alone
security are not equivalent.
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1 Introduction

Nowadays we rely more and more often for everyday tasks on security protocols. Moreover,
the number of contexts where the use of security protocols is required by law or expected
by users has also grown rapidly in recent years. A wide range of security properties have
been defined and implemented into real-world systems, but so far there is no unique
notion that fulfills all requirements: For example, a given notion may ensure strong
security guarantees, but comes at the price of inefficiency or it offers good scalability in
practice, but there are scenarios where it is too permissive. In order to ensure the most
appropriate security notion is chosen when designing a system that has security as one of
its features, one should know very well how various security notions relate to each other.

Recently the view on security definitions has been extended [20] with the incipient
study of the equivalence relation between weak precise secure computation and a weak
variant of the game theoretic notion of universal implementation for a trusted mediator.
However, it is still left as an open problem [20,19] how to obtain such a comparisons for
other, possibly stonger security notions.

1.1 Contribution

We have a three fold contribution.

First, we relate the notion of weak stand-alone security1 to the emerging game-theoretic
concept of universal implementation [20,19]. In contrast to previous work, for our result
we use a variant of universal implementation that discards the cost of computation. We
are able to answer positively the open question from [20,19] regarding the existence of
game-theoretic concepts that are equivalent to cryptographic security notions where the
simulator does not depend on both the input distribution and the distinguisher.

Second, we study the propagation of weak security notion through the hierarchy
security definitions. More precisely, we show that the notion weak security composed
under concurrent general composition is equivalent to 1-bit specialized simulator UC
security, which is a variant of UC security. Together with our first result, this implies
that weak stand-alone security and stand-alone security are not equivalent.

Third, we present a separation result between two variants of UC security: 1-bit
specialized simulator UC security and specialized simulator UC security. This solves an
open question from [25] and comes in contrast with the well known equivalence result
between 1-bit UC security and UC security [5]. Both variants of the UC security notion
are obtained from the UC security definition by changing the order of quantifiers2. Thus,
we continue the line of study started by [8,25]. In order to obtain the separation, we first

1 The difference between stand-alone security and weak stand-alone security is in the order of
quantifiers. For stand-alone security, the simulator is universally quantified over all distin-
guishers and input distributions. As detailed in section 2, for our notion of weak security the
simulator depends only on the distinguisher and not on the input distribution. This comes in
contrast with [20], where the simulator for weak precise secure computation depends on both
distinguisher and input distribution.

2 This means that in contrast to the UC security definition, the simulator may depend on the
environment.
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show that the 1-bit specialized simulator UC security is equivalent to a seemingly weaker
version of security, namely weak specialized simulator UC security3.

The main proof technique used in our separation result is to employ a cryptographic
tool called time-lock puzzles. Intuitively, this cryptographic tool can be used for comparing
the computational power of two different polynomially bounded Turing machines. In
order to achieve the separation result, we use time-lock puzzles from which we derive
a result interesting also on its own, mainly a construction of a one-way function and a
hard-core predicate.

1.2 Background and Related Work

The initial work [39] on general security definitions highlighted the need for a framework
expressing security requirements in a formal way. The first formal definition of secure
computation was introduced by Goldreich et al.[13]. The first approaches for formally
defining security notions [15,16] have taken into account only the stand-alone model.
In this model, the security of the protocol is considered with respect to its adversary,
in isolation from any other copy of itself or from a different protocol. However, there
are simple protocols [9] that fulfill stand-alone security, but are no longer secure under
parallel or concurrent composition.

Micali and Rogaway [30] introduce the first study of protocol composition, which
the authors call reducibility. The first security definition expressed as a comparison with
an ideal process, as well as the corresponding sequential composition theorem for the
stand-alone model are provided in [3]. A general definition of security for evaluating a
probabilistic function on the parties’ inputs is given in [4]. It is shown that security is
preserved under a subroutine substitution composition operation, which is a non-concurent
version of universal composition: Only a single instance of the protocol is active at any
point in time. The framework of universally composable security, for short UC security
[5] allows for specifying the requirements for any cryptographic task and within this
framework protocols are guaranteed to maintain their security even in the presence
of an unbounded number of arbitrary protocol instances that run concurrently in an
adversarially controlled manner.

The notion of specialized simulator UC security has been introduced in [25] and it
was shown that this is equivalent to general concurrent composability when the protocol
under consideration is composed with one instance of any possible protocol. Changing
the order of quantifiers in the context of security definitions has been previously used in
[8,19,20] for strengthening or weakening given security notions. A more detailed review
about the existing implication relations among different security notions can be found in
section 5.

In parallel with the UC framework, the notion of reactive security has been developed
[33,21,32,34,35]. The framework addresses for the first time concurrent composition in a
computational setting: it is shown that security is preserved when a single instance of a
subroutine protocol is composed concurrently with the calling protocol. The framework
has been extended in [2] to deal with the case where the number of parties and protocol
instances depends on the security parameter. More about the differences between reactive

3 This notion, additionally to having the simulator depend on the environment, also has the
simulator depend on the distinguisher that compares the views of the environment from the
real and the ideal world.
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simulatability and universal composability notions can be read in the related work section
from [5].

Our study of the relation between security and game theoretic notions has been
triggered by the recently emerging field of rational cryptography, where users are assumed
to only deviate from a protocol if doing so offers them an advantage. Rational cryptography
is centered around (adapted) notions of game theory such as computational equilibria [7].
A comprehensive line of work already exists developing novel protocols for cryptographic
primitives such as rational secret sharing and rational secure multiparty computation
[1,10,11,17,18,24].

Historically, game theory and its computational aspects have been first studied in
more detail in [31] (i.e., players are modeled as finite automata) and in [28] (players are
defined as Turing machines). Later, [7,38] study the rational cryptographic problem of
implementing mediators using polynomially-bounded Turing machines. Another direction,
[19,20,37] considers that computation is costly for players and investigates how this affects
their utilities and the design of appropriate protocols. In [37], a player’s strategy is defined
as a finite automaton whose complexity (i.e., number of states) influences players utilities.
In [20,19] similar considerations are made: both the input and the complexity of the
machine (which is a Turing machine this time) are taken into account. This complexity
can be interpreted, for example, as the running time or the space used by the machine for
a given input. Their work develops a game-theoretic notion of protocol implementation
and they show a special case of their definition is equivalent to a weak variant of precise
secure computation.

1.3 Organization

This work is structured as follows: In section 2 we review security notions and in section 3
we revise the game theoretic notion of universal implementation. In section 4 we prove
our separation result between specialized simulator UC security and 1-bit specialized
simulator UC security. In section 5 we show our equivalence relation between weak security
under 1-bounded concurrent general composition and 1-bit specialized simulator UC
security. In section 5.2 we present the equivalence between our weak security notion and
the game-theoretic notion of strong universal implementation. In section 6 we conclude.
In appendix A we give additional definitions for the UC security and security under
general concurrent composition. In appendix B we present the postponed proofs from
section 4. In appendices C and D we include the postponed proofs from section 5.

2 Review of Security Notions

In this work we consider all parties and adversaries run in polynomial time in the security
parameter k and not in the length of input. In this section we review two models of
security under composition: concurrent general composition and universal composability.
Both frameworks require the notion of (computational) indistinguishability given below.

Definition 1 (Computational Indistinguishability). We call distribution ensembles
{X(k, z)}k∈N,z∈{0,1}∗ and {Y (k, z)}k∈N,z∈{0,1}∗ computationally indistinguishable and we
write X ≡ Y , if for every probabilistic distinguisher D, polynomial in k there exists a
function ε, negligible in k, such that for every z ∈ {0, 1}∗

|(Pr(D(X(k, z)) = 1)− (Pr(D(Y (k, z)) = 1)| < ε(k)
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A variant of this definition, which we call indistinguishability with respect to a given

adversary D and we denote by
D≡, is analogous to the definition above, where “for every

probabilistic distinguisher D” is replaced with “for distinguisher D”. Such a definition
will be used in relation with our notion of weak security.

2.1 Universal Composability

The standard method for defining security notions is by comparing a real world protocol
execution to an ideal world process execution. In the real world execution, a protocol
interacts with its adversary and possibly with other parties. In the ideal world execution,
an idealized version of the protocol (called ideal functionality) interacts with an ideal
world adversary (usually called simulator) and possibly with other parties. The ideal
functionality is defined by the security requirements that we want our protocol to fulfill.

On an intuitive level, given an adversary, the purpose of the simulator is to mount an
attack on the ideal functionality; any probabilistic polynomial time (or PPT) distinguisher
may try to tell apart the output of the interaction between the ideal functionality and
the simulator and the output of the interaction between the protocol and its adversary. If
for every adversary, a simulator exists such that the two outputs cannot be told apart by
any PPT distinguisher, then our initial protocol is as secure as the ideal functionality,
with respect to what is called the stand-alone model.

Definition 2 (Stand-alone Security). Let ρ be a protocol and F an ideal functionality.
We say ρ securely implements F if for every probabilistic polynomial-time real-model
adversary A there exists a probabilistic polynomial-time ideal-model adversary S such
that for every protocol input x and every auxiliary input z (given to the adversary) with
x, z ∈ {0, 1}poly(n), where k is the security parameter:

{IDEALFS (k, x, z)}k∈N ≡ {REALρ,A(k, x, z)}k∈N.

By IDEALFS (k, x, z) we denote the output of F and S after their interaction and
REALρ,A(k, x, z) denotes the output of the parties of ρ and adversary A after their
interaction. If we allow the simulator to depend on the distinguisher, we obtain the weak
stand-alone security notion.

There are examples [9] of protocols secure in the stand-alone model that do not remain
secure even when two of its instances run concurrently. More stringent security definitions
take into account that a protocol interacts not only with its adversary, but also with
other (possibly polynomially many) protocols or with (polynomially many) copies of itself.
This is intuitively captured by the universal composability (UC) security framework [5].
(Due to lack of space, we give below only high level intuition about the model and the
relevant definitions. A detailed review is included in the appendix A.

The definition of universal composability follows the paradigm described above,
however it introduces an additional adversarial entity which is called environment. The
environment, usually denoted by Z, is present in both the UC real world and UC ideal
world. The environment represents everything that is external to the current execution of
the real-world protocol or to the ideal functionality. Throughout the execution, both in
the real and in the ideal world, the environment can provide inputs to parties running
ρ or the ideal functionality F respectively, and to the adversary. These inputs can be
a part of the auxiliary input of Z or can be adaptively chosen. Also Z receives all the
output messages of the parties it interacts with and of the adversary. Moreover, the only
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interaction between the environment Z and the parties of ρ or F is when the environment
sends the inputs and receives the outputs. Finally, at the end of the execution, the
environment outputs all the messages it received. The environment is modeled as a PPT
machine with auxiliary input. This auxiliary input captures the intuition that Z may
learn some information from previous executions and it may also use it at any point later.

The main difference between the execution of UC real and UC ideal world, is that in
the latter the ideal functionality cannot be directly accessed by the environment. Parties
involved in the ideal execution give their inputs to the ideal functionality which computes
some outputs and sends back these values. Since the ideal world parties perform no
computation they are called the dummy parties for the ideal functionality. The ideal F
together with its corresponding dummy parties represent an ideal process.

When the protocol execution ends, Z outputs its view of that execution. In the real
world, his view contains messages that Z has received from the adversary A and outputs
of all parties of ρ. This is denoted by EXEC ρ,A,Z(k, z), where k is the security parameter
and z is the auxiliary input to Z. Similarly, in the ideal world execution, the environment
Z outputs its view which contains all the messages received from S as well as all messages
that the dummy parties of F output to Z. This is denoted by EXECF,S,Z(k, z). We are
now ready to define UC security:
Definition 3 (UC Security). Let ρ be a PPT protocol and let F be an ideal func-
tionality. We say that ρ UC emulates F (or ρ is as secure as F with respect to UC
security) if for every PPT adversary A there is a PPT simulator S such that for ev-
ery PPT distinguisher Z and for every distribution of auxiliary input z ∈ {0, 1}∗, the
two families of random variables {EXECF,S,Z(k, z)}k∈N and {EXEC ρ,A,Z(k, z)}k∈N are
computationally indistinguishable.
In the following we also use a relaxed version of this definition, where the order of
quantifiers between the environment and the ideal-world simulator is reversed [25].

Definition 4 (Specialized Simulator UC Security). Let ρ be a protocol and F an
ideal functionality. We say that ρ emulates F under specialized simulator UC security if
for every probabilistic polynomial time adversary A and for every environment Z, there
exists a simulator S such that for every input z ∈ {0, 1}∗, we have:

{EXECF,S,Z(k, z)}k∈N ≡ {EXEC ρ,A,Z(k, z)}k∈N.
It had been shown [22] that the two notions defined above are not equivalent. In the

above definition, the output of the environment is considered to be a string of arbitrary
length. If the only change we make to the above definition is to consider environments
that have a 1-bit output, we obtain the notion of 1-bit specialized simulator UC security.
It has been an open problem [25] whether considering only environments with one bit
output would produce an equivalent definition. In this work we show this is not the case.
If in the specialized simulator UC definition we let the simulator also depend on the
distinguisher (i.e., the only machine to establish whether the output of the executions in
the real UC world and in the ideal UC world cannot be told apart), then we obtain the
notion of weak specialized simulator UC security. Both specialized simulator UC variants
are defined in full detail in appendix A.1.

In the revised version of [5] there is an extension of the UC model we reviewed
above. This extension mainly considers that PPT machines run in time polynomial in
both the security parameter and the length of the input. While the extended model
is seemingly more expressive in terms of adversarial attacks, it does not allow for fine
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grained separation between security notions (e.g., the separation result from [22] does
not hold in the extended UC model). Another reason for choosing the original model is
that, as it will be detailed in section 5, most of the UC results have been obtained in this
model.

2.2 Weak Security under 1- bounded Concurrent General Composition

Similarly to the above security concepts, the notion of security under concurrent general
composition [25] is defined using the real-ideal world paradigm. Full details about this
security model are postponed to the appendix A.

In this model, an external and arbitrary protocol π gives inputs to and collects outputs
from an “internal protocol” that can be a real-world protocol or an ideal functionality. We
denote by ρ the real-world protocol interacting with π and by F the ideal functionality.
Protocol π may call multiple instances of the protocol it interacts with as long as all of
them run independently and all its messages may be sent in a concurrent manner.

The computation in the ideal world is performed among the parties of π and an ideal
functionality F . Protocol π is providing F with inputs and after performing necessary
computations, F sends the results to parties of π. The messages between π and F are
ideally secure, so the ideal adversary (or simulator) can neither read nor change them.4

The ideal-world honest parties follow the instructions of π and output the value
prescribed by π. The corrupted parties output a special corrupted symbol and additionally
the adversary may output an arbitrary image of its view. Let z be the auxiliary input
for the ideal-world adversary S and let x̄ = (x1, ..., xm) be the inputs vector for parties
of π. The outcome of the computation of π with F in the ideal world is defined by the
output of all parties of π and S and is denoted by {HYBRIDFπ,S(k, x̄, z)}k∈N. We choose
this notation in order to make it easier to differentiate between the ideal world in the UC
definition and the ideal world in the general concurrent composition definition. Moreover,
this is not unjustified, as in the latter case the messages that occur in the ideal world
correspond both to communication among real world parties of π and also between parties
of π and the ideal functionality.

The computation in the real world follows the same rules as the computation in the
ideal world, only that this time there is no trusted party. Instead, each party of π has an
ITM that works as the specification of ρ for that party. Thus, all messages that a party
of π sends to the ideal functionality in the ideal world are now written on the input tape
of its designated ITM. These ITMs communicate with each other in the same manner as
specified for the parties of ρ. After the computation is performed, the results are output
by these ITMs to their corresponding parties of π.

The honest real-world parties follow the instructions of π and their corresponding
ITM and in the end they output the value prescribed by π. The corrupted parties output
a special symbol and additionally the real-world adversary A may output an arbitrary
image of its view. The outcome of the computation of π with ρ in the real world is defined
by the output of all parties and A and is denoted by {REALπρ,A(k, x̄, z)}k∈N.

We are now ready to state the definition of security under concurrent general com-
position [25], with the additional flavor of weak security. This means that we allow the

4 This comes in contrast with the standard definition of UC ideal protocol execution, where it
is not enforced that the channels between the trusted parties and the rest of the participants
are ideally secure.
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simulator to depend on the distinguisher and additionally, this distinguisher is the only
entity supposed to tell apart the real world execution from the ideal world execution.

Definition 5 (Weak Security under Concurrent General Composition). Let ρ
be a protocol and F a functionality. Then, ρ computes F under concurrent general
composition with weak security if for every probabilistic polynomial-time protocol π in
the F-hybrid model that utilizes ideals calls to F , for every probabilistic polynomial-time
real-model adversary A for πρ and for every probabilistic polynomial-time distinguisher D,
there exists a probabilistic polynomial-time ideal-model adversary S such that for every
x̄, z ∈ {0, 1}∗:

{HYBRIDFπ,S(k, x̄, z)}k∈N
D≡ {REALπρ,A(k, x̄, z)}k∈N.

If we restrict the protocols π to those that utilize at most ` ideal calls to F , then ρ is said
to compute F under `-bounded concurrent general composition with weak security.

3 Review of Game-theoretic Definitions

In this section we review basic game-theoretic definitions that we further need for
establishing the equivalence between the our notion of weak security and the strong
univeral implementation notion given in [19] and redefined below.

A Bayesian game Γ = ({Ti}ni=1, {Ai}ni=1,Pr , {ui}ni=1) (also called a game with in-
complete information) consists of players 1, . . . , n where each of them makes a single
move. The incomplete information is captured by the fact that the type for each player i
(i.e., its private information) is chosen externally, from a set Ti, prior to the beginning
of the game. Pr is a publicly known distribution over the types. Each player has a set
Ai of possible actions to play and individual utility functions ui. All actions are played
simultaneously; afterwards, every player i receives a payoff that is determined by applying
its utility function ui to the vector of types received in the game (i.e., profile types) and
the actions played (i.e., action profile).

Recent work has extended the traditional notion of a game to the requirements of
cryptographic settings with their probabilistically generated actions and computationally-
bounded running times. The resulting definition – called computational game [23] – allows
each player i to decide on a probabilistic polynomial-time (in the security parameter)
interactive Turing machine Mi (short PPITM). The machine Mi is called the strategy for
player i. The output of Mi in the joint execution of these interactive Turing machines
denotes the action of player i.

Definition 6 (Computational Game). Let k be the security parameter and let Γ =
({Ti}ni=1, {Ai}ni=1,Pr ,
{ui}ni=1) be a Bayesian game. Then Γ is a computational game if the played action Ai
of each participant i is computed by a PPITM Mi and if the utility ui of each player i is
polynomial-time computable.

Because of the probabilistic strategies, the utility functions ui now correspond to the
expected payoffs. Thus, when there is no possibility for confusion, we overload the notation
for ui. (However, when the utility we employ is not clear from the context, we denote by
Ui the expected utility for party i.)

Rationally behaving players aim to maximize these payoffs. In particular, if a player
knew which strategies the remaining players intend to choose, he would hence pick the
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strategy that induces the most benefit for him. As this simultaneously holds for every
player, we are looking for a so-called Nash equilibrium, i.e., a strategy vector where each
player has no incentive to deviate from, provided that the remaining strategies do not
change. Similar to the notion of a game, we consider a computational variant of a Nash
equilibrium.

Definition 7 (Computational Nash Equilibrium). Let Γ be a computational game,
where Γ = ({Ti}ni=1,
{Ai}ni=1,Pr , {ui}ni=1) and let k be the security parameter. A strategy vector (or machine

profile) consisting of PPITMs
−→
M = (M1, . . . ,Mn) is a computational Nash equilibrium if

for all i and any PPITM M ′i there exists a negligible function ε such that ui(k,M
′
i ,
−−→
M−i)−

ui(k,
−→
M) ≤ ε(k) holds.

Here ui(k,M
′
i ,
−−→
M−i) denotes the function ui applied to the setting where every player

j 6= i sticks to its designated strategy Mj and only player i deviates by choosing the

strategy M ′i . In the definition above, we call Mi a computational best response to
−−→
M−i.

The definition of a game can be extended to take into account which are the utilities
of a group of players participating in the prescribed protocol, or deviating from it. In
the rest of the paper we denote by Z the set of players participating in such a coalition
and we denote by uZ and UZ respectively, the utility and the expected utility for such a
coalition. We also denote for example by MZ the vector of strategies (or the PPT ITMs)
that the parties in Z run (or are controlled by).

The definition of computational Nash equilibrium can be extended to the notion of
computational Nash equilibrium with immunity with respect to coalitions. This requires
that the property in the definition of computational Nash equilibrium is fulfilled for all
subsets Z of players, i.e., for all Z and all PPITM M ′Z controlling the parties in Z there

exists a negligible function εZ such that UZ(k,M ′Z ,
−−−→
M−Z)− Ui(k,

−→
M) ≤ εZ(k) holds.

So far we have assumed that players communicate only among each other. We extend
a computational game to a computational game with mediator. The mediator is modeled
by an ITM denoted F . Without loss of generality, we assume all communication passes
between players and the trusted mediator (that can also forward messages among players).

Next we follow the approach from [20] to formalize the intuition that the machine

profile
−→
M = (M1, . . . ,Mn) implements a mediator F whenever a set of players want to

truthfully provide a value (e.g., their input or type) to the mediator F , they also want to

run
−→
M using the same values. For each player i, let its type be ti = (xi, zi), where xi is

player’s input and zi is some auxiliary information (i.e., about the state of the world).
Let ΛF denote the machine that, given the type t = (x, z) sends x to the mediator

F , outputs as action the string it receives from F and halts. So ΛF uses only input5 x

and ignores auxiliary information z. By
−→
ΛF we denote the machine profile where each

player uses only ΛF . We ensure that whenever the players want to use mediator F , they

also want to run
−→
M if every time

−→
ΛF is a computational Nash equilibrium for the game

(G,F), then running
−→
M using the intended input is a computational Nash equilibrium as

well.

5 As in [19], the games considered are canonical games of fixed input n. Any game where there
are only finitely many possible types can be represented (by corresponding padding of the
input) as a canonical game for some length n.
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Finally, we provide our definition for game theoretic protocols implementing trusted
mediators. We call our notion game universal implementation. A closely related notion,
called strong universal implementation, has been previously defined [19]. On an intuitive
level, the main difference between the existing notion and the new notion is that for
strong universal implementation, parties consider computation to be costly (i.e., time or
memory used for computation may incur additional costs in the utility of the users), while
our notion basically regards computation as “for free”. The naive intuition suggests that
game universal implementation is a weaker notion than strong universal implementation.
However, as we will see in section 5.2, a formal reasoning proves this intuition does not
hold. Moreover, the proof that allows us to state this result is based directly on the relation
between two security notions from the cryptographic world. In more detail, we show that
if a protocol fulfills strong universal implementation, then it does not necessarily fulfill
game universal implementation. This holds due to the following implications detailed in
section 5: game universal implementation is equivalent to weak stand-alone security (our
result), strong universal implementation is equivalent to weak precise secure computation
[19] and weak secure computation does not imply weak stand-alone security (our result).

Definition 8 (Game Universal Implementation). Let ⊥i be the PPT ITM ran by
party i that sends no message (to the other parties or to the mediator) and outputs nothing.
Let Games be a set of m-player games, F and F ′ be mediators and let M1, . . . ,Mm be
PPT ITMs. We call ((M1, . . . ,Mm),F ′) a game universal implementation of F with

respect to Games if for all n ∈ N and all games G ∈ Games with input length n if
−→
Λ
F

is a computational Nash equilibrium in the mediated game (G,F) with immunity with
respect to coalitions, then the following two properties hold:

– (Preserving Equilibrium) (M1, . . . ,Mm) is a computational Nash equilibrium in the
mediated machine game (G,F ′) with immunity with respect to coalitions;

– (Preserving Action Distributions) For each type profile (t1, . . . , tm), the output dis-

tribution induced by
−→
Λ
F

in (G,F) is statistically close to the output distribution
induced by (M1, . . . ,Mm) in (G,F ′);

– (Preservation of Best Response ⊥i) Additionally, for all n ∈ N, all games G ∈ Games
with input length n and all i ∈ {1, . . . ,m}, if ⊥i is a computational best response to
−→
Λ
F
−i in (G,F), then ⊥i is a computational best response to

−→
M−i in (G,F ′).

4 Specialized Simulator UC Variants

Our main result in this section shows the separation between the notions of specialized
simulator UC and 1-bit specialized simulator UC. This answers an existing open problem
from [25] and furthermore clarifies the relations among different (weak) security notions.

4.1 On 1-bit Specialized Simulator UC

We start by showing that 1-bit specialized simulator UC (1-bit SSUC) is equivalent to
weak specialized simulator UC (weak SSUC). This will give us a simpler alternative
security notion that we can further work with.

Lemma 1 (Equivalence between 1-bit SSUC and weak SSUC). A protocol fulfills
the 1-bit specialized simulator UC security if and only if it fulfills the weak specialized
simulator UC security.
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Proof. Let protocol ρ and ideal functionality F be such that ρ is as secure as F with
respect to 1-bit specialized simulator UC. We show this implies ρ as secure as F with
respect to weak specialized simulator UC security. Given a triple (A,Z,D∗) consisting of
adversary, environment and distinguisher we have to provide a simulator S such that for
every auxiliary input6 z the following holds:

{EXECF,S,Z(k, z)}k∈N
D∗≡ {EXEC ρ,A,Z(k, z)}k∈N. (1)

Given Z and D∗, we can construct a 1-bit output environment ZD∗ in the following
way: ZD∗ internally runs a copy of Z. When internal Z writes on its output tape, this is
forwarded by ZD∗ to an internal copy of D∗. The output of D∗ becomes the output of
ZD∗ . Due to the hypothesis, there exist S such that for every auxiliary input z and for
every distinguisher D we have:

{EXECF,S,ZD∗ (k, z)}k∈N
D≡ {EXEC ρ,A,ZD∗ (k, z)}k∈N.

In particular:

{EXECF,S,ZD∗ (k, z)}k∈N
Dind≡ {EXEC ρ,A,ZD∗ (k, z)}k∈N,

where Dind is the distinguisher that outputs whatever D∗ outputs. As the simulator S
can be used without modification in an interaction with F and the environment7 Z, the
last relation is equivalent to (1). We conclude that ρ is as secure as F with respect to
weak specialized simulator UC security.

The implication in the opposite direction is proven as follows. Given a pair (A,Z1−bit)
consisting of adversary and 1-bit output environment, we need to construct a simulator
S such that for every auxiliary input z and for every distinguisher D, we have:

{EXECF,S,Z1−bit(k, z)}k∈N
D≡ {EXEC ρ,A,Z1−bit(k, z)}k∈N.

Given a 1-bit output environment Z1−bit, we can uniquely decompose it into an
environment Z and a distinguisher D∗ (that given the view of Z outputs what Z1−bit
outputs).

Indeed, to each 1-bit environment Z1−bit we can uniquely associate the environment
Z that internally runs Z1−bit: when a party or adversary sends a message to Z, the
environment forwards it internally and replies back with the messages that the copy
of Z1−bit would reply. Analogously, when the internal copy of Z1−bit wants to send a
message to a party or to the adversary, the environment Z forwards this message to
the corresponding party or adversary. Finally, Z gives as output the entire view of the
interaction, i.e., all the inputs and messages it sent to the parties and to the adversary,
all the outputs and messages it received from the other entities as well as the random
bits used.

Similarly, for each environment Z1−bit we uniquely associate the distinguisher D∗:
after receiving the input, D∗ internally simulates the environment Z1−bit and emulates

6 Here and in the following “for every auxiliary input z” should be read as “for every distribution
of auxiliary input z for Z”.

7 Indeed, by construction ZD
∗

does not interact with an adversarial party (i.e., S or A) after
the simulation of internal Z is over.
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the rest of the entities in the protocol, including the adversary; D∗ treats its input as
the entire view of the simulated copy of Z1−bit so D∗ can use it to send all inputs, reply
messages and random bits required by the simulated copy. The output bit of the simulated
Z1−bit becomes the output of the distinguisher D∗.

According to the definition of weak specialized simulator UC security, for A, Z, D∗
there exists a simulator S such that for every auxiliary input z we have:

{EXECF,S,Z(k, z)}k∈N
D∗≡ {EXEC ρ,A,Z(k, z)}k∈N.

As D∗ has binary output (i.e., thus finite output), the above equation implies the two
random variables
{D∗(EXECF,S,Z(k, z))}k∈N,z∈{0,1}∗ and {D∗(EXEC ρ,A,Z(k, z))}k∈N,z∈{0,1}∗ are statisti-
cally close. Hence, for any computationally bounded distinguisher D and for any auxiliary
input z the random variables {EXECF,S,Z1−bit(k, z)}k∈N and {EXEC ρ,A,Z1−bit(k, z)}k∈N
are indistinguishable and this concludes the proof.

4.2 Separation Result

Next we separate the notions of weak specialized simulator UC and specialized simulator
UC. For this we use a cryptographic tool called time-lock puzzles, originally introduced
in [36].

Definition 9 (Time-lock puzzles). A PPT algorithm G (problem generator) together
with a PPT algorithm V (solution verifier) represent a time-lock puzzle if the following
holds:
-sufficiently hard puzzles: for every PPT algorithm B and for every e ∈ N, there is some
f ∈ N such that

sup
t≥kf ,|h|≤ke

Pr [(q, a)← G(1k, t) : V(1k, a, B(1k, q, h)) = 1] (2)

is negligible in k.
-sufficiently good solvers: there is some m ∈ N such that for every d ∈ N there is a PPT
algorithm C such that

min
t≤kd

Pr [(q, a)← G(1k, t); v ← C(1k, q) : V(1k, a, v) = 1 ∧ |v| ≤ km] (3)

is overwhelming in k.

Intuitively, a time-lock puzzle is a cryptographic tool used for proving the computa-
tional power of a PPT machine. G(1k, t) generates puzzles of hardness t and V(1k, a, v)
verifies that v is a valid solution as specified by a. The first requirement is that B cannot
solve any puzzle of hardness t, with t ≥ kf , for some f depending on B, with more
than negligible probability. The algorithm B may have an auxiliary input. This ensures
that even puzzles generated using hardness t chosen by B together with a trap-door like
auxiliary information (of polynomial length), do not provide B with more help in solving
the puzzle.

The second requirement is that for any polynomial hardness value there exist an
algorithm that can solve any puzzle of that hardness. It is important that the solution for
any puzzle can be expressed as a string of length bounded above by a fixed polynomial.
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As promoted by [36] and later by [22], a candidate family for time-lock puzzles which
is secure if the RSA assumption holds, is presented next. A puzzle of hardness t consists

of the task to compute 22
t′

mod n where t′ := min(t, 2k) and n = p1 · p2 is a randomly
chosen Blum integer. Thus, G(1k, t) = ((n,min{t, 2k}), (p1, p2,min{t, 2k})), where n is a
k-bit Blum integer with factorization n = p1 · p2, and V(1k, (p1, p2, t

′), v) = 1 if and only

if (v = v1, v2) 8 and v1 ≡ 22t
′

mod n and v2 = n. Both solving the puzzle and verifying
the solution can be efficiently done if p1 and p2 are known. From this point further we
call these puzzles the Blum integer puzzles. An important property that we use in the
following is that any Blum integer puzzle has a unique solution.

Before we state and prove our main separation result in theorem 1, we give as reminder
the definition of hard-core predicates and then we state two properties related to them.
Due to space constraints, we add their corresponding proofs in appendix B.

Definition 10 (Hard-Core Predicate). A hard-core predicate of a collection of func-
tions gk,t : {0, 1}∗ → {0, 1}∗ is a boolean predicate HC : {0, 1}∗ → {0, 1} such that:

– there exists a PPT algorithm E with HC (x) = E(x), for every x;
– for every PPT algorithm A and for every polynomial p, there exists kp and tp such

that for every k > kp and t > tp, we have Pr [A(1k, t, gk,t(x)) = HC (x)] < 1
2 + 1

p(k) .

Now we are ready to state the two lemmas related hard-core predicates. The first
result shows that from a Blum integer time-lock puzzle we can construct a one-way
function and a hard-core predicate.

Lemma 2 (One-Way Function and Hard-Core Predicate from Blum Integer
Time-Lock Puzzles). Let (G,V) be a Blum integer time-lock puzzle and let t be an

integer. Let Sk,t be the set of all correctly generated solutions v = (22tmod n, n) for
puzzles q, where q = (t, n) is the output of algorithm G when invoked with parameters
1k and t. Then the collection of functions {fk,t : Sk,t → {0, 1}∗}(k∈{0,1}∗,t∈{0,1}k) and
{gk,t : Sk,t × {0, 1}∗ → {0, 1}∗}(k∈{0,1}∗,t∈{0,1}k) defined below are collections of one-way
functions and the predicate HC : {0, 1}∗ → {0, 1}∗ defined below is a hard-core predicate

for {gk,t}(k∈{0,1}∗,t∈{0,1}k).9 We define fk,t(2
2tmod n, n) = (t, n) and for v, r ∈ {0, 1}∗

such that |v| = |r|, let gk,t(v, r) = (fk,t(v), r) and HC (v, r) =
∑|v|
i=1 vi · ri mod 2.

The second result is a straight forward consequence of the definition of hard-core
predicates.

Lemma 3 (Distribution of Hard-Core Predicates). Let k be a security parame-
ter. Then, for any given integer t, let gk,t : Dk,t → {0, 1}∗ be a function such that HC :
{0, 1}∗ → {0, 1} is a hard-core predicate for the collection of functions {gk,t}k∈{0,1}∗,t∈{0,1}k .
Let X(k, t) be the distribution of (gk,t(x),HC (x)) and let Y (k, t) be the distribution of
(gk,t(x), U(x)) with x taken from the domain Dk,t and U(x) being the uniform distribution
on {0, 1}. Then the ensembles {X(k, t)}(k∈{0,1}∗,t∈{0,1}k) and {Y (k, t)}(k∈{0,1}∗,t∈{0,1}k)
are computationally indistinguishable.

8 Without loosing any security of the initial definition of time-lock puzzles [36,22], in addition

to the value 22tmod n, our solution for the puzzle q = (t, n) contains also the value n. The full
use of defining solutions in such a way, will become more clear when we define the one-way
function based on time-lock puzzles: There is a one-to-one correspondence between the pair of

values (v = (22t
′
mod n, n), t) and q = (t, n).

9 We would alternatively call HC the hard-core predicate for (G,V).
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Using lemmas 2 and 3, the following statement can be shown:

Lemma 4 (Weak SSUC Does Not Imply SSUC).
Assume Blum integer time-lock puzzles exist. Then there are protocols that fulfill weak

specialized simulator UC security but do not fulfill specialized simulator UC security.

Proof. Let (π,F) be a pair of protocol and ideal functionality as defined below. The only
input the ideal functionality F requires is the security parameter 1k. Then F sends a
message to the adversary (i.e. ideal simulator S) asking for its computational hardness.
Using the reply value t′ from S (which is truncated by F to maximum k bits), the
ideal functionality invokes Gen(1k, t′) → (q′, a′) to generate a time-lock puzzle q′ of
hardness t′, whose solution should verify the property a′. The puzzle q′ is sent to S which
replies with v′. Finally, F checks whether v′ verifies the property a′. In case a′ does not
hold, F stops without outputting any message to the environment. Otherwise, for every
value i ∈ {1, . . . , k}, F generates a puzzle qi of hardness ti = 2i. Let j be such that
2j ≤ t′ < 2j+1, so j ∈ {1, . . . , k}. For the puzzle qj , F computes the solution vj . F can
efficiently compute this solution as it knows the additional information aj . Additionally,
F chooses r uniformly at random from {0, 1}2k.10 The output of F to the environment
is the tuple (q1, . . . , qk, r,HC (vj , r)), where HC is the hard-core predicate of (G,V) as
given by lemma 2.

For each hardness t′, we call P (t′) the distribution of the view of Z when interacting
in the ideal world.

The real world protocol π, is defined similarly to F , the only difference is the final
output: π outputs to Z a tuple (q1, . . . , qk, r, b), with r randomly chosen from {0, 1}2k
and b randomly chosen from {0, 1}. For each hardness t used by the adversary A when
interacting with Z, we call R(t) the distribution of the view of Z when interacting in the
real world.

The proof has two steps. First, we show that π is as secure as F with respect to weak
specialized simulator UC security. Let D be a distinguisher of hardness tD (i.e., it can
solve puzzles of hardness less or equal to tD with overwhelming probability but it cannot
solve puzzles of hardness greater than tD with more than negligible probability) and an
adversary A of hardness tA. Let l be the minimum value such that 2l > max(tD, tA). We
now require that the simulator S has hardness t′ such that t′ ≥ 2l. As we will see next,
this is one of the constraints necessary for making the two distributions R(t′) and P (t)
indistinguishable to D.

The intuition is that in the ideal world D would have to solve a puzzle with hardness
larger than tD and learn the hard-core bit for such a puzzle. According to lemma 3, this
hard-core bit is indistinguishable from a random bit, which is actually what the protocol
π outputs to the environment.

More formally, let (A,Z,D) be a triple of real world adversary, environment and
distinguisher and let 1k be the security parameter. Then, let e be such that the length
of the messages sent by Z to D is bounded above by ke. From (2), there exists fDe such
that for every polynomial p there exists k0p such that:

10 Without loss of generality, we can assume the solution v of each puzzle q generated using the
parameters 1k and t has length 2 · k. Indeed, we can prepend with 0’s to the string v such
that its length reaches 2 · k. It is easy to see that after this operation, the properties stated in
lemma 2 still hold.
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sup
t≥kfDe ,|h|≤ke

Pr [(q′, a′)← G(1k, t′) : V(1k, a′,D(1k, q′, h)) = 1] <
1

p(k)

for every k > k0p.11 Given A, in an analogue way we define kf
A
e and k1p. With the notation

used in the description of π and F , it now becomes clear that we can take tD = kf
D
e and

tA = kf
A
e .

We construct S such that there exists a negligible function ε and k2 such that for
every k ≥ k2 and for every distribution of auxiliary input z we have:

|(Pr(D(EXECA,π,Z(k, z)) = 1)− (Pr(D(EXECF,S,Z(k, z)) = 1)| < ε(k). (4)

We take k2 such that for every k ≥ k2, it holds that max(tA, tD) < 2k.
For a given tA and tD and for l defined as above, let f ′ be such that for sufficiently

large k, 2l ≤ kf
′ ≤ 2k. Let S be the simulator of hardness kf

′
that as first reply to F

sends t′ := kf
′
. According to (3), there exists m such that for d := f ′ there exists Cf ′

such that

Pr [(q′, a′)← G(1k, kf
′
); v′ ← Cf ′(1

k, q′) : V(1k, a′, v′) = 1 ∧ |v′| ≤ km]

is overwhelming in k. When F sends a puzzle q′ to S, the simulator invokes Cf ′ for
(1k, q′) and sends to F the output v′ of Cf ′ . Internally, S simulates the adversary A and
emulates the messages that the adversary would receive from Z and π as follows: When
F requires the value of the computational hardness from S, then S acts as π and requires
the computational hardness from simulated A. When S receives t from A, then it invokes
Gen(1k, t), obtaining output (q, a) and forwards to simulated A the puzzle q. Moreover,
any message that internal A wants to send to the environment, S forwards it to Z. Any
message for A coming from Z is immediately forwarded by S to the internally simulated
adversary. This completes the construction of S.

By construction, S solves the puzzle sent by F with overwhelming probability and
hence the output of F to Z is (q1, . . . , qk, r,HC (vj , r)) with the same probability. The view
of Z in the real world is (1k, t, q, v, (q1, . . . , qk, r, b)) and the view of Z in the ideal world12

is (1k, t, q, v, (q1, . . . , qk, r,HC (vj , r))). By applying lemma 3 for the distinguisher D and
polynomial p, there exists kp and tp, such that for every k > kp and t > tp, the advantage
of D for distinguishing between the distributions of ((q, r), b) and ((q, r),HC (v, r)) (with
G(1k, t)← (q, a), v the solution to q, b the random bit and r the uniformly distributed
string of k bits) is less than 1

p(k) . Hence, additionally to the previous constraints on k and t′,

we take k such that k > kp and max{tA, tD, tp} < 2k and t′ such that t′ > max{tA, tD, tp}.
With this we can conclude that the real and the ideal world views are indistinguishable
to D.

Second, we prove that π is not as secure as F with respect to specialized simulator
UC security. Intuitively, for every hardness tS (polynomial in the security parameter k)

11 This intuitively means that D can solve puzzles of hardness larger than kf
D
e only with negligible

probability.
12 One may argue of course that the view of Z may or may not contain the values t, q, v,

depending on the adversary A. Also, additionally to the view(s) stated above, the environment
could output the interaction that it has with A besides messages t, q, v. However, for the
analysis of this proof, the views considered above are the worst case scenario that would allow
a distinguisher to tell apart the two worlds.
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of a simulator machine S, there exists a distinguisher DS such that for every t ≤ tS , DS
can solve puzzles of hardness t. As we will see next, DS uses this property to distinguish
with non-negligible probability between the environment’s output distribution in the real
and in the ideal world. The intuition is that DS solves one by one the puzzles in the
output of F and for each solution evaluates the corresponding hard-core predicate. The
last bit in the output of F to Z is different than all these evaluations with probability 0
(i.e., at least once the hard-core predicate and the last bit coincide), while the last bit in
the output of π to Z (i.e., a random bit) is different than all these evaluations with a
non-negligible probability.

Formally, let A be the real world adversary that can solve puzzles of hardness tA
such that when receiving its input from the environment, it replies to π with tA and the
corresponding correct solution for the puzzle received. Let Z be the environment that
just sends the security parameter to all parties (i.e., including the adversarial parties),
receives their outputs and then outputs as view the messages received from the honest
parties (i.e., protocol π in the real world or F in the ideal world). For every simulator S,
we show that there exists a distinguisher DS and a distribution for the auxiliary input z
such that:

{EXECF,S,Z(k, z)}k∈N
DS
6≡ {EXEC π,A,Z(k, z)}k∈N.

Given S of hardness tS , we choose DS such that it can solve puzzles of hardness at
least tD = max (tS , tA) with overwhelming probability in k. Such a DS exists according
to (3). Additionally, after receiving the view of Z, DS solves one by one each puzzle qi
included in that view that has associated hardness ti ≤ tD and it obtains each time the
corresponding correct and unique solution vi with overwhelming probability. Then DS
evaluates HC (vi, r). Lets call m the last bit in the output of the honest party (i.e., F or
π) to Z13. Next, DS checks if m 6= HC (vi, r) for all i as defined above. If this holds, then
D outputs 1, otherwise it outputs 0.

If m is part of the view of the real world, then according to the definition of π, m is a
random bit in {0, 1} so it is different than a given bit HC (vi, r) with probability 1

2 . This
is equivalent to DS outputting 1 with probability 1

2log 2tD = 1
tD

when the view of Z is
from the real world. Similarly, if m is part of the view of Z in the ideal world, then there
exists at least an index i such that HC (vi, r) can be computed by DS and m = HC (vi, r);
so DS outputs 1 with probability 0. This implies DS can distinguish at least with the
non-negligible probability 1

tD
14 between the output distributions from the two worlds

and this concludes the proof.

We are now ready to conclude that 1-bit specialized simulator UC security and
specialized simulator UC security are not equivalent notions. By putting together the
results from lemma 1 and from lemma 4 we obtain:
Theorem 1 (1-bit SSUC and SSUC Not Equivalent). Assume Blum integer time-
lock puzzles exist. Then there are protocols secure with respect to 1-bit specialized simulator
UC security which are not secure with respect to specialized simulator UC security.

4.3 Discussion

The separation result presented in theorem 1 is conditioned on the existence of Blum
integer time-lock puzzles, which in turn is based on the RSA assumption. To the best

13 Due to the definition of Z, the string m is also a part of the output of the environment.
14 Since D is a polynomial time machine, its hardness tD is also a polynomial in the security

parameter k, so the function 1
tD

is non-negligible.
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of our knowledge, the only other known time-lock puzzle constructions are possible in
the random oracle model [27,26]. However, these constructions cannot replace the Blum
integer time-lock puzzle in our proof method for the separation lemma 4.

On one hand, the construction from [27] allows only a fixed linear gap between the
time needed for generating and the time needed for solving a puzzle; with the Blum
integer time-lock puzzles we can control the hardness of the puzzle. On the other hand,
the puzzles from [26] allow for more fine tuning of the time gap, but it is not clear how to
use them to construct the one-way functions that allowed us to conclude the separation
lemma 4. This is the case since the constructions from [26] do not allow for generation
of hard enough solutions in efficient time. We did not encounter this impediment in the
case of Blum integer time-lock puzzles, since those puzzles were generated together with
a trap-door which allowed for efficient computation of the solution.

It is an open question how to construct a time lock puzzle based on general cryp-
tographic assumption (e.g., the existence of one-way functions) or to show that such a
construction cannot be used for our separation result.

5 Equivalence of Security Notions

Fig. 1. Implication Relations among Computational Security Concepts

Strong 
Universal

Imple-
menta-

tion

Stand-alone 
Security

1-bounded
Concurrent 

General
Composition 

Security

Specialized
Simulator

UC Security

UC 
Security

1-bit
UC

 Security

Weak
Stand-alone

Security

Weak
1-bounded
Concurrent

General
Composition

Security

1- bit
Specialized
Simulator 

UC Security

Game
Universal
Implemen-

tation

Weak
Specialized 
Simulator

UC Security

Weak 
Precise 
Secure
Com-

-putation

[5]

t[25]

[25]

[22]

t

L1

L1T2

T2

tL5

t

t

[6]

tT1tC1

L6

T3T3

L7

[20][20]

C2

?

?

Implication relations among various security notions with respect to computational
security are depicted in figure 1. The previously existing notions are written with a black
font, while the notions that we define in this work are printed with a red font. The arrows
drawn with a continuos line depict the relations we prove in this paper; all the other
relations have been previously known or they can be trivially derived directly from the
corresponding definitions. Finally, the question mark appended to an arrow signifies the
respective relation is still an open question.

It is a well-known result that UC security and 1-bit UC security are equivalent [5].
It has been also shown [22] that specialized simulator UC security does not imply UC
security. Moreover, specialized simulator UC security is equivalent to security under
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1-bounded concurrent general composition [25]. It has been shown [6] that stand-alone
security does not imply specialized simulator UC security.15 The implication in the
opposite direction holds trivially. Similarly, it is trivial to see that universal composability
implies specialized simulator UC security.

Our goal in this section is to prove that weak security under 1-bounded concurrent
general composition is equivalent to 1-bit specialized simulator UC security. A similar
proof technique has been used in [25], however, as it will be detailed below, our proof
requires more technicalities.

More formally, we show the following (with proof in appendix C):

Theorem 2 (Equivalence between Weak 1-bounded CGC Security and 1-bit
SS UC Security). Let ρ be a protocol and F an ideal functionality. We have that ρ
implements F under weak 1-bounded concurrent general composition security, if and only
if ρ securely computes F under 1-bit specialized simulator UC security.

As a consequence of the above theorem, we are now also able to compare the notion
1-bounded concurrent general composition security [25] with our variant, i.e., weak 1-
bounded concurrent general composition security. More precisely, by combining the results
of theorem 1, theorem 2 and the previously known equivalence result between 1-bounded
concurrent general composition security and specialized simulator UC security [25] it
follows:

Corollary 1 (Weak 1-bounded CGC and 1-bounded CGC Not Equivalent).
Assume Blum integer time-lock puzzles exist. Then there are protocols secure with respect
to weak 1-bounded concurrent general composition which are not secure with respect to
1-bounded concurrent general composition.

5.1 On Other Weak Security Notions

We show that the approach taken in theorem 2 is not an overkill. Indeed, there are
protocols that are secure with respect to the weak stand-alone security definition but they
are not secure anymore in the standard stand-alone model (proof placed in appendix C).

Lemma 5 (Weak Security Does Not Imply Stand-alone Security). If Blum in-
teger time-lock puzzles exist, then there are protocols that fulfill the weak security notion,
but do not fulfill the stand-alone security notion.

The following two results complete figure 1 summarizing the relation among various
security notions. Due to lack of space, the proofs are placed in appendix C.

Lemma 6 (Weak Stand-alone Security Does Not Imply Weak 1-bounded CGC
Security). There exists a protocol π which is secure with respect to weak stand-alone
model, but is not secure with respect to weak 1-bounded concurrent general composition
security.

As shown in section 5.2, the next security result is essential for establishing the relation
between the existing game-theoretic notion of strong universal implementation [20] and
our notion of game universal implementation. As a preamble, we first give the intuition for

15 In order to preserve the symmetry and clarity of our picture, we have indicated that the result
in [6] is that stand-alone security does not imply 1-bounded concurrent general composition.
This is indeed a immediate consequence of combining the results from [6] and [25].
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weak precise secure computation.16 While the traditional notion of secure computation
[14] requires only the worst case running time complexity of the ideal world simulator
to match the running time of the real world adversary, precise secure computation [29]
requires the running time of the simulator to match the running time of the adversary
in each individual execution. The notion of weak precise secure computation [20] adds
one more restriction: the complexity of the simulator (e.g., time complexity or size of
memory used) should be directly correlated to the complexity of the real world adversary,
for each arbitrary distinguisher and input. We are now ready to state the following result
which demonstrates that weak stand-alone security is at least as weak as precise secure
computation.

Lemma 7 (Weak Precise Secure Computation Does Not Imply Weak Stand-
alone Security). If Blum integer time-lock puzzles exist, then there exists a protocol π
which is secure with respect to weak precise secure computation, but is not secure with
respect to weak stand-alone security.

5.2 Relation Between 1-bit Specialized Simulator UC and Game Universal
Implementation

In the following we prove an equivalence result between game universal implementation and
our definition of weak security. A similar result exists in connection with strong universal
implementation [20], but that notion considers a refined version for computational games,
where the utility of the players may have strong correlations with the complexity of the
computation they perform (e.g., time complexity, memory complexity, communication
complexity or complexity of operations like reading inputs or copying messages). Our
proof technique is in general similar to the one used in [20]. For completeness, we present
the full proof with all the additional details in appendix D.

Theorem 3 (Equivalence Between Game Universal Implementation and Weak
Stand-alone Security). Let comm be the communication mediator represented by the
cryptographic notion of ideally secure channels. Let f be an m-ary function with the
property that outputs the empty string to a party if and only if it had received the empty

string from that party. Let F be a mediator that computes f 17 and let
−→
M be an abort-

preserving computation of f18. Then
−→
M is a weak secure computation of f19 with respect

to statistical security if and only if (
−→
M, comm) is a game universal implementation of F

with respect to Games, where Games is the class of games for which the utility functions
of the players depend only on players types and on the output values.

16 A formal definition is provided in appendix C and full details are given in [20].
17 The ideal machine profile

−→
ΛF computes f if for all n ∈ N, all inputs −→x ∈ ({0, 1}n)m, the

output vector of the players after an execution of
−→
ΛF on input −→x is identically distributed to

f(−→x ).
18 −→M is an abort-preserving computation of f if for all n ∈ N and for all inputs x̄ ∈ ({0, 1}n)m,

the output vector of the players after an execution of (⊥,
−−−→
M−Z) on input x̄ is identically

distributed to f(λ, ¯x−Z), where Z is a subset of all parties and λ is the empty string.
19 We call

−→
M a weak secure computation of f if the following two properties are fulfilled:

– For all n ∈ N, all inputs −→x ∈ ({0, 1}n)m, the output vector of the players after an execution

of
−→
M on input −→x is distributed statistically close to f(−→x );
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So we have shown that by restricting the class of games to those for which the
computation cost for parties during protocol execution is free, our variant of universal
implementation becomes equivalent to more standard notions of security (i.e., where the
simulator depends only on the distinguisher and not anymore on both the distinguisher
and input). Finding such equivalences was stated as an open question in [20] and to the
best of our knowledge, our work makes the first step towards answering it.

One may ask whether our new notion of game universal implementation is actually
a particular case of the already existing strong universal implementation notion [20].
Combining lemma 7, theorem 3 and the known equivalence result between strong universal
implementation and weak precise secure computation [20], we obtain:

Corollary 2 (Non-Equivalence of Universal Implementation Variants). The no-
tion of strong universal implementation does not imply the notion of game universal
implementation.

6 Conclusions

In this work we have shown that two variants of the UC security definition where the order
of quantifiers is reversed, namely 1-bit specialized simulator UC security and specialized
simulator UC security are not equivalent. This comes in contrast to the well known result
that UC security and 1-bit UC security are equivalent. We also show that weak security
under concurrent general composition is equivalent to 1-bit specialized simulator UC.
Additionally, these results combined imply weak security and stand-alone security are
not equivalent.

We have also established an equivalence result between a security notion (i.e., weak
stand-alone security) and a game-theoretic notion (i.e., game universal implementation).
Based on the results mentioned above, as future work it is worth investigating whether
one can add ”composability properties” to game universal implementation in order to
derive a game theoretic notion equivalent to 1-bit specialized simulator UC.
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– For every adversary A and for every distinguisher D, there exists a simulator S such that
for every input z, the following relation is fulfilled :

{IDEAL(k, z,S,F)}k∈N
D≡ {REAL(k, z, A,

−→
M}k∈N.

In the second property, the indistinguishability relation can be further detailed with respect
to perfect, statistical or computational security.
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A Related Security Definitions

We give below a variant for the computational indistinguishability definition.

Definition 11 (Indistinguishability with respect to a Given Distinguisher). We
say the following ensembles
{X(k, z)}k∈N,z∈{0,1}∗ and {Y (k, z)}k∈N,z∈{0,1}∗ are computationally indistinguishable with

respect to a given probabilistic polynomial time distinguisher D and we write X
D≡ Y , if

there exists a function ε, negligible in k and k0 such that

|(Pr(D(X(k, z)) = 1)− (Pr(D(Y (k, z)) = 1)| < ε(k),

for every k ≥ k0.

A.1 Review of UC Model

There are examples [9] of protocols secure in the stand-alone model do not remain secure
even when two of its instances run concurrently. More stringent security definitions take
into account that a protocol interacts not only with its adversary, but also with other
(possibly polynomially many) protocols or even (polynomially many) copies of itself. This
is intuitively captured by the universal composability (UC) security framework [5].

In this case, the exterior world with respect to a given protocol is formalized by the
notion of environment. Intuitively, the environment for a protocol contains all the other
protocols, systems or users, together with their own adversaries, that may or may not
interact with the considered protocol. It is important to note that the adversary for the
protocol is not considered to be a part of the environment, but it could be controlled by
the environment.

In order to determine whether a protocol securely implements a given task, first we
define the ideal process for carrying out that task. Intuitively, in an ideal process for a
given task, all parties give their inputs directly to the ideal functionality for that task
which can be regarded as a formal specification of the security requirement of the task.
According the universal composability security definition, a protocol securely implements
a task if any damage that can be caused by an adversary while interacting with the
protocol and the environment, can also be caused by an adversary interacting with the
ideal process for that task and the environment. Intuitively, the entity assessing the
amount of damage is the environment. Since there is no damage we can cause to the ideal
functionality, the protocol considered must also be secure. We say that the protocol runs
in a real-world model and the ideal functionality runs in the ideal-world model.

Real-world Protocols More formally, let ρ be a cryptographic protocol. The real-world
model for the execution of protocol ρ contains the following interactive Turing machines
(ITMs): an ITM Z called the environment, a set of ITMs representing the parties running
the protocol ρ and an adversary ITM A. We now have a more detailed look at each of
these ITMs.

The environment Z represents everything that is external to the current execution
of ρ and it is modeled as an ITM with auxiliary input. Throughout the course of the
protocol execution, the environment can provide inputs to parties running ρ and to the
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adversary. These inputs can be a part of the auxiliary input of Z or can be adaptively
chosen by the environment. Also Z receives all the outputs that are generated by the
parties and the adversary. The only interaction between the environment Z and the
parties is when the environment sends the inputs and receives the outputs. Finally, at
the end of the execution of ρ, the environment outputs all the messages received.

The adversary can receive inputs from Z at any moment during the protocol execution
and it can send replies to Z at any time. In order to capture any possible adversarial
behaviour, A and Z can communicate freely throughout the course of the protocol and
they can exchange information after any message sent between the parties and after any
output made by a party.

Next, we look at the notion of corruption. By considering a party P corrupted we mean
that from that point on that adversary has access to all the inputs and communication
messages send or received by that party, and for any communication model, A can decide
to alter such messages in any way it wants. Moreover, all the past incoming or outgoing
messages of P are known to A.

In order for A to corrupt a party P , it first informs Z by sending it a corruption
message (corrupt, P ). Thus Z is aware at any given moment about the corruption state
of all parties. Depending on the moment when the adversary A can corrupt a party,
there are two corruption models: static and adaptive. In the static corruption model, the
adversary A is allowed to corrupt parties only in the beginning of the protocol, before
the respective parties receive their inputs from Z. In contrast, if A is allowed to corrupt
a party at any given moment during the protocol execution, then the adversary is called
adaptive. Another way to look at the corruption model is by inspecting whether the
adversary is passive, (i.e., only learns all inputs and communication messages a corrupted
party sends and receives), or if A is active. The latter case implies A is allowed to modify
any input a corrupted party gets and also any communication message sent.

In order to simplify the presentation, we use an equivalent definition for the static
corruption model. As in the standard static case, the moment of corruption is fixed in
the beginning, we can skip sending and receiving the corruption messages. Instead, we
assume the corrupted parties are fixed from the start and the adversary does not have to
choose them. Then, the previous static adversary definition is equivalent to the latter
formulation, which we use in this work.

Besides corrupting parties, the adversary may interfere with the communication
between honest parties. The most basic UC model ensures that all messages are handed
to the adversary and the adversary delivers messages of its choice to all parties. This
model makes no assumption on the communication properties: authenticity, secrecy or
synchrony of the messages delivered. For the more specialised models of authenticated,
secure or synchronous communication, an ideal functionality is added to the basic model
to capture the respective properties.

Authenticated communication assumes the adversary cannot alter content of messages
without being detected. The synchronous communication model captures the property
that messages are all delivered and without delay from the moment they were generated.
The ideally secure communication model assumes the adversary receives all messages,
but it has neither access to the content of communication, nor possibility to modify any
message without breaking authenticity. In this model, the adversarial capabilities are
limited to either delaying or not delivering some or all messages between the uncorrupted
parties.
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When the protocol execution ends, Z outputs its view of that execution. This view
contains messages that Z has received from the adversary A and outputs of all parties.
Formally, EXEC ρ,A,Z(k, z) denote the output of Z in an execution of the protocol ρ with
adversary A and environment Z, where k is the security parameter and z is the auxiliary
input to the environment Z. We denote by EXEC ρ,A,Z the family of random variables
{EXEC ρ,A,Z(k, z)}k∈N.

Ideal Process and Ideal Functionalities In order to formalize the ideal process, we
do not want to define a different model, but we rather need to adapt to the one above.
In the same way as in the real-world, the environment Z is the only ITM that can send
inputs at any moment to the ideal process parties and to the ideal adversary. In the case
of the ideal process, the adversary is called the ideal simulator and is commonly denoted
by S . Moreover, Z receives all the outputs generated by the parties, as well the possible
outputs of S .

The first difference is that in the ideal model there exists a trusted party, the ideal
functionality, that cannot be directly accessed by the environment. This works as follows:
Parties involved in the ideal process give their inputs to the ideal functionality which
computes outputs for each party and sends these values to them. Hence, the role of the
ideal functionality is to receive inputs, perform computations and send results to the
ideal parties. As these parties do not take an active role in the computation and just
send inputs to and receive outputs from the ideal functionality, they are called dummy
parties of the ideal functionality.

The second difference with the real-world model is that messages delivered by the
adversary to dummy parties are ignored. In the ideal protocol the adversary sends
corruption messages directly to the ideal functionality. The ideal functionality then
determines the effect of corrupting a party. A typical response is to let the adversary
know all the inputs received and outputs sent by the party so far.

The environment Z and the simulator S can communicate freely during the execution
of the ideal process. Additionally, the ideal functionality informs the simulator every
time it wants to output a message. If the simulator agrees, then the respective output
is made. This is required by the UC ideal model in order to allow S to simulate the
behavior of a UC real world adversary delaying messages or not sending some or all of
the communication among real-world protocol parties.

Similar to the real-world model, the environment Z outputs its view in the end of the
ideal process execution. The view contains all the messages received from the simulator
as well as all the messages that the dummy parties output to Z. More formally, by
EXECF,S,Z(k, z) we denote the output of Z in an execution of the ideal process with
the trusted party F , simulator S and environment Z, where k is the security parameter
and z is the auxiliary input to the environment Z. We denote by EXECF,S,Z the family
of random variables {EXECF,S,Z(k, z)}k∈N.

Protocol Emulation We now define what it means that a real-world protocol ρ emulates
with respect to UC security another real-world protocol θ. The environment Z is the
ITM deciding whether the interaction with the protocols and their respective adversaries
can be distinguished.
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All the ITMs used in either of the protocol executions for ρ or θ, including the
environment Z, are computationally bounded. Thus, it is sufficient if we formalize the
notion of emulation in terms of computational indistinguishability. The environment Z
will act as a distinguisher for the two protocol executions. Since all the information Z
gains throughout its interaction is contained within the view Z outputs in the end, it
is sufficient to compare the two views. Essentially, protocol ρ emulates protocol θ if for
every adversary A there is an ideal simulator S such that for every environment Z the
views of the two interactions are computationally indistinguishable.

Definition 12 (UC Security). Let ρ and θ be PPT protocols. We say that ρ UC
securely emulates θ if for every PPT adversary A there is a PPT simulator S such
that for every PPT distinguisher Z and for every input z ∈ {0, 1}∗, the two families of
random variables {EXECF,S,Z(k, z)}k∈N and {EXEC ρ,A,Z(k, z)}k∈N are computationally
indistinguishable.

This general notion of emulation can be adapted to the special case of the ideal process.
We say that a protocol realizes an ideal functionality if it emulates the ideal process for
that functionality.

In the following we also use a relaxed version of this definition, where the order of
quantifiers between the environment and the ideal-world simulator is reversed [25].

Definition 13 (Specialized Simulator UC Security). Let ρ be a protocol and F an
ideal functionality. We say that ρ emulates F under specialized simulator UC security if
for every probabilistic polynomial time adversary A and for every environment Z, there
exists a simulator S such that for every distribution of auxiliary input z ∈ {0, 1}∗, we
have:

{EXECF,S,Z(k, z)}k∈N ≡ {EXEC ρ,A,Z(k, z)}k∈N

In the above definition, the output of the environment is considered to be a string
of arbitrary length. If the only change we make to the above definition is to consider
environments that have a 1-bit output, we obtain the notion of 1 -bit specialized simulator
UC security. It has been an open problem [25] whether considering only environments
with one bit output would produce an equivalent definition. In this work we show this is
not the case.

Definition 14 (1-bit Specialized Simulator UC Security). Let ρ be a protocol and
F an ideal functionality. We say that ρ emulates F under 1-bit specialized simulator UC
security if for every probabilistic polynomial time adversary A and for every 1-bit output
environment Z, there exists a simulator S such that for every input z ∈ {0, 1}∗, we have:

{EXECF,S,Z(k, z)}k∈N ≡ {EXEC ρ,A,Z(k, z)}k∈N.

If in the specialized simulator UC definition we let the simulator also depend on
the distinguisher who is the only PPT machine to establish whether the output of the
executions in the real UC world and ideal UC world cannot be told apart, then we obtain
the notion of weak specialized simulator UC security.

Definition 15 (Weak Specialized Simulator UC Security). Let ρ be a protocol and
F an ideal functionality. We say that ρ emulates F under weak specialized simulator UC
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security if for every probabilistic polynomial time adversary A, for every environment Z
and for every distinguisher D, there exists a simulator S such that for every distribution
of input z ∈ {0, 1}∗, we have:

{EXECF,S,Z(k, z)}k∈N
D≡ {EXEC ρ,A,Z(k, z)}k∈N.

A.2 Review of Concurrent General Composability Model

Next we review the notions of stand-alone security and security under concurrent general
composability from [25] when additionally the order of quantifiers is reversed. The idea
for having the order of quantifiers reversed emerged in [8] and was further studied in
[20,19].

Definition 16 (Weak Stand-alone Security). Let ρ be a protocol and F an ideal
functionality. Then, ρ computes F under weak security if for every probabilistic polynomial-
time real-model adversary A and for every probabilistic polynomial-time distinguisher D
there exists a probabilistic polynomial-time ideal-model adversary S such that for every
x̄, z ∈ {0, 1}∗:

{IDEALFS (k, x̄, z)}k∈N
D≡ {REALρ,A(k, x̄, z)}k∈N.

Sometimes, for brevity of notation, we compact the definition above into the relation:

{IDEAL(k,S,F)}k∈N
D≡ {REAL(k, ρ,A)}k∈N. (5)

In general, given a security notion there are two approaches to ensure the security
properties of a protocol under composition. One way is to prove that the security property
defined for the stand-alone case is preserved under composition. The other way is to
define the security notion for the protocol directly under composition. The latter approach
has the benefit that it captures the security property without having the drawback of a
possible very strong and thus very restrictive stand-alone definition. Due to this reason
we will focus on the second approach.

The concurrent general composition has been introduced in [25]. In this security model,
a protocol ρ that is being investigated is run concurrently, possibly multiple times, with
an arbitrary protocol π. The protocol π can be any arbitrary protocol and intuitively, it
represents the network activity around ρ. There is another way to look at this: one can
consider protocol π to be the external protocol that gives inputs and reads the outputs of
the internal protocol ρ. As π is arbitrary, it can call multiple instances of ρ. However, we
consider that different instances run independently from one another. The only correlation
between them are the inputs and outputs, in the following way: the inputs for a certain
run of ρ that are provided by π might depend on the previous inputs and outputs given
and collected by π. Also, the messages of π may be sent concurrently to the execution of
ρ. This composition of π with ρ is denoted as in the original notation by πρ.

As in the case of universal composability, in order to give the definition of security
for ρ under concurrent general composition, we need to compare the execution of ρ with
that of an ideal functionality so we have to define the real and the ideal world.

The computation in the ideal world is performed among the parties of π and a trusted
party, playing the role of ideal functionality F . Thus the messages considered in the ideal
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world are standard messages between parties of π and ideal messages between π and F .
The protocol π is providing F with inputs and after performing necessary computations,
F sends the results to parties of π. The ideal adversary is called a simulator and as in the
UC model, is denoted by S. In addition to having full control over the parties it corrupts
(see also the case of real world adversary), the simulator controls the scheduling of the
messages between the parties of π and if not otherwise mentioned, it can also arbitrarily
read and change messages. An exception is represented by the messages between π and
F : they are ideally secure, so the simulator can neither read nor change them 20.

During the computation, the honest parties follow the instructions given by π and in
the end they output on their outgoing communication tape whatever value is prescribed
by π. The corrupted parties output a special corrupted symbol and additionally the
adversary may output an arbitrary image of its view. Let z be the auxiliary input for the
ideal-world adversary S and let the inputs vector be x̄ = (x1, ..., xm). Then the outcome of
the computation of π with F in the ideal world (which we may also call F -hybrid world )
is defined by the output of all parties and S and is denoted by {HYBRIDFπ,S(k, x̄, z)}k∈N.

The computation in the real world follows the same rules as the computation in the
ideal world, only that this time there is no trusted party. Instead, each party of π has an
ITM that works as the specification of ρ for that party. Thus, all messages that a party
of π sends to the ideal functionality in the ideal world are now written on the input tape
of its designated ITM. These ITMs communicate with each other in the same manner
as specified for the parties of ρ. After the computation is performed, the results are
output by these ITMs and the corresponding parties of π copy them on their incoming
communication tapes. These messages are used by the parties of π in the same way as
the messages output by F in the ideal-world. Similarly as above, in the real-world the
adversary has full control over message delivery. There is one exception: any uncorrupted
party of π can write and read directly to and from the input and respectively output tape
of its designated ITM without any interference from the adversary 21. Moreover, when we
say that a real-world party is corrupted, we mean that a party of π and its corresponding
ITM are corrupted 22.

Similarly to the ideal world, during the computation, the honest parties follow the
instructions of π and their corresponding ITM and in the end they output on their
outgoing communication tape whatever value is prescribed by π. The corrupted parties
output a special corrupted symbol and additionally the real-world adversary A may output
an arbitrary image of its view. Let z be the auxiliary input for A and let the inputs vector
be x̄ = (x1, ..., xm). Then the outcome of the computation of π with ρ in the real world
is defined by the output of all parties and A and is denoted by {REALπρ,A(k, x̄, z)}k∈N.

Independent of the world where the corruption takes place, the adversary could be
static or adaptive. If the adversary is static, then the parties that are under the control
of the adversary are fixed and do not depend on its auxiliary input or random tape.
This is a restrictive definition of static corruption. However, the definition of adaptive

20 This comes in contrast with the standard definition of UC ideal protocol execution, where it
is not enforced that the channels between the trusted parties and the rest of the participants
are ideally secure.

21 Actually, the ideal adversary is not even aware of this taking place. This is similar to the UC
communication between the environment and the real-world or ideal-world parties.

22 This is not a restriction as an adversary that corrupts both a party of π and its ITM can just
fully control only one of them and let the other one follow its prescribed protocol.
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corruption and the corresponding proof include the proof for a standard static corruption
case. In the case of adaptive corruption, the adversary may decide during the protocol to
arbitrarily corrupt a party, depending on the messages received so far. In both cases, once
the adversary has corrupted a party then it learns all previous inputs and messages that
the party received. From the moment of the corruption further, the adversary has full
control over the messages that the party sends. Moreover, we consider that the adversary
fully controls the message scheduling: he decides if and when to deliver the messages
between output tape of one party (or, more general, machine) to the input tape of another.
As mentioned above, there is one exception: the adversary does not have any control over
the messages that an uncorrupted party sends to its corresponding ITM.

We are now ready to state the definition of security under concurrent general compo-
sition as in [25]. There are two notions of security under concurrent general composition:
one for unbounded or polynomial calls that π may make to F and the second one, when
π utilizes a fixed number of calls to F .

Definition 17 (Security under Concurrent General Composition). Let ρ be a
protocol and F a functionality. Then, ρ securely computes F under concurrent general
composition if for every probabilistic polynomial-time protocol π in the F-hybrid model
that utilizes ideals calls to F and every probabilistic polynomial-time real-model adversary
A for πρ, there exists a probabilistic polynomial-time hybrid-model adversary S such that
for every x̄, z ∈ {0, 1}∗:

{HYBRIDFπ,S(k, x̄, z)}k∈N ≡ {REALπρ,A(k, x̄, z)}k∈N.

If we restrict the protocols π to those that utilize at most ` ideal calls to F , then ρ is said
to securely compute F under `-bounded concurrent general composition.

We also use a weak version of the security definition from above.

Definition 18 (Weak Security under Concurrent General Composition). Let
ρ be a protocol and F a functionality. Then, ρ computes F under concurrent general
composition with weak security if for every probabilistic polynomial-time protocol π in
the F-hybrid model that utilizes ideals calls to F , for every probabilistic polynomial-time
real-model adversary A for πρ and for every probabilistic polynomial-time distinguisher
D, there exists a probabilistic polynomial-time hybrid-model adversary S such that for
every x̄, z ∈ {0, 1}∗:

{HYBRIDFπ,S(k, x̄, z)}k∈N
D≡ {REALπρ,A(k, x̄, z)}k∈N.

If we restrict the protocols π to those that utilize at most ` ideal calls to F , then ρ is said
to compute F under `-bounded concurrent general composition with weak security.
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B Postponed Proofs on Hard-Core Predicates for Time-Lock
Puzzles

We restate and prove lemma 2.

Lemma (One-Way Function and Hard-Core Predicate from Blum Integer
Time-Lock Puzzles). Let (G,V) be a Blum integer time-lock puzzle and let t be an

integer. Let Sk,t be the set of all correctly generated solutions v = (22tmodn, n) for
puzzles q = (t, n), where q is the output of algorithm G when invoked with parameters
1k and t. Then the collection of functions {fk,t : Sk,t → {0, 1}∗}(k∈{0,1}∗,t∈{0,1}k) and
{gk,t : Sk,t × {0, 1}∗ → {0, 1}∗}(k∈{0,1}∗,t∈{0,1}k) defined below are collections of one-way
functions and the predicate HC : {0, 1}∗ → {0, 1}∗ defined below is a hard-core predicate

for {gk,t}(k∈{0,1}∗,t∈{0,1}k). We define fk,t(2
2tmodn, n) = (t, n). For each r with |r| = |v|,

we define gk,t(v, r) = (fk,t(v), r) and HC (v, r) =
∑|v|
i=1 vi · ri mod 2.

Proof. First we prove that {fk,t}(k∈{0,1}∗,t∈{0,1}k) defined above is a collection of one-way
functions. For every security parameter k, let m(k) be the maximum number of bits that
machine G can read from its randomness tape when invoked with security parameter k.
Assume by contradiction that there exist adversary A and polynomial p such that for
every integers kp and tp there exist k ≥ kp and t ≥ tp with:

Pr [A(1k, t, (t, n)) = v : G(1k, t) = ((t, n), a),V (1k, a, v) = 1] ≥ 1

p(k)
.

If in the definition of the first property of time-lock puzzles, we take e = 0 and we use
algorithm A for solving the puzzles, then we immediately obtain a contradiction so our
assumption is false.

It is also clear that the property we have shown to hold for f , can be shown in a
similar way to hold for g.

By following exactly the steps of the well known proof by Goldreich and Levin [12],
which gives a hard-core predicate construction for any one-way function, it follows that
HC (v, r) =

∑k
i=1 vi · ri mod 2 is a hard-core predicate for g and this concludes the proof.

Now we restate and prove lemma 3.

Lemma (Distribution of Hard-Core Predicates). Let k be a security pa-
rameter. Then, for any given integer t, let gk,t : Dk,t → {0, 1}∗ be a function such
that HC : {0, 1}∗ → {0, 1} is a hard-core predicate for the collection of functions
{gk,t}k∈{0,1}∗,t∈{0,1}k . Let X(k, t) be the distribution of (gk,t(x),HC (x)) and let Y (k, t)
be the distribution of (gk,t(x), U(x)) with x taken from the domain Dk,t and U(x) being
the uniform distribution on {0, 1}. Then the ensembles {X(k, t)}(k∈{0,1}∗,t∈{0,1}k) and
{Y (k, t)}(k∈{0,1}∗,t∈{0,1}k) are computationally indistinguishable.

Proof. In definition 10 we choose an adversary A such that its output is independent
of its input. More precisely, we take A that outputs 1 with constant probability c. This
implies that the output distributions of A and HC are also independent. If we denote
by wk,t(x) the probability that HC outputs 1 given x from a distribution Output(1k, t),
then we obtain:
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Pr [A(1k, t, gk,t(x)) = HC (x) : x← Output(1k, t)] =

= (Pr [A(1k, t, gk,t(x))] = 0) · (Pr [HC (x)] = 0)+

+ (Pr [A(1k, t, gk,t(x))] = 1) · (Pr [HC (x)] = 1) =

= wk,t(x)(2 · c− 1) + 1− c.

Substituting this in the definition of hard-core predicate, we have that for every
polynomial p, for all sufficiently large k and all sufficiently large t: wt(x)(2 ·c−1)+1−c <
1
2 + 1

p(k) , which is equivalent to wk,t(x) < 1
2 + 1

p(k)·(2c−1) for large enough t and k. Since

c is a constant, this implies that for large enough t and k, the probability wk,t(x), (where
x← Output(1k, t)), is negligibly close to 1

2 and this concludes our proof.

C Postponed Proofs on Weak Security under 1-bounded
Concurrent General Composition

In the following we need one-time information-theoretic message authentication codes so
we include the definition below.

Definition 19 (One-Time Information-Theoretic Message Authentication Code).
A one-time information-theoretic message authentication code is a triple (Gen,Mac,Verify)
where Gen(1n) outputs a key k, Mac(k, x) outputs a tag t (obtained using k) for the
message x of length n and Verify(k,m, t) outputs 0 or 1. The correctness property requires
that ∀n, ∀k in the range of Gen(1n) and ∀x ∈ {0, 1}n we have Verify(k, x,Mac(k, x)) = 1.

Moreover, the following security property is fulfilled. For every adversary A such that

Pr [(x′, t′)← A(x, t) ∧ x′ 6= x ∧Verify(k, x′, t′) = 1 :

: x← A(1n), k ← Gen(1n), t← Mac(k, x)],

is negligible in n.

Lemma 8 (Equivalence between Weak Security under 1-bounded Concurrent
General Composition and Weak Specialized Simulator UC Security). Let ρ be
a protocol and F an ideal functionality. Then ρ securely computes F under 1-bounded
concurrent general composition with weak security if and only if ρ securely implements F
under weak specialized simulator UC security.

Proof. As expected, the more involved part of the proof is the implication from weak
security under concurrent general composition to specialized simulator 1-bit UC security.
The reverse direction can be shown analogously to the proof existing in the initial version
of [25].

Let R1 , . . . ,Rm be the parties for ρ. Let (A,Z,D) be a triple consisting of UC real
world adversary (possibly adaptive), environment and distinguisher. We need to show
there exists an UC ideal world simulator S such that the views of the environment in real
world and in the ideal world cannot be distinguished by D. The adversary A may not
corrupt any party, in which case A is still capable of scheduling messages in the network.

30



Additionally, remember that in the UC model the only messages that A has no control
of, even by scheduling, are the input messages that the environment Z writes directly on
the input tapes of the parties and the output messages that Z reads directly from the
parties output tapes.

The intuition behind the proof is as follows: We use the fact that ρ composed with
an instance of any protocol (i.e., even one that has more parties than ρ) is secure23.
We construct a protocol π for m + 2 parties that besides the m parties of ρ has PZ
and PA playing the role of Z and A respectively. In this way, we reduce the proof of
weak specialized simulator UC security of ρ to weak security under concurrent general
composition. As mentioned above, the adaptive adversary A could corrupt everyone or
could corrupt no party and act as a network adversary. Thus, the motivation behind
using the two extra parties in the protocol π is to ensure there is always an honest entity
and also a corrupted entity, same as in the UC world. In order to model the ideally secure
channels that the specialized simulator UC (real/ideal) setting ensures by definition
between Z and the parties of ρ, we use one-time pads and one-time authentication MACs
in the concurrent general composition world between PZ and the parties of ρ.

However, it is important to know how long should the keys be. They should suffice
for all necessary encrypted and authenticated communication. Let q be a polynomial
such that for every security parameter n and for every i the value q(n) bounds above
the length of encryption and authentication keys needed between each pair PZ and Pi

with i ∈ {1, . . . ,m}. We postpone until after the description of π why such polynomial q
exists and how it is computed.

Formally, protocol π is described below and it can be used for both the real and the
ideal concurrent general composability worlds.

1. Inputs: Each party Pi with i ∈ {1, . . . ,m} receives a pair (k i
mac , k

i
enc) of keys24. Party

PA receives the empty string λ as input. Party Pm+1 receives an input z and also
the tuples ((k1

mac , k
1
enc), . . . , (km

mac , k
m
enc))25;

2. Outputs: The protocol outputs whatever PZ outputs. The rest of the parties of π
output an empty string λ;

3. Instructions for Pi , with i ∈ {1, . . . ,m}: When Pi receives (input , xi, ti) from PA, it
verifies the correctness of the tag. If verification succeeds, it computes mi = xi ⊕ k i

enc

and sends mi either to its corresponding ITM that emulates Ri of ρ or to the
functionality F . (This depends on whether π is part of the composed protocol πρ or
πF . Remember that independent of the channels model, an adversary in the concurrent
general composability world cannot interfere in any way with the messages that an
uncorrupted party of π wants to send to its associated ITM for ρ.) If verification fails,
then Pi halts. When the ITM emulating Ri or when F respectively sends the output

23 The security is of course in the sense of definition 18.
24 For ease of notation, we use one encryption key and one MAC key per party Pi , as they can

be considered long enough to encrypt and authenticate the entire communication between Pi

and PZ . However, for each different encryption (authentication) that needs to be performed,
a new part of the string k i

enc (and k i
mac , respectively) is used.

25 The input strings to π may have any distribution and the indistinguishability between the
real and the ideal concurrent general composability worlds would still be preserved. However,
for this proof we restrict the inputs to encryption keys (i.e., they are uniformly distributed in
{0, 1}q(k)) and MAC keys (i.e., they are generated with the Gen key generation algorithm).
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value yi to Pi , then Pi computes ei = yi ⊕ k i
enc and vi = MAC (k i

mac , ei) and sends
the message (output , ei, vi) to party PZ ;

4. Instructions for PZ : Upon receiving an input value z, it uses it for internally invoking
Z. When internal Z wants to send a message (input ,mi) to party i, then PZ computes
xi = mi ⊕ k i

enc and ti = MAC (k i
mac , xi) and sends (input, xi, ti) to Pi . When PZ

receives a message (output , yi, vi) from party Pi , it first checks the correctness of
the tag vi. If verification succeeds, then PZ computes mi = yi ⊕ k i

enc and stores mi.
Otherwise, it halts. When internal Z wants to read the output tape of party i, then
PZ looks up if there is a message mi stored from party Pi . If so, it writes mi to
corresponding tape of Z, otherwise it just writes λ to Z. Regarding the communication
with its adversary, when PZ receives a message from Z of the form (Z,A,m), it
forwards it to PA. Similarly when PZ receives a message of the form (A,Z,m) from
PA, it forwards it internally to Z.

5. Instructions for PA: This party has no predefined instructions. PA is needed in order
to provide a means of communication for the adversary of the general concurrent
composition setting which in this model can only send messages through a corrupted
party26.

We now explain how the polynomial q is chosen. Since the communication between
PZ and each of the parties Pi with i ∈ {1, . . . ,m} has to be secure and authenticated,
the length of the secret keys for the one-time pad and and for the one-time MAC should
be long enough. The intuition is that the length of the encryption keys shared by PZ and
Pi is bounded above by the length of the longest string that machine Z can write plus the
longest string that Ri can write. Since both machines are polynomially bounded and they
are fixed before the protocol π is constructed, there exist a polynomial qi such that qi(n)
bounds from above the length of the common encryption keys for every security parameter
n. Moreover, the length of the secret key needed for the authenticated messages between
PZ and Pi is at most as long as the one-time pad secret keys. Putting the above arguments
together we conclude there exists a polynomial q such that q(n) ≥ max{q1(n), . . . , qm(n)}.

For the protocol π given above we construct an adversary Aπ interacting with the
composed protocol πρ. Intuitively, the task of Aπ is to enable the communication among
Z (invoked by PA), A (invoked by the adversary Aπ) and the ITMs implementing ρ,
in the same way as it happens in the UC real world. In order to make this work and
for reasons explained above, the adversary Aπ corrupts PA. We construct the adversary
Aπ as follows: It internally runs the code of the UC real world adversary A and if A
corrupts a party Ri , then Aπ corrupts the party Pi together with its corresponding ITM
for computing ρ. The intuition is that Aπ instructs the corrupted parties of π to run the
protocol as before, while their corresponding corrupted ITMs follow the instructions of
A. The handling of messages by Aπ is as follows:

1. Input messages (input , xi, ti) sent by PZ are forwarded immediately by Aπ to Pi ;
Output messages (output , ei, vi) sent by Pi are immediately forwarded to PZ .
Moreover, as soon as party Pi is corrupted, its current state and all its previously
received messages are sent to A. The information that Z expects to receive upon
corruption is sent by Aπ to PZ . All messages received from this point on by Pi are
forwarded by Aπ to A.

26 This is in contrast to the UC model where even if none of the protocol parties is corrupted,
the adversary can interact with the environment Z.
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2. When PZ sends a message (Z,A,m) to party PA, then Aπ forwards it to its internal
run of A as if coming from Z. The messages (A,Z,m) that A wants to send to Z
are forwarded by Aπ to PZ ;

3. All messages that A instructs a corrupted party Ri to send to an uncorrupted party
Rj will be forwarded by Aπ to the corresponding ITM of Pj as if coming from the
corresponding ITM of Pi; However A schedules messages among parties Ri with
i ∈ {1, . . . ,m}, Aπ does the same for the messages between the corresponding ITMs
of parties Pi with i ∈ {1, . . . ,m}.

4. The adversary Aπ has no control over the messages between an uncorrupted Pi and
its corresponding ITM for computing ρ.

After having defined protocol π and adversary Aπ, we prove the output of PZ in
the execution of πρ (which we denote by {REALπρ,Aπ(k, z̄)|PZ}k∈N) and the output
of Z in the UC real world are identically distributed. For every z ∈ {0, 1}∗, z̄ =
(z, k1

enc , k
1
mac , . . . , k

m
enc , k

m
mac), λ, (k1

enc , k
1
mac), . . . , (km

enc , k
m
mac) is the vector where the first

component is the input to PZ , the second component is the input to PA, and each of the
other components is the input to a party Pi , with i ∈ {1, . . . ,m}.

We prove that for every z ∈ {0, 1}∗, for every k i
enc randomly chosen from {0, 1}q(n)

and for every k i
mac generated by Gen(1q(n)) we have:

{EXEC ρ,A,Z(k, z)}k∈N ≡ {REALπρ,Aπ (k, z̄)|PZ}k∈N (6)

which as a special case, of course implies:

{EXEC ρ,A,Z(k, z)}k∈N
D≡ {REALπρ,Aπ (k, z̄)|PZ}k∈N (7)

Our claim is based on the following facts: First, the inputs to parties are provided by
Z in both models, as in the composed protocol πρ the party PZ distributing the inputs is
internally running Z. Thus the input messages in both worlds are identically distributed.
By construction, Aπ follows the instructions of A (i.e., for network scheduling and for the
corrupted messages among the corresponding ITMs for P1 , . . . ,Pm) and it also provides
an internal perfect emulation for the view of A. Once an honest party Pi receives an
input, it immediately writes it on the input tape of its associated ITM for ρ. This implies
that such a party with its ITM follows the same protocol as the corresponding party of ρ.
We can now conclude that the view of Z in the UC real world for ρ and the view of PA
in the composed protocol πρ are identically distributed, so equation (6) follows.

According to the definition of weak security under 1-bounded general concurrent
composition, we know that for the triple π, Aπ and D, there exists a polynomially bounded
hybrid simulator Sπ such that for every z̄ defined as above we have:

{HYBRIDFπ,Sπ (k, z̄)}k∈N
D≡ {REALπρ,Aπ (k, z̄)}k∈N. (8)

We are now ready to construct a simulator S for the UC ideal world by using Sπ. We
have to observe that in the hybrid world of concurrent general composition and in the UC
real world the messages going over the network are the same. Intuitively, the new simulator
S has to have a scheduling indistinguishable from that of Sπ so the constructed simulator
S internally invokes Sπ. As a short summary of the messages that have to be defined
for S: communication from S to F , communication from S to Z and network scheduling
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(between parties of π and F). As S internally runs Sπ, the constructed adversary has
to provide an emulation for the entities that Sπ is interacting with: the parties of πF 27.
Such an emulation of πF consists of defining the input/output messages of the parties,
the messages among P1 , . . . ,Pm ,PA,PZ and the messages from P1 , . . . ,Pm to F .

1. Messages sent by F to S are forwarded to the internally emulated Sπ. The messages
that internally emulated Sπ wants to send to F are forwarded by S to F . Similarly,
the messages that internally emulated Sπ sends to the internally simulated PZ are
forwarded by S to Z. The messages that Z sends to S are forwarded internally to Sπ
as coming from PZ .

2. Simulation of PZ : When S receives a message (Z,A,m) from Z, it sends it to the
internally emulated PA as if coming from the emulated PZ . When Sπ instructs
emulated PA (which is a corrupted party) to send a message (A,Z,m) to PZ , the
simulator S forwards the same message to Z.

3. Simulation of PA: As an uncorrupted party, PA does not do anything, just receives
messages from PZ . These messages were actually sent by Z to S. When internal
Sπ wants to corrupt emulated PA (and this is actually the first party of π that Sπ
corrupts), then all that S needs to do is to send Sπ all the messages it received from
Z.

4. In the UC ideal world, when an uncorrupted dummy party Di receives an (input ,mi)
from the environment Z, it immediately forwards the input value to F . When S
receives over the network such a message28, it generates xi randomly in the length of
the received input and a MAC key k i

mac with the corresponding generation algorithm,
computes ti = MAC(k i

mac , xi) and internally sends the message (input , xi, ti) to Pi

as if coming from PZ . When F wants to send an output message (i.e., same discussion
as above) to Di, the simulator S internally randomly generates yi in the length of
the output received over the network, then computes vi = MAC(kimac, yi) and sends
message (output , yi, vi) to Sπ as if coming from the ideal functionality in πF .
Whenever Sπ corrupts a party Pi , we have one of the following 3 cases:
-For a corrupted party Pi , that Sπ wants to corrupt before a certain input is sent to it
by PZ , the simulator S corrupts the corresponding dummy party Di, informs Z about
it and generates a correct key pair (k i

enc , k
i
mac) for encryption and authentication

and gives them to Sπ29. When input value(s) xi for Di are received by S over the
network30, then S computes yi = xi ⊕ k i

enc and vi = MAC(kimac, yi). Next, S sends
yi, vi to Sπ as coming from PZ . When an output oi is sent by F to Di, then S
computes ci = xi ⊕ k i

enc and ti = MAC(kimac, yi) and sends ci, ti to simulated Pi as
if coming from PZ .
-For a corrupted party Pi , that Sπ corrupts after a certain input is sent to Pi , but
before the corresponding output is received, first the emulation from the case of

27 Observe that it is actually sufficient to simulate the parties of π without the messages sent by
F as they can be forwarded by S from its communication with the ideal functionality.

28 If the channels between the dummy parties and the ideal functionality are ideally secure, then
the value received could also be encrypted, so what is forwarded should not depend on what
is received.

29 This simulates the information that Sπ should learn from the newly corrupted (simulated)
party.

30 As Di is corrupted, they are received from Z unencrypted.
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uncorrupted input takes place. Thus, a message (yi, vi) has been already sent from PZ
to Pi . When the corruption takes place, the simulator S corrupts the corresponding
dummy party Di, informs Z about it and generates a correct key pair (k i

enc , k
i
mac)

for encryption and authentication. Then it sends the pair to Sπ, together with the
correct input xi in plain. When an output oi is sent by F to Di, then S computes
ci = xi ⊕ k i

enc and ti = MAC(kimac, yi) and sends ci, ti to simulated Pi as if coming
from PZ .

-For a corrupted party Pi that Sπ corrupts after a certain input is sent to it and after
the corresponding output is received, the simulator S corrupts the corresponding
dummy party Di and informs Z about the corruption31. Then S reads in plain the
input and output values received by Di and, using the simulated encrypted messages,
computes the corresponding encryption keys which are sent to Sπ as Pi input.

5. The following is valid only for honest parties: When Sπ delivers a message from Pi

to the ideal functionality in πF , then S delivers the same message from Di to F32.
When Sπ delivers an output from Pi to PZ , then S delivers the output from F to
Di33.

In order to conclude the proof we have to show that the output of the executions
in both hybrid composition world and UC ideal world can be distinguished only with
negligible probability. For this we detail the following three steps: a proof that the view of
internally emulated Sπ is identical with πF , a proof that the messages in the two worlds
(hybrid composition and the UC ideal world) are identically distributed and finally, a
proof that the delivery of output messages happens in the same time in both worlds.

We start by analyzing S internal emulation for Sπ. It is easy to see that by construction
Sπ, internally invoked by S, gets and delivers the same messages as Sπ does in the
concurrent general composition world.

Next, we look at the messages sent between entities in both worlds. In the ideal UC
world, the inputs are sent by Z and in the hybrid world with πF , the inputs are sent by
PZ who runs Z. The messages that are sent between PZ (running Z) and PA (corrupted
and controlled by Sπ), are the same as the messages sent in the UC ideal world between Z
and S who runs Sπ. In both worlds, the messages sent by parties to the ideal functionality
are the same: the honest parties just forward their inputs and the corrupted parties
are instructed by Sπ and respectively by S running Sπ. We only need to show that the
delivery of messages is the same in both worlds. Combining this claim with the proof
above, we obtain that the outputs of both worlds are computationally indistinguishable.

Finally, we compare message delivery in both worlds. It is clear that the messages
between adversary and the environment Z or party PZ running Z are identically delivered.
The same hods for messages between the parties and the ideal functionality. We treat in
more detail the case of inputs and outputs delivery. By definition, in the UC world, the
input messages are written by Z directly on the input tapes of the protocol parties and

31 Note that the simulation done by S for uncorrupted Pi receiving encrypted and authenticated
input and output from PZ already took place.

32 Actually, the simulator Sπ has to make two deliveries (from PZ to Pi and from Pi to the ideal
functionality in πF ), before S does the delivery of message from Di to F .

33 Similarly as above, the simulator Sπ has to make two deliveries (the output of F to Pi and
from Pi to PZ), before S does its delivery from F to Di.
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for the honest parties, the adversary has no control over this step34. In the execution of
πF , PZ is distributing the inputs to the rest of the parties, but they are scheduled by Sπ,
so we cannot know when they are delivered. However, we ensure that in both worlds an
input of an honest party reaches the ideal functionality in the same time. Indeed, this
holds as an honest dummy party Di once it receives its input, it immediately sends it to
the ideal functionality. As simulator S delivers this message only after Sπ has delivered
the same message to F , we have shown the claim.

Similarly, we show that an output message is delivered to Z and to the party PZ in
the same time. Both entities have basically the same instructions. We assume the machine
environment Z reads all output tapes whenever it is activated. This gives the most power
to the environment to distinguish between the delivery of messages. By construction, S
sends an output of F to an honest dummy party Di only when Sπ sends the same output
to PZ . Once it receives its output, the honest Di immediately writes this value on its
output tape (and this can be read by Z at any time). Analogously, Z, (which is internally
run by PZ), can read at any time the tape with output messages sent for it. So we have
that also the outputs from the ideal functionality are delivered simultaneously in both
worlds. This implies that for every z̄ defined as before we have:

{HYBRIDFπ,Sπ (k, z̄)|PZ}k∈N≡{EXECF,Sπ,Z(k, z)}k∈N (9)

Thus, it holds that:

{HYBRIDFπ,Sπ (k, z̄)|PZ}k∈N
D≡ {EXECF,S,Z(k, z)}k∈N (10)

By combining relations (7),(8) and (10), we can conclude the proof.

We are now able to prove theorem 2:
Theorem (Equivalence between Weak Security under 1-bounded CGC and

1-bit SSUC). Let ρ be a protocol and F an ideal functionality. Then ρ securely computes
F under 1-bounded concurrent general composition with weak security if and only if ρ
securely implements F under 1-bit specialized simulator UC security.

Proof. The theorem follows immediately by combining lemma 8 and lemma 1.

Next, we prove the simple lemma 5 stating the relation between weak security and
stand-alone security.

Lemma (Weak Security Does Not Imply Stand-alone Security). If Blum
integer time-lock puzzles exist, then there are protocols that fulfill the weak security notion,
but do not fulfill the stand-alone security notion.

Proof. From theorem 2, weak security under 1-bounded concurrent general composition
is equivalent to 1-bit specialized simulator UC. As shown in [25], stand-alone security
under 1-bounded concurrent general composition is equivalent to specialized simulator

34 However, in the UC ideal world, immediately after receiving inputs, the honest dummy parties
are activated and they write their inputs on the communication tape for the ideal functionality.
As the simulator is responsible for the delivery of messages, in this way it will learn that
inputs have been sent to the ideal functionality.
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UC. According to theorem 1, the two UC variants are not equivalent. This implies weak
security and stand-alone security are also not equivalent35.

We continue by proving lemma 6:
Lemma (Weak Stand-alone Security Does Not Imply Weak 1-bounded

CGC Security). There exists a protocol π which is secure in the weak stand-alone model,
but is not secure with respect to weak 1-bounded concurrent general composition security.

Proof. The proof is based on the same idea presented in [6].

Next we give the formal definition for weak precise secure computation. Full details
about this notion can be found in [20].

Definition 20 (Weak Precise Secure Computation). Let π be a protocol, F an ideal
functionality and let C be the function that given a security parameter k, a polynomially
bounded party Q and the view v of Q in the protocol π, it computes the complexity36

of Q running with k and v. We say that π is a weak precise secure computation of
F37 if there exists a polynomial p such that for every real world adversary A, for every
distinguisher D and for every input z, there exists an ideal simulator S, with C(k,S, v) ≤
p(k, C(k,A,S(v))) such that :

{IDEAL(k, z,S,F)}k∈N
D≡ {REAL(k, z, A,

−→
M}k∈N.

We finally show lemma 7:
Lemma (Weak Precise Secure Computation Does Not Imply Weak Stand-

alone Security). If Blum integer time-lock puzzles exist, then there exists a protocol π
which is secure with respect to weak precise secure computation, but is not secure with
respect to weak stand-alone security.

Proof. The proof follows the general lines of the constructions that we have used for
our main separation result in lemma 4, however, as expected, the details are much more
straight forward.

Let π be such that on an input pair (k, t), where k is the security parameter, it
truncates t to the first k bits obtaining t′ and generates Gen(k, t′) = (q′, a′). Then it
sends q′ to A and regardless of the reply received from the adversary, it outputs 1.

35 One may wonder if the equivalence result between UC security and specialized simulator UC
security that is known to hold in the extended UC model does not hinder the correctness of
this result. However, this is not the case. On one hand, in the extended UC model, specialized
simulator UC security and UC security are equivalent. Combining this with the well known
result of equivalence between UC security and 1-bit UC security, we obtain that in the
extended UC model, specialized simulator UC security and 1-bit specialized UC security are
equivalent. This equivalence should not look surprising, as it is obtained in a more ”permissive”
adversarial UC model. On the other hand, the results obtained in this work show that there
is at least one composition operation under which weak security and stand-alone security are
not equivalent.

36 We give the definition in this rather general manner, but as common instantiations, the
complexity of Q can be its running time or the size of the memory used.

37 The most common use of the precise secure computation is when the ideal functionality F
implements a given function f .
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In the ideal world, on an input pair (k, t), the ideal functionality F behaves exactly
like π with the only exception that it outputs 1 if and only if it receives from the adversary
it interacts with, i.e., from S, the correct solution v′ from the puzzle. Otherwise F outputs
0.

Given π and F as defined above, first we show that π is not as secure as F with
respect to weak stand-alone security. Assume by contradiction that weak stand-alone
security property holds. Since in the real world π outputs 1, in the ideal world the
ideal functionality should output 1 with overwhelming probability. This in turn means
that S should produce the correct solution for the puzzle sent by F with overwhelming
probability. However, this should be the case independent of the input t′. For a fixed
polynomially bounded simulator S, there is a polynomially bounded hardness tS for
the puzzles that is can solve. However, by the definition of the time-lock puzzles, if the
input t′ > tS then the simulator fails to reply correctly to the challenge sent by F with
overwhelming probability. In conclusion, for a given simulator there is always an input
that the real and the ideal world are distinguishable with non-negligible probability, thus
our assumption is false.

Second, we prove that π is as secure as F with respect weak precise secure computation.
For ease of presentation, we assume that C represents the run time complexity function.
In order to show this claim we make the following observation: From relation (3) we
deduce that for every integer d there exists an integer pd and a polynomial time solver
Cd with run time at most pd when solving puzzles of hardness kd. By induction, it is easy
to see that there is a polynomial poly such that for every d there is a polynomial solver
C ′d such that the run time of C ′d is at most poly(d) when solving puzzles of hardness kd.
This polynomial poly we can use as polynomial p in the definition of weak precise secure
computation. Given an adversary A, a distinguisher D and an input t, it is easy to see
that if we take simulator S such that it has hardness at least t, then the real and the
ideal world will be indistinguishable for D. And this concludes our proof.

D Postponed Proofs of Equivalence between Strong Universal
Implementation and Weak Secure Computation

In the following we prove theorem 3:

Theorem (Equivalence Between Game Universal Implementation and Weak
Stand-alone Security). Let comm be the communication mediator represented by the
cryptographic notion of ideally secure channels. Let f be an m-ary function with the
property that outputs the empty string to a party if and only if it had received the empty
string from that party. Further on, we call this the empty string property. Let F be a

mediator that computes f and let
−→
M be an abort-preserving computation of f38. Then−→

M is a weak secure computation of f with respect to statistical security if and only if

(
−→
M, comm) is a strong Games universal implementation of F , where Games is the class

of games for which the utility functions of the players depend only on players types and

38 −→M is an abort-preserving computation of f if for all n ∈ N and for all inputs x̄ ∈ ({0, 1}n)m,

the output vector of the players after an execution of (⊥,
−→
M−Z) on input x̄ is identically

distributed to f(λ, x̄−Z), where Z is a subset of all parties and λ is the empty string.
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on their output values and the values of the utility functions are at most polynomial in
the security parameter.

Proof. In this proof, without loss of generality, we assume that the ideal functionality F
outputs to each of the parties in the ideal world the output of the computation for each
of their input together with their input value. More formally, if party i sends F as input
the value xi, it receives from F as output fi(x1, . . . , xm);xi, where by ”;” we denote the
concatenation of strings.

First we prove that if
−→
M is a weak secure computation of f with statistical security,

then (
−→
M, comm) is a strong Games universal implementation of F . Since both

−→
M and

−→
ΛF compute f , according to the definition, it means they have statistically close output
distributions. So the second property contained in the definition of game universal
implementation has been proven. Next we prove that ∀i ∈ {1, . . . , n}, there exists a
negligible function εi and an integer ki such that for all k ≥ ki:

Ui(k,
−→
M) = Ui(k,

−→
ΛF ) + εi(k). (11)

We prove that below. Let
−→
t be the vector of inputs and −→o be the vector of outputs.

Then we have:

|Ui(k,
−→
M)− Ui(k,

−→
ΛF )| =

= |
∑
−→
t ,−→o

[Pr(REAL(k,
−→
M) = −→o )− Pr(IDEAL(k,

−→
ΛF ) = −→o )] · ui(k,

−→
t ,−→o )| ≤

≤ [
∑
−→
t ,−→o

|Pr(REAL(k,
−→
M) = −→o )− Pr(IDEAL(k,

−→
ΛF ) = −→o )|] · pi(k) ≤

≤ ε(k) · pi(k) =

= εi(k).

In the inequalities above, we have used the following facts: The output distributions
in the real and in the ideal world are finite and statistically close and the utility function
ui is bounded above by a polynomial pi. Hence, equation (11) holds.

Also, in an analogous manner, the following equation

UZ(k,
−→
M) = UZ(k,

−→
ΛF ) + εZ(k).

trivially holds, where Z can be any subset of players.
We are now ready to show the left to right implication of the theorem in two steps,

by following the remaining properties in the definition of game universal implementation.

If
−→
ΛF is a computational Nash equilibrium in the mediated game (G,F), assume by

contradiction that
−→
M is not a Nash equilibrium in (

−→
M, comm). Then there exists a player

i, a deviating strategy Ai, a polynomial pi such that for every k0 there exists k ≥ k0 with
the property:

Ui(k,Ai,
−−→
M−i) > Ui(k,

−→
M) +

1

pi(k)
. (12)
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Due to equation (11) and also due to the hypothesis that
−→
ΛF is a computational Nash

equilibrium (this is where the following negligible function ε comes from) we additionally
have:

Ui(k,
−→
M) +

1

pi(k)
+ ε(k) = Ui(k,

−→
ΛF ) +

1

pi(k)
+ εi(k) + ε(k)

≥ Ui(k,Si,
−−→
ΛF−i) +

1

pi(k)
,

(13)

for every simulator Si. Thus we obtain Ui(k,Ai,
−−→
M−i) > Ui(k,Si,

−−→
ΛF−i) + 1

p′i(k)
, for

every Si. Given the hypothesis on polynomially bounded utility functions, for every

simulator Si, the output distributions of REAL(k,Ai,
−−→
M−i) and IDEAL(k,Si,F) are not

statistically close (This can be shown in an analogous way as relation (11)). So for every
Si, there exists a distinguisher Di such that

{IDEAL(k,Si,F)}k∈N
Di
6≡ {REAL(k,Ai,

−−→
M−i}k∈N, (14)

i.e., Di (that can be also computationally unbounded) has non-negligible probability to
distinguish between the ensembles above.

Let Sim be the set of all simulators Si and let Dist be the set of all distinguishers Di
as described above. Let D be the distinguisher that runs every distinguisher in the set
Dist and outputs 1 if and only if at least one of the distinguishers in the set Dist outputs
1. Such a D is obviously computationally unbounded, but is a viable distinguisher in
relation with the definition of weak security with statistical security.

By the definition of weak security, for adversary Ai and for distinguisher D, there
exists a simulator S such that the following ensembles are statistically close distributed:

{IDEAL(k,S,F)}k∈N
D≡ {REAL(k,Ai,

−−→
M−i}k∈N

But since D also runs the distinguisher that can tell apart between the world with S
and the world with Ai, the above relation is a contradiction with the definition of D. Thus

if
−→
ΛF is a computational Nash equilibrium, then so is

−→
M . It can be shown in an analogous

way, mainly by substituting the deviating player i with any set Z of deviating players,

that if
−→
ΛF is immune to the coalition in Z, then

−→
M is also immune to the coalition in Z.

Finally, we look at the preservation of ⊥i as a best response for a party i in
−→
M . As

−→
M

is abort preserving and f has the empty string property, Ui(⊥i,
−→
M−i) = Ui(⊥i,

−−→
ΛF−i). On

the other hand, if playing ⊥i is the best response to
−−→
ΛF−i, (i.e., ⊥i gives the highest utility

for player i in the world with
−−→
ΛF−i up to a negligible value), due to the weak security

property and by using the same technique based on distinguishers’ properties as in the
preservation of computational Nash equilibrium above, the highest utility for party i in

the real world is Ui(⊥i,
−→
M−i) up to a negligible value. This concludes the implication

from left to right.
For the implication from right to left, we follow the case-separation idea of the proof

for theorem 4.2 (Information Theoretic Case) in [19] and we specify below the details.

Assume by contradiction that
−→
M is not a weak secure computation of f with statistical

security. Thus, there exists a set Z of corrupted parties, there exists an adversary AZ
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corrupting the parties in Z and a distinguisher D (possibly unbounded) such that for
every simulator S there exists a polynomial pS,Z such that for every integer k0 there
exists k ≥ k0:

Pr(D(k,REAL(k,AZ ,
−→
M−Z)) = 1)−

− Pr(D(k, IDEAL(k,S,F)) = 1) >
1

pS,Z(k)

(15)

As in [19], we distinguish between two cases:
Case 1: AZ = ⊥Z

The proof idea in this case is to design a game in the class Games, with utilities

depending on D such that
−→
ΛF is a computational Nash equilibrium (with immunity

with respect to coalitions). By hypothesis, this implies that
−→
M is a computational Nash

equilibrium (with immunity with respect to coalitions). However, for the constructed

game, we obtain that ⊥Z is the best response to
−−−→
M−Z , which represents a contradiction.

Let d = Pr(D(k, IDEAL(k,⊥Z ,F)) = 1). We denote by
−→
t the inputs of the parties,

which in game theoretic terms correspond to the secret types of the players; and we
denote by −→o the outputs of the parties, which in game theoretic terms correspond to the
actions taken by the players. In the following, by oZ and by λZ respectively, we denote
the input for parties in Z and the empty string corresponding to the output of the parties
in Z.

Next, we define a game G such that for any subset of players Z ′ 6= Z, we have uZ′ = 0
and for the set Z we have:

uZ(k,
−→
t ,−→o ) =

Pr(D(k,
−→
t ,−→o ) = 1) if −→oZ = λZ

d otherwise

We show for the game G the strategy
−→
ΛF is a computational Nash equilibrium in the

ideal world. Indeed, for any subset of players Z ′ 6= Z, we have that UZ′(k,
−→
ΛF ) = 0 =

UZ′(k,SZ′ ,
−−−→
ΛF−Z′), for any simulator S. For the set Z, on one hand we have UZ(k,

−→
ΛF ) = d,

as following the strategy
−→
ΛF does result in an ”empty” output for the parties in Z only

with negligible probability (i.e., if and only if the inputs to all the parties in Z are also
the empty string). On the other hand, we have that:

UZ(k,SZ ,
−−→
ΛF−Z) =

Pr(D(k, IDEAL(k,⊥Z ,F)) = 1) if SZ = ⊥Z

d+ εS,Z(k) otherwise,

where for every SZ , εS,Z is a negligible function.

Hence UZ(k,
−→
ΛF ) + εS,Z(k) ≥ UZ(k,SZ ,

−−→
ΛF−Z), for every SZ . To summarize,

−→
ΛF is a

Nash equilibrium with immunity with respect to coalitions. Adding the hypothesis of

(
−→
M, comm) being a game universal implementation of F , we obtain that

−→
M is a Nash

equilibrium with immunity with respect to coalitions. But
−→
M and

−→
ΛF have statisti-

cally close output distributions, so similar to (11) we conclude UZ(k,
−→
M) = d + εZ(k).
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However, UZ(k,⊥Z ,
−→
M−Z) = Pr(D(k,REAL(k,⊥Z ,

−→
M−Z)) = 1). By assumption (15),

Pr(D(k,REAL(k,AZ ,
−→
M−Z)) = 1) > Pr(D(k, IDEAL(k,S,F)) = 1) + 1

pS,Z(k) , for every

simulator S. Thus, UZ(k,⊥Z ,
−−−→
M−Z) > d+ 1

pS,Z(k) −ε(k) = d+ 1
p′S,Z(k) . As this contradicts

the equilibrium property of
−→
M , we conclude the first case.

Case 2: AZ 6= ⊥Z

Without loss of generality, we assume that AZ lets one of the players in Z output the
entire view of the adversary AZ . Indeed, we can construct A′Z from AZ such that besides
the output for each of the parties in Z, the first player in Z also outputs v′ = AZ (v). If
we define the distinguisher D′ such that

D′(k,REAL(k,AZ(v),
−→
M−Z); v′) = D(k,REAL(k,AZ(v),

−→
M−Z))

and

D′(k, IDEAL(k,S(v), )
−−→
ΛF−Z ; v′) = D′(k, IDEAL(k,S(v), )

−−→
ΛF−Z),

then the property (15) fulfilled by D is also fulfilled by D′. So we can assume AZ lets
one of the players in Z output the entire view of AZ .

Let d = supSZ Pr(D(k, IDEAL(k,SZ ,F)) = 1). We construct a game H in the
following way. For any subset of players Z ′ 6= Z, the utility corresponding to the coalition
Z ′ is 0, independent of the parties inputs and outputs. Then we define:

uZ(k,
−→
t ,−→o ) =


d if −→oZ = λZ

Pr(D(k,
−→
t ,−→o , v) = 1) if ∃ oiZ = o′iZ ; v and

−→
o′Z 6= λZ

0 otherwise

where for every jZ 6= iZ , o′jZ = ojZ .

We prove that for the game H defined above, ⊥Z is the best response to
−−→
ΛF−Z . Assume

by contradiction this does not hold. Let the simulator SbestZ be such that the strategy it

implements for the parties in Z is the best response to
−−→
ΛF−Z . This implies SbestZ 6= ⊥Z and

UZ(k,SbestZ ,
−−→
ΛF−Z) > UZ(k,⊥Z ,

−−→
ΛF−Z) + 1

pZ(k) = d+ 1
pZ(k) . From the last relation we can

conclude that IDEAL(k,SbestZ ,
−−→
ΛF−Z) and IDEAL(k,⊥Z ,

−−→
ΛF−Z) are not statistically close

distributions.

Hence, the expected utility UZ(k,SbestZ ,
−−→
ΛF−Z) can be computed using the second or

the third branch of the definition of the utility function uZ . Thus,

UZ(k,SbestZ ,
−−→
ΛF−Z) ≤ Pr(D(k, IDEAL(k,SbestZ ,F)) = 1).

So d < Pr(D(k, IDEAL(SbestZ ,F)) = 1), which is a contradiction with the definition

of d, so ⊥Z is the best response to
−−→
ΛF−Z .

By hypothesis of the current implication, we conclude ⊥Z is the best response to−−−→
M−Z . However, we show that UZ(k,AZ ,

−−−→
M−Z) > UZ(k,⊥Z ,

−−−→
M−Z) + 1

p(k) , which is an

obvious contradiction.
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Indeed, on one hand:

UZ(k,AZ ,
−−−→
M−Z) = Pr(D(k,REAL(k,AZ ,

−−−→
M−Z))) >

> sup
SZ

Pr(D(k, IDEAL(k,SZ ,F)) = 1) +
1

pS,Z(k)

= d+
1

pS,Z(k)
.

On the other hand, UZ(k,⊥Z ,
−−−→
M−Z) = d due to the definition of the utility function

uZ , so the contradiction is obvious.
Our proof needs to clarify only one last point. What happens in the case that Z is the

empty set, or to put it equivalently, AZ is the empty adversary ⊥. Then the assumption

in equation (15) becomes: Pr(D(k,REAL(k,⊥,
−→
M)) = 1)− Pr(D(k, IDEAL(k,S,F)) =

1) > 1
pS(k)

, for every simulator S. But this directly contradicts the fact that
−→
M and

−→
ΛF

have statistically close output distributions.
Hence theorem 3 has been proven.
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