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Abstract

In this work, we consider the long-standing open question of constructing constant-round
concurrent zero-knowledge protocols in the plain model. Resolving this question is known to
require non-black-box techniques.

We consider non-black-box techniques for zero-knowledge based on knowledge assumptions,
a line of thinking initiated by the work of Hada and Tanaka (CRYPTO 1998). Prior to our work,
it was not known whether knowledge assumptions could be used for achieving security in the
concurrent setting, due to a number of significant limitations that we discuss here. Nevertheless,
we obtain the following results:

1. We obtain the first constant round concurrent zero-knowledge argument for NP in the
plain model based on a new variant of knowledge of exponent assumption. Furthermore,
our construction avoids the inefficiency inherent in previous non-black-box techniques such
that those of Barak (FOCS 2001); we obtain our result through an efficient protocol
compiler.

2. Unlike Hada and Tanaka, we do not require a knowledge assumption to argue the soundness
of our protocol. Instead, we use a discrete log like assumption, which we call Diffie-Hellman
Logarithm Assumption, to prove the soundness of our protocol.

3. We give evidence that our new variant of knowledge of exponent assumption is in fact
plausible. In particular, we show that our assumption holds in the generic group model.

4. Knowledge assumptions are especially delicate assumptions whose plausibility may be hard
to gauge. We give a novel framework to express knowledge assumptions in a more flexible
way, which may allow for formulation of plausible assumptions and exploration of their
impact and application in cryptography.

Keywords. Concurrent Zero-Knowledge, Knowledge Assumptions, Non-Black-Box Tech-
niques



1 Introduction

Zero-knowledge proofs [GMR89] are fundamental and important tools in the design of crypto-
graphic protocols. The original setting of zero-knowledge proofs contemplated a single prover
and a single verifier executing a single protocol session in isolation. Concurrent zero-knowledge [DNS98]
(cZK) extends zero-knowledge to concurrent settings, where several protocol sessions are exe-
cuted at the same time involving multiple provers and verifiers. Resolving the round complexity
of concurrent zero-knowledge protocols has been a long standing open problem. There have
been several negative results which give lower bounds for round complexity of black box sim-
ulation of cZK [KPR98, Ros00, CKPR01]. The best result, which uses black box simulation,
has ω(log n) round complexity [PRS02], where n is the security parameter. This nearly matches
the best known lower bound for black box simulation [CKPR01], which states that any black-
box concurrent zero-knowledge protocol must require at least Ω̃(log n) rounds. Hence, our only
hope of achieving constant round cZK lies in non-black-box simulation. In his seminal work,
Barak [Bar01] introduced the first non-black-box simulation technique, but this technique or its
variants have not yet yielded a concurrent zero-knowledge protocol with lower round complexity
than the work of [PRS02]. Indeed, Barak explicitly posed the problem of constructing constant-
round concurrent zero-knowledge arguments as “an important open question” [Bar01]. Despite
many attempts in this direction, this is still a long-standing open problem in cryptography.

In this work, we consider whether non-black-box techniques based on knowledge assumptions
can be applied to achieve constant round concurrent zero-knowledge protocols. We answer this
question affirmatively, by giving the first constant-round concurrent zero-knowledge protocol
based on a knowledge assumption, which is a novel variant of the knowledge of exponent as-
sumption first introduced by Damgard [Dam91] and used by Hada and Tanaka [HT98] in the
context of ordinary zero-knowledge protocols.

Furthermore, our techniques allow us to avoid the inefficiency inherent in previous non-black-
box techniques, such as those of Barak [Bar01]. Indeed, we obtain our result by providing an
efficient transformation from constant round stand alone protocols to constant round concur-
rently secure zero-knowledge protocols.

Recently, there has been an explosion of interest in knowledge assumptions. Knowledge
assumptions became popular when these were applied to the construction of three round zero-
knowledge arguments by [HT98]. This has led to a number of interesting research papers
applying knowledge assumptions to a variety of different contexts [BP04, AF07, CD08, CL08,
CD09, PX09, IKOS10, Gro10, GKR10, GLR11, BCCT12, DFH12]. Prior to our work, to the
best of our knowledge, knowledge assumptions have not been applied successfully to achieve
concurrent security. As we explore below, this is because of a number of complications which
arise when one applies knowledge assumptions to concurrent settings.

Our Contributions: We show the following:

1. We obtain the first constant round concurrent zero-knowledge argument for NP in plain
model based on a new variant of knowledge of exponent assumption. Our compiler to
get concurrently secure protocol is efficient and avoids the inefficiency inherent in other
non-black-box techniques.

2. Unlike Hada and Tanaka [HT98], we do not require a knowledge assumption to argue the
soundness of our protocol. Instead, we use a discrete log like assumption, which we call
DHLA (See Section 3.1), to prove the soundness of our protocol.

3. We give evidence that our new variant of knowledge of exponent assumption is in fact
plausible. In particular, we show that our assumption holds in the generic group model.

4. As we discuss in greater detail below, and as has been discussed throughout the history
of knowledge assumptions in cryptography, knowledge assumptions are especially delicate
assumptions whose plausibility may be hard to gauge. We give a novel framework to
express knowledge assumptions in a more flexible way which may allow for formulation of
plausible assumptions and exploration of their impact and application in cryptography.
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On Knowledge Assumptions and their Applications in Cryptography. Knowledge
assumptions are inherently non-black-box. Informally speaking1, knowledge assumptions can
be expressed by assuming that there is a specific “Knowledge Commitment Protocol” such that
we can efficiently extract the value committed by the adversary if he completes the commitment
protocol successfully — in other words, we assume that any adversary that successfully completes
the Knowledge Commitment Protocol must have “knowledge” of the value that it committed to.
For the purpose of this introduction, assume that the Knowledge Commitment Protocol is just a
two message protocol in which first the Receiver sends a random message to the Committer and
then the Committer responds with a commitment to a value2. Knowledge assumptions present
a number of challenges to the research community from the point of view of the falsifiability
rubric of Naor [Nao03]: they do not fall in the desirable category of falsifiable assumptions
in [Nao03].

Furthermore, knowledge assumptions present challenges with regard to auxiliary inputs as is
also pointed out in the early works of Hada and Tanaka [HT98]. Intuitively the problem arises
if we consider what happens if an adversary is given as auxiliary input an obfuscated program.
The adversary simply compiles and executes the obfuscated program to obtain the commitment
message. Then a knowledge assumption, which is expected to hold for all auxiliary inputs, would
imply an efficient extraction of the committed value. This would imply an efficient deobfuscation,
which seems problematic. It was recently suggested by Bitansky et al [BCCT12] that it is more
reasonable to assume that knowledge assumptions only hold with respect to “benign” auxiliary
inputs. One of our contributions is to put forward a framework for formulating knowledge
assumptions with respect to Admissible Adversaries. This allows us to specify a set of auxiliary
inputs with respect to which the knowledge of exponent assumption would hold. For applications
in cryptography we want this class to be as large as possible. Despite these drawbacks, the study
of knowledge assumptions in cryptography has been thriving recently. This is evident by the
long list of interesting research papers cited above. (See Section 8 for more details).

Limitations of Knowledge Assumptions in the Setting of Concurrency. Un-
doubtedly, the reason that knowledge assumptions have attracted attention is because they are
very useful to achieve important goals in cryptography. Indeed often it may seem that knowl-
edge assumptions are so powerful that they can be used to achieve any plausible result that we
want to achieve in cryptography. For example, when it comes to the simulation of protocols,
intuitively it seems that whenever the adversary commits to some value, the simulator can use
the knowledge assumption to extract the hidden value committed to. Hence, it seems this can
become a universal technique for straight line simulation3. This intuition is false, as we describe
below.

One way to see that the above intuition is false is by observing a long list of unconditional
impossibility results for concurrent simulations in plain model [CF01, Lin03, Lin04, BPS06,
KLR10, GKOV12, AGJ+12] and observing that the above intuition seems to give a simulation
technique applicable to any concurrent setting. Even in restricted models of concurrency, there
are many natural protocol tasks that are impossible even with knowledge assumptions. One
of the most relevant examples is concurrently secure oblivious transfer (OT), in the “fixed
roles” setting and with fixed inputs for honest parties. This setting is almost identical to
concurrent zero-knowledge, with the only difference being that there one is trying to achieve OT
as opposed to zero-knowledge, but there are no issues of “man-in-the-middle attacks” or adaptive
choice of inputs. Nevertheless, a concurrently secure OT protocol in fixed roles setting and
with fixed inputs for honest parties is impossible even with knowledge assumptions [GKOV12,

1Our assumption is concrete. See Section 3.4.
2The commitment here does not refer to a semantically secure commitment scheme.
3For example, consider the following coin flipping protocol. Adversary commits to R, honest party sends R′,

adversary opens R. The result of coin flipping protocol would be R ⊕ R′. Intuitively, knowledge assumption would
allow the simulator to force the outcome of coin flipping to any string he wants since it would know R immediately
after the adversary’s commitment through extraction. Thus, one might conclude that with knowledge assumptions
we can achieve the CRS model. This intuition is false.
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AGJ+12], yet as we show, there is a plausible assumption under which we achieve constant
round concurrent zero-knowledge. The negative results show that potential specific knowledge
assumptions, which would be powerful enough to allow for concurrently secure OT, must be
false. (We stress that the novel knowledge of exponent assumption we formulate here would not
naturally provide a simulation of a concurrent OT protocol.)

As suggested above, one of the main non-trivialities of our work is to formulate a plausible
knowledge assumption that would allow us to achieve constant round concurrent zero-knowledge,
while remaining plausible. We begin our discussion here with natural attempts to apply knowl-
edge assumptions to the concurrent setting, and their limitations. We believe that this discussion
will be useful to other researchers who would like to apply knowledge assumptions to other inter-
esting problems in cryptography, while also illustrating the non-triviality of achieving concurrent
security using a plausible knowledge assumption.

Perhaps the most promising idea would be to formulate an “interactive” knowledge assump-
tion. Informally speaking, such an assumption would say that extraction is possible after an
arbitrary interaction which took place prior to the final message in the Knowledge Commitment
Protocol. However, any natural formulation of such an interactive knowledge assumption would
be powerful enough to achieve concurrent realization of functionalities such as OT. Hence, we
know that such an assumption must be false. Indeed such an assumption would be falsified by
considering a scenario in which the actions of the adversary in the Knowledge Commitment Pro-
tocol are fully specified by messages that the adversary received in the past, and not directly by
the adversary itself. (For example, the functionality being computed could provide the messages
of the Knowledge Commitment Protocol as outputs to the adversary [BPS06, AGJ+12].) Intu-
itively, in such a situation, the adversary doesn’t have any knowledge of the value he committed
to, and hence the goal of extraction is untenable. Essentially the problem is that some “external
knowledge” may find its way to the adversary by means of previous interactions and get used by
it to generate its messages in Knowledge Commitment Protocol. Similar problems arise when
trying to use auxiliary inputs to the extractor promised by a knowledge assumption in order to
facilitate extraction in the concurrent setting. (See Appendix A for a brief discussion.)

Recursive Applications of Knowledge Assumptions and their Limitations.
Another approach would be to apply a knowledge assumption recursively for each session. What
we mean by this is as follows: Essentially, a knowledge assumption transforms an adversary
circuit A into another (potentially polynomially larger) circuit A′ that behaves just like A
but also outputs an extracted value. If we apply a knowledge assumption recursively, then
we would transform the original adversary circuit A into A′, but then apply the knowledge
assumption again to transform A′ into A′′. However, clearly if such a recursion is applied a super-
constant number of times, then the final circuit might be super-polynomial in size. This problem
was encountered by Bitansky et al [BCCT12] in the construction of succinct non-interactive
adaptive arguments of knowledge (SNARKs) using extractable collision resistant hash functions
(ECRH). To prove the property of proof of knowledge, the extractor needs to extract the full
Probabilistically Checkable Proof (PCP) given only the root of a Merkel tree. The natural
solution is to apply the knowledge extraction recursively at each level of the tree. But since
each level of extraction potentially incurs a polynomial blow up, one can apply extraction only a
constant number of times. One of the major contributions of [BCCT12] was to circumvent this
problem by using Merkel trees with polynomial fan-in and constant depth. Note that, however,
we do not have any such option while constructing a constant round concurrent zero-knowledge
protocol because the number of concurrent sessions can be any unbounded polynomial.

One natural approach to avoid this blow-up with each recursive extraction would be to
assume a stronger property on the running time of the extractor. For example, one can assume
the existence of an extractor which only takes an additive poly(n) (where n is the security
parameter) factor more than the running time of the adversary. Note that the factor of poly(n)
is independent of the running time of the adversary. We call this the +poly(n) assumption.
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However, this assumption seems too strong and in fact potentially implausible4. On the other
hand, if we do not make such a strong assumption, the essence of the problem is that if we want
to apply the knowledge extractor recursively, we cannot afford it to take even mε longer than
the adversary, where m is the running time of the adversary and ε is an arbitrary constant.
Note that we do not make the +poly(n) assumption.

Intuition behind our assumption. Our first idea is to separate the process of extraction
from the behavior of the adversary. More precisely, we will think of the adversary as a circuit
M . If M completes the Knowledge Commitment Protocol, an application of our assumption to
M gives us a separate extractor circuit E. The assumption states that the input wires of E can
be any wire inside the circuit M , including input, intermediate, or output wires. The output
of E(x) is only the value committed to in the output of M(x). Now that we have separated
the extractor from the adversary, we make the following observation: It is reasonable to assume
that when the assumption is applied to create an extractor circuit E, the assumption does not
attempt to place any “external knowledge” into E or attempt to hide any knowledge in E. In
other words, the extractor created by the assumption is not maliciously created. Hence, let us
call it benign and denote it by B. Note that we will only consider benign circuits that are created
by the assumption. The benign circuits are not assumed to remain benign if they are modified.
Now we can state our assumption:

Assumption 1.1 (Informal knowledge assumption). Consider a pair of malicious and benign
circuits (M,B) such that M completes a Knowledge Commitment Protocol and outputs a
commitment to a value. Then there exists a polysize benign extractor circuit E which takes as
input a subset of wires of M , and outputs the value committed to by M . Moreover, the size of
the extractor E is bounded by a fixed polynomial in the size of M and the security parameter
n.

Now consider a recursive application of our assumption. Recall that the recursive application
is required for the following: Suppose we have an adversary and we execute it to obtain some
number of messages until it completes a Knowledge Commitment Protocol. Then we apply the
knowledge assumption to obtain an extractor that allows us to obtain the committed value. We
then use the extracted value in order to execute the adversary for some additional number of
messages until it finishes another Knowledge Commitment Protocol (and so on). Let us denote
by M the execution of the adversary so far. Note that the inputs to M are essentially the
original inputs to the adversary together with the outputs of the extractors so far. Denote by
B the collection of extractors so far.

Now let us consider what happens when we apply our assumption to (M,B). We obtain
an extractor E that extracts a value committed in the output of M . We observe that while
B was involved in the execution of the adversary, only the outputs of B were ever used by M
to compute its output commitment message. Furthermore, as argued above, B was benignly
created by the assumption and thus has no external or hidden knowledge inside it. Thus we
argue, that it is reasonable to assume that the size of the extractor E created by the assumption
is a fixed polynomial in the size of only the malicious circuit M . Recall that M contains all the
malicious computations done by the adversary. We now make the following observations about
our assumption.

4Consider the following scenario: Given a random group element g from a special group G, the adversary is
expected to output gb (a commitment to b) and extractor’s task is to output b. However, the Adversary applies a hash
function on its input and gets a pseudorandom string s = s1 . . . sm of length m, where m depends on the running time
of the adversary and is not a fixed polynomial in length. Now, it traverses the string s and recursively applies a special
function A, such that A(d, gx) = gf(d,x). In other words, the adversary computes A(s1, A(s2, . . . , A(sm, g) . . . )). Now
suppose A and f satisfy the following conditions: (1) Time(A)<Time(f) (2) Time(f(s1, f(s2, . . . , f(sm, 1) . . . ))) = m·
Time(f). Then, by the latter condition, the extractor needs to compute f iteratively. Thus, the extractor will need
at least O(m) more operations than the adversary, where m is decided by the adversary. We do not know if such an
A and f exist. However, if such an A and f did exist, it would refute the +poly(n) assumption.
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• We observe that without loss of generality, we can assume that in a recursive application
of our assumption, the extractor created by the assumption in fact contains all of the
extractors created previously inside of it. Namely the benign circuit B is a part5 of the
newly created extractor E. Thus E can make use of all of the intermediate wires of
previously created extractors, without loss of generality. These intermediate values may
contain useful knowledge which may help the extraction of the value committed in the
output message of M .

• We also observe that the counter-example we contemplated in Footnote 4 to the +poly(n)
assumption is compatible with our assumption6. That is, the existence of the functions A
and f specified in the counter-example would not refute our assumption. Essentially this
is because our extractor E is allowed to be polynomially larger than the malicious circuit
M .

• We further validate the plausibility of specific knowledge assumption that we make (see
Section. 3.4) by providing a proof that the assumption holds in the generic group model
(Section. 7).

• To understand what computational complexity limitations our assumption is placing on the
Knowledge Commitment Protocol, let us first examine an important complexity limitation
that the knowledge of exponent assumption of Hada and Tanaka (HTKEA) [HT98] places
on the Knowledge Commitment Protocol. For simplicity of notation here, let us assume
that the Knowledge Commitment Protocol is a non-interactive commitment denoted by
Com(x). Consider a circuit A such that:

A(x) =

`︷ ︸︸ ︷
Com(Com . . . (Com(f(x))) . . .)

where f is not efficiently computable. Then the HTKEA implies that there cannot exist
such a polysize circuit A for any constant `. This is because by making constant recursive
invocations of HTKEA we will be able to extract f(x) and generate a polysize circuit that
computes f . Because our assumption admits further recursive invocations with efficient
extractions, it would imply that such a polysize circuit A should not exist for larger
values of `. However, we note that the commitment we use is size increasing, namely
|Com(x)| ≥ 2|x|. Therefore our assumption would imply that such a circuit A cannot exist
for any ` which is O(log(n)). We believe that if such a complexity assumption holds for a
constant `, as the HTKEA implies, then it is quite plausible that it holds for ` = O(log(n)).

We describe two variants of our protocol: First, we provide a simpler protocol transformation
that uses bilinear groups. This protocol is quite efficient and requires only 5 rounds. Our second
protocol works with a knowledge assumption in general groups (without the need of a bilinear
map), at the cost of a constant number of additional rounds, and is slightly less efficient.

Organization. The paper is organized as follows: We discuss the technical sections be-
ginning with background on zero-knowledge, canonical arguments and commitment schemes in
Section 2. We describe the DHLA assumption and our knowledge assumption for bilinear groups
in Section 3. We describe our protocol (which uses bilinear groups) in Section 4 and prove its
soundness in Section 5. Next, we show that our protocol is zero-knowledge in a concurrent
setting in Section 6. For general groups, the knowledge assumption and the protocol for concur-
rent zero-knowledge is described in Appendix D. Then we prove that our knowledge assumption
holds in the generic group model in Section 7. Finally, we discuss related work in Section 8.

5We stress that if all recursively created extractors contain all the previously created extractors inside it, then the
last invocation of the assumption only needs to embed the previous extractor (since it already contains all previous
extractors). This would prevent an exponential blow-up in size that a reader might otherwise worry would occur.

6On the other hand if the reader believes that the counter-example from Footnote 4 is not plausible, then it is
easy to see that +poly(n) assumption implies our assumption.
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2 Definitions and Preliminaries

In the following sections, we will denote the security parameter by n. We denote a NP-complete
language by L and if x ∈ L then WL(x) returns a witness w to that fact.

Definition 2.1 (Bilinear Groups). A bilinear group is a tuple BG = (q,G,GT , e, g), where G
and GT are cyclic groups of prime order q, g generates G, and e : G × G → GT is an efficient
non-degenerate bilinear map, i.e. ∀X,Y ∈ G ∀a, b ∈ Zq : e(Xa, Y b) = e(X,Y )ab, and e(g, g)
generates GT . Let LQG denote the set of {(q, g, e)}, where g generates a bilinear group of
prime order q, where q is an n-bit prime, and e is an efficient non-degenerate bilinear map.
For brevity, we will suppress the bilinear map, when it is obvious from the context, and simply
write (q, g) ∈ LQG. Also, we will assume that if q is an n−bit prime then any x ∈ Zq can be
represented by a unique n−bit string. For ease of notation, we just use x to denote this unique
string.

Definition 2.2 (Interactive Arguments). Let P, V be two PPT interactive machines. We denote
the probability that V accepts x ∈ L on interacting with P by Acc〈P (x,w), V (x)〉. We say that
〈P, V 〉 is an interactive argument for an NP-complete language L if the following two conditions
are satisfied:

• Efficient Completeness: For every x ∈ L, there exists a string w, such that

Acc〈P (x,w), V (x)〉 = 1.

• Computational Soundness: For every PPT machine P ∗ (cheating prover), every polynomial
poly(·), all sufficiently long x /∈ L and all strings w,

Acc〈P ∗(x,w), V (x)〉 < 1
poly(|x|) .

Definition 2.3 (Non-Black-Box Zero-Knowledge protocol w.r.t. auxiliary input of length m).
Let m be a polynomial in n. Let P, V be two PPT interactive machines. We say that 〈P, V 〉 is a
non-black-box zero-knowledge protocol for L w.r.t. auxiliary input of length m if for every PPT
machine V ∗ there exists a PPT machine SV ∗ such that the following two distribution ensembles
are indistinguishable:

{SV ∗(x, y)}x∈L,y∈{0,1}m and {〈P (x,w), V ∗(x, y)〉}x∈L,w∈WL(x),y∈{0,1}m ,

where {〈P (x,w), V ∗(x, y)〉}x∈L,w∈WL(x),y∈{0,1}m is a random variable taking the value of V ∗’s
random coins and the sequence of messages in the interaction between P and V ∗.

2.1 Concurrent Zero-Knowledge (cZK)

Let 〈P, V 〉 be an interactive proof system for a language L, and consider a concurrent adversary
V ∗ that given an input x ∈ L interacts with an unbounded number of copies of the prover P
concurrently. Moreover, there is no restriction on the scheduling of the messages between P and
V ∗ (in particular, V ∗ controls the scheduling of these messages).

The transcript of the concurrent session consists of the common input x, followed by a
sequence of messages exchanged between the prover and the verifier. The view of V ∗ when it
interacts with P consists of the random tape of V ∗ together with the transcript of the protocol.

To prove that any protocol is zero-knowledge in the concurrent setting, we show the existence
of a simulator for every concurrent verifier V ∗ that interacts with m copies of P , where m is
bounded by a polynomial in n.

Definition 2.4 (Non-Black-Box cZK with auxiliary input of length m). Let 〈P, V 〉 be an
interactive argument system for a language L. We say that 〈P, V 〉 is non-black-box concurrent
zero-knowledge if for every concurrent adversary V ∗ (with auxiliary input y of length m) that
runs at most m concurrent sessions with P , where m is nc for any constant c, then there exists
a probabilistic polynomial time algorithm SV ∗ that runs in time polynomial in the running time
of V ∗ and n and satisfies that the following ensembles are computationally indistinguishable:
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{Sm,V ∗(x, y)}x∈L,y∈{0,1}m,m≤nc and {〈P (x,w), V ∗(x, y)〉}x∈L,w∈WL(x),y∈{0,1}m,m≤nc

In the final constant round protocol for concurrent zero knowledge (Π) (see Section 4) using
knowledge assumption in bilinear groups, we will use a discrete log based equivocal commitment
scheme and three round canonical arguments as subroutines. Hence, we define and describe these
next. Then we will describe the assumptions used to prove the soundness and the zero-knowledge
properties of our protocol in bilinear groups. In the subsequent section, we will describe our
protocol for concurrent zero-knowledge (Π) in detail. We describe the constant round concur-
rent zero-knowledge protocol for non-bilinear groups in Appendix D. In this protocol, we also
use a constant round statistically sound zero-knowledge protocol in stand alone setting (see
Appendix D.1).

2.2 Canonical Arguments

A three round canonical argument 〈P , V 〉 for an NP-complete language L, proposed by [HT98],
is described in Figure 1. Cmt and Rsp are the first and second messages of the prover and Ch
is the message sent by the verifier.

Definition 2.5. An argument system 〈P , V 〉 for an NP-complete language L is called a canonical
argument system if it satisfies the following properties:

B0 The prover is a probabilistic polynomial time function which is given the NP-witness w.
When this function is invoked with an incoming message Min and its state, it outputs
Mout and its updated state. The initial state of the prover is set to (x,w,R), where x is
the common input, w is its auxiliary input and R is the random tape. When it is invoked
with (ε, (x,w,R)) it outputs the prover’s first message which is a commitment Cmt.

B1 The verifier selects the challenge Ch uniformly at random from {0, 1}n.

B2 Strong-Soundness: For any x /∈ L and Cmt, there exists at most one challenge Ch ∈ {0, 1}n
for which there exists a Rsp ∈ {0, 1}∗ such that Verx(Cmt,Ch,Rsp) = 1.

B3 Honest Verifier Zero Knowledge (HVZK): There exists a probabilistic polynomial time Sim-
ulator SHV such that following two ensembles are computationally indistinguishable:

{SHV (x)}x∈L and {〈P (x,w), V (x)〉}x∈L,w∈WL(x),

where {〈P (x,w), V (x)〉}x∈L,w∈WL(x) is a random variable taking the value of V ’s internal

coin tosses and the sequence of messages it receives in interaction between P (with auxiliary
input w) and V .

One of the ways to construct such a protocol, as described by Hada and Tanaka [HT98], is
parallel composition of Blum’s ZK protocol for Hamiltonicity.

Prover P Verifier V
Initial State St0 = (x,w,R)
(Cmt, St1)← P (ε, St0)

P 1:
Cmt−−−−−−−−−−−→

Ch
$←− {0, 1}n

Ch←−−−−−−−−−−−:V 1

(Rsp, St2)← P (Ch, St1)

P 2:
Rsp−−−−−−−−−−−→

If Verx(Cmt,Ch,Rsp) = 1
then accept x ∈ L else reject

Figure 1: Three Round Canonical Argument System 〈P , V 〉
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2.3 Discrete Log based Equivocal Commitment Scheme ComDL

The committer and the receiver are given a group G of prime order q, its generator g and an

element B ∈ G such that q is an n−bit prime. To commit to x ∈ Zq, choose r
$←− Zq and send

Z = gx ·Br. To open, the sender sends (x, r).
This commitment scheme is perfectly hiding i.e. ComDL(x) and ComDL(x′) are identically

distributed. If the committer does not know the discrete log of B, then ComDL is computation-
ally binding under discrete log assumption. We assume that discrete log assumption holds in
all the groups we consider. Also, if Z is a commitment under ComDL, then given two distinct
openings of Z to (x, r) and (x′, r′) such that x 6= x′, one can easily solve for the discrete log
of B, say b, as follows: b = (x − x′) · (r′ − r)−1. Also, if the simulator knows the discrete log
of B, say b, it can open Z = ComDL(x; r) as being a commitment to any x′ ∈ Zq by sending
r′ = OpenDL(x, x′, r, b) = (x+ r · b− x′) · b−1.

3 Assumptions

We begin this section by describing an assumption which is very similar to the discrete logarithm
assumption (DLA). Given a (q, g) ∈ LQG, DLA says that given a random group element A = ga,
for any polysize circuit, it is hard to compute a with non negligible probability. Diffie-Hellman
Log Assumption says that given a Diffie-Hellman tuple (ga, gb, gab), it is difficult to compute b
even when a is chosen maliciously by the adversary. Let us denote Diffie-Hellman tuples by DH.

Assumption 3.1 (Diffie-Hellman Log Assumption (DHLA)). For every family of probabilistic
polynomial size circuits I = {In}n≥1, every poly(·), all sufficiently large n’s and all (q, g) ∈ LQG
such that q is of length n, consider the following probabilistic experiment:

• In on input ( “Step 1”, 1n) outputs (g,A), where A ∈ G.

• Given (g,A) as input, experiment chooses b ∈ Z∗q and computes (B = gb, X = Ab),

then DHLA says that if (g,A,B,X) is a Diffie-Hellman tuple then the probability that In, given
this tuple, outputs discrete log of B is negligible even when A is chosen maliciously by In. More
formally,

Pr[In(“Step 2”, g, A,B,X|(A,B,X) ∈ DH) = b : B = gb] < 1
poly(n) ,

for any choice of A by In.

Knowledge Assumption: Below, by a circuit C we mean a collection of Boolean gates and
wires. We use the non-standard convention that certain gates are specially marked as output
gates.

Definition 3.2 (Admissible family of Adversaries). An admissible family of adversaries A is
a family of sets such that the following properties hold: Each set S ∈ A is such that S =
{Cn,Mn, Bn, auxn}n∈N. For each such set S, there exist constants c, c′ > 0, such that Cn is a

circuit with |Cn| ≤ nc, and aux ⊆ {0, 1}nc′

. Furthermore, {Mn, Bn} is a partition of the gates
and the wires of the circuit Cn. If x is the input to Cn then by Mn(x) we refer to the result of
the computation Cn(x) restricted to the output wires in Mn; we define Bn(x) similarly.

We will refer to Mn and Bn as the malicious and the benign parts respectively of the
adversary circuit Cn.

Definition 3.3 (A admits polysize malicious extensions). An admissible family of adversaries A
admits polysize malicious extensions if the following holds: For any set of circuits S ∈ A where
S = {Cn,Mn, Bn, auxn}n∈N, and any polysize circuit family {Fn}n∈N such that ∃d > 0, |Fn| <
nd and the input wires to Fn are a subset of the wires in Mn (including both internal and output
wires) and the output wires of Bn, we have that S′ = {Cn ∪ Fn,Mn ∪ Fn, Bn, auxn} ∈ A.

Next, based on the definition above, we define a variant of knowledge of exponent assumption
based on the one described by Hada and Tanaka [HT98].
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Assumption 3.4. [m-Knowledge of Exponent Assumption (m-KEA) w.r.t. admissible adver-
saries] We say that the m-Knowledge of Exponent Assumption holds with respect to a family
of admissible adversaries A, if for every c > 0, there exists a constant c′ > 0 such that the
following holds: For m = nc, fix any S = {Cn,Mn, Bn, auxn}n∈N ∈ A. Then there exists a
family of extraction circuits {En}n∈N whose inputs are a subset of any wires in Mn, such that
|En| ≤ (n · |Mn|)c

′
. (Informally, this condition requires that the extraction only uses the inter-

nal wires of the malicious part of the adversary.) Furthermore, we require that the following
conditions hold:

1. For all sufficiently large n, every polynomial poly(·), the following is true for all aux ∈ auxn:
Consider the following probabilistic experiment: For i ∈ [1,m], primes qi and generators
gi are chosen randomly such that (qi, gi) ∈ LQG, where qi is chosen to be of length
n. Values a1, . . . , am are chosen at random such that ai ∈ Z∗qi . Finally, R is chosen
uniformly at random from sufficiently long strings so that the length of the tuple x =
((q1, g1, g

a1
1 ), . . . , (qm, gm, g

am
m ), aux,R) is exactly the length of the input to circuit Cn.

If the input to Cn is not long enough to allow such an input then the assumption is
vacuously true for this S. Now, we consider the output of Mn(x), which we interpret as a
tuple (j, B,X), where j ∈ [m], and both B and X are in the group generated by gj . Then,
we interpret the output of En(x) as the value bj ∈ Zqj , and require the following to be
true:

Pr
[
X = Baj ∧B 6= g

bj
j

]
<

1

poly(n)
.

(Informally, this condition states that if the malicious part of the adversary outputs a
tuple so that (gj , g

aj
j , B,X) form a Diffie-Hellman tuple, then the extractor En successfully

outputs the discrete log of B with respect to gj .)

2. We have that (Cn∪En,Mn, Bn∪En, auxn) ∈ A. (Informally, this means that the extraction
circuit created by this assumption is benign.)

Definition 3.5. An admissible set of adversaries A contains all polysize malicious adversaries
if for all c, c′ > 0, and for all circuit families {Cn}n∈N such that |Cn| ≤ nc, for each n there

exists some subset auxn ⊆ {0, 1}n
c′

, such that (Cn, Cn, ε, auxn) ∈ A. We say that A contains

all polysize malicious adversaries with all polysize auxiliary inputs if auxn = {0, 1}nc′

for each
circuit family above.

Theorem 3.6 (Informal). If the m-Knowledge of Exponent assumption holds with respect to
an admissible adversary family A such that A contains all polysize malicious circuits and allow
polysize malicious extension, and DHLA holds, then there exist constant-round concurrent zero-
knowledge arguments for NP in the plain model.

Furthermore, if A contains all polysize malicious adversaries with all polysize auxiliary in-
puts, then there exist constant-round concurrent zero-knowledge arguments for NP in the plain
model with respect to arbitrary auxiliary inputs.

4 Constant Round Protocol for Concurrent Zero-Knowledge

The protocol starts by asking the verifier to use Knowledge Commitment Protocol to commit
to a value b in B = gb. We use equivocal commitments whose trapdoor is b to run a coin
flipping protocol between the prover and the verifier. In parallel with the coin flipping protocol,
we run a parallel repetition of Blum’s Hamiltonicity protocol, where the result of coin flipping
protocol determines the challenge message. We describe the 5-Round protocol for concurrent
zero-knowledge argument in Figure 2. Note that the protocol execution does not make use of
the bilinear map. It is only used by our zero-knowledge simulator to check that (A,B,X) forms
a Diffie-Hellman tuple since it does not have access to the discrete log of A. We stress that this
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Here, Pi and Vi denote the ith prover and the ith verifier message respectively.
〈P , V 〉 represents the three round canonical argument.

Prover P Verifier V
Initial State St0 = (x,w,R)

(q, g)
$←− LQG ; a

$←− Z∗q ; A← ga

P1:
(q, g, A)−−−−−−−−−−−→

If (q, g) /∈ LQG then abort

else b
$←− Z∗q ; B ← gb ; X ← Ab

(B, X)←−−−−−−−−−−−:V1

Let ComDL (defined in Section 2.3) be the commitment scheme using (g,B).
If X 6= Ba then abort
else (Cmt, St1)← P (ε, St0)

α
$←−− Zq; Z = ComDL(α; r̃)

P2:
Cmt, Z−−−−−−−−−−−→

β
$←−− {0, 1}n

β←−−−−−−−−−−−:V2

Ch← α⊕ β
(Rsp, St2)← P (Ch, St1)

P3:
(α, r̃, Rsp)−−−−−−−−−−−→

If Z 6= ComDL(α; r̃) then abort
Ch← α⊕ β
If Verx(Cmt,Ch,Rsp) = 1
then accept else reject.

Figure 2: Π: 5-Round Protocol for cZK (P, V )

use of a bilinear map is not crucial, and that we eliminate the need for a bilinear map in our
second protocol (See Section D).

This protocol uses the discrete log based commitment scheme ComDL which is binding under
the hardness of DHLA. The secret value b committed to by the verifier satisfies the following
properties.

R1: For Soundness: Under DHLA (Assumption 3.1), any cheating prover while interacting
with the honest verifier cannot get the secret coins of the verifier. Hence, any cheating
prover cannot output the discrete log of B sent by the verifier in Figure 2.

R2: For Zero-knowledge: Under m-KEA (Assumption 3.4), our simulator will be able to
output the discrete log of B no matter how the verifier behaves. Once the simulator
gets the secret coins of V ∗, which is the trapdoor to equivocal commitment scheme, the
simulation is easy.

For R2, informally, it seems that even the cheating verifier must start by simply choosing b and
computing (gb, Ab) in order to pass the check X = Ba. That is, we assume that the verifier
knows the secret coins b whenever it passes the check. m-KEA defined in Section 3.4 captures
this idea of knowledge and knowledge extraction formally. Under this variant of knowledge
of exponent assumption, we will design a simulator which will extract the secret coins of the
cheating verifier. Since, the simulator will have the trapdoor to ComDL, it will be able to
equivocate on its commitment to α and force the outcome of the coin flipping protocol to the
challenge string output by the honest verifier simulator SHV .
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5 Π is Computationally Sound

Recall that DHLA says that given a Diffie-Hellman tuple (g, ga, gb, gab), even if a is chosen by
the adversary, it is hard for it to guess b with non-negligible probability. We prove soundness
of Π by the following two steps: Let P ∗ denote the cheating prover.

• If P ∗ succeeds in equivocating its commitment in coin flipping protocol then we can extract
the trapdoor value b of Knowledge Commitment Protocol from P ∗. This shows that P ∗

can be used to efficiently compute b and thereby break DHLA.

• We show that if P ∗ does not equivocate on its commitment in coin flipping protocol and
convinces the verifier of a false statement, then such a P ∗ can be used to violate the
underlying strong soundness of canonical arguments. In other words, it would violate the
underlying soundness of Blum’s Hamiltonicity protocol.

To prove the soundness of Π in the concurrent setting, it is sufficient to prove soundness of a
single stand alone session.

For the first step, let us define the following interactive game G:

1. Sim runs the above protocol with P ∗ till P ∗ commits to α using random coins r̃ in
the above protocol using commitment scheme ComDL as defined before. P ∗ sets Z =
ComDL(α; r̃) and sends Z to Sim.

2. Sim sends β to P ∗.

3. P ∗ sends (α1, r̃1, Rsp) to Sim such that Z = ComDL(α1; r̃1).

4. Sim rewinds P ∗ to Step 2 and sends it β′ such that β′ 6= β. P ∗ wins if it sends
(α2, r̃2, Rsp) to Sim such that Z = ComDL(α2; r̃2) and α1 6= α2.

Lemma 5.1. Under DHLA, for every probabilistic polynomial time machine P ∗, every polyno-
mial poly(·), and all sufficiently large n’s,

Pr[P ∗ wins G] < 1
poly(n)

where probability is over choice of α, β and coins of P ∗ and n is the security parameter.

Proof: We will prove this by contradiction. If there is a polynomial f(n) such that Pr[P ∗wins G] >
1/f(n), then we can construct an adversary A for DHLA. A runs P ∗ and gets (q, g, A) and sends
(g,A) to the challenger Ch of DHLA. Ch prepares the challenge tuple by choosing a random b
and sends (B = gb, X = Ab) to A which it forwards to P ∗. P ∗ and A continue running the
protocol Π until the opening of Z as α. After this opening, A rewinds P ∗ until the commitment
Z and runs P ∗ again with a different β′ and looks at the opening of Z by P ∗. If P ∗ opens Z
to the same α, A aborts. Else if P ∗ opens Z to a α′ such that α 6= α′, A can compute b, the
discrete log of B, as described in Section 2.3. A sends b to Ch.
Pr[A breaks DHLA] = Pr[P ∗ wins G] > 1/f(n). This contradicts DHLA.

Theorem 5.2. Under Lemma 5.1 and strong soundness property (B2) of 〈P , V 〉, protocol Π is
computationally sound.

Proof: We will again prove this by contradiction. If Π is not computationally sound then there
exists a PPT machine P ∗ and an infinite set I = {(x,w) : x /∈ L} such that there exists a
polynomial p(·) satisfying

Acc〈P ∗(x,w), V (x)〉 > 1
p(|x|) .

Since P ∗ can equivocate his commitment to α only with a negligible probability, the only way
P ∗ can convince V of a false statement is to complete the protocol successfully for multiple
challenges for each (x,w) ∈ I.

Using this cheating prover P ∗ for Π, we will construct a cheating prover P
∗

for canonical
argument system which breaks the strong soundness property of the canonical argument system.
P
∗

interacts with P ∗ as the verifier on some (x,w) ∈ I. P
∗

runs the protocol till the end. If

P ∗ succeeds in convincing P
∗
, then P

∗
rewinds P ∗ up to the point when P ∗ has sent his
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commitment to α. This time P
∗

sends a different β. If P ∗ completes the protocol successfully
for the second time, then P

∗
gets two different tuples (Cmt,Ch1,Rsp1) and (Cmt,Ch2,Rsp2)

for x /∈ L which a honest verifier V would accept. This is because P ∗ can not equivocate to α
with non-negligible probability. This would contradict the strong soundness property of 〈P , V 〉.
Now we need to calculate the probability of success of P

∗
in breaking B2.

Let T be the transcript of Π till the prover’s commitment to α. Let pT = Pr[V accepts x /∈ L|T ].
We are given that,

Acc〈P ∗(x,w), V (x)〉 = ET (pT ) > 1
p(|x|) .

1
p(|x|) < ET (pT ) ≤

(
PrT

[
pT >

1
2 ·

1
p(|x|)

]
· 1
)

+
(
PrT

[
pT ≤ 1

2 ·
1

p(|x|)

]
· 1

2 ·
1

p(|x|)

)
.

Now we know that PrT

[
pT ≤ 1

2 ·
1

p(|x|)

]
≤ 1. By solving we get,

PrT [pT >
1
2 ·

1
p(|x|) ] > 1

2p(|x|) .

We call a transcript T good when pT >
1
2 ·

1
p(|x|) . P

∗
breaks B2 on a good transcript when P

∗

succeeds in convincing the verifier on two independent choices of β. Hence,

Pr[P
∗
breaks B2] > Pr[T is good] · ( 1

2 ·
1

p(|x|) )2 > 1
8 · (

1
p(|x|) )3.

This contradicts the strong soundness property of canonical argument system by a non-negligible
probability.

6 Π is Concurrently Zero-Knowledge

To establish the zero-knowledge property, we build a sequence of extractors through recursive
applications of m-KEA. Informally, each circuit uses the extractor provided by m-KEA to obtain
the value b committed by V ∗ and then use this trapdoor value to equivocate in the coin flipping
protocol. Through such an equivocation, the simulator can force the challenge message in
Blum’s Hamiltonicity protocol to be equal to the challenge the simulator received by calling
the honest verifier simulator SHV for Blum’s Hamiltonicity. We prove that the simulation is
computationally indistinguishable from the real execution through a sequence of hybrids.

Theorem 6.1. If there are m concurrent sessions of Π and if our family of admissible adver-
saries A contains all polynomial size adversaries and allows polysize malicious extensions, then
under m-KEAand honest verifier zero-knowledge property of 〈P , V 〉, the following distribution
ensembles are computationally indistinguishable:

{SV ∗(x, y)}m,x∈L,y∈{0,1}m and {〈P (x,w), V ∗(x, y)〉}m,x∈L,w∈WL(x),y∈{0,1}m ,

where SV ∗ is the zero-knowledge simulator for Π described in Appendix B.

For the proof of this theorem refer to Appendix B. The following theorem states that the
circuit of our simulator SV ∗ is a polynomial size circuit.

Theorem 6.2. The size of the circuit of the simulator SV ∗ is a fixed polynomial in the size of
the circuit of V ∗ and the security parameter.

For the proof of this theorem refer to Appendix C.

7 m-KEA holds in Bilinear Generic Group Model

In this section, we will argue that m-KEA (Assumption 3.4) holds for any family of admissible
adversaries (described below) that acts generically to the groups used in our protocol.

The Generic Group model: Given a cyclic bilinear group G, we consider the random
encoding ψG, that is an injective map ψG : G → {0, 1}`, where ` > 3 · log(|G|). We write the
encoded group as {ψG(x) : x ∈ G}. Let e be the bilinear map, e : G × G → GT , where GT is
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also a cyclic group. Let the random encoding of GT be ψGT
. The adversary is given access to

three oracles ΦB , ΦP , and ΦT . The oracle ΦB takes as input the random encodings of group
elements in base group G and performs the group operations multiplication and inverse in G.
If α, β ∈ ψG(G), then ΦB(α, β) gives the encoding of the product of elements represented by α
and β which is ψG(ψ−1

G (α) · ψ−1
G (β)). Also ΦB(α, Inv) gives the encoding of the inverse of the

group element represented by α which is ψG((ψ−1
G (α))−1), where α ∈ ψG(G). ΦP also takes

random encodings of group elements in G and returns the pairing under the bilinear map e.
Given α, β ∈ ψG(G), ΦP (α, β) gives the encoding of the pairing of elements represented by α
and β which is ψGT

(e(ψ−1
G (α), ψ−1

G (β))). Similarly, ΦT takes as input the random encodings
of group elements in GT and performs the group operations multiplication and inverse in GT .
If α, β ∈ ψGT

(GT ), then ΦT (α, β) gives the encoding of the product of elements represented
by α and β which is ψGT

(ψ−1
GT

(α) · ψ−1
GT

(β)). Also ΦT (α, Inv) gives the encoding of the inverse

of the group element represented by α which is ψGT
((ψ−1

GT
(α))−1), where α ∈ ψGT

(GT ). Let

Φ = ΦB ∪ ΦP ∪ ΦT . Without loss of generality, assume ψG(1G) = 0`.

Theorem 7.1. m-KEA holds in the bilinear generic group model w.r.t. a family of admissible
adversaries A which contains all polysize malicious circuits with all polysize auxiliary inputs.

Proof: Consider the following family of admissible adversariesA = {(Cn,MΦ
n , Bn, auxn)}n∈N,

where MΦ
n is any family of polysize malicious circuits which have access to the oracle Φ, i.e.

ΦB , ΦP and ΦT . Bn is any family of polysize circuits which do not make any calls to any of the
oracles. Cn = MΦ

n ∪ Bn and auxn is the set of all polysize strings. Observe that A admits any
polysize malicious extension. Looking ahead, the family of extractor circuits En will not make
any calls to Φ.

Since in the experiment described in m-KEA, the circuit Cn deals with m different bilinear
groups, the oracles ΦB , ΦP and ΦT also take the group number i as input. More formally,
if α, β ∈ ψGi

(Gi), then ΦB(i, α, β) = ψGi
(ψ−1
Gi

(α) · ψ−1
Gi

(β)), ΦB(i, α, Inv) = ψGi
((ψ−1

Gi
(α))−1)

and ΦP (i, α, β) = ψGT,i
(ei(ψ

−1
Gi

(α), ψ−1
Gi

(β))). Similar calls can be made to ΦT to compute the
multiplication and inverse operations in the groups GTi .

To prove the second property of m-KEA, we would maintain the invariant that our extractor
circuit family En will not make any oracle calls. Now, in order to prove the theorem, we are left
to prove that the first property of m-KEA holds.

For all sufficiently large n, given a set of circuits S = {Cn,MΦ
n , Bn, auxn} ∈ A (defined

above) and for all aux ∈ auxn, we run the following experiment. For all i ∈ [m], we pick at
random (qi, gi) ∈ LQG and pick a random encoding ψGi for the group Gi and ψGTi

for the group
GTi

. Let Φ be the oracle for the bilinear generic group model. Now, choose values a1, a2, . . . , am
uniformly at random such that ai ∈ Z∗qi . The circuit MΦ

n is given the input (qi, ψGi
(gi), ψGi

(gaii ))

for all i ∈ [m]. Let the output of MΦ
n be (j, B,X). Now we construct the extractor circuit En

as follows:
En builds a lookup table Ti for all i ∈ [m]. Table Ti maps all group elements (α =

ψGi(g
di+ai·d′i
i )) ever considered by MΦ

n to a tuple ((di, d
′
i)). Informally, it maps the encod-

ing of any group element to its discrete log w.r.t. gi and gaii . Specifically, En works as follows:
It initializes Ti with following two entries: ψGi

(gi) maps to (1, 0) and ψGi
(gaii ) maps to (0, 1).

Now, consider a topological ordering τ of the gates in circuit MΦ
n . Traversing in this order,

we process the oracle calls to ΦB as follows: For oracle call ΦB(i, α, β) with outcome γ 6= ⊥, we
update our Ti as follows: Find the entries in Ti corresponding to α and β, say Ti(α) and Ti(β).
If any one of these is not found, we call this event Miss and En outputs MissFail. Then find γ
in Ti. If Ti(γ) exists, but Ti(γ) 6= Ti(α) + Ti(β) (addition is done component wise and modulo
qi), we call this event Collision and En outputs CollisionFail. Else, set Ti(γ) = Ti(α) +Ti(β). For
the oracle call ΦB(i, α, Inv) with outcome γ 6= ⊥, we update our Ti as follows: Find the entry
corresponding to α. If it does not exist, we call this event Miss and En outputs MissFail. If Ti(γ)
already exists but Ti(γ) 6= −Ti(α), then this event is Collision and En outputs CollisionFail. Else,
set Ti(γ) = −Ti(α). For the oracle calls to ΦP and ΦT , En does nothing.

After processing all the gates inMΦ
n which make an oracle call, En looks at the output wires of

13



MΦ
n and interprets it as a tuple of the form (j, B,X) for some j ∈ [m]. If Tj(B) or Tj(X) does not

exist, we call this event OutMiss and output OutFail. Else if, Tj(B) = (b, 0) and Tj(X) = (0, b),
En outputs b else En outputs Fail. Consider the event when (ψ−1

Gj
(B))aj = ψ−1

Gj
(X) but Tj(B)

and Tj(X) are not of the form described above. We call this event FalseNegative because though
MΦ
n outputs a valid tuple, but En fails to output the discrete log.
Observe that as stated earlier, En does not make any oracle calls. Instead, it only examines

the inputs and outputs of oracle calls made by MΦ
n . Since MΦ

n can make at most |MΦ
n | oracle

calls, the total size of all the lookup tables is at most |MΦ
n |. Hence, ∃c > 0 such that |E| ≤

(n·|MΦ
n |)c. There are four cases in which En misbehaves and below we prove that the probability

of each of these events is negligible.

1. Event Miss: This event happens when MΦ
n makes an oracle call with input which is neither

an input to MΦ
n nor an output of some previous oracle call. This happens when MΦ

n is
able to guess an ` − bit string which is a valid encoding of some group element. Hence,

Pr[Miss] ≤ maxi
|MΦ

n |·qi
2`i

≤ maxi
|MΦ

n |
q2
i

, which is negligible since MΦ
n is polysize.

2. Event Collision: This happens when there is a conflict between old Ti(γ) (say,(x1, y1))
and new output from ΦB for Ti(γ) (say, (x2, y2)). This would give us an equation of the
form x1 + y1 · ai = x2 + y2 · ai, where the only unknown is ai. Solving this equation, En
can learn the value of ai. But ai was information theoretically hidden. So, Pr[Collision]
for any oracle call is at most 1

qi
. Taking union bound over all the oracle calls in MΦ

n ,

Pr[Collision] ≤ maxi
|MΦ

n |
qi

. Since, MΦ
n is polysize, this probability is negligible.

3. Event FalseNegative: This event happens when (ψ−1
Gj

(B))aj = ψ−1
Gj

(X) but Tj(B) and

Tj(X) are not of the form (b, 0) and (0, b) respectively. Let Tj(B) = (x1, y1) and Tj(X) =
(x2, y2). Note that since (ψ−1

Gj
(B))aj = ψ−1

Gj
(X) it is the case that aj · (x1 + y1 · aj) =

x2 + y2 · aj . This gives a quadratic equation in aj which has at most two roots. Hence,
Pr[FalseNegative] ≤ maxi

2
qi

.

4. Event OutMiss: We are only concerned in the event when En outputs OutFail but (B,X)
is a valid tuple of group elements. This happens when MΦ

n successfully guesses at least
one `−bit string which is a valid encoding of some group element. As argued above for the

event Miss, this probability is bounded above by maxi
|MΦ

n |
q2
i

. This bound must also hold

for the event OutMiss. Hence Pr[OutMiss ∧ Valid] ≤ maxi
|MΦ

n |
q2
i

, which is negligible.

We have shown the construction of En such that if MΦ
n outputs a tuple (j, B,X) such that

(ψ−1
Gj

(B))aj = ψ−1
Gj

(X), then En outputs b such that ψ−1
Gj

(B) = gbj with all but negligible

probability. Since En does not make any oracle calls, {Cn ∪ En,MΦ
n , Bn ∪ En, auxn} ∈ A.

Hence, m-KEA assumption holds for A defined above.
Remark: Note that because the adversary has to output the tuple (B,X) in the base group

G, the calls to the oracles ΦP and ΦT are simply irrelevant to the proof. Hence, they neither
arise in construction of the extractor En nor cause any complication to its existence. Moreover,
almost the same extractor construction can be used to show that knowledge assumption for
non-bilinear groups (see Appendix D) would hold in generic groups.

8 Related Work

Knowledge Assumptions Knowledge or extractability assumptions capture our belief that
certain computational tasks can be done efficiently only by going through certain specific in-
termediate stages and generating some specific kinds of intermediate values. One such class of as-
sumptions is Knowledge of Exponent Assumptions which were first introduced by Damgard [Dam91]
to construct a CCA secure encryption scheme. Though these assumptions do not fall in the class
of falsifiable class of assumptions [Nao03], these have been proven secure against generic algo-
rithms [Nec94, Sho97, Den06], thus offering some evidence of validity. Hada and Tanaka [HT98]
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gave a three round zero-knowledge protocol using two knowledge of exponent assumptions.
Later, Bellare and Pallacio [BP04] proved that the assumption used for proving the soundness
of the protocol was false, proposed a modified assumption and recovered the earlier result. We
stress that in our protocol, we are able to argue soundness directly without the use of any
knowledge assumption.

Extending the assumption of [BP04], Abe and Fehr [AF07] constructed the first perfect NIZK
for NP with full adaptive soundness. Under knowledge of exponents assumption, Prabharakaran
and Xue [PX09] constructed statistically hiding sets based on trapdoor DDH groups [DG06].
Gennaro et al. [GKR10] modify the Okamoto-Tanaka key agreement protocol to get perfect
forward secrecy. Recently, Groth [Gro10] generalized the assumption of [AF07] to short non-
interactive perfect zero-knowledge arguments for circuit satisfiability.

Other set of knowledge assumptions used recently are extractable functions [CD08, CD09].
All of [BCCT12, DFH12, GLR11] give one of the constructions of Extractable Collision Re-
sistant Hash functions (ECRH) using Knowledge of Exponent Assumptions. Then assuming
the existence of ECRH, Bitansky et al [BCCT12] modify the construction of [CL08] and prove
that the modified construction is a succinct non-interactive adaptive arguments of knowledge
(SNARK). They also show that existence of SNARKs imply the existence of (their notion of)
ECRH. In the CRS model, they combined NIZK and SNARKs to give zero-knowledge non-
interactive arguments. On the other hand, Damgard et al [DFH12] also use ECRH to construct
succinct non-interactive arguments in CRS model. Using these, they give a two message protocol
for two party computation which is UC-secure.

Concurrent Zero-Knowledge: The difficulty in constructing a round-efficient cZK was
first observed by Dwork et al. [DNS98]. Following this, rigorous lower bounds on round complex-
ity of cZK for NP with a black-box simulator have been proven in [KPR98, Ros00, CKPR01];
the best lower bound being Ω(log n/ log log n) rounds given by Canetti et al. [CKPR01].
Barak [Bar01] gave a constant round protocol for all NP, in which he gave a non-black-box
simulator for zero-knowledge. Also, for any predetermined polynomial p(·), this constant round
protocol is zero-knowledge even when p(n) sessions are concurrently executed. But it has a
major drawback. The polynomial p(·) has to be fixed at the beginning of the protocol and the
message lengths grow linearly in p(n). Killian and Petrank [KP01] gave a poly-logarithmic round
protocol which is zero-knowledge even when it is executed concurrently for any (not determined)
polynomial number of times. The gap between the upper and lower bounds of round complexity
of black-box cZK was closed by Prabhakaran, Rossen, and Sahai [PRS02] who gave a Õ(log n)
round protocol. Since then improving the round complexity of concurrent zero-knowledge has
been an open problem.

A Discussion regarding use of auxiliary inputs for concur-
rent simulation

A potentially promising idea for using knowledge assumptions for concurrent simulation is the
following: Formulate a knowledge assumption that holds for all auxiliary inputs for the ad-
versary, and then invoke the knowledge extractor provided by the knowledge assumption with
different auxiliary inputs corresponding to the extraction history. In other words, one could
attempt to apply a single extractor iteratively for different concurrent sessions, passing along
all the information extracted so far as auxiliary input to the extractor.

However, similar to the example discussed in the Introduction concerning a potential “in-
teractive” knowledge assumption, a problem may arise if the auxiliary input contains “external
knowledge” and thereby prevents extraction. We stress there is an important distinction be-
tween why this fails and failure of the interactive knowledge assumption. Here we are not
saying that a knowledge assumption which holds with regard to all auxiliary inputs must be
false. Rather we are saying that any natural application of such an assumption to the concurrent
setting would fail. This is because it would cause us to invoke the extractor with auxiliary inputs
that impermissibly correlate with messages received by the adversary in earlier executions of
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Knowledge Commitment Protocol. By the definition of auxiliary input, an extractor would not
be required to function in such a case. To make the intuition precise, consider an example of
such an iterative application of knowledge assumption in the concurrent setting. Suppose the
Adversary schedules the messages of the malicious committer (MC) as follows: First, MC asks
for the random first message of the Receiver (R) in the Knowledge Commitment Protocol for all
the sessions (r1, r2, . . . , rm). Now, MC chooses a function f and completes the first Knowledge
Commitment Protocol by committing to f(r1, r2, . . . , rm). We apply the knowledge assumption
to recover f(r1, r2, . . . , rm). Next, the MC completes another Knowledge Commitment Proto-
col. Now in order to extract, we need to provide the extractor one of the random ri’s as input
and f(r1, r2, . . . , rm) as auxiliary input. But here, depending on the function f , this auxiliary
input may be highly correlated to the input ri. In this case, the extractor is allowed to fail with
high probability. This is because the extractor is only required to work for the fixed auxiliary
input aux = f(r1, r2, . . . , rm), when ri is chosen at random independently of aux. However, the
actual simulation would use aux that correlates with the input ri.

B Description of the simulator

In the concurrent setting, the verifier may start an unbounded number of sessions with the
prover and may interleave them in any way he wants. One such individual session has five
rounds (as shown in Figure 2). In this section, we will model our cheating verifier V ∗ as a next
message function with a state γ.

V ∗(Msg ′, k, γ′)→ (Msg , j, γ, `)

where Msg ′ is the prover’s (or simulator’s) message from the session k and γ′ is the last state of
V ∗. In response, V ∗ sends message Msg corresponding to some session j and changes its state
to γ. Prover’s (or simulator’s) next message would be the next message from the session j. In
case Msg is ε, then the verifier is requesting for the first message of session `. Verifier can also
output a special message (End, output), which means that V ∗ wants to stop the execution with
output output.

To describe our simulator SV ∗ , we will first describe a sequence of admissible adversaries
{Cn,i,Mn,i, Bn,i, auxn} and {C ′n,i,M ′n,i, B′n,i, auxn} for all i ∈ {1, 2, . . . ,m + 1}. First, we will
describe these for i = 1 followed by i > 1 recursively using {Cn,i−1,Mn,i−1, Bn,i−1, auxn} and
{C ′n,i−1,M

′
n,i−1, B

′
n,i−1, auxn}. Each of these circuits will maintain and update the set of aborted

sessions called Aborted. We will assume that the simulator knows the upper bound on m, the
number of sessions that V ∗ executes. Also, whenever V ∗ stops, our simulator stops with the
output of V ∗.

Admissible adversary: {Cn,1,Mn,1, Bn,1, auxn}.
Input: (x, y, (q1, g1, g

a1
1 ), . . . , (qm, gm, g

am
m )) and (R1, R2), where x ∈ L, y is the auxiliary input

of length m and (qi, gi) ∈ LQG, for all i. R1 is the random tape for Cn,1 and R2 is the random
tape for V ∗.
Output: (j, Bj , Xj) or (End, output).
Description: We will start building the circuit Fn,1 as follows: Fn,1 will simulate the inter-
action with V ∗ until the point when V ∗ sends first V1 message for some session j. Informally,
this is the point when V ∗ completes the “Knowledge Commitment Protocol” for the first time.
So Fn,1 will keep sending the first message of the sessions requested by V ∗ and wait for it to
respond for one of the sessions. When V ∗ sends V1 message for some session, Fn,1 outputs the
message of V ∗. More formally,

Step 1: Fn,1 sets γ = (x, y,R2) and Msg ′ = (q1, g1, g
a1
1 ). Fn,1 runs V ∗ on (Msg ′, 1, γ).

Step 2: Let output of V ∗ be (Msg , j, γ, `). Now it does case analysis on Msg .

Step 2a: If Msg = ε, set Msg ′ = (q`, g`, g
a`
` ) and run V ∗ on (Msg ′, `, γ). Go to Step 2.

Step 2b: If Msg = V1 message of session j, i.e. Msg = (Bj , Xj), Fn,1 outputs (j, Bj , Xj).
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Step 2c: If Msg = (End, output), Fn,1 outputs (End, output).

Note that since Fn,1 stops whenever V ∗ sends the V1 message of any session, the only inputs to
V ∗ are prover’s P1 message.
Now that we have defined Fn,1, we define our admissible adversary {Cn,1,Mn,1, Bn,1, auxn} =
(Fn,1, Fn,1, ε, auxn). Now we describe {C ′n,1,M ′n,1, B′n,1, auxn} as follows: By m-KEA, there
must exist an extractor circuit En,1 which takes a subset of the wires of Mn,1 as input and

outputs (j, bj) such that if (g
aj
j , Bj , Xj) ∈ DH then Bj = g

bj
j with all but negligible probability.

Here, without loss of generality, for ease of notation, we have assumed that En,1 also outputs
j along with bj . This can be done by just using output wires of Mn,1. Then {C ′n,1,M ′n,1,
B′n,1, auxn} = (Cn,1 ∪ En,1,Mn,1, En,1, auxn).

We now describe {Cn,i+1,Mn,i+1, Bn,i+1, auxn} and {C ′n,i+1,M
′
n,i+1, B

′
n,i+1, auxn} recur-

sively. Informally, {Cn,i+1,Mn,i+1, Bn,i+1, auxn} would be a result of polysize malicious exten-
sions to {C ′n,i,M ′n,i, B′n,i, auxn} using an extension circuit Fn,i+1. Here, Fn,i+1 would continue
the simulation using the output of B′n,i. It would start by checking if the last benign extraction
was successful. If the extraction failed, it outputs SimAbort. Otherwise, it continues simulation
till the point when V ∗ responds with next V1 message for some session j. Then {C ′n,i+1,M

′
n,i+1,

B′n,i+1, auxn} would do the benign extraction for session j.

Admissible Adversary: {Cn,i+1,Mn,i+1, Bn,i+1, auxn} for some i ∈ {1, 2, . . . ,m}.
Input: (x, y, (q1, g1, g

a1
1 ), (q2, g2, g

a2
2 ), . . . , (qm, gm, g

am
m )) and (R1, R2), where x ∈ L, y is the

auxiliary input of length m and (qi, gi) ∈ LQG, for all i. R1 is the random tape for Cn,1 and R2

is the random tape for V ∗.
Output: (j, Bj , Xj) or (End, output) or SimAbort.
Description: {Cn,i+1,Mn,i+1, Bn,i+1, auxn} is the result of polysize malicious extension to
{C ′n,i,M ′n,i, B′n,i, auxn}. Let Fn,i+1 be this malicious extension. It will simulate the interaction

with V ∗ from the point when V ∗ sends ith V1 message till V ∗ sends one more V1 message for
some session j. These messages would be simulated with the help of the extractions done by
the benign part of the circuit B′n,i so far. When V ∗ sends V1 message for session j, then Fn,i+1

stops and outputs the message of V ∗. More formally, Fn,i+1 is defined as follows:

Step 1: If {C ′n,i,M ′n,i, B′n,i, auxn} outputs SimAbort or (End, output), then Fn,i+1 outputs the
same. Else find the last output from V ∗ in Mn,i. It would be of the form (j, Bj , Xj , γ).
Set Msg = (j, Bj , Xj) and do the following:

• If ej(g
aj
j , Bj) 6= ej(Xj , gj) then add (Abort, j) to Aborted. Set Msg ′ = (Abort, j) and

run V ∗ on (Msg ′, j, γ). Go to Step 2.

• Find the corresponding output (j, bj) of B′n,i. If not found or if Bj 6= g
bj
j , Fn,i+1

outputs SimAbort.

• If the extraction was successful, Fn,i+1 knows the discrete log of Bj , and it can
equivocate in the commitment scheme ComDLj . Set Zj = ComDLj (0, r̃′j). Run SHV
on input x to get the view of V for session j, say (Cmtj ,Chj ,Rspj). Set Msg ′ =
(Cmtj , Zj) and run V ∗ on (Msg ′, j, γ).

Step 2: Let output of V ∗ be (Msg , j, γ, `) for some j and γ. Now Fn,i+1 does case analysis on
Msg .

Step 2a: If (Abort, j) ∈ Aborted, Set Msg ′ = (Abort, j) and next = (Msg ′, j, γ).

Step 2b: If Msg = V1 message of session j, i.e. Msg = (Bj , Xj), then Fn,i+1 outputs (j, Bj , Xj).

Step 2c: If Msg = V2 message of session j, i.e. Msg = βj , then find Chj , Rspj and r̃′j
in M ′n,i ∪ Fn,i+1 and set αj = Chj ⊕ βj . Set r̃j = OpenDLj (0, αj , r̃

′
j , bj). Set Msg ′ =

(αj , r̃j ,Rspj) and next = (Msg ′, j, γ).

Step 2d: If Msg = ε, then set Msg ′ = (q`, g`, g
a`
` ) and next = (Msg ′, `, γ).

Step 2e: If Msg = (End, output), Fn,i+1 outputs (End, output).

Step 3: Run V ∗ on next and go to Step 2.
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With the above description of Fn,i+1 complete, we now define {Cn,i+1,Mn,i+1, Bn,i+1, auxn} =
(C ′n,i ∪ Fn,i+1,M

′
n,i ∪ Fn,i+1, B

′
n,i, auxn).

Now that we have defined {Cn,i+1,Mn,i+1, Bn,i+1, auxn}, we define our admissible adver-
sary {C ′n,i+1,M

′
n,i+1, B

′
n,i+1, auxn} as follows: By m-KEA, there must exist a circuit En,i+1

which takes a subset of internal wires of Mn,i+1 as input and outputs (j, bj) such that if

(g
aj
j , Bj , Xj) ∈ DH then Bj = g

bj
j with all but negligible probability. Here again, without

loss of generality, for ease of notation, we assume that En,i+1 also outputs j along with bj .
This can be done by just using output wires of Mn,i+1. Then, we define {C ′n,i+1,M

′
n,i+1,

B′n,i+1, auxn} = (Cn,i+1 ∪ En,i+1,Mn,i+1, Bn,i+1 ∪ Ei+1, auxn).

Now that we have defined this sequence of admissible adversaries, we will describe our sim-
ulator SV ∗ in terms of these machines.
Circuit: SV ∗ .
Input: (x, y), where x ∈ L and y ∈ auxn is the auxiliary input of length m.
Output: View of V ∗.

Step 1: If V ∗ starts m sessions then SV ∗ generates (qi, gi)
$←− LQG for all i ∈ {1, 2, . . . ,m}.

Each qi is of length n.

Step 2: SV ∗ generates a1, a2, . . . , am uniformly at random such that ai ∈ Z∗qi and computes
Ai = gaii for all i.

Step 3: SV ∗ executes the admissible adversary circuit (Cn,m+1,Mn,m+1, Bn,m+1) with the in-
puts (x, y, (q1, g1, g

a1
1 ), (q2, g2, g

a2
2 ), . . . , (qm, gm, g

am
m )) and (R1, R2), where x ∈ L, y is the

auxiliary input of V ∗ of length m and R2 is the random tape of V ∗ and R1 are the random
coins for Cn,m+1.

Step 4a: If (Cn,m+1,Mn,m+1, Bn,m+1) outputs SimAbort then SV ∗ also outputs SimAbort.

Step 4b: If (Cn,m+1,Mn,m+1, Bn,m+1) runs to completion with output (End, output), then
SV ∗ outputs output.

Theorem B.1. If there are m concurrent sessions of Π and if our family of admissible adver-
saries A contains all polynomial size adversaries and allows polysize malicious extensions, then
under m-KEAand honest verifier zero-knowledge property of 〈P , V 〉, the following distribution
ensembles are computationally indistinguishable:

{SV ∗(x, y)}m,x∈L,y∈{0,1}m and {〈P (x,w), V ∗(x, y)〉}m,x∈L,w∈WL(x),y∈{0,1}m

Proof: We will prove indistinguishability by a sequence of hybrids. If there are m sessions we
will consider 3m + 1 hybrids, H0 ∪ {Hi,1,Hi,2,Hi,3}, for all i ∈ [m]. We will now describe the
hybrids in detail. We will assume that all the hybrids also have the witness w for the fact x ∈ L.

• H0 is the honest hybrid. It runs Step 1 and 2 of SV ∗ and then builds Fn,1 but does not
stop on receiving the first response from V ∗. Instead it uses the witness and interacts
honestly in all the sessions. H0 = {Fn,1, Fn,1, ε, auxn}. This hybrid is same as the honest
prover interacting with V ∗.

In each of the following hybrids we build on the admissible adversary circuit {C ′n,i,M ′n,i,
B′n,i, auxn}. If its malicious part M ′n,i outputs a tuple, we will call its session number j.

• Hi,1 runs Step 1 and 2 of SV ∗ and then builds {C ′n,i,M ′n,i, B′n,i, auxn} with the inputs
(x, y, (q1, g1, g

a1
1 ), (q2, g2, g

a2
2 ), . . . , (qm, gm, g

am
m )) and (R1, R2), where x ∈ L, y is the auxil-

iary input of V ∗ of length m and R2 is the random tape of V ∗ and R1 are the random coins
of {C ′n,i,M ′n,i, B′n,i, auxn}. If {C ′n,i,M ′n,i, B′n,i, auxn} outputs SimAbort, then Hi,1 does the
same. Else find the last output from V ∗ in Mn,i. It would be of the form (j, Bj , Xj , γ).
Now, start building polysize malicious extension Fn,i+1 to {C ′n,i,M ′n,i, B′n,i, auxn}. Fn,i+1

does the following tests:

– If ej(g
aj
j , Bj) 6= ej(Xj , gj) then add (Abort, j) to Aborted.

– Find the corresponding output (j, bj) of B′n,i. If not found or Bj 6= g
bj
j , Fn,i+1 outputs

SimAbort.
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If the tests pass, Fn,i+1 continues as follows: Among the unaborted sessions, for all the
sessions ` such that ` 6= j and (`, b`) lies in the output of B′n,i, it uses the extracted
values to simulate the sessions. For rest of the sessions, it uses the witness to generate the
messages honestly. Note that though Hi,1 has the extracted value for session j, it does not
use it and acts honestly in that session. Hi,1 = (C ′n,i ∪ Fn,i+1,M

′
n,i ∪ Fn,i+1, B

′
n,i, auxn).

• Hi,2 is same as Hi,1 with the following change. It chooses αj
$←− Zq, but sets Zj =

ComDLj (0; r̃′j). Later while opening it sets r̃j = OpenDLj (0, αj , r̃
′
j , bj) and opens the com-

mitment to αj and r̃j . It generates all other messages of session j honestly.

The hybrids Hi,1 and Hi,2 are identical because the commitment scheme ComDLj
is per-

fectly hiding and hence, ComDLj
(0) and ComDLj

(αj) are identically distributed.

• Hi,3 does the following change in Hi,2. While generating P2 message of session j, it runs
SHV to get (Cmtj ,Chj ,Rspj). It sends (Cmtj ,ComDLj

(0; r̃′j)) as P2 message. For P3

message, it sets αj = βj⊕Chj , r̃j = OpenDLj
(0, αj , r̃

′
j , bj) and sends (αj , r̃j ,Rspj). Hence,

in Hi,3 all sessions ` such that (`, b`) ∈ output of B′n,i are simulated and rest all sessions
are honest. Note that Hm,3 is same as the interaction between SV ∗ and V ∗.

Below we will prove the indistinguishability of Hi,2 and Hi,3.
First note that the only difference between the hybrids Hi,3 and Hi+1,1 is that in Hi+1,1

we add En,i+1 to B′n,i. But SimAbort happens in Hi+1,1 and not in Hi,3 only when V ∗

sends correctly formed (B,X) but we fail to extract the correct value in En,i+1. This
probability is negligible by m-KEA. Hence, the hybrids Hi,3 and Hi+1,1 are statistically
close.

In order to show indistinguishability between H0 and Hm,3, we are just left with showing
indistinguishability between Hi,2 and Hi,3. We will show this by contradiction. Let us assume
there is a distinguisher D which distinguishes between Hi,2 and Hi,3 for some i and auxiliary
input y. Then we will show a distinguisher D′ for

{SHV (x)}x∈L and {〈P (x,w), V (x)〉}x∈L,w∈WL(x).

This would contradict the honest verifier zero-knowledge property of 〈P , V 〉. D′ is given a 3-
round transcript T ′ = {Cmt,Ch,Rsp} as input for the NP-statement x ∈ L which is either for
P or SHV for the canonical argument system. Using the witness w for x ∈ L, D′ generates an
input HI for D which is same as Hi,3 except for the following change. Instead of running SHV
for the session j (defined above), it uses {Cmt,Ch,Rsp} for that session.

If the input to D′ is from {〈P (x,w), V (x)〉}x∈L,w∈WL(x), the input to D is identical to Hi,2.
This is because since honest verifier’s Ch is distributed uniformly in {0, 1}n, αj in HI will be
distributed uniformly. On the other hand, if the input of D′ is from {SHV (x)}x∈L, the input to
D is identical to Hi,3. So, if D says that HI is distributed identically to Hi,2, then D′ says that
T ′ is generated by P . Else, it is generated by SHV .
The success probability of D′ in distinguishing between transcripts of P and SHV is same as
the success probability of D in distinguishing Hi,2 and Hi,3. Hence, D′ distinguishes between
the following two ensembles with non-negligible probability

{SHV (x)}x∈L and {〈P (x,w), V (x)〉}x∈L,w∈WL(x)

in contradiction to property B3 of the canonical argument system.

C Size of the Simulator Circuit

Theorem C.1. Under m-KEA, there exists a constant c such that the size of the circuit of SV ∗ ,
denoted by |SV ∗ |, is bounded by nc · |V ∗|c + poly(n).

Proof: Let m-KEA hold w.r.t. a family of admissible adversaries A. Then in Section 6, the
simulator is described by a circuit S = {Cn,m+1,Mn,m+1, Bn,m+1, auxn}.
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Now, |SV ∗ | = |Cn,m+1| + |C|, where C is the circuit which generates (pi, qi, gi) at random
from LPQG, generates ai at random from Z∗q and computes gaii for all i ∈ [m]. There exists a
fixed constant c1 such that |C| ≤ nc1 . We are left with computing |Cn,m+1|.

Since, Mn,m+1 and Bn,m+1 form a partition of Cn,m+1, |Cn,m+1| = |Mn,m+1| + |Bn,m+1|.
By construction, Bn,m+1 =

⋃m
i=1En,i. By m-KEA, there exists a constant c′ > 0, such that

|En,i| ≤ (n · |Mn,i|)c
′
. So,

|Bn,m+1| =
∑m
i |En,i| ≤

∑m
i (n · |Mn,i|)c

′ ≤ nc′ ·
∑m
i |Mn,m|c

′ ≤ nc′ ·m · |Mn,m|c
′
.

Using the above, we get |Cn,m+1| ≤ |Mn,m+1| + nc
′ ·m · |Mn,m|c

′ ≤ nc2 · |Mn,m+1|c2 for some
constant c2 > c′.

Mn,m+1 calls V ∗ at most 3 · m times, calls SHV at most m times and generates all other
messages using a circuit of size at most nc3 for some constant c3. Hence, |Mn,m+1| ≤ 3m · |V ∗|+
m · |SHV | + nc3 . We also know that if n is the security parameter then |SHV | ≤ nc4 for some
constant c4 > 0. We get |Mn,m+1| ≤ 3 ·m · |V ∗|+ nc5 . Combining all we get,

|SV ∗ | = |Cn,m+1|+|C| ≤ nc2 ·|Mn,m+1|c2 +nc1 ≤ nc2 ·(3·m|V ∗|+nc5)c2 +nc1 ≤ nc·|V ∗|c+poly(n),

where c > 0 is a fixed constant.

D Constant Round Protocol for Concurrent Zero-Knowledge
using Knowledge of Exponent Assumption in General Groups

The constant round protocol described below is a concurrent zero-knowledge protocol under
knowledge of exponent assumption m-KEA in general groups. The assumption is similar to that
described in Section 3.4, but now it is assumed to hold w.r.t. general groups of prime order (see
Assumption D.5). This protocol is very similar to the previous protocol apart from the following
change: In the previous protocol, when the verifier replied back with (B,X) on input (g,A),
the prover checked if Ba = X. Here a is the discrete log of A, which is known to the prover.
In the protocol described in this section, the prover will not do any such check. Instead, the
verifier will prove in zero-knowledge that indeed there exists a ‘b’ such that B = gb and X = Ab

using a constant round statistically sound zero-knowledge protocol ΠZK . Such a protocol was
given by Goldreich and Kahan [GK96] for all of NP, but more efficient such protocols exist for
proving Diffie-Hellman pairs and can be used (see e.g. [Gol01] and the references therein).
We start by giving a few additional definitions.

Definition D.1. Let LPQG denote the set {(p, q, g)} of primes and generators, where p and q
are primes such that p = 2q + 1 and g is an element of order q in Z∗p .

Definition D.2. Let ΠZK be a constant round statistically sound zero-knowledge protocol for
all NP. We will use the protocol given by Goldreich and Kahan [GK96].

Knowledge Assumption: Below, by a circuit C we mean a collection of Boolean gates and
wires. We use the non-standard convention that certain gates are specially marked as output
gates.

Definition D.3 (Admissible family of Adversaries). An admissible family of adversaries A is
a family of sets such that the following properties hold: Each set S ∈ A is such that S =
{Cn,Mn, Bn, auxn}n∈N. For each such set S, there exist constants c, c′ > 0, such that Cn is a

circuit with |Cn| ≤ nc, and aux ⊆ {0, 1}nc′

. Furthermore, {Mn, Bn} is a partition of the gates
and the wires of the circuit Cn. If x is the input to Cn then by Mn(x) we refer to the result of
the computation Cn(x) restricted to the output wires in Mn; we define Bn(x) similarly.

We will refer to Mn and Bn as the malicious and the benign parts respectively of the
adversary circuit Cn.
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Definition D.4 (A admits polysize malicious extensions). An admissible family of adversaries
A admits polysize malicious extensions if the following holds: For any set of circuits S ∈ A where
S = {Cn,Mn, Bn, auxn}n∈N, and any polysize circuit family {Fn}n∈N such that ∃d > 0, |Fn| <
nd and the input wires to Fn are a subset of the wires in Mn (including both internal and output
wires) and the output wires of Bn, we have that S′ = {Cn ∪ Fn,Mn ∪ Fn, Bn, auxn} ∈ A.

Next, based on the definition above, we define a variant of knowledge of exponent assumption
based on the one described by Hada and Tanaka [HT98].

Assumption D.5. [m-Knowledge of Exponent Assumption (m-KEA) w.r.t. admissible adver-
saries] We say that the m-Knowledge of Exponent Assumption holds with respect to a family
of admissible adversaries A, if for every c > 0, there exists a constant c′ > 0 such that the
following holds: For m = nc, fix any S = {Cn,Mn, Bn, auxn}n∈N ∈ A. Then there exists a
family of extraction circuits {En}n∈N whose inputs are a subset of any wires in Mn, such that
|En| ≤ (n · |Mn|)c

′
. (Informally, this condition requires that the extraction only uses the inter-

nal wires of the malicious part of the adversary.) Furthermore, we require that the following
conditions hold:

1. For all sufficiently large n, every polynomial poly(·), the following is true for all aux ∈
auxn: Consider the following probabilistic experiment: For i ∈ [1,m], primes pi, qi and
generators gi are chosen randomly such that (pi, qi, gi) ∈ LPQG, where pi is chosen to
be of length n. Values a1, . . . , am are chosen at random such that ai ∈ Z∗qi . Finally,
R is chosen uniformly at random from sufficiently long strings so that the length of the
tuple x = ((p1, q1, g1, g

a1
1 ), . . . , (pm, qm, gm, g

am
m ), aux,R) is exactly the length of the input

to circuit Cn. If the input to Cn is not long enough to allow such an input then the
assumption is vacuously true for this S. Now, we consider the output of Mn(x), which
we interpret as a tuple (j, B,X), where j ∈ [m], and both B and X are in Zp. Then, we
interpret the output of En(x) as the value bj ∈ Zq, and require the following to be true:

Pr
[
X = Baj ∧B 6= g

bj
j

]
<

1

poly(n)
.

(Informally, this condition states that if the malicious part of the adversary outputs a
tuple so that (gj , g

aj
j , B,X) form a Diffie-Hellman tuple, then the extractor En successfully

outputs the discrete log of B with respect to gj .)

2. We have that (Cn∪En,Mn, Bn∪En, auxn) ∈ A. (Informally, this means that the extraction
circuit created by this assumption is benign.)

Definition D.6. An admissible set of adversaries A contains all polysize malicious adversaries
if for all c, c′ > 0, and for all circuit families {Cn}n∈N such that |Cn| ≤ nc, for each n there

exists some subset auxn ⊆ {0, 1}n
c′

, such that (Cn, Cn, ε, auxn) ∈ A. We say that A contains

all polysize malicious adversaries with all polysize auxiliary inputs if auxn = {0, 1}nc′

for each
circuit family above.

Theorem D.7 (Informal). If the m-Knowledge of Exponent assumption holds with respect to
an admissible adversary family A such that A contains all polysize malicious circuits and allow
polysize malicious extension, and DHLA holds, then there exist constant-round concurrent zero-
knowledge arguments for NP in the plain model.

Furthermore, if A contains all polysize malicious adversaries with all polysize auxiliary in-
puts, then there exist constant-round concurrent zero-knowledge arguments for NP in the plain
model with respect to arbitrary auxiliary inputs.

D.1 Protocol Description

The protocol starts by asking the verifier to use Knowledge Commitment Protocol to commit to
a value b in B = gb. Then the verifier proves that this commitment is correctly generated using
ΠZK . Following this, we use equivocal commitments whose trapdoor is b to run a coin flipping
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Here, Pi and Vi denote ith prover and verifier message respectively.

〈P , V 〉 represents the three round canonical argument.
Prover P Verifier V

Initial State St0 = (x,w,R)

(p, q, g)
$←− LPQG ; a

$←− Z∗
q ; A← ga

P1:
(p, q, g, A)−−−−−−−−−−→

If (p, q, g) /∈ LPQG then abort

else b
$←− Z∗

q ; B ← gb ; X ← Ab

(B, X)←−−−−−−−−−−:V1
P and V run a constant round zero-knowledge protocol ΠZK ,
where V proves to P that ∃b such that B = gb and X = Ab

If the above proof not valid, then abort,
else Let ComDL (defined in Section 2.3) be the commitment scheme using (g,B).

(Cmt, St1)← P (ε, St0)

α
$←−− Zq; Z = ComDL(α; r̃)

P2:
Cmt, Z−−−−−−−−−−→

β
$←−− {0, 1}n

β←−−−−−−−−−−:V2
Ch← α⊕ β
(Rsp, St2)← P (Ch, St1)

P3:
(α, r̃, Rsp)−−−−−−−−−−→

If Z 6= ComDL(α; r̃) then abort
Ch← α⊕ β
If Verx(Cmt,Ch,Rsp) = 1
then accept else reject.

Figure 3: Π: Constant Round Protocol for cZK (P, V )

protocol between the prover and the verifier. In parallel with the coin flipping protocol, we run
a parallel repetition of Blum’s Hamiltonicity protocol, where the result of coin flipping protocol
determines the challenge message. We describe the constant-Round protocol for concurrent
zero-knowledge argument in Figure 3.

This protocol uses the discrete log based commitment scheme ComDL which is binding under
the hardness of DHLA. The secret value b committed to by the verifier satisfies the following
properties.

R1: For Soundness: Under DHLA (Assumption 3.1) and zero-knowledge property of ΠZK ,
any cheating prover while interacting with the honest verifier cannot get the secret coins
of the verifier. Hence, any cheating prover cannot output the discrete log of B sent by the
verifier in Figure 2.

R2: For Zero-knowledge: Under m-KEA (Assumption D.5), our simulator will be able to
output the discrete log of B no matter how the verifier behaves. Once the simulator
gets the secret coins of V ∗, which is the trapdoor to equivocal commitment scheme, the
simulation is easy.

For R2, informally, it seems that even the cheating verifier must start by simply choosing b
and computing (gb, Ab) in order to pass the check X = Ba. That is, we assume that verifier
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knows the secret coins b whenever it manages to convince the prover in ΠZK . m-KEA defined
in Assumption D.5 captures this idea of knowledge and knowledge extraction formally. Under
this variant of knowledge of exponent assumption, we will design a simulator which will extract
the secret coins of the cheating verifier. Since, the simulator will have the trapdoor to ComDL,
it will be able to equivocate on its commitment to α just as before and force the outcome of the
coin flipping protocol to the challenge string output by the honest verifier simulator SHV .

D.2 Π is Computationally Sound

We prove soundness of Π by the two steps used in proving the soundness of the previous protocol.
Let SZK be the black-box zero-knowledge simulator for ΠZK and P ∗ denote the cheating prover.

• If P ∗ succeeds in equivocating its commitment in coin flipping protocol then we can extract
the trapdoor value b of Knowledge Commitment Protocol from P ∗. This shows that P ∗

can be used to efficiently compute b and thereby break DHLA.

• We show that if P ∗ does not equivocate on its commitment in coin flipping protocol and
convinces the verifier of a false statement, then such a P ∗ can be used to violate the
underlying strong soundness of canonical arguments. In other words, it would violate the
underlying soundness of Blum’s Hamiltonicity protocol.

We prove the first step by a sequence of two lemmas. Let G be the following interactive game
similar to that defined in Section 5.

1. Sim runs the above protocol with P ∗ (including honest execution of ΠZK) till P ∗ commits
to α using random coins r̃ in the above protocol using commitment scheme ComDL as
defined before. P ∗ sets Z = ComDL(α; r̃) and sends Z to Sim.

2. Sim sends β to P ∗.

3. P ∗ sends (α1, r̃1, Rsp) to Sim such that Z = ComDL(α1; r̃1).

4. Sim rewinds P ∗ to Step 2 and sends it β′ such that β′ 6= β. P ∗ wins if it sends
(α2, r̃2, Rsp) to Sim such that Z = ComDL(α2; r̃2) and α1 6= α2.

Let G′ be a modified game in which Sim runs SZK to simulate the proof in first step instead
of using the witness.

Lemma D.8. Pr[P ∗ wins G]− Pr[P ∗ wins G′] is negligible.

Proof: We will prove this by contradiction. If there is a non-negligible function γ(n) such that
Pr[P ∗ wins G]− Pr[P ∗ wins G′] > γ(n), then we can construct a distinguisher D which breaks
the ZK-property of ΠZK as follows: Let Ch′ be the challenger for ZK. D starts the game with
P ∗ and forwards the messages between P ∗ and Ch′ until the end of ΠZK . Now D completes
the remaining game with P ∗. If P ∗ wins, D claims that ΠZK was given with actual witness,
otherwise D says that ΠZK was simulated. It can be shown that success probability of D is
1/2 + γ(n)/2, which is non-negligible. This is a contradiction since ΠZK is a zero-knowledge
protocol.

Lemma D.9. Using above, we prove that no cheating prover can win G with non-negligible
probability. Under DHLA, for every probabilistic polynomial time machine P ∗, every polynomial
poly(·), and all sufficiently large n’s,

Pr[P ∗ wins G] < 1
poly(n)

where probability is over choice of α, β and coins of P ∗ and n is the security parameter.

Proof: We will prove this by contradiction. If there is a polynomial f(n) such that
Pr[P ∗wins G] > 1/f(n), then we can construct an adversary A for DHLA. A runs P ∗ and
gets (q, g, A) and sends (g,A) to the challenger Ch of DHLA. Ch prepares the challenge tuple
by choosing a random b and sends (B = gb, X = Ab) to A which it forwards to P ∗. A runs
SZK on P ∗ to simulate ΠZK . By lemma D.8, the success probability of P ∗ in winning G can
not decrease non-negligibly when given a simulated proof.
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P ∗ and A continue running the protocol Π until the opening of Z as α. After this opening,
A rewinds P ∗ until the commitment Z and runs P ∗ again with a different β′ and looks at the
opening of Z by P ∗. If P ∗ opens Z to the same α, A aborts. Else if P ∗ opens Z to a α′ such
that α 6= α′, A can compute b, the discrete log of B, as described in Section 2.3. A sends b to
Ch.
Pr[A breaks DHLA] = Pr[P ∗ wins G] > 1/f(n)− ε, where ε is the negligible change in success
probability of P ∗ when ΠZK is simulated. This contradicts DHLA.

Theorem D.10. Under Lemma D.9 and strong soundness property (B2) of 〈P , V 〉, protocol Π
is computationally sound.

Proof: The proof is same as that of Theorem 5.2.

D.3 Description of the simulator

To describe the simulator for protocol in Figure 3, we again describe a sequence of adver-
saries. These adversaries are very similar to the ones described before. There is a change in
{Cn,i+1,Mn,i+1, Bn,i+1, auxn} but for the sake of completion, we give the description of all the
adversaries.
In the concurrent setting, the verifier may start an unbounded number of sessions with the
prover and may interleave them in any way he wants. One such individual session has constant
number of rounds (as shown in Figure 3). In this section, we will model our cheating verifier
V ∗ as a next message function with a state γ.

V ∗(Msg ′, k, γ′)→ (Msg , j, γ, `)

where Msg ′ is the prover’s (or simulator’s) message from the session k and γ′ is the last state of
V ∗. In response, V ∗ sends message Msg corresponding to some session j and changes its state
to γ. Prover (or simulator’s) next message would be the next message from the session j. In
case Msg is ε, then the verifier is requesting for the first message of session `. Verifier can also
output a special message (End, output), which means that V ∗ wants to stop the execution with
output output.

To describe our simulator SV ∗ , we will first describe a sequence of admissible adversaries
{Cn,i,Mn,i, Bn,i, auxn} and {C ′n,i,M ′n,i, B′n,i, auxn} for all i ∈ {1, 2, . . . ,m + 1}. First, we will
describe these for i = 1 followed by i > 1 recursively using {Cn,i−1,Mn,i−1, Bn,i−1, auxn} and
{C ′n,i−1,M

′
n,i−1, B

′
n,i−1, auxn}. Each of these circuits will maintain and update the set of aborted

sessions called Aborted. We will assume that the simulator knows the upper bound on m, the
number of sessions that V ∗ executes. Also, whenever V ∗ stops, our simulator stops with the
output of V ∗.
Admissible adversary: {Cn,1,Mn,1, Bn,1, auxn}.
Input: (x, y, (p1, q1, g1, g

a1
1 ), . . . , (pm, qm, gm, g

am
m )) and (R1, R2), where x ∈ L, y is the auxiliary

input of length m and (pi, qi, gi) ∈ LPQG, for all i. Each pi is of length n.
Output: (j, Bj , Xj) or (End, output).
Description: We will start building the circuit Fn,1 as follows: Fn,1 will simulate the interaction
with V ∗ until the point when V ∗ sends first V1 message for some session j. Informally, this is
the point when V ∗ completes the “Knowledge Commitment Protocol” for the first time. So Fn,1
will keep sending the first message of the sessions requested by V ∗ and wait for it to respond
for one of the sessions. When V ∗ sends V1 message for some session, Fn,1 outputs the message
of V ∗. More formally,

Step 1: Fn,1 sets γ = (x, y,R2) and Msg ′ = (p1, q1, g1, g
a1
1 ). Fn,1 runs V ∗ on (Msg ′, 1, γ).

Step 2: Let output of V ∗ be (Msg , j, γ, `). Now it does case analysis on Msg .

Step 2a: If Msg = ε, set Msg ′ = (p`, q`, g`, g
a`
` ) and run V ∗ on (Msg ′, `, γ). Go to Step 2.

Step 2b: If Msg = V1 message of session j, i.e. Msg = (Bj , Xj), Fn,1 outputs (j, Bj , Xj).

Step 2c: If Msg = (End, output), Fn,1 outputs (End, output).
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Note that since Fn,1 stops whenever V ∗ sends the V1 message of any session, the only inputs to
V ∗ are prover’s P1 message.
Now that we have defined Fn,1, we define our admissible adversary {Cn,1,Mn,1, Bn,1, auxn} =
(Fn,1, Fn,1, ε, auxn). Now we describe {C ′n,1,M ′n,1, B′n,1, auxn} as follows: By m-KEA, there
must exist an extractor circuit En,1 which takes a subset of the wires of Mn,1 as input and

outputs (j, bj) such that if Xj = B
aj
j then Bj = g

bj
j with all but negligible probability. Here,

without loss of generality, for ease of notation, we have assumed that En,1 also outputs j along
with bj . This can be done by just using output wires of Mn,1. Then {C ′n,1,M ′n,1, B′n,1, auxn} =
(Cn,1 ∪ En,1,Mn,1, En,1, auxn).

We now describe {Cn,i+1,Mn,i+1, Bn,i+1, auxn} and {C ′n,i+1,M
′
n,i+1, B

′
n,i+1, auxn} recur-

sively. Informally, {Cn,i+1,Mn,i+1, Bn,i+1, auxn} would be a result of polysize malicious exten-
sions to {C ′n,i,M ′n,i, B′n,i, auxn} using an extension circuit Fn,i+1. Here, Fn,i+1 would continue
the simulation using the output of B′n,i. Whenever ΠZK phase of any session completes suc-
cessfully, it checks if the extraction was successful. If the extraction failed, it outputs SimAbort.
Otherwise, it continues simulation till the point when V ∗ responds with next V1 message for
some session j. Then {C ′n,i+1,M

′
n,i+1, B

′
n,i+1, auxn} would do the benign extraction for session j.

Admissible Adversary: {Cn,i+1,Mn,i+1, Bn,i+1, auxn} for some i ∈ {1, 2, . . . ,m}.
Input: (x, y, (p1, q1, g1, g

a1
1 ), (p2, q2, g2, g

a2
2 ), . . . , (pm, qm, gm, g

am
m )) and (R1, R2), where x ∈ L,

y is the auxiliary input of length m and (pi, qi, gi) ∈ LPQG, for all i. Each pi is of length n.
Output: (j, Bj , Xj) or (End, output) or SimAbort.
Description: {Cn,i+1,Mn,i+1, Bn,i+1, auxn} is the result of polysize malicious extension to
{C ′n,i,M ′n,i, B′n,i, auxn}. Let Fn,i+1 be this malicious extension. It will simulate the interaction

with V ∗ from the point when V ∗ sends ith V1 message till V ∗ sends one more V1 message for
some session j. These messages would be simulated with the help of the extractions done by
the benign part of the circuit B′n,i so far. When V ∗ sends V1 message for session j, then Fn,i+1

stops and outputs the message of V ∗. More formally, Fn,i+1 is defined as follows:

Step 1: If {C ′n,i,M ′n,i, B′n,i, auxn} outputs SimAbort or (End, output), then Fn,i+1 outputs the
same. Else find the last output from V ∗ in Mn,i. It would be of the form (j, Bj , Xj , γ).
B′n,i would have attempted to extract the discrete log of Bj . Since the next message in
Session j is V ∗’s first message for ΠZK , run V ∗ on (ε, j, γ).

Step 2: Let the output of V ∗ be (Msg , j, γ, `) for some j and γ. Now Fn,i+1 does case analysis
on Msg .

Step 2a: If (Abort, j) ∈ Aborted, Set Msg ′ = (Abort, j) and next = (Msg ′, j, γ).

Step 2b: If Msg = V1 message of session j, i.e. Msg = (Bj , Xj), then Fn,i+1 outputs (j, Bj , Xj).

Step 2c: If Msg is the last message of ΠZK for session j, do the following:

• If the proof fails, add (Abort, j) to Aborted. Set Msg ′ = (Abort, j) and next =
(Msg ′, j, γ).

• Find the corresponding output (j, bj) of B′n,i. If not found or if Bj 6= g
bj
j , Fn,i+1

outputs SimAbort.

• If the proof is accepted and there is a valid (j, bj), Fn,i+1 knows the discrete log of Bj ,
and it can equivocate in the commitment scheme ComDLj

. Set Zj = ComDLj
(0, r̃′j).

Run SHV on input x to get the view of V for session j, say (Cmtj ,Chj ,Rspj). Set
Msg ′ = (Cmtj , Zj) and next = (Msg ′, j, γ).

Step 2d: If Msg = V2 message of session j, i.e. Msg = βj , then find Chj , Rspj and r̃′j
in M ′n,i ∪ Fn,i+1 and set αj = Chj ⊕ βj . Set r̃j = OpenDLj (0, αj , r̃

′
j , bj). Set Msg ′ =

(αj , r̃j ,Rspj) and next = (Msg ′, j, γ).

Step 2e: If Msg = ε, then set Msg ′ = (p`, q`, g`, g
a`
` ) and next = (Msg ′, `, γ).

Step 2f: If Msg = (End, output), Fn,i+1 outputs (End, output).

Step 3: Run V ∗ on next and go to Step 2.
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With the above description of Fn,i+1 complete, we now define {Cn,i+1,Mn,i+1, Bn,i+1, auxn} =
(C ′n,i ∪ Fn,i+1,M

′
n,i ∪ Fn,i+1, B

′
n,i, auxn).

Now that we have defined {Cn,i+1,Mn,i+1, Bn,i+1, auxn}, we define our admissible adver-
sary {C ′n,i+1,M

′
n,i+1, B

′
n,i+1, auxn} as follows: By m-KEA, there must exist a circuit En,i+1

which takes a subset of internal wires of Mn,i+1 as input and outputs (j, bj) such that if

Xj = B
aj
j then Bj = g

bj
j with all but negligible probability. Here again, without loss of

generality, for ease of notation, we assume that En,i+1 also outputs j along with bj . This can
be done by just using output wires of Mn,i+1. Then, we define {C ′n,i+1,M

′
n,i+1, B

′
n,i+1, auxn} =

(Cn,i+1 ∪ En,i+1,Mn,i+1, Bn,i+1 ∪ Ei+1, auxn).

Now that we have defined this sequence of admissible adversaries, we will describe our sim-
ulator SV ∗ in terms of these machines.
Circuit: SV ∗ .
Input: (x, y), where x ∈ L and y ∈ auxn is the auxiliary input of length m.
Output: View of V ∗.

Step 1: If V ∗ starts m sessions then SV ∗ generates (pi, qi, gi)
$←− LPQG for all i ∈ {1, 2, . . . ,m}.

Step 2: SV ∗ generates a1, a2, . . . , am uniformly at random such that ai ∈ Z∗qi and computes
Ai = gaii for all i.

Step 3: SV ∗ executes the admissible adversary circuit (Cn,m+1,Mn,m+1, Bn,m+1) with the in-
puts (x, y, (p1, q1, g1, g

a1
1 ), . . . , . . . , (pm, qm, gm, g

am
m )) and (R1, R2), where x ∈ L, y is the

auxiliary input of V ∗ of length m and R2 is the random tape of V ∗ and R1 are the random
coins for Cn,m+1.

Step 4a: If (Cn,m+1,Mn,m+1, Bn,m+1) outputs SimAbort then SV ∗ also outputs SimAbort.

Step 4b: If (Cn,m+1,Mn,m+1, Bn,m+1) runs to completion with output (End, output), then
SV ∗ outputs output.

Theorem D.11. If there are m concurrent sessions of Π and if our family of admissible ad-
versaries A contains all polynomial size adversaries and allows polysize malicious extensions,
then under m-KEA, honest verifier zero-knowledge property of 〈P , V 〉 and the zero-knowledge
property of ΠZK , the following distribution ensembles are computationally indistinguishable:

{SV ∗(x, y)}m,x∈L,y∈{0,1}m and {〈P (x,w), V ∗(x, y)〉}m,x∈L,w∈WL(x),y∈{0,1}m

Proof: We will prove indistinguishability by a sequence of hybrids. If there are m sessions we
will consider 3m + 1 hybrids, H0 ∪ {Hi,1,Hi,2,Hi,3}, for all i ∈ [m]. We will now describe the
hybrids in detail. We will assume that all the hybrids also have the witness w for the fact x ∈ L.

• H0 is the honest hybrid. It runs Step 1 and 2 of SV ∗ and then builds Fn,1 but does not
stop on receiving the first response from V ∗. Instead it uses the witness and interacts
honestly in all the sessions. H0 = {Fn,1, Fn,1, ε, auxn}. This hybrid is same as the honest
prover interacting with V ∗.

In each of the following hybrids we build on the admissible adversary circuit {C ′n,i,M ′n,i,
B′n,i, auxn}. If its malicious part M ′n,i outputs a tuple, we will call its session number j.

• Hi,1 runs Step 1 and 2 of SV ∗ and then builds {C ′n,i,M ′n,i, B′n,i, auxn} with the inputs
(x, y, (q1, g1, g

a1
1 ), (q2, g2, g

a2
2 ), . . . , (qm, gm, g

am
m )) and (R1, R2), where x ∈ L, y is the auxil-

iary input of V ∗ of length m and R2 is the random tape of V ∗ and R1 are the random coins
of {C ′n,i,M ′n,i, B′n,i, auxn}. If {C ′n,i,M ′n,i, B′n,i, auxn} outputs SimAbort, then Hi,1 does the
same. Else find the last output from V ∗ in Mn,i. It would be of the form (j, Bj , Xj , γ).
Now, start building polysize malicious extension Fn,i+1 to {C ′n,i,M ′n,i, B′n,i, auxn}. Fn,i+1

continues as follows:

– For the first i sessions for which knowledge commitment was completed, whenever
ΠZK completes do the following: If proof is not accepted, it adds (Abort, `) to Aborted.
If proof is accepted, it finds the corresponding output (`, b`) of B′n,i. If not found or
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B` 6= gb`` , Fn,i+1 outputs SimAbort. If a valid (`, b`) is found and ` 6= j, it uses the
extracted values to simulate the sessions. For ` = j, it acts honestly after ΠZK .

– For rest of the sessions, it uses the witness to generate the messages honestly.

Note that though Hi,1 has the extracted value for session j, it does not use it and acts
honestly in that session. Hi,1 = (C ′n,i ∪ Fn,i+1,M

′
n,i ∪ Fn,i+1, B

′
n,i, auxn).

• Hi,2 is same as Hi,1 with the following change. It chooses αj
$←− Zq, but sets Zj =

ComDLj
(0; r̃′j). Later while opening it sets r̃j = OpenDLj

(0, αj , r̃
′
j , bj) and opens the com-

mitment to αj and r̃j . It generates all other messages of session j honestly.

The hybrids Hi,1 and Hi,2 are identical because the commitment scheme ComDLj is per-
fectly hiding and hence, ComDLj

(0) and ComDLj
(αj) are identically distributed.

• Hi,3 does the following change in Hi,2. While generating P2 message of session j, it runs
SHV to get (Cmtj ,Chj ,Rspj). It sends (Cmtj ,ComDLj (0; r̃′j)) as P2 message. For P3

message, it sets αj = βj⊕Chj , r̃j = OpenDLj
(0, αj , r̃

′
j , bj) and sends (αj , r̃j ,Rspj). Hence,

in Hi,3 all sessions ` such that (`, b`) ∈ output of B′n,i are simulated and rest all sessions
are honest. Note that Hm,3 is same as the interaction between SV ∗ and V ∗.

Below we will prove the indistinguishability of Hi,2 and Hi,3.
First note that the only difference between the hybrids Hi,3 and Hi+1,1 is that in Hi+1,1

we add En,i+1 to B′n,i. But note that SimAbort can happen in Hi+1,1 and not in Hi,3 for
the following two reasons:

– When V ∗ sends (B,X) such that (g
aj
j , B,X) /∈ DH and manages to successfully

complete the ΠZK by convincing that it sent a valid tuple. The extraction can fail
almost always in this case. We prove in Lemma D.12 that probability of V ∗ proving
a wrong statement is negligible by reducing it to the statistical soundness of ΠZK .
Hence, the probability of SimAbort due to this event is also negligible.

– When V ∗ sends a valid (B,X), yet m-KEA fails to give a successful extraction. But
by the first property of m-KEA, the probability of this event is negligible in n.

Since the probability of each of the above events is negligible in n, Hi,3 and Hi+1,1 are
statistically close. We now state and prove Lemma D.12 followed by indistinguishablity of
Hi,2 and Hi,3.

Lemma D.12. Consider Hi+1,1 such that Hi,3 does not output SimAbort and j as defined in
Hi+1,1. Then,

Pr[(g
aj
j , Bj , Xj) /∈ DH

∧
ΠZK is accepted for session j] is negligible.

Proof: We will prove this contradiction. If there is a non-negligible function γ(n) such that
Pr[(g

aj
j , Bj , Xj) /∈ DH

∧
ΠZK is accepted for session j] > γ(n) in Hi+1,1, then we will con-

struct an adversary, which will break the stand alone statistical soundness of ΠZK by γ(n).
Consider a hybrid H′i+1,1 which is same as Hi+1,1 with the following change: Internally,

Hi+1,1 extracts the secret value of V ∗ for first i+1 sessions (where sessions are ordered according
to knowledge commitment by V ∗) and behaves honestly in all other sessions. For each of first
i+1 knowledge commitments, it has an extractor circuit obtained from m-KEA. Since Hi,3 does
not output SimAbort, one of the following holds for each of the first i extractions:

• The extraction is successful.

• V ∗ fails to complete ΠZK successfully.

H′i+1,1 does not use any of the circuits output by m-KEA. Instead, it runs in super-polynomial
time to extract the discrete log of B` w.r.t. g` corresponding to first i knowledge commitments
by V ∗. This super-polynomial time extraction is always successful. Moreover, if V ∗ fails to
convince in ΠZK for some session, H′i+1,1 also aborts those sessions. For the sessions in which
Hi+1 acts honestly, H′i+1,1 also acts honestly. Hence, note that the view of V ∗ is identical in
Hi+1,1 and H′i+1,1 till V ∗ completes ΠZK for session j.
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Let VZK be an honest verifier for ΠZK , which generates (p, q, g)
$←− LPQG and a

$←− Z∗q . Now
consider a hybridH′′i+1,1 which is same asH′i+1,1 except for the change that it takes (g, ga) for the

jth session from VZK . Since, SV ∗ was generating these pairs at random and VZK is honest, the
view of V ∗ in H′′i+1,1 and H′i+1,1 is indistinguishable. Now, when V ∗ sends (j, Bj , Xj) for session
j, H′′i+1,1 forwards it to VZK . Whenever V ∗ sends some message for ΠZK of session j, H′′i+1,1 for-
wards it to VZK and forwards the response of VZK to V ∗. Whenever V ∗ convinces H′′i+1,1, it also

succeeds in convincing VZK . Since, Pr[(g
aj
j , Bj , Xj) /∈ DH

∧
ΠZK is accepted for session j] >

γ(n) for H′′i+1,1, it breaks the statistical soundness of ΠZK by probability γ(n), which is a con-
tradiction.

In order to show indistinguishability between H0 and Hm,3, we are just left with showing
indistinguishability between Hi,2 and Hi,3. We will show this by contradiction. Let us assume
there is a distinguisher D which distinguishes between Hi,2 and Hi,3 for some i and auxiliary
input y. Then we will show a distinguisher D′ for

{SHV (x)}x∈L and {〈P (x,w), V (x)〉}x∈L,w∈WL(x).

This would contradict the honest verifier zero-knowledge property of 〈P , V 〉. D′ is given a 3-
round transcript T ′ = {Cmt,Ch,Rsp} as input for the NP-statement x ∈ L which is either for
P or SHV for the canonical argument system. Using the witness w for x ∈ L, D′ generates an
input HI for D which is same as Hi,3 except for the following change. Instead of running SHV
for the session j (defined above), it uses {Cmt,Ch,Rsp} for that session.

If the input to D′ is from {〈P (x,w), V (x)〉}x∈L,w∈WL(x), the input to D is identical to Hi,2.
This is because since honest verifier’s Ch is distributed uniformly in {0, 1}n, αj in HI will be
distributed uniformly. On the other hand, if the input of D′ is from {SHV (x)}x∈L, the input to
D is identical to Hi,3. So, if D says that HI is distributed identically to Hi,2, then D′ says that
T ′ is generated by P . Else, it is generated by SHV .
The success probability of D′ in distinguishing between transcripts of P and SHV is same as
the success probability of D in distinguishing Hi,2 and Hi,3. Hence, D′ distinguishes between
the following two ensembles with non-negligible probability

{SHV (x)}x∈L and {〈P (x,w), V (x)〉}x∈L,w∈WL(x)

in contradiction to property B3 of the canonical argument system.
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