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Abstract

The Fiat-Shamir paradigm was proposed as a way to remove interaction from 3-round proof of knowledge
protocols and derive secure signature schemes. This generic transformation leads to very efficient schemes and
has thus grown quite popular. However, this transformation is proven secure only in the random oracle model. In
FOCS 2003, Goldwasser and Kalai showed that this transformation is provably insecure in the standard model
by presenting a counterexample of a 3-round protocol, the Fiat-Shamir transformation of which is (although
provably secure in the random oracle model) insecure in the standard model, thus showing that the random
oracle is uninstantiable. In particular, for every hash function that is used to replace the random oracle, the
resulting signature scheme is existentially forgeable. This result was shown by relying on the non-black-box
techniques of Barak (FOCS 2001).

An alternative to the Fiat-Shamir paradigm was proposed by Fischlin in Crypto 2005. Fischlin’s transfor-
mation can be applied to any so called 3-round “Fiat-Shamir proof of knowledge’’ and can be used to derive
non-interactive zero-knowledge proofs of knowledge as well as signature schemes. An attractive property of
this transformation is that it provides online extractability (i.e., the extractor works without having to rewind
the prover). Fischlin remarks that in comparison to the Fiat-Shamir transformation, his construction tries to
“decouple the hash function from the protocol flow" and hence, the counterexample in the work of Goldwaaser
and Kalai does not seem to carry over to this setting.

In this work, we show a counterexample to the Fischlin’s transformation. In particular, we construct a 3-
round Fiat-Shamir proof of knowledge (on which Fischlin’s transformation is applicable), and then, present
an adversary against both - the soundness of the resulting non-interactive zero-knowledge, as well as the un-
foregeability of the resulting signature scheme. Our attacks are successful except with negligible probability for
any hash function, that is used to instantiate the random oracle, provided that there is an apriori (polynomial)
bound on the running time of the hash function. By choosing the right bound, secure instantiation of Fischlin
transformation with most practical cryptographic hash functions can be ruled out.

The techniques used in our work are quite unrelated to the ones used in the work of Goldwasser and Kalai.
Our primary technique is to bind the protocol flow with the hash function if the code of the hash function is
available. We believe that our ideas are of independent interest and maybe applicable in other related settings.
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1 Introduction
The Fiat-Shamir paradigm [FS86] was proposed as a way to remove interaction from 3-round proof of knowledge
protocols and derive secure signature schemes. It is a generic transformation which leads to quite efficient schemes
thus making it quite popular. The security of this transformation was later analyzed under the ideal assumption
that the hash function behaves as a random oracle [BR93, PS00]. Thus, the resulting non-interactive proofs and
signature scheme are automatically secure in the random oracle model. Several signature schemes (with the best
known ones being [Sch91, GQ88, Oka92]) were constructed following the Fiat-Shamir paradigm. It has also been
useful in obtaining forward secure schemes and improving the tightness of security reductions [AABN02, MR02].

Random oracle model can be seen as a methodology to design secure cryptographic systems in two steps: first
construct and analyze a scheme assuming only oracle access to the random function. Then, find a suitable hash
function and instantiate the previous construction with that to get a real world secure cryptographic system.

For the Fiat-Shamir paradigm, Goldwasser and Kalai [GK03] showed that unfortunately the second step of
the design methodology cannot be carried out. In particular, they show that the Fiat-Shamir transformation is
uninstantiable in the real world: regardless of the choice of the hash function, the resulting signature scheme is
insecure. To do this, they first gave a construction of a 3-round identification scheme based on the non-black-
box simulation techniques of Barak [Bar01], and then showed that the resulting signature scheme is universally
forgeable for any hash function.

An alternative to the Fiat-Shamir paradigm was proposed by Fischlin [Fis05]. Fischlin’s transformation can
be applied to any so called 3-round “Fiat-Shamir proof of knowledge" and can be used to derive non-interactive
zero-knowledge proofs of knowledge as well as signature schemes. An attractive property of this transformation
is that it provides online extractability. In other words, just by observing queries a (possibly malicious) prover
makes to the random oracle, an extractor is guaranteed to be able to output the witness of the statement being
proven (except with negligible probability). This is in contrast to Fiat-Shamir transformation where an extractor
must work by rewinding the prover. This property is quite useful while using the resulting non-interactive schemes
in larger systems. Fischlin also shows applications of his transformation in constructing group signature schemes
[BBS04].

Even though the purpose of Fischlin’s transformation is quite similar to that of Fiat-Shamir, the transformation
itself is quite different. Fiat-Shamir transformation is applied on a 3 round public coin proof of knowledge protocol
and works as follows. Prover sends a commitment to the verifier, the verifier sends back a random challenge, and,
the prover finally responds to that challenge. In the transformed non-interactive protocol, the challenge of the
verifier is generated by applying the random oracle to the first message (i.e., the commitment) of the prover. The
non-interactive scheme is secure in the random oracle model since getting the challenge from the random oracle
is similar to getting it from the external verifier; both challenges will be unpredictable to a malicious prover and
trying again any polynomial number of times does not help.

Goldwasser and Kalai [GK03] showed insecurity of the Fiat-Shamir paradigm by relying the breakthrough
work of Barak [Bar01]. Indeed it seems (in retrospect) that the non-black-box simulation techniques of Barak fits
in quite well to show insecurity of the Fiat-Shamir paradigm:

• In the Fiat-Shamir paradigm, the verifier basically just acts as a hash function (i.e., the verifier message is
computed by simply evaluating the hash function on the incoming prover message).

• Hence, having oracle access to the hash function is similar to having a black-box access to the verifier, while,
having the code of the hash function directly translates to having non-black-box access to the verifier.

• Barak’s techniques yield a zero-knowledge protocol which is secure given only black-box access to the
verifier (in other words, a scheme which is resettably-sound [BGGL01]), but becomes insecure given non-
black-box access to the verifier.

We remark that even though the above idea is the starting point towards showing insecurity of the Fiat-Shamir
paradigm in [GK03], this by itself is not sufficient. This is because Barak’s techniques do not yield a 3-round
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protocol. Goldwasser and Kalai make use of a number of additional tools and ideas; please refer to [GK03] for
more details.

The above high level idea completely breaks down in the context of Fischlin’s transformation. As Fischlin
remarks [Fis05], “in comparison to the Fiat-Shamir transformation, this construction somewhat decouples the hash
function from the protocol flow". In other words, the prover and the verifier messages of the underlying scheme
are computed as specified in the underlying scheme; not by making use of the hash function in any way. The
hash function is only used to make some final checks on the resulting transcript of interaction. Hence, as observed
by Fischlin, the counterexample in [GK03] does not seem to carry over to this setting [Fis05]. This raises the
following natural question

“Is there a concrete hash function using which Fischlin transformation can be securely instantiated?"

Our Results. In this work, we give a partial answer to the above question. More specifically, we prove the
following.

“There does not exist any hash function, whose running time is bounded by an apriori fixed polyno-
mial, using which Fischlin transformation can be securely instantiated."

One can interpret the above result in two different ways. Firstly, the bound on the running time will typically
be chosen to be a large polynomial in the security parameter. By choosing a large bound, we can rule out the
instantiation of Fischlin transformation with widely used hash functions such as SHA-1. Another interpretation
is that, given any hash function, we can construct a (3-round Fiat-Shamir proof of knowledge) protocol such the
the following holds. When Fischlin’s transformation is applied on this protocol and instantiated using this hash
function, the resulting signature scheme as well the non-interactive zero-knowledge scheme is completely insecure.

We note that the above does not invalidate the original security proof of Fischlin’s transformation in any way
(which are provided only in the random oracle model). No claims regarding the security of the transformation,
once the hash function is instantiated are made in [Fis05]. Fischlin explicitly acknowledges the possibility of such
a result in the introduction of his paper [Fis05].

1.1 Technical Overview.
Before we discuss the techniques involved in our work, we briefly sketch Fischlin’s transformation in the following.

Fischlin’s Transformation. Fischlin [Fis05] proposed an approach to transform any Fiat-Shamir proof of knowl-
edge (as defined in Section 2) to a non-interactive zero knowledge proof of knowledge in the random oracle model.
The basic idea of his transformation is given in the following. The transformed prover (of the non-interactive
zero-knowledge scheme) roughly works as follows.

• In the underlying Fiat-Shamir proof of knowledge, the challenge space is restricted to be of polynomial size
(i.e., the challenge string of the verifier will be of logarithmic length). The protocol begins by executing
a super-constant number of parallel copies of the honest prover of the underlying Fiat-Shamir proof of
knowledge.

• For each parallel execution i, the prover computes the commitment αi (i.e., the first message)

• For all possible (polynomially many) challenges βi starting from 0 the prover performs the following
test. It checks whether a fixed number (depending on the security parameter) of least significant bits of
O
(
(α1, . . . , αr), i, βi, γi

)
are all 0. Here γi is the prover’s response to the challenge βi and O denotes the

random oracle. If the test passes, the prover fixes βi to be the challenge for session i.

• Finally, the transcript (αi, βi, γi) corresponding to every execution i is output as the proof.

• Verifier accepts the proof only if: (a) the transcript for every execution is accepted by the verifier of the
underlying Fiat-Shamir proof of knowledge, and, (b) for all executions, the least significant bits of the
random oracle invocation come out to be all 0 (as described above). 1

1This is actually the simplified version of the final construction in [Fis05]. Our results apply to both the variants.
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The above construction retains the completeness property: except with negligible probability, for each execu-
tion, there will be at least one challenge βi for which the random oracle outputs 0 (in the relevant bits).

The construction provides soundness for the following reasons. If the statement is false, for each αi, there
is a single challenge βi for which a satisfying response γi can be given. Consider the vector of first messages
chosen by the adversary (α1, . . . , αr). Except with negligible probability, there will exist at least one i such that
O
(
(α1, . . . , αr), i, βi, γi

)
does not have its required bits to be all 0. Once that happens, the adversary will have

to change αi (and hence the vector (α1, . . . , αr) changes). Thus, adversary has to essentially restart its effort to
produce a false proof (and again it will only be successful with negligible probability).

Thus, it is crucial to have the entire vector (α1, . . . , αr) as part of the input to the random oracle. Even if the
adversary fails to obtain the required 0’s even in a single execution, it has to start again from scratch. See section
2 for more details.

Our Ideas. Recall that the verifier accepts the proof only if: (a) the transcript for every execution is accepted
by the verifier of the underlying Fiat-Shamir proof of knowledge, and, (b) for all executions, the least significant
bits of the random oracle invocation come out to be all 0. Normally, these two tests will be “independent and
uncorrelated". This is because no random oracle invocations are involved in the first test (the underlying Fiat-
Shamir proof of knowledge protocol does not make use of random oracles). However once the code of the hash
function is available, it can be used in the underlying protocol making the two tests correlated. In fact, in our
construction, the two tests will end up being identical. This would allow an adversarial prover to succeed (using
the description of the hash function). Below we provide a very high level overview of our main idea.

• Observe that in the final transcript being output, for each session i, adversary needs to include an accepting
response for just a single challenge βi (for which the random oracle output has 0 in all required positions).
What if somehow magically, adversary exactly has the capability to come up with an accepting response for
just this βi (note that adversary can have the capability of creating an accepting response just for a single
challenge)?

• To achieve the following, we take any Fiat-Shamir proof of knowledge and then add another “mode of
execution" to it. In this mode, the prover doesn’t need the witness to execute the protocol. However the
verifier’s test is such that for each αi, there is a single βi for which verifier accepts. Hence, the protocol
still maintains the special soundness property. This new protocol will be the underlying protocol on which
Fischlin’s transformation will be applied.

• Now we sketch the test the verifier performs in this second mode. The prover will be free to send any hash
function to the verifier as part of αi. Using this hash function, the verifier is instructed to compute the only
acceptable βi for this αi. If that is the challenge he chose, the verifier is instructed to accept (and reject
otherwise).

• The acceptable βi is the first possible challenge (lexicographically) such thatH
(
(α1, . . . , αi, . . . αr), i, βi, γi

)
has 0 in all the required positions (where H is the hash function chosen by the prover).

• Now if the hash function H is the same as the random oracle, we have that the second test (by the verifier
of the non-interactive proof) is satisfied for free. Hence, by running in the second mode, soundness of the
non-interactive scheme can be violated.

There are several problems with this basic idea. To start with, the verifier of the (interactive) Fiat-Shamir
protocol that we constructed is unaware of any other sessions. Whether or not it accepts should only be decided
by the transcript of this session. However the test H

(
(α1, . . . , αi, . . . αr), i, βi, γi

)
requires the knowledge of the

first prover messages in all other sessions (we resolve this problem by having a construction in which a first prover
message for one session can be used to compute first prover messages for the other sessions). Secondly, note that
the random oracle instantiation could be done by any (possibly adversarial) hash function. Since the transcript of
interaction in mode 1 and mode 2 may be easily distinguishable, the hash function may never give output having 0
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in the relevant places for mode 2 messages (we solve this problem by employing encryption in a deterministic way
using shared public randomness). The final construction is given in Section 3.

We note that once we have an adversary to violate soundness of the non-interactive zero-knowledge scheme, it
is also easy to design a forger for the resulting signature scheme.

Further Comments. We note that Fischlin’s transformation could still be secure in the following sense. For
every protocol (on which Fischlin’s transformation can be applied), there exists a hash function, whose running
time depends upon the parameters of the protocol (in particular upon the running time of the parties in the protocol)
such that the following happens. The signature scheme (and non-interactive zero-knowledge scheme) obtained by
applying Fischlin’s transformation on this protocol, when instantiated with this hash function, is secure in the plain
model. However we note that the hash function used to instantiate the scheme has to be dependent on the protocol.
In particular, one cannot use a fixed hash function (such as SHA-256) to instantiate the resulting schemes.

Furthermore, Fischlin’s construction could still be instantiated if there are no shared public parameters between
the prover and the verifier. As with the counterexample for the Fiat-Shamir transformation [GK03], our construc-
tion is in the setting where the prover and the verifier share some public parameters2. We also sketch an extension
of our main construction to the setting where the prover and the verifier have no prior communication/setup in
Section 4. In this setting, our results are only valid for the class of hash function whose output is pseudorandom.
Indeed, it is natural to think of the random oracle being instantiated by a pseudorandom function. We leave getting
an unrestricted result in this setting as an open problem.

Related Works. A number of works have investigated the difference in the settings: where one only has oracle
access to a primitive v/s having the full code of the primitive. These lines of research include ones on program
obfuscation [BGI+01, GK05], non-black-box simulation techniques [Bar01, Pas04, DGS09], uninstantiabilty of
constructions in the random oracle model [CGH04], etc.

2 Fischlin Transformation
In this section, we shall review the Fischlin transformation. We begin by stating the preliminaries. Throughout
the paper, we denote the security parameter by k. A function f : N → R+ ∪ {0} is said to be negligible (in its
input) if, for any constant c > 0, there exists a constant, k0 ∈ N, such that f(k) < (1/k)c for any k > k0. We
let f(k) = negl(k) denote that f(k) is a negligible function. We say that function is non-negligible if it is not
negligible; namely, we say that f(·) is non-negligible in its input if there is constant c > 0 such that for infinitely
many k, it holds f(k) ≥ (1/k)c. For a probabilistic polynomial time algorithm A, we use the notation y ← A(x)
to denote A outputting y on input x. We use the notation Pr[E] & 1 to indicate that the probability of the event E
is negligibly close to 1. Similarly, the notation Pr[E] & 0 is used to indicate that the probability of the event E is
neglibly close to 0.

In this paper, we scrutinize the “real-world’’ security of protocols that are proven secure in the random oracle
model. In the random oracle model, all the parties have access to a purely random function (i.e., a mapping that
maps every input to an output that is distributed uniformly random in a range space whose size is dependent on the
security parameter. We denote the random oracle by O.

Fischlin transformation converts a 3-round zero-knowledge proof of knowledge, termed as Fiat-Shamir proof
of knowledge, to a non-interactive zero-knowledge proof of knowledge proven secure in the random oracle model.
In what follows we shall review the formal definitions for both Fiat-Shamir proof of knowledge as well as non-
interactive zero-knowledge proof of knowledge as defined in [Fis05].

Definition 1. A Fiat-Shamir proof of knowledge (with O(log(k))-bit challenges) for a witness relation W is a pair
(P, V ) of probabilistic polynomial time algorithms P = (P0, P1), V = (V0, V1) with the following properties.

[Completeness.] For any parameter k, any (x,w) ∈Wk, any (α, β, γ)← (P (x,w), V0(x)) it holds V1(x, α, β, γ) =
Accept.

2Note that none of the parties need to trust the public parameters for their security.
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[Commitment Entropy.] For parameter k, for any (x,w) ∈ Wk, the min-entropy of α ← P0(x,w) is superloga-
rithmic in k.

[Public Coin.] For any k, any (x,w) ∈ Wk, any α ← P0(x,w), the challenge β ← V0(x, α) is uniform on
{0, 1}l(k).

[Unique responses.] For any probabilistic polynomial time algorithm A, for parameter k and (x, α, β, γ, γ′) ←
A(k), we have, as a function of k,

Pr[V1(x, α, β, γ) = V1(x, α, β, γ
′) = Accept ∧ γ 6= γ′] ≈ 0

[Special Soundness.] There exists a probabilistic polynomial time algorithm K, the knowledge extractor, such that
for any k, any (x,w) ∈ Wk, any pairs (α, β, γ), (α, β′, γ′) with V1(x, α, β, γ) = V1(x, α, β

′, γ′) = Accept and
β 6= β′, for w′ ← K(x, α, β, γ, β′, γ′) it holds (x,w′) ∈Wk.

[Honest-Verifier Zero-Knowledge.] There exists a probabilistic polynomial time algorithm Z, the zero-knowledge
simulator, such that for any pair of probabilistic polynomial time algorithms D = (D0, D1) the following distri-
butions are computationally indistinguishable:

• Let (x,w, δ) ← D0(k) and (α, β, γ) ← (P (x,w), V0(x)) if (x,w) ∈ Wk and (α, β, γ) ← ⊥ otherwise.
Output D1(α, β, γ, δ).

• Let (x,w, δ) ← D0(k) and (α, β, γ) ← Z(x,YES) if (x,w) ∈ Wk and (α, β, γ) ← Z(x,NO). Output
D1(α, β, γ, δ).

Definition 2. A pair (P, V ) of probabilistic polynomial time algorithms is called a non-interactive zero-knowledge
proof of knowledge for relation W with an online extractor (in the random oracle model) if the following holds.
[Completeness] For any oracle O, any (x,w) ∈Wk and any π ← PO(x,w), we have Pr[V O(x, π) = Accept] &
1.
[Zero-knowledge] There exist a pair of probabilistic polynomial time algorithms Z = (Z0, Z1), the zero-knowledge
simulator, such that for any pair of probabilistic polynomial time algorithms D = (D0, D1), the following distri-
butions are computationally indistinguishable:

• Let O be a random oracle, (x,w, δ)← DO0 (k), and π ← PO(x,w) where (x,w) ∈Wk. Output DO1 (π, δ).

• Let (O0, σ)← Z0(k), (x,w, δ)← DO0
0 (k) and (O1, π)← Z1(σ, x). Output DO1

1 (π, δ).

[Online Extractor.] There exists a probabilistic polynomial time algorithm K, the online extractor, such that the
following holds for any algorithm A. Let O be a random oracle, (x, π)← AO(k) and QO(A) be the sequence of
queries of A to O and O’s answers. Let w ← K(x, π,QO(A)). Then, as a function of k,

Pr[(x,w) /∈Wk ∧ V O(x, π) = Accept] ≈ 0

We are now ready to give a formal description of the Fischlin transformation.

Fischlin Transformation. Let (PFS , VFS) be an interactive Fiat-Shamir proof of knowledge with challenges of
l = l(k) = O(log(k)) bits for a relation W . Define the parameters b, r, S, t as the number of test bits, repetitions,
maximum sum and trial bits such that br = ω(log(k)), t − b = ω(log(k)),b, r, t = O(log(k)), S = O(r) and
b ≤ t ≤ l. Define the following non-interactive proof system for relation W in the random oracle model where the
random oracle maps to b bits.
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Prover: The prover PO on input (x,w), first runs the prover PFS(x,w) in r independent repetitions to obtain r
commitments (α1, . . . , αr). Then PO does the following, either sequentially or in parallel for each repetition i.
For each βi = 0, 1, . . . , 2t − 1 it lets PFS compute the final responses γi by rewinding, until it finds the first one
such thatO(x, (α1, . . . , αr), i, βi, γi) = 0b, if no such tuple is found then PO picks the first one for which the hash
value is minimal among all 2t hash values. The prover finally outputs π = (αi, βi, γi)i=1,...,r.

Verifier: The verifier V O on input x and π = (αi, βi, γi)i=1,...,r accepts if and only if V1,FS(x, αi, βi, γi) = Accept
(first test) for each i ∈ [r] and if

∑r
i=1O(x, (α1, . . . , αr), i, βi, γi) ≤ S (second test).

We shall now briefly review the proof of security (in the random oracle model) of the Fischlin transformation. We
shall begin by arguing completeness. We need to show that the (honest) prover fails to convince the verifier only
with negligible probability. From the completeness property of the underlying Fiat-Shamir proof of knowledge,
the proof produced by the honest prover passes the first test with probability 1. It can be shown that the probability
that the proof passes the second test is negligibly close to 1 by the following two basic arguments:

• Probability that at least in one of the r repititions the smallest hash value that the prover obtains is > S is
negligible. Hence, with all but negligible probability the sum of the hash values ≤ rS.

• By a basic combinatorial argument, the sum of the hash values > S and ≤ rS only with negligible proba-
bility. Hence, the sum is ≤ S with all but negligible probability.

From this, it can be seen that the honest prover passes the second test with probability negligibly close to 1.
We now prove that the protocol satisfies online extractability (which in turn implies soundness). Consider an

adversarial prover who produces a proof given just the input instance. The claim is that except with negligible
probability the proof is rejected by the verifier. Consider a particular commitment tuple (α1, . . . , αr). Observe
that in the queries made by the adversarial prover to the random oracle there cannot be two accepting transcripts
of the form ((α1, . . . , αr), i, β, γ) and ((α1, . . . , αr), i, β

′, γ′) because then the special soundness property of the
underlying Fiat-Shamir proof of knowledge would imply that the adversary has the witness for the input instance.
Hence, corresponding to each repetition i and commitment tuple (α1, . . . , αr), the adversary can query the random
oracle for at most one challenge βi. Let si be the value output by the random oracle for this particular βi. With
negligible probability, the summation of si over all the repetitions is at most S. This is because, there are only
polynomially many (in the security parameter) possible tuples (s

′
1, . . . , s

′
r) whose summation is at most S and since

si is picked uniformly at random, the probability that the sum of si is at most S is poly(k).negl(k) which is also
negligible in k. This means that the adversary has negligible probability of succeeding for a given (α1, . . . , αr).
Since, the adversary can try only polynomially many such commitment tuples, it is only with negligible probability
that it can produce an accepting proof.

Fischlin showed that the non-interactive zero-knowledge proof of knowledge obtained from his construction
can be used to construct signature schemes which are secure. The signature scheme derived from his construction
was shown to be existentially unforgeable against adaptive chosen message attacks in the random oracle model.

In this paper, we give a construction of 3-round Fiat-Shamir proof of knowledge protocol such that the resulting
protocol obtained after applying Fischlin transformation does not satisfy soundness in the real-world. And hence,
note that the security of the signature scheme built over this non-interactive protocol (which is the output of Fischlin
transformation) also breaks down.

3 Our construction
Our goal is to construct a Fiat-Shamir proof of knowledge (P ∗, V ∗) for some witness relation such that the non-
interactive protocol obtained after applying the Fischlin transformation to it is insecure when the random oracle is
instantiated with a hash function ensemble containing functions whose running time is apriori bounded by some
polynomial. We now give the intuition about the construction of proof of knowledge (P ∗, V ∗). We first con-
sider a Fiat-Shamir proof of knowledge (P, V ) from which we build (P ∗, V ∗). The verifier V ∗ is basically V
with its verdict function extended so as to also accept in the case when the challenge equals the output of some
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pre-determined function, denoted by least (defined later). The function least takes the first message as input and
returns a challenge. As the verifier chooses the challenge uniformly at random, it is only with low probability
that the challenge equals the output of least of the first message. This, together with the fact that (P, V ) is sound,
implies that (P ∗, V ∗) satisfies soundness property. However, in the non-interactive protocol obtained by applying
Fischlin transformation to (P ∗, V ∗), denoted by (PO, V O), the prover himself is supposed to compute the chal-
lenge messages. However, the probability that any adversarial prover succeeds in producing an accepting proof
is negligible from the security proof of the Fischlin transformation. But when the random oracle O in (PO, V O)
is instantiated by a hash function h drawn from a hash function ensemble to get (Ph, Vh) we can construct an
adversary to violate the soundness of (Ph, Vh) as follows. The adversarial prover first makes the least function
dependent on machine M, which implements the instantiated hash function h, in such a way that the first test and
the second test become identical. The adversary then produces an accepting proof by setting the challenges in each
repetition to be the output of the least function of the first message and thus succeeds in passing the first test and
hence the second test too. We now give details of the construction below:

Let (P, V ) be a Fiat-Shamir proof of knowledge for a relation W . We use two main tools for our construction,
namely, a CPA symmetric encryption scheme E = (KeyGen,Enc,Dec) and a pseudorandom function family F .
Before we describe the protocol, we make the following assumption: In all the executions of the protocol, the
prover and the verifier have access to a string which is generated by a Setup algorithm. The Setup algorithm takes
1k as input and executes KeyGen to obtain SK. It further chooses a key K uniformly at random to choose a function
from the pseudorandom function family F . Finally, (SK,K) is output by Setup.3 The output of the Setup is used
in the following way. Each time the prover or the verifier needs to encrypt a message m, they proceed as follows.
Compute fK(m) (where fK is the function in F corresponding to key K) to obtain r. To encrypt m, execute the
algorithm Enc with inputs m, SK and r. Unless explicitly mentioned, by Enc(m) we mean that m is encrypted
using key SK and randomness fK(m). This means that Enc(m) gives the same ciphertext every time it is executed.
If we intend to use a different randomness, we use the notation Enc(m : R) to mean that m is encrypted using the
randomness R. When the prover or the verifier wants to decrypt a message m they execute Dec with input m and
key SK. Jumping ahead, we need to encrypt messages because the hash function used to instantiate the random
oracle might have the code of the verifier V embedded in it. In this case the hash function may output values
depending whether the input transcripts are accepting or rejecting. To make our security proof go through we need
to make sure the hash function does not have the capability to distinguish the transcripts. We can ensure this by
encrypting the messages of the prover (The Setup algorithm is considered to be a part of the interaction between a
specific prover and a verifier; the hash function used to instantiate the random oracle is independent of the output
of the Setup algorithm). We now proceed to describe the protocol.

As discussed before, we will first consider a Fiat-Shamir proof of knowledge (P, V ). We assume that the prover
P in (P, V ) can be decomposed into P0 and P1, where P0(x,w) outputs the commitment α and P1(x,w, α, β)
outputs γ. Similarly, the verifier V can be decomposed into V0 and V1 such that V0 interacts with P (by outputting
β on input some (x, α)) to produce the transcript (α, β, γ) and then V accepts if and only if V1(α, β, γ) accepts.
We use the symbols r, b, t as defined in the Fischlin construction (c.f. Section 2). We denote the least significant l
bits of M(y) by M(y)(l).

Our protocol is parameterized by a polynomial phash. We are now ready to describe the protocol (P ∗, V ∗) for
the relation W .

Protocol (P ∗, V ∗):

1. P ∗: Run P0 on (x,w) to obtain α. Define α∗ = Enc((α, i, bit,M)), where each of i, bit,M is set to 0, with their
lengths being log(r) bits, 1 bit, and |x| bits, respectively4. Send α∗ to V ∗.

3We note that neither the prover nor the verifier needs to place any trust in the setup algorithm for their security. The reason to have
(SK,K) as the public parameters (as opposed to the part of protocol messages) will become clear later on.

4Hereafter, unless specified otherwise, we maintain that the lengths of bit, i are specified above, and in every instance where we set M
to 0, it is of length |x|.
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[Note: Looking ahead, in the protocol obtained by first applying Fischlin transformation to (P ∗, V ∗) and then
instantiating it with the hash function, the adversary will set i to be the repetition number, bit to be 1 and M to be
the hash function instantiating the random oracle.]

2. V ∗: Execute Dec(α∗) to obtain α1 which is then parsed as (α, i, bit,M). Run V0 on input (x, α) to obtain β.
Send β to P ∗.

3. P ∗: Run P1 on input (x,w, α, β) to obtain γ. Send γ∗ = Enc(γ) to V ∗.

V ∗ then decides to accept or reject the transcript (x, α∗, β, γ∗) by executing the following.

i. Let α1 ← Dec(α∗) and γ ← Dec(γ∗).

ii. Parse α1 to be (α, i, bit,M).

iii. If bit = 0 then Accept if and only if V0(x, α, β, γ) accepts and γ∗ = Enc(γ).
[Note: Recall that Enc(m) is the encryption of m using the randomness fK(m). Hence, the check γ∗ =
Enc(γ) ensures that γ∗ is indeed the encryption of γ using the randomness fK(γ). Looking ahead, this will
be helpful to make the protocol satisfy the unique responses property.]

iv. Else, do the following. If M is not a valid Turing machine then Reject. Otherwise, Accept if both the
following conditions hold:

– β = least(x, α, i,M).

– γ∗ = Enc((i, β)).

where the least procedure is defined below.

least(x, α, i,M):

1. min ← 2b + 1
2. β ← null
3. For j = 0 to 2t − 1:
4. y←

(
x,
(
Enc((α, 1, 1,M)), . . . ,Enc((α, r, 1,M)), i, j,Enc((i, j))

))
5. Execute M(y) upto phash(|y|) steps
6. If M(y) terminates within phash(|y|) steps:
7. hash← M(y)(b)

8. If min > hash:
9. min← hash
10. β ← j
11. Return β.

The least algorithm does the following. It checks for what values of j from 0 to 2t − 1, the last b bits of
M
(
x, (Enc((α, 1, 1,M)), . . . ,Enc((α, r, 1,M)), i, j,Enc((i, j))

)
takes the minimum value among all possible 2t

values provided M terminates within phash
(∣∣∣x,Enc((α, 1, 1,M)), . . . , Enc((α, r, 1,M)), i, j,Enc((i, j))

∣∣∣) steps.
If there are many values of j for which the hash function maps to the minimum then it picks the one which is the
smallest. Observe that in the Fischlin construction, the non-interactive prover PO would implicitly run the least
algorithm as follows. It rewinds the prover in the Fiat-Shamir proof of knowledge until it finds the smallest β
such that the hash value when applied on the entire transcript maps to a minimum. This observation was the main
intuition behind our definition of the least algorithm.

We show that (P ∗, V ∗) satisfies all the properties of Fiat-Shamir proof of knowledge.
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Lemma 1. (P ∗, V ∗) is a Fiat-Shamir proof of knowledge for the relation W .

Proof. Before we show that (P ∗, V ∗) satisfies all the properties of Fiat-Shamir proof of knowledge, we first make
the observation that both the prover P ∗ and the verifier V ∗ run in polynomial time.

[Completeness] For any (α∗, β, γ∗) resulting from the interaction between P ∗ and V ∗ on input x, we have
that α∗ = Enc((α, i, bit,M)) and γ∗ = Enc(γ) with each of i, bit,M being 0. V ∗ accepts (α∗, β, γ∗) only if
V (x, α, β, γ) accepts. Thus, the completeness of (P ∗, V ∗) follows from the completeness property of (P, V ).

[Special Soundness] LetK be a knowledge extractor for (P, V ). We show that (P ∗, V ∗) satisfies special soundness
by constructing a knowledge extractorK∗ that usesK as follows. For any (x,w) ∈W , on input (x, α∗, β1, γ∗1 , β2, γ

∗
2)

such that V ∗(x, α∗, β1, γ∗1) = V ∗(x, α∗, β2, γ
∗
2) = Accept and β1 6= β2, K∗ does the following. It decrypts α∗

to obtain (α, i, bit,M). Similarly it decrypts γ∗1 and γ∗2 to obtain γ1 and γ2 respectively. Then, K∗ outputs what-
ever K(x, α, β1, γ1, β2, γ2) outputs. To see that K∗ is indeed a knowledge extractor for (P ∗, V ∗), consider the
following two cases.

• bit = 0: Here, V ∗(x, α∗, β1, γ∗1) = V ∗(x, α∗, β2, γ
∗
2) = Accept only if V (x, α, β1, γ1) = V (x, α, β2, γ2) =

Accept. Hence the special soundness property is satisfied because the special soundness of (P, V ) ensures
that for such an input (x, α, β1, γ1, β2, γ2), K outputs w′ such that (x,w′) ∈W .

• bit = 1: In this case, V ∗ accepts both inputs (α∗, β1, γ∗1) and (α∗, β2, γ
∗
2) only if both β1 and β2 are equal

to least(α, i, 1,M). This contradicts the assumption that β1 6= β2.

[Commitment entropy] The first message of P ∗ contains α which has the same distribution as the first message of
P and hence the commitment entropy property is satisfied.

[Public coin] This follows from the description of V ∗.

[Unique responses] For any probabilistic polynomial-time algorithm A and (x, α∗, β, γ∗1 , γ
∗
2) ← A(1k), where

α∗ = Enc((α, i, bit,M)), Enc(γ1) = γ∗1 and Enc(γ2) = γ∗2 . We claim that the following is negligible in k:

Pr[V ∗(α∗, β, γ∗1) = V ∗(α∗, β, γ∗2) = Accept & γ∗1 6= γ∗2 ].

To prove this claim, consider the following cases.

• bit = 0: Observe that in this case, V ∗(x, α∗, β, γ∗1) = Accept only if V (x, α, β, γ1) = Accept, and
V ∗(x, α∗, β, γ∗2) = Accept only if V (x, α, β, γ2) = Accept. Also, γ1 is equal to γ2 only if γ∗1 is equal
to γ∗2 . This is because of the following reason. γ∗1 is the encryption of γ1 using the randomness fK(γ1) and
γ∗2 is the encryption of γ2 using the randomness fK(γ2). And hence if γ1 were to be equal to γ2 then this
would imply that γ∗1 equals γ∗2 . Combining the above arguments we have the following. Conditioned on
bit = 0,

Pr[V ∗(α∗, β, γ∗1) = V ∗(α∗, β, γ∗2) = Accept & γ∗1 6= γ∗2 ] = Pr[V (α, β, γ1) = V (α, β, γ2) = Accept & γ1 6= γ2]

Since (P, V ) satisfies the unique responses property, Pr[V (α, β, γ1) = V (α, β, γ2) = Accept & γ1 6= γ2] is
negligible and hence the claim follows.

• bit = 1: Note that in this case, one of the conditions that needs to be satisfied for V ∗ to accept (α∗, β, γ∗1)
(and (α∗, β, γ∗2)) is that γ∗1 = Enc((i, β)) (resp., γ∗2 = Enc((i, β))). This implies that γ∗1 = γ∗2 and hence
the following holds conditioned on bit = 1.

Pr[V ∗(α∗, β, γ∗1) = V ∗(α∗, β, γ∗2) = Accept & γ∗1 6= γ∗2 ] = 0
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[Honest Verifier Zero-knowledge] To prove that (P ∗, V ∗) satisfies honest verifer zero-knowledge property, we
construct a zero-knowledge simulator Z∗ for (P ∗, V ∗) as follows. Let Z be a zero-knowledge simulator for the
protocol (P, V ). On input (x,membership), where membership ∈ {yes, no}, Z∗ runs Z(x,membership) to obtain
(α, β, γ). Z∗ outputs (Enc((α, i, bit,M)), β,Enc(γ)), where i, bit and M are set to 0.

To prove that Z∗ is a zero-knowledge simulator for (P ∗, V ∗), we first assume for contradiction that there
exists a distinguisher D∗ = (D∗0, D

∗
1) such that the statistical distance between following two distributions is

non-negligible.

• Dist∗real: Let (x,w, state)← D∗0(1
k) and (α∗, β, γ∗)← (P ∗(w), V ∗)(x) if (x,w) ∈ W , and (α∗, β, γ∗)←

⊥ otherwise. Output D∗1(α
∗, β, γ∗, state).

• Dist∗sim: Let (x,w, state) ← D∗0(1
k) and (α∗, β, γ∗) ← Z∗(x, yes) if (x,w) ∈ W , and (α∗, β, γ∗) ←

Z∗(x, no) otherwise. Output D∗1(α
∗, β, γ∗, state).

Then, we construct a distinguisher D = (D0, D1) that contradicts the honest verifier zero-knowledge property of
(P, V ) as follows. D0(1

k) runs D∗0(1
k) to obtain (x,w, state) and outputs the same. Once D1 receives (α, β, γ),

if (α, β, γ) 6= ⊥ then it outputs D∗1(Enc((α, i, bit,M)), β,Enc(γ), state), where i, bit and M are set to 0, else it
outputs D∗1(⊥, state). Now consider the following distributions.

• Distreal: Let (x,w, state) ← D0(1
k) and (α, β, γ) ← (P (w), V )(x) if (x,w) ∈ W , and (α, β, γ) ← ⊥

otherwise. Output D1(α, β, γ, state).

• Distsim: Let (x,w, state) ← D0(1
k) and (α, β, γ) ← Z(x, yes) if (x,w) ∈ W , and (α, β, γ) ← Z(x, no)

otherwise. Output D1(α, β, γ, state).

Now, from the way Z∗ and D are constructed, the distribution Distreal is the same as Dist∗real. Similarly, the
distribution Distsim is the same as Dist∗sim. This implies that the statistical distance between Distreal and Distsim is
also non-negligible, a contradiction.

3.1 On the Insecurity of (Ph, Vh)
The non-interactive zero-knowledge proof of knowledge (P ∗O, V ∗O) obtained by applying the Fischlin transfor-
mation to (P ∗, V ∗) is sound in the random oracle model. This follows from the fact that (P ∗, V ∗) is Fiat-Shamir
proof of knowledge (Theorem 3) and any protocol obtained by applying Fischlin transformation to a Fiat-Shamir
proof of knowledge is secure in the random oracle model. In this section, we show that when the random oracle is
instantiated by a hash function h, whose worst case running time is at most the polynomial phash in the size of its
inputs, the protocol (Ph, Vh), which is obtained by instantiating the random oracleO in (P ∗O, V ∗O), is not sound.
Typically, phash is chosen to be a polynomial of degree c, for a large constant c. The following theorem rules out
the secure instantiation of the Fischlin construction with most of the practical hash functions.

Theorem 1. Let (P ∗, V ∗) be the 3-round Fiat-Shamir proof of knowledge, for a witness relation W and the
corresponding language L = {x : (x,w) ∈ W}, as described above. Let (P ∗O, V ∗O) be the non-interactive
zero-knowledge proof of knowledge obtained by applying the Fischlin transformation to (P ∗, V ∗). Then, for any
hash function h, that is used to instantiate the random oracle O, and whose running time is at most phash(|y|) for
any input y∈ {0, 1}∗, the resulting protocol (Ph, Vh) is not sound. In other words, there exists an adversary A
such that Pr[(x, π)← A(1k) : V h(x, π) = 1 and x /∈ L] is non-negligible.

Proof. Let h be any hash function whose running time is at most phash(|y|) for any input y∈ {0, 1}∗. Let M be
a Turing machine which computes the hash function h. Now to prove that (Ph, Vh) does not satisfy soundness,
we construct a PPT adversary A which on input M outputs (x, π) for x /∈ L such that Vh(x, π) = Accept with
probability negligibly close to 1.
The adversary A is described as follows.

• On input M, choose a string x /∈ L such that |x| = |M|.
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• Pick α uniformly at random from the commitment space. Then compute βi as βi = least(α, i, 1,M) for all
i ∈ [r].

• Check whether
∑r

i=1 M
(
x, (Enc(α, 1, 1,M)), . . . , (Enc(α, r, 1,M)), i, βi,Enc((i, βi))

)(b) ≤ S. If so, then
output the proof π as π = (Enc(α, i, 1,M), βi,Enc(i, βi))1≤i≤r; else abort.

We first give the intuition as to why the adversary succeeds. To show that the adversary succeeds, we need
to show that the adversary passes both the tests of Vh with non-negligible probability. It can be observed that
in the case of the adversary A, by its construction, the first test and the second test of Vh becomes identical. In
other words, the adversary succeeds if and only if the sum of hash values evaluated on the proof produced by
the adversary is at most S (second test). Unlike the case of the random oracle model, it is tricky to bound the
probability 5 that the sum of the hash values is at most S when we are using a real world hash function. To show
that the probability of this event is non-negligible, we first observe that by the completeness property, the honest
prover passes the second test with non-negligible probability. In other words, with non-negligible probability, the
sum of the outputs of the hash function on the proof produced by the honest prover is at most S. If we show
that the hash function cannot distinguish a proof produced by an honest prover from the proof produced by the
adversary A then this would imply that the sum of hash function outputs on the proof produced by A is at most S
with non-negligible probability. This would mean that the adversary succeeds the second test, and hence the first
test, with non-negligible probability which will in turn prove the theorem. We now describe the technical details
of the proof.

We show that the adversary succeeds with non-negligible probability in two steps. Firstly, in Lemma 2 below,
we show that the set of first (commitments) and last messages (responses) of the adversary A is computationally
indistinguishable from that of an honest prover. This is to ensure that the hash function cannot distinguish whether
its input corresponds to a proof produced by an honest prover or a proof produced by A. Then, using Lemma 2,
we show in Lemma 3 that the adversary aborts with negligible probability. Then observing that the adversary does
not abort if and only if the adversary produces an accepting proof we conclude that the adversary succeeds with
non-negligible probability.

Lemma 2. The following two distributions are computationally indistinguishable.

• D
(0)
x =

{(
Enc(α1, 0

|r|, 0|bit|, 0|x|), . . . ,Enc(αr, 0
|r|, 0|bit|, 0|x|), i, β,Enc

(
P1(x,w, αi, β)

))
1 ≤i≤r, 0≤β≤2t−1

}
6

, defined over the random coins used to generate SK,K, α1, . . . , αr.

• D
(1)
x =

{(
Enc(α, 1, 1,M), . . . ,Enc

(
α, r, 1,M), i, β,Enc((i, β)

))
1 ≤i≤r, 0≤β≤2t−1

}
, defined over the ran-

dom coins used to generate SK,K, α.

Note that we assume here the distinguisher does not get access to either the PRF key K or the decryption key SK,
as the distinguishers we are interested in are the hash functions.

Proof. To prove the above lemma, we first prove the following claim and then show that the lemma follows as
a consequence of the claim. Before that, we introduce the following notation. Let T be a tuple of messages
(m1, . . . ,mr). By Enc(T ) we mean the tuple (Enc(m1), . . . ,Enc(mr)).

Claim 1. Consider the following two tuples of messages

T
(l)
1 = (m

(1)
1 , . . . ,m

(1)
l )

T
(l)
2 = (m

(2)
1 , . . . ,m

(2)
l ),

5The probability that a hash function maps to a value is calculated over the random coins used to pick the hash function from the
ensemble and also over the random coins used to generate the input to the hash function.

6Recall that P1 is part of the prover P in the Fiat-Shamir proof of knowledge (P, V ).
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such that all the messages in both the tuples are of length polynomial in the security parameter. Further, the above
two tuples satisfy the property that m(1)

i 6= m
(1)
j for i 6= j and i, j ∈ {1, . . . , l}. Then we claim that the following

distributions are computationally indistinguishable.

{Enc(m
(1)
1 ), . . . ,Enc(m

(1)
l )}

{Enc(m
(2)
1 ), . . . ,Enc(m

(2)
l )}

The distinguisher does not get access to either the PRF key K and the secret key SK.
Proof. We prove this by induction on the length of the tuples. When a pair of tuples T1 and T2 contains just one
message then the indistinguishability of Enc(T1) and Enc(T2) follows from the semantic security of the encryption
scheme as well as the fact that the output of the PRF is computationally indistinguishable from the output of a
purely random function. Throughout this proof, whenever we talk about indistinguishability we assume that the
distinguisher does not have access to either the PRF key K or the secret key SK. Consider any two tuples T (l−1)

1

and T (l−1)
2 , each of length l − 1 for some integer l > 2, such that m

′(1)
i 6= m

′(1)
j where m

′(k)
i is the ith message

in the tuple T (l−1)
k , for k = 1, 2 and for all i, j with i 6= j. By induction hypothesis, we will assume that the

distributions {Enc(T
(l−1)
1 )} and {Enc(T

(l−1)
2 )} are computationally indistinguishable. We now show that for a

pair of tuples T (l)
1 = (m

(1)
1 , . . . ,m

(1)
l ) and T (l)

2 = (m
(2)
1 , . . . ,m

(2)
l ), such that m(1)

i 6= m
(1)
j , the distributions

{Enc(T
(l)
1 )} and {Enc(T

(l)
2 )} are computationally indistinguishable. To show this, we assume that there exists a

distinguisher Dl which distinguishes the distributions {Enc(T
(l)
1 )} and {Enc(T

(l)
2 )} with non-negligible probabil-

ity. We then construct a distinguisher Dl−1 to distinguish the distributions {Enc(T
(l−1)
1 )} and {Enc(T

(l−1)
2 )} with

non-negligible probability, thus contradicting the hypothesis. The distinguisherDl−1 on input a tuple Enc(T (l−1)),
first picks a message m, of length polynomial in the security parameter, uniformly at random. It then inputs the
tuple (Enc(T (l−1)),Enc(m)) to the distinguisher Dl. The distinguisher Dl−1 then outputs whatever Dl outputs.
With probability negligibly close to 1, m is different from the other messages in the tuple T (l−1). Conditioned
on the event that m is different from the other messages in T (l−1), we have that the success probability of the
distinguisher Dl−1 is the same as the success probability of the distinguisher Dl thus contradicting the fact that
the distributions {Enc(T

(l−1)
1 )} and {Enc(T

(l−1)
2 )} are computationally indistinguishable. This shows that the

distributions {Enc(T
(l)
1 )} and {Enc(T

(l)
2 )} are computationally indistinguishable which proves the above claim.

Consider the following two tuples of messages.

1. M (0)
x =

((
m

(0)
1 , . . . ,m

(0)
r

)
, i, β,m

(0)
(i,β)

)
1≤i≤r,

0≤β≤2t−1
=
((

(α1, 0
|i|, 0|b|, 0|x|), . . . , (αr, 0

|i|, 0|b|, 0|x|)
)
, i, β, γ

(0)
(i,β)

)
1≤i≤r,

0≤β≤2t−1
,

where γ(0)(i,β) is the output of P1(x,w, αi, β).

2. M (1)
x =

((
m

(1)
1 , . . . ,m

(1)
r

)
, i, β,m

(1)
(i,β)

)
1≤i≤r,

0≤β≤2t−1
=
((

(α, 1, 1,M), . . . , (α, r, 1,M)
)
, i, β, (i, β)

)
1≤i≤r,

0≤β≤2t−1
.

To prove the lemma we first make the following observations. InM (1)
x , for i 6= j, the messagem(1)

i (= (α, i, 1,M))

is not equal to m(1)
j (= (α, j, 1,M)). Moreover, m(1)

i is not equal to m(1)
(j,β) for i = 1, . . . , r and for j = 1, . . . , r.

Also, i 6= i′ or β 6= β′, m(1)
(i,β)(= (i, β)) is not equal to m(1)

(i′,β′)(= (i′, β′)).

Similarly, in M
(0)
x , for i 6= j, m(0)

i (= (αi, 0, 0, 0)) is not equal to m
(0)
j (= (αj , 0, 0, 0)) with probability

negligibly close to 1; this follows from the commitment entropy property of the protocol (P, V ). Further, for the
same reason m(0)

i is not equal to m(0)
(j,β) with probability negligibly close to 1. We state the following claims to

show that m(0)
(j,β) is equal to m(0)

(j′,β′) for either j 6= j′ or β 6= β′ with only negligible probability.
Claim 2. Let α be the output of P0(x,w). For any distinct β and β′, Pr[P1(x,w, α, β) = P1(x,w, α, β

′)] is
negligible.
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Proof. Consider the set S(x,w)
collision = {α : ∃(β, β′) such that Pr[P1(x,w, α, β) = P1(x,w, α, β

′)] is non-negligible}.
Let α← P0(x,w). To prove the above claim, we need to prove that α ∈ S(x,w)

collision with negligible probability.
Assume for contradiction that α ∈ S(x,w)

collision with non-negligible probability. Then we construct an algorithm
which computes a witness for the given input with non-negligible probability thus leading to a contradiction. The
algorithm is defined as follows.

• Run the zero-knowledge simulator Z(x,YES) to obtain (α, β, γ).

• Choose β′ uniformly at random.

• Check whether (α, β′, γ) is an accepting transcript. If so, then output K(x, α, β, β′, γ, γ), where K is the
extractor; else abort.

We now claim that the above algorithm outputs a witness w such that (x,w) ∈ R with non-negligible prob-
ability. The message α in the transcript generated by Z belongs to S

(x,w)
collision with non-negligible probability

(otherwise we can construct a distinguisher to violate the zero-knowledge property). Conditioned on the event that
α ∈ S

(x,w)
collision, we have P1(x,w, α, β1) = P1(x,w, α, β

′
1) with non-negligible probability for some challenges

β1, β
′
1. Since (β, β′) is picked uniformly at random from the challenge space which is of size polynomial in k,

we have β = β1 and β′ = β
′
1 with non-negligible probability. This means that P1(x,w, α, β) = P1(x,w, α, β

′
)

with non-negligible probability. Since, (α, β, γ) and (α, β′, γ) are both accepting transcripts, from the special
soundness of (P ∗, V ∗) we have that K(x, α, β, β′, γ) outputs a valid witness. Summing up, the algorithm outputs
a witness with non-negligible probability. This completes the proof of Claim 1.

Claim 3. Let α and α′ be the output of P0(x,w) on two different executions. For any β, β′, Pr[P1(x,w, α, β) =
P1(x,w, α

′, β′)] is negligible.
Proof. Assume for contradiction that the above claim is false; i.e., ∃ β, β′ Pr[P1(x,w, α, β) = P1(x,w, α

′, β′)] is
non-negligible. Then we design an efficient algorithm that when given an input x ∈ L outputs a witness w with
non-negligible probability such that (x,w) ∈ R.

On input x ∈ L, the algorithm proceeds as follows.

• Execute Z(x,YES) to obtain (α, β, γ). Execute Z(x,YES) to obtain (α′, β′, γ′).

• Sample β′′ uniformly at random. If β′′ = β then abort.

• Check whether (α, β′′, γ′) is an accepting transcript. If it is not an accepting transcript, then abort. Else,
output K(x, α, β, β′′, γ, γ′).

By arguments similar to the ones in Claim 1, we can show that the algorithm outputs a valid witness with
non-negligible probability which leads to a contradiction. This completes the proof of Claim 2.

From the above observations we deduce that all the messages contained in the ciphertexts in the tuple Enc(M
(0)
x )

(resp., Enc(M
(1)
x )) are different. We can now invoke Claim 1 to show that D(0)

x is indistinguishable from D
(1)
x .

This completes the proof of Lemma 2.

We now show that the adversary A produces an accepting proof with non-negligible probability. Before we show
this, observe that whenever A does not abort it produces an accepting proof. Hence, it suffices to bound the
probability with which A aborts. In the following lemma, we show that A aborts with negligible probability, thus
proving the theorem.

Lemma 3. The adversary A aborts only with negligible probability.
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Proof. To prove this claim, we consider a modified version of the proof system (Ph, Vh), denoted by (P ′, V ′).
The modification is done in such a way that the probability that Vh accepts the proof produced by Ph is at most
the probability that V ′ accepts the proof produced by P ′. Also, we modify the adversarial procedure A to obtain
A′. The probability that A does not abort is the same as the probability that A′ can produce a proof such that V ′

accepts. Using Lemma 2, we prove that the output distribution of P ′ and A′ are computationally indistinguishable
using which we show that the success probability of P ′ and the success probability of A′ are negligibly close
to each other. This further proves that the probability that A succeeds and the probability that Ph succeeds are
negligibly close to each other. The lemma then follows. We are now ready to describe the technical details of the
proof.

We first recall the construction of (Ph, Vh). The prover Ph on input (x,w) first runs the r copies of the
prover P ∗ to obtain (α∗1, . . . , α

∗
r). Then by rewinding it finds the smallest βi for every repetition i such that∑r

i=1 M
(
x, (α∗1, . . . , α

∗
r), i, βi, γ

∗
i

)(b) ≤ S, where M represents the Turing machine that computes the hash func-
tion h. And, the verifier Vh performs the following two checks: whether all the r transcripts are accepted by the
verifier V ∗ and if

∑r
i=1 M

(
x, (α∗1, . . . , α

∗
r), i, βi, γ

∗
i

)(b) ≤ S.
As mentioned in the beginning of the proof, we modify (Ph, Vh) to obtain (P ′, V ′) whose description is given

below. We assume that the prover P ′ has access to (SK,K), which is the output of Setup, while the verifier V ′

does not have access to (SK,K).

Prover P ′: The prover P ′ on input (x,w), first runs the prover P ∗(x,w) in r independent repetitions to obtain r
commitments (α∗1, . . . , α

∗
r). Then P ′ does the following, either sequentially or in parallel for each repetition i. For

each βi = 0, 1, . . . , 2t − 1, P ′ computes the final responses P ∗(x,w, α∗i , βi) = γ∗i,βi by rewinding. The prover

outputs π =
(
(α∗1, . . . , α

∗
r), i, β, γ

∗
i,β

)
1≤i≤r, 0≤β≤2t−1

.

Verifier V ′: The verifier V ′ on input x and π =
(
(α∗1, . . . , α

∗
r), i, β, γ

∗
i,β

)
1≤i≤r, 0≤β≤2t−1

executes the following.

For each repetition, it chooses the smallest βi ∈ {0, . . . , 2t − 1} for which M
(
x, (α1, . . . , αr), i, βi, γi

)(b) is the
minimum among all the 2t hash values. It accepts if and only if

∑r
i=1 M(x, (α1, . . . , αr), i, βi, γi)

(b) ≤ S.

We also consider a modified version of the adversaryA, denoted byA′, which is defined as follows. On input x,A′

picksα uniformly at random. Then it sends as proof, π =
(

Enc((α, 1, 1,M)),. . .,Enc((α, r, 1,M)),i,β,Enc
(
(i, β)

))
1≤i≤r,

0≤β≤2t−1
to verifier V ′.

Now observe that Pr[V ′(x, π′) = Accept : π′ ← P ′(x,w)] ≥ Pr[Vh(x, π) = Accept : π ← Ph(x,w)].
Similarly, it can be seen that Pr[V ′(x, π′) = 1 : π ← A′(x)] = Pr[A does not abort ]. Further, note that the
distribution D

(1)
x is identical to the distribution {π′ : π′ ← A′(x)}. Similarly, the distribution D

(0)
x is identical to

the distribution {π′ : π′ ← P ′(x,w)}. Putting these arguments together, we have that the following quantity to be
at most negl(k).∣∣Pr[V ′(x, π′) = Accept : π′ ← P ′(x,w)]− Pr[V ′(x, π′) = Accept : π′ ← A′(x)]

∣∣
This is because, otherwise V ′ would act as a distinguisher distinguishing D

(0)
x and D

(1)
x contradicting Lemma 2.

We can use Lemma 2 here since V ′ does not have access to either the PRF key K or the decryption key SK. This
further implies that |Pr[Vh(x, π) = Accept : π ← Ph(x,w)] − Pr[A does not abort ]| ≤ negl(k). Hence, the
probability that adversary A does not abort is negligibly close to 1. This concludes the proof of Lemma 3.

4 Simplified Construction for Pseudorandom Hash Functions
In this section, we present a simpler construction to demonstrate the insecurity of the Fischlin transformation with
respect to hash functions which behave as pseudorandom functions (i.e., the output of such a hash function for any
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input is indistinguishable from random). As in the main construction, we restrict our attention to the case when
the worst case running time of the hash function is at most some fixed polynomial in the size of the input. More
formally, the insecurity arguments hold only for those hash functions whose running time is at most phash(|y|) on
input y, where phash is a polynomial. Unlike the main construction, the construction presented below does not
require any initial setup.

Let (P, V ) be any 3-round Fiat-Shamir proof of knowledge for some witness relation W . We extend (P, V ) to
obtain a 3-round Fiat-Shamir proof of knowledge (P ∗, V ∗) as we shall describe shortly.

Let P = (P0, P1) and V = (V0, V1). On input (x,w), P0 generates α, and on input (x,w, α, β) P1 generates
γ. Also, V0 and V1 are such that V0 interacts with P to produce a transcript (α, β, γ) by generating β uniformly at
random and then V accepts if and only if V1(x, α, β, γ) accepts. The protocol (P ∗, V ∗) is described below.

1. P ∗: Run P0 on (x,w) to obtain α. Define α∗ = (α, i, bit,M), where each of i, bit,M is set to 0, with their
lengths being log(r) bits, 1 bit, and and |x| bits, respectively7. Send α∗ to V ∗.

2. V ∗: Run V0 to obtain β. Send β to P ∗.

3. P ∗: Run P1 on input (x,w, α, β) to obtain γ. Send γ to V ∗.

4. V ∗: Parse α∗ as (α, i, bit,M). If bit = 0 then Accept if V0(x, α, β, γ) accepts. If bit = 1 then check if M
is a valid Turing Machine. If M is not a valid TM then Reject. Else, Accept if all the following conditions
hold:

– β = least(x, α, i, 1,M)

– γ = 0

where the function least is defined as follows.

least(x, α, i,M):

1. min ← 2b + 1
2. β ← null
3. For j = 0 to 2t − 1:
4. y←

(
x, ((α, 1, 1,M), . . . , (α, r, 1,M)), i, j, 0

)
5. Execute M(y) upto phash(|y|) steps
6. If M(y) terminates within phash(|y|) steps:
7. hash← M(y)(b)

8. If min > hash:
9. min← hash
10. β ← j
11. Return β.

The functionality of the least algorithm defined above is very similar to the one defined in the main construction
with the main difference being that the first message and the last messages are not encrypted in the algorithm
described above unlike the least algorithm defined in the main construction. Further, the symbols r, b, t are as
described in the Fischlin construction (c.f. Section 2). We now show that (P ∗, V ∗) satisfies all the properties of
Fiat-Shamir proof of knowledge.

7Hereafter, unless specified otherwise, we maintain that the lengths of bit, i,M are as specified above.
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4.1 On the Security of (P ∗, V ∗)
Theorem 2. (P ∗, V ∗) is a Fiat-Shamir proof of knowledge for the relation W .

Proof. [Completeness] For any (α∗, β, γ) resulting from the interaction between P ∗ and V ∗, we have that α∗ =
(α, i, bit,M) with each of i, bit,M being 0 and with (α, β, γ) generated as per the description of (P, V ). Since, if
V accepts (α, β, γ) then V ∗ accepts (α∗, β, γ), completeness of (P, V ) implies that of (P ∗, V ∗).

[Special Soundness] LetK be a knowledge extractor for (P, V ). We show that (P ∗, V ∗) satisfies special soundness
by constructing a knowledge extractorK∗ that usesK as follows: For any (x,w) ∈Wk, on input (x, α∗, β, γ, β′, γ′),
where α∗ = (α, i, bit,M), β 6= β′, and V ∗(x, (α, i, bit,M), β, γ) = V ∗(x, (α, i, bit,M), β′, γ′) = Accept, K∗

outputs K(x, α, β, γ, β′, γ′). To see that K∗ is indeed a knowledge extractor for (P ∗, V ∗), consider the following
two cases.

• bit = 0: Here, V ∗(x, (α, i, bit,M), β, γ) = V ∗(x, (α, i, bit,M), β′, γ′) = Accept implies that V (x, α, β, γ) =
V (x, α, β′, γ′) = Accept. Since special soundness of (P, V ) ensures that for an input (x, α, β, γ, β′, γ′), K
outputs w′ such that (x,w′) ∈Wk, K∗ also outputs a witness.

• bit = 1: In this case, V ∗ accepts on both inputs ((α, i, bit,M), β, γ) and ((α, i, bit,M), β′, γ′) only if both
β and β′ are equal to least(α, i, 1,M) which leads to a contradiction to β 6= β′.

[Commitment entropy] The first message of P ∗ contains α which has the same distribution as the first message of
P and hence the commitment entropy property is satisfied.
[Public coin] This follows directly from the description of V ∗.

[Unique responses] For any probabilistic polynomial-time algorithm A, and (x, (α, i, bit,M), β, γ, γ′) ← A(1k),
we claim that the following is negligible in k:

Pr[V ∗((α, i, bit,M), β, γ) = V ∗((α, i, bit,M), β, γ′) = Accept & γ 6= γ′].

We establish the claim under the following two cases.

• bit = 0: Note that, V ∗(x, (α, i, bit,M), β, γ) = Accept implies that V (x, α, β, γ) = Accept, and also,
V ∗(x, (α, i, bit,M), β, γ′) = Accept implies that V (x, α, β, γ′) = Accept. Since Pr[V (α, β, γ) = V (α, β, γ′) =
Accept & γ 6= γ′] is negligibly close to 0, we have Pr[V ∗((α, i, bit, h), β, γ) = V ∗((α, i, bit, h), β, γ′) =
Accept & γ 6= γ′|bit = 0] is negligibly close to 0.

• bit = 1: Observe that, V ∗(x, (α, i, bit,M), β, γ) = Accept implies that γ = 0, and also, V ∗(x, (α, i, bit,M), β, γ′) =
Accept implies that γ = 0, thus giving us γ = γ′.

[Honest Verifier Zero-knowledge] To prove that (P ∗, V ∗) is an HVZK protocol, we construct a special zero-
knowledge simulator Z∗ for (P ∗, V ∗) as follows. Let Z be a special zero-knowledge simulator for the protocol
(P, V ). On input (x, β,memebership), where memebership ∈ {yes, no}, Z∗ runs Z(x, β,memebership) to obtain
(α, β, γ). If (α, β, γ) = ⊥, then Z∗ also outputs ⊥; otherwise, it outputs ((α, i, bit,M), β, γ), where i, bit and M
are set to 0.

To prove that Z∗ is a special zero-knowledge simulator for (P ∗, V ∗), assume for contradiction that there exists
a distinguisher D∗ = (D∗0, D

∗
1) such that the statistical distance, ε(k), between following two distributions is

non-negligible.

• Dist∗real: Let (x,w, state)← D∗0(1
k) and (α∗, β, γ)← (P ∗(w), V ∗)(x) if (x,w) ∈Wk, and (α∗, β, γ)← ⊥

otherwise. Output D∗1(α
∗, β, γ, state).

• Dist∗sim: Let (x,w, state) ← D∗0(1
k) and (α∗, β, γ) ← Z∗(x, yes) if (x,w) ∈ Wk, and (α∗, β, γ) ←

Z∗(x, no) otherwise. Output D∗1(α
∗, β, γ, state).
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Then, we construct a distinguisher D = (D0, D1) against the HVZK property of (P, V ) as follows. D0(1
k)

runs D∗0(1
k) to obtain (x,w, state) and outputs the same. Once D1 receives (α, β, γ), if (α, β, γ) 6= ⊥ then

it outputs D∗1((α, i, bit,M), β, γ, state), where i, bit and M are set to 0; otherwise, it sets (α∗, β, γ) ← ⊥ and
outputs D∗1(α

∗, β, γ, state). Now consider the following distributions.

• Distreal: Let (x,w, state) ← D0(1
k) and (α, β, γ) ← (P (w), V )(x) if (x,w) ∈ Wk, and (α, β, γ) ← ⊥

otherwise. Output D1(α, β, γ, state).

• Distsim: Let (x,w, state) ← D0(1
k) and (α, β, γ) ← Z(x, yes) if (x,w) ∈ Wk, and (α, β, γ) ← Z(x, no)

otherwise. Output D1(α
∗, β, γ, state).

Now, from the way Z∗ and D are constructed, the output of Distreal is the same as the output of Dist∗real. Similarly,
the output of Distsim is the same as the output of Dist∗sim. This implies that the statistical distance between Distreal
and Distsim is also ε(k), a contradiction.

4.2 On the Insecurity of (Ph, Vh)
Let Fphash be a pseudorandom function family such that each function in the family can be be evaluated on any
input in time phash in the size of its inputs, where phash is a polynomial. Now we shall show that for every such hash
function that is used to instantiate the random oracle in the non-interactive ZK PoK that is obtained by applying
Fischlin transformation to (P ∗, V ∗), the resulting protocol does not satisfy the soundness.

In order to model a pseudorandom hash function family, one may look at the function to take a randomly
chosen secret key also as an input. Thus, to instantiate the random oracle, first a key K is picked uniformly at
random. Let fK be the pseudorandom hash function corresponding toK in Fphash . Henceforth, we shall denote fK
by h for a simpler notation. Let (Ph, Vh) be the protocol obtained by applying Fischlin transformation to (P ∗, V ∗).
The following theorem shows that the protocol (Ph, Vh) does not satisfy the soundness property.

Theorem 3. Let (P ∗, V ∗) be the 3-round Fiat-Shamir proof of knowledge described above for a witness relation
W with corresponding language L and let (PO, V O) be the non-interactive zero-knowledge proof of knowledge
protocol obtained by applying Fischlin transformation to (P ∗, V ∗). Then for any pseudorandom hash function h in
Fphash that is used to instantiate the random oracle O, the resulting protocol (Ph, Vh) does not satisfy soundness.
In other words, there exists an adversary A that outputs (x, π) such that Pr[Vh(x, π) = Accept and x /∈ L] is
non-negligible.

Proof. Let M be an efficient Turing machine that computes the hash function h. Now to prove that (Ph, Vh) does
not satisfy soundness, we construct a PPT adversary A that outputs (x, π) such that x /∈ L and Vh(x, π) = Accept
with probability negligibly close to 1.

The adversary A is described as follows.

• On input M, choose a string x /∈ L such that |x| = |M|.

• Then compute βi as βi = least(α, i, 1,M) for all i ∈ [r].

• Check whether
∑r

i=1 M
(
x, (α, 1, 1,M), . . . , (α, r, 1,M), i, βi, 0

)
≤ S. If so, then output the proof π as

π = ((α, i, 1,M), βi, 0)1≤i≤r else it aborts. Observe that when the adversary does not abort, then the proof
produced by the adversary is accepted by the verifier. So it suffices to analyse the probability with which the
adversary does not abort.

We claim that with probability negligibly close to 1, the adversary does not abort. From now on, we will
perform the probability analysis assuming that h is a purely random function instead of a pseudorandom function.
Note that if we prove that adversary aborts with negligible probability assuming that h is a purely random function
then this would imply that the probability with which the adversary aborts is negligible when h is a pseudorandom
function. To show that the probability that the adversary does not abort is negligibly close to 1 we use arguments
similar to the ones used in [Fis05].
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Let si := M(x, (α∗1, . . . , α
∗
r), i, βi, γi) represent the random variable for the hash value corresponding to the

the ith execution. We shall first bound the value of each si and then we proceed to bound the value for the sum.
We have,

Pr[∃i : si > S] ≤ r ·
(
1− (S + 1)2−b

)2t
≤ r · e−(S+1)2t−b

.

The first inequality follows from the fact that the probability that for each repitition the output of the hash function
is at most S is at least (S+1)2−b. This gives us that, in one execution, the probability of the hash value exceeding
S is negligible. This, in turn, implies that the sum of the hash values exceeds rS is also negligible, since r is
logarithmic. Hence, hereafter, we present our arguments conditioned on the event that

∑r
i=1 si ≤ rS.

Recall that the adversary A aborts if the sum T :=
∑r

i=1 si exceeds rS, with each si ≥ 0. For any such
T = S + 1, S + 2, . . . , rS there are at most

(
T+r−1
r−1

)
possible values of s1, . . . , sr that will sum up to T . This can

be upper bounded by(
T + r − 1

r − 1

)
≤
(
e(rS + r − 1)

r − 1

)r−1
≤ (e(2S + 1))r−1 ≤ er ln(e(2S+1)).

Now, the probability that we obtain such a sum for a given partition, s1 = s1, . . . , sr = sr, is at most

r∏
i=1

Pr[si = si] ≤
r∏
i=1

Pr[si ≥ si] ≤
r∏
i=1

(1− si2−b)2
t

=
r∏
i=1

e−si2
t−b

= e−(
∑
si)2

t−b
= e−T2

t−b ≤ e−(S+1)2t−b

Since the parameters r = O(log(k)) and 2t−b = ω(log(k)), and since ln(2S+1) ≤ S+1, the probability that the
adversary gets a sum T such that S < T ≤ rS is at most exp(r ln(e(2S +1))− (S +1)2t−b) which is negligible.
Thus, the adversary aborts only with negligible probability. In other words, with probability negligibly close to 1,
A produces an accepting proof.
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