
Universally Composable Secure Computation

with (Malicious) Physically Uncloneable Functions

Rafail Ostrovsky ∗ Alessandra Scafuro † Ivan Visconti ‡

Akshay Wadia §

Abstract

Physically Uncloneable Functions (PUFs) [Pap01] are noisy physical sources of randomness.
As such, they are naturally appealing for cryptographic applications, and have caught the inter-
est of both theoreticians and practitioners. A major step towards understanding and securely
using PUFs was recently taken in [Crypto 2011] where Brzuska, Fischlin, Schröder and Katzen-
beisser model PUFs in the Universal Composition (UC) framework of Canetti [FOCS 2001].
Their model considers trusted PUFs only, and thus real-world adversaries can not create ma-
licious PUFs, and can access the physical object only via the prescribed procedure. However,
this does not accurately reflect real-life scenarios, where an adversary could be able to create
and use malicious PUFs, or access the PUF through other procedures.

The goal of this work is to extend the model proposed in [Crypto 2011] in order to capture
such real-world attacks. The main contribution of this work is the study of the Malicious PUFs
model. Namely, we extend the PUF functionality of Brzuska et al. so that it allows the adversary
to create arbitrarily malicious PUFs. Then, we provide positive results in this, more realistic,
model. We show that, under computational assumptions, it is possible to UC-securely realize
any functionality. Furthermore, we achieve unconditional (not UC) security with malicious
PUFs, by showing a statistically hiding statistically binding commitment scheme that uses one
PUF only, and such PUF can be malicious.

As an additional contribution, we investigate another attack model, where adversaries access
to a trusted PUF in a different way (i.e., not following the prescribed procedure). Technically
this attack translates into the fact that the simulator cannot observe the queries made to an
honest PUF. In this model, queries are oblivious to the simulator, and we call it the “Oblivious
Query” model. We are able to achieve unconditionally UC-secure computation, even in this
more severe model. This protocol is secure against stronger adversaries compared to the ones
of Brzuska et al.

Finally, we show the impossibility of UC secure computation in the combination of the above
two new models, where the real-world adversary can create malicious PUFs and maliciously
access to honest PUFs.

Our work sheds light on the significant power and applicability of PUFs in the design of
cryptographic protocols modeling adversaries that misbehave with PUFs.

Keywords: Physically uncloneable functions, UC security, hardware set-up assumptions.

∗Departments of Computer Science and Department of Mathematics, UCLA, Email: rafail@cs.ucla.edu
†Dipartimento di Informatica, University of Salerno, Italy. Email. scafuro@dia.unisa.it
‡Dipartimento di Informatica, University of Salerno, Italy. Email. visconti@dia.unisa.it
§Department of Computer Science, UCLA, Email: awadia@cs.ucla.edu

1

1 Introduction

The impossibility of secure computation in the universal composability framework was proved
first by Canetti and Fischlin [CF01], and then strengthened by Canetti et al. in [CKL03]. As a
consequence, several setup assumptions, and relaxations of the UC framework have been proposed
to achieve UC security [CLOS02, BCNP04, PS04, KLP05].

In recent years, researchers have started exploring the use of secure hardware in protocol design.
The idea is to achieve protocols with strong security guarantees (like UC) by allowing parties to
use hardware boxes that have certain security properties. An example of the kind of security
required from such a hardware box is that of tamper-proofness; i.e., the receiver of the box can only
observe the input/output behaviour of the functionality that the box implements. This property
was formalized by Katz in [Kat07], and it was shown that UC security is possible by relying on the
existence of tamper-proof programmable hardware tokens, and computational assumptions. Smart
cards are well understood examples of such tokens, since they have been used in practice in the last
decades. Several improvements and variations of Katz’s model have been then proposed in follow
up papers (e.g., [CGS08, MS08, GKR08, GIS+10, DKMQ11, CKS+11, DKMQ12]).

Spurred by technological advances in manufacturing, recently a new hardware component has
gained a lot of attention: Physically Uncloneable Functions (PUFs) [Pap01, PRTG02]. A PUF
is a hardware device generated through a special physical process that implements a “random”
function1 that depends upon the physical parameters of the process. These parameters can not be
“controlled”, and producing a clone of the device is considered infeasible. Once a PUF has been
constructed, there is a physical procedure to query it, and to measure its answers. The answer of a
PUF depends on the physical behavior of the PUF itself, and is assumed to be unpredictable, or to
have high min-entropy. Namely, even after obtaining many challenge-response pairs, it is infeasible
to predict the response to a new challenge.

Since their introduction by Pappu in 2001, PUFs have gained a lot of attention for cryptographic
applications like anti-counterfeiting mechanisms, secure storage, RFID applications, identification
and authentication protocols [TB06, GKST07, GKST07, SVW10, EKvdL11, KSWS11]. More re-
cently PUFs have been used for designing more advanced cryptographic primitives. In [Rüh10]
Rührmair shows the first construction of Oblivious Transfer, the security proof of which is later
provided in [RKB10]. In [AMS+09], Armknecht et al. deploy PUFs for the construction of memory
leakage-resilient encryption schemes. In [MHV12] Maes et al. provide construction and implemen-
tation of PUFKY, a design for PUF-based cryptographic key generators. There exist several imple-
mentations of PUFs, often exhibiting different properties. The work of Armknecht et al. [AMS+11]
formalizes the security features of physical functions in accordance to existing literature on PUFs
and proposes a general security framework for physical functions. A survey on PUF implementa-
tions is given in [MV10]. Very recently in [KKR+12] Katzenbeisser et al. presented the first large
scale evaluation of the security properties of some popular PUFs implementations (i.e., intrinsic
electronic PUFs).

Modeling PUFs in the UC framework. Only very recently, Brzuska et al. [BFSK11] suggested
a model for using PUFs in the UC setting that aims at abstracting real-world implementations.
The unpredictability and uncloneability properties are modeled through an ideal functionality. Such
functionality allows only the creation of trusted PUFs. In [BFSK11] PUFs are thought as non-PPT

1Technically, a PUF does not implement a function in the mathematical sense, as the same input might produce
different responses.

2

setup assumptions. As such, a PPT simulator cannot simulate a PUF, that is, PUFs are non-
programmable. Although non-programmable, PUFs are not modeled as global setup [CDPW07].
[BFSK11] shows how to achieve unconditional UC secure Oblivious Transfer, Bit Commitment and
Key Agreement with trusted PUFs.

PUFs vs tamper-proof hardware tokens. The apparent similarity of PUFs with programmable
tamper-proof hardware tokens [Kat07] vanishes immediately when one compares in detail the two
physical devices. Indeed, PUFs are non-programmable and thus provide unpredictability only.
Instead tokens are programmable and can run sophisticated code. Moreover, PUFs are stateless,
while tokens can be stateful. When a PUF is not physically available, it is not possible to know the
output of new queries it received. Instead the answer of a stateless token to a query is always known
to its creator2, since it knows the program embedded in the token. Tamper-proof tokens are realized
through ad-hoc procedures that model them as black boxes, their internal content is protected from
physical attacks and thus the functionalities that they implement can be accessed only through the
prescribed input/output interface provided by the token designer. Instead, PUFs do not necessarily
require such a hardware protection (which moreover could be in contrast with the need of running
a physical procedure to query the PUF), and their design is associated to recommended procedures
to generate and query a PUF, guaranteeing uncloneability and unpredictability. Finally, in contrast
to tokens that correspond to PPT machines, PUFs are not simulatable since it is not clear if one
can produce an (even computationally) indistinguishable distribution.

1.1 Our Contribution

We observe that the UC formulation of PUFs proposed by Brzuska et al. makes the following
assumptions. First, the model considers trusted PUFs only, that is, adversaries are assumed to be
unable to produce fake/malicious PUFs. Second, a PUF can be queried only using the prescribed
evaluation process3. As we argue below, we feel that assuming that an adversary cannot misbehave
in any of the above ways, might be unrealistic. Given that the study of PUFs is still in its infancy,
it is risky to rely on assumptions on the impossibility of the adversaries in generating and accessing
PUFs adversarially. Therefore in this paper, we will focus on studying security models that capture
such plausible real-world attacks.

The main contribution of this work consists in studying the security of protocols in presence
of adversaries that can create malicious PUFs. Additionally, we will consider adversaries making
“hidden” queries to PUFs (so that the simulator can not observe these queries). We will present two
modifications of the model of Brzuska et al. that formalize security with respect to such stronger
adversaries and in both cases we give positive answers to the question of achieving universally
composable secure computation with PUFs. More in details, our contributions are listed below.

Modeling malicious PUFs. We augment the UC framework so to enable the adversary to create
untrusted (malicious) PUFs. But what exactly are malicious PUFs? In real life, an adversary could
tamper with a PUF in such a way that the PUF loses any of its security properties. Or the adversary
may introduce new behaviours; for example, the PUF may start logging its queries. To keep the
treatment of malicious behaviour as general as possible, we allow the adversary to send as PUF any
hardware token that meets the syntactical requirements of a PUF. Thus, an adversary is assumed

2This is true for stateful tokens too, provided that one knows the sequence of inputs received by the token.
3This property technically manifests in the security proofs as the ability of the simulator to observe queries made

by an adversary to a trusted PUF.

3

to be able to even produce fake PUFs that might be stateful and programmed with malicious code.
We assume that a malicious PUF however cannot interact with its creator once is sent away to
another party. If this was not the case, then we are back in the standard model, where UC security
is impossible to achieve has argued below.

UC secure computation is impossible when malicious PUFs can interact with their
creator. The impossibility is straight forward. Consider any functionality that protects the privacy
of the input of a player P1. Comparing to the plain model (where UC is impossible), the only
advantage of the simulator to extract the input of the real-world adversary P ∗1 , is to read the
challenge/answer pairs generated by P ∗1 when using the honest PUF created by the simulator that
plays on behalf of P2. If such a simulator exists, then an adversary P ∗2 can generate a malicious
PUF that just plays as proxy and forwards back and forth what P ∗2 wishes to play. P ∗2 can locally
use one more honest PUF in order to compute the answers that the (remote) malicious PUF is
supposed to give. Clearly P ∗2 will have a full view of all challenge/answer pairs generated by honest
P1 and running the simulator’s code, P ∗2 will extract the input of P1, therefore contradicting input
privacy.

UC secure computation with malicious PUFs. The natural question is whether UC security
can be achieved in such a much more hostile setting. We give a positive answer to this question
by constructing a computational UC commitment scheme in the malicious PUFs model. Our
commitment scheme needs two PUFs that are transferred only once (PUFs do not go back-and-
forth), at the beginning of the protocol and it requires computational assumptions. We avoid that
PUFs go back-and-forth by employing a technique that requires OT. The results of Canetti, et
al. [CLOS02] shows how to achieve general UC computation from computational UC commitments.
Whether unconditional UC secure computation is possible in the malicious PUF model, is still an
open problem.

Hardness assumptions with PUFs. Notice that as correctly observed in [BFSK11], since PUFs
are not PPT machines, it is not clear if standard complexity-theoretic assumptions still hold in
presence of PUFs. We agree with this observation. However the critical point is that even though
there can exist a PUF that helps to break in polynomial time a standard complexity-theoretic
assumptions, it is still unlikely that a PPT adversary can find such a PUF. Indeed a PPT machine
can only generate a polynomial number of PUFs, therefore obtaining the one that allows to break
complexity assumptions is an event that happens with negligible probability and thus it does not
effect the concrete security of the protocols.

In light of the above discussion, only one of the following two cases is possible. 1) Standard
complexity-theoretic assumptions still hold in presence of PPT adversaries that generate PUFs; in
this case our construction is secure. 2) There exists a PPT adversary that can generate a PUF that
breaks standard assumptions; in this case our construction is not secure, but the whole foundations
of complexity-theoretic cryptography would fall down (which is quite unlikely to happen) with
respect to real-world adversaries. We elaborate on this issue in Section 3.1.

Unconditional cryptography with malicious PUFs. We show a commitment scheme that is
unconditionally secure (statistically hiding and statistically binding), even with malicious PUFs.
The scheme requires one PUF only, sent by the committer at the beginning of the protocol. Achiev-
ing unconditional UC secure commitments is left as open problem.

Malicious access to PUFs. When using the simulation-based security paradigm, the actual
security obtained depends on the power of the simulator in the ideal world. A good model should
not give unwarranted capabilities to the simulator. For example, allowing the simulator to program

4

the outputs of a PUF assumes implicitly that the output of a PUF can be simulated by a PPT
machine. However, this is not necessarily the case in the real life, as PUFs are complex physical
devices not necessarily simulatable in PPT. For this reason in [BFSK11] the simulator is not allowed
to program PUFs.

Another power that the simulator has in the original formulation of Brzuska et al. is that it
can observe queries made by the adversary to PUFs. In real life, this translates to requiring that
the adversary queries the PUF only using the prescribed, honest query process. However, in reality
an adversary can subject the PUF to some maliciously chosen physical stimulation, deviating from
the prescribed process (we discuss it in details in Section 4). Therefore, giving the simulator the
ability to observe adversary’s queries could be an unwarranted capability, which is at odds with
the real-life execution. Moreover note that in UC the environment could be the player that knows
such different procedures and thus one can not assume that they are known to the simulator too,
since in UC the same simulator must work for every environment.

This leads us to formalize a model in which the simulator is not allowed to observe the adver-
sary’s queries, and the natural question is whether any security is still possible in such a model.
Note that the original protocols of Brzuska et al. [BFSK11] clearly fail in this model. Such a
formulation is interesting from a theoretical point of view, to better understand the question of
the achievability of UC security with minimal restrictions on the adversary’s (mis)behavior. For
instance, Nielsen [Nie02] mentions this as an interesting open problem in the random oracle model.

We qualitatively strengthen the UC feasibility result of Brzuska et al. by achieving unconditional
UC secure computation with a weaker simulator. In particular, we construct a simulator that,
in addition to being disallowed to program the output of a PUF as in the original formulation
of [BFSK11], is not even allowed to observe the PUF queries made by the adversary. The concrete
requirements of such a construction (e.g., several PUFs that go back and forth) make it merely a
feasibility result that contributes to the understanding of the foundational concept of achieving UC
security with PUFs.

Impossibility of UC secure computation in the combined model. The positive results
noted above lead to the natural question of feasibility of UC in a model where the real-world
adversary can create malicious PUFs and can query honest PUFs with non-prescribed evaluation
procedures. In the malicious PUF model the power of the simulator is to see the queries made by
the real-world adversary to the honest PUFs and to have permanent access to the PUFs present
in the system (i.e., the simulator can always query the PUFs). In the oblivious queries model,
challenge/response pairs corresponding to queries done by the real-world adversary are not visible
to the simulator. Therefore, when considering the combined model where the adversary can create
malicious PUFs and the simulator can not see queries made by the adversary to PUFs, the only
power left to the simulator is the permanent access to the PUFs present in the system. In Section 5
we show that it is impossible to achieve UC secure computation in this combined model. One of the
ingredients of this result is a special malicious PUF, namely “predictable malicious PUF”, that we
formally define and use in the proof. This type of malicious PUF is in spirit similar to the notion
of “Simulatable Bad” PUF previously introduced in [vDR12] to prove other impossibility results
in models different from ours (see below for a discussion on their results).

Further details on our work. In our protocols after an execution the PUF can not be
reused in another protocol execution. We explain how reuse of PUFs makes our commitment
protocol insecure at the end of Section 3.2. However, this inability to reuse PUFs is not an
artifact of our protocols, but is inherent in the UC formulation. In particular, the proof of the UC

5

Composition Theorem [Can01] requires that different executions use independently created PUFs.
Finding a formulation of security that allows reuse of PUFs (for e.g., by moving to the Global UC
framework [CDPW07]) is an interesting open question. In the meantime, we feel using new PUFs
for each execution is a cost we must bear for achieving UC. Another limitation of our protocol in
the oblivious queries model is that it requires a large number of PUFs, but the idea there is to
establish a feasibility result in that severely adversarial model.

Independent work. Very recently, and independently of us, Rührmair and van Dijk in [vDR12]
also investigate security under malicious PUFs (which they call “bad PUFs”), and show impossi-
bility of some security definitions in certain settings that are very different from ours, as we will
explain this below. They also provide constructions using honest, but less demanding PUFs, that
however are secure only in the indistinguishability stand-alone sense (as opposed to being UC).

In more details [vDR12] develops three main directions of inquiry. Firstly, they propose a new
definition for (honest) PUFs that is weaker than the original formulation of [BFSK11]. In particular,
the min-entropy condition is required to hold only for randomly chosen challenges (instead of for
every challenge vector). They show constructions for Oblivious Transfer (OT), Key agreement,
and Bit Commitment (BC) using honest PUFs with this less demanding unpredictability property.
However, such constructions are secure only in the indistinguishability stand-alone sense, (i.e.,
no UC security). Secondly, they propose two “attack models” for bad PUF behaviour, and give
impossibility results. The posterior access model (PAM) considers a scenario in which all PUFs in
the system are trusted, but an adversary can access the PUF after a protocol execution is completed,
even if at the end of the protocol the PUF is physically in the hands of the honest player4. Their first
impossibility result shows that unconditional OT in the PAM model is impossible. Their second
impossibility result shows that unconditional OT is impossible also in the “bad PUF model” under
the assumption that even honest players generate malicious PUFs. Indeed, while a bad PUF is very
similar to our malicious PUF, in their impossibility proof, they seems to require that all PUFs in the
system are bad, even those created by the honest parties. This is in contrast with real-life scenarios
when we assume that honest PUFs are available to honest parties (e.g., a honest party can generate
a PUF by himself, or can obtain it from a trusted source). Our formalization of malicious PUFs does
allow an honest party to create honest PUFs (while the adversary can create arbitrary malicious
PUFs), so the impossibility result of [vDR12] has little bearing on our work. They also show a
construction of unconditional (not UC) Bit Commitment with bad PUFs. Their construction is
more demanding compared to our BC construction. Indeed their construction requires two PUFs,
and one PUF goes back and forth. The security proof of the BC protocol assumes that honest
parties create honest PUFs.

Finally, [vDR12] (see also [RvD12]) showed that if a malicious receiver in the OT protocol
of [BFSK11] (see the OT scheme in Fig. 3, [BFSK11]) is allowed to make 2n/2 queries to the
(honest) PUF, where n is the length of the query, then he can obtain both the strings of the sender
(thus achieving a quadratic speed-up over the brute force attack). This is also applicable to our
OT protocol in the oblivious queries model. This attack becomes relevant when the challenge
space of the actual PUF families is fairly small and it becomes feasible for the adversary to make
2n/2 queries. The fact that both Brzuska et al. protocol and our protocol in the oblivious query
model require PUFs with large input space gives an insight that there is still a gap between those
foundational results and their concrete use in the real world. We feel this provides further impetus

4In our UC formulation, the honest players makes the PUF unavailable (i.e., it can be destroyed) to the adversary
and therefore such an attack is not possible. This is similar to the original formulation of [BFSK11].

6

to practitioners towards realizing more sophisticated (i.e., with larger input space) PUFs, and to
theoreticians to provide constructions where security is maintained even when PUFs are assumed
to have small input space.

On [RvD13]. A recent paper by van Dijk and Ruhrmair [RvD13] claims certain “attacks” on
protocols presented in this paper. We discuss their claims in this section.

The “attacks” on our protocols are noted in points 3, 5 and 6 in the Our Results subsection of
Section I of [RvD13]. We will discuss the attacks mentioned in points 5 and 6 first.

As is clearly stated by the authors of [RvD13] themselves in their paper multiple times5, attacks
in points 5 and 6 are “[..] outside the original attack models of the respective papers.” This
means that their attacks use properties of PUFs not present in our model, and therefore, have no
consequence on the security of our protocols. For example, the attack mentioned in point 6 in
Our Results subsection utilizes communicating PUFs, which are PUFs which can (wirelessly) send
information to the adversary. Our model does not allow such PUFs, and thus, this attack is not
possible in our model. To reiterate, the “attacks” presented in points 5 and 6 are not attacks on
the protocols presented in this paper. It was already known (from the work of [CF01, CKL03])
and mentioned in our work before [RvD13] appeared, that our protocols are not secure in other
attack models. Indeed in the standard model (i.e., when no honest PUF exists and malicious PUFs
can always communicate with their creators) our protocols can not be UC secure as UC security
is impossible in the standard model. The authors of [RvD13] by allowing communication between
a PUF and the adversary even when the PUF is in the hands of the honest player, presented an
obvious variation of the above known attacks.

Unlike the above, the “attack” mentioned in point 3 works in the same model as presented in
this paper. However, this “attack” arises due to a confusion about convention, and disappears on a
less punctilious reading of the protocol (that in contrast to an implementation, is just a description
of the “relevant” steps only).

The “attack” mentioned in point 3 involves a committer sending a 3n-bit string to a receiver,
instead of an n-bit string. This attack only works if the receiver does not check the length of the
received string, and continues the protocol with the received 3n-bit string. Although we do not
explicitly mention this in the protocol, any party will abort the protocol if the received message
is not of the correct length. This is quite common in literature since such checks are standard,
and applied by default6. Indeed, van Dijk and Ruhrmair say: “Likely such a check was implicitly
assumed by Ostrovsky et al. in their protocol without making this explicit.” (see second paragraph
of Section III E). We emphasize that the “attack” does not work if the receiver checks the length of
the received string, and aborts if it is 3n bits long instead of n bits long. This is indeed implicitly
assumed in our protocol. We omitted mentioning this and other standards minor details in order
to present results in a more understandable way, giving space to actual significant steps, therefore
ignoring uninteresting trivialities. Even in the current presentation we do not include such trivial
standard steps in the protocol, and the reader can therefore focus on the interesting new ideas of
our constructions.

5See the paragraph right after the enumeration in Our Results section. See also last paragraph of Section III F.
6There are several other standard steps that are implicitly used in protocols even though almost always omitted

in literature for the sake of simplifying the presentation (e.g., checking that a random tape is sufficiently long before
the protocol starts.)

7

2 Definitions

Notation. We let n be the security parameter and PPT be the class of probabilistic polynomial
time Turing machines. For PPT algorithms A and B, we denote by (vA, vB) ← 〈A(a), B(b)〉(x)
the random process obtained by having A and B interact on common input x and on (private)
auxiliary inputs a and b, respectively, and with independent random coin tosses for A and B. We

use v
$← A() when the algorithm A() is randomized. Let P1 and P2 be two parties running a

protocol that uses protocol (A,B) as sub-protocol. When we say that party “P1 runs 〈A(·), B(·)〉(·)
with P2” we always mean that P1 executes the procedure of party A and P2 executes the procedure
of party B. We will denote by disham(a, b) the Hamming distance of a and b. For an n bit string x,
Parity(x) is the sum of the bits of x mod 2.

Physically uncloneable functions. In this section we follow definitions given in [BFSK11]. A
PUF is a noisy physical source of randomness. The randomness property comes from an uncontrol-
lable manufacturing process. A PUF is evaluated with a physical stimulus, called the challenge, and
its physical output, called the response, is measured. Because the processes involved are physical,
the function implemented by a PUF can not (necessarily) be modeled as a mathematical function,
neither can be considered computable in PPT. Moreover, the output of a PUF is noisy, namely,
querying a PUF twice with the same challenge, could yield to different outputs. The mathematical
formalization of a PUF due to [BFSK11] is the following.

A PUF-family P is a pair of (not necessarily efficient) algorithms Sample and Eval, and is
parameterized by the bound on the noise of PUF’s response dnoise and the range of the PUF’s
output rg. Algorithm Sample abstracts the PUF fabrication process and works as follows. On
input the security parameter, it outputs a PUF-index id from the PUF-family satisfying the security
property (that we define soon) according to the security parameter. Algorithm Eval abstracts the
PUF-evaluation process. On input a challenge q, it evaluates the PUF on q and outputs the response
a of length rg. The output is guaranteed to have bounded noise dnoise, meaning that, when running
Eval(1n, id, q) twice, the Hamming distance of any two responses a1, a2 is smaller than dnoise(n).
Wlog, we assume that the challenge space of a PUF is a full set of strings of a certain length.

Definition 1 (Physically Uncloneable Functions). Let rg denote the size of the range of the PUF
responses of a PUF-family and dnoise denote a bound of the PUF’s noise. P = (Sample,Eval) is a
family of (rg, dnoise)-PUF if it satisfies the following properties.

Index Sampling. Let In be an index set. On input the security parameter n, the sampling
algorithm Sample outputs an index id ∈ In following a not necessarily efficient procedure.
Each id ∈ In corresponds to a set of distributions Did. For each challenge q ∈ {0, 1}n, Did

contains a distribution Did(q) on {0, 1}rg(n). Did is not necessarily an efficiently sampleable
distribution.

Evaluation. On input the tuple (1n, id, q), where q ∈ {0, 1}n, the evaluation algorithm Eval
outputs a response a ∈ {0, 1}rg(n) according to distribution Did(q). It is not required that Eval
is a PPT algorithm.

Bounded Noise. For all indexes id ∈ In, for all challenges q ∈ {0, 1}n, when running
Eval(1n, id, q) twice, the Hamming distance of any two responses a1, a2 is smaller than dnoise(n).

In the paper we use PUFid(q) to denote Did(q). When not misleading, we omit id from PUFid,
using only the notation PUF.
Security of PUFs. We assume that PUFs enjoy the properties of uncloneability and unpredictabil-
ity. Unpredictability is modeled via an entropy condition on the PUF distribution. Namely, given

8

that a PUF has been measured on a polynomial number of challenges, the response of the PUF
evaluated on a new challenge has still a significant amount of entropy. In the following we recall
the concept of average min-entropy.

Definition 2 (Average min-entropy). The average min-entropy of the measurement PUF(q) con-
ditioned on the measurements of challenges Q = (q1, . . . , qpoly(n)) is defined by

H̃∞(PUF(q)|PUF(Q)) = −log
(
Eak←PUF(qk)[max

a
Pr
[
PUF(q) = a|a1 = PUF(q1), . . . , apoly(n) = PUF(qpoly(n))

]
]
)

= −log
(
Eak←PUF(qk)[2

H∞(PUF(q)=a|a1=PUF(q1),...,apoly(n)=PUF(qpoly(n))]
)

where the probability is taken over the choice of id from In and the choice of possible PUF responses
on challenge q. The term PUF(Q) denotes a sequence of random variables PUF(q1), . . . ,PUF(qpoly(n))
each corresponding to an evaluation of the PUF on challenge qk, for 1 ≤ k ≤ poly(n).

Definition 3 (Unpredictability). A (rg, dnoise)-PUF family P = (Sample,Eval) for security parame-
ter n is (dmin(n),m(n))-unpredictable if for any q ∈ {0, 1}n and challenge list Q = (q1, . . . , qpoly(n)),
one has that, if for all 1 ≤ k ≤ poly(n) the Hamming distance satisfies disham(q, qk) ≥ dmin(n), then
the average min-entropy satisfies H̃∞(PUF(q)|PUF(Q)) ≥ m(n), where PUF(Q) denotes a sequence
of random variables PUF(q1), . . . ,PUF(qpoly(n)) each corresponding to an evaluation of the PUF on
challenge qk. Such a PUF-family is called a (rg, dnoise, dmin,m)-PUF family.

Fuzzy Extractors. The output of a PUF is noisy, that is, feeding it with the same challenge twice
may yield distinct, but still close, responses. Fuzzy extractors of Dodis et al. [DORS08] are applied
to the outputs of the PUF to convert such noisy, high-entropy measurements into reproducible
randomness.

Let U` denote the uniform distribution on `-bit strings. Let M be a metric space with the
distance function dis: M×M→ R+.

Definition 4 (Fuzzy Extractors). A (m, `, t, ε)-fuzzy extractor is a pair of efficient randomized
algorithms (FuzGen,FuzRep). The algorithm FuzGen on input w ∈M, outputs a pair (p, st), where
st ∈ {0, 1}` is a secret string and p ∈ {0, 1}∗ is a helper data string. The algorithm FuzRep, on
input an element w′ ∈M and a helper data string p ∈ {0, 1}∗ outputs a string st. A fuzzy extractor
satisfies the following properties.

Correctness. For all w,w′ ∈M, if dis(w,w′) ≤ t and (st, p)
$← FuzGen, then FuzRep(w′, p) = st.

Security. For any distribution W on the metric space M, that has min-entropy m, the first
component of the random variable (st, p), defined by drawing w according to W and then
applying FuzGen, is distributed almost uniformly, even given p, i.e., SD((st, p), (U`, p)) ≤ ε.

Given a (rg(n), dnoise(n), dmin(n),m(n))-PUF family with dmin(n) = o(n/ log n), a matching
fuzzy extractor has as parameters `(n) = n and t(n) = dnoise(n). The metric space M is the range
{0, 1}rg with Hamming distance disham. We call such PUF family and fuzzy extractor as having
matching parameters, and the following properties are guaranteed.

Well-Spread Domain. For all polynomial p(n) and all set of challenges q1, . . . , qp(n), the proba-
bility that a randomly chosen challenge is within distance smaller than dmin with any qk, for
1 ≤ k ≤ n is negligible.

9

Extraction Independence. For all challenges q1, . . . , qp(n), and for a challenge q such that dis(q, qk) >
dmin for 1 ≤ k ≤ p(n), it holds that the PUF evaluation on q and subsequent application of
FuzGen yields an almost uniform value st even if p is observed.

Response consistency. Let a, a′ be the responses of PUF when queried twice with the same

challenge q, then for (st, p)
$← FuzGen(a) it holds that st← FuzRep(a′, p).

3 UC Security with Malicious PUFs

In Section 1 we have motivated the need of a different formulation of UC security with PUFs
that allows the adversary to generate malicious PUFs. In this section we first show how to model
malicious PUFs in the UC framework, and then show that as long as standard computational
assumptions still hold when PPT adversaries can generate (even malicious) PUFs, there exist
protocols for UC realizing any functionality with (malicious) PUFs.

3.1 Modeling Malicious PUFs

We allow our adversaries to send malicious PUFs to honest parties7. As discussed before, the
motivation for malicious PUFs is that the adversary may have some control over the manufacturing
process and may be able to produce errors in the process that break the PUF’s security properties.
Thus, we would like parties to rely on only the PUFs that they themselves manufacture (or obtain
from a source that they trust), and not on the ones they receive from other (possibly adversarial)
parties.

Malicious PUF Families. In the real world, an adversary may create a malicious PUF in a
number of ways. For example, it can tamper with the manufacturing process for an honestly-
generated PUF to compromise its security properties (unpredictability, for instance). It may also
introduce additional behaviour into the PUF token, like logging of queries. Taking inspiration from
the literature on modeling tamper-proof hardware tokens, one might be tempted to model malicious
PUFs analogously in the following way: to create a malicious PUF, the adversary simply specifies
to the ideal functionality, the (malicious) code it wants to be executed instead of an honest PUF.
But, note that as the adversary is a PPT machine, the malicious code it specifies must also be
PPT. However, PUFs are not modeled as PPT machines, so this places severe restrictions on the
adversaries8. In particular, modeling malicious PUFs in this way would disallow the adversary from
modifying honest PUFs (or more precisely, the honest PUF manufacturing process). Instead, we
allow the adversary to specify a “malicious PUF family”, that the ideal functionality uses. To keep
our treatment as general as possible, we do not place any restriction on a malicious PUF, except
that it should have the same syntax as that of an honest PUF family, as specified in Definition 1.
Of course, in the protocol, we also want the honest parties to be able to obtain and send honestly
generated PUFs. Thus our ideal functionality for PUFs, FPUF (Fig. 1) is parameterized by two PUF
families: the normal (or honest) family (Samplenormal,Evalnormal) and the possibly malicious family
(Samplemal,Evalmal). When a party Pi wants to initialize a PUF, it sends a initPUF message to FPUF

in which it specifies the mode ∈ { normal, mal }, and the ideal functionality uses the corresponding

7Throughout this section, we assume the reader is familiar with the original UC PUF formulation of Brzuska et
al. ([BFSK11], Section 4.2).

8Observe that allowing the adversary to specify the malicious code enables the simulator to “rewind” the malicious
PUF. However, in the model we use, such rewinding is not possible.

10

family for initializing the PUF. For each initialized PUF, the ideal functionality FPUF also stores
a tag representing the family (i.e., mal or normal) from which it was initialized. Thus, when the
PUF needs to be evaluated, FPUF runs the evaluation algorithm corresponding to the tag.

As in the original formulation of Brzuska et al., the ideal functionality FPUF keeps a list L
of tuples (sid, id, mode, P̂ , τ). Here, sid is the session identifier of the protocol and id is the PUF
identifier output by the Samplemode algorithm. As discussed above mode ∈ { normal, mal } indicates
the mode of the PUF, and P̂ identifies the party that currently holds the PUF. The final argument τ
specifies transition of PUFs: τ = notrans indicates the PUF is not in transition, while τ = trans(Pj)
indicates that the PUF is in transition to party Pj . Only the adversary may query the PUF during
the transition period. Thus, when a party Pi hands over a PUF to party Pj , the corresponding
τ value for that PUF is changed from notrans to trans(Pj), and the adversary is allowed to send
evaluation queries to this PUF. When the adversary is done with querying the PUF, it sends a
readyPUF message to the ideal functionality, which hands over the PUF to Pj and changes the PUFs
transit flag back to notrans. The party Pj may now query the PUF. The ideal functionality now
waits for a receivedPUF message from the adversary, at which point it sends a receivedPUF message
to Pi informing it that the hand over is complete. The ideal functionality is described formally in
Fig. 1.

Allowing Adversary to Create PUFs. We deviate from the original formulation of FPUF of
Brzuska et al. [BFSK11] in one crucial way: we allow the ideal-world adversary S to create new
PUFs. That is, S can send a initPUF message to FPUF. In the original formulation of Brzuska et al.,
S could not create its own PUFs, and this has serious implications for the composition theorem.
We thank Margarita Vald [Val12] for pointing out this issue. We elaborate on this in Appendix H.
Also, it should be noted that the PUF set-up is non-programmable, but not global [CDPW07]. The
environment must go via the adversary to query PUFs, and may only query PUFs in transit or
held by the adversary at that time.

We remark that the OT protocol of [BFSK11] for honest PUFs, fails in the presence of malicious
PUFs. Consider the OT protocol in Fig. 3 in [BFSK11]. The security crucially relies on the fact
that the receiver Pj can not query the PUF after receiving sender’s first message, i.e., the pair
(x0, x1). If it could do so, then it would query the PUF on both x0 ⊕ v and x1 ⊕ v and learn both
s0 and s1. In the malicious PUF model however, as there is no guarantee that the receiver can not
learn query/answer pairs when a malicious PUF that he created is not in its hands, the protocol
no longer remains secure.
PUFs and computational assumptions. The protocol we present in the next section will use
computational hardness assumptions. These assumptions hold against probabilistic polynomial-
time adversaries. However, PUFs use physical components and are not modeled as PPT machines,
and thus, the computational assumptions must additionally be secure against PPT adversaries that
have access to PUFs. We remark that this is a reasonable assumption to make, as if this is not
the case, then PUFs can be used to invert one-way functions, to find collisions in CRHFs and so
on, therefore not only our protocol, but any computational-complexity based protocol would be
insecure. Note that PUFs are physical devices that actually exist in the real world, and thus all
real-world adversaries could use them.

To formalize this, we define the notion of “admissible” PUF families. Informally, a PUF family
(regardless of whether it is honest or malicious) is called admissible with respect to a hardness
assumption if that assumption holds even when the adversary has access to PUFs from this family.
We will prove that our protocol is secure when the FPUF ideal functionality is instantiated with

11

FPUF uses PUF families P1 = (Samplenormal,Evalnormal) with parameters (rg, dnoise, dmin,m),
and P2 = (Samplemal,Evalmal). It runs on input the security parameter 1n, with parties
P = {P1, . . . , Pn } and adversary S.
• When a party P̂ ∈ P ∪ {S } writes (initPUF, sid, mode, P̂) on the input tape of FPUF, where

mode ∈ { normal, mal }, then FPUF checks whether L already contains a tuple (sid, ∗, ∗, ∗, ∗):
− If this is the case, then turn into the waiting state.
− Else, draw id← Samplemode(1

n) from the PUF family. Put (sid, id, mode, P̂ , notrans) in L
and write (initializedPUF, sid) on the communication tape of P̂ .

• When party Pi ∈ P writes (evalPUF, sid, Pi, q) on FPUF’s input tape, check if there exists a
tuple (sid, id, mode, Pi, notrans) in L.
− If not, then turn into waiting state.
− Else, run a ← Evalmode(1

n, id, q). Write (responsePUF, sid, q, a) on Pi’s communication
input tape.

• When a party Pi sends (handoverPUF, sid, Pi, Pj) to FPUF, check if there exists a tuple
(sid, ∗, ∗, Pi, notrans) in L.
− If not, then turn into waiting state.
− Else, modify the tuple (sid, id, mode, Pi, notrans) to the updated tuple (sid, id, mode, ⊥,

trans(Pj)). Write (invokePUF, sid, Pi, Pj) on S’s communication input tape.
• When the adversary sends (evalPUF, sid,S, q) to FPUF, check if L contains a tuple (sid, id,

mode, ⊥, trans(∗)) or (sid, id, mode,S, notrans).
− If not, then turn into waiting state.
− Else, run a← Evalmode(1

n, id, q) and return (responsePUF, sid, q, a) to S.
• When S sends (readyPUF, sid,S) to FPUF, check if L contains the tuple (sid, id, mode, ⊥,

trans(Pj)).
− If not found, turn into the waiting state.
− Else, change the tuple (sid, id, mode, ⊥, trans(Pj)) to (sid, id, mode, Pj , notrans) and

write (handoverPUF, sid, Pi) on Pj ’s communication input tape and store the tuple
(receivedPUF, sid, Pi).

• When the adversary sends (receivedPUF, sid, Pi) to FPUF, check if the tuple
(receivedPUF, sid, Pi) has been stored. If not, return to the waiting state. Else, write
this tuple to the input tape of Pi.

Figure 1: The ideal functionality FPUF for malicious PUFs.

admissible PUF families.
For our purpose, all the cryptographic tools that we use to construct our protocols can be based

on the DDH assumption. Thus, we define PUF families that are admissible only with respect to
DDH, but note that the definition can be generalized to other cryptographic primitives. This is a
straightforward generalization of the standard DDH definition, and is given in Appendix B. From
this point on in this paper, we only talk of admissible families.

3.2 Constructions for UC Security in the Malicious PUFs model

In this section we present a construction for UC-secure commitment scheme in the malicious PUFs
model, which yields UC-security for any PPT functionality via the [CLOS02] compiler.

12

We first recall some of the peculiarities of the PUFs model. A major difficulty when using
PUFs, in contrast to say tamper-proof tokens, is that PUFs are not programmable. That is, the
simulator can not simulate the answer of a PUF, and must honestly forward the queries to the FPUF

functionality. The only power of the simulator is to observe the queries made by the adversary to
honest PUFs. Thus, in designing the protocol, we shall force parties to query the PUFs with the
critical private information related to the protocol, therefore allowing the simulator to extract such
information in straight-line. In the malicious PUFs model the behaviour of a PUF created and
sent by an adversary is entirely in the adversary’s control. A malicious PUF can answer (or even
abort) adaptively on the query according to some pre-shared strategy with the malicious creator.
Finally, a side effect of the unpredictability of PUFs, is that the creator of a honest PUF is not
able to check the authenticity of the answer generated by its own PUF, without having the PUF
in its hands (or having queried the PUF previously on the very same value).

Techniques and proof intuition. Showing UC security for commitments requires obtaining
straight-line extraction against a malicious sender and straight-line equivocality against a mali-
cious receiver. Our starting point is the equivocal commitment scheme of [CO99] which builds
upon Naor’s scheme [Nao89]. Naor’s scheme consists of two messages, where the first message
is a randomly chosen string r that the receiver sends to the sender. The second message is the
commitment of the bit b, computed using r. More precisely, to commit to bit b, the second message
is G(s) ⊕ (r ∧ b|r|), where G() is a PRG, and s a randomly chosen seed. The scheme has the
property that if the string r is crafted appropriately, then the commitment is equivocal. [CO99]
shows how this can be achieved by adding a coin-tossing phase before the commitment. The coin
tossing of [CO99] proceeds as follows: the receiver commits to a random string α (using a statis-
tically hiding commitment scheme), the sender sends a string β, and then the receiver opens the
commitment. Naor’s parameter r is then set as α⊕ β.

Observe that if the simulator can choose β after knowing α, then it can control the output of the
coin-tossing phase, and therefore equivocate the commitment. Thus, to achieve equivocality against
a malicious receiver, the simulator must be able to extract α from the commitment. Similarly, when
playing against a malicious sender, the simulator should be able to extract the value committed in
the second message of Naor’s commitment.

Therefore, to construct a UC-secure commitment, we need to design an extractable commitment
scheme for both directions. One extractable commitment from used by the receiver to commit to
α must be statistically-hiding (this is necessary to prove binding). We denote such commitment
as Comshext = (Cshext,Rshext). Another extractable commitmentt used by the sender to commit
to its own bit must be extractable and allow for equivocation. We denote such commitment as
Comequiv = (Cequiv,Requiv). As we shall see soon, the two schemes require different techniques as
they aim to different properties. However, they achieve extractability using the following technique.

Technique for Extracting the Bit Committed. The receiver creates a PUF and queries
it with two randomly chosen challenges (q0, q1), obtaining the respective PUF-responses (a0, a1).
The PUF is then sent to the sender. To commit to a bit b, the sender first needs to obtain the
value qb. This is done by running an OT protocol with the receiver. Then the sender queries the
PUF with qb and commits to the PUF-response ab. Note that the sender does not commit to the
bit directly, but to the answer of the PUF. This ensures extractability. To decommit to b, the
sender simply opens the commitment of the PUF-response sent before. Note that the receiver can
check the authenticity of the PUF-response without having its own PUF back. The simulator can

13

extract the bit by observing the queries sent to the PUF and taking the one that is close enough, in
Hamming distance, to either q0 or q1. Due to the security of OT, the sender can not get both queries
(thus confusing the simulator), neither can the receiver detect which query has been transferred.
Due to the binding property of the commitment scheme used to commit qb, a malicious sender
cannot postpone querying the PUF to the decommitment phase (thus preventing the simulator to
extract already in the commitment phase). Due to the unpredictability of PUFs, the sender cannot
avoid to query the PUF to obtain the correct response. This technique ensures extractability. To
additionally achieve statistically hiding and equivocality, we build protocol Comshext and Comequiv

on top of this technique in different ways accordingly to the different properties that they achieve.
The main difference is in the way the PUF-response ab is committed.

In Protocol Comshext, the sender Cshext commits to the PUF-response ab using a statistically
hiding commitment scheme. Additionally, Cshext provides a statistical zero-knowledge argument of
knowledge of the message committed. This turns out to be necessary to argue about binding (that
is only computational). Finally, the OT protocol executed to exchange q0, q1 must be statistically
secure for the OT receiver. A graphic high-level description of Comshext is given in Fig. 2, while the
formal specification is given in Fig. 10. Formal proofs are given in Appendix C.1. To commit to a
N -bit string using Comshext, it is sufficient to run the same protocol N times in parallel reusing the
same PUF.

In Protocol Comequiv the PUF-response ab is committed following Naor’s commitment scheme.
In Comequiv, sender and receiver take as common input the vector r̄ = r1, . . . , rl (l is size of a PUF-
response ab) which represent Naor’s parameter decided in the coin-flipping phase. Earlier we said
that the simulator can properly craft r̄ so that it will be able to equivocate the commitment of ab.
However, due to the technique for extraction that we described above, being able to equivocate the
commitment of ab is not sufficient anymore. Indeed, in the protocol above, due to the OT protocol,
the simulator will be able to obtain only one of the PUF-queries among (q0, q1), and it must choose
the query qb already in the commitment phase (when the secret bit b is not known to the simulator).
Thus, even though the simulator has the power to equivocate the commitment to any string, it
might not know the correct PUF-response to open to. We solve this problem by asking the receiver
to reveal both values (q0, q1) played in the OT protocol (along with the randomness used in the OT
protocol), obviously only after Cequiv has committed to the PUF-response. Now, the simulator can:
play the OT protocol with a random bit, commit to a random string (without querying the PUF),
and then obtain both queries (q0, q1). In the decommitment phase, the simulator gets the actual
bit b. Hence, it can query the PUF with input qb, obtain the PUF-response and equivocate the
commitment so to open to such PUF-response. There is a subtle issue here and is the possibility of
selective abort of a malicious PUF. If the PUF aborts when queried with a particular string, then
we have that the sender would abort already in the commitment phase, while the simulator aborts
only in the decommitment phase. We avoid such problem by requiring that the sender continues
the commitment phase by committing to a random string in case the PUF aborts. The above
protocol is statistically binding (we are using Naor’s commitment), straight-line extractable, and
assuming that Naor’s parameter was previously ad-hoc crafted, it is also straight-line equivocal. To
commit to a bit we are committing to the l-bit PUF-response, thus the size of Naor’s parameter r̄ is
N = (3n)l. A graphic representation of Protocol Comequiv is given in Fig. 3, the formal specification
is given in Fig. 11 and proofs are given in Appendix C.2.

The final UC-secure commitment scheme Comuc = (Cuc,Ruc) consists of the coin-flipping phase,
and the (equivocal) commitment phase. In the coin flipping, the receiver commits to α using

14

the statistically hiding straight-line extractable commitment scheme Comshext. The output of the
coin-flipping is the Naor’s parameter r̄=α⊕ β used as common input for the extractable/equivocal
commitment scheme Comequiv. Protocol Comuc = (Cuc,Ruc) is formally described in Fig. 5.

Both protocol Comshext,Comequiv require one PUF sent from the receiver to the sender. We
remark that PUFs are transferred only once at the beginning of the protocol. We finally stress that
we do not assume authenticated PUF delivery. Namely, the privacy of the honest party is preserved
even if the adversary interferes with the delivery process of the honest PUFs (e.g., by replacing the
honest PUF).

Sshext (b) Rshext

a0 ← PUFR(q0)

a1 ← PUFR(q1)
PUFR

q0

q1

b

qb

ab ← PUFR(qb)

c = ComSH(ab)

SZKAoK
I know the value
committed in c

OT

open c as ab, send b
check opening a′

b. If ∃ b

If PUFR aborts

ab = 0l

s.t. a′
b ∈ {a0, a1}, output b

stat.secure
for Sshext

Figure 2: Straight-line Extractable Statistically-hiding Bit Commitment Cshext

Theorem 1. If Comshext = (Cshext,Rshext) is a statistically hiding straight-line extractable com-
mitment scheme in the malicious PUFs model, and Comequiv = (Cequiv,Requiv) is a statistically
binding straight-line extractable and equivocal commitment scheme in the malicious PUFs model,
then Comuc = (Cuc,Ruc) in Fig. 5, is a UC-secure commitment scheme in the malicious PUFs
model.

The proof is provided in Appendix D.
The above protocol can be used to implement the multiple commitment functionality Fmcom by

using independent PUFs for each commitment. Note that in our construction we can not reuse the
same PUF when multiple commitments are executed concurrently9. The reason is that, in both
sub-protocols Comshext,Comequiv, in the opening phase the sender forwards the answer obtained by
querying the receiver’s PUF. The answer of a malicious PUF can then convey information about
the value committed in concurrent sessions that have not been opened yet.

When implementing Fmcom one should also deal with malleability issues. In particular, one
should handle the case in which the man-in-the-middle adversary forwards honest PUFs to another

9Note that however our protocol enjoys parallel composition and reuse of the same PUF, i.e., one can commit to
a string reusing the same PUF.

15

Sequiv (b) Requiv

a0 ← PUFR(q0)

a1 ← PUFR(q1)
PUFR

q0

q1

b

qb

ab ← PUFR(qb)

Naor Com of ab

OT

open ab, send b
check opening a′b. If ∃ b

If PUFR aborts

ab = 0l

s.t. a′b ∈ {a0, a1}, output b

r̄ = (r1, . . . , rl)

run OT with

randomness rOT

Let τOT be the transcript of OT

rOT, q0, q1check τOT is
consistent with rOT, q0, q1

computed on parameter r̄

stat.secure
for Sequiv

Figure 3: Straight-line Extractable Statistically-binding Equivocal Bit Commitment Comequiv

party. However such attack can be ruled out by exploiting the unpredictability of honest PUFs
as follows. Let Pi be the creator of PUFi, running an execution of the protocol with Pj . Before
delivering its own PUF, Pi queries it with the identity of Pj concatenated with a random nonce.
Then, at some point during the protocol execution with Pj it will ask Pj to evaluate PUFi on
such nonce (and the identity). Due to the unpredictability of PUFs, and the fact that nonce is a
randomly chosen value, Pj is able to answer to such a query only if it possesses the PUF. The final
step to obtain UC security for any functionality consists in using the compiler of [CLOS02], which
only needs a UC secure implementation of the Fmcom functionality.

3.3 Unconditional Security with Malicious PUFs

We showed already how to implement the commitment functionality with malicious PUFs and
computational assumptions, that combined with the compiler of [CLOS02] gives us UC secure
computation with malicious PUFs under computational assumptions. The natural question to ask
is whether we can leverage the power of PUFs to obtain unconditional UC secure computation. We
leave this as an open question for future work. As evidence that this endeavour might be fruitful,
in this section we provide a statistically hiding and statistically binding commitment scheme in the
malicious PUF model.

Our protocol is an adaptation of Naor’s commitment protocol [Nao89] in the malicious PUFs
model. The sender first queries the PUF with a random string and then sends the PUF to the
receiver. Then, as in Naor’s protocol, the receiver sends a random string, and finally the sender
sends either the response of the PUF to the random query10, or the response of the PUF to the
random query XORed with the string sent by the receiver, depending on whether the bit to be
committed is 0 or 1. By extraction independence, it follows that receiver’s view in the two cases is

10More precisely, the output of the extractor applied to the answer to a random query.

16

α← {0, 1}N

β ← {0, 1}N

Comshext(α)

β

open α

Comequiv(r̄, b)

Cuc Ruc

r̄ = α⊕ β

run opening of Comequiv

Figure 4: Pictorial representation of Protocol Comuc.

Committer’s Input: Bit b ∈ {0, 1}.
Commitment Phase

Ruc ⇔ Cuc : (Coin Flipping)

1. Ruc picks α
$← {0, 1}N ; commit to α by running ((cα, dα), cα) ←

〈Cshext(com, α),Rshext(recv)〉 with Cuc.

2. Cuc sends β
$← {0, 1}N to Ruc.

3. Ruc sends decommitment (α, dα) to Cuc.
4. Cuc: if Rshext(dα, α) = 0, abort.

Cuc ⇔ Ruc : (Equivocal Commitment)
Cuc commit to b by running ((cbit, dbit), cbit)← 〈Cequiv(com, b),Requiv(recv)〉(α⊕β) with Ruc.

Decommitment Phase

Cuc sends decommitment (b, dbit) to Ruc.

Ruc accepts iff Requiv(α⊕ β, cbit, b, dbit) is accepting. Else, reject.

Figure 5: Computational UC Commitment Scheme (Cuc,Ruc).

identical. To argue binding, we note that the binding argument in Naor’s commitment relies only
on the expansion property of the PRG. Thus, if we choose the PUF family and a matching fuzzy
extractor family of appropriate length, the same argument holds in our case.

The formal description of the protocol (Cuncon,Runcon) is given in Fig. 6. In the description of
the protocol, the (implicit) security parameter will be denoted by n, and we assume that FPUF is
parameterized with a PUF family P. Further, the parties also have access to a (m, `, t, ε)-fuzzy
extractor (FuzGen,FuzRep) of appropriate matching parameters such that ` = 3n. The proof of
security is given in Appendix F.

17

Committer’s Input: Bit b ∈ {0, 1}.
Commitment Phase

Cuncon ⇒ Runcon: Committer sends (initPUF, normal, sid,Cuncon) to FPUF and obtains
response (initializedPUF, sid). Committer uniformly selects a query q ∈ {0, 1}n
and sends (evalPUF, sid,Cuncon, q) and receives response (responsePUF, sid, q, a). Com-
mitter obtains (st, p) ← FuzGen(a), and sends p to Runcon. Committer sends
(handoverPUF, sid,Cuncon,Runcon) to FPUF.

Cuncon ⇐ Runcon: Receiver receives p′ from the committer and (handoverPUF, sid,Cuncon) from
FPUF. It uniformly chooses r ∈ {0, 1}` and sends it to the committer.

Cuncon ⇒ Runcon: If b = 0, committer sends y = st to the receiver. Else it sends y = r ⊕ st.

Decommitment Phase

Cuncon ⇒ Runcon: Committer sends (b, q) to receiver.

Runcon: Receiver receives (b′, q′) from the committer and sends (evalPUF, sid,Runcon, q
′) to FPUF

and obtains (responsePUF, sid, q
′, a′). It then computes st′ ← FuzRep(a′, p′). If b = 0, it

checks if st′ = y. Else, it checks if st′ = y ⊕ r. If the check passes, it accepts, else it rejects.

Figure 6: Unconditional Commitment (Cuncon,Runcon).

4 Honest PUFs with Oblivious Queries

In this section we continue our foundational study of secure computation in presence of an adversary
that misbehave with PUFs. We now present a model that is incomparable to the malicious PUFs
model from Section 3, and that moreover is properly stronger11 than the honest PUF model of
Brzuska et al.

The protocols given by Brzuska et al. place another strong restriction on the design of PUFs:
the security proofs rely on the simulator’s ability to observe adversary’s queries to the PUF. In
real life, this translates to assuming that a party can query the PUF only using the prescribed
evaluation procedure. However, current implementations of PUFs do not give any indication why
this assumption should be valid.

We augment the UC framework with trusted (honest) PUFs following the spirit of [BFSK11],
but we relax the requirement that queries made by an adversary can be observed by a simulator.
It is possible that a smart real-world adversary could be able to stimulate the PUF with a physical
process that is different from the one prescribed by the PUF designer.

The above point is reinforced by drawing an analogy with the Knowledge of Exponent assump-
tion (KEA) [Dam91, BP04]. Let g be a generator of an “appropriate” group (for details, see [BP04]),
and consider an adversary A that gets as input (g, ga), and outputs a pair (C, Y). The adversary
wins if Ca = Y . Roughly, the knowledge of exponent assumption states that the only way for the
adversary to win is to choose c, and output (gc, gac). Or in other words, to win, the adversary

11Here by ‘stronger’ we mean that the real-world adversary has more power

18

must know the exponent c. This is formalized by saying that for every adversary, there exists an
extractor that can output c. We feel that in the case of PUFs, assuming that the simulator can
observe the PUF queries of the adversary is similar in spirit to the KEA (which is a controversial,
non-standard and non-falsifiable assumption). Note that the main assumption in KEA is that there
is only one way for the adversary to output a winning tuple, and this is debatable. Also, in the
case of PUFs, as we have discussed in the previous paragraphs, we can not rule out the existence
of malicious procedures for accessing PUFs.

Now, one can object that the above restriction to the simulator is not relevant since we can
always have a non-black-box simulator based on the code of the adversary, that by definition
knows the querying mechanisms of the adversary. However, this does not help the simulator in the
universal composability framework. In the UC framework there is an environment Z that can not
be rewound by the simulator. Technically speaking, in the UC definition, we have the following
quantifiers: ∀A∃S∀Z, where Z is the environment. It is therefore possible that an adversary does
not know other physical processes to query a PUF, and therefore the simulator does not know any
of them either12. However the environment is in possession of this knowledge, and can instruct
the adversary to query the PUF in some special way getting back the result. To make things
more concrete, let us think of a PUF as an exponential size table with challenge-response pairs
(xi, yi) as its entries (for simplicity, ignore the issue of noisy output for the moment). A PUF
comes with a physical procedure that allows a party to stimulate the PUF and read the response yi
corresponding to xi. However, in real life, there can be super-polynomially many different physical
procedures that allow a party to read the same entry (xi, yi) from the table. Note that having many
different procedures like above does not violate unpredictability. The unpredictability condition
says that after reading polynomial number of entries from the table, an unread entry still has
sufficient entropy. These different procedures are only different access mechanisms into the table.
It does not matter by what means the adversary learns the entries of the table, an unread entry
still has sufficient entropy.

Now the environment can use any of these super-polynomially many procedures to query the
PUF. The simulator, being a PPT machine, can only understand a small fraction of them. Thus, the
queries that the environment asks the PUF via the adversary can remain hidden to the simulator.
This motivates us to consider a model where the simulator is oblivious to the adversary’s queries.
Formally, we consider the original PUF ideal functionality of Brzuska et al. [BFSK11], which we
call FhPUF for honest PUFs. We construct an unconditional UC protocol for Oblivious Transfer
functionality in the FhPUF-hybrid model and show an ideal-model simulator that has the following
property: the simulation strategy is oblivious to the adversary’s PUF queries. A bit more formally,
the simulator consists of two algorithms, S1 and S2. Simulator S1 acts as a “wrapper” to S2 (that
is, S1 executes S2 internally), and carries out the interaction with the adversary. Whenever S1

receives a PUF query from the adversary, it queries FPUF, and returns the response back to the
adversary. All other messages from the adversary are sent to S2. Similarly, whenever S2 makes a
PUF query, S1 queries FPUF, and returns the answer to S2. All other messages by S2 are sent to
the adversary. In this way, S2 remains oblivious of the adversary’s queries, even though S1 can
see the queries. Note that S1 always performs a fixed function, and its view has no impact on
the environment. We call such a simulator S = (S1, S2) an oblivious-query simulator. The ideal
functionality FhPUF is described in Fig. 12 in Appendix G.

12Moreover we can not assume that a simulator has hardwired in all possible physical processes that can be used
to query a PUF since there is no evidence that the number of such procedures is polynomially bounded.

19

Before we begin, we address one final technical issue concerning oblivious-query simulators. As
the simulator S2 can not observe the adversary’s PUF queries, it must determine its own queries
to the PUF only from the transcript (it is clear that the simulator must query the PUF, otherwise
we are in the plain model where UC is impossible). Now observe that in the real-world, a party
that receives a PUF may certainly destroy it after using it. To model this behaviour, we ought to
augment our PUF ideal functionality with a kill message, that destroys a PUF so that no party may
query that particular PUF anymore. Let us call this the aug-FhPUF hybrid model. Apparently,
this can be a major problem for the oblivious-query simulator. Consider an adversary the destroys
a PUF as soon as it queries it, i.e., before sending any message. Now, by the time the simulator
determines what to ask to the PUF, the PUF is already dead and can not be accessed and the
simulator is stuck. As such, the oblivious-query PUF model seems to be very demanding and gives
the intuition (that we will contradict later) that UC secure computation can not be achieved.

Interestingly, we show a compiler that transforms any protocol in the FhPUF-hybrid model
(where parties can not send a kill message to FhPUF) to a protocol in the aug-FhPUF hybrid model
where parties are allowed to destroy PUFs. The point is that it is straight forward for party Pj
to check if a party Pi still possesses a PUF that Pj had sent it earlier: before handing over the
PUF, party Pj queries the PUF with a random query, say q, and obtains the response, and then
hands over the PUF to Pi. When party Pj wishes to check if Pi still possesses the PUF (and
has not destroyed it by sending a kill message), party Pj simply sends q to Pi and compares the
responses. If Pi is no longer in possession of the PUF (because it had sent a kill message earlier),
by the unpredictability of PUFs, it will not be able to give the correct response, and Pj will abort.
The compiler works as follows: given any protocol in FhPUF hybrid model, the protocol in aug-
FhPUF follows the same steps as the original protocol, except that after every round of the original
protocol, each party verifies that all the recipients of its PUFs are still in possession of those PUFs.
Having this compiler in mind, and for the sake of simplicity of notation, we present our protocol
in the FhPUF hybrid model.

4.1 Unconditional OT in the Oblivious Queries Model

In this section, we provide the formal specification of the protocol described in Section 4.1. Un-
conditional OT in the oblivious queries model is shown in Fig. 7. We begin by explaining the main
ideas of the protocol.

Recall that in the oblivious query model, the simulator can not use the queries that an adversary
makes to the PUF. We begin with the original OT protocol of Brzuska et al. [BFSK11], and identify
the sections of the protocol where the simulator needs to observe the adversary’s queries to extract
its input. We then modify these parts by embedding extra information in the transcript which
allows extraction without observing the queries. Because of this added information, we also need
to add more consistency checks for the final protocol to work. In the following, we give an informal
overview of the original protocol of Brzuska et al. [BFSK11], and then describe these steps in more
detail.

Overview of the Brzuska et al. [BFSK11] OT protocol. The protocol starts with the
receiver initializing a PUF, say sidR, and querying it on a random query q to obtain response a.
The receiver now hands over sidR to the sender and can not make any more queries. Now the idea
is that the sender will pick two queries such that the receiver knows the response to only one of
them. This is done by the sender picking two random queries x0, x1 sending them to the receiver,

20

who responds with v = xb ⊕ q, where b is receiver’s input. Now, of the two queries v ⊕ x0 and
v ⊕ x1, the receiver knows the response to only one, while the sender has no information about
which response the receiver knows. The sender uses the responses to these queries to mask its
strings and the receiver can “decrypt” only one of them.

Extracting from Sender without observing queries. This is already possible in the original
protocol. Note that the sender masks its strings by responses to the queries v ⊕ x0 and v ⊕ x1.
Both of these queries can be determined from the transcript. The simulator obtains responses to
both of these, and thus “decrypts” both strings. We use the same strategy in our protocol.

Extracting from Receiver without observing queries. Consider an adversary that corrupts
the receiver. Informally, the simulator in the original protocol of [BFSK11] keeps a list of the
queries made by the adversary. When it receives the value v from the adversary, it checks which
of v ⊕ x0 and v ⊕ x1 is in that list13. If it is the former, then the adversary’s bit is 0, else it is 1.
Thus, the simulator relies crucially on observability of queries.

To tackle this, we simply ask the receiver to send, along with v, a query d whose response is
the receiver’s bit14. There are several issues to handle here:

Whose PUF can be used? Note that at the time the receiver sends v to the sender, receiver’s PUF
is already with the sender. Thus, the query d can not be sent to receiver’s PUF anymore,
otherwise the sender can evaluate the PUF on d and obtain the receiver’s bit. Instead, we
make the sender send a PUF, say sidS, in the beginning of the protocol to the receiver. The
receiver queries sidS with random queries till it finds a query d whose response is its secret
bit. Then it sends d along with v, and because it still holds sidS, the sender can not query it
on d, and receiver’s bit is hidden. However, the simulator can query sidS with d and extract
receiver’s bit.

Forcing Receiver to use correct queries: Cut-and-Choose. Of course, a malicious receiver
might not use a query d that corresponds to its bit. In this case, the simulator will ex-
tract an incorrect bit. However, we can use cut-and-choose to enforce correct behaviour
on the receiver. Let k be a statistical security parameter. The sender sends 2k PUFs, say
sidS1 , . . . , sid

S
2k, and 2k pairs (x0

1, x
1
1), . . . , (x0

2k, x
1
2k), to the receiver after receiving its PUF sidR.

The receiver chooses random bits b1, . . . , b2k and prepares vi and di according to bi (that is,
vi = qi ⊕ xbi for some query qi, and the response to di of PUF sidSi is the bit bi.) Now the
sender asks the receiver to “reveal” k of these indices chosen at random. To reveal an index
i, the receiver sends the query qi, along with its response (from PUF sidR) ai, and also hands
over the PUF sidSi back to the sender. The sender first determines the bit bi from vi (by
checking if vi⊕ qi is x0

i or x1
i). Then it checks if the response of sidSi matches bi or not. If the

checks pass for a random subset of size k, then the number of indices j where the response of
dj (i.e., response from sidSj) does not correspond to bj is very small.

Combining OTs. As above, for a query pair (vj ⊕ x0
j , vj ⊕ x1

j), the verifier knows the response to

only vj ⊕ xbjj . Let us call an index j ‘bad’ if it was not revealed in the cut-and-choose phase,
and for which bj does not correspond with dj . After the cut-and-choose stage, there are k

13This is a simplification. The simulator actually checks which of v ⊕ x0 and v ⊕ x1 is within a hamming distance
dmin of some query in the list.

14The response of a PUF is a long string and not a bit, but we can use a suitable Boolean function to map the
response to a bit. In our protocol, we use the Parity function for this purpose.

21

pairs of queries (vj ⊕ x0
j , vj ⊕ x1

j). Now, as in the protocol of Brzuska et al., we would like
to use the responses of these queries to mask the sender’s strings. The advantage we have
over their protocol now is that the simulator has the queries dj (and access to PUFs sidSj),
which will potentially reveal the receiver’s bit. So the main question is how can we “combine
these k OTs”, and do so in such a way that the small number of bad indexes left after the
cut-and-choose does not matter.
The idea is to use a k-out-of-k additive secret sharing scheme to distribute both of the sender’s
input strings over these k OTs. Let s0

j and s1
j be the jth shares of the sender’s two strings.

The first problem is that receiver runs these k OTs with random selection bits bjs, and thus
it is not clear how the sender should distribute the shares over the k OTs. We tackle this by
having the receiver send the “correction bit” b ⊕ bj , which appears uniformly distributed to
the sender. If this bit is 0, the sender uses (s0

j , s
1
j) as its input in the jth OT, else, if this bit

is 1, it flips the order and uses (s1
j , s

0
j) in the jth OT. It is easy to see that an honest receiver

gets all k shares of the string it wants.
The simulator follows the strategy outlined earlier: it uses djs to compute bjs, XORs it with

the correction bit to obtain the bit b̂′j . Then it takes the majority of the bits b̂′j , and uses that

as receiver’s extracted input. Note that if index j is not bad, then b̂′j = b. We show that if
the cut-and-choose succeeds, then the probability that the number of bad indexes is greater
than k/10 is negligible. Thus, with all but negligible probability, the majority of the bits b̂′j
will be the reciever’s actual input, b.

The formal description of our protocol is given in Figure 7. The proof of the following theorem
appears in Appendix E.

Theorem 2. Protocol (SuncOT,RuncOT) depicted in Fig. 7, UC-realizes the FOT functionality in the
FhPUF-hybrid model.

5 Impossibility of UC Security in the Malicious PUFs + Oblivious
Queries Model

We have shown the feasibility of UC secure computation under computational assumptions in the
malicious PUFs model and of unconditional UC secure computation in the oblivious queries model.
A natural question is whether one can achieve UC security in a model that combines both models,
i.e., when the adversary can create malicious PUFs and obtain challenge/response pairs from the
PUF without querying the PUF in the prescribed way. We said that in the malicious PUFs model
the power of the simulator is to see queries made by the adversary to the honest PUFs and their
answers, and to have permanent access (i.e., the simulator can always query the PUFs) to all
PUFs present in the system. In the oblivious queries model, those challenge/response pairs are not
available to the simulator. Therefore, when considering the combination of the two models, the
only power left to the simulator is the permanent access to the PUFs present in the system. In fact,
as shown in Lemma 1, the only power left is the permanent access to PUFs generated by the honest
party only. We show that, under the assumption that the adversary can construct malicious PUFs
that he can predict, UC security in the malicious PUFs + oblivious queries model is impossible.
Since relying on the fact that an adversary can not create such PUFs is a strong assumption, we
see our impossibility as a concrete negative result.

22

Sender’s Input: Strings s0, s1 ∈ {0, 1}n.
Receiver’s Input: Bit b ∈ {0, 1}.

1. [(SuncOT ⇒ RuncOT): Sender PUF initialization] S initializes 2k PUFs sidS1, . . . , sid
S
2k and sends

them to R.

2. [(SuncOT ⇐ RuncOT): Receiver PUF initialization] R initializes a PUF sidR. It uniformly chooses
2k queries q1, . . . , q2k and obtains responses a1, . . . , a2k. It sends the PUF sidR to S.

3. [Cut-and-Choose]

(a) (SuncOT ⇒ RuncOT)For 1 ≤ i ≤ 2k, sender uniformly selects a pair of queries (x0i , x
1
i) and sends

it to R.

(b) (SuncOT ⇐ RuncOT)For each 1 ≤ i ≤ 2k, receiver does the following:

• select random bit bi ∈ {0, 1}.
• select random query di and let dai be the response of the PUF sidSi . Compute (dsti, dpi)←

FuzGen(dai). If Parity(dsti) 6= bi, repeat this step. Else, continue.

• compute vi := xbii ⊕ qi.
For each 1 ≤ i ≤ 2k receiver sends to sender (vi, di, dpi).

(c) (SuncOT ⇒ RuncOT) Sender selects a random subset S ⊂ [2k] of size k and sends it to receiver.

(d) (SuncOT ⇐ RuncOT) For all j ∈ S, receiver sends (qj , aj) to sender, and also hands over the PUF

sidSj to the sender.

(e) Sender makes the following checks for each j ∈ S:

• compute the response of PUF sidR on query qj to obtain a∗j ; if dis(aj , a
∗
j) > dnoise, abort.

• if vj ⊕ qj = x0j , set b∗j = 0; if vj ⊕ qj = x1j , set b∗j = 1; else abort.

• query the PUF sidSj with dj to obtain response da∗j ; if Parity(FuzRep(da∗j , dpj)) 6= b∗j , abort.

4. [(SuncOT ⇐ RuncOT): Receiver sends correction-bits] Let i1, . . . , ik be the indices not in S. For
1 ≤ j ≤ k, receiver sends to sender the bit b′ij = bij ⊕ b.

5. [(SuncOT ⇒ RuncOT): Sender’s final message] Sender prepares its final message as follows:

• for δ = 0, 1, choose random strings sδ1, . . . , s
δ
k such that sδ =

⊕k
j=1 s

δ
j .

• for δ = 0, 1, for 1 ≤ j ≤ k, compute q̂δij = vij ⊕ xδij and let (stδij , p
δ
ij

) be the output of the fuzzy

extractor applied to the response of PUF sidR to query q̂δij .

• for δ = 0, 1 and 1 ≤ j ≤ k, set mδ
ij

= sδj ⊕ st
b′ij
⊕δ

ij
.

Sender sends (m0
i1
,m1

i1
), . . . , (m0

ik
,m1

ik
) and (p0i1 , p

1
i1

), . . . , (p0ik , p
1
ik

) to the receiver.

6. [Receiver’s final step] For 1 ≤ j ≤ k, receiver computes stij ← FuzRep(p
bij
ij
, aij). It outputs

sb =
⊕k

j=1(mb
ij
⊕ stij).

Figure 7: Unconditional OT protocol (SuncOT,RuncOT) in the Oblivious Queries Model.

23

Definition 5. Let (Sampleh,Evalh) be a honest PUF family, and (FuzGen,FuzRep) be a fuzzy ex-
tractor with matching parameters. A predictable malicious PUF family (Sample∗,Eval∗) is such
that:

• (Sample∗,Eval∗) is predictable. There exists a PPT algorithm Predict such that with over-
whelming probability (in security parameter n), for every challenge q, the output of the fol-
lowing processes is identical:

– Predict(q), and,

– id← Sample∗(1n), (st, p)← FuzGen(Eval∗(1n, id, q)), output st.

• (Sample∗,Eval∗) is indistinguishable from honest PUF. For every PPT distinguisher B, there
exists a negligible function µ(·), such that,∣∣∣Probid←Sample∗(1n)[B

Eval∗(1n,id,·) = 1]− Probid←Sampleh(1n)[B
Evalh(1n,id,·) = 1]

∣∣∣ ≤ µ(n).

The above notion of a predictable malicious PUF is in spirit similar to the notion of “Simulatable
Bad” PUF previously introduced in [vDR12] to prove impossibility results in other models.

Theorem 3. There exists no UC-secure Bit Commitment Scheme in the malicious PUFs + obliv-
ious queries model, if the adversary can generate predictable PUFs.

Proof. The proof is by contradiction. Assume that there exists a bit commitment protocol (S,R)
for functionality Fcom that is UC-secure in the malicious PUFs and oblivious queries model. This
implies the existence of a straight-line simulator Sim = (SimS ,SimR) satisfying two properties.
First, it provides a transcript that is indistinguishable from the transcript of the real protocol
execution; second, it extracts the input of the malicious sender S∗ in straight-line. Specifically,
SimS corrupts party S in the ideal world, it runs the real-world (possibly dummy) adversary S∗

as sub-routine and emulates the execution of the real-world protocol simulating the honest party
R to S∗. SimS extracts the input that S∗ uses in the protocol execution in straight-line, without
rewinding and without using its code. The extracted input is given to the ideal functionality Fcom.

Given SimS , one can construct an adversary R∗ that extracts the input of an honest S. R∗

starts a protocol with S. Concurrently R∗ runs the simulator SimS as sub-routine and forwards all
the messages from SimS to S and vice versa. R∗ also simulates functionalities FPUF and Fcom to
SimS . This means that R∗ intercepts the queries made by SimS to the ideal functionalities and it
simulates the answers. At some point during the protocol the simulator extracts the input of the
adversary R∗ that in this case is the honest S and sends it to the functionality Fcom. Therefore,
R∗ obtains S’s secret input and security is violated.

R∗ can carry out such attack against S for the following reasons.

• Due to the UC-security it follows that SimS is straight-line. It does not rewind S∗ and it does
not needs its code.

• Due to the oblivious queries model, SimS carries out the simulation without seeing the queries
that S∗ makes to the PUFs sent by R.

24

But, by definition SimS has permanent access to all PUFs in the system. Formally this is
equivalent to say that SimS can make Eval queries to FPUF even if the PUF has not been “delivered”
(via handover command) to the ideal world adversary. Instead, R∗ has access to S’s PUFs (and her
own PUFs) only when they are physically in her hands. Formally this means that the adversary
can make Eval queries to FPUF only when the PUF is delivered to her. Thus, in order for the above
attack to be successful, R∗ has to simulate the permanent access to all PUFs, (i.e., simulate Eval
queries to FPUF) even when R∗ is not allowed to make such queries. This can be done due to the
following. (For simplicity in the following we talk about queries to PUFs instead of invoking Eval
to the FPUF functionality.)

• Access to PUFs created by S must not be simulated. Due to Lemma 1, in the malicious PUFs
and malicious queries model, the simulator queries a PUF sent by the adversary only when
the PUF is in the hands of the honest party. In our case, SimS will access to PUFs sent by
S only when it is in R∗’s hands.

• Access to PUFs created by R∗ can be simulated due to the fact that they are predictable.
Thus R∗ is able to answer to the queries made by SimS to R’s PUFs, anytime during the
simulation.

Hence, given any UC-simulator in the malicious PUF and oblivious queries model, it is possible
to construct an adversary that extracts the input of the honest party by using such simulator as
sub-routine. Therefore, there exists no UC-secure protocol in such a model.

Lemma 1. In the malicious PUFs and malicious queries model, the UC-simulator accesses to
malicious PUFs only when they are in the hands of the honest party.

Proof. Assume not, then there exists a UC simulator that, in order to successfully carry out the
simulation, needs to access to a malicious PUF when it is in the hands of the malicious party. Note
that the malicious party could simply destroy the PUF as soon as it goes back in her hands. More
generally, since the PUF is maliciously generated, the adversary can always deactivate the PUF
when it is in her hands, and re-activate it when it is sent to the honest party. Thus, any simulator
that needs to query the malicious PUF when it is in the adversary’s hand, will fail in obtaining
the answer, and completing the simulation. Hence, it must be the case that any simulator uses the
access to a malicious PUF only when it is with the honest party.

Acknowledgments

The authors thank Margarita Vald for pointing out the problem with the original formulation of
the [BFSK11] PUF ideal functionality where the adversary is not allowed to create PUFs. The
authors also thank Marten van Dijk and Ulrich Rührmair for extensive and insightful discussions
on their and our paper.

Research supported in part by NSF grants CCF-0916574; IIS-1065276; CCF-1016540; CNS-
1118126; CNS-1136174; US-Israel BSF grant 2008411, OKAWA Foundation Research Award, IBM
Faculty Research Award, Xerox Faculty Research Award, B. John Garrick Foundation Award, Ter-
adata Research Award, Lockheed-Martin Corporation Research Award and the European Com-
mission through the FP7 programme under contract 216676 ECRYPT II. This material is also

25

based upon work supported by the Defense Advanced Research Projects Agency through the U.S.
Office of Naval Research under Contract N00014-11-1-0392. The views expressed are those of the
author and do not reflect the official policy or position of the Department of Defense or the U.S.
Government.

References

[AMS+09] Frederik Armknecht, Roel Maes, Ahmad-Reza Sadeghi, Berk Sunar, and Pim Tuyls.
Memory leakage-resilient encryption based on physically unclonable functions. In Mit-
suru Matsui, editor, ASIACRYPT, volume 5912 of Lecture Notes in Computer Science,
pages 685–702. Springer, 2009.

[AMS+11] Frederik Armknecht, Roel Maes, Ahmad-Reza Sadeghi, Francois-Xavier Standaert, and
Christian Wachsmann. A formalization of the security features of physical functions.
In IEEE Symposium on Security and Privacy, pages 397–412. IEEE Computer Society,
2011.

[BCNP04] Boaz Barak, Ron Canetti, Jesper B. Nielsen, and Rafael Pass. Universally compos-
able protocols with relaxed set-up assumptions. In Foundations of Computer Science
(FOCS’04), pages 394–403, 2004.

[BCR86] Gilles Brassard, Claude Crépeau, and Jean-Marc Robert. Information theoretic reduc-
tions among disclosure problems. In FOCS, pages 168–173. IEEE Computer Society,
1986.

[BFSK11] Christina Brzuska, Marc Fischlin, Heike Schröder, and Stefan Katzenbeisser. Physically
uncloneable functions in the universal composition framework. In Phillip Rogaway,
editor, CRYPTO, volume 6841 of Lecture Notes in Computer Science, pages 51–70.
Springer, 2011.

[BP04] Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions and 3-
round zero-knowledge protocols. In CRYPTO, pages 273–289, 2004.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Foundations of Computer Science (FOCS’01), pages 136–145, 2001.

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable
security with global setup. In Salil P. Vadhan, editor, TCC, volume 4392 of Lecture
Notes in Computer Science, pages 61–85. Springer, 2007.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kil-
ian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes
in Computer Science, pages 19–40, Santa Barbara, CA, USA, August 19–23, 2001.
Springer, Berlin, Germany.

[CGS08] Nishanth Chandran, Vipul Goyal, and Amit Sahai. New constructions for UC secure
computation using tamper-proof hardware. In Nigel P. Smart, editor, Advances in
Cryptology – EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science,
pages 545–562, Istanbul, Turkey, 2008. Springer, Berlin, Germany.

26

[CKL03] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally
composable two-party computation without set-up assumptions. In Eli Biham, edi-
tor, Advances in Cryptology – EUROCRYPT 2003, volume 2656 of Lecture Notes in
Computer Science, pages 68–86, Warsaw, Poland, May 4–8, 2003. Springer, Berlin,
Germany.

[CKS+11] Seung Geol Choi, Jonathan Katz, Dominique Schröder, Arkady Yerukhimovich, and
Hong-Sheng Zhou. (efficient) universally composable two-party computation using a
minimal number of stateless tokens. IACR Cryptology ePrint Archive, 2011:689, 2011.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally compos-
able two-party and multi-party secure computation. In 34th Annual ACM Symposium
on Theory of Computing, Lecture Notes in Computer Science, pages 494–503, Montréal,
Québec, Canada, May 19–21, 2002. ACM Press.

[CO99] Giovanni Di Crescenzo and Rafail Ostrovsky. On concurrent zero-knowledge with pre-
processing. In CRYPTO, pages 485–502, 1999.

[Dam91] Ivan Damg̊ard. Towards practical public key systems secure against chosen ciphertext
attacks. In CRYPTO, pages 445–456, 1991.

[DKMQ11] Nico Döttling, Daniel Kraschewski, and Jörn Müller-Quade. Unconditional and com-
posable security using a single stateful tamper-proof hardware token. In Yuval Ishai, ed-
itor, TCC, volume 6597 of Lecture Notes in Computer Science, pages 164–181. Springer,
2011.

[DKMQ12] Nico Döttling, Daniel Kraschewski, and Jörn Müller-Quade. David & goliath oblivious
affine function evaluation - asymptotically optimal building blocks for universally com-
posable two-party computation from a single untrusted stateful tamper-proof hardware
token. Cryptology ePrint Archive, Report 2012/135, 2012. http://eprint.iacr.org/.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data. SIAM J. Comput.,
38(1):97–139, 2008.

[EKvdL11] Ilze Eichhorn, Patrick Koeberl, and Vincent van der Leest. Logically reconfigurable
pufs: memory-based secure key storage. In Proceedings of the sixth ACM workshop on
Scalable trusted computing, STC ’11, pages 59–64, New York, NY, USA, 2011. ACM.

[GIS+10] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay Wa-
dia. Founding cryptography on tamper-proof hardware tokens. In Daniele Micciancio,
editor, TCC 2010: 7th Theory of Cryptography Conference, volume 5978 of Lecture
Notes in Computer Science, pages 308–326, Zurich, Switzerland, February 9–11, 2010.
Springer, Berlin, Germany.

[GKR08] Shafi Goldwasser, Yael T. Kalai, and Guy. N. Rothblum. One-time programs. In
Advances in Cryptology – CRYPTO’08, volume 5157 of Lecture Notes in Computer
Science, pages 39–56. Springer, Berlin, Germany, 2008.

27

http://eprint.iacr.org/

[GKST07] Jorge Guajardo, Sandeep S. Kumar, Geert Jan Schrijen, and Pim Tuyls. Fpga intrinsic
pufs and their use for ip protection. In Pascal Paillier and Ingrid Verbauwhede, editors,
CHES, volume 4727 of Lecture Notes in Computer Science, pages 63–80. Springer, 2007.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof-systems. SICOMP, 18(6):186–208, 1989.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University
Press, Cambridge, UK, 2001.

[HL10] Carmit Hazay and Yehuda Lindell. Efficient Secure Two-Party Protocols Techniques
and Constructions. Springer, 2010.

[Kat07] Jonathan Katz. Universally composable multi-party computation using tamper-proof
hardware. In Moni Naor, editor, Advances in Cryptology – EUROCRYPT 2007, volume
4515 of Lecture Notes in Computer Science, pages 115–128, Barcelona, Spain, May 20–
24, 2007.

[KKR+12] Stefan Katzenbeisser, Ünal Koccabas, Vladimir Rozic, Ahmad-Reza Sadeghi, Ingrid
Verbauwhede, and Christian Wachsmann. Pufs: Myth, fact or busted? a security eval-
uation of physically unclonable functions (pufs) cast in silicon. In Prouff and Schaumont
[PS12], pages 283–301.

[KLP05] Yael Tauman Kalai, Yehuda Lindell, and Manoj Prabhakaran. Concurrent general
composition of secure protocols in the timing model. In 37th Annual ACM Symposium
on Theory of Computing, pages 644–653, 2005.

[KSWS11] Ünal Koccabas, Ahmad-Reza Sadeghi, Christian Wachsmann, and Steffen Schulz.
Poster: practical embedded remote attestation using physically unclonable functions.
In Yan Chen, George Danezis, and Vitaly Shmatikov, editors, ACM Conference on
Computer and Communications Security, pages 797–800. ACM, 2011.

[MHV12] Roel Maes, Anthony Van Herrewege, and Ingrid Verbauwhede. Pufky: A fully func-
tional puf-based cryptographic key generator. In Prouff and Schaumont [PS12], pages
302–319.

[MS08] Tal Moran and Gil Segev. David and Goliath commitments: UC computation for asym-
metric parties using tamper-proof hardware. In Nigel P. Smart, editor, Advances in
Cryptology – EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science,
pages 527–544, Istanbul, Turkey, April 13–17, 2008. Springer, Berlin, Germany.

[MV10] Roel Maes and Ingrid Verbauwhede. Physically unclonable functions: A study on the
state of the art and future research directions. In Ahmad-Reza Sadeghi and David Nac-
cache, editors, Towards Hardware-Intrinsic Security, Information Security and Cryp-
tography, pages 3–37. Springer Berlin Heidelberg, 2010.

[Nao89] Moni Naor. Bit commitment using pseudo-randomness. In CRYPTO, pages 128–136,
1989.

28

[Nie02] Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In CRYPTO, pages 111–126, 2002.

[OVY93] Rafail Ostrovsky, Ramarathnam Venkatesan, and Moti Yung. Interactive hashing sim-
plifies zero-knowledge protocol design. In Tor Helleseth, editor, EUROCRYPT, volume
765 of Lecture Notes in Computer Science, pages 267–273. Springer, 1993.

[Pap01] Ravikanth Srinivasa Pappu. Physical One-Way Functions. PhD thesis, MIT, 2001.

[PRTG02] Ravikanth S. Pappu, Ben Recht, Jason Taylor, and Niel Gershenfeld. Physical one-way
functions. Science, 297:2026–2030, 2002.

[PS04] Manoj Prabhakaran and Amit Sahai. New notions of security: achieving universal
composability without trusted setup. In 36th Annual ACM Symposium on Theory of
Computing, pages 242–251, 2004.

[PS12] Emmanuel Prouff and Patrick Schaumont, editors. Cryptographic Hardware and Embed-
ded Systems - CHES 2012 - 14th International Workshop, Leuven, Belgium, September
9-12, 2012. Proceedings, volume 7428 of Lecture Notes in Computer Science. Springer,
2012.

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In
Cynthia Dwork, editor, STOC, pages 187–196. ACM, 2008.

[RKB10] Ulrich Rührmair, Stefan Katzenbeisser, and H. Busch. Strong pufs: Models, construc-
tions and security proofs. In A. Sadeghi and P. Tuyls, editors, Towards Hardware
Intrinsic Security: Foundations and Practice, pages 79–96. Springer, 2010.

[Rüh10] Ulrich Rührmair. Oblivious transfer based on physical unclonable functions. In Alessan-
dro Acquisti, Sean W. Smith, and Ahmad-Reza Sadeghi, editors, TRUST, volume 6101
of Lecture Notes in Computer Science, pages 430–440. Springer, 2010.

[RvD12] Ulrich Rührmair and Marten van Dijk. Practical security analysis of puf-based two-
player protocols. In Prouff and Schaumont [PS12], pages 251–267.

[RvD13] Ulrich Rührmair and Marten van Dijk. Pufs in security protocols: Attack models and
security evaluations. In IEEE Symposium on Security and Privacy, 2013.

[SVW10] Ahmad-Reza Sadeghi, Ivan Visconti, and Christian Wachsmann. Enhancing rfid se-
curity and privacy by physically unclonable functions. In Ahmad-Reza Sadeghi and
David Naccache, editors, Towards Hardware-Intrinsic Security, Information Security
and Cryptography, pages 281–305. Springer Berlin Heidelberg, 2010.

[TB06] Pim Tuyls and Lejla Batina. Rfid-tags for anti-counterfeiting. In David Pointcheval,
editor, CT-RSA, volume 3860 of Lecture Notes in Computer Science, pages 115–131.
Springer, 2006.

[Val12] Margarita Vald. Private Communication, 2012.

29

[vDR12] Marten van Dijk and Ulrich Rührmair. Physical unclonable functions in cryptographic
protocols: Security proofs and impossibility results. IACR Cryptology ePrint Archive,
2012:228, 2012.

[WW06] Stefan Wolf and Jürg Wullschleger. Oblivious transfer is symmetric. In Serge Vaudenay,
editor, EUROCRYPT, volume 4004 of Lecture Notes in Computer Science, pages 222–
232. Springer, 2006.

A Missing Definitions and Tools

Notation. A function ε is negligible in n (or just negligible) if for every polynomial p(·) there
exists a value n0 ∈ N such that for all n > n0 it holds that ε(n) < 1/p(n). The view of A in
interaction (A(a), B(b))(x) is denoted by viewA(A(a), B(b))(x) and consists of the common input
x, the private input a, the private random tape of A, and all the messages received by A dur-
ing the course of the interaction. For two random variables X and Y with supports in {0, 1}n,
the statistical difference between X and Y , denoted by SD(X,Y), is defined as, SD(X,Y) =
1
2

∑
z∈{0,1}n |Pr [X = z]− Pr [Y = z]|.
In the following definitions we assume that parties are stateful and that malicious parties obtain

auxiliary inputs, although for better readability we omit them.

Indistinguishability. LetW be a set of strings. An ensemble of random variablesX = {Xw}w∈W
is a sequence of random variables indexed by elements of W.

Definition 6. Two ensembles of random variables X = {Xw}w∈W and Y = {Yw}w∈W are com-

putationally indistinguishable (resp., statistically indistinguishable), i.e., {Xw}w∈W
C≡ {Yw}w∈W

(resp., {Xw}w∈W
S≡ {Yw}w∈W) if for any polynomial-sized circuit (resp., unbounded) D there exists

a negligible function ε such that∣∣Pr [α← Xw : D(w,α) = 1]− Pr [α← Yw : D(w,α) = 1]
∣∣ < ε(w).

A.1 Commitment Schemes

Definition 7 (Bit Commitment Scheme). A commitment scheme is a tuple of PPT algorithms
Com = (C,R) implementing the following two-phase functionality. Given to C an input b ∈ {0, 1},
in the first phase (commitment phase) C interacts with R to commit to the bit b, we denote this
interaction as ((c, d), c)← 〈C(com, b), R(recv)〉 where c is the transcript of the commitment phase
and d is the decommitment. In the second phase (opening phase) C sends (b, d) and R finally
accepts or rejects according to (c, b, d).

Com = (C,R) is a commitment scheme if it satisfies the following properties.

Completeness. If C and R follow their prescribed strategy then R will always accept the commit-
ment and the decommitment (with probability 1).

Computational Hiding. For every PPT R∗ the ensembles {viewR∗ (C(com, 0), R∗) (1n)}n∈N and
{viewR∗(C(com, 0), R∗) (1n)}n∈N are computationally indistinguishable, where viewR∗ (C(com, b),
R∗) denotes the view of R∗ in the commit stage interacting with C(com, b).

30

Computational Binding. For every PPT C∗, there exists a negligible function ε such that the
malicious sender C∗ succeeds in the following game with probability at most ε(n): On security
parameter 1n, C∗ interacts with R in the commit stage obtaining the transcript c . Then C∗

outputs pairs (0, d0) and (1, d1), and succeeds if in the opening phase, R(0, d0, c) = R(1, d1, c) =
accept.

When hiding (resp., binding) holds even against an unbounded adversary, then the commitment
scheme enjoys statistical hiding (resp., binding).

It will be helpful to consider commitment schemes in which the committer and receiver take
an additional common input, denoted by σ. This additional common input is drawn fresh for each
execution from a specified distribution. In our case, this additional common input is always drawn
from the uniform distribution of appropriate length. We will denote such commitment schemes
with Com = (C,R)(σ). The properties of Definition 7 are required to hold over the random choice
of σ.

Definition 8 (Straight-line Equivocal Commitment Scheme.). A commitment scheme Com =
(C,R)(σ) with common input σ, is a straight-line equivocal commitment scheme if there exists
a straight-line strict polynomial-time simulator S = (S1,S2,S3) such that for any b ∈ {0, 1}, and
for all PPT R∗, the output of the following two experiments is computationally indistinguishable:

Experiment ExpC
R∗(n) : Experiment ExpSR∗(n):

σ
$← {0, 1}`(n); (σ̃, state1)

$← S1(1n);
((c, d), c)← 〈C(com, b),R∗(recv)〉(σ); (state2, c̃)← 〈S2(state1),R∗(recv)〉(σ̃);

return R∗(σ, b, c, d)〉; d̃← S3(σ, state2, b); return R∗(σ̃, c̃, b, d̃);

Note that in this definition, the verification of the receiver R is computed by using also the
common input. Further, this definition can easily be extended to the setting where all parties have
access to PUFs.

Definition 9 (Straight-line Extractable Commitment Scheme in the Malicious PUF model). A
commitment scheme Com = (C,R) is a straight-line extractable commitment scheme in the ma-
licious PUF model if there exists a straight-line strict polynomial-time extractor E that, having
on-line access to the queries made by any PPT malicious committer C∗ to the PUFs sent by the
honest receiver R, and running only the commitment phase, it outputs a bit b? or the special symbol
⊥ such that:

- (simulation) the views viewC∗(C
∗(com, ?),R(recv)) and viewC∗(C

∗(com, ?),E) are identical;
- (extraction) let c be the transcript obtained from the commitment phase run between C∗ and

E. If E outputs ⊥ then the probability that C∗ will provide an accepting decommitment is
negligible.

- (binding) if b? 6= ⊥ the probability that C∗ decommit to a bit b 6= b? is negligible.

Remark 1. The standard definition of extractable commitments in the plain model requires that,
if the commitment is accepting then, probability that the extractor fails and outputs ⊥, is negligible.
Our definition is in the FPUF-hybrid model, and straight-line extractability is achieved using access
to FPUF. Here, we require that, if the decommitment is accepting, then probability that the extractor
fails and output ⊥ is negligible. Therefore, to establish that an extractor fails, we have to consider

31

the probability of success in the decommitment phase. To see why this definition is necessary,
consider the following protocol. To commit to a bit b, the committer sends COM(b) to the receiver,
then it queries a PUF (received from the receiver) with the opening of COM(b), and finally it
commits to the response received from such PUF. Then in the decommitment phase, the committer
has to open both commitments, and send the PUF back to the receiver, who accepts iff the openings
are accepting and the response committed by the committer corresponds to the response of the
PUF on input the opening of COM(b). In this case, a committer can always provide an accepting
commitment, without querying the PUF (making the extractor output ⊥). Indeed, it can just commit
to junk. However, in the decommitment phase, the committer will not be able to open to the
correct response, and the receiver will not accept. In such case, the extractor did not fail, since the
committer did not actually commit to any value that could have been opened.

A.2 Statistical Zero-Knowledge Argument of Knowledge

A polynomial-time relation R is a relation for which it is possible to verify in time polynomial in
|x| whether R(x,w) = 1. Let us consider an NP-language L and denote by RL the corresponding
polynomial-time relation such that x ∈ L if and only if there exists w such that RL(x,w) = 1. We
will call such a w a valid witness for x ∈ L. We will denote by Probr[X] the probability of an
event X over coins r.

Interactive proof/argument systems with efficient prover strategies. An interactive proof
(resp., argument) system for a language L is a pair of probabilistic polynomial-time interactive
algorithms P and V , satisfying the requirements of completeness and soundness. Informally, com-
pleteness requires that for any x ∈ L, at the end of the interaction between P and V , where P has
as input a valid witness for x ∈ L, V rejects with negligible probability. Soundness requires that for
any x 6∈ L, for any (resp., any polynomial-sized) circuit P ∗, at the end of the interaction between
P ∗ and V , V accepts with negligible probability. We denote by out(〈P (w), V 〉(x)) the output of
the verifier V when interacting on common input x with prover P that also receives as additional
input a witness w for x ∈ L. Moreover we denote by out(〈P ∗, V 〉(x)) the output of the verifier V
when interacting on common input x with an adversarial prover P ∗.

Formally, we have the following definition.

Definition 10. A pair of interactive algorithms 〈P (·), V (·)〉(·) is an interactive proof (resp., argu-
ment) system for the language L, if V runs in probabilistic polynomial-time and

1. Completeness: For every x ∈ L, |x| = n, and for every NP witness w for x ∈ L

Pr [out(〈P (w), V 〉(x) = 1] = 1.

2. Soundness (resp. computational soundness): For every (resp., every polynomial-sized) circuit
family {P ∗n}n∈N there exists a negligible function ε(·) such that

Pr [out(〈P ∗n , V 〉(x)) = 1] < ε(|x|).

for every x 6∈ L of size n.

32

Arguments of knowledge. Informally, an argument system is an argument of knowledge if for
any probabilistic polynomial-time interactive algorithm P ∗ there exists a probabilistic algorithm
called the extractor, such that 1) the expected running time of the extractor is polynomial-time
regardless of the success probability of P ∗; 2) if P ∗ has non-negligible probability of convincing
a honest verifier for proving that x ∈ L, where L is an NP language, then the extractor with
overwhelming probability outputs a valid witness for x ∈ L.

Zero knowledge. The classical notion of zero knowledge has been introduced in [GMR89]. In a
zero-knowledge argument system a prover can prove the validity of a statement to a verifier without
releasing any additional information. This concept is formalized by requiring the existence of an
expected polynomial-time algorithm, called the simulator, whose output is indistinguishable from
the view of the verifier.

Definition 11. An interactive argument system 〈P (·, ·), V (·)〉 for a language L is computational
(resp., statistical, perfect) zero-knowledge if for all polynomial-time verifiers V ∗, there exists an
expected polynomial-time algorithm S such that the following ensembles are computationally (resp.,
statistically, perfectly) indistinguishable:

viewV ∗((P (w), V ∗(z))(x))x∈L,w∈W (x),z∈{0,1}∗ and {S(x, z)}x∈L,z∈{0,1}∗ .

A.3 The UC Framework and the Ideal Functionalities

For simplicity, we define the two-party protocol syntax, and then informally review the two-party
UC-framework, which can be extended to the multi-party case. For more details, see [Can01].

Protocol syntax. Following [GMR89] and [Gol01], a protocol is represented as a system of
probabilistic interactive Turing machines (ITMs), where each ITM represents the program to be
run within a different party. Specifically, the input and output tapes model inputs and outputs that
are received from and given to other programs running on the same machine, and the communication
tapes model messages sent to and received from the network. Adversarial entities are also modeled
as ITMs.

The construction of a protocol in the UC-framework proceeds as follows: first, an ideal func-
tionality is defined, which is a “trusted party” that is guaranteed to accurately capture the desired
functionality. Then, the process of executing a protocol in the presence of an adversary and in a
given computational environment is formalized. This is called the real-life model. Finally, an ideal
process is considered, where the parties only interact with the ideal functionality, and not amongst
themselves. Informally, a protocol realizes an ideal functionality if running of the protocol amounts
to “emulating” the ideal process for that functionality.

Let Π = (P1, P2) be a protocol, and F be the ideal-functionality. We describe the ideal and real
world executions.

The real-life process. The real-life process consists of the two parties P1 and P2, the environ-
ment Z, and the adversary A. Adversary A can communicate with environment Z and can corrupt
any party. When A corrupts party Pi, it learns Pi’s entire internal state, and takes complete control
of Pi’s input/output behavior. The environment Z sets the parties’ initial inputs. Let REALΠ,A,Z

33

be the distribution ensemble that describes the environment’s output when protocol Π is run with
adversary A.

We also consider a G-hybrid model, where the real-world parties are additionally given access to
an ideal functionality G. During the execution of the protocol, the parties can send inputs to, and
receive outputs from, the functionality G. We will use REALGΠ,A,Z to denote the distribution of the
environment’s output in this hybrid execution.

The ideal process. The ideal process consists of two “dummy parties” P̂1 and P̂2, the ideal
functionality F , the environment Z, and the ideal world adversary Sim, called the simulator. In
the ideal world, the uncorrupted dummy parties obtain their inputs from environment Z and
simply hand them over to F . As in the real world, adversary Sim can corrupt any party. Once
it corrupts party P̂i, it learns P̂i’s input, and takes complete control of its input/output behavior.
Let IDEALFSim,Z be the distribution ensemble that describes the environment’s output in the ideal
process.

Definition 12. (UC-Realizing an Ideal Functionality) Let F be an ideal functionality, and Π be
a protocol. We say that Π UC-realizes F in the G-hybrid model if for any hybrid-model PPT
adversary A, there exists an ideal process expected PPT adversary Sim such that for every PPT
environment Z, it holds that:

{IDEALF ,Sim,Z(n, z)}n∈N,z∈{0,1}∗ ∼ {REALGΠ,A,Z(n, z)}n∈N,z∈{0,1}∗ (1)

Note that the above equation, says that in the ideal world, the simulator Sim has no access to the
ideal functionality G. However, when G is a set-up assumption, this is not necessarily true and the
simulator may have access to G even in the ideal world. Indeed, there exist different formulations
of the UC framework, capturing different requirements on the set-assumptions (e.g., [CDPW07,
BFSK11]). In [CDPW07] for example, the set-up assumption is global, which means that the
environment has direct access to the set-up functionality G. Hence, the simulator Sim needs to
have oracle access to G as well. In [BFSK11] they assume that Sim cannot simulate (program)
a PUF, and thus it needs access to the ideal functionality FPUF. [BFSK11] however restricts the
access of the environment to FPUF. Z has not permanent access to FPUF.

Oblivious Transfer Functionality. Oblivious Transfer (OT) is a two-party game in which a
sender holds a pair of strings (s0, s1), and a receiver needs to obtain one string according to its
input bit b. The transfer of the desired string is oblivious in the sense that the sender does not know
the string obtained by the receiver, while the receiver obtaining one string gains no information
about the other one. The OT Functionality FOT is shown in Fig. 8.

Commitment Functionality. The ideal functionality for Commitment Scheme as presented
in [CF01], is depicted in Fig. 9. Such definition captures the hiding and binding property defined
in Definition 7.

34

Functionality FOT

FOT running with an oblivious sender S a receiver R and an adversary Sim proceeds as follows:
• Upon receiving a message (send, sid, s0, s1, S,R) from S where each s0, s1 ∈ {0, 1}n, record

the tuple (sid,s0, s1) and send (send, sid) to R and Sim. Ignore any subsequent send mes-
sages.

• Upon receiving a message (receive, sid, b) from R, where b ∈ {0, 1} send (sid, sb) to R and
Sim and halt. (If no (send,·) message was previously sent do nothing).

Figure 8: The Oblivious Transfer Functionality FOT.

Functionality Fcom

Fcom running with parties P1, . . . , Pm and an adversary Sim proceeds as follows:
• Commitment Phase: Upon receiving a message (commit, sid, Pi, Pj , b) from Pi where
b ∈ {0, 1}, record the tuple (sid, Pi, Pj , b) and send the message (receipt, sid, Pi, Pj) to Pj
and Sim. Ignore any subsequent commit messages.

• Decommit Phase: Upon receiving (open,sid, Pi, Pj) from Pi, if the tuple (sid, Pi, Pj , b) is
recorded then send (open,sid, Pi, Pj , b) to Pj and to Sim and halt. Otherwise ignore the
message.

Figure 9: The Commitment Functionality Fcom.

A.4 Security in Presence of Malicious Adversary in the Stand-alone Model

In this paragraph we recall the definition of security in presence of malicious adversary in the stand-
alone model. The security in the stand-alone model is defined as a comparison of the output of two
experiments, the real-life experiment and the ideal process, as for the UC-model in Appendix A.3,
except that, in the stand-alone model there is no environment Z. In this weaker model, REALΠ,A is
defined as the output pair of the honest party and the adversary A from the real-life execution of Π
(instead of the real-time view of the environment Z), while IDEALFSim, is defined as the output pair
of the honest party and the ideal adversary Sim from the above ideal execution. In the following
definition for simplicity of notation, we use the same notation used for definition of UC-security.

Definition 13. (Security in presence of Malicious adversary in the Stand-alone Model). Let F
be an ideal functionality, and Π be a protocol. We say that Π securely computes F with abort
in presence of malicious adversary, if for any non-uniform adversary PPT A, there exists a non-
uniform PPT ideal process adversary Sim such that

IDEALFSim ∼ REALΠ,A

Stand-alone Secure Statistical Receiver Oblivious Transfer. A statistical receiver OT is
an Oblivious Transfer protocol in which the security of the receiver is preserved statistically, and
is one of the ingredients of our constructions: Comshext and Comequiv. One can obtain a statistical
receiver string OT protocol from any statistical sender bit OT protocol as follows. First, from bit
statistical sender OT obtain a bit statistical receiver OT, by applying the OT-reverse transformation
shown by Wolf and Wullschleger in [WW06]. Then, obtain string statistical receiver OT from bit

35

statistical receiver OT, by using the technique shown by Brassard et al. in [BCR86]. Finally note
that a construction for stand-alone statistical sender bit OT is provided by Lindell and Hazay
in [HL10] under the DDH assumption.

Alternatively, one can achieve OT statically secure for the receiver, by using the interactive
hashing technique introduced in [OVY93]. In [OVY93], interactive hashing is used to achieve
statistically hiding commitment scheme from any one-way permutation (OWP). The idea for com-
mitments is that, the sender picks an x, and sends to the receiver y = f(x), where f is a OWP.
Then sender and receiver engage in an interactive hashing phase, at the end of which they both
agree on values (y0, y1) such that y ∈ {y0, y1}, and from the receiver’s view, y is equally likely to be
any of the two strings. This is why hiding holds statistically. Finally, to commit, the sender sends
a bit d that is equal to b⊕ c where c is such that y = yc.

This idea can be used to implement statistical receiver OT as follows. Let b the input of the
OT receiver, and s0, s1 the inputs of the OT sender. First, we replace the OWP with a trapdoor
OWP. The sender of OT, chooses a trapdoor OWP f and sends it to the OT receiver. The OT
receiver picks a x, computes y = f(x) and sends it to the OT sender. They engage in an interactive
hashing, which output is the pair (y0, y1) as before. Let yc = y, as before, the OT receiver knows
xc = f−1(yc), and sends d = b ⊕ c to the sender. In the oblivious transfer phase, the sender
computes x0 = f−1(y0) and x1 = f−1(y1), and sends sd ⊕ xd and sd̄ ⊕ xd̄.

The above OT protocol is statistically secure for the receiver, for the same argument of the
statistically hiding commitment of [OVY93]. The security of the sender instead is preserved under
the assumption that f is a OWP.

In the rest of the paper we will write statistical receiver OT to refer to a stand-alone secure OT
protocol in which the security of the receiver is preserved statistically.

B Admissible PUF Families

The following formulation is adapted from [PW08].
Let G be an algorithm that takes as input a security parameter n and outputs a tuple G =

(p, 〈G〉, g), where p is a prime, 〈G〉 is the description of a cyclic multiplicative group G of order p,
and g is a generator of G.

Definition 14. Let G be as defined above, and let (Sample,Eval) be a PUF family. The tuple
(G, (Sample,Eval)) is called DDH-admissible if for every oracle PPT distinguisher D, for every
polynomial p(·), and for sufficiently large n,

∣∣∣Pr
[
DSample(·),Eval(·)(1n, (G, ga, gb, gab)) = 1

]
− Pr

[
DSample(·),Eval(·)(1n, (G, ga, gb, gc)) = 1

]∣∣∣ ≤ 1

p(n)
,

where G← G(1n) and a, b, c← Zp are uniform and independent.

For succinctness, we will often keep G implicit in our discussion, and refer to a PUF family for
which (G, (Sample,Eval)) is DDH-admissible simply as “admissible”.

C Sub-Protocols of Comuc

In this section we show the main ingredients of Protocol Comuc, i.e., Protocol Comshext and Protocol
Comequiv. For simplicity, in this section we use the following informal notation. We refer to a PUF

36

created by party A as PUFA, and we denote by v ← PUFA(q) the evaluation of the PUF PUFA on
challenge q. An example of the formal notation involving the invocation of the ideal functionality
FPUF is provided in Appendix F.

C.1 Statistically Hiding Straight-line Extractable Commitment Scheme

Let ComSH = (CSH,RSH) be a Statistically Hiding string commitment scheme, (SOT,ROT) be a
statistical receiver OT protocol (namely, an OT protocol where the receiver’s privacy is statistically
preserved). Let (P, V) be a Statistical Zero Knowledge Argument of Knowledge (SZKAoK) for
the following relation: Rcom = {(c, (s, d)) such that RSH(c, s, d) = 1}. A pictorial description of
protocol Comshext = (Cshext,Rshext) was given in Fig. 2. In Fig. 10 we provide the formal specification.

Committer’s Input: Bit b ∈ {0, 1}.
Commitment Phase

Rshext : Initialize PUFR.

1. obtain a0 ← PUFR(q0), a1 ← PUFR(q1), for (q0, q1)
$← {0, 1}n.

2. (st0, p0)← FuzGen(a0), (st1, p1)← FuzGen(a1).
3. handover PUFR to Cshext.

Rshext ⇔ Cshext : (Statistical OT phase)
〈SOT(q0, q1),ROT(b)〉 is run by Rshext as SOT with input (q0, q1), and Cshext as ROT with input
b. Let q′b be the local output of Cshext.

Cshext : a′b ← PUFR(q′b). If PUFR aborts, a′b
$← {0, 1}l.

Cshext ⇔ Rshext : (Statistically Hiding Commitment)
((c, d), c)← 〈CSH(com, a′b),RSH(recv)〉 is run by Cshext as CSH to commit to a′b, and by Rshext

as RSH.

Cshext ⇔ Rshext : (SZKAoK)
〈P (d, a′b), V 〉(c) is run by Cshext playing as prover P for the theorem (c, (c, d)) ∈ Rcom and
by Rshext playing as verifier V on input c. If the proof is not accepting, Rshext aborts.

Decommitment Phase

Cshext : if PUFR did not abort, send opening (d, a′b, b) to Rshext.

Rshext : if RSH(c, a′b, d) = 1 and FuzRep(a′b, pb) = stb then accept. Else reject.

Figure 10: Statistically Hiding Straight-Line Extractable Bit Commitment Scheme (Cshext,Rshext).

Theorem 4. If ComSH = (CSH,RSH) is a statistically-hiding commitment scheme, (SOT,ROT) is
a statistical receiver OT protocol and (P, V) is a SZKAoK, then Comshext is a statistically hiding
straight-line extractable bit commitment scheme in the malicious PUFs model.

37

Proof. Completeness. Before delivering its own PUF PUFR, Rshext queries it with a pair of
random challenges (q0, q1) and gets answers (a0, a1). To commit to a bit b, Cshext has to commit to
the output ab of PUFR.

By the completeness of the OT protocol, Cshext obtains the query qb corresponding to its secret
bit. Then Cshext queries PUFR with qb and commits to the response a′b running CSH. Furthermore,
Cshext proves using SZKAoK the knowledge of the opening. By the completeness of SZKAoK and
ComSH the commitment phase is concluded without aborts. In the opening phase, Cshext sends b
and opens the commitment to a′b, and Rshext checks whether the string a′b matches the answer ab
obtained by its own PUF applying the fuzzy extractor. By the response consistency property, Rshext

gets the correct answer and accept the decommitment for the bit b.

Statistically Hiding. We show that, for all R∗shext it holds that:

viewR∗shext(Cshext(com, 0),Rshext)
S≡ viewR∗shext(Cshext(com, 1),R∗shext).

This follows from the statistical security of the three sub-protocols run in the commitment phase
by Cshext. More specifically, recall that the view of R∗shext in the commitment phase consists of the
transcript of the execution of the OT protocol (SOT,ROT), the transcript of the Statistically Hiding
commitment scheme ComSH and the transcript of the execution of the SZKAoK protocol. The
proof goes by hybrids.

H0: In this hybrid the sender Cshext commits to bit 0. Namely, it plays the OT protocol with
the bit 0 to obtain q′0, then it queries the malicious PUF∗R to obtain a string a′0, then it
commits to a′0 executing CSH and finally it runs the honest prover P to prove knowledge of
the decommitment.

H1: In this hybrid, Cshext proceeds as in H0, except that it executes the zero knowledge protocol
by running the zero knowledge simulator S. By the statistical zero knowledge property of
(P, V), hybrids H0 and H1 are statistically indistinguishable.

H2: In this hybrid, Cshext proceeds as in H1, excepts that it runs CSH to commit to a random string
s instead of a′0. By the statistically hiding property of protocol ComSH, hybrids H1 and H2

are statistically indistinguishable.

H3: In this hybrid, Cshext proceeds as in H2, except that in OT protocol it plays with bit 1, obtaining
query q′1. By the receiver security of protocol (SOT,ROT), hybrids H2 and H3 are statistically
indistinguishable.

H4: In this hybrid, Cshext proceeds as in H3, except that here it queries the PUF with string q′1 to
obtain a′1 (however it still commits to the random string s). If the PUF∗R aborts, then Cshext

sets a′1 ← {0, 1}l. Note that any malicious behavior does not effect the transcript generated
in H4. Thus, hybrids H3 and H3 are identical.

H5: In this hybrid, Cshext proceeds as in H4 except that it commits to the string a′1. By the
statistically hiding property of protocol ComSH, hybrids H4 and H5 are statistically indistin-
guishable.

H6: In this hybrid, Cshext proceeds as in H5, except that it executes the zero knowledge protocol
running as the honest prover P . By the statistical zero knowledge property of (P, V), hybrids
H5 and H6 are statistically indistinguishable.

38

By observing that hybrid H0 corresponds to the case in which Cshext commits to 0 and hybrid
H6 corresponds to the case in which Cshext commits to 1, the hiding property is proved.
Straight-line Extractability. To prove extractability we show a straight-line strict polynomial-
time extractor E that satisfies the properties required by Definition 9. Recall that, in the com-
mitment scheme Comshext, the sender basically commits to the answer ab received from PUFR. By
the unpredictability of PUF, the sender needs to get the right query qb from Rshext in order to
obtain the value to commit to. Such qb is obliviously retrieved by Cshext running OT with the
bit b. The strategy of the extractor, that we show below, is very simple. It consists of running
the commitment phase as the honest receiver, and then looking at the queries made by C∗shext to
PUFR to detect which among q0, q1 has been asked and thus extract the bit. The extraction of
the bit fails when one of the following two cases happens. Case Fail1: the set of queries contains
both (q0, q1) (or at least a pair that is within their hamming distance); in this case E cannot tell
which is the bit played by C∗shext and therefore outputs ⊥. By the sender’s security of OT this
case happens only with negligible probability. Case Fail2: the set of queries does not contain any
query close (within hamming distance) to neither q0 nor q1. This is also a bad case since E cannot
extract any information. However, if there exists such a C∗shext that produces an accepting commit-
ment without querying the PUF in the commitment phase (but perhaps it makes queries in the
decommitment phase only) then, given that responses of honest PUFs are unpredictable, one can
break either the binding property of the underlying commitment scheme ComSH or the argument of
knowledge property of (P, V). The formal description of E is given below. Formal arguments follow.

Extractor E

Commitment Phase. Run the commitment phase following the honest receiver procedure. We
denote by (q0, q1) the queries made by the extractor E to the honest PUF before delivering it
to C∗shext. E uses such a pair when running as SOT in OT protocol. If all sub-protocols (OT,
ComSH,SZKAoK) are successfully completed go the extraction phase. Else, abort.

Extraction phase. Let Q be the set of queries asked by C∗shext to PUFR during the commitment
phase.

Fail1. If there exists a pair q′0, q
′
1 ∈ Q such that disham(q0, q

′
0) ≤ dmin and disham(q1, q

′
1) ≤ dmin,

output b? = ⊥.

Fail2. If for all q′ ∈ Q it holds that disham(q0, q
′) > dmin and disham(q1, q

′) > dmin, output
b? = ⊥.

Good. 1. If there exists q′ ∈ Q such that disham(q0, q
′) ≤ dmin then output b? = 0.

2. If there exists q′ ∈ Q such that disham(q1, q
′) ≤ dmin then output b? = 1.

The above extractor E satisfies the following three properties.
Simulation. E follows the procedure of the honest receiver Rshext. Thus the view of C∗shext playing
with E is identical to the view of C∗shext playing with Rshext.
Extraction. Let τc the transcript of the commitment phase. For the extraction property we have
to show that if τc is accepting, then the probability that E outputs ⊥ is negligible. Note that E
outputs ⊥ if and only if one of the event between Fail1 and Fail2 happens. Thus,

Pr [b? = ⊥] = Pr [Fail1] + Pr [Fail2]

39

In the following we show that, if τc is accepting, then Pr [b? = ⊥] is negligible by showing
separately that Pr [Fail1] and Pr [Fail2] are negligible.

Lemma 2 (Pr [Fail1] is negligible). If (SOT,ROT) is an Oblivious Transfer protocol, then Pr [Fail1]
is negligible.

Proof. Assume that there exists a PPT C∗shext such that event Fail1 happens with non-negligible
probability δ. Then it is possible to construct R∗OT that uses C∗shext to break the sender’s security
of the OT protocol. R∗OT interacts with an external OT sender SOT, on input auxiliary information
z = (s0, s1), while it runs C∗shext internally. R∗OT initializes and sends PUFR to C∗shext, then it runs the
OT protocol forwarding the messages received from the external sender SOT to C∗shext and vice versa.
When the OT protocol is completed, R∗OT continues the internal execution with C∗shext emulating the
honest receiver. When the commitment phase is successfully completed, R∗OT analyses the set Q of
queries made by C∗shext to PUFR. If there exists a pair (q′0, q

′
1) within hamming distance with strings

(s0, s1) then R∗OT outputs (s0, s1), therefore breaking the sender’s security of OT with probability
δ (indeed, there exists no simulator that can simulate such attack since in the ideal world Sim
gets only one input among (s0, s1)). Since by assumption (SOT,ROT) is a stand-alone secure OT
protocol, δ must be negligible.

Lemma 3 (Pr [Fail2] is negligible). Assume that τc is an accepting transcript. If ComSH =
(CSH,RSH) is a commitment scheme and if (P, V) is a SZKAoK then Pr [Fail2] is negligible.

Proof. If transcript τc is accepting then it holds that C∗shext in the decommitment phase will send a
tuple (b, d, a′b) for which, given τc, the receiver Rshext accepts, i.e., the opening (d) of the statistically
hiding commitment is valid and corresponds to an answer (a′b) of PUFR upon one of the queries
played by the Rshext in the OT protocol. Formally, RSH(c, a′b, d) = 1 and FuzRep(a′b, pb) = stb.

Toward a contradiction, assume that Pr [Fail2] = δ and is not-negligible. Recall that the event
Fail2 happens when C∗shext successfully completed the commitment phase, without querying PUFR
with any of (q0, q1). Given that τc is accepting, let (b, d, a′b) be an accepting decommitment, we
have the following cases:

1. C∗shext honestly committed to the correct a′b without having queried PUFR. By the unpre-
dictability of PUFR we have that this case has negligible probability to happen.

2. C∗shext queries PUFR in the decommitment phase to obtain the value a′b to be opened. Thus
C∗shext opens commitment c (sent in the commitment phase) as string a′b. We argue that by
the computational binding of ComSH and by the argument of knowledge property of (P, V)
this case also happens with negligible probability.
First, we show and adversary C∗SH that uses C∗shext as a black-box to break the binding of
the commitment scheme ComSH with probability δ. C∗SH runs C∗shext internally, simulating
the honest receiver Rshext to it, and forwarding only the messages belonging to ComSH to
an external receiver RSH, and vice versa. Let c denote the transcript of ComSH. When the
commitment phase of Comshext is successfully completed, and therefore C∗shext has provided an
accepting proof for the theorem (c, ·) ∈ Rcom, C∗SH runs the extractor EP associated to the
protocol (P, V). By the argument of knowledge property, EP , having oracle access to C∗shext,
extracts the witness (ãb, d̃) used by C∗shext to prove theorem c ∈ Rcom w.h.p. If the witness
extracted is not a valid decommitment of c, then C∗shext can be used to break the soundness
of (P, V).

40

Else, C∗SH proceeds to the decommitment phase, and as by hypothesis of Lemma 3, since the
commitment τc is accepting, C∗shext provides a valid opening (ab, d).
If (ãb, d̃) 6= (ab, d) are two valid openings for c then C∗SH outputs such tuple breaking the
binding property of ComSH with probability δ.
If (ãb, d̃) = (ab, d) with non-negligible probability, then consider the following analysis. By
assumption, event Fail2 happens when C∗shext does not query PUFR with none among (q0, q1).
By the unpredictability property, it holds that without querying the PUF, C∗shext cannot guess
the values ab, thus w.h.p. the commitment c played by C∗shext in the commitment phase, does
not hide the value ab. However, since the output of the extraction is a valid opening for
ab, then it must have been the case that in one of the rewinding attempts of the black-
box extractor EP , C∗shext has obtained ab by asking PUFR. Indeed, upon each rewind EP very
luckily changes the messages played by the verifier of the ZK protocol, and C∗shext could choose
the queries for PUFR adaptively on such messages. However, recalling that EP is run by C∗SH
to extract from C∗shext, C

∗
SH can avoid such failure by following this strategy: when a rewinding

thread leads C∗shext to ask the PUF with query qb, then abort such thread and start a new
one. By noticing that in the commitment phase, C∗shext did not query the PUF with qb, we
have that, by the argument of knowledge property of (P, V) this event happens again in the
rewinding threads w.h.p. Thus, by discarding the rewinding thread in which C∗shext asks for
query qb, C

∗
SH is still be able to extract the witness in polynomial time (again, if this was not

the case then one can use C∗shext to break the argument of knowledge property). With this
strategy, the event (ãb, d̃) = (ab, d) is ruled out.

Binding. Let b? = b0 the bit extracted by E, given the transcript τc. Assume that in the decom-
mitment phase C∗shext provides a valid opening of τc as b1 and b0 6= b1. If such an event happens,
the the following three events happened: 1) in the commitment phase C∗shext queried PUFR with
query qb0 only; 2) in decommitment phase C∗shext queried PUFR with qb1 , let ab1 be the answer;
3)C∗shext opens the commitment c (that is the commitment of the answer of PUFR received in the
commitment phase), as ab1 , but c was computed without knowledge of PUFR(qb1).

By the security of the OT protocol and by the computational binding of the commitment scheme
ComSH, the above cases happen with negligible probability. Formal arguments follow previous
discussions and are therefore omitted.

Lemma 4. Protocol Comshext is close under parallel repetition using the same PUF.

Sketch. The proof comes straightforwardly by the fact that all sub-protocols used in protocol
Comshext are close under parallel repetition. However, issues can arise when the same, possibly
malicious and stateful PUF, is reused. Note that, the output of the (malicious) PUF is statistically
hidden in the commitment phase and that it is revealed only in the decommitment phase. Thus,
any side information that is leaked by a dishonest PUF, cannot be used by the malicious creator,
before the decommitment phase. At the decommitment stage however, the input of the commit-
ter is already revealed, and no more information is therefore gained by the malicious party. We
stress out that re-usability is possible only when many instances of Comshext are run in parallel, i.e.,
only when all decommitment happen simultaneously. If decommitment phases are interleaved with
commitment phase of other sessions, then reusing the same PUF, allow the malicious creator to
gain information about sessions that are not open yet. To see why, let i and j be two concurrent
executions. Assume that the commitment of i and j is done in parallel but session j is decommitted

41

before session i. Then, a malicious PUF can send information on the bit committed in the session
i through the string sent back for the decommitment of j.

Statistically Hiding Straight-line Extractable String Commitment Scheme. We obtain statistically
hiding straight-line extractable string commitment scheme, for n-bit string, by running n execution
of Comshext in parallel and reusing the same PUF. In the main protocol shown in Figure 4 we use
the same notation Comshext to refer to a string commitment scheme.

C.2 Statistically Binding Straight-line Extractable and Equivocal Commitment
Scheme

Let l = rg(n) be the range of the PUF, (SOT,ROT) be a statistical receiver OT protocol and let
G : {0, 1}n → {0, 1}3n be a PRG. The commitment scheme that we present, takes as common input
a string r̄ = r1, . . . , rl, that is uniformly chosen in the set ({0, 1}3n)l. This string can be seen as l
distinct parameters for Naor’s commitment, and indeed it is used to commit bit-by-bit to an l-bit
string (i.e., the answer received from the PUF). Our statistically binding straight-line extractable
and equivocal commitment scheme Comequiv = (Cequiv,Requiv) is depicted in Fig. 11. A graphical
representation was provided in Fig. 3.

Theorem 5. If G is a PRG and (SOT,ROT) is statistical receiver OT protocol, then Comequiv =
(Cequiv,Requiv) is a statistically binding straight-line extractable and equivocal commitment scheme
in the malicious PUFs model.

Proof. Completeness. It follows from the completeness of the OT protocol, the correctness of
Naor’s commitment and the response consistency property of PUFs with fuzzy extractors. To
commit to the bit b, the sender Cequiv is required to commit to the answer of PUFR on input qb.
Therefore, Cequiv runs the OT protocol with input b and obtains the query qb and thus the value
to commit to using Naor’s commitments. The correctness of OT guarantees that the consistency
check performed by Cequiv goes through. In the decommitment phase, the response consistency
property along with correctness of Naor, allow the receiver Requiv to obtain the string ab and in
therefore the bit decommitted to by Cequiv.

Straight-line Extractability.
Extractor E

Commitment Phase. Run the commitment phase following the honest receiver procedure: E
queries PUFR with (q0, q1) before delivering it to C∗equiv, and uses such a pair when running as
SOT in OT protocol. If OT protocol is not successfully completed then abort. Else, let Qprecom

be the set of queries asked by C∗equiv to PUFR before sending the commitments c1, . . . , cl to E.
Upon receiving such commitments, do as follows:

Fail1. If there exists a pair q′0, q
′
1 ∈ Qprecom such that disham(q0, q

′
0) ≤ dmin and disham(q1, q

′
1) ≤

dmin, output b? = ⊥.

Fail2. If for all q′ ∈ Qprecom it holds that disham(q0, q
′) > dmin and disham(q1, q

′) > dmin, output
b? = ⊥.

Good. 1. If there exists q′ ∈ Qprecom such that disham(q0, q
′) ≤ dmin then output b? = 0;

2. If there exists q′ ∈ Qprecom such that disham(q1, q
′) ≤ dmin then output b? = 1;

42

Committer’s Input: Bit b ∈ {0, 1}. Common Input: r̄ = (r1, . . . , rl)
Commitment Phase

Requiv : Initialize PUFR;

1. obtain a0 ← PUFR(q0), a1 ← PUFR(q1), for (q0, q1)
$← {0, 1}n.

2. (st0, p0)← FuzGen(a0), (st1, p1)← FuzGen(a1).
3. handover PUFR to Cequiv;

4. choose random tape ranOT
$← {0, 1}∗.

Requiv ⇔ Cequiv : (OT phase)
〈SOT(q0, q1),ROT(b)〉 is run by Requiv as SOT with input (q0, q1) and randomness ranOT, while
Cequiv runs as ROT with input b. Let q′b be the local output of Cequiv, and τOT be the transcript
of the execution of the OT protocol.

Cequiv:(Statistically Binding Commitment)

1. a′b ← PUFR(q′b). If PUFR aborts, a′b
$← {0, 1}l.

2. for 1 ≤ i ≤ l, pick si
$← {0, 1}n, ci = G(si)⊕ (ri ∧ a′b[i]). a

3. send c1, . . . , cl to Requiv.

Requiv: upon receiving c1, . . . , cl, send ranOT, q0, q1 to Cequiv.

Cequiv: check if transcript τOT is consistent with (ranOT, q0, q1, b). If the check fails abort.

Decommitment Phase

Cequiv : if PUFR did not abort, send ((s1, . . . , sl), a
′
b), b to Rshext.

Requiv : if for all i, it holds that (ci = G(si) ⊕ (ri ∧ a′b[i]) and FuzRep(a′b, pb) = stb) then accept.
Else reject.

awhere (ri ∧ a′b[i])j = ri[j] ∧ a′b[i].

Figure 11: Statistically Binding Straight-line Extractable and Equivocal Commitment
(Cequiv,Requiv).

Finally sends ranOT, q0, q1 to C∗equiv.
Simulation. E follows the procedure of the honest receiver Requiv. Thus the view of C∗equiv playing
with E is identical to the view of C∗equiv playing with Requiv.
Extraction. The proof of extraction follows from the same arguments shown in the proof of
Theorem 4, and it is simpler since in protocol Comequiv we use statistically binding commitments
(given that the common parameter r̄ is uniformly chosen).

Let τc the transcript of the commitment phase. For the extraction property we have to show
that if τc is accepting, then the probability that E outputs ⊥ is negligible. Note that E outputs ⊥
if and only if one event between Fail1 and Fail2 happens. Thus,

Pr [b? = ⊥] = Pr [Fail1] + Pr [Fail2]

43

By the sender’s security property of the OT protocol, event Fail1 happens with negligible
probability. The formal proof follows the same arguments given in Lemma 2. Given that the
common parameter r̄ is uniformly chosen, we have that the Naor’s commitments (i.e., c1, . . . , cl)
sent by C∗equiv in the commitment phase, are statistically binding. Thus, by the unpredictability
property of PUFs and the by the statistically binding property of Naor’s commitment scheme, event
Fail2 also happens with negligible probability only.
Binding. Given that the common input r̄ is uniformly chosen, binding of Comequiv follows from
the statistically binding property of Naor’s commitment scheme.
Straight-line Equivocality. In the following we show a straight-line simulator S = (S1,S2,S3)
and we prove that the view generated by the interaction between S and R∗equiv is computationally
indistinguishable from the view generated by the interaction between Cequiv and R∗equiv.

S1. (r̄ = r1, . . . , rl, state1)← S1(1ln):
For i = 1, . . . , l.

1. pick si0 ← {0, 1}n, αi0 ← G(si0);
2. pick si1 ← {0, 1}n, αi1 ← G(si1);
3. ri = αi0 ⊕ αi1.

Output r1, . . . , rl, state1 = {si0, si1}i∈l;

S2. (state2)← S2(state1):

- obtain PUF∗R from R∗equiv.

- run OT protocol with input a random bit b̃; if the OT protocol is not successfully com-
pleted, abort.

- computes commitments as follows: for i = 1, . . . , l, c̃i ← G(si0). Send c̃1, . . . , c̃l to R∗equiv.
- Obtain (ranOT, q

′
0, q
′
1) from R∗equiv and check if the transcript τOT is consistent with it. If

the check fails, abort. Else, output state2 = {state1, (q
′
0, q
′
1)}.

S3. S3(state2, b):

- query PUF∗R with input q′b. If PUF∗R aborts, abort. Otherwise, let a′b denote the answer of
PUF∗R.

- for i = 1, . . . , l: send (siab[i], ab[i]) to R∗equiv.

Lemma 5. If (SOT,ROT) is a statistical receiver OT protocol and G is a pseudo-random generator,

then for all PPT R∗equiv it holds that, {out(Exp
Cequiv

R∗equiv
(n))} C≡ out{(ExpSR∗equiv

(n)}.

Proof. The proof goes by hybrids arguments.

H0. This is the real world experiment Exp
Cequiv

R∗equiv
.

H1. In this hybrid the common parameter r̄ is chosen running algorithm S1. The only difference
between experiment H0 and H1 is in the fact that in H1 each string ri ∈ r̄ is pseudo-random.
By the pseudo-randomness of PRG H0 and H1 are computationally indistinguishable.

H2. In this hybrid, the commitments c1, . . . , cl are computed as in S2, that is, for all i, ci corresponds
to an evaluation of the PRG i.e., ci = G(si0), regardless of the bit that is committed. Then
in the decommitment phase the sender uses knowledge of si1, in case the i-th commitment

44

of a′b is the bit 1. (Each pair (si0, s
i
1) is inherited from the output of S1). The difference

between experiment H1 and experiment H2 is in the fact that in H2 all commitments are
pseudo-random, while in H1, pseudo-random values are used only to commit to bit 0. By the
pseudo-randomness of PRG, experiments H1 and H2 are computationally indistinguishable.
Note that in this experiment, the sender is not actually committing to the output obtained
by querying PUF∗R.

H3. In this experiment the sender queries PUF∗R on input qb only in the decommitment phase. The
only difference between this experiment and the previous one is that in H3, the sender is able
to detect if PUF∗R aborts, only in the decommitment phase. However, in experiment H2, if
the PUF aborts, the sender continues the execution of the commitment phase, committing to
a random string, ad aborts only in the decommitment phase. Therefore, hybrids H2 and H3

are identical.

H4. In this experiment, the sender executes the OT protocol with a random bit b̃, obtaining qb̃,
but it does not use such a query to evaluate PUF∗R. Instead it uses the string q′b received from
R∗equiv in the last round of the commitment phase.

We stress out that, due to the correctness of the OT protocol and to the statistical receiver’s
security, the case in which R∗equiv plays the OT protocol with a pair (qb, qb̄) and then is able
to compute randomness ranOT and a different pair ((q′b, qb̄) that are still consistent with the
transcript obtained in the OT execution, is statistically impossible . By the statistical receiver
security of the OT protocol, H3 and H4 are statistically indistinguishable.

H5. This is the ideal world experiment ExpSR∗equiv
.

D Proof of Theorem 1

In this section we show that protocol Comuc = (Cuc,Ruc) depicted in Figure 4 is UC-secure, by
showing a PPT ideal world adversary Sim such that for all PPT environment Z, the view of the
environment in the ideal process is indistinguishable from the view of the environment in the real
process, in the FPUF hybrid model. Due to the straight-line extractability of Comshext and to the
straight-line extractability and equivocality of Comequiv, showing such a simulator Sim is almost
straightforward.

Receiver is corrupt. Let R∗uc a malicious receiver. We show a PPT simulator Sim whose output is
computational indistinguishable from the output obtained by R∗uc when interacting with the honest
committer Cuc. The goal of Sim is to use the straight-line equivocator S = (S1,S2,S3) associated
to protocol Comequiv. To accomplish that, Sim has to force the output of the coin flipping, to the
parameter generated by S1. Once this is done, then Sim can use S2 to complete the commitment
phase, and S3 to equivocate the commitment. In order to force the output of the coin flipping, Sim
extracts the commitment of α sent by R∗uc so that it can compute β appropriately. The extraction
is done by running the extractor ECshext

associated to the protocol Comshext.

45

Simulator 1.

Commitment Phase

- Run (r̄, state1)← S1(1ln).
- Execute protocol Comshext by running the associated extractor ECshext

. If the output of the
extractor is ⊥, then abort. Else, let α? be the string extracted by ECshext

. Set β = r̄⊕α?,
and send β to R∗uc. If R∗uc aborts, then abort.

- When receiving the opening to α from R∗uc, if the opening is not accepting, or if α 6= α?

then abort.
- Execute the commitment phase of protocol Comequiv, on common input α ⊕ β = r̄, by

running S2(state1), and obtain state2 as local output.

Decommitment Phase

- On input the bit b. Execute the decommitment phase of protocol Comequiv by running
S3(state2, b).

- Output whatever Ruc outputs.

Lemma 6. For all PPT real-world malicious receiver R∗uc, for all PPT adversary Z, it holds that:

IDEALFcom
Sim,Z ∼ REALFPUF

Comuc,R∗uc,Z

Proof. It follows from the straight-line extractability of Comshext and from the straight-line equiv-
ocality of Comequiv.

By the straight-line extractability of Comshext it holds that, with overwhelming probability, Sim
obtains the value α? that will be later opened by R∗uc, before it has to send the message β. Hence,
Sim is able to force the output of the coin flipping to the value determined by S1. Then Sim
just runs the simulator S2 in the commitment phase, and S3 in the decommitment phase. By the
straight-line equivocality property of Comequiv the view generated by the interaction between R∗uc
and Sim is computationally indistinguishable from the view generated by the interaction between
R∗uc and an honest sender Cuc.

Receiver and Committer are honest. In this case, Z feeds the parties with their inputs, and
activates the dummy adversary A. A does not corrupt any party, but just observes the conversation
between the committer and the receiver, forwarding every message to Z.

In this case the simulator is almost equal to the simulator shown in Simulator 1 (when the
receiver is corrupt). The only difference in this case is that, the receiver is also simulated by Sim.
Therefore, Sim chooses both the strings used in the coin flipping by himself (α, β). Thus, there is
no need for extraction.

More specifically, upon receiving the message (receipt, sid, Pi,Cuc) from Fcom in the ideal world,
Sim draws a random tape to simulate the receiver, and runs the commitment phase as in Simulator 1,
except for the second step. Instead of using the extractor associated to Comshext run by the receiver,
Sim just picks values α and β so that r̄ = β ⊕ α (where r̄ is the value given in output by S1), and
continues the commitment phase using such values. The decommitment phase is run identically to
the decommitment phase of Simulator 1.

From the same argument of the previous case, the transcript provided by Sim is indistinguish-
able from the transcript provided by the dummy adversary A running with honest sender and

46

receiver.

Committer is corrupt. In this case, the task of Sim is to extract the bit of the malicious
committer C∗uc already in the commitment phase. This task is easily accomplished by running
the straight-line extractor Eequiv associated to protocol Comequiv. However, note that the binding
property and thus the extractability property hold only when the common parameter r̄ is uniformly
chosen, while in protocol Comuc the common parameter is dictated by the coin flipping.

However, by the statistically hiding property of Comshext, any unbounded adversary can not
guess α better than guessing at random. Therefore for any C∗uc the distribution of α⊕β is uniformly
chosen over {0, 1}3nl, and thus the statistically binding property of Comequiv still holds.

Commitment Phase

- Pick a random αln and executes Comshext as the honest receiver.
- Obtain β from C∗uc and let r = α⊕ β.
- Execute protocol Comequiv by running the associated extractor Eequiv. If the extractor

aborts, abort. Else, let b? the output of Eequiv. Send (commit, sid,Cequiv,Requiv, b
?) to

Fcom

Lemma 7. For all PPT real-world malicious committer C∗uc, for all PPT adversary Z, it holds
that:

IDEALFcom
Sim,Z ∼ REALFPUF

Comuc,C∗uc,Z

Proof. As mentioned before, the common input r̄ computed through the coin-flipping, is uniformly
distributed. Therefore the binding and the extractability property of Comequiv hold. The simulator
runs protocol Comshext following the honest receiver, and runs the protocol Comequiv activating
the straight-line extractor associated. By the simulation property of the extractor, the transcript
generated by Sim is indistinguishable from the transcript generated by the honest receiver Ruc.
From the extraction property satisfied by Eequiv, we have that Sim extracts the input bit of the
adversary C∗uc and plays it in the ideal functionality, w.h.p.

E Proof of Theorem 2

In the discussion below, we construct oblivious query simulators for various adversaries. Recall
that an oblivious query simulator is a pair of algorithms (S1, S2), where S1 acts as a wrapper, and
runs S2 internally. Since the behaviour of S1 is fixed, in the discussion below, by “simulator” we
will mean the algorithm S2.

Correctness. Consider the case when the receiver’s input bit b is 0. The other case follows from
a similar argument. If both parties are honest, then it follows from the bounded noise and response
consistency properties that the protocol does not abort in the cut-and-choose phase. Let i be an
index that survives cut-and-choose, that is, i /∈ S. Let qi, ai, bi be the query, response and random
bit chosen for index i by the receiver, as defined in the protocol. Consider Step 5 of the protocol:
note that the q̂is computed by the sender are such that q̂bii = qi. Thus, m0

i = s0
i ⊕ stbi , where

stbi is the output of the fuzzy extractor applied to the response of qi. From the reconstruction

47

information pbii , the receiver can compute stbii , and thus obtain the correct s0
i . In this way, receiver

obtains all the correct shares, and can reconstruct s0.

Malicious Sender. The simulator runs the protocol honestly with receiver’s input bit as 0.
However, it makes additional queries to learn the responses of both q0

ij
and q1

ij
from Step 5 of the

protocol. Thus, it can compute both st0ij and st1ij and extract both the strings s0 and s1.

Malicious Receiver. The simulator SimuncOT starts an internal interaction with adversary R∗uncOT

and proceeds as follows:

1. SimuncOT plays the part of the sender and executes Steps 1-3 (i.e., till the end of cut-and-
choose) of the protocol honestly with R∗uncOT. Note that up to this point, sender’s messages
do not depend on its input, so the simulator can reproduce this execution perfectly.

2. Let i1, . . . , ik be the indices not in S. The simulator receives bits b′i1 , . . . , b
′
ik

from the adver-
sary, and for 1 ≤ j ≤ k, does the following:

• query PUF sidSij with dij and obtain response daij .

• compute dstij ← FuzRep(dpij , daij).

• compute cij = b′ij ⊕ Parity(dstij).

3. SimuncOT sets bit ĉ to the majority of ci1 , . . . , cik (ties are broken arbitrarily).

4. Simulator SimuncOT queries the ideal functionality with bit ĉ and obtains a string s. It chooses
a random string ŝ ∈ {0, 1}n and sets sĉ = s and s1−ĉ = ŝ. Then it runs Step 5 of the protocol
with the pair (s0, s1).

We first prove that for each 1 ≤ j ≤ k, the receiver knows only one of st0ij and st1ij . This
already implies that the adversary learns only one of the sender’s strings, while the other one
remains information-theoretically hidden. However, we must show that the adversary learns the
same string in both the real and ideal worlds - it should not be the case that in the real execution,
the adversary gets sc, while in the simulation it gets s1−c. We show that if the cut-and-choose
succeeds, then with high probability the simulator extracts the correct bit.

Let Q be the set of queries the adversary makes to PUF sidR. For a query q, we say “Q covers
q” if there exists q′ ∈ Q such that dis(q, q′) < dmin. The proof of the following claim appears in
Appendix A of [BFSK11], and we sketch it here for completeness.

Claim 1 (from [BFSK11]). For all j ∈ [k], with overwhelming probability, Q covers at most one of
q̂0
ij

and q̂1
ij

.

Proof. We first show that for a particular q′ ∈ Q, it can not be the case that both dis(q′, q̂0
ij

) < dmin

and dis(q′, q̂1
ij

) < dmin. Indeed, this would imply dis(x0
ij
, x1

ij
) < 2dmin, which happens with negligible

probability due to the well-spread domain property. The second case to consider is when two
different queries in Q say q′ and q′′ are close to q̂0

ij
and q̂1

ij
. That is, dis(q′, q̂0

ij
) < dmin and

dis(q′′, q̂1
ij

) < dmin. However, this implies that dis(x0
ij
⊕ x1

ij
, q′ ⊕ q′′) < 2dmin. As the size of Q is

polynomial in the security parameter, and x0
ij

and x1
ij

are chosen randomly, the probability of this

happening is negligible. Thus, Q covers both q̂0
ij

and q̂1
ij

with negligible probability.

48

Fix receiver’s message in Step 3(b). For 1 ≤ i ≤ 2k, set b̂i = 0 if Q covers q̂0
i , else set

b̂i = 1 if Q covers q̂1
i , else let b̂i =⊥. Let dai be response of query di to PUF sidSi . We call an

index i ∈ [2k] “bad” if b̂i 6= Parity(FuzRep(dai, dpi)). Let η be the number of bad indices , i.e.,
η = |{ i ∈ [2k] | i is bad. }|. We bound the probability that the cut-and-choose succeeds and η ≥ γ,
for some parameter γ. This probability is upper bounded by the probability that cut-and-choose
succeeds given η ≥ γ. This probability, in turn, can be computed by counting the number of subsets
of size k that do not contain any of the γ bad indices. Thus, this probability is:

(
2k−γ
k

)(
2k
k

) =
(2k − γ)!

(k − γ)!

k!

(2k)!

=
k(k − 1) · · · (k − (γ − 1))

(2k)(2k − 1) · · · (2k − (γ − 1))

=

(
1− k

2k

)(
1− k

2k − 1

)
· · ·
(

1− k

2k − (γ − 1)

)
≤ e

−k
(

1
2k

+ 1
2k−1

+···+ 1
2k−(γ−1)

)
< e−γ/2.

Setting γ = k/10, we get that the probability that the cut-and-choose succeeds and η ≥ k/10
is at most e−k/20.

Now condition on the event that the cut-and-choose succeeds and the number of bad indices
is less than k/10. Let the bit ĉ extracted by the simulator in Step 3 be 0 (the case when ĉ = 1
is handled analogously). We will argue that in the real execution, s1 is information theoretically
hidden from the receiver. As the number of zeros in the sequence ci1 , . . . , cik is more than k/2,
and then number of bad indices in [2k] is at most k/10, there must exist an index ij such that (1)
cij = 0 and, (2) ij is not bad. In fact, there will be a large number of such indices. Fix such an
index ij . Observe the following:

• Let ρ = Parity(FuzRep(daij , dpij)). As ij is not bad, we have that Q covers qρij , and not q1−ρ
ij

.

• As cij = 0, we have b′ij = ρ.

In the real execution, the sender prepares the message m1
ij

= s1
j ⊕ st

1−b′j
ij

= s1
j ⊕ st1−ρij

. As q1−ρ
ij

is not covered by Q, we have that in the real execution, st1−ρij
is information-theoretically hidden

from the adversary, which implies that the share s1
j is hidden, which in turn implies that s1 is

information-theoretically hidden.

The Honest-Honest Case. Now we handle the case when the adversary does not corrupt either
of the parties. The simulator in this case is very simple: it mimics an honest execution between
SuncOT with both inputs set to 0n, and RuncOT with input bit 0. Let τ(s0, s1, b) be the adversary’s
view during an honest execution of (SuncOT,RuncOT) with sender inputs (s0, s1), and receiver’s input
b (note that τ consists of the transcript of interaction between the honest sender and receiver, along
with the PUF challenge-response pairs the adversary obtains during handover of various PUFs). To
show correctness of simulation, we will argue that for every (s0, s1, b), the distributions τ(s0, s1, b)
and τ(0n, 0n, 0) are statistically close.

49

The argument goes via a hybrid argument. The first hybrid is τ(s0, s1, b). In the second hybrid,
we change receiver’s input to 0, i.e., the second hybrid is τ(s0, s1, 0). The only message in the
transcript where b is used in Step 4 of the protocol, where the receiver sends the correction bits b′ij .

Let Q1 be the set of queries the adversary makes to the PUFs sidS1 , . . . , sid
S
2k during handoverPUF

in Step 1 of the protocol. As the receiver uniformly chooses queries di for 1 ≤ i ≤ 2k after the
handover is complete, the probability that Q1 covers any di is negligible. Thus, the bits b′ij are

uniform and distributed independently of b. Therefore, τ(s0, s1, b) and τ(s0, s1, 0) are statistically
close.

In the third hybrid, we replace the sender’s inputs with 0n, i.e., the third hybrid is τ(0n, 0n, 0).
Let Q2 be the set of queries that the adversary makes to the PUF sidR during the handoverPUF in
Step 2 of the protocol. Again, as q1, . . . , q2k are chosen uniformly by the receiver, the probability
that Q2 covers any one of q1, . . . , q2k is negligible. Further, as (x0

i , x
1
i) are also chosen uniformly,

this implies that Q2 covers any of (q̂0
ij
, q̂1
ij

) with negligible probability. Thus, the distribution of

the final message is independent of the sender’s inputs. Therefore, τ(s0, s1, 0) and τ(0n, 0n, 0) are
statistically close.

The Malicious-Malicious Case. If the adversary corrupts both the parties, then the simulator
simply acts as a wire between the adversary and the environment. In this case, the simulation is
perfect.

F On Unconditional Security with Malicious PUFs

In this section we prove the security of the unconditional commitment scheme in Figure 6. Com-
pleteness of protocol (Cuncon,Runcon) follows from response consistency. We focus on hiding and
binding properties.

Lemma 8 (Hiding). For any malicious receiver R∗uncon, the statistical difference between the en-
sembles

{ viewR∗(C(com, 0),R∗(recv))(1n) }n∈N and { viewR∗(C(com, 1),R∗(recv))(1n)) }n∈N
is negligible in n.

Proof. Let Q be the set of queries that the receiver R∗ makes to the committer’s PUF sid and let
q be the query made by the committer before sending the PUF sid. First consider the case that
there exists q′ ∈ Q such that dis(q′, q) < dmin. As the receiver is polynomially bounded, the number
of queries in Q is a polynomial, say p(n). The total number of queries within a distance dmin of
queries in Q can be bounded by p(n)ndmin(n), which is a negligible fraction of 2n. Thus, this event
happens with negligible probability.

Now consider the case that q /∈ Q. By the extraction independence property, st is statistically
close to the uniform distribution, U`. As, for any string r, the distributions U` and r ⊕ U` are
identical, thus it follows from transitivity that the distributions st and st⊕ r are statistically close.

We now turn to the binding property. The proof follows a similar path as in the proof of sta-
tistical binding in Naor’s commitment [Nao89]. Informally15, Naor’s argument counts the number

15The following assumes familiarity with Naor’s commitment scheme [Nao89].

50

of ‘bad’ strings in the range of the PRG. These are the strings r in the range of a PRG G(·) for
which there exist two seeds s0, s1 such that r = G(s0) ⊕ G(s1). For these strings r, equivocation
is possible. But because of the expansion property of PRG, the number of bad strings is small.
Similarly, in our proof of binding, we use the fact that we have set the parameters of the PUF
family and fuzzy extractor such that ` = 3n. We use the same arguments to define ‘bad’ strings
and show that because of expansion, their number is bounded. Care has to be taken to handle the
fact that the output of the PUF is noisy.

Lemma 9 (Binding). For any malicious committer C∗uncon, the probability that it wins in the binding
game of Definition 7 is negligible in n.

Proof. Recall that we have chosen the parameters of the PUF family and fuzzy extractor such that
` = 3n. We can think of the adversary choosing the malicious PUF as picking a set of distributions
Dq1 , . . . ,DqN , where N = 2n. For a fixed p, call a string st ∈ {0, 1}` “heavy” if there exists query

q such that Pr [FuzRep(p,Dq) = st] ≥ 2− log2(n).
Now we will show that the probability of the adversary breaking the binding is negligible. For

a fixed first message of the malicious committer, call a string r ∈ {0, 1}` ‘bad’ if the probability
that the adversary breaks binding on receiving r in the second step of the protocol is at least
2−2 log2(n). For this to happen, it must be the case that there exist heavy strings st0 and st1 such
that r = st0 ⊕ st1. Thus, to bound the number of bad strings in {0, 1}`, we simply need to bound
the number of pairs of heavy strings. By the definition of heavy string, each query can produce at
most 2 log2(n) heavy strings for one PUF. As the total number of queries is 2n, the total number of
pairs of heavy strings is bounded by 22(n+ log2(n)), which is a negligible fraction of 23n.

G The Brzuska et.al. [BFSK11] Ideal Functionality FhPUF

H Allowing Adversary to Create PUFs

In this section, we explain why it is crucial for the UC-composition theorem to allow the adversary
to create PUFs of its own. We begin by sketching the proof of the UC composition theorem from
Section 5.2, [Can01]. Those familiar with the proof of the composition theorem can skip to the end
of this section.

We say that a protocol ρ “UC-emulates” a protocol φ if there exists an adversary S such that
no environment can tell whether it is interacting with ρ and the dummy adversary, or φ and S.
That is for every environment Z,

REALρ,D,Z ∼ REALφ,S,Z ,

where D is a dummy adversary. Let π, ρ, φ be protocols, where π may call φ as a sub-routine. By
πρ/φ we denote the protocol which is the same as π, except that each call to φ is replaced by a call
to ρ.

The UC composition theorem [Can01] states that if ρ UC emulates φ, then πρ/φ UC emulates
π. The proof of the composition theorem goes as follows: we need to show that there exists an
adversary Sπ such that for every environment Z,

51

FPUF(rg, dnoise, dmin,m) receives as initial input a security parameter 1n and runs with parties
P1, . . . , Pn and adversary S.
• When a party Pi writes (initPUF, sid, Pi) on the input tape of FPUF, then FPUF checks whether
L already contains a tuple (sid, ∗, ∗, ∗, ∗):

- If this is the case, then turn into the waiting state.
- Else, draw id ← Sample(1n) from the PUF-family. Put (sid, id, Pi, ∗, notrans) in L and

write (initializedPUF, sid) on the communication tape of Pi.
• When party Pi writes (evalPUF, sid, Pi, q) on FPUF’s input tape, check if there exists a tuple

(sid, id, Pi, notrans) in L.
- If not, then turn into waiting state.
- Else, run a ← Eval(1n, id, q). Write (responsePUF, sid, q, a) on Pi’s communication input

tape.
• When a party Pi sends (handoverPUF, sid, Pi, Pj) to FPUF, check if there exists a tuple

(sid, ∗, Pi, notrans) in L.
- If not, then turn into waiting state.
- Else, modify the tuple (sid, id, Pi, notrans) to the updated tuple (sid, id,⊥, trans(Pj)).

Write (invokePUF, sid, Pi, Pj) on S’s communication input tape.
• When the adversary sends (evalPUF, sid,S, q) to FPUF, check if L contains a tuple

(sid, id,⊥, trans(∗)).
- If not, then turn into waiting state.
- Else, run a← Eval(1n, id, q) and return (responsePUF, sid, q, a) to S.

• When S sends (readyPUF, sid,S) to FPUF, check if L contains the tuple (sid, id,⊥, trans(Pj)).
- If not found, turn into the waiting state.
- Else, change the tuple (sid, id,⊥, trans(Pj)) to (sid, id, Pj , notrans) and write

(handoverPUF, sid, Pi) on Pj ’s communication input tape and store the tuple
(receivedPUF, sid, Pi).

• When the adversary sends (receivedPUF, sid, Pi) to FPUF, check if the tuple
(receivedPUF, sid, Pi) exists in L. If not, return to the waiting state. Else, write this
tuple to the communication input tape of Pi.

Figure 12: The ideal functionality FhPUF from Brzuska et.al. [BFSK11] .

52

REAL
πρ/φ,D,Z ∼ REALπ,Sπ ,Z .

Let S be the adversary that follows from the fact the ρ UC emulates φ. We now outline the
construction of adversary Sπ that uses S. Adversary Sπ divides the messages into two parts: those
that belong to an execution of ρ, and those that belong to execution of the rest of π. The adversary
Sπ handles the messages pertaining to ρ by passing them to an instance of the adversary S. For
the messages of π that don’t belong to ρ, adversary Sπ simply passes them to the parties they are
intended for.

To see the correctness of the above construction, assume that there exists an environment Z
that distinguishes between πρ/φ with a dummy adversary, and π with Sπ as the adversary. We will
construct an environment Zρ that distinguishes between ρ with the dummy adversary and φ with
the adversary S. This is a contradiction, as ρ UC-emulates φ.

The environment Zρ internally runs an execution of Z, Sπ and all the parties of π. It faithfully
follows the actions of these parties except for messages concerning the sub-protocol φ, for which it
uses the actual external parties (which are either running an instance of φ, or an instance of ρ). In
particular, whenever an internal party of π generates an input for an instance of ρ, the environment
Zρ passes that input to the external party. Similarly, any output sent by an external party to Zρ
is treated as an output of φ. Further, any message sent by Sπ to a simulator S is forwarded by Zρ
to the external adversary, and the response of the external adversary is conveyed to Sπ as though
it was sent by S. Finally, the environment Zρ outputs whatever Z outputs.

Now, note that if the external parties are running ρ with the dummy adversary, then the view of
the simulated environment Z is identical to REAL

πρ/φ,D,Z . On the other hand, if the external parties
are running φ with S, then the view of the simulated environment Z is identical to REALπ,Sπ ,Z .
This implies that REALρ,D,Zρ and REALφ,S,Zρ are distinguishable, which contradicts the hypothesis
that ρ UC-emulates φ.
Composition Theorem and PUFs. Now let us consider composition in the presence of PUFs.
Recall that in the FPUF-hybrid model, the environment does not have direct access to the ideal
FPUF functionality (see Section 4.3 and Appendix B of [BFSK11] for details on the PUF access
model). However, looking at the proof of the composition theorem, we immediately notice that the
environment Zρ must have the ability to create PUFs. This is because to carry out the internal
simulation of Z and π, environment Zρ must be able to handle PUF requests by the parties of π.
Since PUFs are not programmable, Zρ can not simulate PUF responses on its own. It is to tackle
this very issue that we allow the adversary to create new PUF’s in our FPUF ideal functionality in
Figure 1. This is sufficient for the composition theorem: when a simulated party in π requests a
PUF, the environment Zρ asks the adversary to create a new PUF, and uses that PUF to handle
the simulated party’s requests.

53

	Introduction
	Our Contribution

	Definitions
	UC Security with Malicious PUFs
	Modeling Malicious PUFs
	Constructions for UC Security in the Malicious PUFs model
	Unconditional Security with Malicious PUFs

	Honest PUFs with Oblivious Queries
	Unconditional OT in the Oblivious Queries Model

	Impossibility of UC Security in the Malicious PUFs + Oblivious Queries Model
	Missing Definitions and Tools
	Commitment Schemes
	Statistical Zero-Knowledge Argument of Knowledge
	The UC Framework and the Ideal Functionalities
	Security in Presence of Malicious Adversary in the Stand-alone Model

	Admissible PUF Families
	Sub-Protocols of Comuc
	Statistically Hiding Straight-line Extractable Commitment Scheme
	Statistically Binding Straight-line Extractable and Equivocal Commitment Scheme

	Proof of Theorem 1
	Proof of Theorem 2
	On Unconditional Security with Malicious PUFs
	The Brzuska et.al. BFSK11 Ideal Functionality FhPUF
	Allowing Adversary to Create PUFs

