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Abstract. In FSE 2010, Nandi proved a sufficient condition of pseudo
random function (PRF) for affine domain extensions (ADE), wide class
of block cipher based domain extensions. This sufficient condition is sat-
isfied by all known blockcipher based ADE constructions, however, it is
not a characterization of PRF. In this paper we completely characterize
the ADE and show that message authentication code (MAC) and weakly
collision resistant (WCR) are indeed equivalent to PRF. Note that a PRF
is trivially a MAC and WCR, however, the converse need not be true in
general. So our result suggests that it would be sufficient to ensure resist-
ing against weakly collision attack or the forging attack to construct a
pseudo random function ADE. Unlike FSE 2010 paper, here we consider
the forced collisions of inputs of underlying blockciphers by incorporating
the final outputs of a domain extension queried by an adaptive adversary.
This is the main reason why we are able to obtain a characterization of
PRF. Our approach is a more general and hence might have other theo-
retical interest.
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1 Introduction

Message Authentication Code. In Symmetric key setting where two par-
ties, the sender and the receiver share a common key, say K, Message Authen-
tication Code (MAC) is used to ensure the “integrity” of the message and the
“authenticity” of the sender, during a message exchange protocol. When the
sender wants to send a message M to the receiver, he or she also sends a tag
T = GK(M). The pair (M,T ) is called a valid pair. The receiver verifies whether
the obtained pair is valid or not. As far as security is concerned, a MAC needs
to ensure that even if an adversary F possess some tagged messages (may be of
adversary’s own choice), it must not be able produce a valid tag corresponding
to a new message, called fresh valid pair. More formally, we define the forg-
ing advantage or mac advantage of a forgery adversary F against a Message
Authentication scheme GK as follows.

Advmac
GK (F)

∆
= Prrand(F),K [(M,T )← FGK , (M,T ) is a fresh valid pair]. (1)
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The algorithm G is called (t, Q, ε)-mac if for any forgery adversary F making at
most Q queries with (time) complexity at most t has mac-advantage at most ε.

Weak Collision Resistant. Weak Collision Resistant (WCR) is the secret
key version of collision security property of a keyed hash function GK(·). This
notion is mainly adopted in [1] to prove other security notions such as MAC or
PRF. The keyed function GK is called (t, Q, ε)-wcr if for all collision adversaries
C with complexity at most t making at most Q queries has wcr-advantage, as
defined below, at most ε:

AdvwcrG (C) ∆
= Prrand(C),K [CGK = (M,M ′), GK(M) = GK(M ′), M 6= M ′]. (2)

Pseudo Random Function. Pseudo Random Function (PRF) [8] is a keyed
function GK , whose behavior is indistinguishable from a random function R for
any computational adversary. A random function (or permutation) is a func-
tion chosen uniformly at random from the set of all functions (permutation,
respectively). The security of a cryptographic construction based on a random
function, preserves it’s security even when we replace the random function by a
PRF. The formal definitions of a PRF and prf-advantage are given below :

Definition 1 (Pseudo Random Function). A keyed function G : {0, 1}k
× M → {0, 1}n is called (t, Q, ε)-secure pseudo random function if for every
distinguisher D with (time) complexity at most t, making at most Q queries, and
key K chosen uniformly from {0, 1}k, the prf-advantage1 of the distinguisher

AdvprfG (D)
∆
= PrR[DR = 1]−PrK∈R{0,1}k [DGK = 1] ≤ ε.

We consider only those distinguishers which run in polynomial time. Without
loss of generality, we simplify distinguisher which actually simplifies the analysis:
We assume that the distinguisher is deterministic making at most, say Q
distinct queries only. It is not difficult to see that for any arbitrary distin-
guisher there is a distinguisher satisfying above having advantage no less than
the given one.

1.1 (Affine) Domain extension for PRF

Domain extension is a method by which functions of small domains are used
to construct an extended function over an arbitrary domain for similar security
notions, e.g. designing a hash function from a compression function. MACs are
domain extensions extending small domain PRPs or PRFs to arbitrary domain
PRPs [12] or PRFs [8] respectively. A domain extension based on a keyed block-
cipher EK (a keyed family of permutation usually modeled to be PRP) invokes

1 Even though, in the original definition, absolute value is considered, it does not
matter as we are interested in maximum advantage of all possible distinguisher and
hence we change the sign of advantage by considering distinguisher D (flipping the
output bits of D).
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EK several times sequentially. For a blockcipher EK-based affine domain exten-
sion (or ADE), the inputs (called intermediate inputs) to EK are determined by
some affine functions of the previous outputs (called intermediate outputs). The
output of the last invocation of the blockcipher is defined to be the final output
of the ADE.
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Fig. 1.1. Affine Domain Extension: Here Ai’s are the affine functions, i.e. row vectors.
The coefficient of the affine function is determined by the message M . The coefficient
matrix A (see definition 2) is the combination of all these row vectors Ai’s.

Definition 2. A domain extension G (see Figure 1.1) is called Affine Domain
Extension (ADE) over M if a lower triangular matrix Al×(l+1), called coef-
ficient matrix, entries from the finite field F2n , is associated with each mes-

sage M ∈ M to compute GK(M)
∆
= yl where yi’s are defined recursively as (1)

(x1, . . . , xl)
tr = A.(1 y1 . . . yl)

tr and (2) EK(xi) = yi, 1 ≤ i ≤ l.

Throughout the paper we identify the underlying set of F2n as {0, 1}n. The
integer l := l(M) is the length of the message M . As EK is a fixed permutation
for a fixed key, the above definition can be similarly defined for a permuta-
tion π to define Gπ(M). A class of popular constructions like CBC-MAC [6],
GCBC∗ [17], OMAC [9], PMAC [7] etc. are some of such examples. The orig-

inal PRF bounds for the above were about σ2

2n or l2·Q2

2n [4, 5, 10, 11, 18, 20]
where ` and σ are the longest and total number of blocks present in at most Q
queries, respectively. Bellare, Pietrzak and Rogaway in [3], showed first time an

improved bound lQ2

2n for CBC-MAC. Afterwards, similar improved bounds were
given for PMAC [13, 14], OMAC [16] and EMAC [20, 21]. Nandi [15] showed
an unified bound of PRF advantages of an ADE satisfying a sufficient condition
mentioned below. It eventually gives an unified proof of all these existing analysis
and bounds using well known as Decorrelation [23, 24] or Patarin’s coefficient
H-technique [19].

A sufficient condition for PRF of ADE. Informally, the sufficient condition
is that the output of Gπ(M) should not be in the force collision relation with
any other specific intermediate output of π, while computing Gπ(M ′) for some
message M and M ′. The forced collision relation is an equivalence relation for
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which whenever i is related to j, the intermediate output of ith and jth invocation
to the underlying blockcipher matches for all choices of π. Thus, the collisions
are only due to some specific choices of the messages. For example, for CBC,
messages with same prefixes have collisions in the computation of the blocks in
the common prefix. Note that final outputs are not incorporated to define forced
collision relation, only messages are used as if we are constructing the collision
patterns for a non-adaptive adversary.

1.2 Known Implication among MAC, PRF and WCR

It is easily seen that any (t, Q, ε)-prf G is (t′, Q− 1, ε− 1
2n )-mac for some t′ ≈ t.

Whenever a forgery adversary F forges a pair (M,T ), a distinguisher can make
the query M and if the response is T , it decides that it is interacting with G,
otherwise random function. The converse is not true for a secure MAC: GK(M)
= fK(M)||0 where fK is a PRF. Since it’s last bit is always zero which can be
easily used to distinguish from random function. If a keyed function is injective
such as identity function, without using key, then clearly it is WCR as there is
no collision present but one can easily forge. So WCR does not necessarily imply
MAC.

1.3 Our Contribution

We know that a PRF implies a message authentication code and weakly collision
resistant. However, the converse is not true in general. In this paper, we show that
message authentication code (MAC) and weakly collision resistant (WCR) are
indeed equivalent to PRF for ADEs. Thus we have a complete characterization
of ADE. The previously known sufficient condition is not necessary as given an
example below:

Example 1. Define the padding rule P on messages as:

P (M) =


1||m1 if M = m1

1||m1||m2 if M = m1||m2

0||l||M else

where l denotes the no. of blocks in message M . Clearly according to the defini-
tion of the padding above, for M = m1 and M ′ = m1||m2 the sufficient condition
is not satisfied. Hence the result can not be applied. But since the padding en-
sures any two message combination except M and M ′ are prefix-free condition,
and for these two messages the output of M , say w1 does not give a restriction
unless w1 = m2 (which has low probability) hence it would not be difficult to
show that the construction is a PRF. Note that, this construction doesn’t have
any practical importance, it is used just to theoretically show that the sufficient
condition is not necessary always.
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In this paper we prove the following theorem.

Theorem [Main theorem of the paper]. Let G be a ADE based on a random
permutation π. Then for any distinguisher D there is a forgery and collision
adversaries F and C respectively such that

Advprf
G (D) ≤ 4σ2

2n
+
µ

2

where µ = min{Advwcr
G (C), Advmac

G (F)}.
In section 4 we demonstrate the reduction of F and C and provide the analy-

sis. Difficulty in proving a MAC to be PRF is due to the lack of entropy in MAC
which is must for a random function. As we consider ADE based on random
permutation we have a potential source of randomness from the underlying ran-
dom permutation. But it is not obvious why there is no other way to distinguish
ADE from random function unless we forge or obtain a collision in final outputs.

2 Affine Domain Extensions

Suppose we have q messages, Mi ∈ M of lengths li, 1 ≤ i ≤ q and their
corresponding co-efficient matrix is given by Ai = (mi Ci). Then the joint co-
efficient matrix A of the q messages is given by the following partition matrix

m1 C1 0 · · · 0
m2 0 C2 · · · 0
· · · · ·
· · · · ·
mq 0 0 · · · Cq


t×(t+1)

where t = tq and ti =
∑i
j=1 lj .

To each permutation π we associate an intermediate input and output vectors
are xπ := x = (x1, . . . , xt) and yπ := y = (y1, . . . , yt) respectively, where (I)
A · y = A.

(
1
ytr

)
= x and (II) π(xi) = yi, i ∈ [1..t] := {1, . . . , t} where y =

(1, y1, . . . , yt)
tr. The second condition justifies the terms intermediate input and

output vectors as these are indeed inputs and outputs of the permutation π
while computing Gπ(Mi)’s. The first condition says how the intermediate input
is determined only from the intermediate outputs and it does not depend on
the underlying permutation π. Thus, we write the input vector x by A(y) or we
write y → x. Clearly, these conditions uniquely determine the input and output
vector since A is a lower triangular matrix and hence xi’s and yi can be defined
recursively. We thus have a mapping Y : Pn → ({0, 1}n)t defined as Y (π) = yπ.
Note that this function need not be surjective or even injective. We characterize
all vectors which are in the image of this function. More precisely, we characterize
all vectors y such that there is a permutation π such that y = yπ. We call these
output vectors.

Lemma 1. y ∈ {0, 1}nt is an output vector if and only if xi = xj ⇔ yi = yj
where y → x.
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Proof. “Only if” is obvious as π(xi) = yi for all i, for some permutation π. To
prove the “if” part, choose any permutation π such that π(xi) = yi for all i.
This is possible since equality pattern of both vectors x and y are same. For any
such permutation π, y = yπ. ut
Collision Relation. Let us define collision relation coll(y) :=∼ over [1..t] of a
vector y as i ∼ j iff yi = yj . It is an equivalence relation capturing the collisions

of the elements of the vector y. We define collπ
∆
= coll(yπ), the collision pattern

of the output vector, which is the equivalence relation ∼ over [1..t] such that
i ∼ j if and only if yi ∼ yj . Thus, the the characterization of an output vector
can be restated as follows:

§ y is an output vector if and only if coll(y) = coll(x) where y → x := A(y).

Now, an intermediate output function y can be associated with more than
one permutations. We want to count the number of π’s an output function y
is associated with. Let Pn[y] := Y −1({y}) denote the set of all permutations π
with y as an output function, i.e. y = yπ. Clearly, all these permutations have to
agree on the sets of all intermediate inputs as π(xi) = yi, ∀i, 1 ≤ i ≤ t (due to
the second condition) as x is uniquely determined by y by the relation x = A ·y.
Now fix any permutation π such that π(xi) = yi for all i. It is easy to see that
yπ = y and hence

Pn[y] = {π : π(xi) = yi, 1 ≤ i ≤ t}, |Pn[y]| = (2n − s)! (3)

where s denotes the number of distinct values of the ouput vector y.

3 Estimation of Probability of a View

We fix a deterministic distinguisher D making only distinct queries, the number
of queries is at most Q and the total length of all queries is at most σ. We identify
the tuples of distinct elements w = (w1, . . . , wt) as set {w1, . . . , wt}. From the
context it must be clear. Given a subset T = {t1, . . . , tq} ⊆ [1..t] := {1, 2, . . . , t}
we define w[T ] by the sub-tuple (wt1 , . . . , wtq ). For a matrix A, A[i, ·] and A[·, j]
denote the ith row and jth column respectively. Similarly we define the sub-
matrices A[1..i, ·] or A[·, 1..j] etc.

3.1 View of an Oracle Algorithm

Let V be the set of all tuples w = (w1, . . . , wq), 1 ≤ q ≤ Q, such that D
stops making queries on seeing wq. Note that this is defined independent of
the oracle. The view of DO, denoted view(DO), by the tuple (w1, . . . , wq) ∈ V
where wi denotes the response of the ith query, 1 ≤ i ≤ q. The responses
w1, . . . , wi−1 uniquely determines ith query Mi if it queries or that D stops (as
D is deterministic). The final response of D must be some function of its view.
If O is a probabilistic oracle then the view as well as the number of queries q are
random variables determined by the randomness of the oracle only. So given any



Equivalence between MAC and PRF for Blockcipher based Constructions 7

fixed view w = (w1, . . . , wq) the probability PrO[view(DO) = w] is computed
over the randomness of O. If the probability is positive then we say the view w
is realizable or O-realizable. and the set of all realizable views is denoted by VO.
Note that VO ⊆ VR = V where R is a random function. We denote the truncated
view view(DO)[i] by the i-tuple (w1, . . . , wi) where view(DO) = (w1, . . . , wq),
i ≤ q. We can similarly define when a truncated view is O-realizable. Note that
for w = (w1, . . . , wi),

Pr[view(DO)[i] = w] =
∑
v∈V:

v[1..i]=w

Pr[view(DO) = v].

Note that, for v ∈ V, we have, PrR[view(DR)[i] = v[1..i]] = 2−ni. For an
arbitrary probabilistic oracle the probability computation of views is not easy.
In this section we provide an estimate of probability of realizing some views where
the oracle is an affine domain extension G based on a random permutation Π
on {0, 1}n.

Lemma 2. Let w = (w1, . . . , wq) = v[1..q] for some v ∈ V. Then either w is
not realizable (i.e. the probability of realizing w is zero) or

PrΠ [view(DG
Π

)[q] = w] =
∑
s≥1

Nw,s
P (2n, s)

(4)

where P (2n, s) = 2n(2n − 1) . . . (2n − s + 1) and Nw,s denotes the number of
output vectors y with s many distinct elements and yti = wi, 1 ≤ i ≤ q.

Proof. Let w = (w1, . . . , wq) and M1, . . . ,Mq be the corresponding queries by
D. As G is an ADE there is a lower triangular matrix (joint coefficient matrix)
A with a tuple of final indices T = (t1, . . . , tq) and for each permutation π
we associate an intermediate output vector y := yπ such that A · y = x and
π(xi) = yi, 1 ≤ i ≤ t := tq. Now,

PrΠ [view(DG
Π

) = w] =
1

2n!
× |{π : Gπ(Mi) = wi, i = 1, . . . , q}|

=
1

2n!
× |{π : yπti = wi, i = 1, . . . , q}|

=
1

2n!
×
∑
s≥1

∑
y

|{π : yπ = y, i = 1, . . . , q}| × 1

2n!

where the second sum is taken over all output vectors y such that the number
of distinct elements of y is s and yti = wi, 1 ≤ i ≤ q. Using the counting of the
number of permutations given in equation 4,the result follows. ut

To use the above lemma we need to provide an estimate of Nv,s which can
be done by identifying a special equivalence relation ∼∗, called forced relation,
such that there are sufficient number of output vectors y inducing the forced
collision relation, i.e., coll(y) =∼∗. Since for all these output vectors the s value
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is same with the number of equivalence classes of ∼∗, we will immediately have
a lower bound of the probability of the view. More precisely, if we can show the
following:

§ existence of forced relation: there is a relation with s + q many classes
such that the number of output vectors y with yti = wi for all i is at least
2ns(1− ε),

then

PrΠ [view(DG
Π

)[q] = w] =
∑
s≥1

Nw,s
P (2n, s)

≥ 2ns(1− ε)
P (2n, s+ q)

≥ 1− ε
2nq

.

3.2 Forced Relation

Let Vdist = {(w1, . . . , wq) ∈ V : wi’s are distinct}, Vcoll = V \ Vdist. We study
the following problem motivated from the probability computation of realizing
a view w = (w1, . . . , wq) ∈ Vdist as discussed above. Let A = (m C) be a
coefficient matrix with a strictly lower triangular matrix Ct×t and a vector mt×1

whose elements are from F2n . Let ∼ be an equivalence relation over [t].

Problem 1. Reduce the affine function A : y 7→ A(y) := C · y +m, given that
(i) coll(y) =∼ and
(ii) y[T ] = w where T = (t1, . . . , tq), ti’s are distinct element from [t].

There may be different ways to reduce a system of affine equations. We reduce
the affine function by incorporating the given constraints as much as possible.
The equivalence relation is considered not to have any collision on T , i.e. for all
i 6= j ∈ T , i � j, as we fix distinct final outputs wi’s. Let the leader set (consists
of one element from each equivalence class) of ∼ be L t T . We choose elements
of L := {i1, . . . , is} to be the minimum elements of the equivalence classes.

C · y +m = m+ (C[·, 1] · y1 + . . .+ C[·, t]yt)
= (m+

∑
ti∈Lf

wi
∑
j∼ti

C[·, j]) +
∑
i∈L

(
∑
j∼i

C[·, j])yi

= Ard[., 0] +
∑
i∈L

Ard[., i]yi

where rd = (∼, T, w) to denote that we reduce the matrix A using the triple rd.
We can complete the matrix Ard

t×(t+1) by defining Ard[., i] = 0 for all i 6∈ {0}∪L.
Thus, we have

A(y) = x, coll(y) =∼, y[T ] = w

⇔ Ard[., 0] +
∑
ij∈L

Ard[., ij ]zj = x, zj ’s are distinct and different from w′is

where zj = yij , 1 ≤ j ≤ s. In fact, given a solution z, we construct an unique
solution y as y[L] = z, y[T ] = w and the other yi’s are defined through the
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relation ∼, i.e. yi = wj if i ∼ tj or yi = zj if i ∼ ij . This reduction helps to solve
y for the following equations:

coll(y) = coll(m+ C · y) = ∼, y[T ] = w. (5)

If we denote y[L] = z then the above equation is equivalently written as (i)
coll(Ard(z)) =∼, (ii) zi’s are distinct and different from wj ’s. Note that ∼ is
fixed for which no collision on T . To have a solution we have the following
immediate necessary condition:

Ard[i, .] = Ard[j, .] ⇒ i ∼ j.
In fact, there are other differnet necessary conditions. However, we consider a
special equivalence relation which would satisfy all necessary conditions and also
gives several solutions of z and hence y.

Definition 3. We say that an equivalence relation ∼ over [t] is forced relation
w.r.t A, T and w if

Ard[i, .] = Ard[j, .] ⇔ i ∼ j, where rd = (∼, T, w). (6)

Note that there may not exist forced relation with no collision in T . Clearly,
if ∼ is a forced relation with no collision in T then the Eq. ?? is equivalently
rewritten as (Ard[i, .]− Ard[j, .])z 6= 0 for all i � j and (ii) zi’s are distinct and
different from wj ’s. The number of such z, equivalently y, is at least

2ns × (1−
(
s
2

)
+
(
t
2

)
+ st

2n
).

This can be easily seen as total possible choices without any constraint is 2ns

and number of z which does not satisfy a given constraint is 2n(s−1). The number
of constraint is at most

(
s
2

)
+
(
t
2

)
+ st which includes the distinct choices of z,

the number of pairs (i, j) for which i � j and different from wi’s. Now we prove
the existence of forced collision which may or may not have collisions in T . In
fact, we prove a more general statement which says the existence of extending a
given relation to a forced relation.

Lemma 3 (Extension Lemma). Given any relation ∼ satisfying the property
i ∼ j ⇒ Ard[i, ·] = Ard[j, ·] where rd = (∼, T, w) then there is a forced relation
∼′, denoted ExtA(∼), containing ∼.

Moreover, Ext can be defined in a way such that whenever ∼ is a forced colli-
sion w.r.t. A[1..t′, ·], T and w for some t′ ≤ tq then ∼′=∼ on [1..t′].

Proof. We provide an existence proof. Given the relation ∼ and the property
i ∼ j ⇒ Ard[i, ·] = Ard[j, ·], we need to construct an algorithm to obtain ∼′ such
that Ard′ [i, ·] = Ard′ [j, ·]⇒ i ∼′ j where rd = (∼′, T, w). Our algorithm ExtA(∼)
works as follows :

• Step 1. Find a (i, j) pair such that such that i � j but Ard[i, ·] = Ard[j, ·]. If
no such pair exist, then return ∼ and call it ∼′. Else do the following :
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• Step 2. Add (i, j) pair in ∼ and define ∼ to be the minimum equivalence
relation containing the previous ∼ and (i, j). Reduce the Ard matrix with
respect to the modified ∼. Go to Step 1.

Look that at each step we are adding a new pair to the collision relation which
satisfies the initial given condition. As at most

(
t
2

)
pair can be present in a

collision relation over [1..t], the algorithm terminates with at most
(
t
2

)
steps

executed. When the algorithm terminates, we have i ∼′ j iff Ard′ [i, ·] = Ard′ [j, ·].
Hence, ∼′ is a forced collision relation.

For the 2nd part of the lemma, look that ∼ is a forced collision w.r.t. A[1..t′, ·],
T and w for some t′ ≤ tq. Hence if the algorithm find a (i, j)-pair, one of i and
j must have index > t′. This property and the lower triangular property of A
ensures that, even the next reduction may change the values of a column whose
index is < t′ but it changes uniformly over each row, hence will not affect the
collision relation over [1..t′]. Hence the result follows. ut

Corollary 1. If we choose ∼ to be an empty relation then from the above lemma:
there is always a forced collision relation.

The existence of the forced relation is guranteed but it may have collision in
T . For a given w ∈ Vdist we can arise into two possible cases.

Case-1 : There is a forced relation ∼∗ with no collision in T . In this case we have
high interpolation probability as we have seen already. We call such a view
w random and we use Decorrelation technique to prove that distinguishing
ADE from a random function for these views is difficult.

Case-2 : The forced relation has collision. If we detect the collision in right time
then we would be able to forge ADE. We call those views forge. We can show
that there is a set of small size, called forbidden set, such that if the output
is not from the forbidden set the collision would be detected in right time.

Remark 1. The reason we may not able to detect collision in right time that when
we update the forced relation ∼i on ith query we find a collision in previous final
inputs i.e. tj ∼i tl where j, l < i.

4 Reducing Distinguishing to Forgery

A distinguisher D whose job is to distinguish between a random function chosen
uniformly and an ADE GΠ based on a random permutation Π. We define a
forgery F which has access of GΠ and aims to forge, i.e. to generate a fresh valid
pair. The way F runs as follows:

§ Initial step: It runs a distinguisher D. So F has to reply the responses of
the queries, say M , of D to get the next queries.

§ On query M from D: It updates the “forced internal collision patterns”
(sure collisions of intermediate inputs of the random permutation) given the
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view obtained so far. It has been computed before observing the final output
GΠ(M).

Case 1 (forge event): If it finds that the final output of the current query
collides with the previous query, say M ′ having the response w′, then F forges
(M,w′). It is a valid pair which is guaranteed by the forced collision pattern.

Case 2 (bad event): Otherwise it forwards the query to GΠ and obtains
response w. If w is not in a bad set, called “forbidden set”, it forwards the
response to D, otherwise abort. The reason of considering forbidden set is to
have consistence update of forced collision pattern.

§ Finalization: If it neither aborts nor forges then it aborts and we would be
able to prove that, in this case, D can not distinguish GΠ from random function.
The more details of the above description is given below.

4.1 Formal Description of Distinguish-Forge Game

Game D ↔ F ↔ GΠ :

1. F runs D and hence to obtain next query it has to reply a query of D.

2. On ith query Mi, it computes ExtAi(∼i−1) for w = (w1, . . . , wi−1) and T =
(t1, . . . , ti−1).

3. If ti ∼i tj for some j < i then forge event sets true and forge by the pair
(Mi, wj) and stop.

4. Otherwise, it obtains a response wi. Define Fi, the forbidden set, to be the
set of all values f /∈ Fz, z < i such that ∃a, b < ti with, B[a, k] 6= B[b, k]

and B[a, z] = B[b, z] ∀z 6= k and f = B[a,0]−B[b,0]
B[a,k]−B[b,k] , where B is the reduced

co-efficient matrix upto Mi.
5. If wi ∈ Fi then abort.
6. Otherwise it forwards the response wi to D.
7. When D sends his guess bits to F , it stop.

Lemma 4. If ∼i is force collision relation with respect to A, w = (w1, . . . , wi−1)
and T = (t1, . . . , ti−1). Then if wi /∈ Fi, then force collision relation doesn’t
change.

Proof. If ∼i is force collision relation with respect to A, w = (w1, . . . , wi−1) and
T = (t1, . . . , ti−1). Then if wi /∈ Fi, then following Reduction module 1 and 2,
it is clear that even if some changes occur in columns ≤ ti−1, it will be uniform
over the rows and hence the force collision relation won’t get changed. ut

We make another reasonable assumption that whenever forge event occurs
(which can be computed by D also) it checks the response wi is same as wj or
not. If not then it returns 1, otherwise 0. It is not difficult to see that with this
transformation from D′ to D the prf-advantage is not differ by more than 1

2n .

More precisely, Advprf(D′) ≤ Advprf(D)− 1
2n . Now, we categorize the possible

views of D into the following four classes - (i) collision view Vcoll (collisions in
wi values), (ii) random view (denoted by Vrand), (iii) forbidden view (denoted
by Vforb) and (iv) forge view (denoted by Vforge). The definitions of these views
are given below :
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F
Run D

On ith query

F

F

F

F

D

F

If ti ∼i tk then,

(Mi, wk)

Mi

wi

If wi /∈ Fi

Abort

Stop

D

Gπ

Gπ

Gπ

D decides on random function oracle or a ADE based MAC oracle

Mi

wi

Else

Else

of D

For 1 ≤ i ≤ q

∼i = ExtAi(∼i−1)

Fig. 4.1. Pictorial representation of the definition of F . Here Ai denotes the joint
coefficient matrix of M1 · · ·Mi

.

Input: A, T , W , ∼
Extension Algorithm ExtA(∼)

1 let T be the set of final output indexs, L is the set of smallest indexes
corresponding to an equivalence class which are not ∼-related to any element
of T .

2 If k ∈ T (Case : 1)
3 Add A∼[∗, j].wk to A∼[∗, 0]
4 Make A∼[∗, j] = 0
5 Add the pair (tk, j) to ∼
6 If k ∈ L (Case : 2)
7 Add A∼[∗, j] to A∼[∗, k]
8 make A∼[∗, j] = 0
9 Add the pair (k, j) to ∼

Algorithm 1: Extension Algorithm
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• Vrand = {(w1, w2, · · · , wq) : ∀i, j 6=i, wi /∈ Fi and ti �∗ tj }
• Vforb = {(w1, w2, · · · , wi) : wi ∈ Fi and ∀j ≤ i, k < j, tk �∗ tj }
• Vforge = {(w1, w2, · · · , wi) : ∀k < i, wk /∈ Fk and ∃j < i, ti ∼∗ tj }

It is easy to see that that F forges whenever the view of DG
Π

is a forge view.
(We skip the proof)

Lemma 5. Pr[view(DG
Π

) sets forge true] = Pr[F forges].

Lemma 6. Pr[view(DR) ∈ Vforb] ≤ ε1 where ε1 =
(t2)
2n

Proof. Look that if (a, b) is pair used to give a forbidden value f for Fi. then
the way we have extended our collision relation, it ensures that (a, b) no longer
can be used to give another forbidden value later as the ath and bth row will be
identical after ith message. Hence each pair can be at most in 1 forbidden set
Fi. As maximum

(
t
2

)
pairs can be chosen hence |Fi| ≤

(
t
2

)
∀i ≤ q.

Hence, Pr[V iew(DR) ∈ Vforb] =
∑q
i=1 Pr[wi ∈ Fi] ≤

(t2)
2n ut

The definition of C is exactly same as F except that when F forges by the
pair (Mi, wj) it returns the collision pair (Mi,Mj).

Theorem 1 (Main theorem of the paper). Let G be a ADE based on a
random permutation Π. Then for any distinguisher D there is a forgery and
collision adversaries F and C respectively such that

Advprf
G (D) ≤ 4σ2

2n
+ 2 · µ

where µ = min{Advwcr
G (C), Advmac

G (F)}.

Proof. Note that t ≤ σ the maximum number of blocks in all queries. Recall
that we have four types of disjoint views Vcoll, Vforb,Vforge and Vrand. Since for
all random views v ∈ Vrand, we have

Pr[view(DG) = v] ≥ (1− ε)× Pr[view(DR) = v]

where ε ≤ 2σ2/2n (as shown before). By using coefficien H-technique we have

Advprf
G (D) ≤ ε + Pr[view(DG) ∈ V \ Vrand]. Now from counting of Vcoll and

lemma 6 we know that Pr[view(DR) ∈ Vforb ∪ Vcoll] ≤ (q2)+(σ2)
2n . Now we need

to bound Pr[view(DR) ∈ Vforge]. Since the oracle of the distinguisher is random
function, not the ADE, we use the following relationship for all forge views
v = (w1, . . . , wi) (note that the first (i− 1)-tuple determines the forge event and
wi can be chosen freely) :

Pr[view(DG)[i− 1] = v[1..i− 1]] ≥ (1− ε)× Pr[view(DR)[i] = v[1..i− 1]].
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Since the view (w1, . . . , wi−1) is actually a random view (as both forge and
forbidden did not occur before) we have the above inequality. So combining this,
we have

Advprf
G (D) ≤ 4σ2

2n
+

2n

1− 2σ2
× PrΠ [view(DG) ∈ Vforge] ≤ 4σ2

2n
+ 2 ·Advmac

G (F)

since we may assume that 2σ2/2n ≤ 1/2 hence otherwise the bound is obviuosly
true. This proves our main theorem. Similarly we have the result for weak colli-
sion resistant. ut

5 Conclusion and Future Works

In this paper we showed that message authentication code (MAC) and weakly
collision resistant (WCR) are indeed equivalent to PRF. We know that a PRF
implies a MAC and WCR, but the converse is not true in general. Our result
shows that, the sufficient condition for an ADE to be Pseudorandom function, is
to resist the weakly collision attack or message forgery attack. Unlike FSE 2010
paper where the author considered collision pattern of inputs of the underlying
blockcipher for a non-adaptive adversary, here we considered the “dynamic”
collision pattern of inputs for an adaptive adversary. Moreover we incorporate
collisions among final outputs with other non-final outputs while bounding the
PRF advantages of ADE. We introduce the notion of force collision and checked
after each message query, whether the current final output is forced related with
a previous outputs, in that case, we forge the ADE, as it knows the output. The
way we have characterizes ADE, makes our approach more general and it might
have other theoretical interest. We havn’t provided any practical application
of the result in this paper as it is beyond our scope and it is itself a strong
theoretical result to be self-motivated. However, it would be nice to construct
an efficient ADE based MAC (not as example 1 given in section 1) that doesn’t
satisfy the sufficient condition for an ADE to be a PRF according to FSE 2010
paper but proved out to be a PRF because of it’s resistance of MAC forging
attack or Weak collision attack.
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