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Abstract

One fundamental complexity measure of an MPC protocol is its round complexity. Asharov
et al. recently constructed the first three-round protocol for general MPC in the CRS model.
Here, we show how to achieve this result with only two rounds. We obtain UC security with abort
against static malicious adversaries, and fairness if there is an honest majority. Additionally
the communication in our protocol is only proportional to the input and output size of the
function being evaluated and independent of its circuit size. Our main tool is indistinguishability
obfuscation, for which a candidate construction was recently proposed by Garg et al.

The technical tools that we develop in this work also imply virtual black box obfuscation of
a new primitive that we call a dynamic point function. This primitive may be of independent
interest.
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1 Introduction

Secure multiparty computation (MPC) allows a group of mutually distrusting parties to jointly
compute a function of their inputs without revealing their inputs to each other. This fundamental
notion was introduced in the seminal works of [Yao82, GMW87], who showed that any function can
be computed securely, even in the presence of malicious parties, provided the fraction of malicious
parties is not too high. Since these fundamental feasibility results, much of the work related to
MPC has been devoted to improving efficiency. There are various ways of measuring the efficiency
of a MPC protocol, the most obvious being its computational complexity. In this paper, we focus
on minimizing the communication complexity of MPC, primarily in terms of the number of rounds
of interaction needed to complete the MPC protocol, but also in terms of the number of bits
transmitted between the parties.

1.1 Our Main Result: Two-Round MPC from Indistinguishability Obfuscation

Our main result is a compiler that transforms any MPC protocol into a 2-round protocol in the CRS
model. Our compiler is conceptually very simple, and it uses as its main tool indistinguishability
obfuscation (iO) [BGI+12]. Roughly, in the first round the parties commit to their inputs and
randomness, and in the second round each party provides an obfuscation of their “next-message”
function in the underlying MPC protocol. The parties then separately evaluate the obfuscated
next-message functions to obtain the output.

A bit more precisely, our main result is as follows:

Informal Theorem. Assuming indistinguishability obfuscation, CCA-secure public-key encryp-
tion, and statistically-sound noninteractive zero-knowledge, any multiparty function can be com-
puted securely in just two rounds of broadcast.

We prove that our MPC protocol resists static malicious corruptions in the UC setting [Can01].
Moreover, the same protocol also achieves fairness if the set of corrupted players is a strict minority.
Finally the communication in our protocol can be made to be only proportional to the input and
output size of the function being evaluated and independent of its circuit size.

Minimizing round complexity is not just of theoretical interest. Low-interaction secure compu-
tation protocols are also applicable in the setting of computing on the web [HLP11], where a single
server coordinates the computation, and parties “log in” at different times without coordination.

1.2 Indistinguishability Obfuscation

Obfuscation was first rigorously defined and studied by Barak et al. [BGI+12]. Most famously, they
defined a notion of virtual black box (VBB) obfuscation, and proved that this notion is impossible
to realize in general – i.e., some functions are VBB unobfuscatable.

Barak et al. also defined a weaker notion of indistinguishability obfuscation (iO), which avoids
their impossibility results. iO provides the same functionality guarantees as VBB obfuscation, but
a weaker security guarantee. Namely, that for any two circuits C0, C1 of similar size that compute
the same function, it is hard to distinguish an obfuscation of C0 from an obfuscation of C1. Barak
et al. showed that iO is always realizable, albeit inefficiently: the iO can simply canonicalize the
input circuit C by outputting the lexicographically first circuit that computes the same function.
More recently, Garg et al. [GGH+13b] proposed an efficient construction of iO for all circuits,
basing security in part on assumptions related to multilinear maps [GGH13a].
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It is clear that iO is a weaker primitive than VBB obfuscation. In fact, it is not hard to see
that we cannot even hope to prove that iO implies one-way functions: Indeed, if P = NP then
one-way functions do not exist but iO does exist (since the canonicalizing iO from above can be
implemented efficiently). Therefore we do not expect to build many “cryptographically interesting”
tools just from iO, but usually need to combine it with other assumptions. (One exception is witness
encryption [GGSW13], which can be constructed from iO alone.)

It is known that iO can be combined with one-way functions (OWFs) to construct many power-
ful primitives such as public-key encryption, identity-based encryption, attribute-based encryption
(via witness encryption), as well as NIZKs, CCA encryption, and deniable encryption [SW13]. How-
ever, there are still basic tools that are trivially constructible from VBB obfuscation that we do
not know how to construct from iO and OWFs: for example, collision-resistant hash functions, or
compact homomorphic encryption. (Compact homomorphic encryption implies collision-resistant
hash functions [IKO05].) The main challenge in constructing primitives from iO is that the in-
distinguishability guarantee holds only in a limited setting: when the two circuits in question are
perfectly functionally equivalent.

1.3 Our Techniques

To gain intuition and avoid technical complications, let us begin by considering how we would
construct a 2-round protocol if we could use “perfect” VBB obfuscation. For starters, even with
VBB obfuscation we still need at least two rounds of interaction, since a 1-round protocol would
inherently allow the corrupted parties to repeatedly evaluate the “residual function” associated to
the inputs of the honest parties on many different inputs of their choice (e.g., see [HLP11]).

It thus seems natural to split our 2-round protocol into a commitment round in which all players
“fix their inputs,” and then an evaluation round where the output is computed. Moreover, it seems
natural to use CCA-secure encryption to commit to the inputs and randomness, as this would
enable a simulator to extract these values from the corrupted players.

As mentioned above, our idea for the second round is a simple compiler: take any (possibly
highly interactive) underlying MPC protocol, and have each party obfuscate their “next-message”
function in that protocol, one obfuscation for each round, so that the parties can independently
evaluate the obfuscations to obtain the output. Party i’s next-message function for round j in the
underlying MPC protocol depends on its input xi and randomness ri (which are hardcoded in the
obfuscations), it takes as input the transcript through round j − 1, and it produces as output the
next broadcast message.

However, there is a complication: unlike the initial interactive protocol, the obfuscations are
susceptible to a “reset” attack – i.e., they can be evaluated on multiple inputs. To prevent such
attacks, we ensure that the obfuscations can be used for evaluation only on a unique set of values
– namely, values consistent with the inputs and randomness that the parties committed to in the
first round, and the current transcript of the underlying MPC protocol. To ensure such consistency,
naturally we use non-interactive zero-knowledge (NIZK) proofs. Since the NIZKs apply not only
to the committed values of the first round, but also to the transcript as it develops in the second
round, the obfuscations themselves must output these NIZKs “on the fly”. In other words, the
obfuscations are now augmented to perform not only the next-message function, but also to prove
that their output is consistent. Also, obfuscations in round j of the underlying MPC protocol verify
NIZKs associated to obfuscations in previous rounds before providing any output.
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If we used VBB obfuscation, we could argue security intuitively as follows. Imagine an aug-
mented version of the underlying MPC protocol, where we prepend a round of commitment to the
inputs and randomness, after which the parties (interactively) follow the underlying MPC protocol,
except that they provide NIZK proofs that their messages are consistent with their committed in-
puts and randomness and the developing transcript. It is fairly easy to see that the security of this
augmented protocol (with some minor modifications to how the randomness is handled) reduces to
the security of the underlying MPC protocol (and the security of the CCA encryption and NIZK
proof system). Now, remove the interaction by providing VBB obfuscations of the parties in the
second round. These VBB obfuscations “virtually emulate” the parties of the augmented protocol
while providing no additional information – in particular, the obfuscations output ⊥ unless the
input conforms exactly to the transcript of the underlying MPC protocol on the committed in-
puts and randomness; the obfuscations might accept many valid proofs, but since the proofs are
statistically sound this gives no more information than one obtains in the augmented protocol.

Instead, we use indistinguishability obfuscation, and while the our protocol is essentially as
described above, the proof of security is more subtle. Here, we again make use of the fact that the
transcript in the underlying MPC protocol is completely determined by the commitment round,
but in a different way. Specifically, there is a step in the proof where we change the obfuscations,
so that instead of actually computing the next-message function (with proofs), these values are
extracted and simply hardcoded in the obfuscations as the output on any accepting input. We
show that these two types of obfuscations are functionally equivalent, and invoke iO to prove
that they are indistinguishable. Once these messages have been “hardcoded” and separated from
the computation, we complete the security proof using standard tricks. The most interesting
remaining step in the proof is where we replace hardcoded real values with hardcoded simulated
values generated by the simulator of the underlying MPC protocol.

1.4 Additional Results

Two-Round MPC with Low Communication. In our basic 2-round MPC protocol, the
communication complexity grows polynomially with the circuit size of the function being computed.
In Section 3.2, we show how to combine our basic 2-round protocol with multikey fully homomorphic
encryption [LATV12] to obtain an MPC that is still only two rounds, but whose communication is
basically independent of the circuit size. Roughly speaking, this protocol has a first round where
the players encrypt their inputs and evaluate the function under a shared FHE key (and commit
to certain values as in our basic protocol), followed by a second round where the players apply the
second round of our basic protocol to decrypt the final FHE ciphertext.

Dynamic Point Functions. As a side effect of our technical treatment, we observe that iO
can be used to extend the reach of (some) known VBB obfuscators. For example, we can VBB
obfuscate dynamic point functions. In this setting, the obfuscation process is partitioned between
two parties, the “point owner” Penny and the “function owner” Frank. Penny has a secret string
(point) x ∈ {0, 1}∗, and she publishes a commitment to her point cx = com(x). Frank has a
function f : {0, 1}∗ → {0, 1}∗ and knows cx but not x itself. Frank wants to allow anyone who
happens to know x to compute f(x). A dynamic point function obfuscator allows Frank to publish
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an obfuscated version of the point function

Ff,x(z) =

{
f(x) if z = x
⊥ otherwise.

The security requirement here is that Ff,x is obfuscated in the strong VBB sense (and that cx
hides x computationally). We believe that this notion of dynamic point functions is interesting on
its own and that it may find future applications.

1.5 Other Related Work

The round complexity of MPC has been studied extensively: both lower and upper bounds, for
both the two-party and multiparty cases, in both the semi-honest and malicious settings, in plain,
CRS and PKI models. See [AJLA+12, Section 1.3] for a thorough overview of this work.

Here, we specifically highlight the recent work of Asharov et al. [AJLA+12], which achieves
3-round MPC in the CRS model (and 2-round MPC in the PKI model) against static malicious
adversaries. They use fully homomorphic encryption (FHE) [RAD78, Gen09], but not as a black
box. Rather, they construct threshold versions of particular FHE schemes – namely, schemes by
Brakerski, Gentry and Vaikuntanathan [BV11, BGV12] based on the learning with errors (LWE)
assumption. (We note that Myers, Sergi and shelat [MSS11] previously thresholdized a different
FHE scheme based on the approximate gcd assumption [vDGHV10], but their protocol required
more rounds.)

In more detail, Asharov et al. observe that these particular LWE-based FHE schemes have a key
homomorphic property. Thus, in the first round of their protocol, each party can encrypt its message
under its own FHE key, and then the parties can use the key homomorphism to obtain encryptions
of the inputs under a shared FHE key. Also, in the last round of their protocol, decryption is a
simple one-round process, where decryption of the final ciphertext under the individual keys reveals
the decryption under the shared key. In between, the parties use FHE evaluation to compute the
encrypted output under the shared key. Unfortunately, they need a third (middle) round for
technical reasons: LWE-based FHE schemes typically also have an “evaluation key” – namely, an
encryption of a function of the secret key under the public key. They need the extra round to
obtain an evaluation key associated to their shared key.

Recently, Gentry, Sahai and Waters [GSW13] proposed an LWE-based FHE scheme without
such an evaluation key. Unfortunately, eliminating the evaluation key in their scheme does not seem
to give 2-round MPC based on threshold FHE, since their scheme lacks the key homomorphism
property needed by Asharov et al.

We note that our basic two-round protocol does not rely on any particular constructions for iO
(or CCA-secure PKE or NIZK proofs), but rather uses these components as black boxes.

Our low-communication two-round protocol uses multikey FHE, but only as a black box. This
protocol can be seen as a realization of what Asharov et al. were trying to achieve: a first round
where the players encrypt their inputs and evaluate the function under a shared FHE key, followed
by a second round where the players decrypt the final FHE ciphertext.

2 Preliminaries

In this section we will start by briefly recalling the definition of different notions essential for
our study. We refer the reader to Appendix A for additional background. The natural security
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parameter is λ, and all other quantities are implicitly assumed to be functions of λ. We use standard
big-O notation to classify the growth of functions. We let poly(λ) denote an unspecified function
f(λ) = O(λc) for some constant c. A negligible function, denoted generically by negl(λ), is an f(λ)
such that f(λ) = o(λ−c) for every fixed constant c. We say that a function is overwhelming if it is
1− negl(λ).

2.1 Indistinguishability Obfuscators

We will start by recalling the notion of indistinguishability obfuscation (iO) recently realized
in [GGH+13b] using candidate multilinear maps[GGH13a].

Definition 1 (Indistinguishability Obfuscator (iO)). A uniform PPT machine iO is called an
indistinguishability obfuscator for a circuit class {Cλ} if the following conditions are satisfied:

• For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

• For any (not necessarily uniform) PPT distinguisher D, there exists a negligible function α
such that the following holds: For all security parameters λ ∈ N, for all pairs of circuits
C0, C1 ∈ Cλ, we have that if C0(x) = C1(x) for all inputs x, then∣∣∣Pr

[
D(iO(λ,C0)) = 1

]
− Pr

[
D(iO(λ,C1)) = 1

]∣∣∣ ≤ α(λ)

Definition 2 (Indistinguishability Obfuscator for NC1). A uniform PPT machine iO is called an
indistinguishability obfuscator for NC1 if for all constants c ∈ N, the following holds: Let Cλ be the
class of circuits of depth at most c log λ and size at most λ. Then iO(c, ·, ·) is an indistinguishability
obfuscator for the class {Cλ}.

Definition 3 (Indistinguishability Obfuscator for P/poly). A uniform PPT machine iO is called
an indistinguishability obfuscator for P/poly if the following holds: Let Cλ be the class of circuits
of size at most λ. Then iO is an indistinguishability obfuscator for the class {Cλ}.

2.2 Semi-Honest MPC

We will also use a semi-honest n-party computation protocol π for any functionality f in the stand-
alone setting. The existence of such a protocol follows from the existence of semi-honest 1-out-of-2
oblivious transfer [Yao82, GMW87] protocols. Now we build some notation that we will use in our
construction.

Let P = {P1, P2, . . . Pn} be the set of parties participating in a t round protocol π. Without
loss of generality, in order to simplify notation, we will assume that in each round of π, each party
broadcasts a single message that depends on its input and randomness and on the messages that it
received from all parties in all previous rounds. (We note that we can assume this form without loss
of generality, since in our setting where we have broadcast channels and CCA-secure encryption,
and we only consider security against static corruptions.) We let mi,j denote the message sent by
the ith party in the jth round. We define the function πi such that mi,j = πi(xi, ri,Mj−1) where
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mi,j is the jth message generated by party Pi in protocol π with input xi, randomness ri and the
series of previous messages Mj−1

Mj−1 =



m1,1 m2,1 . . . mn,1

m1,2 m2,2 . . . mn,2

...
. . .

m1,j−1 m2,j−1 . . . mn,j−1


sent by all parties in π.

3 Our Protocol

In this section, we provide our construction of a two-round MPC protocol.

Protocol Π. We start by giving an intuitive description of the protocol. A formal description
appears in Figure 1. The basic idea of our protocol is to start with an arbitrary round semi-honest
protocol π and “squish” it into a two round protocol using indistinguishability obfuscation. The
first round of our protocol helps set the stage for the “virtual” execution of π via obfuscations that
all the parties provide in the second round.

The common reference string in our construction consists of a CRS σ for a NIZK Proof system
and a public key pk corresponding to a CCA-secure public key encryption scheme. Next, the
protocol proceeds in two rounds as follows:

Round 1: In the first round, the parties “commit” to their inputs and randomness, where the
commitments are generated using the CCA-secure encryption scheme. The committed ran-
domness will be used for coin-flipping and thereby obtaining unbiased random coins for all
parties. Specifically, every party Pi, proceeds by encrypting its input xi under the public key
pk. Let ci be the ciphertext. Pi also encrypts randomness ri,j for every j ∈ [n]. Let the
ciphertext encrypting ri,j be denoted by di,j . Looking ahead the random coins Pi uses in the
execution of π will be si = ⊕jrj,i. Pi broadcasts {ci, {di,j}j} to everyone.

Round 2: In the second round parties will broadcast obfuscations corresponding to the next mes-
sage function of π allowing for a “virtual emulation” of the interactive protocol π. Every
party Pi proceeds as follows:

• Pi reveals the random values {ri,j}j 6=i∈[n] and generates proofs {γi,j}j 6=i∈[n] that these
are indeed the values that are encrypted in the ciphertexts {di,j}j 6=i∈[n].

• Recall that the underlying protocol π is a t round protocol where each party broad-
casts one message per round. Each player Pi generates t obfuscations of its next-round
function, (iOi,1, . . . , iOi,t).
In more detail, each iOi,k is an obfuscation of a function Fi,k that takes as input the
ri,j values sent by all the parties along with the proofs that they are well-formed, and
also all the π-messages that were broadcast upto round k − 1, along with the proof of
correct generation of these messages. (These proofs are all with respect to the ciphertexts
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Protocol Π

Protocol Π uses an Indistinguishability Obfuscator iO, a NIZK proof system (K,P, V ), a CCA-secure
PKE scheme (Gen,Enc,Dec) with perfect correctness and an n-party semi-honest MPC protocol π.
Private Inputs: Party Pi for i ∈ [n], receives its input xi.
Common Reference String: Let σ ← K(1λ) and (pk, ·) ← Gen(1λ) and then output (σ, pk) as
the common reference string.

Round 1: Each party Pi proceeds as:

• ci = Enc(i||xi) and,

• ∀j ∈ [n], sample randomness ri,j ∈ {0, 1}` and generate di,j = Enc(i||ri,j). (Here ` is the
length of the maximum number of random coins needed by any party in π.)

It then sends Zi = {ci, {di,j}j∈[n]} to every other party.

Round 2: Pi generates:

• For every j ∈ [n], j 6= i generate γi,j as the NIZK proof under σ for the NP-statement:{
∃ ρri,j

∣∣ di,j = Enc(i||ri,j ; ρri,j )
}
. (1)

• A sequence of obfuscations (iOi,1, . . . iOi,t) where iOi,j is the obfuscation of the program

Prog
0,xi,ρxi

,ri,i,ρri,i ,{Zi},0`i,j
i,j . (Where `i,j is output length of the program Progi,j .)

• It sends ({ri,j , γi,j}j∈[n],j 6=i, {iOi,j}j∈[t]) to every other party.

Evaluation (MPC in the Head): For each j ∈ [t] proceed as follows:

• For each i ∈ [n], evaluate the obfuscation iOi,j of program Progi,j on input
(R,Γ,Mj−1,Φj−1) where

R =



· r2,1 . . . rn,1
r1,2 · . . . rn,2

...
. . .

r1,n r2,n . . . ·


, Γ =



· γ2,1 . . . γn,1
γ1,2 · . . . γn,2

...
. . .

γ1,n γ2,n . . . ·



Mj−1 =



m1,1 m2,1 . . . mn,1

m1,2 m2,2 . . . mn,2

...
. . .

m1,j−1 m2,j−1 . . . mn,j−1


, Φ =



φ1,1 φ2,1 . . . φn,1
φ1,2 φ2,2 . . . φn,2

...
. . .

φ1,j−1 φ2,j−1 . . . φn,j−1


• And obtain, m1,j , . . . ,mn,j and φ1,j , . . . , φn,j .

Finally each party Pi outputs mi,t.

Figure 1: Two Round MPC Protocol

7



Prog
flag,xi,ρxi

,ri,i,ρri,i ,{Zi},fixedOutput

i,j

Program Prog
flag,xi,ρxi

,ri,i,ρri,i ,{Zi},fixedOutput

i,j takes as input (R,Γ,Mj−1,Φ) as defined above and out-
puts mi,j and φi,j . Specifically, it proceeds as follows:

- ∀p, q ∈ [n] such that p 6= q check that γp,q is an accepting proof under σ for the NP-statement:{
∃ ρrp,q

∣∣ dp,q = Enc(p||rp,q; ρrp,q )
}
.

- ∀p ∈ [n], q ∈ [j − 1] check that φp,q is an accepting proof for the NP-statement{
∃ (xp, rp,p, ρxp , ρrp,p)

∣∣(
cp = Enc(p||xp; ρxp)

∧
dp,p = Enc(p||rp,p, ρrp,p)

∧
mp,q = πp(xp,⊕k∈[n]rk,p,Mq−1)

)
.

}
- If the checks above fail, output ⊥. Otherwise, if flag = 0 then output

(πi(xi,⊕j∈[n]rj,i,Mj−1), φi,j) where φi,j is the proof for the NP-statement: (under some fixed
randomness){

∃ (xi, ri,i, ρxi
, ρri,i) |(

ci = Enc(i||xi; ρxi
)
∧

di,i = Enc(i||ri,i, ρri,i)
∧

mi,j = πi(xi,⊕j∈[n]rj,i,Mj−1)
)
.

}
Otherwise, output fixedOutput.

Figure 2: Obfuscated Programs in the Protocol

generated in first round and the revealed ri,j values.) The output of the function Fi,j is
the next message of Pi in π, along with a NIZK proof that it was generated correctly.

Pi broadcasts all the values {ri,j}j 6=i∈[n], {γi,j}j 6=i∈[n], and {iOi,k}k∈[t].

Evaluation: After completion of the second round each party can independently “virtually” eval-
uate the protocol π using the obfuscations provided by each of the parties and obtain the
output.

Theorem 1. Let f be any deterministic poly-time function with n inputs and single output.
Assume the existence of an Indistinguishability Obfuscator iO, a NIZK proof system (K,P, V ), a
CCA secure PKE scheme (Gen,Enc,Dec) with perfect correctness and an n-party semi-honest MPC
protocol π. Then the protocol Π presented in Figure 1 UC-securely realizes the ideal functionality
Ff in the FCRS-hybrid model.

3.1 Correctness and Proof of Security

Correctness. The correctness of our protocol Π in Figure 1 follows from the correctness of the
underlying semi-honest MPC protocol and the other primitives used. Next we will argue that all
the messages sent in the protocol Π are of polynomial length and can be computed in polynomial
time. It is easy to see that all the messages of round 1 are polynomially long. Again it is easy to
see that the round 2 messages besides the obfuscations themselves are of polynomial length.

We will now argue that each obfuscation sent in round 2 is also polynomially long. Consider
the obfuscation iOi,j , which obfuscates Progi,j ; we need to argue that this program for every i, j is
only polynomially long. Observe that this program takes as input (R,Γ,Mi−1,Φj−1), where Γ and
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Φj−1 consist of polynomially many NIZK proofs. This program roughly proceeds by first checking
that all the proofs in Γ and Φj−1 are accepting. If the proofs are accepting then Prog outputs mi,j

and φi,j .
Observe that Γ and Φj−1 are proofs of NP-statements each of which is a fixed polynomial in

the description of the next message function of the protocol π. Also observe that the time taken
to evaluate mi,j and φi,j is bounded a fixed polynomial. This allows us to conclude that all the
computation done by Progi,j can be bounded by a fixed polynomial.

Security. Let A be a malicious, static adversary that interacts with parties running the protocol
Π from Figure 1 in the FCRS-hybrid model. We construct an ideal world adversary S with access to
the ideal functionality Ff , which simulates a real execution of Π with A such that no environment
Z can distinguish the ideal world experiment with S and Ff from a real execution of Π with A.

We now sketch the description of the simulator and the proof of security, restricting ourselves to
the stand-alone setting. The fully detailed description of our simulator is provided in Appendix B
and the proof of indistinguishability provided in Appendix C. Those more formal proofs are given
for the general setting of UC-security.

Our simulator S roughly proceeds as follows:

• Common reference string: Recall that the common reference string in our construction
consists of a CRS σ for a NIZK Proof system and a public key pk corresponding to a CCA
secure public key encryption scheme. Our simulator uses the simulator of the NIZK proof
system in order to generate the reference string σ. Note that the simulator for NIZK proof
system also generates some trapdoor information that can be used to generate simulated
NIZK proofs. Our simulator saves that for later use. S also generates the public key pk
along with its secret key sk, which it will later use to decrypt ciphertexts generated by the
adversary.

• Round 1: Recall that in round 1, honest parties generate ciphertexts corresponding to en-
cryptions of their inputs and various random coins. Our simulator just generates encryptions
of the zero-string on behalf of the honest parties. Also S uses the knowledge of the secret key
sk to extract the input and randomness that the adversarial parties encrypt.

• Round 2: Recall that in the second round the honest parties are required to “open” some
of the randomness values committed to in round 1 along with obfuscations necessary for
execution of π.

S proceeds by preparing a simulated transcript of the execution of π using the malicious party
inputs previously extracted and the output obtained from the ideal functionality, which it
needs to force onto the malicious parties. S opens the randomness on behalf of honest parties
such that the randomness of malicious parties becomes consistent with the simulated tran-
script and generates simulated proofs for the same. The simulator generates the obfuscations
on behalf of honest parties by hard-coding the messages as contained in the simulated tran-
script. The obfuscations also generate proofs proving that the output was generated correctly.
Our simulator hard-codes these proofs in the obfuscations as well.

Very roughly, our proof proceeds by first changing all the obfuscations S generates on behalf of
honest parties to output fixed values. The statistical soundness of the NIZK proof system allows us
to base security on the weak notion of indistinguishability obfuscation. Once this change has been
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made, in a sequence of hybrids we change from honest execution of the underlying semi-honest
MPC protocol to a the simulated execution. We refer the reader to Appendix C for a complete
proof.

3.2 Extensions

Low Communication. Our protocol Π (as described in Figure 1) can be used to UC-securely
realize any functionality Ff . However the communication complexity of this protocol grows poly-
nomially in the size of the circuit evaluating function f and the security parameter λ. We would
like to remove this restriction and construct a protocol Π′ whose communication complexity is
independent of the the function being evaluated.

Protocol Π′

Let Π be the MPC Protocol from Figure 1.
Let (SetupMK ,EncryptMK ,EvalMK ,DecryptMK) be a multikey FHE scheme.
Private Inputs: Party Pi for i ∈ [n], receives its input xi.
Common Reference String: Generate the CRS corresponding to Π.

Round 1: Pi proceeds as follows:

• (pki, ski)← SetupMK(1λ; ρi) and generates encryption ci := EncryptMK(pki, xi; %i).

• Generates the first round message Zi of Π playing as Pi with input (xi, ρi, %i). (Recall
that the first message of Π does not depend on the function Π is used to evaluate.)

• Sends3 (pki, ci, Zi) to all parties.

Round 2: Every party Pi computes c∗ := EvalMK(C, (c1, pk1), . . . , (cn, pkn)). Pi generates Pi’s
second round message of Π, where Π computes the following function:

• For every i ∈ [n], check if (pki, ski)← SetupMK(1λ; ρi) and ci := EncryptMK(pki, xi; %i).

• If all the checks pass then output DecryptMK(sk1, . . . , skn, c
∗) and otherwise output ⊥.

Evaluation: Pi outputs the output of Pi in Π.

Figure 3: Two Round MPC Protocol with Low Communication Complexity

A key ingredient of our construction is multikey fully homomorphic encryption [LATV12]. Intu-
itively, multikey FHE allows us to evaluate any circuit on ciphertexts that might be encrypted under
different public keys. To guarantee semantic security, decryption requires all of the corresponding
secret keys. We refer the reader to Appendix A.4 for more details.

Our protocol Π′ works by invoking Π. Recall that Π proceeds in two rounds. Roughly speaking,
in the first stage parties commit to their inputs, and in the second round the parties generate
obfuscations that allow for “virtual” execution of sub-protocol π on the inputs committed in the
first round. Our key observation here is that the function that the sub-protocol π evaluates does
not have to be specified until the second round.

We will now give a sketch of our protocol Π′. Every party Pi generates a public key pki and a
secret key ski using the setup algorithm of the multikey FHE scheme. It then encrypts its input xi
under the public key pki and obtains ciphertext ci. It then sends (pki, ci) to everyone along with
the first message of Π with input the randomness used in generation of pki and ci. This completes
the first round. At this point, all parties can use the values ((pk1, c1), . . . , (pkn, cn)) to obtain an
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encryption of f(x1, . . . xn), where f is the function that we want to compute. The second round
of protocol Π can be used to decrypt this value. A formal description of the protocol appears in
Figure 3.

Theorem 2. Under the same assumptions as in Theorem 1 and assuming the semantic security
of the multikey FHE scheme, the protocol Π′ presented in Figure 3 UC-securely realizes the ideal
functionality Ff in the FCRS-hybrid model. Furthermore the communication complexity of protocol
Π′ is polynomial in the input lengths of all parties and the security parameter. (It is independent
of the size of f .)

Proof. The correctness of the our protocol Π′ follows from the correctness of the protocol Π and
the correctness of the multikey FHE scheme. Observe that the compactness of the multikey FHE
(Appendix A.4) implies that the ciphertext c∗ evaluated in Round 2 on the description of Protocol
Π (Figure 3) is independent of the size of the function f being evaluated. Also note that no
other messages in the protocol depend on the function f . This allows us to conclude that the
communication complexity of protocol Π′ is independent of the size of f .

We defer the formal description of our simulator and the proof of indistinguishability to Ap-
pendix D.

General Functionality. Our basic MPC protocol as described in Figure 1 only considers de-
terministic functionalities (Appendix A.1.5) where all the parties receive the same output. We
would like to generalize it to handle randomized functionalities and individual outputs (just as
in [AJW11, Appendix D]). First, the standard transformation from a randomized functionality to
a deterministic one (See [Gol04, Section 7.3]) works for this case as well. In this transformation,
instead of computing some randomized function g(x1, . . . xn; r), the parties compute the determin-

istic function f((r1, x1), . . . , (rn, xn))
def
= g(x1, . . . , xn;⊕ni=1ri). We note that this computation does

not add any additional rounds.
Next, we move to individual outputs. Again, we use a standard transformation (See [LP09],

for example). Given a function g(x1, . . . , xn)→ (y1, . . . , yn), the parties can evaluate the following
function which has a single output:

f((k1, x1), . . . , (kn;xn)) = (g1(x1, . . . , xn)⊕ k1|| . . . ||gn(x1, . . . , xn)⊕ kn)

where a||b denotes a concatenation of a with b, gi indicates the ith output of g, and ki is randomly
chosen by the ith party. Then, the parties can evaluate f , which is a single output functionality,
instead of g. Subsequently every party Pi uses its secret input ki to recover its own output. The
only difference is that f has one additional exclusive-or gate for every circuit-output wire. Again,
this transformation does not add any additional rounds of interaction.

Corollary 1. Let f be any (possibly randomized) poly-time function with n inputs and n outputs.
Assume the existence of an Indistinguishability Obfuscator iO, a NIZK proof system (K,P, V ), a
CCA secure PKE scheme (Gen,Enc,Dec) with perfect correctness and an n-party semi-honest MPC
protocol π. Then the protocol Π presented in Figure 1 UC-securely realizes the ideal functionality
Ff in the FCRS-hybrid model.
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Common Random String vs Common Reference String. Our basic MPC protocol as
described in Figure 1 uses a common reference string. We can adapt the construction to work in
the setting of common random string (Appendix A.1.4) by assuming the existence of a CCA secure
public-key encryption scheme (Appendix A.3) with perfect correctness and pseudorandom public
keys.

Fairness. We note that the same protocol Π can be used to securely and fairly UC-realize the
generalized functionality in the setting of honest majority, by using a fair semi-honest MPC protocol
for π.

4 Applications

In this section we will discuss additional applications of our results.

4.1 Secure Computation on the Web

In a recent work, Halevi, Lindell and Pinkas [HLP11] studied of secure computation in a client-
server model where each client connects to the server once and interacts with it, without any other
client necessarily being connected at the same time. They show that, in such a setting, only limited
security is achievable. However, among other results, they also point out that if we can get each of
the players to connect twice to the server (rather than once), then their protocols can be used for
achieving the standard notion of privacy.

One key aspect of the two-pass protocols of Halevi et. al [HLP11] is that there is a preset order
in which the clients must connect to the server. Our protocol Π from Section 3 directly improves
on the results in this setting by achieving the same two-pass protocol, but without such a preset
order. Also, we achieve this result in the common reference/random string model, while the original
protocols of Halevi et. al [HLP11] required a public key setup.

4.2 Black-Box Obfuscation for More Functions

In this subsection, we generalize the class of circuits that can be obfuscated according to the strong
(virtual black box (VBB) notion of obfuscation. This application does not build directly on our
protocol for two-round MPC. Rather, the main ideas here are related to ideas (particularly within
the security proof) that arose in our MPC construction.

Our Result. Let C be a class of circuits that we believe to be VBB obfuscatable, e.g., point
functions or conjunctions. Roughly speaking, assuming indistinguishability obfuscation, we show
that a circuit C can be VBB obfuscated if there exists a circuit C ′ such that C ′ ∈ C and C(x) = C ′(x)
for every input x. The non-triviality of the result lies in the fact that it might not be possible to
efficiently recover C ′ from C. We refer the reader to Appendix E for a formal statement and proof.

Dynamic Point Function Obfuscation. We will now highlight the relevance of the results
presented above with an example related to point functions. We know how to VBB obfuscate point
functions. Now, consider a setting of three players. Player 1 generates a (perfectly binding)
commitment to a value x. Player 2 would like to generate an obfuscation of an arbitrary function
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f that allows an arbitrary Player 3, if he knows x, to evaluate f on input x alone (and nothing
other than x). Our construction above enables such obfuscation. We stress that the challenge here
is that Player 2 is not aware of the value x, which is in fact computationally hidden from it.
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A Additional Background

A.1 UC Security

In this section we briefly review UC security. For full details see [Can01]. A large part of this
introduction has been taken verbatim from [CLP10].

A.1.1 The basic model of execution

Following [GMR89, Gol01], a protocol is represented as an interactive Turing machine (ITM), which
represents the program to be run within each participant. Specifically, an ITM has three tapes that
can be written to by other ITMs: the input and subroutine output tapes model the inputs from and
the outputs to other programs running within the same “entity” (say, the same physical computer),
and the incoming communication tapes and outgoing communication tapes model messages received
from and to be sent to the network. It also has an identity tape that cannot be written to by the
ITM itself. The identity tape contains the program of the ITM (in some standard encoding) plus
additional identifying information specified below. Adversarial entities are also modeled as ITMs.

We distinguish between ITMs (which represent static objects, or programs) and instances of
ITMs, or ITIs, that represent interacting processes in a running system. Specifically, an ITI is an
ITM along with an identifer that distinguishes it from other ITIs in the same system. The identifier
consists of two parts: A session-identifier (SID) which identifies which protocol instance the ITM
belongs to, and a party identifier (PID) that distinguishes among the parties in a protocol instance.
Typically the PID is also used to associate ITIs with “parties”, or clusters, that represent some
administrative domains or physical computers.

The model of computation consists of a number of ITIs that can write on each other’s tapes in
certain ways (specified in the model). The pair (SID,PID) is a unique identifier of the ITI in the
system.

With one exception (discussed within) we assume that all ITMs are probabilistic polynomial
time (PPT). An ITM is PPT if there exists a constant c > 0 such that, at any point during its
run, the overall number of steps taken by M is at most nc, where n is the overall number of bits
written on the input tape of M in this run. (In fact, in order to guarantee that the overall protocol
execution process is bounded by a polynomial, we define n as the total number of bits written to
the input tape of M , minus the overall number of bits written by M to input tapes of other ITMs.;
see [Can01].)

A.1.2 Security of protocols

Protocols that securely carry out a given task (or, protocol problem) are defined in three steps, as
follows. First, the process of executing a protocol in an adversarial environment is formalized. Next,
an “ideal process” for carrying out the task at hand is formalized. In the ideal process the parties
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do not communicate with each other. Instead they have access to an “ideal functionality,” which is
essentially an incorruptible “trusted party” that is programmed to capture the desired functionality
of the task at hand. A protocol is said to securely realize an ideal functionality if the process of
running the protocol amounts to “emulating” the ideal process for that ideal functionality. Below
we overview the model of protocol execution (called the real-life model), the ideal process, and the
notion of protocol emulation.

The model for protocol execution. The model of computation consists of the parties running an
instance of a protocol Π, an adversary A that controls the communication among the parties, and an
environment Z that controls the inputs to the parties and sees their outputs. We assume that all
parties have a security parameter n ∈ N. (We remark that this is done merely for convenience and
is not essential for the model to make sense). The execution consists of a sequence of activations,
where in each activation a single participant (either Z, A, or some other ITM) is activated, and may
write on a tape of at most one other participant, subject to the rules below. Once the activation
of a participant is complete (i.e., once it enters a special waiting state), the participant whose tape
was written on is activated next. (If no such party exists then the environment is activated next.)

The environment is given an external input z and is the first to be activated. In its first
activation, the environment invokes the adversary A, providing it with some arbitrary input. In
the context of UC security, the environment can from now on invoke (namely, provide input to)
only ITMs that consist of a single instance of protocol Π. That is, all the ITMs invoked by the
environment must have the same SID and the code of Π.

Once the adversary is activated, it may read its own tapes and the outgoing communication
tapes of all parties. It may either deliver a message to some party by writing this message on the
party’s incoming communication tape or report information to Z by writing this information on
the subroutine output tape of Z. For simplicity of exposition, in the rest of this paper we assume
authenticated communication; that is, the adversary may deliver only messages that were actually
sent. (This is however not essential as shown in [Can04, BCL+05].)

Once a protocol party (i.e., an ITI running Π) is activated, either due to an input given by the
environment or due to a message delivered by the adversary, it follows its code and possibly writes
a local output on the subroutine output tape of the environment, or an outgoing message on the
adversary’s incoming communication tape.

The protocol execution ends when the environment halts. The output of the protocol execution
is the output of the environment. Without loss of generality we assume that this output consists
of only a single bit.

Let EXECπ,A,Z(n, z, r) denote the output of the environment Z when interacting with parties
running protocol Π on security parameter n, input z and random input r = rZ , rA, r1, r2, . . . as
described above (z and rZ for Z; rA for A, ri for party Pi). Let EXECπ,A,Z(n, z) random variable
describing EXECπ,A,Z(n, z, r) where r is uniformly chosen. Let EXECπ,A,Z denote the ensemble
{EXECπ,A,Z(n, z)}n∈N,z∈{0,1}∗ .

Ideal functionalities and ideal protocols. Security of protocols is defined via comparing the
protocol execution to an ideal protocol for carrying out the task at hand. A key ingredient in the
ideal protocol is the ideal functionality that captures the desired functionality, or the specification,
of that task. The ideal functionality is modeled as another ITM (representing a “trusted party”)
that interacts with the parties and the adversary. More specifically, in the ideal protocol for
functionality F all parties simply hand their inputs to an ITI running F . (We will simply call this
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ITI F . The SID of F is the same as the SID of the ITIs running the ideal protocol. (the PID of F is
null.)) In addition, F can interact with the adversary according to its code. Whenever F outputs
a value to a party, the party immediately copies this value to its own output tape. We call the
parties in the ideal protocol dummy parties. Let Π(F) denote the ideal protocol for functionality
F .

Securely realizing an ideal functionality. We say that a protocol Π emulates protocol φ
if for any adversary A there exists an adversary S such that no environment Z, on any input,
can tell with non-negligible probability whether it is interacting with A and parties running Π,
or it is interacting with S and parties running φ. This means that, from the point of view of the
environment, running protocol Π is ‘just as good’ as interacting with φ. We say that Π securely
realizes an ideal functionality F if it emulates the ideal protocol Π(F). More precise definitions
follow. A distribution ensemble is called binary if it consists of distributions over {0, 1}.

Definition 4. Let Π and φ be protocols. We say that Π UC-emulates φ if for any adversary A
there exists an adversary S such that for any environment Z that obeys the rules of interaction for
UC security we have EXECφ,S,Z ≈ EXECπ,A,Z .

Definition 5. Let F be an ideal functionality and let Π be a protocol. We say that Π UC-realizes
F if Π UC-emulates the ideal process Π(F).

A.1.3 Hybrid protocols

Hybrid protocols are protocols where, in addition to communicating as usual as in the standard
model of execution, the parties also have access to (multiple copies of ) an ideal functionality. Hybrid
protocols represent protocols that use idealizations of underlying primitives, or alternatively make
trust assumptions on the underlying network. They are also instrumental in stating the universal
composition theorem. Specifically, in an F-hybrid protocol (i.e., in a hybrid protocol with access to
an ideal functionality F), the parties may give inputs to and receive outputs from an unbounded
number of copies of F .

The communication between the parties and each one of the copies of F mimics the ideal
process. That is, giving input to a copy of F is done by writing the input value on the input tape
of that copy. Similarly, each copy of F writes the output values to the subroutine output tape of
the corresponding party. It is stressed that the adversary does not see the interaction between the
copies of F and the honest parties.

The copies of F are differentiated using their SIDs. All inputs to each copy and all outputs from
each copy carry the corresponding SID. The model does not specify how the SIDs are generated,
nor does it specify how parties “agree” on the SID of a certain protocol copy that is to be run by
them. These tasks are left to the protocol. This convention seems to simplify formulating ideal
functionalities, and designing protocols that securely realize them, by freeing the functionality from
the need to choose the SIDs and guarantee their uniqueness. In addition, it seems to reflect common
practice of protocol design in existing networks.

The definition of a protocol securely realizing an ideal functionality is extended to hybrid pro-
tocols in the natural way.

The universal composition operation. We define the universal composition operation and
state the universal composition theorem. Let ρ be an F-hybrid protocol, and let Π be a protocol
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that securely realizes F . The composed protocol ρΠ is constructed by modifying the code of each
ITM in ρ so that the first message sent to each copy of F is replaced with an invocation of a new copy
of Π with fresh random input, with the same SID, and with the contents of that message as input.
Each subsequent message to that copy of F is replaced with an activation of the corresponding
copy of Π, with the contents of that message given to Π as new input. Each output value generated
by a copy of Π is treated as a message received from the corresponding copy of F . The copy of
Π will start sending and receiving messages as specified in its code. Notice that if Π is a G-hybrid
protocol (i.e., ρ uses ideal evaluation calls to some functionality G) then so is ρΠ.

The universal composition theorem. Let F be an ideal functionality. In its general form,
the composition theorem basically says that if Π is a protocol that UC-realizes F then, for any F-
hybrid protocol ρ, we have that an execution of the composed protocol ρΠ “emulates” an execution
of protocol ρ. That is, for any adversary A there exists a simulator S such that no environment
machine Z can tell with non-negligible probability whether it is interacting with A and protocol ρΠ

or with S and protocol ρ, in a UC interaction. As a corollary, we get that if protocol ρ UC-realizes
F , then so does protocol ρΠ. 1

Theorem 3 (Universal Composition [Can01].). Let F be an ideal functionality. Let ρ be a F-hybrid
protocol, and let Π be a protocol that UC-realizes F . Then protocol ρΠ UC-emulates ρ.

An immediate corollary of this theorem is that if the protocol ρ UC-realizes some functionality
G, then so does ρΠ.

A.1.4 The Common Reference/Random String Model

In the common reference string (CRS) model [CF01, CLOS02], all parties in the system obtain
from a trusted party a reference string, which is sampled according to a pre-specified distribution
D. The reference string is referred to as the CRS. In the UC framework, this is modeled by an
ideal functionality FDCRS that samples a string ρ from a pre-specified distribution D and sets ρ as
the CRS. FDCRS is described in Figure 4.

Functionality FD
CRS

1. Upon activation with session id sid proceed as follows. Sample ρ = D(r),
where r denotes uniform random coins, and send (crs, sid, ρ) to the ad-
versary.

2. On receiving (crs, sid) from some party send (crs, sid, ρ) to that party.

Figure 4: The Common Reference String Functionality.

When the distribution D in FDCRS is sent to be the uniform distribution (on a string of appro-
priate length) then we obtain the common random string model.

1The universal composition theorem in [Can01] applies only to “subroutine respecting protocols”, namely protocols
that do not share subroutines with any other protocol in the system.
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A.1.5 General Functionality

We consider the general-UC functionality F , which securely evaluates any polynomial-time (pos-
sibly randomize) function f : ({0, 1}`in)n → ({0, 1}`out)n. The functionality Ff is parameterized
with a function f and is described in Figure 5. In this paper we will only be concerned with the
static corruption model.

Functionality Ff

Ff parameterized by an (possibly randomized) n-ary function f , running with
parties P = {P1, . . . Pn} (of which some may be corrupted) and an adversary
S, proceeds as follows:

1. Each party Pi (and S on behalf of Pi if Pi is corrupted) sends
(input, sid,P, Pi, xi) to the functionality.

2. Upon receiving the inputs from all parties, evaluate (y1, . . . yn) ←
f(x1, . . . , xn). For every Pi that is corrupted send adversary S the mes-
sage (output, sid,P, Pi, yi).

3. On receiving (generateOutput, sid,P, Pi) from S the ideal functionality
outputs (output, sid,P, Pi, yi) to Pi. (And ignores the message if inputs
from all parties in P have not been received.)

Figure 5: General Functionality.

Our protocol in Figure 1 (also Theorem 1) is for UC-securely realizing general functionality
Ff when the function f is restricted to be any deterministic poly-time function with n inputs and
single output. This functionality has been formally defined in Figure 6.

As explained in Section 3 the same protocol can be used to obtain a protocol that UC-securely
realizes the general functionality Ff for any function f .

Fairness. Our default notion of UC-security, as described above, is “security-with abort” meaning
that the ideal adversary (simulator) can abort the computation and cause the functionality to not
give output to honest parties. In addition, we say that a protocol π securely and fairly realizes a
functionality F if S does not get the ability to abort. Meaning the functionality always sends the
outputs to the honest parties.

A.2 Non-Interactive Zero-Knowledge Proofs

Let R be an efficiently computable binary relation. For pairs (x,w) ∈ R we call x the statement
and w the witness. Let L be the language consisting of statements in R.

A non-interactive proof system [BFM88, FLS99, GOS06] for a relation R consists of a common
reference string generation algorithm K, a prover P and a verifier V . We require that they all
be probabilistic polynomial time algorithms, i.e., we are looking at efficient prover proofs. The
common reference string generation algorithm produces a common reference string σ of length Ω(λ).
The prover takes as input (σ, x, w) and produces a proof π. The verifier takes as input (σ, x, π) and
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Functionality Ff

Ff parameterized by an n-ary deterministic single output function f , running
with parties P = {P1, . . . Pn} (of which some may be corrupted) and an adver-
sary S, proceeds as follows:

1. Each party Pi (and S on behalf of Pi if Pi is corrupted) sends
(input, sid,P, Pi, xi) to the functionality.

2. Upon receiving the inputs from all parties, evaluate y ← f(x1, . . . , xn).
Send adversary S the message (output, sid,P, y).

3. On receiving (generateOutput, sid,P, Pi) from S the ideal functionality
outputs (output, sid,P, y) to Pi. (And ignores the message if inputs from
all parties in P have not been received.)

Figure 6: General Functionality for Deterministic Single Output Functionalities.

outputs 1 if the proof is acceptable and 0 if rejecting the proof. We call (K,P, V ) a non-interactive
proof system for R if it has the completeness and statistical-soundness properties described below.

Perfect completeness. A proof system is complete if an honest prover with a valid witness can
convince an honest verifier. Formally we have

Pr
[
σ ← K(1λ) : ∃(x, π) : x /∈ L : V (σ, x, π) = 1

]
= 1.

Statistical soundness. A proof system is sound if it is infeasible to convince an honest verifier
when the statement is false. For all (even unbounded) adversaries A we have

Pr
[
σ ← K(1λ); (x, π)← A(σ) : V (σ, x, π) = 1 : x 6∈ L

]
= negl(λ).

Computational zero-knowledge [FLS99]. A proof system is computational zero-knowledge
if the proofs do not reveal any information about the witnesses to a bounded adversary. We say a
non-interactive proof (K,P, V ) is computational zero-knowledge if there exists a polynomial time
simulator S = (S1, S2), where S1 returns a simulated common reference string σ together with a
simulation trapdoor τ that enables S2 to simulate proofs without access to the witness. For all
non-uniform polynomial time adversaries A we have for all x ∈ L

Pr
[
σ ← K(1λ);π ← P (σ, x, w) : A(x, σ, π) = 1

]
≈ Pr

[
(σ, τ)← S1(1λ);π ← S2(σ, τ, x) : A(x, σ, π) = 1

]
.

A.3 CCA secure encryption

A public-key encryption scheme [DH76, RSA78, GM84] is a triple (Gen,Enc,Dec), where (i) Gen is
the (randomized) key generation algorithm, outputting a pair (pk, sk) consisting of a public-key and
a secret-key, respectively (ii) Enc is the (randomized) encryption algorithm outputting a ciphertext
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c = Enc(pk,m) for any message m and a valid public key pk and (iii) Dec is the deterministic de-
cryption algorithm such that Dec(sk, c) that outputs a message or {⊥}. All algorithms additionally
take (implicitly) as input the security parameter λ. We sometimes need to make the randomness
used by Enc explicit: In these cases, we write Enc(pk,m; r) to highlight the fact that random coins
r are used to encrypt the message m.

Perfect Correctness. We say that the encryption scheme has perfect correctness if for over-
whelming fraction of the randomness used by the key generation algorithm, all all messages we
have Pr[Dec(sk,Enc(pk,m)) = m] = 1.

CCA Security. The CCA security [RS92, NY90, DDN91] of the (Gen,Enc,Dec) is defined via
the following security game between a challenger and an adversary A:

1. The challenger generates (pk, sk)← Gen(1λ) and b← {0, 1}, and gives pk to A.

2. The adversary A ask decryption queries c, which are answered with the message Dec(sk, c).

3. The adversary A inputs (m0,m1) with |m0| = |m1| to the challenger, and receives a challenge
ciphertext c∗ ← Enc(pk,mb).

4. the adversary A asks further decryption queries c 6= c∗, which are answered with message
Dec(sk, c).

5. The adversary A outputs a bit b′, and wins the game if b′ = b.

We say that a PKE scheme is CCA secure if for all (non-uniform) probabilistic polynomial time
adversaries A we have that the probability

∣∣Pr[b′ = b]− 1
2

∣∣ is negligible.

A.4 Multikey Fully Homomorphic Encryption

In this section, we define multikey fully homomorphic encryption (taken verbatim from [LATV12]).
However here we will present a special case of their primitive. This simple primitive suffices for our
purposes.

Intuitively, multikey FHE allows us to evaluate any circuit on ciphertexts that might be en-
crypted under different public keys. To guarantee semantic security, decryption requires all of the
corresponding secret keys.

Let n be the number of distinct keys in the system. We let all algorithms depend polynomially
on n. This is similar to the definition of “leveled” FHE from [BGV12]. However, we note that in
this definition, the algorithms depend on n but are independent of the depth of circuits that the
scheme can evaluate. Thus, we consider schemes that are “leveled” with respect to the number of
keys n, but fully homomorphic (“non-leveled”) with respect to the circuits that are evaluated. We
now define multikey FHE as follows, for arbitrary circuits.

Definition 6 (Multikey Homomorphic Encryption). (SetupMK ,EncryptMK ,EvalMK ,DecryptMK)
is a multikey homomorphic encryption scheme if it has the following properties:

• (pk, sk) ← SetupMK(1λ), for a security parameter λ, outputs a public key pk, a secret key
sk.

22



• c← EncryptMK(pk,m), given a public key pk and message m, outputs a ciphertext c.

• c∗ := EvalMK(C, (c1, pk1), . . . , (cn, pkn)), given a (description of) a boolean circuit C along
with n tuples (ci, pki), each consisting of a ciphertext ci and a public key pki, outputs a
ciphertext c∗.

• m′ := DecryptMK(sk1, . . . skn, c), given n secret keys, and a ciphertext c outputs a message
m′.

We require absence of decryption failures and compactness of ciphertexts. Formally: for ev-
ery circuit C, all sequences of n key tuples {(pkj , skj)}j∈[n] each of which is in the support of

SetupMK(1λ), and all plaintexts (m1, . . . ,mt) and ciphertexts (c1, . . . , ct) such that ci is in the
support of EncryptMK(pki,mi), EvalMK satisfies the following properties:

Correctness: Let c∗ := EvalMK(C, (c1, pk1), . . . , (cn, pkn)). Then DecryptMK(sk1, . . . , skn, c
∗) =

C(m1, . . . ,mn).

Compactness: Let c∗ := EvalMK(C, (c1, pk1), . . . , (cn, pkn)). There exists a polynomial P such
that |c∗| ≤ P (λ, n). In other words, the size of c is independent of |C|. Note, however, that
we allow the evaluated ciphertext to depend on the number of keys, n.

Semantic security of a multikey FHE follows directly from the semantic security of the under-
lying encryption scheme.

B Description of our Simulator

Let A be a malicious, static adversary that interacts with parties running the protocol Π from
Figure 1 in the FCRS-hybrid model. We construct an ideal world adversary S with access to the
ideal functionality Ff , which simulates a real execution of Π with A such that no environment Z
can distinguish the ideal world experiment with S and Ff from a real execution of Π with A.

Recall that S interacts with the ideal functionality Ff and with the environment Z. The ideal
adversary S starts by invoking a copy of A and running a simulated interaction of A with the
environment Z and the parties running the protocol. Our simulator S proceeds as follows:

Simulated CRS: The common reference string is chosen by S in the following manner (recall
that S chooses the CRS for the simulated A as we are in the FCRS-hybrid model):

1. S generates (σ, τ) ← S1(1λ), the simulated common reference string for the NIZK proof
system (K,P, V ) with simulator S = (S1, S2).

2. S runs the setup algorithm Gen(1λ) of the CCA secure encryption scheme and obtains a
public key pk and a secret key sk.

S sets the common reference string to equal (σ, pk) and locally stores (τ, sk). (The secret key sk
will be later used to extract inputs of the corrupted parties and the trapdoor τ for the simulated
CRS σ will be used to generate simulated proofs.)
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Simulating the communication with Z: Every input value that S receives from Z is written
on A’s input tape. Similarly, every output value written by A on its own output tape is directly
copied to the output tape of S.

Simulating actual protocol messages in Π: Note that there might be multiple sessions ex-
ecuting concurrently. Let sid be the session identifier for one specific session. We will specify the
simulation strategy corresponding to this specific session. The simulator strategy for all other ses-
sions will be the same. Let P = {P1, . . . , Pn} be the set of parties participating in the execution of
Π corresponding to the session identified by the session identifier sid. Also let PA ⊆ P be the set
of parties corrupted by the adversary A. (Recall that we are in the setting with static corruption.)

In the subsequent exposition we will assume that at least one party is honest. If no party is
honest then the simulator does not need to do anything else.

Round 1 Messages S → A: In the first round S must generate messages on behalf of the honest
parties, i.e. parties in the set P\PA. For each party Pi ∈ P\PA our simulator proceeds as:

1. ci = Enc(i||0`in) and, (recall that `in is the length of inputs of all parties)

2. ∀j ∈ [n], and generate di,j = Enc(i||0`). (Recall that ` is the length of the maximum number
of random coins needed by any party in π.)

It then sends Zi = {ci, {di,j}j∈[n]} to A on behalf of party Pi.

Round 1 Messages A → S: Also in the first round the adversary A generates the messages on
behalf of corrupted parties in PA. For each party Pi ∈ PA our simulator proceeds as:

1. Let Zi = {ci, {di,j}j∈[n]} be the message that A sends on behalf of Pi. Our simulator S
decrypts the ciphertexts using the secret key sk. In particular S sets x′i = Dec(sk, ci) and
r′i,j = Dec(sk, di,j). Obtain xi ∈ {0, 1}`in such that x′i = i||xi. If x′i is not of this form the set
xi = ⊥. Similarly obtain ri,j from r′i,j for every j setting the value to ⊥ in case it is not of
the right format.

2. S sends (input, sid,P, Pi, xi) to Ff on behalf of the corrupted party Pi. It saves the values
{ri,j}j for later use.

Round 2 Messages S → A: In the second round S must generate messages on behalf of the
honest parties, i.e. parties in the set P\PA. S proceeds as follows:

1. S obtains the output (output, sid,P, y) from the ideal functionality Ff and now it needs to
force this output onto the adversary A.

2. In order to force the output, the simulator S executes the simulator Sπ and obtains a simulated
transcript. The simulated transcript specifies the random coins of all the parties in PA and
the protocol messages. Let si denote the random coins of party Pi ∈ PA and let mi,j for
i ∈ [n] and j ∈ [t] denote the protocol messages. (Semi-honest security of protocol π implies
the existence of such a simulator.)

3. For each Pj ∈ PA sample ri,j randomly in {0, 1}` for each Pi ∈ P\PA subject to the constraint
that ⊕ni=1ri,j = sj .
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4. For each Pi ∈ P\PA, S proceeds as follows:

(a) For every j ∈ [n], j 6= i generate γi,j as a simulated NIZK proof under σ for the NP-
statement: {

∃ ρri,j
∣∣ di,j = Enc(i||ri,j ; ρri,j )

}
.

(b) A sequence of obfuscations (iOi,1, . . . iOi,t) where iOi,j is the obfuscation of the program

Prog
1,xi,ρxi ,ri,i,ρri,i ,{Zi},fixedOutput

i,j , where fixedOutput is the value (mi,j , φi,j) such that φi,j
is the simulated proof that mi,j was generated correctly. (Recall that the flag has been
set to 1 and this program on accepting inputs always outputs the value fixedOutput.)

(c) It sends ({ri,j , γi,j}j∈[n],j 6=i, {iOi,j}j∈[t]) to A on behalf of Pi.

Round 2 Messages A → S: Also in the second round the adversary A generates the messages
on behalf of corrupted parties PA. For each party Pi ∈ P\PA that has obtained “correctly formed”
second round messages from all parties in PA, our simulator sends (generateOutput, sid,P, Pi) to
the ideal functionality.

This completes the description of the simulator.

C Proof of Security

In this section, via a sequence of hybrids, we will prove that no environment Z can distinguish the
ideal world experiment with S and Ff (as defined above) from a real execution of Π with A. We
will start with the real world execution in which the adversary A interacts directly with the honest
parties holding their inputs and step-by-step make changes till we finally reach the simulator as
described in Appendix B. At each step will argue that the environment cannot distinguish the
change except with negligible probability.

- H1: This hybrid corresponds to the Z interacting with the real world adversary A and honest
parties that hold their private inputs.

We can restate the above experiment with the simulator as follows. We replace the real world
adversary A with the ideal world adversary S. The ideal adversary S starts by invoking a
copy of A and running a simulated interaction of A with the environment Z and the honest
parties. S forwards the messages that A generates for it environment directly to Z and vice
versa (as explained in the description of the simulator S). In this hybrid the simulator S
holds the private inputs of the honest parties and generates messages on their behalf using
the honest party strategies as specified by Π.

- H2: In this hybrid we change how the simulator generates the CRS. In particular we will
change how S generates the public key pk of the CCA secure encryption scheme. We will not
change the way CRS for the NIZK is generated.

S runs the setup algorithm Gen(1λ) of the CCA secure encryption scheme and obtains a
public key pk and a secret key sk. S will use this public key pk as part of the CRS and use
the secret key sk to decrypt the ciphertexts generated by A on behalf of PA. In particular
for each party Pi ∈ PA our simulator proceeds as:
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– Let Zi = {ci, {di,j}j∈[n]} be the message that A sends on behalf of Pi. Our simulator S
decrypts the ciphertexts using the secret key sk. In particular S sets x′i = Dec(sk, ci)
and r′i,j = Dec(sk, di,j). Obtain xi ∈ {0, 1}`in such that x′i = i||xi. If x′i is not of this
form the set xi = ⊥. Similarly obtain ri,j from r′i,j for every j setting the value to ⊥ in
case it is not of the right format.

Note that in hybrids H2 and H1 is that S now additionally uses the secret key sk to extract
the inputs of the adversarial parties. Furthermore if at any point in the execution any of the
messages of the adversary are inconsistent with the input and randomness extracted but the
adversary succeeds in providing an accepting NIZK proof then the simulator aborts Extract
Abort.

The distribution of the CRS, and hence the view of the environment Z, in the two cases is
identical. Also note that it follows from the perfect correctness of the encryption scheme and
the statistical soundness of the NIZK proof system that the NIZK proofs adversary generates
will have to be consistent with the extracted values. In other words over the random choices
of the CRS we have that the probability of Extract Abort is negligible.

- H3: In this hybrid we will change how the simulator generates the obfuscations on behalf of
honest parties. Roughly speaking we observe that the obfuscations can only be evaluated to
output one unique value (consistent with inputs and randomness extracted using sk) and we
can just hardcode this value into the obfuscated circuit. More formally in the second round
S generates the messages on behalf of the honest parties, i.e. parties in the set P\PA as
follows:

1. For every Pj , S obtains sj = ⊕ni=1ri,j .

2. S virtually executes the protocol π with inputs x1, . . . , xn and random coins s1, . . . , sn
for the parties P1, . . . Pn respectively, and obtains the messages mi,j for all i ∈ [n] and
j ∈ [t].

3. For each Pi ∈ P\PA, S proceeds as follows:

(a) For every j ∈ [n], j 6= i generate γi,j as a NIZK proof under σ for the NP-statement:{
∃ ρri,j

∣∣ di,j = Enc(i||ri,j ; ρri,j )
}
.

(b) A sequence of obfuscations (iOi,1, . . . iOi,t) where iOi,j is the obfuscation of the

program Prog
1,xi,ρxi ,ri,i,ρri,i ,{Zi},fixedOutput

i,j , where fixedOutput is the value (mi,j , φi,j)
such that φi,j is the proof that mi,j was generated correctly. (Recall that the flag
has been set to 1 and this program on all accepting inputs always outputs the value
fixedOutput.)

(c) It sends ({ri,j , γi,j}j∈[n],j 6=i, {iOi,j}j∈[t]) to A on behalf of Pi.

We will now argue that hybrids H2 and H3 and computationally indistinguishable. More
formally we will consider a sequence of t · |P\PA| hybrids H3,0,0, . . . H3,|P\PA|,t. In hybrid
H3,i,j all the obfusctaions by the first i−1 honest parties and the first j obfuscations generated
by the ith honest party are generated in the modified way as described above. It is easy to
see that hybrid H3,0,0 is same as hybrid H2 and hybrid H3,|P\PA|,t is same as hybrid H3 itself.

26



We will now argue that the hybrids H3,i,j−1 and H3,i,j for j ∈ [t] are computationally indis-
tinguishable. This implies the above claim, but in order to argue the above claim we first
prove the following lemma.

Lemma 1.

Pr

∃ a, b :

Prog
0,xi,ρxi ,ri,i,ρri,i ,{Zi},0`i,j
i,j (a) 6= Prog

0,xi,ρxi ,ri,i,ρri,i ,{Zi},0`i,j
i,j (b)

∧ Prog
0,xi,ρxi ,ri,i,ρri,i ,{Zi},0`i,j
i,j (a) 6= ⊥

∧ Prog
0,xi,ρxi ,ri,i,ρri,i ,{Zi},0`i,j
i,j (b) 6= ⊥

 = negl(λ)

where the probability is taken over the random choices of the generation of the CRS.

Proof. Recall that program Prog
0,xi,ρxi ,ri,i,ρri,i ,{Zi},0`i,j
i,j represents the jth message function of

the ith party in protocol π. Recall that the input to the program consists of two (R,Γ,Mj−1,Φj−1).
We will refer to the (R,Mj−1) as the main input part and the Γ,Φj−1 as the proof part.

Observe that since the proofs are always consistent with the extracted inputs and randomness,
we have that there is a unique main input part for which adversary can provide valid (or
accepting) proof parts. Further note that if the proof part is not accepting then Progi,j just
outputs ⊥. In other words if the proof is accepting then the program outputs a fixed value
that depends just on the values that are fixed based on {Zi} values. We stress that the output
actually does include a NIZK proof as well, however it is not difficult to see that this NIZK
proof is also unique as a fixed randomness is used in generation of the proof.

Armed with Lemma 1, we can conclude that the programs Prog
0,xi,ρxi ,ri,i,ρri,i ,{Zi},0`i,j
i,j and

Prog
1,xi,ρxi ,ri,i,ρri,i ,{Zi},fixedOutput

i,j are functionally equivalent. Next based on the indistinguis-
baility obfuscation property, it is easy to see that the hybrids H3,i,j−1 and H3,i,j are compu-
tationally indistinguishable.

- H4: In this hybrid we change how the simulator generates the NIZKs on behalf of honest
parties. Formally S generates the σ using the simulator S1 of the NIZK proof system and gen-
erates all the proofs using the simulator S2. The argument can be made formal by considering
a sequence of hybrids and changing each of the NIZK proofs one at a time.

The indistinguishability between hybrids H3 and H4 can be based on the zero-knowledge
property of the NIZK proof system.

- H5: In this hybrid we change how the simulator S generates the first round messages on
behalf of honest parties. In particular S instead of encrypting inputs and randomness of
honest parties just encrypts zero strings of appropriate length.

We could try to base the indistinguishabilty between hybrids H4 and H5 on the semantic
security of the PKE scheme. However observe that S at the same time should continue to be
able to decrypt the ciphertexts that A generates on behalf of corrupted parties. Therefore
we need to rely on the CCA security of the PKE scheme.
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- H6: In this hybrid instead of generating all the messages mi,j on behalf of honest parties
honestly S uses Sπ (the simulator for the underlying MPC protocol) to generated simulated
messages.

The indistinguishability between hybrids H5 and H6 directly follows for the indistinguisha-
bility of honestly generated transcript in the execution of π from the transcript generated by
Sπ.

- H7: Observe that in hybrid H6, S uses inputs of honest parties just in obtaining the output of
the computation. It can obtain the same value by sending extracted inputs of the malicious
parties to the ideal functionality Ff .

Note that the hybrids H6 and H7 are identical.

Observe that hybrid H7 is identical to the simulation strategy described in Appendix B. This
concludes the proof.

D Proof of Theorem 2

In this section we will give a proof for Theorem 2. Let A be a malicious, static adversary that
interacts with parties running the protocol Π′ from Figure 3 in the FCRS-hybrid model. We
construct an ideal world adversary S with access to the ideal functionality Ff , which simulates a
real execution of Π′ with A such that no environment Z can distinguish the ideal world experiment
with S and Ff from a real execution of Π′ with A.

Recall that our protocol Π′ executes protocol Π, and also that in Π′ party Pi sends (pki, ci) in
the first round. Another difference is that in Π′ the parties decide on the function to be evaluated
after seeing the first message of all the parties, while in Π we need to provide the funtion before
the protocol execution of Π begins. Also, recall that we already proved that Π is UC-secure in the
FCRS-hybrid model. In other words, for every adversary AΠ there exist a simulator SΠ such that
no environment Z can distinguish the ideal world experiment with SΠ and Ff from a real execution
of Π with AΠ. We note that the simulator SΠ has the special property that the first round message
of SΠ does not rely on the function that is being evaluated. We will crucially use this property.

Our ideal adversary S starts by invoking a copy of A and running a simulated interaction of A
with the environment Z and the parties running the protocol. Our simulator S proceeds as follows:

Simulated CRS: Our simulator lets SΠ generate the CRS.

Simulating the communication with Z: Every input value that S receives from Z is written
on A’s input tape. Similarly, every output value written by A on its own output tape is directly
copied to the output tape of S.

Round 1 Messages S → A: For each party Pi ∈ P\PA, our simulator generates a public key
pki and a secret key ski using the setup algorithm SetupMK and generates the ciphertext ci as an
encryption of the zero string.

In addition to the public key and the ciphertext, S invokes SΠ in order to generate the first
message on behalf of the honest parties. Note here that we are making use of the observation that
the first message of the simulator SΠ is independent of the function being evaluated.
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Round 1 Messages A → S: Also in the first round the adversary A generates the messages
on behalf of corrupted parties in PA. For each party Pi ∈ PA our simulator obtains a public
key pki along with a ciphertext ci and the first round message of Π that A sends on behalf of Pi.
The adversary passes the Π-messages directly to the simulator SΠ. The simulator SΠ at this point
extracts the inputs that adversary uses on behalf of malicious paries and provides the messages
(input,P, Pi, (xi, ρi, %i)) corresponding to all corrupted parties. Instead of passing it directly to the
ideal functionality S proceeds as follows. Recall that the input of party Pi consists of (xi, ρi, %i).
Our simulator checks to see if (pki, ski) = SetupMK(1λ; ρi) and ci = EncryptMK(pki, xi; %i). If the
checks pass then it passes on the input xi to the ideal functionality, and otherwise it sends ⊥.

Round 2 Messages: To generate messages for round two, our simulator S just invokes SΠ with
the response that it obtains from its ideal functionality.

This completes the description of the simulator.

Indistinguishability Proof. In this section, via a sequence of hybrids, we will prove that no
environment Z can distinguish the ideal world experiment with S and Ff (as defined above) from
a real execution of Π with A. We will start with the real world execution in which the adversary
A interacts directly with the honest parties holding their inputs and step-by-step make changes till
we finally reach the simulator as described above. At each step will argue that the environment
cannot distinguish the change except with negligible probability.

- H1: This hybrid corresponds to the Z interacting with the real world adversary A and honest
parties that hold their private inputs.

We can restate the above experiment with the simulator as follows. We replace the real world
adversary A with the ideal world adversary S. The ideal adversary S starts by invoking a
copy of A and running a simulated interaction of A with the environment Z and the honest
parties. S forwards the messages that A generates for it environment directly to Z and vice
versa (as explained in the description of the simulator S). In this hybrid the simulator S
holds the private inputs of the honest parties and generates messages on their behalf using
the honest party strategies as specified by Π.

- H2: In this hybrid we change how the simulator generates messages for protocol Π. In
particular the simulator S uses the simulator SΠ to generate Π messages.

Indistinguishability follows from the security of the simulator SΠ.

- H3: In this hybrid we change how the simulator S generates the first round non-Π messages
on behalf of honest parties. In particular, S still generates the public keys as before, but
instead of encrypting the inputs of honest parties, it just encrypts zero strings of appropriate
length.

The indistinguishability follows from the semantic security of the multikey FHE scheme.

Observe that hybrid H3 is identical to the simulation strategy described earlier. This concludes
the proof.
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E Black-Box Obfuscation for More Functions

Toward formalizing the result sketched in Section 4.2, we start by recalling the notion of virtual
black box (VBB) obfuscation.

Definition 7 (VBB Obfuscation [BGI+01]). A uniform PPT machine O is called a VBB obfuscator
for a circuit class {Cλ} if the following conditions are satisfied:

• For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

• For any polynomial size circuit adversary A, there exists a polynomial size simulator circuit
S such that for every input length λ and every C ∈ Cλ:

|Pr[A(O(C)) = 1]− Pr[SC(1λ) = 1]| ≤ negl(λ)

where the probability is over the coins of the simulator and the obfuscator.

We say that class of circuits {Cλ} have an α(λ)-expanding VBB obfuscator if there exists
an obfuscation procedure that can VBB obfuscate any circuit C ∈ Cλ such that the size of the
obfuscated circuit is at most α(λ).

Theorem 4. Let {Cλ} be a class of circuits that are conjectured to have α(λ)-expanding VBB
obfuscatable. Then assuming that indistinguishability obfuscator exists, we show that a VBB
obfuscator for circuit class {Dλ} such that:

• ∀D ∈ Dλ ∃ C ∈ Cλ, such that ∀ x C(x) = D(x).

Proof. We start by giving the description of our obfuscator. Our obfuscator on input a circuit
D ∈ Dλ outputs iO(D′) where D′ is the circuit D padded to size α(λ).

To prove security, we need to show that for every adversary AD there exists a simulator SD
such that for all circuits in D ∈ Dλ the distributions SDD (1λ) and AD(iO(D′)) are close, where D′

is the circuit D padded to size α(λ).
We will first describe our simulator SD. Note that we are assuming that the class Cλ is VBB

obfuscatable. This implies an obfuscatorO such that for every adversaryAC there exists a simulator
SC such that for all C ∈ Cλ the distributions AC(O(C)) and SCC (1λ) are close. Hence the task of
constructing our simulator reduces to the task of constructing an adversary AC . Our adversary
AC on input x simply outputs AD(iO(x)).

We prove the indistinguishability between real and simulated executions using a sequence of
hybrids.

• H0: This corresponds to the distribution AD(iO(D′)).

• H1: The distribution for this hybrid is AD(iO(O(C))), where C ∈ Cλ is such that ∀ x, C(x) =
D(x). Observe that this hybrid is exactly AC(O(C)).

The indistinguishability between H0 and H1 follows from the indistinguishability obfuscation
property of iO.
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• H2: This hybrid corresponds to the distribution SDC (1λ), where SC is the simulator corre-
sponding to the adversary AC constructed in the previous hybrid. (Note that oracle access
to C or D is equivalent.)

Indistinguishability between H1 and H2 from the VBB obfuscation property of O. Observe
that hybrid H2 corresponds to the simulation strategy itself.

This concludes the proof.
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