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Abstract

We construct statistical zero-knowledge authentication protocols for smart cards based on
general assumptions. The main protocol is only secure against active attacks, but we present a
modification based on trapdoor commitments that can resist concurrent attacks as well. Both pro-
tocols are instantiated using lattice-based primitives, which are conjectured to be secure against
quantum attacks. We illustrate the practicality of our main protocol on smart cards in terms of
storage, computation, communication, and round complexities. Furthermore, we compare it to
other lattice-based authentication protocols, which are either zero-knowledge or have a similar
structure. The comparison shows that our protocol improves the best previous protocol.

Keywords. Statistical Zero Knowledge; Authentication; Smart Cards; Post-Quantum Cryptog-
raphy; Lattice-based Cryptography.

1 Introduction

Authentication protocols are ubiquitous in everyday computing. They are present when checking
email, making monetary transactions, connecting to a mobile/wireless network, and so on. From one
point of view, the authentication protocols can be divided into two broad categories. In one category,
the protocol is executed over an untrusted infrastructure, and the parties carrying the authentication
need not be physically present in a specific location. Authentication over the Internet (or other public
networks) is the best example of this type. In the other category, the party to be authenticated must
be present in a pre-specified location, and it is assumed that the infrastructure connecting him to an
honest verifier is trusted (i.e., no eavesdropping on or tampering with the data in transit is possible).
Authentication via smart cards, security tokens, badges, magnet stripes, and biometrics fall into the
second category, though in this paper we only focus on authentication protocols that can be carried
out by a processor (such as a smart card). For this reason, we pick smart cards as the representatives
of this category.

There are a number of features unique to smart-card authentication protocols:

• There is usually a single session between the smart card and the reader.

• The authentication protocol does not need a notion of key exchange, as the infrastructure is
trusted.

• The smart card has limited resources regarding the storage, computation, and communication.
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• Once inserted into the reader, the smart card cannot communicate with the outside world (except
for contactless smart cards, which might communicate with another device in close range).

A security concern regarding the authentication protocols is that of the malicious verifiers. A
malicious verifier poses herself as an honest verifier, engages in the protocol, deviates from the protocol,
and tries to gain knowledge about the secret stored on the smart card. While bilateral authentication
protocols may help by aborting the protocol in case one of the parties fails to authenticate herself
to another, it does not prevent partial leakage of information. The leakage might be undesirable for
systems which require a high level of security.

The best workaround is to use zero-knowledge authentication protocols, which guarantee that the
verifier learns nothing about the secret. However, this high level of security comes at a price: Zero-
knowledge authentication protocols are often too resource intensive to be used in practice. On the
contrary, this paper aims to demonstrate a zero-knowledge authentication protocol for smart cards,
with many attractive properties:

• The round complexity of the protocol is near optimal. More specifically, the minimum number of
passes for a zero-knowledge proof with negligible soundness error is shown to be 3 [1] (and 4 if the
simulation is black-box), while our protocol has only 5 passes. Most zero-knowledge authentication
protocols in the literature do not even have a constant number of rounds.

• The protocol has a significantly lower communication complexity than similar protocols. In
practice, the communication complexity determines the round complexity as well: For instance,
ISO/IEC 7816-4 defines the Application Protocol Data Unit (APDU), which is the communication
unit between a smart card and the reader. An APDU can carry up to 255 bytes of data. There-
fore, our protocol has a significantly lower practical round complexity than similar protocols, even
if their theoretical round complexity is lower. See Section 4.3 for more information.

• The protocol is provably secure based on the standard cryptographic assumptions. Furthermore,
we provide an exact security [2] analysis, which reveals the minimum level of security achievable
with any choice of parameters.

• The protocol is based on general assumptions, such as the existence of commitment schemes and
trapdoor one-way permutations. Therefore, it can be instantiated based on the specific needs of
each environment.

• The protocol is statistically zero knowledge, meaning that it does not leak any knowledge about
the secret, even to an infinitely powerful malicious verifier.

• The protocol constructs (commitment and trapdoor one-way permutation) are instantiated based
on lattice problems, which are believed to resist quantum attacks.

• The lattice-based instantiation uses very simple operations, such as multiplying a matrix by a
vector (while protocols based on the RSA or discrete logarithm require the costly modular expo-
nentiation operations). Therefore, the computational cost of the protocol is very low.

• The protocol, as well as its lattice-based instantiation, are modified to resist concurrent attacks.
While smart cards are not usually used in the concurrent setting, it is theoretically instrumental
to consider this setting as well.

We stress that the proposed authentication protocol achieves a high-level of security (i.e., the
statistical zero-knowledge property) while being reasonably efficient. In particular, there exist more
efficient authentication protocols for smart cards which are not zero knowledge. However, it is both
theoretically and practically appealing to construct zero-knowledge authentication protocols for smart
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cards. From the theoretical point of view, we will compare our protocol to other lattice-based zero-
knowledge authentication protocols for smart cards, and show that the proposed protocol is superior
in terms of computation and communication complexities, while essentially achieving the same round
and storage complexities (see Section 4.3). From a practical standpoint, zero-knowledge protocols are
recommended for environments with tight security requirements, such as the data centers or military
bases. In this paper, we provide evidence that our zero-knowledge authentication protocol can be
implemented on smart cards, thereby satisfying the needs of security-critical (and perhaps other)
environments.

Remark 1. Following a preliminary version of this work [3], Boorghany and Jalili [4] implemented
our protocol, as well as several recent lattice-based authentication protocols on a real smart card.
Their result shows the practicality and superiority of the protocol proposed in this paper, and is
discussed briefly in Remark 6. C

1.1 Why Lattices?

In this paper, we picked a particular instantiation of our general protocol based on lattices. For us,
the most appealing feature of lattices is that no quantum attacks are known against lattice problems,
and research offers evidence that both quantum and ordinary attacks require exponential time to
break lattice-based constructions (for instance, see [5] and the references thereof). This stands in
sharp contrast to factorization or discrete logarithm problems, for which polynomial-time quantum
algorithms exist [6]. Therefore, on the advent of quantum computers, many authentication protocols
for smart cards will be rendered insecure, while our lattice-based protocol will not be affected.

Other major attractions of lattice-based cryptography are the existence of worst-case to average-
case reductions between lattice problems, asymptotic efficiency, and simple matrix operations. The
first attraction is theoretically appealing, while the latter two are practically significant. For instance,
consider asymptotic efficiency: For 80 bits of security, RSA-1024 is used, which beats most known
lattice-based encryptions in efficiency. In contrast, for 128 bits of security, RSA-3072 is used, which
is not as efficient as several lattice-based encryptions [7]. For higher bits of security, lattice-based
encryptions are much more efficient than most number-theoretic encryptions. Furthermore, simple
matrix operations allow lattice-based primitives to be easily implemented. In contrast, number-
theoretic constructions require more complex operations, such as the modular exponentiation used in
RSA.

For these reasons, lattice-based cryptography is preferable on constraint devices such as smart
cards, when a high-level of security is desired.

1.2 Contributions

The main contribution of this paper, as descried above, is to offer a general zero-knowledge protocol
for smart-card authentication, and prove its exact security. We also provide a specific lattice-based
instantiation, which resists quantum attacks.
Other contributions of this paper are as follows.

• We provide a formal model and a formal definition for smart-card authentication. The details of
our model and definition are taken from several references, but we compare and consolidate them
into a single definition (Definition 1).

• Using trapdoor commitments, we show how our general protocol can be modified to resist attacks
in a more hostile environment.

• We construct the first lattice-based trapdoor commitment, as described in Section 5.1. This con-
struction exploits the achievements in lattice-based cryptography in the past few years, especially
the efficient construction of trapdoor functions and public-key encryptions.
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• We prove a series of useful lemmas in the appendix, which might be of independent interest.

1.3 Organization

The rest of this paper is organized as follows: Section 2 introduces the preliminaries needed for the
rest of the paper, and surveys the related work. Section 3 presents the statistical zero-knowledge
authentication protocol, and proves its exact security. Section 4 instantiates the general constructions
of the protocol with lattice-based primitives, and analyzes the practical efficiency of the instantiated
protocol. Section 5 discusses how trapdoor commitments can be used to modify the general protocol,
so that it remains secure when the adversary can mount concurrent attacks on the protocol. It also
instantiates the trapdoor commitments using lattice-based constructions. Section 6 concludes the
paper, and provides future directions to improve the work.

This paper has an appendix, which is separated from the main text to improve the clarity, and
so that the reader can focus on the main ideas of the paper. It defines the standard notions in cryp-
tography, such as trapdoor one-way permutations, commitments, statistical distance, zero-knowledge
protocols, and lattice-based problems. It also provides some useful lemmas which might be of inde-
pendent interest.

2 Preliminaries and Related Work

In this section, we first define the main notations used throughout the paper, and then present a
formal model and definition for smart-card authentication. Finally, we survey the papers in the area
of lattice-based authentication.

Fairly standard definitions are omitted from this section, but are mentioned in Appendix A for self
containment. The reader familiar with cryptography can safely skip this appendix, but we recommend
to at least skim over Appendix A to get familiarized with the names and conventions we used for
various cryptographic constructions.

2.1 Notation

We use the following general abbreviations: PPT for probabilistic polynomial time, ZK for zero
knowledge, and SZK for statistical zero knowledge.

A function is called negligible, if it vanishes faster than the reciprocal of any positive polynomial.
A function is overwhelming, if it is at most negligibly less than 1. The notation e←R S corresponds
to selecting e uniformly at random from the (finite) set S. For a random variable X, let [X] denote
the support of X. That is,

[X] = {x | Pr[X = x] > 0} .

The function lg(·) indicates the logarithm to the base two. The concatenation and XOR operators
are denoted by “comma” and ⊕, respectively. For a string x, we use |x| to indicate its length. Similarly,
if S is a set, |S| indicates its cardinality.

We denote by 〈A,B〉 a protocol between A and B. Moreover, 〈A,B〉(x) denotes the same protocol
when the common input of A and B is x. If either of the parties have a private input, that input is
written in parenthesis next to its name. For instance, 〈A(y), B〉(x) is the protocol where A has private
input y. Finally, subscripting r to the name of a party means that we fixed the randomness of that
party to r.

We typeset matrices (resp. vectors) by bold-face uppercase (resp. lowercase) Latin letters. For

p ≥ 1, the p-norm of a vector v = (v1, . . . , vn) is denoted by ‖v‖p
def
= (

∑n
i=1 |vi|p)

1/p
. Notice that

‖v‖∞ = maxi |vi|. In the special case of Euclidean (or `2) norm, we may simply use ‖v‖ instead of
‖v‖2.
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Figure 1: The smart-card authentication model.

2.2 Authentication: Model and Definition

In order to prove the security properties of cryptographic constructions, we need a security model and
a security definition. The security model defines aspects such as the computational restrictions on the
parties and the adversary, as well as how they communicate during the execution of the cryptographic
construction. The model can be very general, and may be shared by several functionalities (see [8] as
an example). The security definition, however, is specific to the functionality under investigation. It
defines what it means for the functionality to be secure within a particular model. In many occasions,
the security definition first defines a “winning condition” for the adversary, and then defines the
cryptographic construction to be secure if the advantage of the adversary in winning is only negligible.

If the cryptographic construction is rather simple, the model and the definition may be unified
together [9]. However, for complex constructions, there must be a separate model and a separate
definition. This is especially the case for the authentication protocols, where the complexity of mod-
eling/definition is so high that many authentication models and definitions were proposed. To name
just a few, see [10–19]. See also [20–23] for a comparison of these works.

Since the focus of this paper is on efficient zero-knowledge authentication protocols, we have to
choose a proper model which allows the authentication protocol to satisfy both efficiency and zero-
knowledge properties. The aforementioned papers try to model an environment similar to the Internet,
where the adversary is free to concurrently execute many versions of the authentication protocol. The
zero-knowledge property is not necessarily preserved under the concurrent executions [1]. Moreover, it
is known that only round-inefficient zero-knowledge protocols are concurrently secure. More precisely,
only protocols with round complexity Ω̃(log n) can be (black-box) zero knowledge [24].

Several works try to augment the standard model, and offer constant-round zero-knowledge proto-
cols. This includes the timing model [25], the bare public-key model [26], and the non–black-box zero
knowledge [27]. However, to the best of our knowledge, no efficient zero-knowledge authentication
protocols were designed and implemented in these models. Moreover, they have no formal definition
for authentication protocols.

Another approach, and the one we will take in this paper, is to model the adversary in a physically
restricted way. In this approach, the adversary cannot simultaneously communicate with the honest
prover and the honest verifier [28]. (We assume that the prover is the entity trying to authenticate
himself to the verifier.) The model is known as the smart-card authentication model, since it was
first developed with the resource restrictions of smart cards in mind. Moreover, it has no notion of
key exchange, which is fitted to the case of smart cards, where it is physically guaranteed that the
adversary cannot “hijack” the session after an honest party is authenticated. Finally, the model only
supports unilateral authentication, where only the first party proves his identity to second one, but
not vice versa.

The smart-card model was once the prevalent model for authentication protocols [28–45]. With
the recent advent of lattice-based authentication protocols, it has gained momentum again [46–52].
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Let us briefly describe the smart-card authentication model. All parties in the model are proba-
bilistic polynomial-time (PPT) interactive Turing machines. The honest prover and the honest verifier
are denoted by P and V , respectively. The adversary A is composed of a pair of colluding machines
(V ∗, P ∗), where P ∗ and V ∗ play the roles of the cheating prover and the cheating verifier, respectively.
The communication model is illustrated in Figure 1. As shown in the figure, the adversary attacks
the protocol in three stages: information gathering, information transition, and imperson-
ation. In the information gathering stage, the adversary plays the role of a cheating verifier V ∗, and
interacts with the honest prover P for some polynomial number of times. In this stage, V ∗ tries to
gather from P as much information as she can. Let us denote the state of V ∗ after it halts by st. In
the information transition stage, st is given to the cheating prover P ∗. Finally, in the impersonation
stage, P ∗(st) tries to misrepresent herself (as P ) to the honest verifier V . It is very important to
note that the smart-card authentication model does not allow P ∗ to communicate with P . In other
words, V ∗ halts before the stage two (and therefore, the stage three) starts. This modeling effectively
prevents attacks such as the Mafia Fraud [53] or the Chess Grandmaster Problem [54], since both
attacks require the cheating prover to be “wired” to the honest prover.

The attack A mounts on 〈P, V 〉 is categorized based on the type of interaction between V ∗ and P
in the information gathering stage. The categories, in increasing order of strength, are as follows:

• One-shot: P ∗ attempts to impersonate to V , given only the common input. In other words, P ∗

does not receive any information from V ∗.

• Passive: V ∗ does not actually interact with P , and merely eavesdrops on honest protocol execu-
tions.

• Honest verifier: V ∗ follows the prescribed program of V while interacting with P .

• Active: V ∗ interacts with P sequentially. In other words, V ∗ does not start interacting with a
new copy of P if it is already in the middle of interaction with another copy of P . See [44–46] for
example uses of this terminology.

• Concurrent: V ∗ is free to concurrently interact with a polynomial number of P ’s.

• Resetting: V ∗ has oracle access to each copy of P . In particular, not only can V ∗ run them
concurrently, but also it can reset (or rewind) each copy to a previous state. This attack was first
defined in [26] for zero-knowledge protocols. [55] applies the attack to authentication protocols.

As pointed out in the beginning of this section, the zero-knowledge property is not necessarily
preserved under concurrent attacks. However, (auxiliary-input) zero-knowledge is preserved under
active (i.e., sequential) attacks [56]. Therefore, an (auxiliary-input) zero-knowledge protocol 〈V, P 〉 is
as secure under active attacks as it is under one-shot attacks.1

Now that we described the model, let us define the syntax and semantics of authentication protocols
in this model. Syntactically, an authentication protocol consists of a triple (G,P, V ), where G is a
PPT algorithm, and P and V are PPT interactive Turing machines. On input 1n, the algorithm G
generates a pair (x, y). Then, y is handed over to P as the private input, x is set as the common
input, and the protocol 〈V, P (y)〉(x) is executed. After the exchange of at most a polynomial (in n)
number of messages, V always halts, and outputs either 1 (“accept”) or 0 (“reject”). Let us denote
the verifier’s output by J〈V, P (y)〉(x)K, which might be different from a single bit in case we are dealing
with a malicious verifier. Next, we define what it means for a protocol to be a secure authentication
protocol.

Definition 1 (Secure Authentication Protocol). A triple (G,P, V ) is called a secure authenti-
cation protocol in the smart-card model if the following holds:

1Usage note. In the cryptography community, the term “zero knowledge” implies “auxiliary-input zero knowledge.”
Consequently, we drop the “auxiliary-input” qualifier, and only speak of zero-knowledge protocols.
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1. Completeness: For all n and for any pair (x, y) ∈ [G(1n)], the verifier V of the honest interaction
〈V, P (y)〉(x), accepts with overwhelming probability (in n).

2. Soundness: For all c > 0, and for any PPT adversarial coalition A = (V ∗, P ∗), and for large
enough n, the quantity:

AdvAttack
A,(G,P,V )(n)

def
=

Pr
[
J〈V, P ∗(st)〉(x)K = 1

∣∣∣(x, y)← G(1n), st← J〈V ∗, Q(y)〉(x)K
]
, (1)

is less than n−c. Here, the probability is taken over the coin tosses of G, Q, V , and A = (V ∗, P ∗).
The behavior of V ∗ and the interactive function Q(x, y) varies depending on the Attack type:

• One-shot: V ∗ simply outputs the empty string as her state.

• Passive: Upon each invocation, Q(x, y) outputs a transcript of the honest execution 〈V, P (y)〉(x)
with fresh randomness.

• Honest-verifier: V ∗ and Q(x, y) behave as V and P (x, y), respectively.

• Active: Q(x, y) keeps a flag F , indicating whether an instance of P (x, y) is currently running
(initially, F = 0). Q accepts the special message “New”. Upon receiving this message, Q
replies with ⊥ if F = 1. Otherwise, F is set to 1, and Q(x, y) will behave like P (x, y) with
fresh randomness. If P (x, y) halts, the flag F will be set to 0 again.

• Concurrent: Q(x, y) keeps a set ID (initially empty), and accepts the special message
New(id). Upon receiving this message, Q checks whether id ∈ ID, and replies with ⊥ if this
is the case. Otherwise, Q sets ID ← ID ∪ {id}, and spawns a new instance of P (x, y) with
fresh randomness and id as identifier—denoted Pid(x, y). V ∗ can communicate with Pid(x, y)
by prefixing each message with id.

• Resetting: This attack is similar to the previous one, but in addition Q(x, y) accepts the
message Reset(id). Upon receiving this message, Q checks whether id ∈ ID, and replies
with ⊥ if this is not the case. If id ∈ ID, Q resets Pid(x, y) to its initial state, without
refreshing Pid’s randomness. ©

Remark 2. The term “soundness” in the definition of an authentication protocol should not be
confused with the same term used in the definition of zero-knowledge proofs (or, cryptographic proofs,
in general). Note that the soundness in Definition 1 is with respect to the smart-card authentication
model, where the interactions involves the four parties P , V , P ∗, and V ∗. On the other hand, the
soundness in the definition of cryptographic proofs merely involves P ∗ and V . Moreover, the soundness
in Definition 1 is with respect to some input distribution G(1n), while the soundness in cryptographic
proofs is with respect to all admissible inputs.

We remark that the meaning of the term “completeness” remains the same in both authentication
protocols and cryptographic proofs. C

2.3 Lattice-Based ZK Proofs & Authentication: Related Work

In this section, we briefly survey zero-knowledge proofs and authentication protocols based on lattices.
Appendix A.5 studies the necessary terminology to understand lattice problems.

The first lattice-based ZK authentication protocol was proposed by Micciancio and Vadhan [57],
whose security was based on the hardness of GapCVP. In their protocol, the prover and the verifier
share a lattice generated by long, highly non-orthogonal basis vectors, and the prover’s public key is
a fixed point Y outside the lattice. The prover then tries to convince the verifier that he knows a
lattice point X “near” Y .
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Micciancio–Vadhan’s protocol is statistical zero knowledge (SZK), so even an infinitely powerful
malicious verifier cannot gain any knowledge from the prover, except with negligible probability.
Moreover, their protocol does not need a short-and-nearly-orthogonal basis, because the prover is not
going to solve CVP. He merely knows one problem-solution pair (Y,X), generated by himself. Because
the soundness error of the base protocol is 1

2 , it must be repeated super-logarithmically in order to
obtain a protocol with negligible soundness error. This repetition cannot be performed in parallel,
since otherwise the zero-knowledge property would collapse.

Lyubashevsky [46] presented a 3-pass authentication protocol based on the hardness of the SVP
in all lattices, and a more efficient protocol based on the hardness of SVP in ideal lattices. Both
protocols do not feature perfect completeness, and neither one is zero knowledge.

Kawachi et al. [47] introduced another authentication protocol based on the worst-case hardness of
GapSVP. This protocol is a version of Stern’s authentication protocol [58]. It assumes the availability
of a random matrix A ∈ Zn×mq generated by a trustee (here, n, m, and q are properly chosen
integers). The prover of the authentication protocol has a public key y ∈ Zn, and proves that he
knows a secret x ∈ {0, 1}m, such that y = Ax (mod q). The approximation factor used in their work
was smaller than those of Micciancio–Vadhan [57] and Lyubashevsky [46], so the security is based
on a weaker assumption. The base protocol of [47] is statistical zero knowledge. It requires super-
logarithmic repetitions to make the soundness error negligible. To reduce the round complexity, the
authors suggest to run the base protocol in parallel. The parallel version is no longer ZK. Nonetheless,
Kawachi et al. prove that it is a secure authentication protocol.

In another attempt, Lyubashevsky [48] presented an authentication protocol based on the worst-
case hardness of SVP and using lattice-based hash functions. He argues that, while the proposed
lattice-based authentication protocols are asymptotically as efficient as number-theoretic ones, their
concrete performance is not much good, due to the fact that the former treats “challenge bits” in-
dividually, while the latter treats them as a whole. He then tries to improve some of the previous
lattice-based authentication protocols by exploiting the limited algebraic structure of the underlying
lattice. The base protocol of [48] has a completeness error of 1 − e−1 ≈ 0.63, and therefore some
parts of it are repeated (in parallel) to achieve almost perfect completeness. The protocol is not zero-
knowledge, but is proved to be secure under active attacks. It has a communication cost significantly
lower than Micciancio–Vadhan and Kawachi et al. protocols.

Xagawa and Tanaka [49] proposed two statistical zero-knowledge proofs of knowledge for NTRU
encryption [59], based on a variant of Stern’s authentication protocol [47, 58]. The first protocol is
for the “knowledge of secret key,” while the other is for “the knowledge of plaintext.” The former
protocol can be used directly for authentication. The base protocol has a soundness error of 2

3 , and
should be repeated super-logarithmically.

Cayrel et al. [50] introduced another authentication protocol, based on the code-based authen-
tication protocol of Cayrel and Véron [51], which in turn is based on Stern’s protocol [58]. The
assumption used here is the hardness of the SIS problem (as in [47]), which is milder than the as-
sumption of Lyubashevsky [48]. However, since the soundness error of this protocol is smaller than
both [47] and [48], it achieves the same level of security in fewer rounds.

Silva et al. [52] followed [50], and built a similar authentication protocol based on the hardness of
the SIS problem. The authentication protocol consists of the repetition of a 5-pass base zero-knowledge
protocol with soundness error close to 1

2 .
Finally, Silva et al. [60] presented two zero-knowledge authentication protocols based on the hard-

ness of LWE. The first protocol has a soundness error of 2
3 , while this error is 1

2 for the second protocol.
Therefore, neither protocol can achieve zero-knowledge property and negligible soundness error with
sub-logarithmic repetitions.
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3 A Statistical Zero-Knowledge Authentication Protocol Se-
cure Against Active Attacks

In this section, we exhibit a five-pass statistical zero-knowledge (SZK) authentication protocol. The
number of passes is almost optimal : Goldreich and Krawczyk [61] proved that three-pass black-box
zero-knowledge proofs (with negligible soundness error) exist only for BPP languages. Itoh and
Sakurai [62] generalized this result to the case of proofs of knowledge. Katz [63] demonstrated further
restrictions on the class of languages having four-pass, black-box zero-knowledge proofs.

Our protocol is inspired by the “proof of computational power” of Okamoto et al. [64], but it is
far more efficient. One reason is that their protocol uses bit commitments, which are much slower
than ordinary commitments, and have a high communication complexity. A close inspection of the
proof in [64] shows that the bit commitments cannot be simply replaced with general commitments,
without modifying the protocol. This is because the extractor in the proof of [64] uses the following
property: Given the commitment c← Com(x ; r) and the randomness r, one can efficiently compute
x. All bit commitment schemes satisfy this property, since x is a single bit, and it can be efficiently
verified whether c = Com(0 ; r) or c = Com(1 ; r). However, general commitment schemes do not
necessarily satisfy this property, and therefore the proof of [64] does not carry over for the case of
general commitment schemes.

Another important difference between our protocol and that of Okamoto et al. [64] is that we use
trapdoor permutations, while they use one-way functions with few preimages2. Utilizing trapdoor
permutations has the following practical advantages: (1) Inverting a (general) one-way function with
few preimages requires super-polynomial time provers, while inverting a trapdoor permutation can be
achieved by a polynomial-time prover who uses the trapdoor. (2) The prover of the protocol in [64]
must commit to all possible preimages and send the commitments to the verifier, which is wasteful of
bandwidth. In contrast, we use a trapdoor permutation, which has a single preimage for each image
(due to its one-to-one nature).

Finally, we prove that our protocol is a secure authentication against active attacks. Later, in
Section 5, we further extend the protocol to remain secure against concurrent attacks.

3.1 Protocol Description

Our protocol is listed in Protocol 1. Any trapdoor permutation (TDP) and any non-interactive
statistically-hiding commitment can be used to instantiate the protocol. Please note that the corre-
sponding definitions and notation are provided in Appendices A.1 and A.3, respectively.

The description of the commitment scheme desc(Comn) is included as the “public parameter.”
This means that the prover P and the verifier V both have access to it, and know that it is selected
honestly. There are many approaches to this end, several of which are as follows:

1. P and V have already agreed upon desc(Comn) through an out-of-band mechanism. The most
common way is to consider V as a server, and P as a client: The server chooses the public
parameter as well as the credentials of each client, and delivers them to each client via an out-
of-band mechanism (such as a token or a smart card).

2. The public parameter is selected via the so-called common reference string (CRS) [65].

3. A trusted third party (TTP) selects the public parameter. For instance, in the public key infras-
tructure (PKI) model, the TTP is a certificate authority (CA). Each CA can embed the public
parameter in the public key of its clients, or more efficiently, in its own public key.

2That is, the size of preimages for any element in the range of the function is polynomial in the security parameter.
See [64] for more information.
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Public parameter: Description of a non-interactive statistically-hiding commitment scheme,
denoted Comn, chosen according to GenC(1n).

Prover’s public key: Description of a TDP, denoted πn, chosen according to GenP(1n).

Prover’s private key: The trapdoor tn associated with πn.

Protocol Description

1. P picks an n-bit random string un, chooses ρn ← Rnd`(n), and sends V a commitment to un by
computing cn ← Comn(un ; ρn).

2. V picks a random element xn in dom(πn) ⊆ {0, 1}n using the domain sampling algorithm:
xn ← Samp(desc(πn)).

She then evaluates πn on xn by yn ← Eval(desc(πn), xn), and sends yn to P .

3. If yn /∈ {0, 1}n, P outputs a special symbol ⊥ and aborts.

P inverts yn using the trapdoor: wn ← InvP(desc(πn), tn, yn).

P sends V the value un of step 1 if wn = ⊥, and the value σn ← un ⊕ wn otherwise.

4. V sends P a value zn equal to xn.

5. If zn = wn 6= ⊥, then P will send V the value ρn. Otherwise, P outputs a special symbol ⊥ and
aborts.

Verification Step: V computes vn ← σn ⊕ xn, and accepts iff cn = Com(vn ; ρn).

Protocol 1: A statistical zero-knowledge authentication protocol based on any TDP and any non-
interactive statistically-hiding commitment scheme. Notice that if P and V act honestly, then zn =
wn = xn and vn = un; otherwise, they might be different.

The prover P has the description of a TDP in his public key, and the associated trapdoor in
its private key. The notions of public and private keys are not to be confused with the public key
encryption schemes. Moreover, although the most common way to securely distribute public keys
is via PKI, they can be securely distributed via out-of-band mechanisms in small- or medium-sized
environments. Let us denote the public parameter and the prover’s public key collectively by in.

The prover P of Protocol 1 can always prove his ability to invert the TDP, using the associated
trapdoor. Therefore, the protocol has perfect completeness. On the other hand, we will prove that
no adversary can impersonate the prover, except with negligible probability (assuming the security of
the TDP and the commitment). Therefore, the protocol has negligible soundness error.
Let us now describe each step of Protocol 1 in detail:

• In step 1, the prover commits to some random value un, which is later used in step 3 as a one-time
pad key. This step is not necessary to prove the zero-knowledge property (Section 3.2). However,
without this step, the proof of the security of authentication does not go through (Section 3.3).

• In step 2, the verifier sends the prover a challenge yn in the range of πn, whose pre-image xn is
known to him.

• In step 3, the prover makes the syntactic check yn ∈ {0, 1}n, and aborts otherwise.

If the check succeeds, he computes wn, the inverse of yn under πn. The inversion algorithm may
or may not succeed. In the latter case, it returns a special symbol ⊥. This is the case if (an
adversarially-chosen) yn is not in the range of πn. Since deciding whether an element belongs to
the range of a function is not necessarily efficient, the prover cannot simply abort the protocol;
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otherwise, some knowledge might leak to the malicious verifier. Let us illustrate this point with
an example.

Assume that πn : QRm → QRm is a the Rabin’s TDP (see the end of Appendix A.1 for the
notation and definition of Rabin’s TDP). It is well known that deciding whether a given number
is a quadratic residue is a hard problem [66]. Therefore, there is no efficient algorithm to decide
whether yn belongs to range(πn). Now, consider a prover that aborts the protocol if he receives a
quadratic non-residue, and continues otherwise. Such prover will leak knowledge about whether
yn belongs to QRm, and therefore the protocol will not be zero knowledge.

To foil this attack, the prover will simply continue the protocol if the inversion of yn under πn
fails: If wn = ⊥, the prover sends un to V ; otherwise, he sends un ⊕ wn to V .

Remark 3. If πn is such that it is efficiently decidable whether a given value belongs to range(πn),
we can modify the protocol so that P immediately rejects if yn /∈ range(πn). This change will
result in a more efficient protocol, and simplifies proofs of security. C

• In step 4, the verifier sends the value zn, supposed to be equal to the value xn = π−1
n (yn) he

picked at step 2 (however, a cheating verifier may opt to send a value zn 6= xn). Note that if the
value yn sent at step 2 was not in the range of πn, the (cheating) verifier would not be able to
find a proper zn. In this case, for whatever value she sends at this step, the prover will abort the
protocol in the next step.

• In step 5, the prover first checks whether the value received from the verifier is valid, and if so,
decommits cn. Otherwise, the prover will output ⊥ and abort the protocol.

In the verification step, the verifier checks whether the prover has acted honestly. This is done by
finding the randomness in the one-time pad, and verifying whether cn is properly opened.

3.2 Zero-Knowledge Property

Let (desc(πn), tn) ∈ [GenP(1n)], and desc(Comn) ∈ [GenC(1n)]. Define

Rn
def
= {(in, tn) | in = (desc(πn), desc(Comn))} ,

and let R
def
=
⋃
n∈NRn. In this section, we prove the following theorem through a series of lemmas

(see Appendix A.4 for related definitions):

Theorem 1. Protocol 1 is statistical zero-knowledge (SZK) for P on R. Moreover, the zero-knowledge
simulator rewinds V ∗ at most once, and the statistical distance between the simulated and real views
is at most the hiding gap of the commitment scheme (as defined by Equation 17 in Appendix A.3).

Notice that since the definition of zero knowledge (Definition 5) quantifies over all inputs in R,
this property must hold regardless of the distribution used to choose the input. More specifically,
Theorem 1 holds regardless of the randomness used by GenC(1n) and GenP(1n) to generate Comn
and πn, respectively. Put differently, the theorem holds for any statistically-hiding commitment and
any TDP.

Proof. Let S be SZK simulator described by Algorithm 1. Notice that we used “primes” to connect
the variables in the simulation to those in the real execution. For instance, the variable u′n corresponds
to un. Moreover, note that the simulator runs in probabilistic polynomial time, and it rewinds the
verifier at most once: If the simulation does not halt after step 5, S will rewind the verifier exactly
once. Otherwise, no rewinding takes place.

To prove that the output of S is statistically close to the view of V ∗ in the real execution, we will
proceed in stages. That is, we prove that the verifier’s real and simulated views are statistically close
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Input (in): Public parameter desc(Comn), and prover’s public key desc(πn).

1. Commit to a random n-bit value u′n by choosing ρ′n ← Rnd`(n), and computing c′n ←
Comn(u′n ; ρ′n).

2. Run V ∗r′ as a black box, to get the challenge:
y′n ← V ∗r′(in, c

′
n).

3. If y′n /∈ {0, 1}n, OUTPUT (in, r
′, c′n,⊥) and halt.

Let σ′n be a random n-bit value.

4. Let z′n ← V ∗r′(in, c
′
n, σ

′
n).

5. If y′n 6= Eval(desc(πn), z′n), then
OUTPUT (in, r

′, c′n, σ
′
n,⊥) and halt.

I Otherwise, let w′ ← z′n, which in turn equals π−1
n (y′n). Rewind V ∗r′ as follows:

5.1 Let σ′′n ← u′n ⊕ w′n and z′′n ← V ∗r′(in, c
′
n, σ

′′
n).

5.2 If z′′n 6= w′n, then OUTPUT (in, r
′, c′n, σ

′′
n,⊥) and halt.

5.3 OUTPUT (in, r
′, c′n, σ

′′
n, ρ
′
n).

Algorithm 1: The algorithm for the SZK simulator S of Protocol 1.

upon receiving each message. Let P1, P2, and P3 be the random variables describing the verifier’s
view upon receiving the first, second, and third prover’s message, respectively. Similarly let S1, S2,
and S3 be the random variables describing the verifier’s view upon receiving the first, second, and
third simulated message, respectively. Below, we will prove that ∆(Pi ;Si) is exponentially small for
i ∈ {1, 2, 3}.

To simplify the proof, we will use “helper” random variables as well. These random variables are
implicitly defined by the protocol and the simulation. For instance, picking a random n-bit string
un corresponds to sampling from the uniform distribution Un on n-bit strings. Continuing in this
manner, we denote by X the random variable corresponding to the variable x. As an example, con-
sider the random variable Y ′n, which corresponds to y′n defined in step 2 of the simulation. We stress
that Un, U ′n, U ′′n , and U ′′′n are independent uniform distributions on n-bit strings, and R and R′ are
random variables whose support is infinitely long bit strings, where each bit is chosen uniformly and
independently. Moreover, notice that in is a fixed string, and not a random variable.

Stage 1. The prover computes Cn = Comn(Un), and the simulator computes C ′n = Comn(U ′n). Since
∆(Un ;U ′n) = 0, An application of Fact 2 of Appendix A.2 shows that ∆(Cn ;C ′n) = 0. Furthermore,
because R and Cn are independent, and R′ and C ′n are independent, we apply Fact 3 of Appendix
A.2 to show that:

∆(P1 ;S1)
def
= ∆

(
(in, R, Cn) ; (in, R

′, C ′n)
)

= ∆(R ;R′) + ∆(Cn ;C ′n) = 0 .

Stage 2. Let V2 = (in, R̂, Ĉn, Σ̂n) represent the verifier’s current view, which might be either the
real view P2 = (in, R, Cn,Σn) or the simulated view S2 = (in, R

′, C ′n,Σ
′
n). Let f be the function that

the verifier applies to its view to compute the challenge; i.e., Ŷn ← f(in, R̂, Ĉn). If Ŷn /∈ {0, 1}n, then
Σ̂n = ⊥. Since R ∼ R′ and Cn ∼ C ′n, Corollary 1 of Appendix A.2 shows that Yn ∼ Y ′n. Therefore,
the probability that Σn = ⊥ equals the probability that Σ′n = ⊥. This shows that if Ŷn /∈ {0, 1}n, the
random variables P2 and S2 are identically distributed.

In the rest, we implicitly assume that Ŷn ∈ {0, 1}n. Define Ŵn ← π−1
n (Ŷn). Let E be the event

that Wn = ⊥ in the real execution. The random variable V2 takes either of the following forms:
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• S2 = (in, R
′, C ′n, U

′′
n )

• P2|E = (in, R, Cn, Un)

• P2|E = (in, R, Cn, Un ⊕Wn)

Define the permutation g on V2 as follows: g is the identity permutation if E. Otherwise, it permutes

V2 as follows: (in, R̂, Ĉn, Σ̂n)
g−→ (in, R̂, Ĉn, Σ̂n ⊕ Ŵn). Notice that g satisfies the following properties:

• It maps S2 to a random variable with identical distribution. More precisely, since U ′′n is indepen-
dent from Wn, we have U ′′n ⊕Wn ∼ U ′′′n . Hence,

S2 = (in, R
′, C ′n, U

′′
n )

g−→ (in, R
′, C ′n, U

′′′
n ) ∼ S2 .

• It maps P2|E to itself (because g is the identity permutation if E).

• It maps P2|E to a random variable identically distributed with P2|E.

According to Lemma 4 of Appendix A.2, ∆(P2 ;S2) = ∆(g(P2) ; g(S2)) = ∆(P2|E ;S2). Further-
more, since R is independent from (Cn, Un) and R′ is independent from (C ′n, U

′
n), we can apply Fact 3

of Appendix A.2:

∆(P2|E ;S2) = ∆
(

(R,Cn, Un) ; (R′, C ′n, U
′′
n )
)

= ∆(R ;R′) + ∆
(

(Cn, Un) ; (C ′n, U
′′
n )
)
,

where ∆(R ;R′) = 0 because R ∼ R′. Consequently, the following relations hold:

∆(P2 ;S2) = ∆
(

(Cn, Un) ; (C′n, U
′′
n )
)

=
1

2

∑
c,u

∣∣∣Pr[Un = u,Cn = c]− Pr[U ′′n = u,C′n = c]
∣∣∣ (2)

=
1

2

∑
c,u

∣∣∣Pr[Cn = c | Un = u] Pr[Un = u]− Pr[C′n = c] Pr[U ′′n = u]
∣∣∣ (3)

= 2−n−1
∑
c,u

∣∣∣Pr[Comn(Un) = c | Un = u]− Pr[Comn(U ′n) = c]
∣∣∣ (4)

= 2−n−1
∑
c,u

∣∣∣Pr[Comn(u) = c]−
∑
u′

(
Pr[Comn(U ′n) = c | U ′n = u′] Pr[U ′n = u′]

)∣∣∣ (5)

= 2−n−1
∑
c,u

∣∣∣Pr[Comn(u) = c]− 2−n
∑
u′

Pr[Comn(u′) = c]
∣∣∣ (6)

= 2−n−1
∑
c,u

∣∣∣2−n∑
u′

(
Pr[Comn(u) = c]− Pr[Comn(u′) = c]

)∣∣∣ (7)

≤ 2−2n−1
∑
u,u′

∑
c

∣∣∣Pr[Comn(u) = c]− Pr[Comn(u′) = c]
∣∣∣ (8)

= 2−2n
∑
u,u′

∆(Comn(u) ;Comn(u′)) ≤ 2−2n
∑
u,u′

(2−δn) = 2−δn . (9)

Let us briefly discuss the above (in)equalities. Equation 2 follows from the definition of the statis-
tical distance. In Equation 3, we used the definition of conditional probability, and the independence
of U ′′n and C ′n. Equation 4 uses the definitions Cn = Comn(Un) and C ′n = Comn(U ′n), as well
as the fact that Pr[Un = u] = Pr[U ′n = u] = 2−n. In Equation 5, two identities are used: First,
Pr[Comn(Un) = c | Un = u] equals Pr[Comn(u) = c]. Second, we used the law of total probability
to condition Pr[Comn(U ′n) = c] on different values that U ′n may take. Equation 6 exploits the facts
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that Pr[Comn(U ′n) = c | U ′n = u′] equals Pr[Comn(u′) = c], and Pr[U ′n = u′] = 2−n. In Equation 7, a
simple identity is used: Let a be an invariable quantity in x. Then,

∑
x∈X a = |X| a. Incorporating

this identity into our case, we have: Pr[Comn(u) = c] = 2−n
∑
u′ Pr[Comn(u) = c]. Inequality 8 is

obtained by applying the triangle inequality. Equation 9 uses the definition of statistical distance,
as well as the fact that ∆(Comn(u) ;Comn(u′)) = 2−δn, as required by the statistical hiding of the
commitment (cf. Equation 17 in Appendix A.3).
Stage 3. If Σ̂n 6= ⊥, the protocol continues. Let h be the function that the verifier applies to its view
to compute zn. In other words, let Ẑn ← h(V2), where V2 is either P2 or S2. Since ∆(P2 ;S2) ≤ 2−δn,
we can apply Fact 2 of Appendix A.2 to conclude that ∆(Zn ;Z ′n) ≤ 2−δn.

Let F be the event that Zn = π−1
n (Yn), and F ′ be the event that Z ′n = π−1

n (Y ′n). Because Yn ∼ Y ′n
and ∆(Zn ;Z ′n) ≤ 2−δn, it holds that |Pr[F ]− Pr[F ′]| ≤ 2−δn. Now consider the following two cases:

1. If neither F nor F ′ happens: Both the simulator and the prover output ⊥ and halt.

2. If both F and F ′ happen: The prover decommits by outputting ρn. The simulator has the
preimage of y′n, and therefore constructs the rest of the verifier’s view identical to what the
prover would do.

Notice that in both cases, the outputs of S and P are identical. Applying Lemma 5 of Appendix A.2,
we get ∆(P3 ;S3) ≤ 2−δn, which concludes the proof. �

3.3 Secure Authentication

In this section, we prove that Protocol 1 is a secure authentication protocol against active attacks in
the smart-card model defined in Section 2.2. Contrary to the proof of zero-knowledge property given
in the previous section, we have to assume that the input to the parties is chosen according by a PPT
algorithm G(1n), as defined below:

Let (desc(πn), tn)← GenP(1n), and desc(Comn)← GenC(1n)

Define in
def
= (desc(πn), desc(Comn))

OUTPUT (in, tn)

Theorem 2. Let G be the algorithm defined above, and 〈P, V 〉 be Protocol 1. Then, the triple (G,P, V )
is a secure authentication protocol against active attacks in the smart-card model, assuming that GenP
is a TDP generator, and GenC is a generator for statistically-hiding and computationally-binding
commitments.

It is straightforward to see that upon interacting with an honest prover P , the honest verifier
V always accepts. Therefore, Protocol 1 has perfect completeness. It remains to prove that the
soundness condition of Definition 1 holds as well. First recall the following notations3:

• εn: the hiding gap of the commitment scheme, which as defined by Equation 17, equals 2−δn .

• αn
def
= AdvActive

A,(G,P,V )(n): The advantage of A in mounting an active attack against the triple
(G,P, V ), as defined in Definition 1.

• βn
def
= AdvBinding

P∗,GenC(n): Probability that P ∗ can break the binding property of a commitment
generated by GenC, as defined in Definition 4.

3To prevent notational confusion, we chose the Greek letter corresponding to the first letter of the English name: α,
β, and ι are mnemonics for authentication, binding, and inverting, respectively. Notice the difference between ι (Greek
letter “iota”) and i.
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• ιn
def
= AdvInvert

MA,Gen4: The advantage of MA in inverting an element in the range of some TDP, as
defined by Equation 12 in Appendix A.1. (The machines M and A will be defined below.)

Let TGenC(n) be an upper bound on the running time of GenC(1n). Moreover, for any oracle machine
M , let TMA(n) be an upper bound on the running time of MA on security parameter 1n, including
the total computation time of A. Similarly, let T〈V ∗,Q〉(n) and T〈V,P∗〉(n) be upper bounds on the
total running time of the parties in the protocols 〈V ∗, Q〉 and 〈V, P ∗〉, respectively, when the security
parameter is 1n. The following lemma gives a direct relationship, in terms of the exact security [2],
between the time and success probability of an active adversary against the authentication protocol,
and the time and success probability of a TDP invertor.

Lemma 1. There exists a PPT oracle machine M , such that for all n ∈ N and for any active PPT
adversary A = (V ∗, P ∗) against the triple (G,P, V ), where V ∗ interacts with P at most τn times, the
following holds. If αn > βn + τnεn and βn 6= 1, then:

ιn ≥
(
αn − βn − τnεn

1− βn

)2

. (10)

Furthermore, TMA(n) ≤ 2
(
T〈V ∗,Q〉(n) + T〈V,P∗〉(n)

)
+ TGenC(n).

Proof. Let M be the oracle Turing machine described in Algorithm 2. On a high level, M first tries
to simulate a sequential prover for V ∗, and then interacts with P ∗. Consequently, if the adversarial
coalition A = (V ∗, P ∗) succeeds in misrepresenting herself as the honest prover, M will invert the
trapdoor permutation with probability related to the success probability of A. Details follow.

Initially, M generates the description of a statistically-hiding commitment. It then simulates the
execution of Protocol 1: First as an honest sequential prover denoted Q (see Definition 1), and next
as an honest verifier. Finally, M tries to invert ŷn.

To simulate Q for V ∗, algorithm M uses the SZK simulator S. As stated in Theorem 1, the
statistical distance between the output of S and the real-world view of V ∗ is at most εn, in a single
execution. A hybrid argument shows that this distance will increase to at most τnεn in τn executions.

Consider stages 1 and 2 of Algorithm 2. Let st be the output generated by V ∗ before it halts,
assuming V ∗ interacts with the real prover instead of the simulator. As stated above, the statistical
distance between the random variables corresponding to st and st′ is at most τnεn. Let α′n be the
success probability of P ∗ in breaking the authentication protocol, when its input is st′ instead of st.
An application of Fact 2 of Appendix A.2 shows that the output distribution of P ∗ on inputs st and
st′ are at most τnεn far apart. We therefore get |α′n − αn| ≤ τnεn, which guarantees α′n ≥ αn − τnεn.

Let E1 be the event that V ∗ succeeds in the impersonation attack, E2 be the event that V ∗

successfully breaks the binding of the commitment scheme, and E3 be the event that MA does not
output ⊥ in step 2(e). By definition, Pr[E1] = α′n and Pr[E2] = βn. Since βn 6= 1 by the premise, we
can condition E1 on E2. Using the law of total probability:

α′n = Pr[E1] = Pr[E1 ∩ E2] + Pr[E1|E2] Pr[E2]

≤ βn + Pr[E1|E2](1− βn) .

Now notice that Pr[E3] = Pr[E1|E2], since MA will not halt in step 2(e) if and only if V ∗ succeeds in
impersonation without breaking the binding of the commitment. Therefore,

Pr[E3] ≥ α′n − βn
1− βn

≥ αn − βn − τnεn
1− βn

.

By the premise, we know that the lower bound for Pr[E3] is positive. Now notice that stage 3 of
Algorithm 2 executes P ∗ on an independent input (ŷn) chosen according to the same distribution as
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Input: A pair (desc(πn), ŷn) selected from the quadruple (desc(πn), tn, x̂n, ŷn)← Gen4(1n).

0. Initialization: Let desc(Comn)← GenC(1n), and in ← (desc(πn), desc(Comn)).

1. Simulate Q for V ∗: The algorithm M has black-box access to V ∗, while it internally runs
the SZK simulator S(in). The goal is to simulate a sequential Q(in, tn) for V ∗, such that the
simulated output of V ∗ is indistinguishable from its real output (Q is defined by Definition 1).

M keeps a flag F , indicating whether an instance of S(in) is currently running (initially, F = 0).
M also accepts the special message “New”. Upon receiving this message, M replies with ⊥ if
F = 1. Otherwise, F is set to 1, and M will behave like S(in) with fresh randomness. If S
requires a message from V ∗, M will obtain it from V ∗. If S outputs any string, M will forward
its most recent suffix to V ∗. If S asks to rewind the verifier, M will rewind V ∗ to the state before
S was spawned. If S halts, the flag F will be set to 0 again.

As soon as V ∗ halts, M gets its output st′, and proceeds to the next stage.

2. Simulate V for P ∗: The algorithm M simulates V for P ∗ twice: (1) for some yn whose
corresponding xn is chosen by M . This step is to obtain the value un; (2) for the specific ŷn,
where M exploits the value un obtained in previous step.

(a) Let cn ← P ∗r (in, st
′).

(b) Let xn ← Samp(desc(πn)) and yn ← πn(xn).

(c) Let σn ← P ∗r (in, st
′, yn) and un ← σn ⊕ xn.

(d) Let ρn ← P ∗r (in, st
′, yn, xn).

(e) If cn 6= Comn(un ; ρn), OUTPUT ⊥ and halt.

3. Invert ŷn: If M did not halt, use un to invert ŷn:

(a) Rewind P ∗r to step (c) and run it on ŷn. That is, let σ∗n ← P ∗r (in, st
′, ŷn).

(b) Let x∗n ← σ∗n ⊕ un. If ŷn = πn(x∗n) then OUTPUT x∗n; else OUTPUT ⊥.

Algorithm 2: Description of algorithm M , which inverts ŷn under πn using black-box access to an
active adversary A = (V ∗, P ∗) against Protocol 1.

yn. Therefore, the probability that M does not output ⊥ in step 3(b) equals Pr[E3]. Consequently,

ιn = (Pr[E3])2 ≥
(
αn − βn − τnεn

1− βn

)2

.

Finally, let us compute the running time of M . The running time of the initialization stage is at
most TGenC(n). By Theorem 1, the simulator rewinds V ∗ at most once. Therefore, the running time
of stage 1 is at most 2T〈V ∗,Q〉(n). Lastly, notice that each of the stages 2 and 3 simulates a single
execution of 〈V, P ∗〉, and hence can be executed in at most T〈V,P∗〉(n). Consequently, TMA(n) ≤
2
(
T〈V ∗,Q〉(n) + T〈V,P∗〉(n)

)
+ TGenC(n), as required. �

Proof of Theorem 2 is a straightforward consequence of Lemma 1:

Proof (Theorem 2). By assumption, GenP is a TDP generator, and GenP is a generator for
a statistically-hiding and computationally-binding commitment. Therefore, for large enough n, the
quantities ιn, βn, and εn are negligible in n. Furthermore, τn is always a polynomial in n, since V ∗ is
a PPT algorithm.
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Consequently, Equation 10 mandates that αn be a negligible quantity in n, which implies that
Protocol 1 is a secure authentication protocol against active attacks. �

3.3.1 How to Interpret Lemma 1 for Practical Purposes

In practice, it is desirable to achieve a certain level of security, say 128-bit security. Below, we will
interpret the meaning of a level of security, as well as how to achieve it based on the results of Lemma 1.

Let us first examine a simple case. Consider an algorithm which outputs the correct answer with
probability p. If this algorithm is executed 1/p times, the probability that it outputs the correct
answer is 1− (1− p)1/p > 1− e−1 ≈ 0.63. Therefore, the success probability of such an algorithm is
at least a constant (i.e., 63%) if it is executed 1/p times.

In cryptography, it is customary to compare the running times of algorithms with constant success
probabilities. For instance, 128 bits of security means that no algorithm can break the scheme with
constant success probability in less than 2128 steps.

Let us go back to the main question: How to interpret the results of Lemma 1? The crucial point
is to differentiate between online and offline attacks. For instance, the adversary can try to invert
the TDP offline, but to try her chance against the authentication scheme, she must be online. For
this reason, αn is sometimes called an absolute constant, which means it can be set regardless of the
computational power of the adversary. This fact is best explained in [67, p. 190]:

“The [. . .] probability of forgery is an absolute constant, and thus there is no need to pick
[. . . a very small αn, to] safeguard against future technological developments. In most
applications, a security level of 2−20 suffices to deter cheaters. No one will present a forged
passport at an airport, give a forged driver’s license to a policeman, use a forged ill badge to
enter a restricted area, or use a forged credit card at a department store, if he knows that
his probability of success is only one in a million. [. . .] For national security applications,
we can change the security level to 2−30.”

For a security level of 2−30, the adversary has to present the forged smart card 230 times to the verifier,
to have a constant probability of masquerading. Assuming each authentication attempt takes only
one second,4 a success will be attainable (with constant probability) just once in 230 seconds ≈ 34
years, regardless of the computational power of the adversary. By then, the adversary will probably
be arrested due to fraud.

Similar to αn, the advantage εn of the adversary in breaking the hiding property of the commitment
is an absolute value. The reason is that the statistical hiding of the commitment holds regardless of
the computational power of the adversary. Assume that the adversary is given the ability to verify
the identity of a given smart card (that is, the adversary plays the role of V ∗). Depending on the
situation, the number of times the adversary may maliciously verify the smart card (i.e., the quantity
τn) varies. A conservative choice is 230; that is, the adversary can pose itself as the real verifier for over
a billion times. It seems that no real-life malicious verifier can reach this number, even if the smart
card is stolen, and the adversary can verify the protocol for as many times as she wants. Now let
εn ≤ 2−61. For small enough values of βn, this satisfies the premise of Lemma 1 that αn > βn + τnεn.

Finally, we get to choose the values ιn and βn. Momentarily assume that βn is negligible relative to
αn − τnεn ≥ 2−31. Therefore, Lemma 1 presents an inverter with execution time TMA(n) and success
probability ιn ' (αn − τnεn)2 ≥ 2−62. The lemma bounds TMA(n) by twice the time A can interact
online with the honest provers and verifier. A real-world assumption is TMA(n) ≤ 225 bit operations.
If the best known algorithm to invert the TDP has a complexity more than 225/2−62 = 287, we
can assume that the authentication protocol is secure. This is because the existence of an adversary

4Fiat and Shamir [67] suggest that the attacker can make at most 1000 forgery attempts per day. Thus, with a
security level of 2−30, she will succeed (with constant probability) in masquerading once in every 3000 years. Therefore,
our assumption that the adversary can make a forgery attempt once per second is very conservative, but it shows that
even with such power, she cannot succeed in a reasonable amount of time.
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against the authentication protocol is translated (via Lemma 1) to the existence of an inverter against
the TDP with success probability better than the best known algorithm, which is deemed impossible.
In this paper, we assume 128-bit security; therefore, ιn, βn ≤ 2−128.

Remark 4. The astute reader might ask why βn is taken to be so small, while Lemma 1 does not
seem to require such a small success probability. The reason is that βn is an offline parameter. That is,
the adversary may break the binding property offline (via preprocessing), and then attempt to attack
the authentication protocol. The same holds for ιn: The adversary can find the trapdoor offline, and
then attack the authentication protocol. Therefore, the protocol designer must choose the parameters
to foil offline attacks as well. It seems that a security level of 2100 or more is the recommended choice
for the near future. We therefore picked the conservative 128-bit security. C

4 An Efficient Instantiation of Protocol 1, Secure Against
Quantum Attacks

In this section, we implement the commitment and the TDP used in Protocol 1, in such a way that
the protocol remains secure against quantum attacks. Notice that the zero-knowledge property is
already guaranteed to hold against infinitely powerful adversaries, and therefore we only focus on the
security of the authentication protocol. At the end of this section, we give an overall estimate of the
efficiency of our protocol, and compare it to other protocols in the literature. Definitions related to
lattice problems are given in Appendix A.5.

4.1 Constructing the Commitment

Kawachi et al. [47, 68] suggest a lattice-based commitment. The computational-binding property of
their scheme is based on the hardness of the SIS problem, while its statistical-hiding property holds
unconditionally.

Given an integer n, let m = m(n), and q = q(n) be integers bounded by a polynomial in n. The
generator GenC of Kawachi et al.’s commitment scheme works as follows: On input 1n, it outputs a
matrix A, chosen uniformly from Zn×mq . In this scheme, `(n) = m/2, and the distribution Rnd`(n)

from which the commitment randomness is sampled is the uniform distribution over {0, 1}m/2.
To commit to a string x ∈ {0, 1}m/2, we first pick r ← Rndm/2. Let x and r denote the column

vectors corresponding to x and r, respectively. Moreover, let x || r denote the column vector obtained
from appending r to x. The commitment is then defined by:

Comn(x)
def
= A(x || r) mod q . (11)

The following lemma is proven in [68, Lemma 5.3.2]:

Lemma 2. The commitment defined above is:

• statistically hiding with statistical gap 2q−dn/4 if m > 2n(1 + d) lg q for some positive constant d;

• computationally binding if collision-finding SIS∞q,m,n,1 is hard.5 In other words, collision-finding
SIS∞q,m,n,1 reduces to breaking the computational-binding property of the commitment.

The second condition can be interpreted both theoretically and practically. In theory, the SIS problem
is proven hard via an efficient reduction from worst-case SIVP to the average-case SIS. The most recent
result is [69, Theorem 4], which gives the best current reduction. The theorem, cast for the case of
SIS∞q,m,n,1, is as follows:

5 [68] reduces SIS2
q,m,n,

√
m

to breaking the computational-binding property of the commitment, which is a weaker

reduction. It also requires that q be a prime, but as we will see in Lemma 3, recent results relaxed this requirement.

18



Lemma 3. For q ≥
√
m · nΩ(1), there is an efficient reduction from SIVPω(

√
mn logn ) to collision-

finding SIS∞q,m,n,1 with non-negligible advantage.

The lower bound given for q in Lemma 3 is essentially optimal, as the problem is trivially easy for
q ≤
√
m [69]. However, the scope of this reduction is limited to the asymptotic case. In practice, the

SIS problem might be hard, regardless of whether other lattice problems can be efficiently reduced to
it. The following formula, suggested in [70], gives a heuristic for the shortest SIS solution attainable
by the best algorithm, assuming m ≥

√
n lg q/ lg ~ :

min{q, 22
√
n lg q lg ~ } ,

where ~ is the hermit factor of the algorithm. The current best algorithm, BKZ 2.0 [71], requires over
2128 steps to achieve ~ = 1.006. Therefore, by setting n = 128, q = 257 and m ≥

√
n lg q/ lg ~ ≈ 345,

we can be sure that it is highly unlikely that current algorithms can find vectors shorter than 61 in
the corresponding SIS problem, in less than 2128 steps. Consequently, if

√
m < 61, then the security

against an adversary attacking the binding property is at least 128 bits.
On the other hand, m should be large enough to satisfy the statistical gap. Setting m = 2560

(which still satisfies
√
m < 61), we achieve a statistical gap of 2−62, as desired (see Section 3.3.1).

Given the parameters n = 128, m = 2560, and q = 257, the size of the SIS matrix (i.e., the
description of the commitment) will be nmdlg qe ≈ 360 KB. However, by defining the SIS over
rings [72–76], one can reduce this size by a factor of n, and thus achieving a SIS matrix as small as
2.8 KB. (The ring setting requires n to be a power of 2, m to be a multiple of n, and q ≡ 1 (mod 2n)
to be a prime. All requirements are satisfied by our choice of parameters.)

4.2 Constructing the TDP

There are several TDPs with conjectured security against quantum attacks. The oldest ones are
McEliece [77] and Niederreiter [78], which are based on the coding theory (see [79] for more infor-
mation). While McEliece and Niederreiter are sometimes called “encryption,” they do not satisfy
the semantic security property, and are actually TDPs.6 McEliece and Niederreiter are dual to each
other, in the sense that an attacker that breaks one can break another [82]. The precise assumptions
underlying the security of the Niederreiter TDP is studied in [81], while [83] examines the practical
security of both McEliece and Niederreiter: For 80-bit security, the size of desc(πn) is 56 KB. It grows
to 188 KB for achieving 128-bit security.

Another option is to use lattice-based TDPs. Micciancio and Peikert [84] examine how LWE and
ring-LWE problems can be used to construct TDPs. However, based on their results, the size of
desc(πn) is prohibitively large for smart cards.

A third option is to incorporate a lattice-based encryption, instead of a TDP. The protocol and its
proof of security should change minimally to reflect this modification. Recently, a very efficient set of
parameters were proposed for the ring-LWE encryption [7,85]. Specifically, achieving 128-bit security
is possible with n = 256, q = 7, 681, and s = 11.31, for which the size of the system parameter and
the public key is n|q| ≈ 416 bytes, and the size of the secret key is n|5s| ≈ 192 bytes. (Notice that n
is a power of 2, and q ≡ 1 (mod 2n) is a prime, which is required for ring operations.)

4.3 Overall Analysis

In this section, we analyze the overall complexity of our protocol, and compare it to several other
lattice-based authentication protocols. We picked protocols which have a ZK-like structure; that is,
they are either ZK or obtained by executing some base ZK protocol in parallel). The list is not

6A semantically-secure variant of McEliece is proposed in [80], but the original McEliece is a TDP, as defined
in [81, footnote 2].
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Table 1: Comparison of several lattice-based authentication protocols at 128-bit security. (Quantities
in bytes are underlined to be easily distinguishable from those in Kilobytes.)

Protocol
System

Parameter
Size

SK Size PK Size
# of
Passes

Comm.
Complexity

Concurrently
Secure?

ZK?

Protocol 1 3.2 KB 192 B 416 B 5 1.46 KB
No, but see
Section 5

SZK

[47] 32 KB 320 B 144 B 3 281 KB + −
[48] 8 KB 2 KB 2 KB 3 7 KB + −
[50] 32 KB 320 B 144 B 5 × 30 144 KB − SZK

[52] 32 KB 9 KB 4 KB 5 × 30 157 KB − SZK

exhaustive; yet protocols not listed here are either too inefficient (such as [46]), or are similar to the
protocols we mentioned here (e.g., [49] is similar to [47]).

Remark 5. There might be more efficient lattice-based authentication protocols for smart cards,
such as simple challenge-response protocols which use lattice-based encryption or signature. However,
as described in Section 1, the main idea of this paper is to propose an efficient zero-knowledge au-
thentication protocol which can be implemented on smart cards for environments with tight security
requirements. Therefore, we did not compare our protocol with those without a ZK-like structure. C

Table 1 gives an overview of the comparison. Notice that for the sake of readability, some numbers
are denoted in bytes, while others are in Kilobytes (= 1024 bytes). In protocols like [47], the base
protocol is ZK, but the protocol designers use the parallel repetition which is not ZK anymore. In
such cases, the table does not consider the protocol as ZK.

Below, we will describe our choice of parameters for each protocol. It is assumed that the protocols
must satisfy 128-bit security, with soundness error at most 2−30, and completeness error less than 2−20.

• Our protocol (Protocol 1): We described the choice of parameters to get a secure commitment
and a secure TDP in Sections 4.1 and 4.2, respectively. Specifically, nC = 128, mC = 2560, and
qC = 257 for the commitment (SIS) matrix, and nT = 256, qT = 7, 681, and sT = 11.31 for the
TDP (LWE) matrix, with 128-bit message length. The communication complexity is therefore
nC |qC |+ 2nT |qT |+mC + 128 + nT |5sT | ≈ 1.5 KB.

• Kawachi et al. [47]: We set parameters similar to ours: n = 128, m = 2560, and q = 257.
This protocol requires another commitment matrix, which should be able to commit to binary
strings whose length is M = nd(lgm!)/ne + n|q| = 26, 496. For this, we pick a random matrix
from Zn×Mq . Since the soundness error of the base protocol is 2

3 , it is required to be repeated
t = 52 times so that its soundness error is at most 2−30. The communication complexity is
t(3n|p|+ 2 + (2dlgm!e+m)/3 +m|p|) ≈ 281 KB.

• Lyubashevsky [48]: Fig. 2 of [48] gives four sets of parameters for 80-bit security. We used the first
set of parameters, but adjusted κ to achieve 128-bit security: n = 512, m = 4, σ = 127, κ = 44,
and p ≈ 232. The completeness error of the protocol is 1 − 1/e. To make the the completeness
error less than 2−20, we must repeat the protocol for t = 31 times. [48, p. 610] gives a series of
tricks to improve the efficiency, which we will incorporate here. The most important trick is to
use a hash function such as the SHA-256 in the first step of the protocol. Using the notations
of [48], the communication complexity is 256 · t+ |Gm|+ |Dc| ≈ 7 KB.

• Cayrel et al. [50]: The public parameter and the prover’s public and private keys are exactly like
those in [47]; we therefore use the same parameters. The soundness error of the base protocol is
almost 1/2, and hence it must be repeated t = 30 times to achieve the 2−30 soundness error. The
communication complexity of the protocol is t(2n|q|+|q|+m|q|+1+n+(dlgm!e+m)/2) ≈ 144 KB.
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• Silva et al. [52]: The public parameter is exactly as in [50], but the prover’s public and private
keys differ. Again, the soundness error of the base protocol is almost 1/2. The communication
complexity of the protocol is t(3n|q|+2|t|+1+m+m|q|+(dlgm!e+m)/2) ≈ 157 KB. Interestingly,
while this protocol is more efficient for 80-bit security than [50] (see [52]), it is less efficient at
128-bit security.

As Table 1 shows, the best previous protocol was [48]. Below, we will compare our protocol with
this protocol.

In terms of communication complexity, Protocol 1 improves [48] by a factor of 5, while requiring
less than half storage.

Since all protocols (except ours) mentioned in Table 1 are repeated several times, they need to
perform many lattice-based computations. However, our protocol makes only two lattice operations:
a SIS and an LWE-based encryption. Therefore, our protocol is much more efficient in terms of
computation complexity. In particular, since the base protocol of [48] has similar operations to ours,
and it is repeated 30 times, Protocol 1 improves [48] by a factor of 30.

The theoretical round complexity of Protocol 1 is 5, which is close to the best (i.e., 3). Let us
now consider the practical round complexity : As described in Section 1, smart cards transmit data
in units called the Application Protocol Data Unit (APDU), which can carry up to 255 bytes of
data. Therefore, our protocol requires at least d 1.46 KB

255 B e = 6 passes (rather than 5) to perform the
authentication in practice. The round complexity of other protocols discussed above is much higher
due to their high communication complexity. For instance, [48] requires at least d 7 KB

255 Be = 29 passes
(rather than 3).

The final point is that our protocol is statistical zero knowledge, while [48] is not. On the other
hand, [48] is secure against concurrent attacks. While such attacks are not practical against real-world
smart cards (because the smart card does not have enough resources to take part in multiple sessions
simultaneously), it is certainly advantageous to study these attacks in theory. In the next section, we
present a modification to our protocol to make it resilient to concurrent attacks.

Remark 6. As pointed out in Remark 1, the recent work of Boorghany and Jalili [4] shows the
practicality of Protocol 1, by implementing it on a real smart card. Noting that no competitors in
Table 1 (except our protocol) can be implemented practically, Boorghany and Jalili took a different
approach for comparison: they first constructed authentication protocols from efficient lattice-based
signature schemes [86,87], and then implemented the results on a smart card.

The results of [4] show that on a Feitian FT-Java/H10CR Java Card, Protocol 1 is almost three
times faster than the authentication protocol based on [87], which is in turn twice faster than the
authentication protocol based on [86]. Furthermore, they showed that it takes almost half a second
to execute Protocol 1 on an AVR ATxmega64A3 microcontroller.

As an added bonus, we mention that Protocol 1 is an statistical zero knowledge authentication
protocol, while the authentication protocols based on [86,87] are not even zero knowledge. C

5 Modifying Protocol 1 to Thwart Concurrent Attacks

The zero-knowledge simulator of Protocol 1 does not work in the concurrent setting, since it rewinds
the verifier. Diagram 1 of [25, p. 410] illustrates the difficulty that arises when dealing with rewinding
simulators in the concurrent setting. This statement can be generalized to the extent of denying any
black-box simulator for the protocol: [24] proves a logarithmic lower bound on the round complexity
of black-box CZK protocols, while Protocol 1 is constant round.

Furthermore, the protocol is not known to remain a secure authentication protocol against con-
current attacks, since Algorithm 2 makes explicit use of the zero-knowledge simulator to simulate Q
for V ∗, and this simulator does not work in the concurrent setting.
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In this section, we modify Protocol 1 in such a way that it remains a secure authentication protocol
against concurrent attacks. As an added bonus, the modified protocol will remain SZK if executed
sequentially.

A first idea is to modify the protocol such that the common input includes the descriptions of two
TDPs instead of one, and the prover will then prove that he can invert either of them. This idea
is similar to that of OR proofs [88], with one major difference: The OR proof is a transformation
on public-coin ZK proofs, while Protocol 1 uses private coins. There are two objections against this
approach: Firstly, an OR-proof reduces the efficiency of the protocol, and increases its communication
complexity. Secondly, difficulties arise when dealing with private-coin protocols, and they cannot be
easily transformed to OR proofs without making extra assumptions.7

A better idea, due to Damg̊ard [65], is to use the concept of trapdoor commitments [89], also
known as chameleon blobs [90] or equivocable commitments [91–93]. (Although the last reference
explains definitional differences between these concepts, we will use “trapdoor commitment” as an
umbrella term to refer to all of them). Informally, a trapdoor commitment is a commitment that
satisfies an extra property: There is an algorithm which generates a “twisted” description of the
commitment, along with a trapdoor. This description must be indistinguishable from an honestly
generated description. Moreover, there exists an algorithm which can output a commitment, and
then open it to any arbitrary string using the trapdoor.

We notice that trapdoor commitments can be constructed from ordinary commitments without
making new assumptions. Section 2 of [94, Chapter 3] describes several such constructions.

Definition 2 (Non-interactive Statistically-Hiding Trapdoor Commitments). A pair of PPT
algorithms (GenC,Sim) is called a non-interactive statistically-hiding trapdoor commitment, if the
following conditions hold:

1. GenC is a generator for some non-interactive statistically-hiding commitment (recall Definition 4
in Appendix A.3).

2. For any n ∈ N, and all x ∈ {0, 1}n, the statistical distance between the outputs of the left-and-
right experiments below is at most 2−µn.

desc(Comn)← GenC(1n) (desc(C̃omn), t̃n)← Sim(‘Gen’, 1n)

r ← Rnd`(n) c̃← Sim(‘Commit’, desc(C̃omn))

c← Comn(x ; r) r̃ ← Sim(‘Decommit’, desc(C̃omn), t̃n, c̃, x)

OUTPUT (desc(Comn), x, c, r) OUTPUT (desc(C̃omn), x, c̃, r̃)

©

Remark 7. In our protocol, we do not need to open the commitment to an arbitrary string x. Rather,
we merely need to open it to a randomly chosen string. C

Define “Protocol 2” as the modified version of Protocol 1, which uses trapdoor commitments
instead of ordinary ones. However, notice that Sim is not used in the real-life execution. It is only
employed in the proof of security, as detailed later. Therefore, we continue to assume that in the
real-life execution, Comn is generated honestly (i.e., via GenC). See the beginning of Section 3.1,
where three methods for honest generation of Comn are suggested (out-of-band agreement, CRS, and
TTP).

7In our setting, we required an assumption like the indistinguishability of the pair (π0
n(Un), π1

n(Un)) from
(π0
n(Un), π1

n(U ′n)), where π0
n and π1

n are independently generated TDPs. This assumption is much stronger that the
non-invertibility of a single TDP, and we know few TDPs that satisfy this strong assumption.
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Input: Same as Algorithm 2.

0. Initialization: Let
(desc(C̃omn), t̃n)← Sim(‘Gen’, 1n), and

in ← (desc(πn), desc(C̃omn)).

1. Simulate Q for V ∗: Q keeps a set ID (initially empty), and accepts the special message
New(id). Upon receiving this message, Q checks whether id ∈ ID, and replies with ⊥ if this is
the case. Otherwise, Q sets ID ← ID ∪ {id}, and simulates a new instance of the prover with
fresh randomness and id as identifier, as follows: Upon receiving a message from V ∗ with id as
its prefix, dispatch it to the simulated prover with identifier id. The simulated prover then makes
a computation, and sends a message. Q then saves the state of this prover for later calls.

The algorithm of the simulated prover with identifier id is described below:

(a) Generate a commitment by computing c′n ← Sim(‘Commit’, desc(C̃omn)). Send (id, c′n) to
V ∗.

(b) Receive the challenge y′n from V ∗.

(c) If y′n /∈ {0, 1}n, send (id,⊥) to V ∗ and halt.

Pick a random n-bit string σ′n, and send (id, σ′n) to V ∗.

(d) Receive z′n from V ∗.

(e) If y′n 6= Eval(desc(πn), z′n), then send (id,⊥) to V ∗ and halt.

Else let u′′n ← z′n ⊕ σ′n, and ρ′′n ← Sim(‘Decommit’, desc(C̃omn), t̃n, c
′
n, u
′′
n). Send (id, ρ′′n) to

V ∗.

As soon as V ∗ halts, M ′ gets its output st′, and then proceeds exactly as steps 2 & 3 of Algorithm 2.

Algorithm 3: Description of algorithm M ′, which inverts ŷn under πn using black-box access to a
concurrent adversary A = (V ∗, P ∗) against Protocol 2.

Since substituting an ordinary commitment with a trapdoor commitment does not change the real-
life execution, the security proofs of Protocol 1 carries over to Protocol 2. In other words, Protocol
2 remains SZK when executed sequentially, and it is a secure authentication protocol against active
adversaries. It remains to exploit the properties of trapdoor commitments to prove that Protocol 2 is
a secure authentication protocol against concurrent adversaries.

Theorem 3. Protocol 2 is a secure authentication protocol against concurrent PPT adversaries.

Proof. Let A = (V ∗, P ∗) be a concurrent adversary. Recall from Definition 1 that in the concurrent
setting, V ∗ can send the special message New(id), to spawn a new instance of the prover with id as
its identifier. Furthermore, to communicate with the prover whose identifier is id, the cheating verifier
must prefix her messages with id.

We now construct an algorithm, similar to M (see Algorithm 2), which inverts its input under the
TDP, given black-box access to A. Let us call this algorithm M ′. Contrary to M , the inverter M ′

should simulate a concurrent setting for V ∗ in the information gathering phase. The code for M ′ is
given in Algorithm 3. Here is the ideas used by M ′:

• M ′ instantiates a trapdoor commitment instead of an ordinary one. Given the indistinguisha-

bility of the descriptions of C̃omn and Comn, the malicious verifier will notice the change with
probability at most 2−µn.

• M ′ returns a random bit string σ′n instead of σn
def
= un ⊕wn. As shown in Stage 2 of the proof of
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Theorem 1, the statistical distance between σ′n and σn is at most 2−δn (even when the rest of the
view is given).

• If V ∗ reveals a correct pre-image z′n of y′n, the algorithm M ′ uses Sim to open the commitment
c′n as z′n ⊕ σ′n, thus pretending to V ∗ that it had correctly sent the right pre-image in step (c).

Since M ′ does not rewind V ∗, it does not suffer from the weakness of the ZK simulator, described at
the beginning of this section.

Using the triangle inequality, the statistical distance between the view of V ∗ in the real and
simulated executions is εn ≤ 2−µn + 2−δn in a single execution. We can now apply Lemma 1, where
τn = poly(n) is an upper bound on the number of prover instances that V ∗ spawns. The rest of the
proof is similar to the proof of Theorem 2. �

5.1 Constructing a Lattice-based Trapdoor Commitment

In Section 4.1, we described how lattice-based commitments can be constructed. This section mod-
ifies the construction to achieve lattice-based trapdoor commitments. Our main tool is the results
of [84,95,96], which describes how to generate a random looking matrix A ∈ Zn×mq , in which a trap-
door is embedded.8 Given this trapdoor, and a random vector c ∈ Znq , one can efficiently sample a
vector z ∈ Zm according to some narrow Gaussian distribution, such that Az ≡ c (mod q). Let us
explain the details.

Generating the description of the commitment. For any n ∈ N, the output of GenC(1n) is a
matrix A, chosen randomly from Zn×2m

q . Here, q and m ≥ 2n lg q are polynomially bounded in n.
The algorithm GenC also defines the distribution of the randomness to the commitment, which is a
discrete Gaussian distribution DZm,s with parameter s ≥ ω(

√
logm ). Let A = [A1 || A2], where A1

is the first m columns of A, and A2 constitutes the remaining columns of A.

Committing to a string x ∈ {0, 1}m. Let x be the m-dimensional column vector (with binary
entries) corresponding to x. Pick a random vector r ← DZm,s, and define the commitment as in
Equation 11. It is proven in [99, Corollary 5.4] that except for an exponentially small fraction of
A2’s, the quantity A2r (mod q) is statistically close to the uniform distribution over Znq . Therefore,

Comn(x)
def
= A(x || r) mod q = A1x + A2r (mod q) is statistically close to uniform distribution over

Znq . Consequently, for any two m-bit strings x1 and x2, the commitments to x1 and x2 are statistically
close, and the commitment is statistically hiding.

Regarding the binding property, care must be taken as there is no theoretical limit on the length of
r. However, the probability that ‖r‖2 > Ls for any positive L is at most e−πL

2

. Therefore, the receiver
(of the commitment protocol) can safely reject if the length of the revealed randomness exceeds Ls for
some given L. In this approach, the reveal phase of the commitment may fail with an exponentially
small probability (which results in an exponentially small completeness error in our protocol). Notice
that the collision-finding SIS problem with β = Ls +

√
m = Lω(

√
logm ) +

√
m reduces to breaking

the binding property of this commitment.

The trapdoor commitment. Algorithm Sim(‘Gen’, 1n) generates a special matrix Ã2 ∈ Zn×mq ,

with the associated trapdoor t̃n, as described in [84]. The parameters q and m are chosen properly.

Micciancio and Peikert [84] describe a method in which Ã2 is statistically indistinguishable from a

uniformly chosen matrix. Next, Sim defines Ã
def
= [Ã1 || Ã2], where Ã1 ←R Zn×mq .

8After the preliminary version of this work [3], but independently of it, Blazy et al. [97] constructed a lattice-based
trapdoor commitment. Similar to our results, they use the Micciancio–Peikert trapdoors [84], but they utilize the
smooth projective hash functions [98] to construct their lattice-based trapdoor commitment.
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Sim(‘Commit’, Ã) outputs a uniform element c̃ in Znq . Since Comn(x) is statistically close to
uniform for any x ∈ Zm2 , the random variables c̃ and Comn(x) are statistically close.

For any x ∈ Zmq independent of c̃, the algorithm Sim(‘Decommit’, Ã, t̃n, c̃,x) works as follows: It

first computes c̃2
def
= c̃− Ã1x (mod q), which is a uniform element in Znq since c̃ was picked uniformly.

It then uses the trapdoor t̃n and the pre-image sampling of [84] to choose a vector r̃ from the discrete

Gaussian distribution DZm,s′ , such that c̃2 = Ã2r̃ (mod q).
Notice that in order the parameters should be set in such a way that DZm,s and DZm,s′ are

statistically close. If possible, the best choice is s = s′.

6 Conclusions and Future Work

In this paper, we presented a general SZK authentication protocol, and proved its exact security.
The protocol was then instantiated using lattice-based constructions, so as to remain secure against
quantum attacks. We next modified the general protocol using trapdoor commitments, and proved
that the modified protocol is secure against concurrent attacks. Finally, it was shown how the trapdoor
commitment can be instantiated using lattice-based cryptography.

Below, we will try to present the most important direction for future research:

• Improving the security proofs to provide a tighter security reduction.

• Finding the parameters for the lattice-based trapdoor commitment to achieve a certain level of
security.

• Modifying the protocol so that it resists resetting attacks, which are practical against smart cards.

• Discussing a practical implementation which is secure against side-channel attacks.

• Improving the protocol to support bilateral authentication.

A final direction is to examine whether the security proofs carry over to the case where the protocol
is modified as follows. The prover authenticates himself to the verifier by proving an OR statement:
Either he knows the trapdoor of the TDP, or he knows the trapdoor of the commitment. In this case,
a single matrix A might be used for the construction of both the TDP (based on the LWE problem),
and the trapdoor commitment (based on the SIS problem). The modification reduces the storage
requirement for public and private keys.
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A Omitted Definitions & Lemmas

A.1 Trapdoor One-Way Permutations (TDP)

Informally, a trapdoor one-way permutation is a permutation having three properties: (1) it is easy
to compute, (2) it is hard to invert, and (3) there exists auxiliary information, such that it is easy to
invert the permutation if the auxiliary information is known. A formal definition follows:

Definition 3 (Collection of Trapdoor One-Way Permutations). Let Πn be a set of permu-
tations, such that for any permutation πn ∈ Πn, we have dom(πn) ⊆ {0, 1}n. A family of such sets
Π = {Πn}n∈N is called a collection of trapdoor one-way permutations (TDP) if there exist two PPT
algorithms GenP and Samp, and two deterministic polynomial-time algorithms Eval and InvP,
such that the following conditions hold:

1. Easy to generate: On input 1n, algorithm GenP picks a permutation πn ∈ Πn, and outputs
the description of πn denoted desc(πn), as well as the associated trapdoor tn. In order to avoid
mentioning 1n explicitly in the input algorithms such as Samp, Eval, and InvP, we assume that
| desc(πn)| ≥ n.
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2. Easy to sample the domain: On input desc(πn), algorithm Samp chooses an element from
dom(πn) ⊆ {0, 1}n.

3. Easy to evaluate: On input desc(πn) and x ∈ dom(πn), the output of the algorithm Eval is
πn(x). If the input is malformed, Eval returns a special symbol ⊥, indicating failure.

4. Easy to invert with the trapdoor: On input desc(πn), tn, and y ∈ range(πn), the algorithm
InvP outputs πn

−1(y). Moreover, if y /∈ range(πn), then InvP(desc(πn), tn, y) outputs a special
symbol ⊥, indicating failure.

5. Hard to invert without the trapdoor: For any PPT algorithm A, for every c ∈ N, and for
all sufficiently large n, the advantage of A:

AdvInvert
A,Gen4

def
= Pr

[
A(desc(πn), y) = x

∣∣ (desc(πn), tn, x, y)← Gen4(1n)
]
, (12)

is less than n−c. The probability is taken over the random coins of A and Gen4, where the latter
is defined on 1n by the following experiment:

(desc(πn), tn)← GenP(1n),

x← Samp(desc(πn)),

y ← Samp(desc(πn), x)

OUTPUT (desc(πn), tn, x, y) . ©

In this paper, we make use of the Rabin’s trapdoor one-way permutation [116] for counter-examples:
Let m = pq be a secure RSA modulus of size n, and let QRm be the set of quadratic residues modulo
m. The Rabin’s TDP is defined as follows:

πn : QRm → QRm

x 7→ x2 (mod m) .

A.2 Statistical Distance

Let X and Y be two discrete random variables. The statistical distance of X and Y , denoted ∆(X ;Y ),
is defined as:

∆(X ;Y )
def
=

1

2

∑
s

∣∣Pr[X = s]− Pr[Y = s]
∣∣ .

Like any notion of “distance,” the statistical distance satisfies the triangle inequality:

Fact 1 (Triangle Inequality). ∆(X ;Z) ≤ ∆(X ;Y ) + ∆(Y ;Z) for any three random variables X,
Y , and Z.

Let X = {Xn}n∈N and Y = {Yn}n∈N be two discrete distribution ensembles. We call X and Y
statistically indistinguishable or statistically close, denoted X

S

≈ Y, if there exists a constant δ > 0,
such that for all n ∈ N, we have ∆(Xn;Yn) ≤ 2−δn.

Define the joint support of two random variables as the union of their supports; i.e., [X,Y ] =
[X] ∪ [Y ].

It is well-known that processing cannot increase the statistical distance. Below, we will see two
versions of this theorem. The first version only considers “bijective” procedures:

Lemma 4. Let X and Y be two random variables with joint support S, and let g : S → S be a
deterministic bijection. Then, ∆(g(X) ; g(Y )) = ∆(X ;Y ).

33



Proof. Since g is injective, s′ = g−1(s) is defined for any s ∈ S. Moreover, because g is surjective,
g(s′) ∈ S is equivalent to s′ ∈ S. Therefore:

∆(g(X) ; g(Y )) =
1

2

∑
s∈S
|Pr[g(X) = s]− Pr[g(Y ) = s]|

=
1

2

∑
s∈S

∣∣Pr[X = g−1(s)]− Pr[Y = g−1(s)]
∣∣

=
1

2

∑
g(s′)∈S

|Pr[X = s′]− Pr[Y = s′]|

=
1

2

∑
s′∈S
|Pr[X = s′]− Pr[Y = s′]|

= ∆(X ;Y ) . �

The following fact is a generalization of Lemma 4, where g is no longer limited to deterministic
bijections. The fact is formally stated and proven in, say [117, p. 159]:

Fact 2. Let X and Y be two random variables with joint support S, and let g be a possibly randomized
function defined over S. Then, ∆(g(X) ; g(Y )) ≤ ∆(X ;Y ).

Noting that the statistical distance is zero for identically distributed random variables, the following
corollary is immediate.

Corollary 1. If X and Y are identically distributed with joint support S, then f(X) and f(Y ) are
identically distributed, for any (possibly randomized) function f defined over S.

Here’s another useful fact, adapted from Fact 3.1.14 in [118, p. 39]. There’s a typo in the statement
of Fact 3.1.14 of [118], but its proof gives the correct version:

Fact 3. Let X0 and X1 be independent, Y0, and Y1 be independent. Then ∆((X0, X1) ; (Y0, Y1)) ≤
∆(X0 ;Y0) + ∆(X1 ;Y1).

Lemma 5. Let X and Y be two discrete random variables, and let E and E′ be events defined over the
probability spaces underlying X and Y , respectively. Assume that we have |Pr[E]− Pr[E′]| ≤ υ ∈ [0, 1),
and the following two conditions hold:

1. X | E ∼ Y | E′ if Pr[E] 6= 0 and Pr[E′] 6= 0; and

2. X | E ∼ Y | E′ if Pr[E] 6= 0 and Pr[E′] 6= 0.

Then ∆(X ;Y ) ≤ υ, irrespective of the values of Pr[E] and Pr[E′].

Proof. Let us first consider the special cases, i.e., Pr[E] ∈ {0, 1} or Pr[E′] ∈ {0, 1}. Notice that
by symmetry, we can examine only the case where Pr[E′] = 0; the lemma for other cases follow

similarly. Let e
def
= Pr[E]. From |Pr[E]− Pr[E′]| ≤ υ ∈ [0, 1), we get e ≤ υ < 1. Therefore,

Pr[E] = 1− e ≥ 1− υ > 0 and Pr[E′] = 1, and it follows from condition 2 that X | E ∼ Y | E′ ≡ Y .
Let S be the joint support of X and Y . Applying the law of total probability, for any s ∈ S we have:

Pr[X = s] = Pr[E] Pr[X = s | E] + Pr[E] Pr[X = s | E]

= ePr[X = s | E] + (1− e) Pr[Y = s | E′]
= Pr[Y = s] + e (Pr[X = s | E]− Pr[Y = s]) .
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Therefore,
|Pr[X = s]− Pr[Y = s]| = e |Pr[X = s | E]− Pr[Y = s]| ,

and:

∆(X ;Y ) =
1

2

∑
s∈S
|Pr[X = s]− Pr[Y = s]|

=
e

2

∑
s∈S

∣∣Pr[X = s | E]− Pr[Y = s]
∣∣

≤ e

2

(∑
s∈S

Pr[X = s | E] +
∑
s∈S

Pr[Y = s]
)

=
e

2
· 2 = e ≤ υ .

We now pertain to the general case, where Pr[E] /∈ {0, 1} and Pr[E′] /∈ {0, 1}. Let δ
def
= Pr[E] −

Pr[E′], and therefore |δ| ≤ υ. Notice that we have Pr[E′]−Pr[E] = δ. By assumption, for any s ∈ S,

Pr[X = s|E] = Pr[Y = s|E′] , (13)

Pr[X = s|E] = Pr[Y = s|E′] . (14)

Multiplying both sides of Equations (13) and (14) by Pr[E] = Pr[E′] + δ and Pr[E] = Pr[E′] − δ
respectively, we have:

Pr[X = s, E] = Pr[Y = s, E′] + δ · Pr[Y = s|E′] , (15)

Pr[X = s,E] = Pr[Y = s,E′]− δ · Pr[Y = s|E′] . (16)

Adding both sides of Equations (15) and (16), and using the law of total probability, we obtain
Pr[X = s] = Pr[Y = s] + δ ·

(
Pr[Y = s|E′]− Pr[Y = s|E′]). Therefore,

∆(X ;Y ) =
1

2

∑
s∈S
|Pr[X = s]− Pr[Y = s]|

=
|δ|
2

∑
s∈S

∣∣Pr[Y = s|E′]− Pr[Y = s|E′]
∣∣

≤ |δ|
2

(∑
s∈S

Pr[Y = s|E′] +
∑
s∈S

Pr[Y = s|E′]
)

=
|δ|
2
· 2 = |δ| ≤ υ . �

A.3 Commitments

A commitment scheme is a protocol between two entities, the sender (S) and the receiver (R). The
protocol consists of two phases: The commitment phase, and the reveal phase. Informally, it is
required that: (1) S and R accept at the end of both phases; (2) in the commitment phase, R learns
nothing about the value S committed to, and (3) S cannot change this value in the reveal phase.

In this paper, we are only interested in commitments with non-interactive commitment and reveal
phases. That is, S sends a single message in the commitment phase, and a single message in the reveal
phase, but R does not send any messages during the whole protocol.

For notational simplicity, we assume that the commitment is performed on bit strings. Let
Comn : {0, 1}n×{0, 1}`(n) → {0, 1}m(n) denote an efficient and deterministic algorithm defined, where
`(n) and m(n) are polynomial in n.
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For any n ∈ N, let the description of Comn be generated by a PPT algorithm GenC. That is,
desc(Comn)← GenC(1n). In order to avoid mentioning 1n explicitly in the input other algorithms,
we assume that |desc(Comn)| ≥ n. In general, the sender and the receiver will agree on desc(Comn)
prior to the main protocol, perhaps during an initial phase or via a trusted setup.

We also assume that desc(Comn) includes the description of some random variable Rnd`(n) over

{0, 1}`(n). If we only specify the first input to Comn, the second input will be chosen according to
Rnd`(n). That is, given x ∈ {0, 1}n, we commit to x by first picking r ← Rnd`(n), and then computing
Comn(x ; r). Let Comn(x) denote the random variable induced by this process.

Definition 4 (Non-interactive Statistically-Hiding Commitments). A PPT algorithm GenC
is called a generator for a non-interactive statistically hiding (and computationally binding) commit-
ment scheme, if the following conditions hold:

1. Computational Binding: No efficient algorithm can decommit to a value it did not commit
to. Specifically, for any PPT algorithm A, any c ∈ N, and all sufficiently large n, the following
quantity:

AdvBinding
A,GenC(n)

def
=

Pr

 Comn(x ; r) = Comn(x′ ; r′) ,
and x 6= x′, and x, x′ ∈ {0, 1}n ,
and r, r′ ∈ {0, 1}`(n)

∣∣∣∣∣∣ desc(Comn)← GenC(1n) ,
(x, x′, r, r′)← A(desc(Comn))

 ,

is less than n−c, where the probability is taken over the coin tosses of A and GenC.

2. Statistical Hiding: Commitments to values of the same length n are statistically indistin-
guishable. That is, there exists a constant δ > 0, such that for all n ∈ N, any desc(Comn) ∈
[GenC(1n)], and all x, x′ ∈ {0, 1}n:

∆ (Comn(x) ;Comn(x′)) ≤ 2−δn . (17)

We call Comn a non-interactive statistically-hiding commitment scheme if desc(Comn) ∈ [GenC(1n)].©

Remark 8. Note that both of the binding and hiding properties are defined in a strong sense. A
weaker binding property can be obtained by asking A to output, given desc(Comn) and some (x, r) ∈
{0, 1}n × {0, 1}`(n), a pair (x′, r′) ∈ {0, 1}n × {0, 1}`(n), such that x′ 6= x, and Comn(x′, r′) =
Comn(x, r). This definition is weaker since A must satisfy a harder condition: (x, r) is fixed a priori,
and A is not free to choose it.

A weaker hiding property can be obtained by requiring that an overwhelming fraction (rather than
all) of the support of GenC(1n) satisfy Equation 17. This is equivalent to requiring that Equation 17
holds over the random coins of GenC(1n) with overwhelming probability.

In this paper, we did not adopt the weaker definitions of hiding and binding for two reasons:
(1) The well-known instances of the statistical-hiding commitments, such as [47,114,119], satisfy the
strong variation, and (2) proving theorems are easier with the strong definition. C

A.4 Zero Knowledge

Informally, a protocol 〈V, P 〉 is called zero knowledge (ZK) for P (the prover), if at the end of the
execution, party V (the verifier) does not learn anything about the private input of P , which she
could not learn by herself before the start of the protocol. This is the case even if the verifier deviates
from the protocol arbitrarily. We denote by V ∗ the party which may or may not follow the verifier’s
program.
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In this paper, we are only interested in cryptographic protocols, where the strategy of honest
parties can be implemented in probabilistic polynomial time, while possibly giving the honest parties
an extra (secret) input. In the context of ZK protocols, only the honest prover is given this type of
input. This paper uses the statistical variation of ZK protocols, where the protocol remains ZK even
if the cheating party V ∗ is infinitely powerful. Moreover, we focus on the case where the simulator
is black-box. Note, however, that while V ∗ might be unbounded, we will assume that all prover
strategies (even the cheating ones) are PPT.

Before giving the actual definition of statistical zero-knowledge protocols, let us define some no-
tation. It is a good idea to review the notation introduced in Section 2.1 as well. Define the view
of a party participating in a protocol as whatever it sees during the protocol, including its input,
randomness, and received messages. For instance, in the protocol 〈V ∗r , P (y)〉(x), the view of V ∗r is
(x, r,m1, . . . ,mk), where (m1, . . . ,mk) is the sequence of messages V ∗r receives from P . We denote

this view by the random variable View
P (y)
V ∗r

(x). Note that the randomness of V ∗ is fixed here. Let

View
P (y)
V ∗ (x) denote the random variable describing View

P (y)
V ∗r

(x) when r is chosen uniformly at random.
In addition, let S be the simulator, which is a PPT oracle machine; i.e., S can have black-box

access to an oracle, which in this case is the machine V ∗. This is denoted by SV
∗
(x), and it means

that S can freely reset/rewind V ∗, and load any desired randomness onto V ∗’s random tape. Since
V ∗ may need an a priori unbounded number of random coins, we will assume that S has two separate
random tapes, one of which is fed directly into V ∗, while the other is consumed by S itself (cf. [1,120]).

Definition 5 (Statistical Zero Knowledge). The protocol 〈V, P (y)〉(x) is (black-box ) statistical
zero-knowledge (SZK) for P on some relation R = {(x, y)} if there exists a PPT algorithm S (the
simulator) and a constant δ > 0, such that for all pairs (x, y) ∈ R and any interactive function V ∗,
we have

∆
(
View

P (y)
V ∗ (x) ;SV

∗
(x)
)
≤ 2−δ|x| ,

where the probabilities are taken over the internal coin tosses of P , V ∗, and S. ©

Notice that Definition 5 is stronger than usually defined in the literature: (1) It quantifies over all
verifier strategies, rather than merely over PPT verifiers. Therefore, the verifier may use an infinitely
powerful strategy, even an uncomputable one. For this reason, we used the term “interactive function”
instead of “interactive Turing machine” (see [121, Section 2]). (2) It allows the verifier strategy to
depend on the common input x. (3) The definition is not asymptotic: statistical indistinguishability
is required for any x, rather than for “sufficiently large” x. (4) The statistical distance is taken to be
exponentially small in |x|, rather than only negligible in it.

Similar to [106, Theorem 3.2], it can be shown that the class of interactive proofs satisfying our
black-box SZK is a subclass of those satisfying SZK with auxiliary input. The proof uses the analogy
between the definition of black-box zero-knowledge in [106, p. 8] and Definition 5, where V ∗ can
depend arbitrarily on x, and therefore any auxiliary input can be incorporated into its code.

A.5 Lattices

Consider n linearly-independent vectors b1, . . . ,bn in Rn. The set of all integral linear combinations
of these vectors, i.e., the set

{∑n
i=1 xibi | xi ∈ Z

}
is called a lattice. b1, . . . ,bn are the base vectors

of the lattice, and the matrix B = [b1 | · · · | bn] is the lattice basis. The lattice generated by the basis

B is noted by Λ
def
= Λ(B)

def
=
{
Bx | x ∈ Zn

}
.

For B ∈ Rn×n and i ∈ {1, . . . , n}, define the ith minima λi
(
Λ(B)

)
as the radius of the smallest

n-dimensional ball including i independent lattice vectors. Note that 0 < λ1 ≤ λ2 ≤ · · · ≤ λn < +∞.
Several problems are conjectured to be hard on lattices, among which we mention a few. Let

B ∈ Rn×n be a basis of rank n:
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• Shortest Vector Problem (SVP): Find a non-zero shortest vector in the lattice; i.e., a vector
of length λ1

(
Λ(B)

)
.

The approximation version SVPγ asks for finding a non-zero lattice vector within the γ factor of
the shortest vector; that is, a non-zero vector of Λ whose length is at most γλ1

(
Λ(B)

)
.

The gap version GapSVPγ is a promise problem [122]: Output “YES” if λ1 ≤ 1, and output
“NO” if λ1 > γ.

• Closest Vector Problem (CVP): Given a target point t ∈ Rn, find a lattice point u ∈ Λ(B)
such that ‖u− t‖ is minimized.

The approximation version CVPγ asks for finding a lattice point u ∈ Λ(B) within γ distance of
the nearest lattice point to t. In other words, find u ∈ Λ(B) such that for all v ∈ Λ(B) we have
‖u− t‖ ≤ γ‖v − t‖.
The gap version GapCVPγ is a promise problem [122]: Output “YES” if there exists a lattice
point u whose distance to t is at most 1. Output “NO” if the distance of t to any lattice point is
more than γ.

• Shortest Independent Vector Problem (SIVP): Find n linearly independent lattice vectors
v1, . . . ,vn, such that the quantity maxi ‖vi‖ is minimized.

The approximation version SIVPγ asks for finding a set of n linearly independent lattice vectors
{v1, . . . ,vn}, such that maxi ‖vi‖ ≤ γλn

(
Λ(B)

)
.

The complexity of CVP, SVP, SIVP, and their corresponding approximation and gap versions are
related to each other via reductions. For more information, see [117,123] and [124, Section 3.1].

It is proven that lattice problems such as CVP or SVP, are NP-hard. Therefore, the best we
can hope for is to solve the approximation versions of these problems. However, even solving these
problems with an approximation factor of nO(1/ log logn) is NP-hard. On the other hand, approximation
to within a factor of

√
n/ log n is not NP-hard, unless the polynomial hierarchy collapses. In general,

cryptographic constructions reduce to lattice problems with a polynomial approximation factor (see
[70] and the references thereof).

Note that all problems described above are worst-case problems. In cryptography, we need to rely
on the hardness of the average case problems. For instance, a cryptosystem must be hard to break
when the keys are chosen randomly. Below, we will see two such problems: SIS and LWE.

A class of lattices, with the property that qZn ⊆ L ⊆ Zn for some integer q, is called a q-ary lattice.
This class has interesting applications in cryptography. One special sub-class of q-ary lattices—used
in this paper—is described next. Let n, m, and q be positive integers. For a matrix A ∈ Zn×mq , define
the following set of points:

Λ⊥q (A)
def
=
{

z ∈ Zm | Az ≡ 0 (mod q)
}
. (18)

It can be shown that any discrete additive subgroup of any finite dimensional vector space over R is a
lattice (see for example [125, page 327]). Therefore, Λ⊥q (A) denotes an m-dimensional lattice, since it
is a discrete additive subgroup of Rm×m. The following average-case problem is defined on this class
of lattices:

Short Integer Solution (SIS): For a random matrix A, find a “short” non-zero lattice point in
the lattice defined by Equation 18. More specifically, define the problem SISpq,m,n,β as follows: Given

a random matrix A←R Zn×mq , find a vector z ∈ Λ⊥q (A) \ {0}, such that ‖z‖p ≤ β.
We also define the collision-finding SISpq,m,n,β problem as follows: Given a random matrix A←R

Zn×mq , find two distinct vectors z1, z2 ∈ Zm, such that Az1 ≡ Az2 (mod q) and ‖z1‖p, ‖z2‖p ≤ β.
The following relations hold between the SIS and collision-finding SIS problems:
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• If collision-finding SISpq,m,n,β is hard, then SISpq,m,n,β is hard. Assume, to the contrary,

that SISpq,m,n,β is easy. Then we find a vector z1 ∈ Λ⊥q (A) \ {0}, such that ‖z1‖p ≤ β. Then, the

vectors z1 and z2 = 0 constitute an answer for the collision-finding SISpq,m,n,β , contradicting the
premise.

• If SISpq,m,n,β is hard, then collision-finding SISpq,m,n,β/2 is hard. Assume, to the contrary,

that collision-finding SISpq,m,n,β is easy. Then we find two distinct z1, z2 ∈ Zm, such that Az1 ≡
Az2 (mod q) and ‖z1‖p, ‖z2‖p ≤ β/2. Define z as z1−z2. Notice that z ∈ Λ⊥q (A)\{0}. Applying
the triangle inequality, we also get ‖z‖p ≤ ‖z1‖p + ‖z2‖p ≤ β, contradicting the premise.

Fact 4. SIS2
q,m,n,β reduces to SIS∞q,m,n,β/

√
m (and the same reduction holds for the respective collision-

finding problems). This is because for any A ∈ Zn×mq and any vector z ∈ Λ⊥q (A) \ {0}, if ‖z‖∞ ≤
β/
√
m , then ‖z‖2 ≤ β.

Another average-case lattice problem is called “learning with errors” or LWE. Specifically, for
the security parameter n, let integers m = m(n) and q = q(n) be polynomial in n, and let χ be a
probability distribution on Zq. The problem LWEq,m,n,χ is defined as follows: Given a random matrix
A ∈ Zn×mq and a linear system b = AT s + e (mod q), find the secret vector s, where the entries of
the vector e are i.i.d. samples from χ. Regev [115] showed that if χ is a discrete Gaussian distribution
with with standard deviation roughly αq ≥ 2

√
n , then there is an efficient quantum reduction from

solving worst-case lattice problems with approximation factor Õ(n/α), to solving LWE. This result
was later generalized to classical (PPT) reductions [126,127].
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