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Abstract
The universal composability paradigm allows for the modular design and analysis of cryptographic

protocols. It has been widely and successfully used in cryptography. However, devising a coherent yet
simple and expressive model for universal composability is, as the history of such models shows, highly
non-trivial. For example, several partly severe problems have been pointed out in the literature for the
UC model.

In this work, we propose a coherent model for universal composability, called the IITM model
(“Inexhaustible Interactive Turing Machine”). A main feature of the model is that it is stated without
a priori fixing irrelevant details, such as a specific way of addressing of machines by session and party
identifiers, a specific modeling of corruption, or a specific protocol hierarchy. In addition, we employ a
very general notion of runtime. All reasonable protocols and ideal functionalities should be expressible
based on this notion in a direct and natural way, and without tweaks, such as (artificial) padding of
messages or (artificially) adding extra messages.

Not least because of these features, the model is simple and expressive. Also the general results that
we prove, such as composition theorems, hold independently of how such details are fixed for concrete
applications.

Being inspired by other models for universal composability, in particular the UC model and because
of the flexibility and expressivity of the IITM model, conceptually, results formulated in these models
directly carry over to the IITM model.

1



Contents
1 Introduction 4

2 The IITM Model in a Nutshell 6

3 The General Computational Model 10
3.1 Inexhaustible Interactive Turing Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.2 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Systems of IITMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Running a System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Probability Space and Relevant Random Variables . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Equivalence/Indistinguishability of Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Polynomial Time and Properties of Systems 16
4.1 Further Notation and Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Polynomially Bounded Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Environments and Environmental Indistinguishability . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Protocols and Environmentally Bounded Systems . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5 Properties of Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Composition Theorems for Environmental Indistinguishability 24
5.1 Composition Theorem for a Constant Number of Systems . . . . . . . . . . . . . . . . . . . . 25
5.2 Composition Theorem for Unbounded Self-Composition . . . . . . . . . . . . . . . . . . . . . 26

5.2.1 Session Versions of Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.2 The Composition Theorem for Session Versions . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Composition Theorem for Unbounded Self-Composition of SID Dependent Systems . . . . . . 30
5.3.1 Generalized Session Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3.2 A Composition Theorem for σ-Session Versions . . . . . . . . . . . . . . . . . . . . . . 32

6 Notions of Universal Composability 34
6.1 Further Notation and Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.1.1 Network and I/O Tapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.1.2 Adversarial Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.2 Defining the Notions of Universal Composability . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.3 Relationships Between the Notions of Universal Composability . . . . . . . . . . . . . . . . . 37
6.4 Reflexivity and Transitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7 Composition Theorems for the Realization Relations 39
7.1 Composition Theorem for a Constant Number of Protocol Systems . . . . . . . . . . . . . . . 40
7.2 Composition Theorem for Unbounded Self-Composition . . . . . . . . . . . . . . . . . . . . . 40
7.3 Composition Theorem for Unbounded Self-Composition of SID Dependent Protocols . . . . . 41
7.4 Composition Theorem for More Complex Systems . . . . . . . . . . . . . . . . . . . . . . . . 43

8 On the Composability of Runtime Notions 44
8.1 On the Composability of Environmentally Strictly Bounded Systems . . . . . . . . . . . . . . 44
8.2 On the Composability of Environmentally Almost Bounded Systems . . . . . . . . . . . . . . 47

2



9 On Basing Universal Composability on Environmentally Strictly Bounded Systems 49
9.1 Strict Simulatability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
9.2 No Universal Composability for a Constant Number of Protocol Systems . . . . . . . . . . . . 50
9.3 No Transitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
9.4 Strict SS does not Imply Strict UC (Incompleteness of the Dummy Adversary) . . . . . . . . 53

10 Instantiation of the IITM Model 53
10.1 Modeling of Real Protocols and Ideal Functionalities . . . . . . . . . . . . . . . . . . . . . . . 54
10.2 Composition with Joint State and Shared State . . . . . . . . . . . . . . . . . . . . . . . . . . 58
10.3 Composition with Global State / Global Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 61
10.4 A Concrete Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
10.5 Another Instantiation: the SUC Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

11 Related Work 76
11.1 UC Model (2005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
11.2 UC Model (2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
11.3 GNUC Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A Proof of Lemma 9 83

B Proof of Lemma 27 for Uniform Environments 89

C Proof of Theorem 7 91
C.1 UC ⇒ dummyUC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
C.2 dummyUC ⇒ SS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
C.3 SS ⇒ BB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
C.4 BB ⇒ SS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
C.5 SS ⇔ RS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

D Problems with the Composition Theorem in the UC model 92

E Model Specific Distinguishing Attacks in the UC Model 93

3



1 Introduction
In the universal composability paradigm [3, 33] the security of protocols is defined in such a way that security
is preserved even if the protocols are used as components of an arbitrary (polynomially bounded) distributed
system. This strong composability property allows for the modular design and analysis of protocols. More
specifically, the security of a protocol is defined in terms of an ideal protocol (also called an ideal functionality).
A real protocol securely realizes the ideal protocol if every attack on the real protocol can be translated into
an “equivalent” attack on the ideal protocol, where equivalence is specified based on an environment trying
to distinguish the real attack from the ideal one. That is, for every real adversary on the real protocol there
must exist an ideal adversary (also called a simulator) on the ideal protocol such that no environment can
distinguish whether it interacts with the real protocol and the real adversary or the ideal protocol and the
ideal adversary. So the real protocol is as secure as the ideal protocol (which, by definition, is secure) in all
environments.

At the core of the universal composability paradigm are composition theorems which say that if a protocol
uses one or more (independent) instances of an ideal functionality, then all instances of the ideal functionality
can be replaced by instances of the real protocol that realizes the ideal functionality. In this way, more
and more complex protocols can be designed and analyzed in a modular way based on ideal functionalities.
Often different protocol instances share some state, such as long-term keys. Consider, for example, an ideal
functionality for public-key encryption. Such a functionality typically encapsulates one public-key (and its
corresponding private key), say pk, and models ideal encryption under pk. That is, when this functionality is
used to encryption a message m (under pk), then the resulting ciphertext does not contain any information
about m, except the length of m. Now, consider a protocol, for example, a key exchange protocol, that uses
this ideal functionality. Then, in the universal composability paradigm, in different sessions of the protocol
different independent instances of the ideal public-key encryption functionality would be used. But this
means that different sessions of the protocol would use different public-keys. This is of course impractical
and unrealistic. One would rather like to use the same public-key (and hence, the same private key) in
all protocol sessions. Fortunately, so-called joint state theorems allow one to argue about protocols in a
modular way, similar to the general composition theorem mentioned above, even if several instances of a
protocol/functionality share some state [12, 24] (see also Section 10.2 for more details). Moreover, in some
cases it is necessary that all components of a system have access to some global state information, such as a
common reference string (CRS). For this purpose, composition theorems with global state (also called global
setup) have been proposed [7] (see also Section 10.3).

The universal composition paradigm has been widely and successfully used in cryptography to design and
analyze complex protocols in a modular way (see, e.g., [4] for an overview).

However, devising a coherent yet simple and expressive model for this paradigm has turned out to
be highly non-trivial (see Section 11 for a more detailed discussion). For example, several partly severe
problems have been pointed out in the literature for the UC model [3], concerning, for instance, the validity
of the composition and joint state theorems, the way corruption is handled, the notion of runtime, and the
expressivity of the model.

Contribution. In this paper, we propose a coherent model for universal composability that is both simple
and expressive. Our model coincides with the IITM model proposed in previous work [21] (where IITM
stands for “Inexhaustible Interactive Turing Machine”), except that we now use a more general notion of
runtime than the one used in the original version of the IITM model, namely one that is based on a runtime
notion proposed by Hofheinz et al. in [19]. We therefore stick to the name IITM model also for the model
proposed here. The main features of the IITM model are as follows.

• The IITM model is very simple and expressive, not least because it is formulated in a very general way
without fixing irrelevant details:

– The IITM model provides a very flexible and generic mechanism to address instances of machines.
Unlike other models, in which a specific way of addressing of machines by session identifiers
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(SIDs) and party identifiers (PIDs) is fixed, the IITM model does not hard-wire how machines are
addressed.

– Unlike other models, the IITM model also does not hard-wire corruption into the model. Corruption
instead can be specified in a very general and flexible way as part of the protocol specification.

– Unlike other models, the IITM model does not impose a specific structure on protocols, such
as a hierarchical structure with protocols and subroutines. This is, for example, important for
seamlessly dealing with joint and global state, and for faithfully modeling real-world protocols.

– The runtime of machines and systems of machines is defined in a very general way. All reasonable
(real and ideal) protocols should be expressible in a very natural way based on this runtime notion,
without tweaks, such as (artificial) padding of messages or (artificially) adding extra messages, as
necessary in other models.

• All common notions of universal composability, including (dummy) UC, strong simulatability, black-box
simulatability, and reactive simulatability are equivalent in the IITM model.1

• The composition, joint state, and global setup theorems are very general: the class of protocols they
cover is large, both in terms of the structure and the runtime of protocols. These theorems are stated
and proven independently of many details fixed in other models (such as addressing of machines and
corruption). Hence, they hold true no matter how these details are fixed in concrete applications.
The generality of the theorems and the IITM model is also apparent in the fact that to state the
joint state and global setup theorems the IITM does not have to be changed or extended, unlike
other models. These theorems can smoothly be stated and proven within the model. Moreover, the
joint state theorem and the main global setup theorems are even merely direct consequences of our
general composition theorems. In other models, new notation is required to state those theorems and
the theorems require (non-trivial) proofs. The flexibility of the IITM model and the generality of its
composition theorems also allow us to directly support many forms of joint state and global setup,
including arbitrary combinations of both, which have not been considered in the literature so far and
would require extensions in other models.

• Since the IITM model conceptually follows other models for universal composability, in particular the
UC model, and because of its high expressivity and flexibility, results established in other models easily
carry over to the IITM model.

Structure of the paper. In Section 2, we present the IITM model in a nutshell in order to provide a first
impression of the model. We then, in Section 3, define the computational model on which the IITM model is
based. This model is stated independently of the application to universal composability and is of independent
interest. The runtime notions that we use are introduced in Section 4, along with basic properties. While
these properties are as expected, some of the problems in other models stem from the fact that not all
of these properties are satisfied in these models. For example, not in all models it is possible to specify
a dummy machine which simply forwards messages back and forth between different system components.
Also, in some models it is not possible to simulate arbitrary subsystems by one machine. In Section 5, we
present general composition theorems for systems that are computationally indistinguishable by environments.
These composition theorems are the core of the composition theorems for universal composition, presented
in Section 7. The common notions for universal composability, namely (dummy) UC, strong simulatability,
black-box simulatability, and reactive simulatability are introduced in Section 6, along with basic properties.
We show that all these notions are equivalent, where, as already mentioned, for reactive simulatability this
requires environments with external input. The general composition theorems are then, as mentioned, stated
and proven in Section 7. They follow easily from those established in Section 5. The composability of the
runtime notions that we use is discussed in Section 8. An alternative runtime notion and why it is unsuitable

1For reactive simulatability, this is true for environments with external input (non-uniform environments), as detailed in
Section 6.3.
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is explained in Section 9. In Section 10, we illustrate how the IITM model can be used to design and analyze
(multi-party) protocols in a modular way. In particular, we present one way of addressing multiple sessions
and modeling corruption of machines/instances/parties. We also briefly discuss joint state and global state
composition theorems. Related work is discussed in Section 11. Details omitted in the main body of the
paper can be found in the appendix.

Acknowledgments. We would like to thank Ran Canetti, Dennis Hofheinz, Dominique Unruh, Anupam Datta,
John Mitchell, Olivier Pereira, Birgit Pfitzmann, and Michael Backes for many interesting discussions on
models for universal composability.

2 The IITM Model in a Nutshell
In this section, we provide a brief introduction to the IITM model, with full details presented in the subsequent
sections. In the IITM model, security notions and composition/joint state theorems are formalized based on a
very simple and at the same time very expressive general computational model, in which IITMs (inexhaustible
interactive Turing machines) and systems of IITMs are defined. We first sketch the general computational
model and then, based on it, formulate notions of universal composability and state composition theorems.

The General Computational Model. The general computational model is defined in terms of systems
of IITMs. An inexhaustible interactive Turing machine (IITM) is a probabilistic Turing machine with named
input and output tapes as well as an associated polynomial. The tape names determine how different machines
are connected in a system of IITMs (see below). An IITM runs in one of two modes, CheckAddress and
Compute. The CheckAddress mode is used as a generic mechanism for addressing instances of IITMs in a
system of IITMs, as explained below. In this mode, an IITM may perform, in every activation, a deterministic
polynomial time computation in the length of the security parameter plus the length of the current input plus
the length of its current configuration, where the polynomial is the one associated with the IITM. The IITM
is supposed to output “accept” or “reject” at the end of the computation in this mode, indicating whether the
received message is processed further or ignored. The actual processing of the message, if accepted, is done
in mode Compute. In mode Compute, a machine may only output at most one message on an output tape
(and hence, only at most one other machine is triggered). The runtime in this mode is not a priori bounded.
Later the runtime of systems and their subsystems will be defined in such a way that the overall runtime of a
system of IITMs is polynomially bounded in the security parameter plus the length of the external input.
We note that in both modes, an IITM cannot be exhausted (hence, the name): in every activation it can
perform actions and cannot be forced to stop. This property, while not satisfied in all other models, is crucial
to obtain a reasonable model for universal composability (see also Section 11).

A system S of IITMs is of the form S = M1 | · · · |Mk | !M ′1 | · · · | !M ′k′ where Mi, i ∈ {1, . . . , k}, and M ′j ,
j ∈ {1, . . . , k′}, are IITMs such that, for every tape name c, at most two of these IITMs have a tape named c
and if two IITMs have a tape named c, then c is an input tape in one of the machines and an output tape in
the other. We say that the IITMs M ′j are in the scope of a bang operator. This operator indicates that in a
run of a system an unbounded number of (fresh) instances of a machine can be generated. Conversely, if a
machine is not in the scope of a bang operator, there may be at most one instance of the machine in every
run of the system. Systems in which multiple instances of a machine may be generated are often needed, e.g.,
in case of multi-party protocols or in case a system describes the concurrent execution of multiple instances
of a protocol.

Before explaining runs of systems, we would like to emphasize the difference between a description of a
machine and an instance of a machine. The difference is the same as the one between program code and a
process in an operating system. A process has state and performs the actual actions in a run of a system. It
does so following its program code. In our setting, the description of a machine M specifies the behavior
of a machine and is part of the specification of a system S. In a run of S, instances of M are created.
These instances have a specific state (or configuration), receive input on their input tapes, process the input
according to their specifications (program code), thereby updating their state, and produce output. In what

6



follows, for simplicity, we do not always distinguish between a description of a machine and its instances. For
example, we might refer to the configuration of M or the actions M performs, even though we really mean
the configuration and the actions performed by an instance of M in a run. Also, in addition to the term
instance, we also often use the term copy.

In a run of a system S at any time only one (instance of an) IITM is active and all other (instances
of) IITMs wait for new input; the first IITM to be activated in a run of S is the so-called master IITM, of
which a system has at most one and which may get external input; a run may have several instances of the
master IITM, though, if this machine is in the scope of a bang operator. By the definition of IITMs, the
active machine may output only at most one message on one of its output tapes, and hence, at most one
other machine is triggered after the activation of the currently active machine. To illustrate runs of systems,
consider, for example, the system S = M1 | !M2 and assume that M1 has an output tape named c, M2 has
an input tape named c, and M1 is the master IITM. (There may be other tapes connecting M1 and M2.)
Furthermore, assume that in the run of S executed so far, two instances of M2, say M ′2 and M ′′2 , have been
generated, with M ′2 generated before M ′′2 , and that M1 just sent a message m on tape c. This message is
delivered to M ′2 (as the first copy of M2). First, M ′2 runs in mode CheckAddress with input m; as mentioned,
this is a deterministic polynomial time computation which outputs “accept” or “reject”. If M ′2 accepts m,
then M ′2 gets to process m in mode Compute and could, for example, send a message back to M1. Otherwise,
m is given to M ′′2 which then runs in mode CheckAddress with input m. If M ′′2 accepts m, then M ′′2 gets to
process m in mode Compute. Otherwise (if both M ′2 and M ′′2 do not accept m), a new copy M ′′′2 of M2 with
fresh randomness is generated and M ′′′2 runs in mode CheckAddress with input m. If M ′′′2 accepts m, then
M ′′′2 gets to process m. Otherwise, M ′′′2 is removed again, the message m is dropped, and the master IITM is
activated, in this case M1, and so on. The master IITM is also activated if the currently active IITM does
not produce output, i.e., stops in this activation without writing to any output tape. A run stops if the
master IITM, after being activated, does not produce output (and hence, does not trigger another machine)
or an IITM outputs a message on a tape named decision. Such a message is considered to be the (overall)
output of the system.

Two systems P and Q are called indistinguishable (P ≡ Q) if and only if the difference between the
probability that the output of P is 1 and the probability that the output of Q is 1 is negligible.

Note that we do not fix details such as addressing of machines by party/session IDs or corruption in
this model. We also do not impose any specific structure, e.g., a hierarchical structure with protocols and
subroutines, on systems. This makes the model both simpler and more expressive.

Notions of Universal Composability. We need the following terminology. For a system S, the in-
put/output tapes of IITMs in S that do not have a matching output/input tape in S are called external,
where an input/output tape of one IITM in S matches an output/input tape of another IITM in S if both
tapes have the same name. External tapes are grouped into I/O and network tapes. We often refer to the
sets of I/O and network tapes of S by I/O and network interface, respectively. We consider three different
types of systems: protocol systems, adversarial systems, and environmental systems, modeling (i) real and
ideal protocols/functionalities, (ii) adversaries and simulators, and (iii) environments, respectively. Protocol
systems, adversarial systems, and environmental systems are systems which have an I/O and network interface,
i.e., they may have I/O and network tapes. Adversarial systems may only connect to the network interface of
a protocol system but not to its I/O interface. Environmental systems may contain a master machine and
may produce output on the tape decision.

So far, we have not restricted the runtime of IITMs in mode Compute in any way. The following constraints
will be used to enforce that systems run in polynomial time (possibly except with negligible probability):
(i) Every environmental system E has to be universally bounded, i.e., there exists a polynomial p such that
for all systems S which connect only to the external tapes of E , we have that the overall runtime of E in
mode Compute in the system E | S, with security parameter η and external input a, is bounded by p(η + |a|).
(ii) A protocol system P typically2 has to be environmentally bounded, i.e., for all environmental systems E
there exists a polynomial p such that the overall runtime of P in mode Compute in the system E | P, with

2Our formal definition (see Definition 11) is more general. See also the remarks following Definition 11.
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Figure 1: Strong simulatability (SS). We note that P and F have the same I/O interface.

security parameter η and external input a, is bounded by p(η + |a|) (in all runs except for a negligible set of
runs). Since the runtime in mode CheckAddress is polynomially bounded, this guarantees that, for a protocol
system P and environmental system E , the overall runtime of E | P is polynomially bounded in the security
parameter plus the length of the external input (except with negligible probability). This runtime notion for
protocol systems is very general. We claim that it includes all reasonable protocol systems that occur in
applications, as further explained in [19] and subsequent sections. In most other models, such as Canetti’s
UC model, the runtime notions are more restricted and more complex.

We now informally define strong simulatability; other equivalent security notions, such as universal
composability (UC) and dummy UC, are defined in a similar way in subsequent sections. The systems
considered in the following definition are illustrated in Figure 1.

Definition 1 (informal). Let P and F be protocol systems with the same I/O interface (i.e., with the same
set of I/O tapes), the real and the ideal protocol, respectively. Then, P realizes F (P ≤SS F) if and only if
there exists an adversarial system S (called a simulator or an ideal adversary) such that S connects only to
the network interface of F , the systems P and S |F have the same external interface, S |F is environmentally
bounded, and for all environmental systems E , connecting only to the external interface of P (and hence,
S |F), it holds that E | P ≡ E | S |F .

We note that this relation is reflexive and transitive. We also emphasize that still details such as addressing
of machines by party/session IDs, corruption, and the structure of protocols are not, and do not need to be
fixed in order to define this realization relation.

Composition Theorems. Composition theorems allow for the modular analysis and design of systems
and are one of the main features of the universal composability paradigm. Our first composition theorem
handles concurrent composition of a fixed number of (different) protocol systems. The second one guarantees
secure composition of an unbounded number of instances of a protocol system.

Theorem 1 (informal). Let k ≥ 1. Let Q,P1, . . . ,Pk,F1, . . . ,Fk be protocol systems such that they connect
only via their I/O interfaces, Q |P1 | · · · | Pk is environmentally bounded, and Pi ≤SS Fi, for i ∈ {1, . . . , k}.
Then, Q |P1 | · · · | Pk ≤SS Q |F1 | · · · | Fk.

Note that this theorem does not require that the protocols Pi/Fi are subprotocols of Q, i.e., that Q has
matching external I/O tapes for all of these protocols. How these protocols connect to each other via their
I/O interfaces is not restricted in any way, even the environment could connect directly to the parts of the
I/O interfaces of these protocols that are not taken by another protocol.

For the following composition theorem, we introduce the notion of a session version of a protocol in order
to be able to address instances of the protocol. Given an IITM M , the session version M of M is an IITM
which internally simulates M and acts as a “wrapper” for M . More precisely, in mode CheckAddress, (an
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instance of) M accepts an incoming message m′ only if the following conditions are satisfied: (i) M has not
accepted a message yet (in mode CheckAddress), m′ is of the form (id,m), and m is accepted by the simulated
M in mode CheckAddress. (In this case, later when activated in mode Compute, the ID id will be stored by
M .) (ii) M has accepted a message before, m′ is of the form (id ′,m), id ′ coincides with the ID id that M
has stored before (in mode Compute), and m is accepted by M when simulated in mode CheckAddress. In
mode Compute, if M is activated for the first time in this mode, i.e., the incoming message, say m′ = (id,m),
was accepted in mode CheckAddress for the first time, then first id is stored and then M is simulated with
input m. Otherwise (if M was activated in mode Compute before), M is directly simulated with input m. If
the simulated M produces output on some tape, then M prefixes this output with id and then outputs the
resulting message on the corresponding tape.

The ID id typically is some session ID (SID) or some party ID (PID) or a combination of both. Clearly, it
is not essential that messages are of the form (id,m). Other forms are possible as well. In fact, everything
checkable in polynomial time works. We sometimes require the ID to belong to a specific (polynomially
decidable) domain.

To illustrate the notion of a session version of an IITM, assume that M specifies some ideal functionality.
Then !M denotes the multi-session version of M , i.e., a system in which an unbounded number of instances
of M can be created where every copy of M can be addressed by a unique ID, where the ID could be a
PID (then an instance of M might model one party running M), an SID (then an instance of M models
one session of M), or it could have a more complex structure, e.g., (sid, pid) (then M models an instance of
party pid running M in session sid).

Given a system S, its session version S is obtained by replacing all IITMs in S by their session version.
For example, we obtain S = M | !M ′ for S = M | !M ′.

Now, the following composition theorem says that if a protocol P realizes F , then the multi-session version
of P realizes the multi-session version of F .

Theorem 2 (informal). Let P and F be protocol systems such that !P is environmentally bounded and
P ≤SS F . Then, !P ≤SS !F .

Theorems 1 and 2 can be applied iteratively to construct more and more complex systems. For example,
as a corollary of the above theorems, we immediately obtain that for any protocol system Q: P ≤SS F implies
Q | !P ≤SS Q | !F , provided that Q | !P is environmentally bounded. In words: Q using an unbounded
number of instances of P realizes Q using an unbounded number of instances of F .

When addressing a session version M of a machine M , then the machine M simulated within M is not
aware of its ID and cannot use it. For example, it cannot put the ID into a message that M creates. However,
sometimes this is desirable. We therefore also consider another, more general composition theorem where
machines are aware of their IDs. (Maybe a little surprisingly, this theorem is a corollary of the above theorem.)
While these IDs can, as already mentioned above, be interpreted in different ways, we will often refer to them
as SIDs.

To this end, we first generalize the notion of a session version. We consider a (polynomially computable)
session identifier function σ which, given a message and a tape name, outputs an SID (a bit string) or ⊥.
For example, the following function takes the prefix of a message as its SID: σprefix(m, c) := s if m = (s,m′)
for some s,m′ and σprefix(m, c) := ⊥ otherwise, for all m, c. Clearly, many more examples are conceivable.
The reason that σ, besides a message, also takes a tape name as input is that the way SIDs are extracted
from messages may depend on the tape name a message is received from.

Now, we say that an IITM M is a σ-session machine (or a σ-session version) if the following conditions
are satisfied: (i) M rejects (in mode CheckAddress) a message m on tape c if σ(m, c) = ⊥. (ii) If m0 is the
first message that M accepted (in mode CheckAddress), say on tape c0, in a run, then, M will reject all
messages m received on some tape c (in mode CheckAddress) with σ(m, c) 6= σ(m0, c0). (iii) Whenever M
outputs a messages m on tape c (in mode Compute), then σ(m, c) = σ(m0, c0), with m0 and c0 as before.
We say that a system Q is a σ-session system (or a σ-session version) if every IITM occurring in Q is a
σ-session machine.

It is easy to see that session versions are specific forms of σ-session versions: given an IITM M , we have
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that M is a σprefix-session version. The crucial difference is that while σ-session versions look like session
versions from the outside, inside they are aware of their SID.

We call an environmental system E σ-single session if it only outputs messages with the same SID
according to σ. Hence, when interacting with a σ-session version, such an environmental system invokes at
most one protocol session.

Let P and F be protocol systems, which in the setting considered here would typically describe multiple
sessions of a protocol. Moreover, we assume that P and F are σ-session versions. Now, we define what it
means that a single session of P realizes a single session of F . This is defined just as P ≤SS F , with the
difference that we consider only σ-single session environments, and hence, environments that invoke at most
one session of P and F .

Definition 2 (informal). Let P , F , and σ be as above. Then, P single-session realizes F w.r.t. σ (P ≤SS
σ-single

F) if and only if there exists an adversarial system S (a simulator or an ideal adversary) such that
E | P ≡ E | S |F for every σ-single session environmental system E . (The details concerning runtime and
interfaces are similar to Definition 1.).

Now, analogously to Theorem 2, the following theorem says that if P realizes F w.r.t. a single session,
then P realizes F w.r.t. multiple sessions. As mentioned before, in the setting considered here P and F
would typically model multi-session versions of a protocol/functionality.

Theorem 3 (informal). Let σ, P, and F be as above. Then, P ≤SS
σ-single F implies P ≤SS F .

As pointed out before, the proof of this theorem is in fact a corollary of Theorem 2. Clearly, this theorem
can be combined with the other composition theorems to construct more and more complex systems.

We finally emphasize that still details such as addressing of machines by party/session IDs, corruption, and
structure of protocols are not, and do not need to be fixed in order to prove the above composition theorems.
In other words, these theorems hold true for all specific choices, and hence, are very general. Instead of
fixing these details, as done in other models, the IITM model leaves their definition to the protocol designer,
hence providing a great degree of freedom for protocol specifications. We provide a sample instantiation of
the IITM model in Section 10 where all details are fixed in a meaningful way; we also illustrate how this
instantiation can be used for modeling and analyzing protocols.

Joint state theorems and composition theorems with global setup are discussed in Section 10.2 and 10.3,
respectively. As already mentioned in the introduction, unlike other models, these theorems do not require
to extend or change the IITM model. The general joint state theorem is even a trivial consequence of the
composition theorems.

At first reading, the reader may want to skip the detailed description of the IITM model and jump directly
to Section 10, where it is illustrated how the model can be used.

3 The General Computational Model
In this section, we define our general computational model. This model is defined independently of the
application to universal composability and is of independent interest. It will, however, form the basis for our
treatment of universal composability. We introduce single interactive Turing machines and systems of such
machines, define runs of systems, and introduce further notation and terminology.

3.1 Inexhaustible Interactive Turing Machines
We first introduce the syntax of (inexhaustible) interactive Turing machines and then the way these machines
perform their computations.
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3.1.1 Syntax

An (inexhaustible) interactive Turing machine (IITM, for short) M is a probabilistic Turing machine with
the following tapes and a polynomial q associated with it, where q will be used as a bound in computations of
M in mode CheckAddress (see below): a read-only tape on which the mode the IITM M is supposed to run
is written (the mode tape)—the possible modes are CheckAddress and Compute (see below)—, a read-only
tape on which the random coins are written (the random tape), a read-only tape on which the security
parameter is written (the security parameter tape), a write-only tape (the address decision tape, used in mode
CheckAddress), zero or more input and output tapes, and work tapes. The input and output tapes have names
and we require that different tapes of M have different names.

The set of (names of) input and output tapes of M is denoted by T (M), the set of input tapes by Tin(M),
and the set of output tapes by Tout(M).

As further explained below, the names of input and output tapes will determine how IITMs are connected
in a system of IITMs: if an IITM sends a message on an output tape named c, then only (an instance of) an
IITM with an input tape named c can receive this message.

Tapes named start and decision will serve a particular purpose. We require that only input tapes can be
named start and only output tapes can be named decision. We will later use start to provide a system with
external input and to trigger an IITM if no other IITM was triggered. An IITM is triggered by another IITM
if the latter sends a message to the former. An IITM with an input tape named start will be called master
IITM. On tapes named decision the final output of a system of IITMs will be written.

As mentioned, an IITM M runs in one of two modes, CheckAddress or Compute. The mode in which M
is supposed to run is written on the mode tape of M .

3.1.2 Computation

We describe the computation of an (instance of an) IITMM in mode CheckAddress and Compute, respectively.3
Informally speaking, in mode CheckAddress an IITM M checks whether the incoming message is in fact
addressed to it. Typically, this mode is used for the following purpose: In a run of a system of IITMs there
may be several instances of M (belonging to different parties in a multi-party protocol and/or to different
sessions of a protocol). To address the different instances one can, for example, prefix messages with identifiers
(for example, session identifiers (SIDs) and/or party identifiers (PIDs)). Now, in mode CheckAddress, M
checks whether the incoming message has the expected form (e.g., whether it is prefixed with the expected
identifier), and either accepts or rejects that message. In mode Compute, an IITM can, depending on the
incoming message and its current configuration, actually process incoming messages and write output on one
of its output tapes, i.e., send a message to another IITM.

More formally, the computation in the two modes is defined as follows.

Mode CheckAddress: If M is activated in mode CheckAddress, then the following will always be the case:
CheckAddress is written on the mode tape of M , the security parameter, say 1η, is written on the security
parameter tape, and one message, say m, is written on one of the input tapes, say c; the other input tapes
and the output tapes are empty—or otherwise will be emptied before M starts to run—and the contents on
the work tapes and the random tape represent the current configuration of M . We require that in mode
CheckAddress (i) M always halts4 and at the end of the activation has written accept or reject on the address
decision tape, (ii) the computation performed by M in this mode is deterministic, i.e., it is independent of
the content on the random tape, and (iii) the number of transitions taken in the activation is bounded from
above by q(η + |m|+ l), where q is the polynomial associated with M and l is the length of the content of all
work tapes at the beginning of the activation.

3As already pointed out in Section 2, for simplicity of presentation, we do not always strictly distinguish between the
description of a machine and an instance of a machine.

4We emphasize that a machine that halts might become active again. For example, a machine that halts in mode CheckAddress
and accepts a message will then resume its computation in mode Compute, see below.
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We emphasize that in mode CheckAddress, M cannot be exhausted. That is, whenever M is activated in
this mode, M is able to “scan” its complete current configuration (except for the random tape, on which an
infinite string is written), including the incoming message.

Mode Compute: If M is activated in mode Compute, then the following will always be the case: Compute
is written on the mode tape of M , the security parameter, say 1η, is written on the security parameter tape,
and one message, say m, is written on one of the input tapes, say c; the other input tapes and the output
tapes are empty—or otherwise will be emptied before M starts to run—and the contents on the work tapes
and the random tape represent the current configuration of M . The computation of M in mode Compute
may be probabilistic (i.e., depend on the content on the random tape) and it might be the case that M does
not halt. However, if M does halt in this activation, then we require that M has written at most one message
on one of its output tapes (i.e., only one message can be sent to another IITM at a time).

We note that at this point, we do not restrict the runtime of IITMs in mode Compute. IITMs are a priori
unbounded w.r.t. their runtime (number of transitions taken) and space (length of the content of all tapes).
Later, in Section 4, we will introduce a notion of polynomial runtime which will guarantee that the overall
runtime of a system of IITMs is polynomially bounded in the security parameter.

3.2 Systems of IITMs
A system of IITMs can be built according to the following grammar, where M ranges over (descriptions of)
IITMs:

S ::= M | (S ‖S) | !S .

We require that for every tape name c, at most two of the machines in S have a tape named c and if two
IITMs have a tape named c, then c is an input tape in one of the machines and an output tape in the other.
This implies that in S only at most one IITM may be a master IITM, i.e., may have start as input tape; there
may be several instances of such a machine in a run of a system though. We say that S ′ is a subsystem of S
if S contains a subexpression (modulo commutativity and associativity of ‖ ) of the form S ′. For example,
!M3 and M1 ‖ !M3 are subsystems of S = M1 ‖M2 ‖ !M3, but !M1 is not.

Intuitively, S1 ‖ S2 stands for the concurrent composition of the systems S1 and S2, and !S stands for the
concurrent composition of an unbounded number of instances of (machines in) the system S, where the actual
number of instances generated during a run of the system is determined by external or internal machines
invoking (machines of) S (see Section 3.3). We call ‘! ’ the bang operator, borrowing terminology from process
calculus [15, 31].

We say that an IITM M occurs in the scope of a bang in S if S contains a subexpression of the form !S ′
such that M occurs in S ′.

It will be clear from the semantics of systems, i.e., the way a system of IITMs runs, that every system S
can equivalently be written as S = M1 ‖ · · · ‖Mk ‖ !M ′1 ‖ · · · ‖ !M ′k′ , where M1, . . . ,Mk and M ′1, . . . ,M ′k′ are
IITMs, i.e., every system consists of a set of machines, where some are and other are not in the scope of a
bang.

3.3 Running a System
Throughout the rest of this paper, we denote by Rand the set of all mappings from the set of natural numbers
N to the set of infinite bit strings {0, 1}ω. We refer to α ∈ Rand as random coins.

We now define how a system S runs given a security parameter η, a bit string a as external input, and
random coins α ∈ Rand.5 We denote such a system by S〈α〉(1η, a).

5We note that the external input can be omitted. All our results also hold true in the uniform case, that is, the setting
without external input. Most proofs directly carry over to the uniform case and otherwise we explicitly provide the proof for the
uniform case.
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Informal description. Informally speaking, in the run of S〈α〉(1η, a) several instances are created from
the (static descriptions of) IITMs in S; these instances then interact with each other according to their
program, local state, and the tapes defined in S. At any time only one (instance of an) IITM is active and
all other (instances of) IITMs wait for new input. The active instance, say M ′, which is an instance of a
machine M defined in S, may write at most one message, say m, on one of its output tapes, say c. This
message is then delivered to another (instance of an) IITM with an input tape named c, say N is the machine
specified in S with an input tape named c.6 In the current configuration of the system, there may be several
instances of N . In the order of creation, the instances of N are run in mode CheckAddress with input m.
Once one instance accepts m, this instance gets to process m, i.e., it runs in mode Compute with input m,
and in particular, may produce output on one output tape, which is then sent to another instance and so on.
If no instance of N accepts m and N is in the scope of a bang, a fresh instance of N is created and run in
mode CheckAddress. If this instance accepts m, random coins α(i) for some new i are written on the random
tape of N and it gets to process m in mode Compute. Otherwise, the new instance of N is deleted, m is
dropped, and a master IITM is activated (with empty input on tape start). If N is not in the scope of a bang
(and—the only instance of—N does not accept m), then too a master IITM is activated. The first IITM to
be activated in a run is a master IITM. It gets a as external input (on tape start) and is run with random
coins α(1) written on its random tape. A master IITM is also activated if the currently active machine does
not produce output. A run stops if a master IITM, after being activated, does not produce output or output
was written by some machine on an output tape named decision. The overall output of a finite run is the
message written on decision (or the empty word if no such tape exists). An informal example of a run of a
system was provided in Section 2.

Formal definition. Formally, the run of S〈α〉(1η, a) is defined as follows: The current (global) configuration
of a system in the run is described by a tuple (A, i, P ) where (i) A is a sequence of configurations of IITMs,
the sequence of (previously) activated machines, (ii) i ≤ |A| (where |A| denotes the length of the sequence
A) is the index of the last active (instance of a) machine in A (where i = 0 if A is the empty sequence),
and (iii) P is a system. The IITMs occurring in P are called passive. We emphasize that the configurations
in A are not the configurations of the machines that are currently active, i.e., currently performing some
computation—only the i-th configuration (machine) was just active. The configurations in A rather belong
to those machines that were active at some point in the run so far. Furthermore, A contains only the
most recent configuration for each instance of a machine, i.e., A is a dynamic array that is updated after
each computation of an instance of a machine; it is not a concatenation of all previous configurations of
IITMs. As usual, the configuration of (an instance of) a machine is the content of all of its tapes, the position
of the heads on these tapes, and its state. In what follows, we often do not distinguish between (the
description/specification of) an IITM M and the current configuration of one of its instances: by abuse of
notation, we write M for both the machine (description) and the current configuration of one of its instances.

In order to define the run of the system S〈α〉(1η, a), we first need to introduce some more notation. Given
(a configuration of) an IITM M , we write

M(CheckAddress, c,m) = accept

to say that when running the IITM M in mode CheckAddress starting from its current configuration with m
written on the input tape c and the empty bit string written on all other input tapes, on all output tapes,
and the address decision tape, then M returns accept on its address decision tape. (Note that by definition,
see Section 3.1.2, M always halts when running in mode CheckAddress and runs in polynomial time. Also
recall that the run of M in this mode is deterministic.) Analogously, we write

M(CheckAddress, c,m) = reject.

Similarly, given (a configuration of) an IITM M , we write

M(Compute, c,m)→M ′

6Recall that by our convention on the names of input tapes in systems of IITMs, there can be at most one such machine.
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to say that when running the IITM M in mode Compute starting from its current configuration with m
written on the input tape c and the empty bit string written on all other input tapes, on all output tapes,
and the address decision tape, M halts in configuration M ′. (Note that we assume that random coins have
been written on the random tape of M . By this, the run of M is fully determined.) If in the above setting
M does not halt, we write

M(Compute, c,m)→∞ .

We now describe how a configuration (A, i, P ) evolves when a message m which was output on an output tape
c is read by one of the IITMs in the system, given random coins α. We will write (A, i, P )→α

(c,m) (A′, i′, P ′)
to say that we obtain (A′, i′, P ′) as a successor configuration of (A, i, P ) after m was read on c (by some
IITM). Accordingly, we call (A′, i′, P ′) a →α

(c,m)-successor of (A, i, P ). Note that such a successor (if any) is
uniquely determined.

Let c 6= decision be a name of a tape, m be a message, α be random coins, (A, i, P ) and (A′, i′, P ′) be
configurations such that A does not contain ∞ (which would mean that some of the machines in A did not
halt in an activation). Then, we have

(A, i, P )→α
(c,m) (A′, i′, P ′)

if one of the following conditions is satisfied where we assume that A = M1, . . . ,Mn.

1. One of the activated machines accepts m on tape c: It holds that c ∈ Tin(Mi′),Mi′(CheckAddress, c,m) =
accept, and i′ is minimal with this property, i.e., Mj(CheckAddress, c,m) = reject for all j < i′ with
c ∈ Tin(Mj). Furthermore, there exists a configurationM ′i′ (possibly∞) such thatMi′(Compute, c,m)→
M ′i′ and A′ is obtained from A by replacing the content of every input and output tape of a configuration
in A by the empty bit string and then replacing Mi′ by M ′i′ where, if M ′i′ 6=∞, the content of all input
tapes of M ′i′ are replaced by the empty bit string. (Output tapes of M ′i′ are not emptied. One such
tape may contain a non-empty message.) Moreover, P ′ = P .

2. None of the activated machines accepts m on tape c, but a fresh instance of a machine does: It holds
that i′ = n + 1 and for all j ≤ n with c ∈ Tin(Mj) it holds that Mj(CheckAddress, c,m) = reject but
there is an IITM M in P such that c ∈ Tin(M) and M(CheckAddress, c,m) = accept, where we identify
M with its initial configuration, with 1η written on its security parameter tape and with α(n + 1)
written on the random tape of M . Furthermore, there exists a configuration M ′ (possibly ∞) such that
M(Compute, c,m)→M ′ and A′ is obtained from A by replacing the content of every input and output
tape of a configuration of A by the empty bit string and appending M ′ at the end of A where the
contents of all input tapes of M ′ are also deleted (if M ′ 6=∞). (Output tapes of M ′i′ are not emptied.
One such tape may contain a non-empty message.) If M is in the scope of a bang in P , then P ′ = P .
Otherwise P ′ is obtained from P by removing M from P .

If neither 1. nor 2. is applicable, i.e., no machine (not even a fresh one) accepted m on tape c, (A, i, P ) does
not have a →α

(c,m)-successor.
We emphasize that both in 1. and 2. the configuration in which the mode Compute is performed is the same

as the configuration in which the machine was before running in mode CheckAddress: in 1., both the mode
CheckAddress and Compute are executed in the configuration Mi′ , and in 2., both the mode CheckAddress
and Compute are executed in the configuration M . We also note that one of the output tapes of M ′i′/M ′ may
contain a non-empty bit string and all other output tapes, including those of other IITMs, are empty. Finally,
we point out that in 2., if some M occurs in P with c ∈ Tin(M), then M is uniquely determined. This is so
because by definition of systems we assume that the set of names of input tapes of different occurrences of
IITMs in a system are disjoint.

Having defined how a configuration (A, i, P ) evolves when a machine reads a message m from tape c, we
now define how a configuration (A, i, P ) evolves in general. For this purpose, let α be random coins, (A, i, P )
and (A′, i′, P ′) be configurations such that A does not contain ∞ and all output tapes of the configurations
occurring in A are empty, except for at most one output tape c 6= decision. We write

(A, i, P )→α (A′, i′, P ′)
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if one of the following conditions is satisfied where we assume that A = M1, . . . ,Mn.

1. The last active IITM did not produce output and was not a master IITM. Then a master IITM is triggered:
All output tapes of the configurations in A are empty, start /∈ Tin(Mi), and (A, i, P )→α

(start,ε) (A′, i′, P ′)
where ε denotes the empty bit string. (If a master IITM did not produce output (start ∈ Tin(Mi)), then
(A, i, P ) does not have a successor configuration.)

2. The last active IITM produced output and this output is accepted by another machine: The content of
some output tape c 6= decision is some non-empty message m and (A, i, P )→α

(c,m) (A′, i′, P ′).

3. The last active IITM produced output which, however, is not accepted by the intended machine. Then a
master IITM is triggered: The content of some output tape c 6= decision is some non-empty message m,
but (A, i, P ) does not have a →α

(c,m)-successor, and (A, i, P )→α
(start,ε) (A′, i′, P ′) where ε denotes the

empty bit string. (Note that this means that the master IITM accepted the empty message. Otherwise
(A, i, P ) does not have a successor.)

We refer to (A′, i′, P ′) as a→α-successor of (A, i, P ). If none of the above cases applies, then (A, i, P ) does not
have a →α-successor. Also, if A contains ∞ or a non-empty message is written on the output tape decision,
and hence, there is no non-empty message on another output tape, (A, i, P ) does not have a →α-successor
either.

The (complete) run ρ of a system S given the security parameter η, external input a, and random coins α
(the run of S〈α〉(1η, a), for short) is the finite sequence of configurations (A0, i0, P0), (A1, i1, P1), . . . , (Ak, ik, Pk)
or the infinite sequence of configurations (A0, i0, P0), (A1, i1, P1), . . . such that the following conditions are
satisfied.

1. (A0, i0, P0) is the initial configuration, i.e., A0 is the empty sequence, i0 = 0, and P0 = S.

2. (A0, i0, P0)→α
(start,a) (A1, i1, P1).

3. (Aj , ij , Pj) →α (Aj+1, ij+1, Pj+1) for every j ∈ {1, . . . , k − 1} if ρ is finite and for every j ≥ 1 if ρ is
infinite.

4. If the sequence is finite, then (Ak, ik, Pk) does not have a →α-successor.

For a finite run ρ, we call k the length of ρ. The overall output of a run ρ is undefined if ρ is infinite or if in ρ
some IITM does not halt (i.e., Ak contains a configuration ∞). Otherwise, the overall output of a run ρ is
the message written on the tape named decision at the end of the run. (This message could be empty.) If no
such tape exists, then the overall output is the empty message (in the following, we will treat this special
case as if the empty message was written onto a tape named decision). Note that since a run stops when a
non-empty message has been written on decision, the overall output is uniquely determined.

3.4 Probability Space and Relevant Random Variables
We consider the standard probability space over {0, 1}ω (the set of infinite bit strings), where the probability
of a cone β of β ∈ {0, 1}∗, which is the set of all infinite bit strings that have β as a prefix, is defined to
be 2−|β|. Now, the probability space for Rand is defined in a standard way as the probability space on the
infinite product of the probability space for {0, 1}ω. For example, given β1, β2, β3 ∈ {0, 1}∗, the probability
for the event E = {α ∈ Rand | α(i) is prefixed with βi for all i ∈ {1, 2, 3}} is 2−|β1| · 2−|β2| · 2−|β3|. This
probability space over Rand guarantees that all random variables defined next are measurable.

By S(1η, a) : Rand→ {0, 1}∗ ∪ {⊥} we denote the random variable that describes the overall output (i.e.,
output on decision) of runs of the system S(1η, a). More precisely, for α ∈ Rand we define S(1η, a)(α) to be
the overall output of the run of S〈α〉(1η, a), where ⊥ denotes undefined output.

Given this random variable, the probability that a run has overall output 1 is

Prob[S(1η, a) = 1] .
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By Time(S(1η, a)) : Rand→ N ∪ {∞} we denote the random variable that describes the overall number of
machine transitions that have been taken by IITMs in mode Compute in runs of S(1η, a). More precisely, for
α ∈ Rand we define Time(S(1η, a))(α) to be the overall number of transitions that have been taken by IITMs
in mode Compute in a run of S〈α〉(1η, a). This number is ∞ if the run is infinite or some IITM did not halt.
Note that transitions taken in mode CheckAddress are not counted and also the emptying of input or output
tapes before IITMs are activated is not counted.

Similarly, given a subsystem Q of S, by TimeQ(S(1η, a)) we denote the random variable that describes
the overall number of transitions in mode Compute that have been taken by IITMs in Q in runs of S(1η, a).
Clearly, TimeS(S(1η, a)) = Time(S(1η, a)) for all systems S.

3.5 Equivalence/Indistinguishability of Systems
We first introduce negligible functions following [2].

Definition 3. A function f : N× {0, 1}∗ → R≥0 is called negligible if for all c, d ∈ N there exists η0 ∈ N
such that for all η > η0 and all a ∈

⋃
η′≤ηd{0, 1}η

′ : f(η, a) < η−c.7
A function f : N× {0, 1}∗ → [0, 1] is called overwhelming if 1− f is negligible.8

Two systems that produce overall output9 1 with almost the same probability are called equivalent or
indistinguishable:

Definition 4. Let f : N× {0, 1}∗ → R≥0 be a function. Two systems P and Q are called f-equivalent or
f -indistinguishable (P ≡f Q) if and only if for every security parameter η ∈ N and external input a ∈ {0, 1}∗:

|Prob[P(1η, a) = 1]− Prob[Q(1η, a) = 1]| ≤ f(η, a) .

Two systems P and Q are called equivalent or indistinguishable (P ≡ Q) if and only if there exists a
negligible function f (Definition 3) such that P ≡f Q.

It is easy to see that for every two functions f, f ′ as in Definition 4 the relation ≡f is reflexive and that
P ≡f Q and Q ≡f ′ S implies P ≡f+f ′ S. In particular, ≡ is reflexive and transitive.

4 Polynomial Time and Properties of Systems
In this section, we introduce notions of polynomial runtime for arbitrary systems, environmental systems,
and protocol systems. We also state basic properties about such systems. We begin with further notation
and terminology.

4.1 Further Notation and Terminology
Let S be a system and M be an IITM. Recall that T (M), Tin(M), and Tout(M) denote the set of (names
of) input and output tapes, the set (of names) of input tapes, and the set (of names) of output tapes of M ,
respectively.

A tape c in T (S) is called internal if there exist two IITMsM andM ′ in S such that c ∈ Tout(M)∩Tin(M ′).
Otherwise, c is called external. The set of internal tapes of S is denoted by Tint(S) and the set of external
tapes of S by Text(S). We call c an (external) input tape of S if c ∈ Text(S) and c ∈ Tin(M) for some IITM

7We note that this definition of negligible is equivalent to the following: f is negligible if and only if for all positive polynomials
p and q (i.e., p(n) > 0 and q(n) > 0 for all n ∈ N) there exists η0 ∈ N such that for all η > η0 and all a ∈

⋃
η′≤q(η){0, 1}

η′ :
f(η, a) < 1

p(η) . We further note that such negligible functions have the following properties: (i) If f and g are negligible, then
f + g is negligible. (ii) If f is negligible and p is a positive polynomial, then g(η, a) := p(η + |a|) · f(η, a) for all η, a is negligible.

8By [0, 1] we denote the interval of all real numbers x such that 0 ≤ x ≤ 1.
9Recall from Section 3.3 that, if a system does not have a decision tape, the output of terminating runs is the empty word.
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M in S. Analogously, c is called an (external) output tape of S if c ∈ Text(S) and c ∈ Tout(M) for some IITM
M in S. The set of (external) input and output tapes of S is denoted by Tin(S) and Tout(S), respectively.

Note that for every S we have that start ∈ T (S) implies start ∈ Tin(S) and decision ∈ T (S) implies
decision ∈ Tout(S).

We call two systems compatible if they provide the same external interface:

Definition 5. Two systems P and Q are compatible iff Tin(P) = Tin(Q) and Tout(P) = Tout(Q), i.e., P and
Q coincide on their input and output tapes.

Given two systems P and Q, by
P |Q

we denote the parallel composition P ′ ‖Q′ where P ′ and Q′ are obtained from P and Q by renaming the
internal tapes of P and Q, respectively, such that T (P ′) ∩ Tint(Q′) = ∅ and Tint(P ′) ∩ T (Q′) = ∅. The
intuition is that P and Q are different systems (e.g., a protocol and its environment) which communicate via
their external tapes; they should not interfere on their internal tapes.

Definition 6. The systems Q and P are connectable if each common external tape of P and Q has
complementary directions (input or output), i.e., for all c ∈ Text(P)∩Text(Q), we have that c ∈ Tin(P)∩Tout(Q)
or c ∈ Tout(P) ∩ Tin(Q). If Q and P are connectable, then we also say that P can be connected to Q. We
denote by Con(Q) the set of all systems P that can be connected to Q.

The systems S1, . . . ,Sn are connectable if they are pairwise connectable (i.e., Si and Sj are connectable
for every i, j ≤ n such that i 6= j).

We note that if S1, . . . ,Sn are connectable, then every common external tape of the systems is the external
input tape of exactly one system Si and the external output tape of exactly one other system Sj . So, there
is no ambiguity about how these systems connect to each other in a parallel composition. In particular,
the order in which these systems are composed does not matter. In fact, the composition operator ‘ | ’ is
associative (i.e., P | (Q |S) ≡0 (P |Q) | S) and commutative (i.e., P |Q ≡0 Q |P).

4.2 Polynomially Bounded Systems
The following notion captures that a system runs in polynomial time (except maybe with negligible probability),
i.e., the overall number of transitions taken by the IITMs is bounded from above by a polynomial (in the
security parameter plus the length of the external input).

Definition 7. A system S is almost bounded if there exists a polynomial p such that:

f(η, a) := Prob[Time(S(1η, a)) > p(η + |a|)] for all η ∈ N and a ∈ {0, 1}∗

is negligible (as a function in η and a).
We say that a system S is strictly bounded if there exists a polynomial p such that for every security

parameter η ∈ N and external input a ∈ {0, 1}∗: Time(S(1η, a))(α) ≤ p(η + |a|) for all α ∈ Rand.

Clearly, every strictly bounded system is almost bounded. The next lemma states that every almost
bounded system can be simulated by a single strictly bounded IITM M except for a negligible error. In
particular, it can be simulated (with negligible error) by a probabilistic polynomial time Turing machine.

Lemma 1. For every almost bounded system S there exists an IITM M such that M (as a system) is strictly
bounded and S ≡M .

Proof. This lemma is a special case of Lemma 7.
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4.3 Environments and Environmental Indistinguishability
We first introduce environmental systems and then define environmental indistinguishability, i.e., indistin-
guishability where the distinguisher is an environmental system. In the context of universal composability,
environmental systems will play the role of an environment.

Intuitively, an environmental system (also called a universally bounded system) is a system that runs in
(strict) polynomial time no matter to which system it is connected.
Definition 8. A system E is called an environmental system or universally strictly bounded, or simply
universally bounded if there exists a polynomial p such that for every system S that can be connected to
E (i.e., S ∈ Con(E)) it holds that TimeE((E | S)(1η, a))(α) ≤ p(η + |a|) for all security parameter η ∈ N,
external input a ∈ {0, 1}∗, and random coins α ∈ Rand.10

Given a system S, by Env(S) we denote the set of all environmental systems E such that E and S are
connectable, i.e., E ∈ Con(S), and E is universally bounded.

We call two systems environmentally indistinguishable if they cannot be distinguished by any environmental
system:
Definition 9. Two systems P and Q are called environmentally equivalent or environmentally indistinguish-
able (P ∼= Q) if and only if

1. P and Q are compatible and

2. E | P ≡ E |Q for all E ∈ Env(P).
Environmental indistinguishability talks about arbitrary systems P and Q. In particular, E | P or E |Q for

some E ∈ Env(P) are not necessarily almost bounded. In typical applications and in the context of universal
composability, we are interested in systems P and Q such that E | P and E |Q are almost bounded for all
environmental systems E . This class of systems—environmentally bounded systems—will be defined in the
next subsection. But first we make some more remarks about the notion of environmental indistinguishability.

Using the fact that the relationship ≡ is reflexive and transitive, the following lemma is easy to see.
Lemma 2. The relationship ∼= is reflexive and transitive.
Remark 1. Analogously to Definition 8, one could define the notion of a universally almost bounded system
which may take more than a polynomial number of steps in a negligible set of runs, i.e., there exists a
polynomial p such that for every system S ∈ Con(E) it holds that

Prob[TimeE((E | S)(1η, a)) > p(η + |a|)]

is negligible (as a function in η and a). But this does not make environmental systems more powerful. In
particular, it would not change the notion of environmental indistinguishability because for every universally
almost bounded system E one could easily construct a universally strictly bounded system E ′ such that
E | S ≡ E ′ | S for every system S that can be connected to E .
Remark 2. We note that the notion of a universally bounded system E is equivalent to the following
notion (stated informally): There exists a polynomial p such that for every sequence of incoming messages, E
“interacting” with this sequence of messages takes at most p(η + |a|) transitions in mode Compute.
Remark 3. Environmental indistinguishability is defined with respect to one-bit output. That is, the
probabilities of the environment outputs 1 (on tape decision) are compared. An alternative definition would
be to require that the output (which may be more than a bit) produced by the environment when interacting
with the systems is computationally indistinguishability, i.e., it cannot (with more than negligible probability)
be distinguished by any polynomial time distinguisher. It is easy to show that this alternative definition is
equivalent to the one-bit definition we use here, provided that start, decision /∈ T (P) = T (Q): The idea is
that in our version with one-bit output, the environment also plays the role of the distinguisher (see also
remarks in [2]).

10Recall that TimeE ((E | S)(1η , a)) is the random variable that denotes the number of machine transitions taken by IITMs in
E (i.e., not considering S) in mode Compute in a run of (E | S)(1η , a).
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4.4 Protocols and Environmentally Bounded Systems
We now define the class of systems that run in polynomial time (except maybe with negligible probability)
when combined with any environmental system. This is a very expressive class of systems and the one we
will always consider in the context of universal composability. The runtime notion conceptually follows the
one introduced in [19]. We also introduce protocol systems, which, as the name suggests, are systems which
describe protocols; in the context of universal composability, these systems model ideal and real protocols.

Definition 10. A system S is environmentally (almost) bounded if for every E ∈ Env(S): E | S is almost
bounded.

A system S is environmentally strictly bounded if for every E ∈ Env(S): E | S is strictly bounded.

Clearly, every environmentally strictly bounded system is environmentally bounded.

Remark 4. The following statements, which follow directly from the definitions, highlight the difference
between environmentally and universally bounded systems:

1. A system S is universally bounded if and only if

∃ polynomial p ∀ Q ∈ Con(S) ∀ η ∈ N, a ∈ {0, 1}∗ : pTimeS(Q |S)>p(η, a) = 0

where

pTimeS(Q |S)>p(η, a) := Prob[TimeS((Q |S)(1η, a)) > p(η + |a|)] for all η ∈ N and a ∈ {0, 1}∗.

We note that here Q is any system that connects with S, not necessarily an environmental system. Also
note that pTimeS(Q |S)>p(η, a) is the probability that in a run of (Q |S)(1η, a) the number of machine
transitions taken by IITMs in S (i.e., not considering Q) in mode Compute is greater than p(η + |a|).

2. A system S is environmentally strictly bounded if and only if

∀ E ∈ Env(S) ∃ polynomial pE ∀ η ∈ N, a ∈ {0, 1}∗ : pTime(E | S)>pE (η, a) = 0

where

pTime(E | S)>pE (η, a) := Prob[Time((E | S)(1η, a)) > pE(η + |a|)] for all η ∈ N and a ∈ {0, 1}∗.

We note that pTime(E | S)>pE (η, a) is the probability that in a run of (E | S)(1η, a) the number of machine
transitions taken by IITMs in E | S in mode Compute is greater than pE(η + |a|).

3. A system S is environmentally (almost) bounded if and only if

∀ E ∈ Env(S) ∃ polynomial pE : pTime(E | S)>pE is negligible (as a function in η and a)

where pTime(E | S)>pE is defined as above.

The property of being environmentally bounded is typically easy to check. For example, every system
that runs in polynomial time in the length of the security parameter and its inputs, including inputs of
previous activations, (except maybe in a negligible set of runs) is environmentally bounded. This should
already cover all interesting protocols. In fact, we are not aware of any real world protocol that is not
environmentally bounded (see also the discussion in Section 8 and concrete examples in Section 10.4). We
also note that quantifying over all universally almost bounded systems E would not have strengthened the
notion of environmentally bounded systems (see Remark 1). Moreover, while the notion “environmentally
bounded” talks about the overall runtime of the composed system E | S, we could equivalently have defined it
by only restricting the runtime of S, since E is universally bounded anyway:
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Lemma 3. A system S is environmentally bounded if and only if for every E ∈ Env(S) there exists a
polynomial p such that Prob[TimeS((E | S)(1η, a)) > p(η + |a|)] is negligible (as a function in η and a);
similarly for environmentally strictly bounded systems.

We now define protocol systems.

Definition 11. A protocol system P is a system such that (i) no tape in P is named start or decision and
(ii) for every IITM M occurring in P such that M is not in the scope of a bang, we require that M accepts
every incoming message in mode CheckAddress.

The motivation behind condition (ii) is that if M does not occur in the scope of a bang, then in every
run of P (in some context) there will be at most one instance of M . Hence, there is no reason to address
different instances of M , and therefore, in mode CheckAddress, M should accept every incoming message.
This condition will be used in the proofs of the composition theorems for unbounded self-composition.

In the above definition of protocol systems, we do not explicitly require that such systems are environmen-
tally bounded—although this will typically be the case—in order to obtain more general results. For example,
in the composition theorems we typically do not require the ideal protocol system to be environmentally
bounded.

4.5 Properties of Systems
In this section, we summarize some fundamental and useful properties of systems. Some of these properties
are not satisfied in some models for universal composability, causing partly severe problems (see also the
discussion in Section 11).

The following lemma, which easily follows from the definition of systems, says that consistently changing
the names of tapes in a system does not change the behavior of the system.

Lemma 4. Let S1, . . . ,Sk be connectable systems. Furthermore, for all i ≤ k, let S ′i be derived from Si by
consistently (w.r.t. the other S ′j) renaming external tapes, where, however, start and decision may not be
renamed. Then,

S1 | · · · | Sk ≡0 S ′1 | · · · | S ′k
and

S1 | · · · | Sk is almost/strictly bounded iff S ′1 | · · · | S ′k is almost/strictly bounded.

We now consider what we call a dummy IITM D which simply forwards messages between entities: The
dummy IITM has for all of its input tapes a corresponding output tape. The concrete set of input and output
tapes that D has depends on the entities between which D is put. The dummy IITM accepts all messages on
input tapes in mode CheckAddress and in mode Compute it simply copies a message received on an input
tape to the corresponding output tape. We note that, except for the set of input and output tapes, D does
not depend on the entities between which it is put.

More precisely, let Tin and Tout be disjoint finite sets of tapes. Moreover, let T ′in = {c′ | c ∈ Tin} and
T ′out = {c′ | c ∈ Tout} where c′ is a new copy of c, i.e., a new tape with a new name.

We define
D = D(Tin, Tout)

to be an IITM with input tapes Tout ∪ T ′in and output tapes Tin ∪ T ′out. In mode CheckAddress, D always
accepts. In mode Compute, D copies every message received on c ∈ Tout onto c′ ∈ T ′out and every message
received on c′ ∈ T ′in onto c ∈ Tin.

The following lemma says that the dummy IITM can be plugged between two systems without changing
the behavior of the overall system. The proof of the lemma is straightforward.

Lemma 5. Let P and Q be two connectable systems. Let Text = Text(P)∩Text(Q), D = D(Text∩Tin(P), Text∩
Tout(P)), and Q′ be obtained from Q by renaming all tapes c in Text by c′. Then,

P |Q ≡0 P |D |Q′
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and
P |Q is almost/strictly bounded iff P |D |Q′ is almost/strictly bounded.

While the above lemma is obvious and expected, it does not hold in all other models for universal
composability, which is often very problematic. For instance, it does not hold in general in Canetti’s UC
model. However, the lemma is, for example, needed in order to prove that UC and dummy UC are equivalent
security notions (see also Section 6.3), which in turn is needed to prove the composition theorem in the UC
model (see also Section 11.1).

The following three lemmas also state fundamental properties of our general computational model and the
runtime notions that we use. These properties are again essential for many general results, such as composition
and joint state theorems. They are all about replacing a subsystem by a single IITM. Unfortunately, they are
not satisfied in all other models for universal composability, causing severe problems in these models (see
below and Section 11 for a discussion).

Lemma 6. For every system S there exists an IITM M such that the following conditions are satisfied:

1. M and S are compatible.

2. M accepts every message in mode CheckAddress.

3. For every system Q that can be connected to S:

(a) S |Q ≡0 M | Q and
(b) S |Q is almost/strictly bounded if and only if M | Q is almost/strictly bounded.

Proof. We define an IITM M which simulates S. The input and output tapes of M are the tapes in
Tin(S) and Tout(S), respectively. The machine M accepts every message in mode CheckAddress. Hence, by
construction, M is compatible with S and accepts every message in mode CheckAddress. In mode Compute,
M internally simulates the system S according to the definition of running a system. In particular, M
stores the configurations of all (previously) activated machines in S. Upon input, M simulates the according
machines in mode CheckAddress and in mode Compute. If, in mode CheckAddress, a message is rejected, M
stops the current activation and does not produce output. Otherwise, the computation is continued in mode
Compute (as usual, with the configuration of the simulated machine set to the one before the simulation of
the CheckAddress mode started.) If necessary, M creates new activated machines following the definition of
running a system. If simulated machines produce internal output (i.e., output on internal tapes of S), M
continues the internal simulation. If some simulated machine produces external output (i.e., output on an
external tape of S), M simply produces this external output.

Clearly, M is an IITM because the runtime of M in mode CheckAddress is bounded by some polynomial
(in fact, the runtime of M in mode CheckAddress is constant because M accepts every message). We note
that the runtime of M in mode Compute might not be bounded but this only becomes relevant later; it is not
a requirement for IITMs per se.

Since M perfectly simulates S, we have

S |Q ≡0 M | Q

for every system Q that can be connected to S.
Now, we prove 3. (b) and here we have to deal with the runtime of M in mode Compute. First, we note

that Q has exactly the same view in both systems because M perfectly simulates S. In particularly, we have
that

TimeQ((S |Q)(1η, a)) = TimeQ((M | Q)(1η, a)) , 11 (1)
for all η ∈ N and a ∈ {0, 1}∗.

The implication from right to left in 3. (b) is easy to prove: Since M perfectly simulates in particular
the mode Compute of all machines in S (recall that Time((S |Q)(1η, a)) only counts the runtime in mode

11That is, TimeQ((S |Q)(1η , a))(α) = TimeQ((M | Q)(1η , a))(α) for all random coins α ∈ Rand.
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Compute), we have that TimeS((S |Q)(1η, a)) ≤ TimeM ((M | Q)(1η, a)), for all η ∈ N and a ∈ {0, 1}∗, and
we obtain:

Time((S |Q)(1η, a)) = TimeS((S |Q)(1η, a)) + TimeQ((S |Q)(1η, a))
≤ TimeM ((M | Q)(1η, a)) + TimeQ((M | Q)(1η, a))
= Time((M | Q)(1η, a))

We conclude that S |Q is almost/strictly bounded if M | Q is almost/strictly bounded.
To prove the direction from left to right, we assume that S |Q is almost bounded (the case of strict

boundedness is similar). We note that M , in mode Compute, also has to do all the maintenance work such
as emptying all input and output tapes before simulated machines are activated in mode CheckAddress or
Compute. So, to show that M | Q is almost bounded, we have to show that M can perform the simulation of
the computations in mode CheckAddress and Compute and the maintenance work in polynomial time.

Since S |Q is almost bounded, there exists a polynomial p such that

f(η, a) := Prob[Time((S |Q)(1η, a)) > p(η + |a|)] (2)

is negligible (as a function in η and a). Hence, we have that the following holds in almost every run of
(S |Q)(1η, a) (i.e., except for a negligible set of runs): (i) the overall length of all messages that are sent
(internally in S and Q and externally between S and Q) is bounded by p(η+ |a|), (ii) the number of activated
instances of machines in S is bounded by p(η + |a|), and (iii) the size of all configurations (where only used
random coins are counted) of activated instances of machines in S is bounded by p(η + |a|).

The runtime in mode CheckAddress of every IITM is polynomially bounded in the length of the configuration
plus the security parameter plus the input message. Hence, because of (i), (ii), and (iii) and because M
perfectly simulates S, we conclude that the runtime of M in mode Compute is polynomially bounded. More
precisely, there exists a polynomial p′ such that

f ′(η, a) := Prob[TimeM ((M | Q)(1η, a)) > p′(η + |a|)]

is negligible (as a function in η and a). From this, using (1) and (2), we conclude that for all η ∈ N and
a ∈ {0, 1}∗:

Prob[Time((M | Q)(1η, a)) > p(η + |a|) + p′(η + |a|)] ≤ f(η, a) + f ′(η, a) .

Hence, M | Q is almost bounded.

The above lemma, which is also used in the proofs of the following two lemmas, is not satisfied in the
UC model, which, as shown in [24] (see also the discussion in Section 11.1), causes the general joint state
theorem to fail in the UC model.

The following lemma shows how one subsystem of an almost bounded system can be replaced by one
universally bounded IITM (i.e., an environmental system which consists of a single IITM).

Lemma 7. Let S and Q be connectable systems such that S |Q is almost bounded and start ∈ T (S) (i.e.,
S contains a master IITM, and hence, Q does not). Then there exists an IITM M such that the following
conditions are satisfied:

1. M and S are compatible.

2. M accepts every message in mode CheckAddress.

3. M is universally bounded.

4. M | Q is almost bounded.

5. M | Q ≡ S |Q.
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Proof. By Lemma 6, we may assume that S = M ′ is a single IITM that accepts every message in mode
CheckAddress. We define an IITM M which simulates S. The input and output tapes of M are the tapes in
Tin(S) and Tout(S), respectively.

Before we specify how M works in mode Compute, observe that, because S |Q is almost bounded, there
exists a polynomial p such that

f(η, a) := Prob[Time((S |Q)(1η, a)) > p(η + |a|)] (3)

is negligible (as a function in η and a).
We now define M to simulate the system S as follows: If invoked in mode CheckAddress, M will, just as

S, accept every message. In mode Compute, M will simulate S in mode Compute where, however, not more
than p(η + |a|) transitions of the IITM S are simulated overall (note that M knows |a| because start ∈ T (S),
and hence, start ∈ Tin(M)). If this bound is reached, M goes into some final state from which M cannot take
any transition. In particular, from that point on, in mode Compute, M ignores all incoming messages, does
not make any further step, and does not produce output.

By construction, M is compatible with S and it is easy to see that M is universally bounded. It
remains to show that M | Q is almost bounded and that M | Q ≡ S |Q. For this purpose, let B(1η, a)
denote the event that in a run of (S |Q)(1η, a) the system S takes more than p(η + |a|) transitions (in
mode Compute), i.e., B(1η, a) = {α ∈ Rand | TimeS((S |Q)(1η, a))(α) > p(η + |a|)}.12 By (3), we have that
Prob [B(1η, a)] ≤ f(η, a). Let B′(1η, a) denote the event that in a run of (M | Q)(1η, a) the bound p(η+ |a|) is
reached. By B(1η, a) and B′(1η, a), we denote the complement of event B(1η, a) and B′(1η, a), respectively.

Now, since M perfectly simulates the machine S in mode CheckAddress and in mode Compute until
B′(1η, a) occurs, we conclude that:

Prob[B′(1η, a)] = Prob[B(1η, a)] (4)
Prob[TimeQ((M | Q)(1η, a)) > p(η + |a|) ∧B′(1η, a)] = Prob[TimeQ((S |Q)(1η, a)) > p(η + |a|) ∧B(1η, a)]

(5)
Prob[(M | Q)(1η, a) = 1 ∧B′(1η, a)] = Prob[(S |Q)(1η, a) = 1 ∧B(1η, a)] . (6)

From this, we obtain:

Prob[TimeQ((M | Q)(1η, a)) > p(η + |a|)]
≤ Prob[B′(1η, a)] + Prob[TimeQ((M | Q)(1η, a)) > p(η + |a|) ∧B′(1η, a)]

(4),(5)= Prob[B(1η, a)] + Prob[TimeQ((S |Q)(1η, a)) > p(η + |a|) ∧B(1η, a)]
≤ Prob[B(1η, a)] + Prob[TimeQ((S |Q)(1η, a)) > p(η + |a|)]
(3)
≤ 2 · f(η, a) .

Hence, since M is universally bounded, M | Q is almost bounded. Furthermore, we obtain:

|Prob[(M | Q)(1η, a) = 1]− Prob[(S |Q)(1η, a) = 1]|
(6)= |Prob[(M | Q)(1η, a) = 1 ∧B′(1η, a)]− Prob[(S |Q)(1η, a) = 1 ∧B(1η, a)]|
(4)
≤ Prob[B(1η, a)]
(3)
≤ f(η, a) .

Hence, M | Q ≡ S |Q.
12Recall that we can identify a run ρ with security parameter η and external input a with the random coins α ∈ Rand used in

this run since a run is uniquely determined by the random coins.
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Definition 12. We denote the IITM M as constructed in the proof of Lemma 7 by [S]Q.

The following lemma will allow us to “open” [S]Q, i.e., replace [S]Q by S, in a context different from Q.

Lemma 8. Let S and Q be connectable systems such that S |Q is almost bounded, start ∈ T (S) (i.e., S
contains a master IITM), and decision /∈ T (Q). Furthermore, let Q′ be a system which is compatible with Q
and satisfies the following condition: E |Q ≡ E |Q′ for every E ∈ Env(Q) such that E |Q is almost bounded.
Then,

[S]Q | Q′ ≡ S |Q′ .

Moreover, if [S]Q | Q′ is almost bounded, then S |Q′ is almost bounded too.

Proof. Just as in the proof of Lemma 7, by Lemma 6 we may assume that S is a single IITM that accepts
every message in mode CheckAddress. Now, recall that by definition, [S]Q exactly simulates all transitions of
S up to a certain polynomial bound and that when running [S]Q | Q this bound is reached with only negligible
probability. It follows that the probability that this bound is reached when running the system [S]Q | Q′ is
negligible as well. Otherwise, one could easily construct a universally bounded system E such that E can be
connected to Q (i.e., E ∈ Env(Q)) and E |Q 6≡ E |Q′, in contradiction to the assumption in Lemma 8: The
system E is defined to simulate [S]Q and output 1 on decision if and only if the bound is reached. (If in the
simulation of [S]Q output shall be written on decision before the bound is reached, E writes 0 on decision and
halts.) Since decision /∈ T (Q), 1 is output on decision in runs of E |Q and E |Q′, respectively, if and only if
the bound is reached.

It follows that with overwhelming probability [S]Q exactly simulates S in the system [S]Q | Q′. Thus, we
obtain [S]Q | Q′ ≡ S |Q′. Similarly, it is easy to see that if [S]Q | Q′ is almost bounded, then S |Q′ is almost
bounded too.

We note that in the above lemma the condition that Q and Q′ are indistinguishable for all environments
such that E |Q are almost bounded is, although sufficient for our purposes, much stronger than what is
needed for this lemma. As can be seen from the proof, it suffices to require that [S]alert

Q | Q ≡ [S]alert
Q | Q′

where [S]alert
Q is the environment E constructed in the proof, i.e., it simulates [S]Q and outputs 1 on decision

if and only if the bound is reached.

5 Composition Theorems for Environmental Indistinguishability
We now prove general composition theorems for environmental indistinguishability (∼=). They are the core
of the composition theorems for universal composability, which are presented in Section 7. In fact, the
composition theorems for universal composability security are merely corollaries of the theorems presented in
this section.

In a nutshell, these theorems say that the concurrent composition of environmentally indistinguishable
systems is environmentally indistinguishable. In particular, these theorems can be used to establish envi-
ronmentally indistinguishability in a modular way: it suffices to show environmental indistinguishability
for subsystems in order to conclude that the concurrent composition of the subsystems are environmentally
indistinguishable as well.

We first, in Section 5.1, present a composition theorem for the composition of a constant number of,
possibly different, systems. We then state a theorem which says that if two systems are environmentally
indistinguishable, then they are environmentally indistinguishable even if an unbounded number of concurrent
sessions/copies of these systems may be executed (unbounded self-composition). We actually prove two
versions of this theorem, one in which the systems are not aware of the session identifiers that are used to
address the different sessions (see Section 5.2) and one in which they are aware of the session identifiers
(see Section 5.3), where the latter theorem is a corollary of the former one. The theorems for a constant
number of protocols and for unbounded self-composition can freely be combined to establish, in a modular
way, environmental indistinguishability of more and more complex systems.
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5.1 Composition Theorem for a Constant Number of Systems
We now present the composition theorem for the composition of a constant number of (possibly different)
systems. The proof of this theorem uses merely the equational principles (Lemma 7 and 8) established in
Section 4.5.

Theorem 4. Let k ≥ 1 and S,P1, . . . ,Pk,Q1, . . . ,Qk be protocol systems13 such that the following conditions
are satisfied:

1. For all j ≤ k: Pj and Qj are environmentally bounded and Pj ∼= Qj.

2. S,P1, . . . ,Pk are connectable (hence, S,Q1, . . . ,Qk are connectable) and S |P1 | · · · | Pk is environmen-
tally bounded.

Then, S |P1 | · · · | Pk ∼= S |Q1 | · · · | Qk and S |Q1 | · · · | Qk is environmentally bounded.

Before we prove this theorem, we make some remarks.

Remark 5. We note that the system S in the above theorem could be a simple forwarder or even a system
without external tapes, so the theorem also holds if S is omitted. That is, if P1 | · · · | Pk is environmentally
bounded and the assumptions of the theorem hold, then P1 | · · · | Pk ∼= Q1 | · · · | Qk and Q1 | · · · | Qk is
environmentally bounded.

Remark 6. We note that Condition 2. in the above theorem is easy to check. Connectability is a simple
syntactic condition. Moreover, for typical applications, it is easy to check whether a system is environmentally
bounded (see also the discussion in Section 8, in particular Lemma 15).

Proof of Theorem 4. We first show the theorem for the case k = 1. The proof of this case is depicted in
Figure 2. For any k ≥ 1, the theorem follows by applying the same argument iteratively, see below.

Assume that k = 1 and let E ∈ Env(S |P1) = Env(S |Q1). We may assume that start ∈ T (E | S | P1) =
T (E | S |Q1). Otherwise, there would not exist a master IITM, and hence, a run would always directly halt
with empty overall output. Since S |P1 is environmentally bounded, E | S | P1 is almost bounded and we have
that:

E | S | P1 ≡ [E | S]P1 | P1 (Lemma 7)
≡ [E | S]P1 | Q1 (P1 ∼= Q1)
≡ E | S |Q1 (P1 ∼= Q1, Lemma 8).

We note that, in order to apply Lemmas 7 and 8, we need that start ∈ T (E | S) and decision /∈ T (P1) = T (Q1),
which is true because P1 and Q1 are protocol systems. Moreover, since Q1 is environmentally bounded and
[E | S]P1 is universally bounded, [E | S]P1 | Q1 is almost bounded and, by Lemma 8, we conclude that E | S |Q1
is almost bounded. Since this holds for all E ∈ Env(S |P1) = Env(S |Q1), we conclude that S |P1 ∼= S |Q1
and S |Q1 is environmentally bounded, which proves the theorem for k = 1.

We now prove the theorem for any k ≥ 1. For every r ≤ k, we define the r-th hybrid system:

Hr := S |Q1 | · · · | Qr−1 | Pr+1 | · · · | Pk ,

13We note that a stronger variant of this theorem holds where S,P1, . . . ,Pk,Q1, . . . ,Qk are arbitrary systems (not necessarily
protocol systems) such that start, decision /∈ T (Pj) and start, decision /∈ T (Qj) for all j ≤ k.
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Figure 2: The proof of Theorem 4 for the case k = 1. We use the following abbreviations: TS\P1 :=
Text(S) \ Text(P1), TP1\S := Text(P1) \ Text(S), and TS∩P1 := Text(S) ∩ Text(P1).

which can be connected to Pr or Qr. By applying the case “k = 1” k times, we obtain that:

S |P1 | · · · | Pk = H1 | P1 (syntactic reordering of subsystems)
∼= H1 | Q1 (case “k = 1”, with H1 playing the role of S)
= H2 | P2 (syntactic reordering of subsystems)
∼= H2 | Q2 (case “k = 1”)
...
= Hk | Pk (syntactic reordering of subsystems)
∼= Hk | Qk (case “k = 1”)
= S |Q1 | · · · | Qk .

We note that in the above argument, the equalities (=) hold true up to syntactic reordering of subsystems.
Furthermore, all these systems are environmentally bounded: By assumption S |P1 | · · · | Pk = H1 | P1 is
environmentally bounded. For all Hr | Qr, r ≥ 1, this follows from the case “k = 1” and that Hr | Pr =
Hr−1 | Qr−1 is environmentally bounded. This concludes the proof of the theorem.

5.2 Composition Theorem for Unbounded Self-Composition
We now present the composition theorem for the unbounded self-composition of systems that are not aware
of the session identifiers used to address the different sessions. As mentioned before, below we will present a
composition theorem, as a corollary of this composition theorem, where systems are aware of the session
identifiers.

We first need to introduce the notion of a session version of a system.

5.2.1 Session Versions of Systems

To model multiple copies/sessions of a system one can use the mode CheckAddress of IITMs combined with
session identifiers (SIDs) as follows.

Given a system Q, we define its session version Q, which allows us to address different copies of (IITMs
occurring in) Q by a particular SID. We first define the session version of a single IITM.

The session version M of an IITM M is an IITM that exactly simulates M except that all messages
received have to be prefixed by a particular SID (i.e., in mode CheckAddress the IITM M will reject all
messages not prefixed by the particular SID) and all messages sent out are prefixed by this SID. The SID
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M will use is the one with which M is first activated (hence, in the first activation, M will accept the
incoming message in mode CheckAddress and then store the SID). More precisely, M behaves as follows in
mode CheckAddress and Compute, respectively:

• When activated in mode CheckAddress, M does the following: If M has never been activated before, it
accepts an incoming message m′ only if the following is satisfied: (i) m′ is of the form (s,m)14 where s
is interpreted as an SID, and (ii) the simulated M accepts m in mode CheckAddress. (In mode Compute,
s will be stored by M .) If M was activated before, then M will accept an incoming message m′ only if
the following is satisfied: (i) m′ is of the form (s,m) where s is the SID that was stored in the first
activation (in mode Compute), and (ii) m is accepted by the simulated M in mode CheckAddress.

• When activated in mode Compute, M does the following: If M has never been activated before (in
mode Compute), then by the definition of M in mode CheckAddress it follows that the incoming message
is of the form (s,m). Now, M first stores s and then simulates M on input m in mode Compute. If M
produces output, say m′, then M sends the output (s,m′), i.e., prefixes m′ with s. If M was activated
before (in mode Compute), then by definition of M in mode CheckAddress it follows that the incoming
message is of the form (s,m) where s is the SID that was stored in the first activation. Now, as before,
M simulates M on input m in mode Compute and prefixes the output produced (if any) with s.

Note that the IITM M , simulated within M , is not aware of the SID that is used to address (a copy of) M .
In particular, it cannot use the SID as part of the messages it produces.

Now, the session version Q of a system Q is obtained from Q by replacing every IITM occurring in Q by
its session version. For instance, if Q = M1 | !M2, then Q = M1 | !M2.

While in session versions as defined above, SIDs are always prefixed to messages, it clearly does not
matter where exactly the SIDs occur in a message. The CheckAddress mode, being an arbitrary deterministic
polynomial computation, is flexible enough to allow for many variants; for example, SIDs could be appended
instead of prefixed to messages. The results on session versions do not depend on specific details.

It is sometimes useful to define a session version of a single IITM or an entire system with respect to a
domain of SIDs (parameterized by the security parameter). In mode CheckAddress only those SIDs would be
accepted that belong to the specified domain. (Clearly, we need to require that it can be decided efficiently
in mode CheckAddress whether an SID belongs to the domain.) With this, we could, for example, define
a session version M of an IITM M which only accepts SIDs of the form (sid, pid), where pid denotes a
party and sid identifies the session in which this party runs. Hence, in a run of the system !M (in some
environment) all instances of M would have SIDs of this form. In statements involving session versions, such
as composition theorems, details of how the domains of SIDs are chosen are typically not important, as long
as they are chosen consistently. We therefore omit such details in the statements.

We now state a fundamental property about the runtime of session versions of two indistinguishable
systems.

Lemma 9. Let P and Q be protocol systems such that !P and Q are environmentally bounded and P ∼= Q.
Then, !Q is environmentally bounded.

While this property might be expected, the proof of this theorem, which is presented in Appendix A
and mainly follows ideas presented in [19], is non-trivial. On a high level, in the proof we replace single
sessions of P (in runs of the system E | !P for some environment E) with sessions of Q via a hybrid argument.
We then argue that the runtime of each of the hybrid systems is negligibly close to the previous/next one,
as otherwise one could distinguish P and Q via the runtime difference. While it is quite easy to establish
such a negligible bound for each individual hybrid step, this is insufficient as there are polynomially many
steps in the hybrid argument. Instead, we need a single negligible function that bounds all steps. This is
actually the main difficulty in proving this lemma and requires elaborate constructions of environments that

14We assume that (s,m) is a bit string which encodes the concatenation of the bit strings s and m in such a way that given s
and m, the bit string (s,m) is computable in polynomial time (in |s|+ |m|), and that given (s,m) the components s and m can
be retrieved in polynomial time.
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permute instances and simulate random hybrid steps to obtain bounds that hold true for all hybrid steps.
Once we have established such a bound, we directly obtain that !Q is environmentally bounded because !P
is environmentally bounded.

5.2.2 The Composition Theorem for Session Versions

The following theorem says that if two systems are environmentally indistinguishable, then an unbounded
number of copies of one system are environmentally indistinguishable from an unbounded number of copies
of the other system, where to address different copies session versions are considered. In particular, SIDs are
merely used as a means to address (IITMs belonging to) copies of systems. The systems (more precisely, the
IITMs these systems consist of) are not and do not need to be aware of the SIDs that are used to address
their copies, and the specific addressing mechanism used. As mentioned before, in Section 5.3 we will present
a composition theorem, as a corollary of Theorem 5, where systems are aware of their own SID.

Theorem 5. Let P and Q be protocol systems such that !P and Q are environmentally bounded and P ∼= Q.
Then, !P ∼= !Q and !Q is environmentally bounded

Before we prove this theorem, let us mention that typically P and Q will be environmentally strictly
bounded and that this is easy to verify. By Lemma 17 it then follows immediately that !P is environmentally
strictly bounded as well, and hence, environmentally bounded. So Theorem 5 can be applied directly to
typical protocol systems without additional effort.

Proof of Theorem 5. By Lemma 9, we know that !Q is environmentally bounded.
Now, let E ∈ Env(!P) = Env(!Q). To prove the theorem, it remains to show that E | !P ≡ E | !Q. By

Lemma 7, we may assume that E is a single IITM which, in mode CheckAddress, accepts all messages.
Moreover, we may assume, without loss of generality, that start, decision ∈ T (E) and that E is such that every
message m that E outputs (except if m is output on tape decision) is prefixed by some SID, i.e., m = (s,m′)
for some bit strings s and m′:15 since E will only interact with session versions, messages not of the form
(s,m′) would be rejected by these session versions anyway.

Since E is universally bounded, it follows that there exists a polynomial pE such that the number of
different sessions (i.e., messages with distinct SIDs output by E) is bounded from above by pE(η+ |a|) (where
η is the security parameter and a is the external input). In particular, for every η, a and every run of
(E | !P)(1η, a) or (E | !Q)(1η, a), there exist at most pE(η + |a|) copies of Q and P in such a run.

The proof proceeds by a hybrid argument. In what follows, let P ′ be the variant of P obtained from P by
renaming every tape c occurring in P as c′. Analogously, let P ′′ be obtained from P by renaming every tape
c occurring in P as c′′. Similarly for Q′ and Q′′.

We define an IITM Er (for every r ∈ N) which basically simulates E and which will run in the system
Er | !P ′′ | !Q′ | P or Er | !P ′′ | !Q′ | Q, respectively. The first r − 1 copies of the protocol invoked by E will be
copies of Q′, the r-th copy will be the external system P or Q, respectively, and the remaining copies will be
copies of P ′′.

Formally, Er is obtained from E as follows. (Recall that we assume that E is a single IITM which accepts
every message in mode CheckAddress). The IITM Er will always accept in mode CheckAddress. The behavior
of Er in mode Compute is specified next.

First, we need to make sure that Er has the appropriate tapes to connect to the different entities. The
IITM E already has tapes to connect to the external tapes of P and Q. For each such tape c, we add to Er a
tape c′ and c′′ to connect to the external tapes of Q′ and P ′′, respectively.

Next, we need to specify how Er redirects protocol invocations of E in the way described above: Er keeps
a list L of SIDs, which initially is empty, and the length l of the list, which initially is 0. By definition of pE ,
it will always hold that l ≤ pE(η + |a|). In the first activation with security parameter η ∈ N and external
input a ∈ {0, 1}∗, Er starts a simulation of E with security parameter η and external input a. In particular, if
E produces output, then so does Er, and if Er receives input, then E is simulated with this input. However, as

15More formally, for every system S ∈ Con(E) and all parameters η, a in every run of (E | S)(1η , a) the system E should only
output messages of the described form.

28



explained next, the behavior of Er deviates from that of E when it comes to sending and receiving messages
to the different copies of protocols.

1. If E produces output m on some external output tape c to P (and hence, Q) prefixed with s, then Er
checks whether s occurs in L. If s does not occur in L, s is appended at the end of L and l is increased
by 1. Let j ∈ {1, . . . , l} be the position where s occurs in L.

(a) If j < r, then Er writes m on tape c′.
(b) If j = r, then Er outputs m′ on c where m′ is a message such that m = (s,m′), i.e., s is removed

from m.
(c) If j > r, then Er writes m on tape c′′.

2. If Er receives input on tape c′′ where c′′ is an external tape of P ′′ corresponding to an external tape c
of P, then Er behaves as E in case input was received on tape c.

3. If Er receives input on tape c′ where c′ is an external tape of Q′ corresponding to an external tape c of
Q, then Er behaves as E in case input was received on tape c.

4. If Er receives input m on tape c where c is an external tape of P (and hence, Q), then Er behaves as E
in case input (L[r],m) was received on tape c where L[r] denotes the r-th entry of L. By construction,
this entry exists in L (i.e., r ≤ l) since E must have invoked the r-th copy.

We also consider a variant E$ of Er which in the first activation chooses r ∈ {1, . . . , pE(η + |a|)} uniformly
at random and then behaves exactly like Er. Moreover, we consider the variant EpE of Er which uses
r = pE(η + |a|).

We define the following hybrid systems, for every r ∈ N:

Hr := Er | !P ′′ | !Q′ and
HpE := EpE | !P ′′ | !Q′ and
H$ := E$ | !P ′′ | !Q′ ,

which can be connected to P (and hence Q). The system Hr is illustrated in Figure 3.
By construction, for every r ∈ N, the systems E | !P and H1 | P, Hr | Q and Hr+1 | P, and E | !Q and

HpE | Q, respectively, behave exactly the same. In particularly, for all r ∈ N, we have that:

E | !P ≡0 H1 | P , (7)
Hr | Q ≡0 Hr+1 | P , and (8)
E | !Q ≡0 HpE | Q . (9)

For (7) we use that P is a protocol system. In particular, we use property (ii) of protocol systems (see
Definition 11). If this property were not satisfied, i.e., P contains an IITM M which is not in the scope of
a bang but which could reject a message in mode CheckAddress, the following could happen. In a run of
(H1 | P)(1η, a) a message is sent to M , but it is rejected by M (in mode CheckAddress). Then, since M is not
in the scope of a bang, no new copy of M will be generated. Conversely, if in a run of E | !P a message is
sent to a copy of the session version M of M prefixed with a SID generated by E and the simulated M in M
would reject the message, then it could happen that a new copy of M is generated (since M is in the scope of
a bang in E | !P) which then would not have a corresponding entity in a run of the system (H1 | P)(1η, a). In
short, by property (ii) of protocol systems it is guaranteed that for IITMs that do not occur in the scope of a
bang in P only at most one copy is generated per SID in the run of E | !P. A similar argument is used to
prove (8) and (9).

We now show that !P ′′ | !Q′ is environmentally bounded: Since !P ′ is environmentally bounded, it is easy
to see that !P ′′ | !P ′ is environmentally bounded too, and in particular P ′′ | P ′ is environmentally bounded. By
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Figure 3: The hybrid system Hr = Er | !Q′ | !P ′′ composed with the external session Q or P, respectively.

Theorem 4 (with S = P ′′ and P ′ ∼= Q′), we obtain that P ′′ | P ′ ∼= P ′′ | Q′ and that P ′′ | Q′ is environmentally
bounded. Then, by Lemma 9, we conclude that !P ′′ | !Q′ is environmentally bounded.

From this it easily follows that !P ′′ | !Q′ | P and !P ′′ | !Q′ | Q are environmentally bounded as well. Since
P ∼= Q, by Theorem 4 (with S = !P ′′ | !Q′), we now obtain that !P ′′ | !Q′ | P ∼= !P ′′ | !Q′ | Q.

It is easy to see that E$, EpE(η+|a|), and Er, for every r ∈ N, are universally bounded. So, we obtain that
H$ | P ≡ H$ | Q. Hence, there exists a negligible function f such that for all η ∈ N and a ∈ {0, 1}∗:

f(η, a) ≥ |Prob[(H$ | P)(1η, a) = 1]− Prob[(H$ | Q)(1η, a) = 1]|

= 1
pE(η + |a|) ·

∣∣∣∣∣
pE(η+|a|)∑
r=1

Prob[(Hr | P)(1η, a) = 1]− Prob[(Hr | Q)(1η, a) = 1]

∣∣∣∣∣
(8)= 1

pE(η + |a|) ·
∣∣Prob[(H1 | P)(1η, a) = 1]− Prob[(HpE(η+|a|) | Q)(1η, a) = 1]

∣∣
(7),(9)= 1

pE(η + |a|) · |Prob[(E | !P)(1η, a) = 1]− Prob[(E | !Q)(1η, a) = 1]| .

We conclude that E | !P ≡ E | !Q.

We note that by iteratively applying this composition theorem and Theorem 4, one can establish
environmental indistinguishability for more and more complex systems in a modular way.

5.3 Composition Theorem for Unbounded Self-Composition of SID Dependent
Systems

As explained before, in Theorem 5 SIDs are used merely as a means to address (IITMs belonging to)
copies/sessions of systems. In particular, a session of a system is not aware of the SID that is used to
address it, and the specific addressing mechanism employed. We now present a composition theorem for the
unbounded self-composition of a system where sessions are aware of their SIDs. This theorem is basically a
corollary of Theorem 5.

We first need to generalize the notion of a session version of an IITM and a system and introduce further
notions in the context of session versions.

5.3.1 Generalized Session Versions

A function σ : {0, 1}∗ × T → {0, 1}∗ ∪ {⊥} (where T is a set of tape names) is called a session identifier
(SID) function if it is computable in polynomial time (in the length of its input). Intuitively, an SID function
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assigns an SID to a message w.r.t. some tape (or ⊥, if the message does not have an SID). For example,
σ0(m, c) := 0, for all m, c, assigns the SID 0 to every message. The following function takes the prefix of a
message as its SID: σprefix(m, c) := s if m = (s,m′) for some s,m′ and σprefix(m, c) := ⊥ otherwise, for all
m, c. Clearly, many more examples are conceivable. We note that an SID function, besides the message, also
gets a tape name as input because the way SIDs are extracted from messages may depend on the tape on
which a message is received; this gives even more flexibility, although in most cases an SID of a message will
be determined independently of the tape on which the message is received.

We now define the notion of a σ-session version, which generalizes the notion of session versions introduced
in Section 5.2.1. Intuitively, a machine M is a σ-session version, if M in mode CheckAddress accepts only
messages that have the same SID w.r.t. σ and M outputs only messages with the same SID. For a system to
be a σ-session version, we require that all machines in that system are σ-session versions. More precisely,
σ-session versions are defined as follows:

Definition 13. Let σ be an SID function and let M be an IITM such that T (M) ⊆ T where T is the set of
tape names σ is defined on (i.e., σ is defined on all names of input and output tapes of M). Then, M is a
σ-session machine (also called a σ-session version) if for every system S such that S and M are connectable
the following conditions are satisfied for every η, a and every run ρ of (S |M)(1η, a):

1. Whenever M is activated in ρ in mode CheckAddress with an input message m on tape c, then M
rejects m if σ(m, c) = ⊥.

2. If the first input message that M accepted in ρ in mode CheckAddress is m0 on tape c0 and (later)
M is activated in mode CheckAddress in ρ with an input message m on tape c, then M rejects m if
σ(m, c) 6= σ(m0, c0).

3. Whenever M outputs a message m on tape c in ρ in mode Compute, then σ(m, c) = σ(m0, c0) (where
the first accepted message was m0 on tape c0, see above).

A system Q is a σ-session system/version if every IITM occurring in Q is a σ-session version.

We emphasize that by 2. above, the fact that σ(m, c) = σ(m0, c0) 6= ⊥ does not mean that a machine has
to accept m on c. This is only a necessary condition for the machine to be able to accept m on c in mode
CheckAddress. In other words, every system which is a σ-session version can accept “less” messages than
“suggested” by σ; in particular, every system S is a σ0-session version, since σ0 allows a machine to accept
every message.

The following two lemmas capture some more basic properties of σ-session versions. The first lemma says
that if a system is a σ-session version, then it is also a σ′-session version for a function σ′ that is at least as
permissive as σ.

Lemma 10. Let σ and σ′ be SID functions such that for all m,m′ ∈ {0, 1}∗, c, c′ ∈ T : σ′(m, c) = σ′(m′, c′) 6=
⊥ if σ(m, c) = σ(m′, c′) 6= ⊥. Then, every σ-session system is a σ′-session system.

The following lemma shows how standard session versions, as introduced in Section 5.2.1, and σ-session
versions can be combined.

Lemma 11. Let σ be an SID function and S be a σ-session system. Then, !S is a σ′-session system where
for all m ∈ {0, 1}∗, c ∈ T :

σ′(m, c) :=
{

(s, σ(m′, c)) ∃s,m′ : m = (s,m′) ∧ σ(m′, c) 6= ⊥,
⊥ otherwise .

Combining the two lemmas above and using that every system is a σ0-session version, we obtain that the
multi-session version !S of every system S is a σprefix-session version. Moreover, applying Lemma 11 to !S
yields that the multi-session version of the multi-session version of every system S, i.e., !S, is a σ(2)

prefix-session
version where σ(2)

prefix(m, c) := (s, s′) if m = (s, (s′,m′)) for some s, s′,m′ and σ(2)
prefix(m, c) := ⊥ otherwise, for
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all m, c. Note that by Lemma 10 every σ(2)
prefix-session version (e.g., !S) is a σprefix-session version. This is

analogous to the (standard) session versions from Section 5.2.1: !S is a session version itself.
Now, given two systems P and Q which both are σ-session versions, the composition theorem basically

states that if P and Q are single-session indistinguishable, i.e., P and Q are environmentally indistinguishable
for environments that call a single session of P/Q only, then P and Q are environmentally indistinguishable
(P ∼= Q). We now formalize “single-session indistinguishability”. We first need to formalize systems that
invoke only a single session of another system. Such systems are called σ-single session and they output
messages with the same SID only. More precisely:

Definition 14. Let σ be an SID function. A system Q is σ-single session if for every system S such that S
and Q are connectable the following is true for every η, a and in every run ρ of (S |Q)(1η, a): Let m0 6= ε
(where ε is the empty bit string) be the first message output by Q on some external tape c0 (except the
decision tape) in ρ. Then σ(m0, c0) 6= ⊥ and every message m 6= ε output by Q on an external tape c (except
the decision tape) in ρ satisfies σ(m, c) = σ(m0, c0).

Let σ be an SID function. Given a system S, by Envσ-single(S) we denote the set of all systems E ∈ Env(S)
such that E is σ-single session, i.e., Envσ-single(S) is the set of all σ-single session environmental systems that
can be connected to S.

Definition 15. Let σ be an SID function. Two systems P andQ are called σ-environmentally indistinguishable
or indistinguishable w.r.t. σ-single session environments, denoted by P ∼=σ-single Q, if and only if

1. P and Q are compatible and

2. E | P ≡ E |Q for all E ∈ Envσ-single(P).

We will also need the following definition.

Definition 16. Let σ be an SID function. A system S is σ-environmentally (almost) bounded or envi-
ronmentally bounded w.r.t. σ-single session environments if for every E ∈ Envσ-single(S): E | S is almost
bounded.

Clearly, every environmentally bounded system is σ-environmentally bounded for every SID function σ.

5.3.2 A Composition Theorem for σ-Session Versions

We are now able to formulate the composition theorem for the unbounded self-composition of systems that
may depend on their SID:

Theorem 6. Let σ be an SID function. Let P and Q be two protocol systems such that P and Q are σ-session
versions, !P is environmentally bounded, Q is σ-environmentally bounded, and P ∼=σ-single Q. Then, P ∼= Q
and Q is environmentally bounded.

We note that a stronger variant of the above theorem, where it is assumed that only P (instead of !P) is
environmentally bounded, also holds (in this case, the claim still is that P ∼= Q and Q is environmentally
bounded). Such a theorem can be proven by redoing the proofs of Theorem 5 and Lemma 9.16 Here we want
to prove Theorem 6 as a corollary of Theorem 5 and this requires the additional assumption.17 However, as
discussed below Theorem 5, typically P is environmentally strictly bounded and in this case, by Lemma 17,
it follows immediately that !P is environmentally bounded.

16As for the lemma, one assumes that (i) P and Q are σ-session versions, (ii) P is environmentally bounded, (iii) Q is
σ-environmentally bounded, and (iv) P ∼=σ-single Q. For Lemma 9 the statement then is that Q is environmentally bounded.

17In general, assuming that !P is environmentally bounded is a stronger condition than just assuming that P is environmentally
bounded (see Lemma 19).
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Proof of Theorem 6. The basic idea of the proof is as follows: We first define single IITMs [P]σ and [Q]σ
which, in every environment, simulate a single session of P and Q (w.r.t. σ), respectively. Since P ∼=σ-single Q
we obtain [P ]σ ∼= [Q]σ. Then, by the composition theorem (Theorem 5), we obtain that ! [P]σ ∼= ! [Q]σ. Now,
from ! [P]σ and ! [Q]σ we can conclude that P ∼= Q: An environment E for P and Q can be simulated by an
environment E ′ which simply prefixes every message m output on tape c with σ(m, c) if σ(m, c) 6= ⊥.

Following this idea, we first define [P ]σ. As in the proof of Lemma 6, we construct [P ]σ as an IITM which
is compatible with P and accepts every message in mode CheckAddress. However, it only simulates a single
session of P w.r.t. σ. More specifically, [P ]σ (in any run with any system) does the following: If [P ]σ receives
a message m on tape c with σ(m, c) = ⊥, then [P]σ ends its current activation with empty output. Let m0
be the first message that [P]σ receives on some external tape c0 with σ(m0, c0) 6= ⊥, then [P]σ simulates
P with input m0 on c0 and if P produces output m′ on some external tape c′, [P]σ produces output m′ on
c′. Now, whenever later [P]σ receives a message m on tape c with σ(m, c) 6= σ(m0, c0), then [P]σ ends its
current activation with empty output. Otherwise, i.e., if σ(m, c) = σ(m0, c0), then [P]σ simulates P with
input m on c as above.

By construction of [P ]σ and since P is a σ-session version, it is easy to see that for every E ∈ Envσ-single(P)
we have that E | P ≡0 E | [P]σ. (This does not necessarily hold for all E ∈ Env(P).) Because !P is
environmentally bounded by assumption, and hence, in particular P is environmentally bounded, it is not
hard to see that [P ]σ is environmentally bounded. In fact, to conclude that [P ]σ is environmentally bounded
it suffices to assume that P is σ-environmentally bounded, since [P]σ simulates only a single session of P.

Just as [P]σ, we define [Q]σ. By assumption, Q is a σ-session version and it is σ-environmentally
bounded. Now, just as in the case of [P ]σ, we obtain that (i) E |Q ≡0 E | [Q]σ for every E ∈ Envσ-single(Q) =
Envσ-single(P) and (ii) [Q]σ is environmentally bounded.

Because P ∼=σ-single Q, it now easily follows that E | [P]σ ≡ E | [Q]σ for all E ∈ Env(P), and thus,

[P]σ ∼= [Q]σ . (10)

By assumption, !P is environmentally bounded. It is not hard to see that this implies that ! [P]σ is
environmentally bounded too.18 By Lemma 9 it follows that ! [Q]σ is environmentally bounded. Moreover,
by Theorem 5 we obtain:

! [P]σ ∼= ! [Q]σ . (11)

We use (11) to show that
P ∼= Q . (12)

Let E ∈ Env(P). By Lemma 7, we may assume that E is a single IITM which accepts every message in
mode CheckAddress. Furthermore, without loss of generality, we may assume that start, decision ∈ T (E) and
that E only outputs messages m on tape c with σ(m, c) 6= ⊥, for every tape c 6= decision: since P and Q
are σ-session versions, they would reject any message m on tape c with σ(m, c) = ⊥ anyway. We may also
assume that on tape decision, E only outputs 0 or 1.

Now, to show that E | P ≡ E |Q, we define an IITM E ′ ∈ Env(! [P]σ). The external tapes of E ′ are the
external tapes of E . In mode CheckAddress, E ′ accepts all messages. In mode Compute, E ′ simulates E as
follows:

• If E ′ receives some input m (possibly empty input) on the tape start, then E ′ simulates E on input m
on start. Otherwise, if E ′ receives some input of shape (s,m) on some tape c with σ(m, c) = s 6= ⊥,
then E ′ simulates E on input m on c.

• If the simulated E outputs some message m on the tape decision, then E ′ outputs m on decision.
Otherwise, if the simulated E outputs some message m on some tape c 6= decision with σ(m, c) 6= ⊥,
then E ′ outputs (σ(m, c),m) on c.

18To conclude that ! [P]σ is environmentally bounded, the assumption that !P is environmentally bounded is required. Just
assuming that P is environmentally bounded would not be enough.
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• Otherwise, i.e., E ′ receives some other input or the simulated E produces different output, E ′ produces
output “error”/∈ {0, 1} on decision.

Since E never outputs messages with σ(m, c) = ⊥ (expect maybe on tape decision) and by definition of E ′,
! [P]σ, and ! [Q]σ, it is easy to see that for all η, a:

Prob
[
(E ′ | ! [P]σ)(1η, a) = “error”

]
= Prob

[
(E ′ | ! [Q]σ)(1η, a) = “error”

]
= 0 .

Therefore it is easy to define a bijection between the runs of (E ′ | ! [P]σ)(1η, a) and (E | P)(1η, a) as well as
between the runs of (E ′ | ! [Q]σ)(1η, a) and (E |Q)(1η, a). Hence, we obtain:

E ′ | ! [P]σ ≡0 E | P and E ′ | ! [Q]σ ≡0 E |Q . (13)

Since E is universally bounded, it follows easily that E ′ is universally bounded too. Thus, E ′ ∈ Env(! [P]σ).
By (11), we can conclude that E ′ | ! [P]σ ≡ E ′ | ! [Q]σ. It now follows that

E | P
(13)
≡0 E ′ | ! [P]σ ≡ E ′ | ! [Q]σ

(13)
≡0 E |Q .

With the bijection between runs of E ′ | ! [Q]σ(1η, a) and (E |Q)(1η, a) and the fact that ! [Q]σ is environ-
mentally bounded, it also immediately follows that Q is environmentally bounded.

We note that under the assumptions of Theorem 6, one can even show that !Q is environmentally bounded,
using that ! [Q]σ is environmentally bounded.

Clearly, by iteratively applying Theorems 4, 5, and 6, one obtains, in a modular way, environmental
indistinguishability for more and more complex systems.

6 Notions of Universal Composability
In the literature, several notions of universal composability have been proposed: universal composability (UC)
[3, 33], dummy UC [3], black-box simulatability [33], strong simulatability [22], and reactive simulatability
[33].

While intuitively one would expect these notions to be equivalent (where for reactive simulatability this
requires non-uniform environments/environments with external input), this is not the case in all models. In
particular, it is not true in Canetti’s UC model, due to the incompleteness of the dummy adversary (see
Section 4.5 and Remark 12).

In this section, the mentioned notions are defined and it is shown that these notions are equivalent in
the IITM model. We also state further basic properties. But first we need to introduce some notation and
terminology.

6.1 Further Notation and Terminology
To define the notions of universal composability we need the following kinds of systems: environmental,
adversarial systems, and protocol systems. While we have already defined environmental and protocol systems
(see Definitions 8 and 11), we still need to introduce adversarial systems and the way these systems are
connected.

6.1.1 Network and I/O Tapes

To define how the different entities (environments, protocols, adversaries/simulators) connect to each other,
we partition the set of external tapes of every system Q into network and I/O tapes. We denote the set of
(external) network tapes of Q by T net

ext (Q) and the set of (external) I/O tapes of Q by T io
ext(Q). Each of the

sets T net
ext (S) and T io

ext(S) is further partitioned into input and output tapes. We denote by T net
in (Q), T net

out (Q),
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T io
in (Q), and T io

out(Q) the set of network input and output tapes and the set of I/O input and output tapes,
respectively.

We assume that network tapes are named differently from I/O tapes also across different systems. This
can easily be enforced, for instance, by using different prefixes for the different kind of tapes, such as net for
network tapes and io for I/O tapes. By this, we obtain the following:

(i) If P and Q are compatible, then they also agree on the type (network or I/O) of their external tapes,
i.e., T net

in (P) = T net
in (Q), T net

out (P) = T net
out (Q), T io

in (P) = T io
in (Q), and T io

out(P) = T io
out(Q).

(ii) If P and Q are connectable, then they agree on the type (network or I/O) of their common external
tapes, i.e., for all c ∈ Text(P) ∩ Text(Q), we have that c ∈ T net

ext (P) ∩ T net
ext (Q) or c ∈ T io

ext(P) ∩ T io
ext(Q).

Definition 17. The systems Q and P are I/O-connectable if Q and P are connectable and T net
ext (Q) ∩

T net
ext (P) = ∅. In other words, Q and P only connect through their I/O tapes.
The systems S1, . . . ,Sn are I/O-connectable if Si and Sj are I/O-connectable for every i, j ≤ n such that

i 6= j.

As already explained in Section 4.1 for connectability, if S1, . . . ,Sn are I/O-connectable, then every
common external tape of the systems is the external input tape of exactly one system Si and the external
output tape of exactly one other system Sj . So, there is no ambiguity in how these systems connect to each
other in the parallel composition S1 | · · · | Sn. Note that for I/O-connectibility every common tape between
these systems is an I/O tape, and hence, these systems only connect through their I/O tapes.

6.1.2 Adversarial Systems

We are now ready to define adversarial systems and how these connect to protocol systems.

Definition 18. An adversarial system A is a system such that no tape in A is named start or decision.
For a system Q, we denote by Adv(Q) the set of all adversarial systems A such that A can be connected

to Q, A |Q is environmentally bounded, the set of external tapes of A is disjoint from the set of I/O tapes
of Q, and A |Q does not have any (external) network tapes (i.e., A ∈ Con(Q), Text(A) ∩ T io

ext(Q) = ∅, and
T net

ext (A |Q) = ∅). Thus, an adversary A can connect to the network tapes of Q only.
For two systems Q and Q′, by SimQ

′
(Q) we denote the set of all adversarial systems A such that A can

be connected to Q, A |Q is environmentally bounded, the set of external tapes of A is disjoint from the set
of I/O tapes of Q, and A |Q is compatible with Q′.

We note that environmental systems, which will run concurrently with a protocol and possibly an
adversarial system, may contain tapes named start or decision. In particular, they may contain a master
IITM (while protocol and adversarial systems may not). This choice is justified and motivated by results
shown in [22, 14].

6.2 Defining the Notions of Universal Composability
The various security notions for universal composability proposed in the literature—(dummy) UC, black-box
simulatability, strong simulatability, reactive simulatability—can be defined in a concise and simple way in
the IITM model.

The basic idea behind these security notions is that security properties are specified as an ideal proto-
col/functionality F . For example, F might specify a secure channel (see also Section 10.4 for examples).
Using such an ideal protocol, parties can carry out their security critical tasks, such as communicating over a
secure channel, in a secure way. This functionality is secure by construction, it defines what security means.
Now a real protocol P realizes an ideal protocol F if for every (real) adversary A for P there exists an ideal
adversary/simulator I for F such that no environment can distinguish whether it interacts with A |P or
with I |F . Since F is secure by definition and no environment can distinguish whether it interacts with the
real or the ideal system, P is as secure as F , and hence, secure.
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The different security notions proposed in the literature differ in the kind of real adversaries considered
and in the order of quantification. For dummy UC, the real adversary is just the dummy adversary, i.e., the
adversary which forwards all messages between the protocol and the environment. For strong simulatability,
the real adversary is dropped altogether and the environment directly connects to the network interface of the
real protocol. For black-box simulatability, one requires that there exists a simulator S such that for every
adversary A the composition A |S is a good ideal adversary. For reactive simulatability, the ideal adversary
may depend on the environment that tries to distinguish the real from the ideal protocol.

In order to formally define the notion of dummy UC, we first need to define the dummy adversary for
a protocol. Given a system P, by DP we denote the dummy adversary for P which is the dummy IITM
DP = D(T net

in (P), T net
out (P)) (see Section 4.5) where all tapes c′ ∈ Text(D) \ T net

ext (P) are declared to be I/O
tapes. The dummy adversary simply forwards all messages received from the protocol on a network tape to
the environment on the corresponding I/O tape and all messages it receives from the environment on an I/O
tape to the protocol on the corresponding network tape. We note that if P is environmentally bounded, then
DP | P is environmentally bounded too, and hence, DP ∈ Adv(P).

The security notions defined in what follows are illustrated in Figures 4 to 7. In terms of runtime, the
notions UC and dummyUC introduced below conceptually follow the definitions in [19].

Definition 19. Let P and F be protocol systems, the real and ideal protocol, respectively, such that P is
environmentally bounded.

1. Strong Simulatability (SS): P ≤SS F iff ∃ S ∈ SimP(F):

P ∼= S |F .

2. Universal Simulatability/Composability (UC): P ≤UC F iff ∀ A ∈ Adv(P) ∃ I ∈ SimA |P(F):

A |P ∼= I |F .

3. Dummy Version of UC (dummyUC): P ≤dumUC F iff ∃ I ∈ SimDP | P(F):

DP | P ∼= I |F .

4. Black-box Simulatability (BB): P ≤BB F iff ∃ S ∈ SimP(F) ∀ A ∈ Adv(P):

A |P ∼= A |S |F .

5. Reactive Simulatability (RS): P ≤RS F iff ∀ A ∈ Adv(P) ∀ E ∈ Env(A |P) ∃ I ∈ SimA |P(F):

E |A |P ≡ E | I | F .

We say that P SS-realizes F if P ≤SS F ; similarly for the other security notions. We often simply say that P
realizes F without explicitly indicating the underlying security notion. (This is justified by Theorem 7, which
states that all security notions are equivalent.)

For strong and black-box simulatability, if P and F do not have disjoint network tapes, there does not
exist a simulator with S ∈ SimP(F). We therefore always (implicitly) assume that the network tapes of F
are renamed first so that the set of network tapes of P and F are disjoint.

Remark 7. We emphasize that details such as addressing of machines by party/session IDs, corruption, and
the structure of protocols are not, and do not need to be fixed in order to define the security notions. This
makes the definitions and the underlying model particularly simple and expressive.

Remark 8. Recall that the notion of environmental indistinguishability that we use in Definition 19 is
defined with respect to environments that output one-bit. According to Remark 3, using an alternative
definition with a distinguisher and an environment that may output more than one bit would yield equivalent
security notions.
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Figure 4: Strong simulatability (SS).
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Figure 5: Universal simulatability/composability (UC) and reactive simulatability (RS).
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Figure 6: Dummy universal simulatability/composability (dummyUC).

Remark 9. Even though in the above definitions, F is not required to be environmentally bounded, in
applications it will always be environmentally bounded.

Remark 10. Note that all systems considered in Definition 19, 1. to 4. are environmentally bounded and the
ones in 5. are almost bounded. For all systems, except for A |S |F in the definition of black-box simulatability,
this follows immediately from the definitions of the systems. For the system A |S |F this follows using
Theorem 4 as follows: Since DP ∈ Adv(P) (where DP is the dummy adversary defined above), we have that
DP | P ∼= DP | S | F and, hence, P ∼= S |F . By Theorem 4 (P, S |F , and A |P are environmentally bounded
and P ∼= S |F), we obtain that A |S |F is environmentally bounded.

Remark 11. We note that all security notions imply that P and F have the same set of (external) I/O
tapes (i.e., T io

ext(P) = T io
ext(F)).

6.3 Relationships Between the Notions of Universal Composability
In this section, we show that all security notions introduced in the previous section are equivalent. We note
that for the equivalence with reactive simulatability we use that the environment gets external input, and
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Figure 7: Black-box simulatability (BB).

hence, is non-uniform. As shown in [18], reactive simulatability is not equivalent to universal simulatability
in the uniform case; this is also true if, in the case of reactive simulatability, the external input provided
to the environment is chosen before the ideal adversary. All other equivalences hold true even for uniform
environments, that is, environments that do not receive external input.

Theorem 7. Let P and F be protocol systems such that P is environmentally bounded. Then:

P ≤SS F iff P ≤UC F iff P ≤dumUC F iff P ≤BB F iff P ≤RS F .

Proof. Most of the above equivalences can be proven by equational reasoning using the equational princi-
ples established in Section 4.5 and Theorem 4. Below, we prove the equivalence of strong and universal
simulatability. We refer the reader to Appendix C for the other equivalences.

The basic idea of proving the equivalence of strong and universal simulatability is as follows: If P ≤SS F ,
then there exists a simulator S such that P ∼= S |F . Now for every adversary A for P, we define I := A |S
to be the ideal adversary (simulator). We obtain that A |P ∼= I |F . Conversely, if P ≤UC F , then we can
use the simulator obtained for the dummy adversary to prove P ≤SS F . A detailed proof of the equivalence
follows.

First, we show that P ≤SS F implies P ≤UC F . By definition of P ≤SS F , we obtain that there exists
S ∈ SimP(F) such that P ∼= S |F . Let A ∈ Adv(P). By Lemma 6, we may assume that both S and A are
single IITMs that accept every message in mode CheckAddress.19 We define I := A |S. Since P ∼= S |F and
P , S |F , and A |P are environmentally bounded, by Theorem 4 (note that A and S |F are protocol systems
because A and S accept every message in mode CheckAddress) we obtain that A |P ∼= A |S |F = I |F and
A |S |F = I |F is environmentally bounded. Hence, we can also conclude that I ∈ SimA |P(F), which,
altogether, proves that P ≤UC F .

We now show that P ≤UC F implies P ≤SS F . Since P is environmentally bounded, the system DP | P
is environmentally bounded as well. Hence, DP ∈ Adv(P) and, by the definition of P ≤UC F , there exists
I ∈ SimDP | P(F) such that DP | P ∼= I |F . We define S := I ′ where I ′ is obtained from I by renaming the
(external) I/O tapes c′ of I (i.e., the tapes that do not connect to F but to an environment) to c and declaring
them to be network tapes. Hence, S |F is compatible with P and S ∈ SimP(F). Let E ∈ Env(P). Let E ′
be the system obtained from E by renaming the (external) network tapes c of E (i.e., the tapes connecting
to the network tapes of P) to c′ and declaring them to be I/O tapes. Hence, E ′ ∈ Env(DP | P). Then, we
obtain that:

E | P ≡ E ′ | DP | P (Lemma 5 and 4)
≡ E ′ | I | F (DP | P ∼= I |F)
≡ E | S |F (Lemma 4)

We conclude that P ≤SS F .
19We note that this assumption is actually not required. Below, where we use it, we could have used the mentioned stronger

variant of Theorem 4.
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Since all security notions are equivalent, it does not matter which notion we use in the following. Since
strong simulatability (≤SS) is the conceptually simplest notion, we typically use this notion.

Remark 12. As already mentioned at the beginning of this section, while intuitively one would expect that
all security notions are equivalent, except for reactive simulatability (with uniform environments), equivalence
does not hold true in all models, in particular this is the case for Canetti’s UC model. In the UC model,
due to what is sometimes called the incompleteness of the dummy adversary UC and dummyUC are not
equivalent in the UC model (see, e.g., [19]). However, completeness is needed in the proof of the composition
theorem. As mentioned in [2, page 47], dummyUC and SS are not equivalent in the UC model either.

6.4 Reflexivity and Transitivity
The following two lemmas state that strong simulatability is a reflexive and transitive relationship. By
Theorem 7, this is true for all security notions.

While again these properties are expected, they are not satisfied in all models. One trivial reason is that
the real and ideal protocol are required to be syntactical different in some models: The ideal protocol often
has to be a single machine, while this is not the case for the real protocol. More importantly, inadequate
definitions of runtime notions can also cause problems (see, for instance, the discussion in [21]).

Lemma 12. Let P be an environmentally bounded protocol system. Then, P ≤SS P.

Proof. Reflexivity holds for ≤UC because every valid adversary A ∈ Adv(P) is a valid simulator A ∈
SimA |P(P) and A |P ∼= A |P. By Theorem 7, reflexivity also holds for ≤SS .

Lemma 13. Let P, Q, and F be protocol systems such that P and Q are environmentally bounded, P ≤SS Q,
and Q ≤SS F . Then, P ≤SS F .

Proof. We will show transitivity for ≤UC and obtain transitivity for ≤SS by Theorem 7. By Theorem 7,
we obtain that P ≤UC Q and Q ≤UC F . Let A ∈ Adv(P). By definition of P ≤UC Q, there exists
I1 ∈ SimA |P(Q) such that A |P ∼= I1 | Q. Since I1 ∈ Adv(Q), by definition of Q ≤UC F , there exists
I2 ∈ SimI1 | Q(F) such that I1 | Q ∼= I2 | F . Clearly, I2 ∈ SimA |P(F). By transitivity of ∼= (see Lemma 2), we
have that A |P ∼= I2 | F . We conclude that P ≤UC F . Finally, by Theorem 7, we conclude that P ≤SS F .

7 Composition Theorems for the Realization Relations
We now prove general composition theorems for the realization relations. These theorems are at the heart of
the universal composability paradigm and are the main motivation for this paradigm.

In a nutshell, these theorems say that if real protocols are secure individually, then their concurrent
composition is secure as well. More precisely, if real protocols each realize some ideal protocol, then the
concurrent composition of the real protocols realizes the concurrent composition of the corresponding ideal
protocols, even if an unbounded number of sessions of the real/ideal protocols run concurrently. Therefore,
these theorems can be used to analyze and design systems in a modular way: it suffices to show security of
every individual real protocol in a single session, i.e., show that a single session of a real protocol realizes a
single session of the corresponding ideal protocol, in order to conclude security of the concurrent composition
of multiple sessions of these protocols.

The composition theorems presented in this section follow quite easily from the composition theorems for
environmental indistinguishability presented in Section 5. Analogously to Section 5, we first, in Section 7.1,
present a composition theorem for the composition of a constant number of, possibly different, protocols
(more precisely, protocol systems). We then state a theorem which captures the security of a protocol when
run in an unbounded number of sessions/copies (unbounded self-composition). We, similarly to Section 5,
prove two versions of this theorem: one in which protocol participants are not aware of the session identifiers
that are used to address the different protocol sessions (see Section 7.2) and one in which they are aware of
the session identifiers (see Section 7.3). The theorems for a constant number of protocols and for unbounded
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self-composition can freely be combined to establish, in a modular way, the security of more and more complex
systems, as illustrated in Section 7.4.

All composition theorems are stated for strong simulatability, but by Theorem 7 they also hold for every
other security notion introduced in Section 6.2, e.g., universal simulatability (UC).

Our composition theorems are, in many ways, more expressive than those proven in other models (see
also the discussion in Sections 10 and 11). The fact that the IITM model does not a priori fix a specific
addressing mechanism or a specific form of corruption and does not impose a specific structure on protocols
allows us to prove general composition theorems which hold true no matter how these details are chosen.
Moreover, unlike other models, our composition theorems do not restrict the environment to only access
top-level protocols. This flexibility and generality of the theorems is also reflected in the fact that the general
joint state theorem is an immediate consequence of our composition theorem. In other models, even stating
the joint state theorem requires to change the model and/or introduce new concepts. Similarly, composition
theorems with global setup can also be formalized without changing the model and the main such theorems
again follow immediately from the general composition theorem, as discussed in Section 10.3.

7.1 Composition Theorem for a Constant Number of Protocol Systems
We now present the composition theorem for the composition of a constant number of (possibly different)
protocol systems. The theorem directly follows from Theorem 4.

Theorem 8. Let k ≥ 1 and Q,P1, . . . ,Pk,F1, . . . ,Fk be protocol systems with pairwise disjoint sets of
network tapes such that the following conditions are satisfied:

1. For all j ≤ k: Pj is environmentally bounded and Pj ≤SS Fj

2. Q,P1, . . . ,Pk are I/O-connectable and Q |P1 | · · · | Pk is environmentally bounded.

Then, Q |P1 | · · · | Pk ≤SS Q |F1 | · · · | Fk.

Clearly, the theorem also hold true if the system Q is dropped. We note that in the above theorem
it is not required that, for all j ≤ k, Fj and Q |F1 | · · · | Fk are environmentally bounded (although in
applications this will typically be the case). Just as for Theorem 4, we finally remark that Condition 2. in
the above theorem is easy to check. I/O-connectability is a simple syntactic condition. Moreover, for typical
applications, it is easy to check whether a system is environmentally bounded (see also the discussion in
Section 8).

Proof of Theorem 8. Since Pj ≤SS Fj , for all j ≤ k, there exists Sj ∈ SimPj (Fj) such that Pj ∼= Sj | Fj . By
Lemma 6, we may assume that all Sj are single IITMs that accept all messages in mode CheckAddress.20 By
definition of SimPj (Fj), we know that Sj | Fj is environmentally bounded and Pj and Sj | Fj are compatible.
Since Q,P1, . . . ,Pk are I/O-connectable, it follows that S1 | F1, . . . ,Sk | Fk are connectable. With this, by
Theorem 4 (with S = Q and Qj = Sj | Fj for all j ≤ k; note that Qj is a protocol system because Sj
accepts every message in mode CheckAddress), we obtain that Q |P1 | · · · | Pk ∼= Q |S1 | F1 | · · · | Sk | Fk
and that Q |S1 | F1 | · · · | Sk | Fk is environmentally bounded. In particular, we obtain that S1 | · · · | Sk ∈
SimQ |P1 | ··· | Pk(Q |F1 | · · · | Fk). Altogether, this proves that Q |P1 | · · · | Pk ≤SS Q |F1 | · · · | Fk.

7.2 Composition Theorem for Unbounded Self-Composition
We now present a composition theorem for the unbounded self-composition of a protocol system. It basically
says that if a real protocol securely realizes an ideal protocol, then an unbounded number of sessions (copies)
of the real protocol securely realize an unbounded number of sessions of the ideal protocol, where both for
the real and the ideal protocol we consider the session versions of these protocols to address different sessions.

20We note that this assumption is not actually required. We could use the mentioned stronger variant of Theorem 4 when we
use this theorem in the proof.

40



In particular, SIDs are merely used as a means to address certain (IITMs belonging to) sessions of protocols.
Protocol participants are not and do not need to be aware of the SID used to address their protocol sessions,
and the specific addressing mechanism used. The theorem follows from Theorem 5.

As mentioned before, below we will present another composition theorem, which is a corollary of Theorem 6,
where protocol participants are aware of their own SID.

Theorem 9. Let P and F be protocol systems with disjoint sets of network tapes such that !P is environ-
mentally bounded and P ≤SS F . Then, !P ≤SS !F .

We mention, similarly to the remark following Theorem 5, that P will typically be environmentally strictly
bounded and that this is easy to check. By Lemma 17 it then follows immediately that !P is environmentally
strictly bounded as well, and hence, environmentally bounded. So Theorem 9 can be applied directly to
typical protocol systems without additional effort.

Proof of Theorem 9. Since P ≤SS F , there exists S ∈ SimP(F) such that P ∼= S |F . By Lemma 6, we
may assume that S is a single IITM which, in mode CheckAddress, accepts all messages. Hence, S |F is a
protocol system (in particular, Condition (ii) of Definition 11 is satisfied). By definition of SimP(F), S |F is
environmentally bounded and P and S |F are compatible. With this, by Theorem 5 (with Q = S |F), we
obtain that !P ∼= !S | !F and !S | !F is environmentally bounded. The latter implies that !S ∈ Sim!P(!F).
This proves !P ≤SS !F .

7.3 Composition Theorem for Unbounded Self-Composition of SID Dependent
Protocols

As explained before, in Theorem 9, similarly to Theorem 5, SIDs are merely used as a means to address
certain (IITMs belonging to) sessions of protocols. In particular, protocol participants are not aware of the
SIDs used to address their protocol sessions, and the specific addressing mechanism that is employed. We
now present a composition theorem for the unbounded self-composition of a protocol where the protocol
participants are aware of their SIDs. This theorem is a corollary of Theorem 6.

Before we can state the composition theorem, we need to introduce the notion of single-session realizability,
using the notion of σ-environmental indistinguishability (∼=σ-single) introduced in Section 5.3.1: For two
systems P and F and an SID function σ, we denote by SimPσ-single(F) the set of all adversarial systems S such
that S can be connected to F , the set of external tapes of S is disjoint from the set of I/O tapes of F (i.e.,
Text(S) ∩ T io

ext(F) = ∅), S |F and P are compatible, and S |F is σ-environmentally bounded. We note that
SimP(F) ⊆ SimPσ-single(F); the only difference between these two sets is that S |F has to be environmentally
bounded in one case and σ-environmentally bounded in the other case.

Definition 20. Let σ be an SID function and let P and F be protocol systems (the real and ideal protocol,
respectively) such that P is σ-environmentally bounded. We say that P single-session SS-realizes F
w.r.t. σ or P SS-realizes F w.r.t. σ-single session environments, denoted by P ≤SS

σ-single F , iff there exists
S ∈ SimPσ-single(F) such that P ∼=σ-single S |F .21

Now, we are able to formulate the composition theorem for unbounded self-composition of protocol
systems that may depend on their SID:

Theorem 10. Let σ be an SID function and let P and F be protocol systems such that P and F are
σ-session versions with disjoint sets of network tapes, !P is environmentally bounded, and P ≤SS

σ-single F .
Then, P ≤SS F .

We note that a stronger variant of the above theorem, where it is assumed that only P (instead of
!P) is environmentally bounded, also holds. Such a theorem can be obtained from the stronger variant of
Theorem 6 which is sketched following Theorem 6 in Section 5.3.2. However, as discussed above, typically

21As usual, if the sets of network tapes of P and F are not disjoint, we first rename the network tapes of F accordingly.
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P is environmentally strictly bounded and in this case, by Lemma 17, it follows immediately that !P is
environmentally bounded. So in concrete applications, Theorem 10 is just as easy to apply as the stronger
variant.

Before we prove the above theorem, we show the following lemma, which basically states that if there
exists a good single-session simulator w.r.t. some SID function σ, then there also exists a good single-session
simulator which is a σ-session version. To state the lemma, we use the following terminology. We say that
an IITM M is σ-complete if it satisfies all conditions stated in Definition 13 (σ-session version) but with
Condition 2. replaced by the following stronger condition: If the first input message that M accepted in ρ in
mode CheckAddress is m0 on tape c0 and (later) M is activated in mode CheckAddress in ρ with an input
message m on tape c, then M accepts m iff σ(m, c) = σ(m0, c0). In other words, σ determines exactly those
messages accepted by M in mode CheckAddress.

Lemma 14. Let σ be an SID function and let P and F be protocol systems such that P and F are σ-session
versions, P and F have disjoint sets of network tapes, P is σ-environmentally bounded, and P ≤SS

σ-single F .
Then, there exists S ∈ SimPσ-single(F) such that P ∼=σ-single S |F and S is a single IITM which is σ-complete.

Proof. Since P ≤SS
σ-single F , there exists S ∈ SimPσ-single(F) such that:

∀E ∈ Envσ-single(P) : E | P ≡ E | S |F . (14)

In what follows, we construct a simulator S ′ which is a single IITM that basically simulates S and is
σ-complete.

By Lemma 6, we may assume that S = M is a single IITM which, in mode CheckAddress, accepts
all messages. We now define the system S ′ := M ′ where M ′ is σ-complete. The basic idea behind the
construction of M ′ is as follows: Let us consider a run of E |M | F for some E ∈ Envσ-single(P). Since E is
σ-single session, there exists an SID sid such that every message m output by E in this run has SID sid, i.e.,
for every such message m and tape c we have that σ(m, c) = sid. Nevertheless, M might output messages
with σ(m, c) 6= sid.

If M sent such a message to E , then E could easily distinguish P from M | F : Because E is σ-single session
and P is an σ-session version, P will only output messages to E with SID sid. So, by (14), it can only happen
with negligible probability that M sends a message m on tape c to E with σ(m, c) 6= sid.

However, M might send a message m on tape c to F with σ(m, c) 6= sid (without E noticing this). Since
F is a σ-session version, m will not be accepted by (a copy of) a machine in F which has accepted messages
with SID sid. Also, whenever (a copy of) a machine of F receives a message, it outputs a message with the
same SID. So, the copy of the machine of F which accepts m must not (except with negligible probability)
produce output to E . In addition, with E being σ-single session, E cannot send messages to such a machine.
Consequently, since such a machine cannot interact with E , M ′ can simply simulate this machine internally.

From the above discussion the definition of M ′ suggests itself: M ′ is compatible with M and its
CheckAddress mode is defined in such a way that M ′ is σ-complete, i.e., M ′ rejects all messages m on any
tape c with σ(m, c) = ⊥ and it accepts the first message m0 on some tape c0 with σ(m0, c0) 6= ⊥. From then
on, M ′ accepts a message m on tape c iff σ(m, c) = σ(m0, c0). In mode Compute, M ′ internally simulates a
copy of M and possibly machines of F as follows.

• Whenever M ′ receives input m on some of its external tapes, M ′ internally simulates M with input m
(on the same tape).

• Whenever (the internally simulated) M produces empty output, M ′ produces empty output.

• Whenever M outputs m on tape c with σ(m, c) = sid, M ′ outputs m (on the same tape).

• Whenever M outputs m on tape c to E with σ(m, c) 6= sid, M ′ produces empty output; as discussed
above, this will happen with only negligible probability.

• Whenever M outputs m on tape c to (a copy of) a machine of F with σ(m, c) 6= sid, then M ′ internally
simulates this copy with input m.

42



• Whenever an internally simulated machine of F produces empty output, M ′ produces empty output.

• Whenever an internally simulated machine of F produces output on its I/O interface to E , M ′ produces
empty output; as discussed above, this will happen with only negligible probability.

• Whenever an internally simulated machine of F produces output m on an internal tape to another
machine in F , M ′ internally simulates the receiving machine with input m.

• Whenever an internally simulated machine of F outputs m on its network interface (to M ′), M ′
internally simulates M with input m.

From the above discussion and by (14), it easily follows that

∀E ∈ Envσ-single(P) : E | P ≡ E | S |F ≡ E | S ′ | F . (15)

Now, since S |F is σ-environmentally bounded, it is easy to see that S ′ | F is σ-environmentally bounded
too. With S ∈ SimPσ-single(F) we thus obtain S ′ ∈ SimPσ-single(F). Also, by construction we have that S ′ is
σ-complete.

Theorem 10 now follows directly from the above lemma and Theorem 6:

Proof of Theorem 10. By Lemma 14, there exists S ∈ SimPσ-single(F) such that S is a σ-complete IITM and
P ∼=σ-single S |F . Since S is σ-complete, we can conclude that P ∼=σ-single !S |F : since E ∈ Envσ-single(P)
invokes only a single session, i.e., sends only messages to S and F with the same SID (w.r.t. σ) and F is a
σ-session version, S receives only messages with the same SID (w.r.t. σ) from F and E . So, even with !S only
one instance of S will be invoked in every run of E | !S |F and we have P ∼=σ-single !S |F . Now, it is easy to
see that !S |F is a protocol system (in particular, Condition (ii) of Definition 11 is satisfied) and a σ-session
version. Furthermore, !S |F is σ-environmentally bounded because S |F is σ-environmentally bounded by
definition of SimPσ-single(F). From this, by Theorem 6 (with Q = !S |F), we obtain that P ∼= !S |F and that
!S |F is environmentally bounded. The latter implies !S ∈ SimP(F). Hence, we conclude that P ≤SS F .

7.4 Composition Theorem for More Complex Systems
By iteratively applying Theorems 8, 9, and 10 and using transitivity of the ≤SS relation (cf. Lemma 13), one
can construct more and more complex systems. For example, as an immediate consequence of Theorem 8
and 9 we obtain that if (an unbounded number of sessions of) an ideal protocol F is used as a component in
a more complex system Q, then it can be replaced by its realization P:

Corollary 1. Let Q, P, and F be protocol systems such that the following conditions are satisfied:

1. !P is environmentally bounded and P ≤SS F .

2. Q and P are I/O-connectable and Q | !P is environmentally bounded.

Then, Q | !P ≤SS Q | !F .

If we want P and F to be aware of their SIDs, we can use Theorem 10 instead of Theorem 9 and obtain
the following corollary.

Corollary 2. Let Q, P, and F be protocol systems such that P and F are σ-session versions for some SID
function σ and the following conditions are satisfied:

1. !P is environmentally bounded and P ≤SS
σ-single F .

2. Q and P are I/O-connectable and Q |P is environmentally bounded.

Then, Q |P ≤SS Q |F .
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We can also use the composition theorems to analyze protocols based on ideal subroutines which can
later be implemented by their realizations. For example, we immediately obtain the following corollary of
Theorem 8:

Corollary 3. Let P1, P2, F1, F2 be protocol systems such that the following holds true::

1. P1 ≤SS F1.

2. P2 and F1 are I/O-connectable and P2 | F1 ≤SS F2.

3. P2 | P1 is environmentally bounded.

Then, P2 | P1 ≤SS F2.

This corollary allows us to show P1 ≤SS F1 in isolation, then prove the security of P2 using F1 as a
subroutine, and then conclude that P2 using P1 as a subroutine is still secure. This is usually much easier then
directly proving security of the protocol P2 | P1 because P1 might be a quite complex subroutine, employing
various cryptographic primitives to ensure certain properties, whereas the ideal functionality F1 is usually
quite simple and provides absolute security guarantees. Note that this process can be iterated arbitrarily often.
In particular, we can now build a protocol P3 on top of F2 to realize F3, say, and then, after performing a
security proof, use Corollary 3 to replace F2 with P2 | P1. This process is one of the main features of universal
composability frameworks as it allows for modular protocols and proofs where one can analyze several small
(and relatively simple) protocol parts in isolation to obtain security of complex combined protocols.

These are just a few examples of what can be obtained by iteratively applying Theorems 8, 9, and 10.
Further examples are provided in Section 10.

8 On the Composability of Runtime Notions
In this section, we discuss the composability of environmentally (almost/strictly) bounded systems. The first
simple observation is that, in general, the composition of two environmentally (almost/strictly) bounded
systems does not need to be environmentally bounded: For example, consider two environmentally (al-
most/strictly) bounded protocol systems Q1 and Q2 which connect via some external tapes. (The simplest
example is that both Q1 and Q2 are single IITMs.) Then, Q1 and Q2 could “play ping-pong” with each other,
i.e., they could send messages back and forth forever, and hence, in such a case they are not environmentally
bounded.

However, in applications the composition of environmentally almost/strictly bounded systems is basically
always environmentally almost/strictly bounded (see Section 10.4 for examples). Clearly, one can construct
examples, such as the above, where this is not the case. However, these examples typically do not occur in
applications. Moreover, in applications it is typically easy to see whether a system, including the composition
of two environmentally almost/strictly bounded systems, is environmentally almost/strictly bounded.

We also observe that in applications protocol systems are typically strictly bounded, and for such systems
we obtain useful general composability statements, as presented in the following subsection. In Section 8.2 we
show that some of these general statements do not hold true for environmentally almost bounded systems.

8.1 On the Composability of Environmentally Strictly Bounded Systems
The following lemma shows that the composition of two environmentally strictly bounded systems that have
disjoint tapes, and hence, do not communicate directly, is environmentally strictly bounded.

Lemma 15. Let P and Q be two environmentally strictly bounded protocol systems such that the sets of
external tapes of P and Q are disjoint. Then, P |Q is environmentally strictly bounded.

Proof. Let E be a universally bounded system which can be connected to P |Q. We need to show that
E | P |Q is strictly bounded.
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First, we observe that because E is universally bounded there exists a polynomial p0 such that for all
η ∈ N and a ∈ {0, 1}∗:

TimeE((E | P |Q)(1η, a)) ≤ p0(η + |a|) .22 (16)

In particular, the length of the overall output produced by E in a run of (E | P |Q)(1η, a) is bounded from
above by p0(η+ |a|). We thus can construct an environmental system E ′ ∈ Env(P) that upon every activation
produces random output such that for every sequence of messages sent from E to P in a run of (E | P |Q)(1η, a)
the probability that this sequence of messages is sent from E ′ to P in a run of (E ′ | P)(1η, a) is non-zero.
(Here we need that E ′ knows the length of a. This is true since P and Q are protocol systems, and hence,
start /∈ T (P |Q) and E ′ may use start.).

Clearly, E ′ is universally bounded. Now, since P is environmentally strictly bounded, there exists a
polynomial p1 such that for all η ∈ N and a ∈ {0, 1}∗:

TimeP((E ′ | P)(1η, a)) ≤ p1(η + |a|) .

Since with non-zero probability E ′ (running with P) sends the same sequence of messages to P as E (running
with P |Q), we deduce that for all η ∈ N and a ∈ {0, 1}∗:

TimeP((E | P |Q)(1η, a)) ≤ p1(η + |a|) . (17)

Analogously, there exists a polynomial p2 such that for all η ∈ N and a ∈ {0, 1}∗:

TimeQ((E | P |Q)(1η, a)) ≤ p2(η + |a|) . (18)

Combining (16), (17), and (18), we obtain that for all η ∈ N and a ∈ {0, 1}∗:

Time((E | P |Q)(1η, a)) ≤ p0(η + |a|) + p1(η + |a|) + p2(η + |a|) .

Thus, E | P |Q is strictly bounded.

The above lemma can be generalized to protocol systems P and Q whose sets of external tapes are
not disjoint, provided that the length of the messages that, say, P sends to Q is bounded by a polynomial
in the security parameter plus the external input (of the environment) plus the input that P gets from
the environment. To state this precisely, let R, R′, and R′′ be connectable systems. Then, we define
FlowR→R′((R|R′ |R′′)(1η, a)) to be the random variable over Rand which assigns to every α ∈ Rand the
overall length of all messages that were sent from R to R′ (i.e., the output by R on input tapes of R′) in
the run of R|R′ |R′′ with security parameter η, external input a, and random coins α. Here we count all
messages even messages that are rejected in mode CheckAddress. (Note that if the set of external tapes of R
and R′ are disjoint, then the flow from R and R′ is empty.) Now we can prove the following generalization
of Lemma 15.

Lemma 16. Let P and Q be two environmentally strictly bounded protocol systems that are connectable and
such that there exists a polynomial p such that for all E ∈ Env(P |Q):

Prob
[
FlowP→Q((E | P |Q)(1η, a)) ≤ p

(
η + |a|+ FlowE→P((E | P |Q)(1η, a))

)]
= 1

(i.e., the output from P to Q is bounded in length by a polynomial in the security parameter plus the length of
the external input plus the length of the input P received from E). Then, P |Q is environmentally strictly
bounded.

Proof. Let E and p be as in the assumption of the lemma. We may assume that p has only non-negative
coefficients. Hence, p(n) ≤ p(n′) for all n, n′ ∈ N such that n ≤ n′. Since E is universally bounded,
we know that there exists a polynomial p′ such that FlowE→P((E | P |Q)(1η, a)) ≤ p′(η + |a|) (i.e., the
probability for this is 1) and such that FlowE→Q((E | P |Q)(1η, a)) ≤ p′(η + |a|). Hence, by assumption,

22That is, TimeE((E | P |Q)(1η , a))(α) ≤ p0(η + |a|) for all random coins α ∈ Rand.
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FlowP→Q((E | P |Q)(1η, a)) ≤ p(η + |a| + p′(η + |a|)). So, FlowE|P→Q((E | P |Q)(1η, a)) ≤ p′(η + |a|) +
p(η + |a| + p′(η + |a|)). As in the proof of Lemma 15 and since Q is environmentally strictly bounded,
we can deduce that there exits a polynomial q such that TimeQ((E | P |Q)(1η, a)) ≤ q(η + |a|). Hence,
FlowE|Q→P((E | P |Q)(1η, a)) ≤ p′(η + |a|) + q(η + |a|). Now, again since P is environmentally strictly
bounded and as in the proof of Lemma 15, we can conclude that there exists a polynomial q′ such that
TimeP((E | P |Q)(1η, a)) ≤ q′(η + |a|). So, TimeQ|P((E | P |Q)(1η, a)) ≤ q(η + |a|) + q′(η + |a|). It follows
that P |Q is environmentally strictly bounded.

The condition stated in Lemma 16 is often satisfied. For instance, if P and Q do not have common
external tapes or in many settings where Q is a subprotocol of P. However, we emphasize that even if this
condition is not satisfied, it is generally easy to see whether the composition of two environmentally strictly
bounded systems is environmentally strictly bounded. In fact, as already mentioned, we would argue that
for natural protocol systems it basically never happens that the composition is not environmentally strictly
bounded.

The next lemma shows that the multi-session version of an environmentally strictly bounded system is
environmentally strictly bounded.

Lemma 17. Let Q be an environmentally strictly bounded protocol system. Then, !Q is environmentally
strictly bounded.

Proof. First, let E ∈ Env(!Q) be σprefix-single session, i.e., the environment E invokes only a single session of
Q. Let E ′ ∈ Env(Q) simulate E except that it strips off the SID with which E prefixes messages. Since E is
universally bounded, E ′ is universally bounded too. Then it is easy to construct a bijection between runs of
E | !Q and E ′ | Q such that corresponding runs produce the same output and have the same probability of
occurring.23 Since, by assumption, Q is environmentally strictly bounded, there exists a polynomial p in the
security parameter plus the length of the external input such that for all runs of E ′ | Q the number of steps
taken by Q is bounded by p. It follows that there exists a polynomial p′ such that for every run of E | !Q the
number of steps taken by the session invoked by E (i.e., the overall number of steps taken by machines in
mode Compute belonging to that session) in this run is bounded p′.

Now, let E ∈ Env(!Q), where we do not require E to be σprefix-single session. Since E is universally
bounded, there exists a polynomial q (in the security parameter plus the length of the external input) such
that the overall number of steps taken by E (in any run with any system) is bounded by q. In particularly, the
length of messages sent by E to !Q is bounded by q(η + |a|) (in any run of (E | !Q)(1η, a) for any η ∈ N and
a ∈ {0, 1}∗). Hence, similarly to the proof of Lemma 15, we can construct a universally bounded environment
E ′ ∈ Env(!Q) which randomly picks an SID sid (one bounded in length by q(η + |a|)) and randomly picks at
most q(η + |a|) messages of length at most q(η + |a|) and sends these messages prefixed by sid to !Q. By
construction, E ′ is a σprefix-single session environment. Hence, by the above, we know that there exists a
polynomial p such that for every run of E ′ | !Q the number of steps taken by the session invoked by E ′ in
this run is bounded by p. Now, consider a run of E | !Q and, for some SID, all machines with this SID in
this run. The probability that this SID is picked by E ′ and that E ′ produces exactly the same input for the
machines with that SID is non-zero. Hence, it follows that the number of steps taken by these machines in
the considered run of E | !Q is bounded by p.

Overall, we obtain that for all η ∈ N and a ∈ {0, 1}∗:

Time((E | !Q)(1η, a)) ≤ q(η + |a|) + q(η + |a|) · p(η + |a|) .

Hence, E | !Q is strictly bounded.

Clearly, the converse of Lemma 17 is also true, as stated in the next lemma. Furthermore, the multi-session
version of the multi-session version of Q, i.e, !Q—in this system all messages are prefixed by two SIDs, i.e.,
they are of the form m = (s1, (s2,m

′))—is environmentally bounded if !Q is:
23Here we use that Q is a protocol system, in particular Condition (ii) of Definition 11. Without this condition, there could be

several copies of a machine in !Q, whereas in Q there is only one such copy. We also use that Q does not contain the tape start
since the content of this tape would be interpreted differently by Q and Q.
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Lemma 18. Let Q be a protocol system such that !Q is environmentally strictly bounded. Then, Q and !Q
are environmentally strictly bounded.

The proof of this lemma is straightforward and therefore omitted.

8.2 On the Composability of Environmentally Almost Bounded Systems
We now show that the Lemmas 15 and 17 (and hence, Lemma 16 because it is a generalization of Lemma 15)
do not hold true for environmentally almost bounded protocol systems in general. However, as mentioned,
for applications this is not really relevant since protocol systems are typically strictly bounded and the
composition of such systems typically is strictly bounded as well.

Intuitively, Lemma 15 and Lemma 17 need that the runtime of a protocol is bounded by a polynomial no
matter which sequence of messages (of polynomial length) is received from the environment. Environmentally
almost bounded protocols do not have this property: There might be (sequences of) messages that trigger
exponential or worse runtime. As long as every environment has only a negligible chance of finding such
“bad” messages the protocol would still be environmentally almost bounded. In the following, we use this
to construct two protocol systems that are environmentally almost bounded but can be used to generate
“bad” messages for each other. When running concurrently, an environment can then simply forward these
messages to break polynomial runtime of the combined protocols.

For the construction of these protocols, we need the existence of so-called time-lock puzzles, a complexity
assumption introduced in [34]. We define time-lock puzzles following [19]:24

Definition 21. A time-lock puzzle consists of an ITM V (the verifier) and an ITM P (the prover) such that
the following conditions are satisfied, where by 〈P, V 〉 we denote the distribution of the output of V after an
interaction with P :

1. Given an argument of the form (1η, s), V runs in polynomial time in η. Given an argument of the form
(1η, s), P runs in polynomial time in η + s.

2. Easiness. For every polynomial p we have that

min
s≤p(η)

Prob [〈P (1η, s), V (1η, s)〉 = 1]

is overwhelming (as a function in η). (We call s the hardness of the puzzle.)

3. Hardness. For any ITM B running in polynomial time in the length of its first two arguments (i.e., in
η + |a|) there exists a polynomial p such that

sup
s≥p(η+|a|)

Prob [〈B(1η, a, s), V (1η, s)〉 = 1]

is negligible (as a function in η and a).

Lemma 19. If time-lock puzzles exist, then the following statements are true.

1. There exist protocol systems P and Q with disjoint sets of external tapes such that P and Q are
environmentally bounded but their composition P |Q is not environmentally bounded.

2. There exists a protocol system R such that R is environmentally bounded but !R is not environmentally
bounded.

24We note that in [19], for the hardness assumption, the runtime of B does not depend on the length of the external input a,
but only on the security parameter η. However, since here the runtime of environments depends on the length of a and, in the
proof of the following lemma, we need that environments play the role of B, we adapted this notion. For uniform environments
one could drop the external input altogether.
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Proof. Hofheinz et al. [19, footnote 21 on page 34] sketched that if time-lock puzzles exist, then there exist
environmentally bounded protocol systems P and Q with disjoint sets of external tapes such that P and Q are
environmentally bounded but !P | !Q is not environmentally bounded. Their idea can be used as follows to
show that there even exist environmentally bounded systems P and Q such that P |Q is not environmentally
bounded.

Let (VA, PA) and (VB , PB) be two time-lock puzzles (with verifiers VA/VB and provers PA/PB). We
define P and Q to have disjoint tapes. Also both systems are defined to have one input and one output tape
and they accept every message in mode CheckAddress. Upon input s (this is the hardness of the puzzle), P
simulates VA(1η, s) (if VA sends a message to PA, P outputs this message on its output tape and if VA wants
to receive a message, P waits for input on its input tape and then gives this input to VA) until VA halts
and outputs a bit b. If b = 0 (i.e., the verifier does not accept), then P halts. Otherwise, P continues and
simulates PB(1η, 2s) (here 2s means “2 times s” where s is interpreted as a non-negative integer). When PB
halts, P goes back to the start and again waits for input s, to simulate VA(1η, s) and so on. Q is defined as
P except that the puzzles A and B are swapped, i.e., Q simulates VB and PA instead of VA and PB . So, P
(Q) verifies a puzzle of type A (B) of hardness s and then solves a puzzle of type B (A) of hardness 2s.

We now show that P and Q (in separation) are environmentally bounded. For this purpose, let E be
an environment of P. Since E is universally bounded, by the hardness assumption of the puzzles, there
exists a polynomial phard such that E can only solve puzzles of hardness s ≤ phard(η + |a|) (except with
negligible probability), where η is the security parameter and a is the external input to E . Let s1, . . . , sn
be the hardnesses that E sends to P in a run of (E | P)(1η, a). Note that in every run n ≤ pE(η + |a|),
where pE is a polynomial that bounds the number of steps taken by E . By definition of time-lock puzzles,
there exist polynomials pV and pP such that, for all i ≤ n, the runtime of (the simulated) VA(1η, si) is
bounded by pV (η) and the runtime of PB(1η, si) is bounded by pP (η + si). We may assume that pP has only
non-negative coefficients. Hence, pP (l) ≤ pP (l′) for all l, l′ ∈ N with l ≤ l′. As argued above, the simulated
VA(1η, si), i ≤ n, accepts (i.e., outputs 1) only if si ≤ phard(η + |a|) (except with negligible probability).
Hence, PB(1η, 2si), i ≤ n, is only simulated if si ≤ phard(η + |a|). We obtain that the overall runtime of P is
bounded by

n∑
i=1

pV (η) +
n∑
i=1

pP (η + 2si) ≤ pE(η + |a|) · pV (η) + pE(η + |a|) · pP (η + 2phard(η + |a|))

(except with negligible probability). Hence, P is environmentally bounded.25 Analogously, Q is environmen-
tally bounded.

Now, we show that the system P |Q is not environmentally bounded. Therefore, we construct an
environment E as follows. Basically E will start with a puzzle of hardness 1 for P, solves it itself and then
forwards all messages between P and Q for η many runs of the puzzles. At the end, a puzzle of hardness
2η is solved. Now we describe E in more detail. First, E sends hardness 1 to P and simulates PA(1η, 1)
with P. So, VA(1η, 1), simulated by P, accepts (except with negligible probability), and hence, P starts the
simulation of PB(1η, 2). Then, E sends hardness 2 to Q, which then simulates VB(1η, 2), where E forwards all
messages between P (and hence, PB(1η, 2)) and Q (and hence, VB(1η, 2)). As a result, VB(1η, 2), simulated
by Q, accepts, and hence, Q starts the simulation of PA(1η, 4). E sends hardness 4 to P and again forwards
all messages between P and Q. This is iterated by E η times, always doubling the hardness. At the end, a
puzzle of hardness 2η is solved, so, except with negligible probability, the overall runtime of E | P |Q can not
be polynomially bounded in η + |a| (by the hardness assumption of the puzzles). Thus, E | P |Q is not almost
bounded. Since clearly E is universally bounded, this means that P |Q is not environmentally bounded. This
proves the first statement of the lemma.

We now prove the second statement using the first one. Let P and Q be protocol systems as above. That
is, P and Q are environmentally bounded but there exists an environment E of P |Q such that E | P |Q is
not almost bounded. We define the protocol system R as follows: R chooses a bit b uniformly at random. If

25Note that P is not environmentally strictly bounded because there is a negligible chance for the environment to solve a
puzzle of hardness s > phard(η + |a|). This is why Lemma 19 does not hold true for environmentally strictly bounded systems.
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b = 0, R behaves exactly like P and otherwise it behaves exactly like Q. (The tape names have to be adjusted
appropriately.) Now, R is environmentally bounded because P and Q are environmentally bounded, and R
runs either only P or only Q. However, !R is not environmentally bounded: We construct an environment E ′
of !R as follows: E ′ uses two sessions of R and simulates E where messages exchanged with P/Q are now
exchanged with the first/second session of R, where now SIDs are used to address these sessions. Clearly, E ′
is universally bounded because E is universally bounded. Now, with probability 1

4 , the system E ′ | !R behaves
exactly as E | P |Q, and hence, E ′ | !R is not almost bounded.

We remark that the lemma holds both for uniform and non-uniform environments. Note that the
environments constructed in the above proof are uniform, i.e., they ignore the external input.

The following lemma states that Lemma 18 also holds for environmentally almost bounded systems.
Again, this lemma is easy to prove.

Lemma 20. Let R be a protocol system such that !R is environmentally almost bounded. Then, R and !R
are environmentally almost bounded.

9 On Basing Universal Composability on Environmentally Strictly
Bounded Systems

As already mentioned before, in applications the systems one has to deal with are typically environmentally
strictly bounded. Also, as shown in Section 8, environmentally strictly bounded systems enjoy useful compos-
ability properties. Therefore, a question that suggests itself is whether we obtain useful notions of universal
composability if we formulate these notions based on environmentally strictly bounded systems, instead of
environmentally almost bounded systems: we would assume the protocol system P to be environmentally
strictly bounded and, for strong simulatability, we would require S |F to be environmentally strictly bounded;
similarly, the other security notions would be adapted.

In this section, we show that basing the security notions on environmentally strictly bounded systems,
rather than environmentally almost bounded systems, yields unsuitable security notions. More specifically,
we show the following properties:

1. The composition theorem for a constant number of protocol systems (the analog of Theorem 8) would
not hold for any of the new security notions.

2. Strong simulatability and dummy UC would not be transitive relationships anymore.

3. Strong simulatability and dummy UC would not imply UC anymore.

We note, however, that the composition theorem for the unbounded self-composition of systems (the
analog of Theorem 9) would still hold. The proof would even be simpler: due to Lemma 17 it would follow
immediately that ! (S |F) and all hybrid systems considered in the proof of this theorem are environmentally
strictly bounded. In the case of environmentally almost bounded systems this required a more tailored and
involved proof, namely, the proof of Lemma 9.

We further remark that Hofheinz et al. [19] considered a security definition conceptually similar to our
strict variant of UC (they do not consider strict variants of SS or dummy UC) and that they showed that, for
their notion, the universal composition theorem in the UC model does not hold. The counterexample used in
their proof could also be used to show that the composition theorem does not hold for our strict variant of
UC. However, the counterexample we use below is simpler and more general. In particular, it can be used to
show that strict dummy UC and strict strong simulatability are unsuitable security notions too, a fact that
could not have been proven with their example.

In what follows, we first introduce the security notions based on environmentally strictly bounded systems
and then prove the negative results mentioned above.
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9.1 Strict Simulatability
In order to define the security notions based on environmentally strictly bounded systems, we first need to
introduce some notation.

In Section 6.2, we required that the system composed of an adversary/simulator and a protocol system is
environmentally almost bounded. Now, we require that this composition is environmentally strictly bounded.
Therefore, we introduce the sets Advstrict(S) and SimS

′

strict(S), which are defined just as Adv(S) and SimS
′
(S)

(see Definition 18), respectively, except that for A ∈ Advstrict(S) or A ∈ SimS
′

strict(S) we now require that
A |S is environmentally strictly bounded. We emphasize that, as before, A itself is not required to be
environmentally (strictly) bounded.

Definition 22. Let P and F be protocol systems such that P is environmentally strictly bounded.

1. Strict Strong Simulatability (strict SS): P ≤SS
strict F iff ∃ S ∈ SimPstrict(F): P ∼= S |F .

2. Strict Universal Simulatability/Composability (strict UC): P ≤UC
strict F iff ∀ A ∈ Advstrict(P) ∃ I ∈

SimA |Pstrict(F): A |P ∼= I |F .

3. Dummy Version of strict UC (strict dummyUC): P ≤dumUC
strict F iff ∃ I ∈ SimD |Pstrict(F): D |P ∼= I |F

where D = D(T net
in (P), T net

out (P)).

Analogously, we could define strict variants of black-box and reactive simulatability. However, from the
results presented for above notions it can be easily seen that the strict variants of black-box and reactive
simulatability yield unsuitable security notions as well.

Using Lemmas 4 and 5, it is easy to see that strict SS is equivalent to strict dummyUC and that strict
UC implies strict SS (and hence, strict dummyUC):

Lemma 21. Let P and F be protocol systems such that P is environmentally strictly bounded. Then,
P ≤SS

strict F if and only if P ≤dumUC
strict F and P ≤SS

strict F if P ≤UC
strict F .

Since strict dummyUC and strict SS are equivalent, in what follows, we will discuss only strict SS and
strict UC.

9.2 No Universal Composability for a Constant Number of Protocol Systems
We now show that the analog of Theorem 8, the composition theorem for a constant number of protocol
systems, does not hold for strict SS and strict UC:

Lemma 22. There exist protocol systems P1, P2, F1, and F2 that satisfy the following conditions:

1. P1 and P2 as well as F1 and F2 are I/O-connectable, respectively.

2. P1, P2, P1 | P2, F1, F2, and F1 | F2 are environmentally strictly bounded.

3. For all i ∈ {1, 2}: Pi ≤SS
strict Fi and Pi ≤UC

strict Fi.

4. P1 | P2 6≤SS
strict F1 | F2 and P1 | P2 6≤UC

strict F1 | F2.

Proof. We define the systems P1, P2, F1, and F2 as follows; see Figure 8 for an illustration of the systems.
Every system is a single IITM. The systems P2 and F2 have the same I/O interface which consists of an I/O
input tape c and an I/O output tape c̄. The system F2 additionally has a network input tape and a network
output tape but P2 does not have any network tapes. The systems P1 and F1 have no network tapes and
they have the same I/O interface which consists of two I/O input tapes c̄ and c′ and two I/O output tapes c
and c̄′. That is, with the tapes c and c̄, they connect to P2/F2. Clearly, P1 and P2 as well as F1 and F2 are
I/O-connectable, respectively. These systems are defined to accept all messages in mode CheckAddress.

In mode Compute the machines act as follows: When receiving a message m on c′ (resp. c̄) the machine
P1 outputs m on c (resp. c̄′). When receiving a message m on c the machine P2 outputs m on c̄. When
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Figure 8: IITMs constructed in the proof of Lemma 22.

receiving a message m on the I/O tape c, the machine F2 outputs m on its network tape. When receiving a
message m on the network tape, m is output on c̄. Note that P1, P2, and F2 are simple dummy IITMs which
merely forward all messages they receive. The machine F1 also only forwards messages but to which tape a
message is forwarded depends on a random choice. More specifically, F1, upon its first activation in mode
Compute, first chooses r ∈ {1, . . . , 2η} uniformly at random (where η is the security parameter). If r 6= 1,
then F1 forwards messages from c′ to c and from c̄ to c̄′ just like P1. Otherwise (i.e., r = 1), F1 still forwards
messages from c′ to c but it forwards messages from c̄ to c. That is, with the overwhelming probability
1− 2−η, F1 behaves exactly as P1. But with the negligible probability 2−η, F1 forwards all messages to c.

It is easy to see that P1, P2, P1 | P2, F1, F2, and F1 | F2 are environmentally strictly bounded (both for
uniform and non-uniform environments). Furthermore, it is easy to see that P1 ≤SS

strict F1 and P1 ≤UC
strict F1,

because, except with negligible probability, F1 behaves exactly like P1 (no simulator is needed). It is also
easy to see that P2 ≤SS

strict F2 and P2 ≤UC
strict F2: the simulator can simply replay messages output by F2 back

to F2.
Next, we show that P1 | P2 6≤SS

strict F1 | F2. Note that this implies P1 | P2 6≤UC
strict F1 | F2 because strict

UC implies strict SS (Lemma 21). As a warming up, we note that the simulator S that simply replays
messages output by F2 back to F2 (as it can be used to prove P2 ≤SS

strict F2) is not a “good” simulator to
prove P1 | P2 ≤SS

strict F1 | F2 because the system S |F1 | F2 is not environmentally strictly bounded: If r = 1
(in F1), which happens with probability 2−η, and an environment sends a message to S |F1 | F2 via c′, then
this message circles between F1, F2, and S forever, and hence, the run does not terminate. (Note, however,
that S |F1 | F2 is environmentally almost bounded and with the simulator S we obtain P1 | P2 ≤SS F1 | F2).

We now show that P1 | P2 6≤SS
strict F1 | F2 by contradiction. Assume that P1 | P2 ≤SS

strict F1 | F2. Then,
there exists S ∈ SimP1 | P2

strict (F1 | F2) such that P1 | P2 ∼= S |F1 | F2.
First, we show that S has basically no choice but to forward all messages it receives back to F2. Note

that S only has two network tapes (one input and one output tape) which connect to F2. For all η, i ∈ N,
let pη,i denote the probability that S (with security parameter η) outputs 1 in the first i consecutive
activations with input 1. (Here, the probability is taken over the random coins of S.) We now show
that the probability pη,i is overwhelming for all polynomially bounded i (in η). Let q be a polynomial
in η. We construct E ∈ Env(P1 | P2) as follows: E sends the message 1 on tape c′ (i.e., to P1 or F1)
and waits to receive 1 on c̄′. If E does not receive 1 (either E is activated with empty input on tape
start or it receives some other message on c̄′), E outputs 0 on decision. If E receives 1 on c̄′, it again
sends the message 1 on tape c′ and behaves just as before. The system E does this q(η) times, unless it
outputs 0 on tape decision. If in all these iterations, E received 1 back from F2, E outputs 1 on decision.
Clearly, if E interacts with P1 | P2, it will always output 1 on decision, i.e., Prob[(E | P1 | P2)(1η, a) = 1] = 1
for all η, a. If E interacts with S |F1 | F2, then E will output 1 only if S forwarded 1 q(η) times (and
r 6= 1; where r is the number chosen by F1). That is, Prob[(E | S | F1 | F2)(1η, a) = 1] ≤ pη,q(η), for all η, a.
Since |Prob[(E | P1 | P2)(1η, a) = 1]− Prob[(E | S | F1 | F2)(1η, a) = 1]| is negligible (as a function in η and a),
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1− pη,q(η) is negligible, i.e., pη,q(η) is overwhelming. In particular, there exists η0 ∈ N such that pη,q(η) > 0
for all η ≥ η0.

Now, we use the above to show that S |F1 | F2 is not environmentally strictly bounded, which contradicts
the assumption that S ∈ SimP1 | P2

strict (F1 | F2). For this purpose, let E ∈ Env(S |F1 | F2) be the following
system: E sends the message 1 on tape c′ (i.e., to P1 or F1) and then halts. Since, by assumption, S |F1 | F2
is environmentally strictly bounded, there exists a polynomial p such that for every security parameter η ∈ N
and external input a the runtime of the system Q := E | S | F1 | F2 is bounded by p(η) for all runs of this
system, i.e., Time(Q(1η, a)) ≤ p(η) (note that E ignores the external input a). Let q(η) := p(η) + 1 for all
η ∈ N. If r = 1 in F2, which happens with probability 2−η, then in such a run S is activated (at least) q(η)
times with 1 and we know from what we have shown above that there exists η0 ∈ N such that pη,q(η) > 0 for
all η ≥ η0, i.e., the probably that S will return 1 at least q(η) times is non-zero. In particular, there exists a
run of Q with security parameter η0 (the external input a is ignore by E , and hence, does not matter) that
has non-zero probability such that the runtime of this run is bigger than p(η0), a contradiction. This shows
that S |F1 | F2 is not environmentally strictly bounded. We conclude that P1 | P2 6≤SS

strict F1 | F2.

We note that the above proof works for both uniform and non-uniform environments. Hence, the statement
of the lemma also holds in a uniform setting. We also note that the protocol systems constructed in the
above proof cannot be used to break the composition theorem for the unbounded self-composition of systems,
which, as mentioned earlier, holds true even for environmentally strictly bounded protocol systems. This is
because one cannot encode the systems P1 | P2 and F1 | F2 into appropriate protocol systems !P and !F . If
one encodes the whole system P1 | P2 in one session of !P and the whole system F1 | F2 in one session of !F ,
then one cannot show that P single session realizes F by the same argument as in the above proof. This,
however, is the main requirement for the composition theorem for unbounded self-composition. If one encodes
P1 and P2 (and also F1 and F2) in different sessions of !P (and !F , respectively), then their behavior differs
from the the combined system P1 | P2 as both protocols cannot communicate with each other directly (recall
that different sessions cannot interact with each other directly, only via the environment/adversary).

We emphasize that the protocol systems P1, P2, and F2 defined in the above proof are simple dummy
IITMs which only forward/replay messages. The IITM F1 is simple too: It only forwards/replays messages
and the “switch” r determines where to forward/replay the messages. Moreover, the simulators that are
used in the above proof to show that P1 realizes F1 and P2 realizes F2 are also very simple: In fact, for
P1 and F1 there is no simulator because these systems do not have any network tapes. The simulator S
which is used to show that P2 realizes F2 is a simple dummy IITM which replays all messages back to
F2. In particular, S is environmentally strictly bounded. Altogether, since the protocols and simulators
considered are all very simple, it is quite hard to restrict the class of protocols and/or simulators in order to
obtain reasonable security notions based on environmental strict boundedness. Possible approaches are to
enforce some acyclicity conditions on the flow of messages between protocols and/or simulators such that the
cycles vanish. Such approaches have been taken in related work but they are unsatisfactory as discussed in
Section 11.

9.3 No Transitivity
The proof of the following lemma, which shows that ≤SS

strict is not transitive, is very similar to the proof of
Lemma 22.

Lemma 23. There exist protocol systems Q1, Q2, and Q3 with pairwise disjoint sets of network tapes such
that the following conditions are satisfied:

1. Q1, Q2, and Q3 are environmentally strictly bounded.

2. Q1 ≤SS
strict Q2.

3. Q2 ≤SS
strict Q3.

4. Q1 6≤SS
strict Q3.
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Proof. Let P1, P2, F1, and F2 be the protocol systems defined in the proof of Lemma 22. Furthermore, let
F ′2 be obtained from F2 by renaming the network tapes such that the set of network tapes of F2 and F ′2 are
disjoint. We define:

Q1 := P1 | P2 ,

Q2 := P1 | F2 ,

Q3 := F1 | F ′2 .

From the proof of Lemma 22, we already know that Q1 and Q3 are environmentally strictly bounded and
that Q1 6≤SS

strict Q3. Moreover, it is easy to see that Q2 = P1 | F2 is environmentally strictly bounded. It
remains to show that Q1 ≤SS

strict Q2 and Q2 ≤SS
strict Q3.

In order to show Q1 ≤SS
strict Q2 it suffices to consider a simulator S1 which simply replays all messages from

Q2 back to Q2. It is easy to see that S1 | Q2 is environmentally strictly bounded. With this, Q1 ≤SS
strict Q2

follows immediately.
In order to show Q2 ≤SS

strict Q3 it clearly suffices to consider a simulator S3 which simply forwards all
messages from Q3 to the environment and vice versa. Again, it is easy to see that S2 | Q3 is environmentally
strictly bounded.

We note that the above lemma does not carry over to strict UC (with the notation in the proof of
Lemma 22 we have that Q2 6≤UC

strict Q3; this can be shown analogously to the proof of Lemma 22). In fact,
strict UC can easily been seen to be transitive:

Lemma 24. Let Q1, Q2, and Q3 be environmentally strictly bounded protocol systems. If Q1 ≤UC
strict Q2 and

Q2 ≤UC
strict Q3, then Q1 ≤UC

strict Q3.

Proof. The proof is analogous to the proof of Lemma 13.

9.4 Strict SS does not Imply Strict UC (Incompleteness of the Dummy Adver-
sary)

The following lemma states that strict SS does not imply strict UC.

Lemma 25. There exist environmentally strictly bounded protocol systems P and F such that P ≤SS
strict F

and P 6≤UC
strict F .

Proof. Let Q2 and Q3 be defined as in the proof of Lemma 23. With P = Q2 and F = Q3, the lemma
follows.

Note that this lemma means that the dummy adversary is not complete (see Remark 12).

10 Instantiation of the IITM Model
The IITM model is a very flexible and expressive model which allows us to model cryptographic protocols in
various ways. This section provides several examples of how various types of protocols can be modeled and
analyzed in the IITM model. More specifically, in Section 10.1, we suggest one possible way of modeling
(multi-party) protocols in the IITM model, including the addressing of multiple sessions as well as the
modeling of subprotocols and corruption; depending on the kind of setting, other approaches might be
favorable. In order to illustrate the flexibility of the model, we also briefly discuss composition with joint
state in Section 10.2 and composition with global setup in Section 10.3. These aspects required major changes
in other models (or entirely new models) and new composition theorems. In the IITM model, joint and global
state can be dealt with seamlessly. In Section 10.4, we present concrete protocols and functionalities and
illustrate how they can be modeled in the IITM model (see also, e.g., [27, 26, 23] for other examples). In
Section 10.5, we briefly discuss another possible instantiation of the IITM model based on the SUC model
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from [6]. We emphasize that these sections focus on a small selection of examples and mainly serve as an
illustrative starting point for working with the IITM model. Due to the generality of the IITM model, many
other instantiations, protocol types, and modeling choices are conceivable and fully supported as well, going
beyond the capabilities of other models.

10.1 Modeling of Real Protocols and Ideal Functionalities
Structure of real protocols. A real protocol with n roles can be modeled in the IITM model as the
following protocol system:

P := !M1 | · · · | !Mn (19)

where Mi, for i ∈ {1, . . . , n}, is an IITM which models the ith role. Every machine is in the scope of a
bang operator to model multiple sessions of the protocol (see below). Moreover, every machine Mi has I/O
and network tapes. The network tapes are used to communicate with other machines over the (untrusted)
network. As usual, the network is controlled by the adversary, and hence, all messages sent on a network tape
go directly to the adversary and all messages received on a network tape come from the adversary. Network
tapes are also used to model corruption (see below). The I/O tapes are not controlled by the adversary. They
are used by a machine Mi to communicate with the environment, such as (honest) users of the protocol or
higher level protocols. For example, if P is a key exchange protocol, then an I/O tape would be used to
output a successfully established session key (to some user or, for example, to an instance of a secure channel
protocol).

Potentially, the I/O tapes can also be used by a machine Mi to communicate with other roles directly,
rather than through the adversary or environment. In this case, Mi would directly be connected with another
machine, say Mj , via I/O tapes. This is useful in many settings, for example, for modeling joint, shared,
and global state as well as components global parameters to other protocol components (see the following
subsection for more details).

Note that this definition of P models a finite number of roles. Of course, the IITM model can also
represent an unbounded number of roles. For example, one might use the above system for n = 1 and encode
different roles in machine M1. That is, each instance of M1 not only models a single session but rather models
a specific role in a session. Because M1 is in the scope of a bang, we can thus obtain an unbounded number
of roles during a protocol run (see also below for how such roles can be addressed).

Structure of ideal functionalities. One way of modeling an ideal functionality (ideal protocol) F is
simply by a single IITM in the scope of a bang, i.e.,

F := !MF (20)

where MF has the same external I/O tapes as P and different network tapes. Note that MF comprises the
external I/O tapes of all machines M1, . . . ,Mn of P. Usually, every instance of MF models a single session,
e.g., a single session of a key exchange protocol. A single instance of MF then handles all inputs and outputs
from the environment for all instances from the real protocol in the same session; in particular, this usually
includes instances of different roles Mi. This allows MF to maintain a single internal state for the whole
session, unlike the real protocol where the state of one session is scattered among instances of different roles.
For example, an instance of MF modeling an ideal key exchange protocol would generate the session key just
once and then output the same key to all participants. In order to realize such an ideal functionality, the real
protocol would then have to make use of network communication and suitable cryptographic primitives to
ensure that all participants in the same session end up with the same key.

Just as for real protocols, the IITM model also allows for various other modelings of ideal functionalities.
For example, in the literature one often adds so-called dummy machines/parties to the ideal protocol, serving
as forwarders for inputs and outputs to/from the environment. This can be modeled as

F := !M ′1 | · · · | !M ′n | !MF (21)
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where M ′i , for i ∈ {1, . . . , n}, is an IITM with the same external I/O tapes as Mi and two additional input
and output tapes connecting to MF . Every instances of M ′i corresponds to exactly one instance of Mi in
the real protocol, but acts only as a forwarder for inputs/outputs between MF and the environment. The
machine MF has the same purpose as above, i.e., it usually handles a whole session of a protocol in an ideal
way, but now receives and sends inputs/outputs from/to the environment via instances of M ′i .

In the following, we assume that F := !MF , i.e., we use the modeling without dummy machines, as this
modeling is the conceptually simpler one.

Addressing of multiple sessions of real protocols. Due to the general concept of the mode CheckAddress
there are many possible ways of how multiple sessions of a protocol can be addressed. We now describe one
such approach, which is based on pre-established globally unique session identifiers (SIDs). This approach
is the standard way of addressing protocol instances in universal composable models and it is what the
composition theorems expect. That is, protocols are modeled as session versions (see Section 5.2.1) or
σprefix-session versions26 (see Section 5.3.1); see also below. As argued in [26], pre-established SIDs are not
always appropriate and desired. We refer the reader to [26] for an addressing mechanism formulated in the
IITM model where SIDs are not pre-established, locally chosen and managed (see also below).

More specifically, to address multiple instances of a machine (role) Mi, and hence, multiple sessions of P ,
by using (global) SIDs, Mi can be defined (as a σprefix-session version) as follows: In mode CheckAddress,
the machine Mi accepts an incoming message only if it is of the form (sid,m) for some SID sid and some
message m. In mode Compute, the machine Mi records the SID contained in the first message it accepted.
Later it will only accept messages in mode CheckAddress which are prefixed with the recorded SID, say sid.
Moreover, in mode Compute the machine Mi will only output messages that are prefixed with sid.

This guarantees that in a run of P (with some environment) there is at most one instance of every Mi

for every SID sid; we denote such an instance by Mi[sid] and say that this instance is addressed by sid. The
instances M1[sid], . . . ,Mn[sid] (or a subset thereof if not all instances are present in a run) form a session of
the protocol P, the session with SID sid. We say that Mi[sid] belongs to session sid. Note that all instances
within one session share the same SID. This SID is globally unique, is given to an instance from outside
the protocol, and is pre-established by the parties participating in one session, in the sense that the SID is
established before the actual protocol starts to run.

Addressing of multiple sessions of ideal functionalities. The machine MF in the ideal functionality
F handles sessions in the same way as the machines Mi. Thus, in a run there will be at most one instance
of MF per session sid, denoted by MF [sid]. As mentioned above, this single instance MF [sid] handles the
inputs/outputs to/from the environment for the session sid of P, i.e., for the instances M1[sid], . . . ,Mn[sid]

(or a subset thereof).

As mentioned before, P and F are σprefix-session versions. In particular, the composition theorems can be
applied, and hence, it suffices to reason about P in the single-session setting (see below). Note that, by
modeling Mi to be a σprefix-session version, an instance Mi[sid] of Mi addressed by sid is aware of its SID sid,
i.e., it can use sid in its computation, and, for example, include it in messages to be signed/encrypted. If this
is not necessary, one could model Mi as a session version of some IITM M ′i , i.e., Mi = M ′i (see Section 5.2.1).
In this case, Mi would be completely oblivious to its SID.

Typically, an SID is structured and contains, in addition to the actual SID, the names of the parties
involved in the session. For example, to model that in one session s the ith role is played by party pidi the
SID would be of the form sid = (s, pid1, . . . , pidn) and a machine Mi would be defined in such a way that an
instance Mi[sid] would run the ith role as party pidi. Clearly, this can be generalized to let several parties
run one role in one session of the protocol. Moreover, if multiple roles are encoded in a single machine Mi,
then the SID might also include an identifier for the role that is to be activated. Such an identifier could
even contain machine code that is then executed by Mi.

26Recall that, for all messages m and tapes c, σprefix(m, c) := sid if m = (sid,m′) for some sid,m′ and σprefix(m, c) := ⊥
otherwise.
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The modeling of globally unique and pre-established SIDs as described above is used in all other models
for universal composability and it is hard-wired into these models (see Section 11). The IITM model is
flexible enough to allow for other forms of addressing multiple protocol sessions. In particular, in [26] an
alternative way of addressing multiple protocol session without pre-established and globally unique SIDs is
presented within the IITM model. In this formulation, parties merely use locally chosen and managed SIDs.
As further discussed in [26], this allows for a faithful analysis of protocols that do not use pre-established
SIDs, which is the case for most real-world authentication, key exchange, and secure channel protocols. This
approach has been successfully used in [23] to faithfully model and analyze several key exchange protocols
from practice that do not pre-establish global SIDs.

Security proofs using composition theorems. In the universal composability paradigm, security of a
protocol P , as modeled above, typically means that it realizes some appropriate ideal protocol F (e.g., in the
case of a key exchange protocol, an ideal key exchange functionality), i.e., P is considered secure (w.r.t. F) if
P ≤SS F . Of course, one can attempt to prove P ≤SS F directly. But this would require a proof which has
to consider multiple concurrent sessions. Using the composition theorems for unbounded self-composition
(Theorem 9, if the protocol does not depend on the SIDs, i.e., Mi = M ′i for some M ′i ; or Theorem 10 if the
protocol depends on the SIDs) simplifies this proof because one has to consider only a single session of the
protocol: For example, by Theorem 10, except for some (typically simple) checks concerning the runtime of
the system, one has to show only that P ≤SS

σprefix-single F to obtain that P ≤SS F . Hence, roughly speaking,
it suffices to show that M1[sid] | · · · |Mn[sid] realizes MF [sid] for one session sid.

Subprotocols and ideal functionalities. Complex protocols can often be/are often structured in a
hierarchy of higher- and lower-level protocols. For example, a secure channel protocol might use a key
exchange protocol or an authenticated channel as a subprotocol, and cryptographic primitives (such as
encryption or digital signatures) could be modeled as subprotocols (see Section 10.4 and [27, 26, 23]).

For the sake of the discussion here, let P ′ = !M ′1 | · · · | !M ′n be a subprotocol of P with the same structure
as P and where the addressing of machines is defined just as for P . Since P ′ is supposed to be a subprotocol
of P, the machines in P ′ typically connect via I/O tapes to the corresponding machines in P, i.e., M ′i and
Mi are connected via I/O tapes. By the addressing defined above for P and P ′, every instance Mi[sid] will,
via the I/O tapes, only interact with M ′i [sid] (since these instances output messages only of the form (sid,m)
for some message m and such messages are not accepted by other instances). Instead of the subprotocol P ′,
P might be connected to an ideal protocol (or ideal functionality) F ′ that provides the same I/O interface as
P ′ but provides the functionality of P ′ in an ideal way (e.g., an ideal key exchange or an ideal cryptographic
primitive).

Structuring a protocol like this again simplifies the proof of security of a (complex) protocol because the
subprotocol can be analyzed in separation and then P can be analyzed based on the ideal protocol as follows:
To prove that P |P ′ is secure, i.e., P |P ′ ≤SS F for some ideal protocol/functionality F , it suffice to show
that

P ′ ≤SS
σprefix-single F ′

for some appropriate ideal protocol/functionality F ′ and that

P |F ′ ≤SS
σprefix-single F .

From this, using the composition theorems (Theorem 8 and 10) and transitivity of ≤SS (Lemma 13), it follows
immediately that P |P ′ ≤SS F , which means that multiple sessions of P , where every such session may use a
session of P ′, realizes multiple sessions of F . We emphasize that both proof steps require merely single-session
reasoning and that the second proof step is further simplified because the subprotocol/functionality used by
P is idealized.

We note that the IITM model and the composition theorems are flexible enough to deal with much more
complex scenarios than the one described above. For instance:
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1. The reasoning can be iterated: P ′ itself could use subprotocols and the composition theorems can be
used to simplify the proof of P ′ ≤SS

σprefix-single F ′, just as in the case of P above.

2. P might use more than just one subprotocol in parallel.

3. P could use multiple sessions of P ′ per session. In this case, the sessions of P ′ could, for instance, be
addressed by a hierarchical SID (sid, sid ′,m) where sid is the SID that P uses and sid ′ is an extra SID
that is used to address the sessions of P ′ within a session of P . However, again single-session reasoning
would suffice for both P and P ′ to establish security properties for P (in composition with P ′) for
multiple sessions.

4. Obviously, P ′ is not restricted to have the same structure as P. For example, P ′ could be a two-
party/two-role protocol and P could be an n-party/n-role protocol where every two parties of one
session in P use one session of P ′. This way, for example, an n-party key exchange protocol could be
built from a two-party key exchange protocol.

Modeling corruption. In the IITM model, the way corruption is modeled is not fixed and hard-wired into
the model but is part of the specification of protocols, with the advantage that (i) the IITM model is simple,
(ii) general theorems proven in the IITM model, such as composition theorems, hold true independently of
how corruption is modeled, and (iii) corruption can be modeled in a very flexible way. We now describe one
possible way of modeling corruption in the IITM model. Clearly, other ways are possible and in some cases
might be desirable.

Modeling corruption of real protocols. The adversary (or environment) who connects to the network interface
of a real protocol P may send a special Corrupt message to a network tape of (some instance of) a machine
Mi in P . WhenMi receives such a message it considers itself corrupted and outputs its complete configuration
to the adversary. From then on Mi forwards all messages between the I/O and network interface, i.e., the
adversary is in full control of the corrupted instance.27 (clearly other options for defining the behavior of
corrupted instances are conceivable and useful as well). If P uses subprotocols/functionalities, as described
above, by this the adversary would also gain full access to the I/O interface of the subprotocols the corrupted
instance of Mi has access to. This models fully adaptive, active corruption of single instances. We note that,
as always in universal composability settings, the distinguishing environment should have the possibility to
know which instances are corrupted because, otherwise, a simulator could always corrupt instances in the
ideal world and then perfectly simulate the real world, i.e., every protocol system would realize every other
protocol system (with the same I/O interface). Therefore, a machine Mi is defined in such a way that, on the
I/O interface, it accepts requests of the form CorrStatus? and answers true if it is has been corrupted, i.e.,
if it has received a Corrupt message on the network interface before. As a result, an environment can ask
whether an instance is corrupted.

If P uses subprotocols/functionalities, then, typically, the corruption status of a machine in P also depends
on the corruption status of the subprotocols it uses. That is, an instance of a machine Mi might consider
itself corrupted also if one of its subprotocol instances is corrupted (a fact that Mi can check by sending
a CorrStatus? request). Note, however, that even if Mi returns to the environment that it is corrupted
(because some part of the subprotocol is corrupted), then this does not necessarily mean that Mi has to
consider itself completely controlled by the adversary. (Clearly, if desired, Mi could be modeled in such a
way that in this case it considers itself to be fully controlled by the adversary.)

For example, if Mi models an instance of a key exchange protocol and uses a functionality for public-key
encryption, then Mi, if asked whether it is corrupted, would return yes if it has been corrupted directly or if
its public-key functionality has been corrupted, because in this case it could not provide security guarantees.
It makes sense to model Mi in such a way that, even though the public-key functionality that Mi uses is
corrupted, it still follows its prescribed protocol: the fact that the private key has been stolen by the adversary
does not necessarily mean that every instance that uses the key is completely controlled by the adversary.

27However, this instance of Mi would still make sure addressing conventions are followed. For example, if it is a σprefix-session
version, it would still behave like a σprefix-session version with the SID it already has.
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However, if desired, one could also model Mi in such a way that if one of its subprotocols is corrupted, then
Mi considers itself controlled by the adversary. This depends on the kind of corruption one would like to
consider. Conversely, the adversary could corrupt only Mi but not the public-key functionality that Mi uses,
which would model that the private key of Mi is still not known by the adversary (e.g., because it is stored
on a smart card), but the process (the instance of Mi) that uses the private key is corrupted.

It should be clear that the way of corruption sketched above allows for a very fine-grained and flexible
modeling of corruption, ranging from the corruption of single instances to the corruption of complete parties.
In order to corrupt a complete party, the adversary can corrupt every instance of Mi (and subprotocol
instances used by this instance) that belong to the party an adversary wants to control. For such a form of
corruption, instances would typically check whether one of their subprotocols are corrupted and then consider
themselves completely controlled by the adversary as well. If one wants to make sure that if an instance is
corrupted, then also all its subinstances are, an instance could check that if it has been explicitly corrupted
by the adversary that then all its subinstances have been corrupted as well (and if this is not the case it could
wait until the adversary has explicitly corrupted all subinstances).

So far we have not put a restriction on when corruption can occur, and hence, we modeled adaptive
corruption. Clearly, static corruption can be modeled as well: For this purpose, upon its first activation (an
instance of a) machine could first ask the adversary whether he wants to corrupt the machine. Subsequent
corrupt messages would then be ignored by the machine.

While, as introduced above, explicit corruption meant that a machine provides its complete configuration
to the adversary, other forms of corruption where a machine gives away, for example, merely its long-term or
ephemeral keys are conceivable as well.

Modeling corruption of ideal functionalities. So far we have discussed corruption only for real protocols.
Corruption of an ideal protocol F is similar, however, less details of the internal behavior can be fixed a priori
as those depend on the specific function that is modeled. More precisely, recall that every instance of MF in
F corresponds to potentially several instances of different roles Mi of P. An instance of MF keeps track of
the corruption status of all corresponding instances in the real protocol, where they are initially uncorrupted.
The adversary (or environment) on the network can send a special (Corrupt,m) message to an instance of
MF in F , where m is an arbitrary bit string that is used to specify which corresponding instance of P gets
corrupted. The exact behavior of MF upon corruption of some (or all) of the corresponding instances is
different depending on the ideal functionality. It has to be specified by the protocol designer as this strongly
depends on the task that the ideal functionality is supposed to model. For example, an ideal signature
functionality might enable forgery of signatures upon corruption of the owner of a key, but not care about
corruption of other parties. Another example is an ideal key exchange functionality which might allow the
adversary to determine the session key as soon as at least one party in a session is corrupted. Just as the
real protocol P, the ideal protocol F also allows the environment/a higher level protocol to send a special
CorrStatus? input on any of the external I/O tapes. The machine MF checks for which of the corresponding
instances of P the request was issued (based on the tape the request was received on and potentially other
information), and then returns its current corruption status.

10.2 Composition with Joint State and Shared State
In many protocols, parties/sessions/machine instances are required to share some kind of state. A common
example for such shared state are long-term keys, such as public/private key pairs or shared long-term
symmetric keys, that are re-used across several protocol runs. It is, of course, straightforward to model a
(practical) protocol with shared state in the IITM model. In particular, there are no restrictions imposed
on how machines and instances interact with each other, and the flexible addressing mechanism allows
for handling multiple sessions and parties in the same instance. For example, a protocol P of the form
!M1 | · · · | !Mn as introduced above could be extended by a subprotocol, say an ideal functionality F (or
its realization), such that in every run all instances of Mi access the same instance of F .28 We note that
instances which share state cannot be analyzed in isolation as they do not constitute a σ-session version, i.e.,

28For this purpose, the CheckAddress mode of F could be defined in such a way that all message are accepted.
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the composition theorems for unbounded self-composition are not applicable. This it not a problem in the
IITM model as it also provides a general composition theorem that works for arbitrary protocols.

In contrast to the IITM model, which allows for directly modeling protocols with shared state and then
composing these protocols in arbitrary ways, many other models are built such that protocols cannot directly
share any state between sessions. To overcome this limitation, Canetti and Rabin [12] were the first to
propose composition theorems that allow for joint state—so-called composition theorems with joint state,
or simply joint state (composition) theorems. These theorems essentially allow for analyzing protocols that
share state in the single-session setting while obtaining security in the multi-session setting, as long as state
is shared only in specific ways that are indistinguishable from a setting without shared state. (See Section 11
and [24] for a discussion of [12].) We note that the joint state theorems of [12] (and similar theorems), which
we discuss more in more detail in the following, allow only for sharing state between multiple sessions of the
same protocol. The IITM model also supports other types of joint state theorems, such as sharing state
between multiple different protocols, which have not been considered in the literature so far. We briefly
discuss an example at the end of this section.

In [12], Canetti and Rabin first proposed a general joint state theorem (in the UC framework). In [24],
this theorem was stated in the IITM model and it was shown that, unlike in the UC framework, in the IITM
model it is a direct consequence of the composition theorem for a constant number of systems (Theorem 8)
and the formulation of this theorem does not require to introduce a joint state operator. Formulated in
the IITM model, the general joint state theorem states that if P ′ ≤SS F ′, then P |P ′ ≤SS P |F ′, where F ′
models some multi-session version (with disjoint state) of some ideal functionality and P ′ is supposed to be
a realization of F ′ that utilizes some joint state across the sessions, e.g., P ′ uses only a single instance of
F ′ for all sessions. Clearly, in the IITM model, this general joint state theorem is a direct consequence of
Theorem 8. In the UC framework, it requires to extend the model and the notation and it requires a proof.

The general joint state theorem by itself does not say what a joint state realization looks like. The
main challenge is always to find suitable joint state realizations for concrete ideal functionalities. As an
example, we consider the joint state realization for public-key encryption, following [24]. In [24], an ideal
functionality Fpke for public-key encryption is defined; the details of this functionality are not important
for this discussion.29 This functionality is the “encryption/decryption-box” of one party. In particular, it
encapsulates the public/private key pair of that party, where the private key stays in the functionality (except
if the functionality is corrupted) and the public key is given out, and hence, can be distributed. The system
!Fpke describes the multi-party version of Fpke, i.e., in every run there is at most one instance Fpke[pid] of
Fpke per party pid. The system !Fpke is the multi-session and multi-party version of Fpke, i.e, there may be
multiple sessions per party and instances of Fpke are addresses by identifiers of the form (sid, pid), denoting
the session sid of party pid. In [24], a joint state realization P js

pke | !Fpke is proposed, where P js
pke is a kind of

multiplexer which handles multiple sessions per party but where encryption and decryption of all sessions of
one party pid are handled by the instance Fpke[pid] of that party, i.e., if P js

pke is asked to encrypt/decrypt a
message for pid in some session (sid, pid ′), P js

pke uses the instance Fpke[pid] for that purpose. The basic idea is
that SIDs sid are added to messages to be encrypted. Upon decryption in session sid, it is checked whether a
message contains sid. By this, it is prevented that ciphertexts created in one session can be used in other
sessions. In [24], it has been proven that the proposed joint state realization in fact realizes the multi-session
and multi-party version of Fpke, i.e.,

P js
pke | !Fpke ≤SS !Fpke . (22)

With such a joint state realization it is possible to prove that a protocol P that uses public-key encryption
is secure in a multi-session setting where a party uses the same public/private key across all sessions by
reasoning about just a single session of P. To illustrate this, let P be a (multi-session and multi-party)
protocol of the form (19) that uses P js

pke | !Fpke for encryption. Recall that an instance of Mi is addressed by

29The main idea of this functionality is that when given a message m to be encrypted, it encrypts a random message of the
length of m instead of encrypting m. The resulting ciphertext c is stored in Fpke along with m. This ciphertext, by construction,
does not contain any information about m, except for the length of m. If later, Fpke is asked to decrypt c, it looks up the
corresponding plaintext in the table and returns this plaintext. We refer the reader to [24] for details.
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an SID of the form sid = (s, pid1, . . . , pidn). If such an instance wants to encrypt a message m for party pidj
it would send an encryption request containing the message m to P js

pke | !Fpke. For addressing purposes, the
request also contains the SID (s, pid1, . . . , pidn) and the PID pidj . With this, the message m is encrypted
using the instance Fpke[pidj ]. (More precisely, by the definition of P js

pke, P
js
pke asks Fpke[pidj ] to encrypt the

message ((s, pid1, . . . , pidn),m).)
Now, assume that we want to prove that P |P js

pke | !Fpke realizes F , where F is a multi-session and
multi-party formulation of some ideal functionality. Then it suffices to show that:

P | !Fpke ≤SS
σprefix-single F . (23)

Note that to prove (23) only a single session (s, pid1, . . . , pidn) of P/F needs to be analyzed. Such a session
might contain n instances of Fpke, one for each pidi. The analysis of such a session is further simplified due
to the use of Fpke, i.e., ideal public-key encryption.

From (23), using the joint state composition theorem for public-key encryption (22), the composition
theorems (Theorem 8 and 10), and transitivity of ≤SS (Lemma 13), it immediately follows that

P |P js
pke | !Fpke ≤SS F . (24)

Moreover, if Ppke is a realization of Fpke, i.e., Ppke ≤SS Fpke (Ppke could, for example, be an IND-CCA2-secure
public-key encryption scheme), we obtain by Theorem 8 and 9 that

P |P js
pke | !Ppke ≤SS F . (25)

This says that P, modeling a multi-session, multi-party version of some protocol which uses public-key
encryption, realizes F , modeling a multi-session, multi-party version of an ideal functionality. By the joint
state realization P js

pke | !Ppke, P uses only one public/private key pair for every party across all sessions of P.
We emphasize that to prove (25), we needed to show only (23). (Note that proving (22) is a once and for all
proof, which does not depend on the context in which public-key encryption is used.)

However, as already mentioned before, in the realization P |P js
pke | !Ppke the SIDs (s, pid1, . . . , pidn) are

added to all encrypted messages (this is what P js
pke does). While this is a good design principle, existing,

in particular real-world protocols, typically do not follow this pattern. Hence, such protocols cannot be
analyzed with the joint state theorem sketched above without severely modifying the protocols: adding SIDs
to plaintexts is a severe modification of a protocol, which can turn an insecure protocol into a secure one.
In order to analyze a protocol without modifying it, one can resort to multi-session analysis which is fully
supported by the IITM model. Alternatively, in [26] composition and joint state theorems were proposed
(within the IITM model) which allow for establishing the security of a protocol w.r.t. multiple sessions by
analyzing only a single session of the protocol, but without requiring to change the protocol by adding SIDs
in messages or in any other way, as illustrated for several real-world protocols in [26].

So far we have focused on joint state as defined by Canetti and Rabin [12], which allows for replacing a
single functionality F that has disjoint sessions with a realization P that can share state between sessions in
arbitrary ways. Note that this is quite specific: Only a single protocol F/P is considered, and state is shared
only between sessions of that protocol. However, other types of joint state are often also desirable, such as
sharing some state between several different protocols. Consider the following example: suppose we have
shown that P1 | Fsig1 ≤

SS F1, i.e., some protocol P1 using an ideal signature functionality Fsig1 realizes some
ideal functionality F1 (the exact details of these protocols do not matter here). Suppose we have also shown
that P2 | Fsig2 ≤

SS F2, i.e., some other protocol P2 using ideal signatures is secure. By the composition
theorem for a constant number of systems, we know that P1 | Fsig1 | P2 | Fsig2 ≤

SS F1 | F2. However, in this
situation the protocols P1 and P2 use different subroutines Fsig1 and Fsig2, and hence, different public and
private keys even if the same parties take part in both protocols. It might sometimes be desirable to use the
same keys for each party across both protocols, i.e., share state between these two protocols.

This situation, which is not covered by the joint state theorem from Canetti and Rabin [12] (and similar
ones from the literature), can easily be dealt with in the IITM model. More specifically, we obtain the
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following joint state realization as yet another straightforward application of the composition theorem for
a constant number of systems: we can realize Fsig1 | Fsig2 via a new protocol P js

sig | Fsig that uses a single
instance of Fsig per party for all signing and verification operations, thus using the same keys for both Fsig1
and Fsig2. The protocol P js

sig uses the same trick as P js
pke, however, instead of prefixing inputs with an SID it

prefixes inputs with a protocol identifier (e.g., “1” or “2”). By the composition theorem (and transitivity of
≤SS), we have that P1 | P2 | P js

sig | Fsig ≤SS F1 | F2, i.e., both protocols are secure even if they use the same
keys (as long as they keep their respective message spaces disjoint by prefixing messages with a protocol ID).

10.3 Composition with Global State / Global Setup
Sometimes it is desirable to model a protocol that uses some kind of globally accessible resource such as a
public-key infrastructure (PKI) or a common reference string (CRS). “Globally available” means that every
component, including arbitrary other protocols and the environment, have access to this resource. This
concept is called global state or global setup. Just as for shared state, modeling global state is straightforward
in the IITM model: a resource that should be globally available simply offers sufficiently many I/O tapes for
the environment/other protocols to connect to. Composition theorems for protocols with global state then
directly follow from the standard composition theorems, analogously to the composition theorems for joint
state. In particular, as discussed in the following, the IITM model provides composition theorems for global
state similar to those proposed by Canetti et al. [7] for the GUC model. We stress that these are merely
some examples; the IITM model is able to express a large variety of types of global state, some of which have
not even been considered in the literature so far, such as combinations of global state and joint state.

To enable global setup in the UC model, Canetti et al. [7] had to extend the UC model to a generalized UC
(GUC) framework and define a new security notion, which Canetti et al. called GUC-emulation/realizability.
The extension lets the environment invoke and interact directly with the global setup functionality (i.e.,
the globally available functionality); this is not possible in the UC model without extension because the
environment can only interact directly with the highest-level protocol and the adversary. GUC-emulation is
defined similarly to UC-emulation except that the environment is now allowed to access the global setup
functionality. To formulate the composition theorem with global setup, Canetti et al. had to also introduce a
notion called EUC-emulation/realizability, which is defined like GUC-emulation but restricts the environment
to invoke only a single session of the protocol. The composition theorem with global setup that Canetti et al.
prove is basically the following, where we use IITM-style notation to state this theorem (the actual IITM
version is presented later):

Theorem 11 (global setup composition theorem in the GUC model [7]; informal). Let P be a protocol
that uses a global setup functionality G. If P | G EUC-emulates F | G for some ideal functionality F , then
Q |P | G GUC-emulates Q |F | G, where Q is a protocol that uses (possibly multiple instances of) P (or F) as
a subprotocol.

We note that, in the above theorem, F might or might not use G but it still has to be present on the
right-hand side because the environment has to be able to interact with it.

As mentioned above, in the IITM model we can express the specific type of global setup used in GUC
without extending the model. Not only is the IITM model sufficiently flexible and general for this purpose,
composition with global setup is, similar to composition with joint state, essentially a mere special case of
our standard composition theorems. More specifically, global setup (as used in GUC) can be expressed in
the IITM model with a global setup (ideal) functionality G that can be any ideal functionality but it has a
parametric number of I/O tape pairs, consisting of an input and output tape each. When we combine G
with environmental, protocol, and adversarial systems (e.g., E | S | F | G for an environment E , a simulator
S, and an ideal functionality F), then the parameter of G is chosen arbitrarily but sufficiently large such
that every IITM in the protocol system can connect to one pair of I/O tapes of G. The remaining I/O tape
pairs (of which there are, as said, arbitrarily many) are connected to the environmental system which can
then internally simulate arbitrary other protocols that access the same G. Network tapes of G are connected,
as usual, either to the simulator or the environment. In the following, we will keep the set of tapes G has
implicit.
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Figure 9: The systems used in the realization relation ≤SS when applied to protocol systems with global
setup. Network tapes are labeled by net and I/O tapes are labeled by io. We requite that Pi | G ≤SS Fi | G,
i.e., there exists a simulator Si such that E | Pi | G ≡ E | Si | Fi | G no matter which I/O tape pair Pi uses.
Notice that G provides the set of tapes needed in the specific system it runs.

Now let P be a protocol using a global functionality G. In a security proof, we have to show that
P | G ≤SS F | G as usual, however, this should hold true no matter which specific I/O tape pairs of G are used
by P and F to connect to this functionality (see also Figure 9). That is, the security proof holds true no
matter which I/O tape names are used in P/F for connecting to G. Note that this is a natural property
for global setup, which is supposed to provide the same globally available information to multiple protocols,
independently of how those protocols connect to G. We assume that the above is fulfilled when we write ≤SS

in the following.
Within the IITM model, the composition theorems with global setup are now stated as follows. We start

with the theorem for composing a constant number of protocols with shared global setup, which easily follows
from Theorem 8 (general composition theorem for a constant number of protocols).

Corollary 4. Let k ∈ N and let P1, . . . ,Pk be protocol systems that use a global setup functionality G.
Furthermore, let Q be an arbitrary protocol which might also access G, with runtime bounds analogously to
Theorem 8.
If Pi | G ≤SS Fi | G (in the above sense, see also Figure 9) for some ideal functionalities Fi and 1 ≤ i ≤ k,
then:

Q |P1 | . . . | Pk | G ≤SS Q |F1 | . . . | Fk | G.

Proof. First, observe that because the realizations Pi | G work independently of which specific I/O tape
pairs they use to connect to G, we can actually connect all protocols P1, . . . ,Pk to the same G using some
arbitrarily chosen I/O tape pairs. For the specific I/O tape pairs that have been chosen for connections in
the combined system Q |P1 | . . . | Pk | G, we then still have Pi | G ≤SS Fi | G.

We can thus apply Theorem 8 k times in the following way: We start with the system Q |P1 | . . . | Pk | G.
Since P1 | G ≤SS F1 | G, we obtain from Theorem 8 that Q |P1 | . . . | Pk | G ≤SS Q |F1 | P2 | . . . | Pk | G. We
can iterate this process k − 1 more times to iteratively replace every Pi with Fi while keeping G in place.
In the last step, we obtain Q |F1 | . . . | Fk−1 | Pk | G ≤SS Q |F1 | . . . | Fk | G . Using transitivity of ≤SS we
can combine all intermediate steps to obtain Q |P1 | . . . | Pk | G ≤SS Q |F1 | . . . | Fk | G, which concludes the
proof.

We emphasize that unlike in the UC model, this theorem (and the following ones) are stated in the IITM
model without changing the model. Furthermore, this theorem is a mere corollary of Theorem 8; there is
no need to prove any new composition theorems to handle composition of a constant number of protocols
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sharing the same global state. Similarly, a theorem for unbounded self-composition of protocol systems can
be obtained as a mere special case of Theorem 10:

Corollary 5. Let P be a protocol system that uses a global setup functionality G such that P | G is a σ-session
version, with runtime bounds defined analogously to Theorem 10. If P | G ≤SS

σ-single F | G for some ideal
functionality F , then P | G ≤SS F | G.

Proof. This is a special case of Theorem 10.

This theorem requires G to be a σ-session version. This typically means that G consists of multiple
independent instances where every session of P uses a different instance of G. This covers many interesting
cases: Consider, for example, a protocol P that uses one CRS per protocol session. In this case, every instance
of G models an independent CRS which is used by one session of P. Corollary 5 implies that it is sufficient
to analyze a single session of P using one CRS in isolation to obtain security for an unbounded number of
sessions using an unbounded number of CRSs. Importantly, as G is global, other protocols can access and rely
on the same instances of G and thus the same CRSs without impacting the security of P. Another example
is a protocol P that uses a random oracle, where the inputs to the random oracle are disjoint for different
sessions of P (e.g., because all inputs are prefixed with a session identifier). In this case, G consists of multiple
instances, each modeling an independent random oracle used by one session of P . Again, Corollary 5 implies
that it is sufficient to analyze a single session of P using one global random oracle to obtain security for an
unbounded number of sessions using an unbounded number of random oracles. Afterwards, one can realize G
(see also below) with a joint-state realization where only a single global random oracle is used for all sessions
(with inputs being prefixed with an SID). Thus, one obtains security of an unbounded number of sessions of
P relying on a single random oracle that is globally accessible also for arbitrary other protocols.

Note that Corollary 5 is not precisely the same as the EUC/GUC composition theorem (cf. Theorem 11).
The EUC/GUC composition theorem allows arbitrary sessions of P to access the same instance of G, i.e., G
is not necessarily a σ-session version. We can show an analogous composition theorem in the IITM model
for global functionalities G that handle a request independently of the tape the request has been received
on, except for sending a response on the corresponding output tape.30 Again, observe that this property is
usually satisfied for functionalities that are supposed to provide some globally available information. For such
global functionalities G, we can obtain the following theorem that precisely captures the EUC/GUC setting:

Theorem 12. Let P be a protocol system that uses a global setup functionality G such that P is a σ-session
version, but where multiple sessions of P can access the same instance of G, with runtime bounds analogously
to Theorem 10. If P | G ≤SS

σ-single F | G for some ideal functionality F , then P | G ≤SS F | G.

Proof. The proof is analogous to the corresponding theorem without global setup (Theorem 10): one simply
adds G to all systems considered.

The above composition theorems focus on replacing functionalities F with realizations P where both
rely on the same global functionality G. However, sometimes it might be desirable to also replace a global
functionality G with a different, indistinguishable protocol system R. One example is given above, where
multiple random oracles are realized by a single random oracle via a joint-state realization. Another example
is given in [13]. Yet another one could be that several CRSs are replaced by one random oracle. Due to the
generality of the IITM model and its composition theorems, we also obtain a composition theorem for this
purpose as a mere special case of Theorem 8:

Corollary 6. Let Q be a protocol system using a global functionality G and let R be a protocol system such
that R ≤SS G, with runtime bounds analogously to Theorem 8. Then Q |R ≤SS Q |G.

Proof. This is a special case of Theorem 8.
30More precisely, upon receiving a request on a tape t, G runs some non-interactive algorithm that does not depend on t,

obtains some output from that algorithm, and returns the output on the tape corresponding to t. No other actions are performed.
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The original GUC model did not provide a similar composition theorem (in particular, this case is not
covered by Theorem 11). Canetti et al. had to propose and prove yet another composition theorem in [13]
to be able to also realize global functionalities in GUC. This is in stark contrast to the IITM model, where
Corollary 6 is a simple application of the standard composition theorem.

We note that the above composition theorems for global state (Corollaries 4, 5, 6 and Theorem 12) can
be combined to obtain corollaries analogously to those in Section 7.4.

10.4 A Concrete Example
We now present a concrete example of a protocol in order to illustrate the modeling sketched in Section 10.1.
More specifically, we show how to model, according to the general description presented above, a simple
key exchange protocol based on public-key encryption that is similar to the Needham-Schroeder Public-Key
protocol [32] but that uses pre-established SIDs. We also explain how the security of this protocol can be
proven in the IITM model along the lines sketched above using the (joint state) composition theorems (see
Section 10.2) and an ideal functionality for public-key encryption, where security for this protocol means that
it realizes a standard ideal key exchange functionality that we describe below. Finally, we illustrate how to
build a secure channel from an ideal key exchange functionality (or its realization).

Notational conventions. To formally define the example protocol in the IITM model, we need some
basic conventions. Each IITM is defined by five properties: Tapes, State, CheckAddress, Initialization, and
Compute. The Tapes property describes all tapes of an IITM, the State property describes global variables
which keep state across several activations (of the same instance), the CheckAddress property defines the
CheckAddress mode in pseudo code, the (optional) Initialization property defines pseudo code which is
executed exactly once when a fresh instance is activated for the first time in mode Compute, and the Compute
property defines the behavior in mode Compute (potentially after the code from Initialization was executed).

We define the Compute property using several blocks of pseudo code. One block specifies how incoming
messages, which might have to satisfy certain conditions, are processed, and which output is produced (if
any). More specifically, a block starts with a receive (recv) command that specifies the message format,
tape, and conditions that are expected by that block. When a new message is received, the IITM instance
checks whether a pseudo code block accepts that message and executes the first one that does (later blocks
that would also accept that message are ignored). Within each block, one can use the send (send) command
to send a message on a tape and end the activation, or end the block without sending a message and thus
activate the environment. One can also combine a send with a receive command within a block, by letting
the receive command follow the send command immediately. In such a case, if the instance is activated with
a new message, it continues where it left the computation after sending a message (if the new message is
not accepted by the receive command, it is dropped and the instance waits for another message until one is
accepted).

For better readability, in the pseudo code blocks we use sans-serif font to denote global variables, italic
font to denote local variables, and typewriter font to denote fixed bit strings. We write a $← A to say that
some value a is sampled uniformly at random from the set A.

In what follows, we first describe the example protocol informally. Before we formalize this protocol in
the IITM model, we specify an ideal functionality for key exchange.

Description of our example protocol. Our example protocol is informally defined in Alice-Bob-Notation
in Figure 10. There are two roles A and B with public keys kA and kB. We assume that the parties know
the public keys of each other (i.e., we assume some form of a public-key infrastructure). We also assume that
the two parties that play role A and B have already established a unique SID sid = (sid ′, pidA, pidB) for a
session of the protocol where pidA and pidB are the party names of the parties in role A and B, respectively.
The SID sid is supposed to be unique in the sense that it is used in no other session.31

31This SID can, for example, be established by exchanging nonces as explained in [1]. Both parties send nonces N ′A, N
′
B in

plain to each other. The SID then is the concatenation of the nonces and the party names: sid = (N ′A, N
′
B , pidA, pidB).
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1. A → B : {sid, NA}kB
2. B → A : {sid, NA, NB}kA
3. A → B : {sid, NB}kB

sid – unique pre-established SID that contains the party names of A and B
kA, kB – public key of A and B, respectively
NA, NB – nonces, generated by A and B, respectively
{m}k – encryption of the message m with the public key k

using an IND-CCA2 secure public-key encryption scheme

Figure 10: An example key exchange protocol based on public-key encryption.

As shown in Figure 10, role A performs the following actions. First, A generates a nonce NA, encrypts it
together with the SID sid under B’s public key kB , and sends the obtained ciphertext to B. Then, A waits
to receive a message that is encrypted under A’s public key kA and contains sid, A’s nonce NA, and some
nonce NB . Finally, A encrypts sid and the received nonce NB under kB and sends the obtained ciphertext
to B. If something goes wrong in one of these steps, A aborts immediately, and otherwise, if the protocol
runs through successfully, A outputs NA as the session key.

Role B performs the following actions according to Figure 10. First, B waits to receive a message that
is encrypted under kB and contains sid and some nonce NA. Then, B generates a nonce NB, encrypts it
together with sid and the received nonce NA under kA, and sends the obtained ciphertext to A. Finally, B
waits to receive a message that is encrypted under kB and contains sid and B’s nonce NB. If the protocol
runs through successfully, B outputs NA as the session key, and otherwise aborts immediately as soon as an
error occurs.

The above protocol differs from the original Needham-Schroeder Public-Key protocol in two aspects:
First, our protocol uses pre-established and unique SIDs. Second, since the party names are already included
in the SID, we do not need to include them in the messages otherwise.

Ideal key exchange functionality. We use a standard ideal functionality Fke for (authenticated) key
exchange (see, e.g., [11, 8, 26, 23]). A formal definition of Fke in the IITM model is given in Figure 11; in
the following, we provide an informal description. This functionality describes one session of an ideal key
exchange between two parties/roles. It has two sets of I/O tapes, one for each role. It first waits to receive a
key exchange request from a role. The simulator (ideal adversary) is informed about such requests. If the
simulator sends a message for one role to finish and both roles have sent their key exchange requests to Fke
before,32 Fke outputs the session key to that role, where the session key is chosen uniformly at random from
{0, 1}η by Fke (η is the security parameter). (Of course, other distributions for the session key could be used.)
The simulator has the ability to corrupt Fke, i.e., send a corrupt message to Fke, before any of the two roles
have output a key. More precisely, in one request the simulator can corrupt one role. In this case, no matter
which role was corrupted, if the simulator instructs a role to output a key, this key will be output by that
role; the simulator can choose different keys for each of the two roles. In addition, Fke forwards all messages
from/to the corrupted party to/from the simulator. Altogether, an uncorrupted Fke guarantees that the key
a role receives after having sent a key exchange request to Fke is a freshly generated key that is given only to
the roles involved in the key exchange. The key is indistinguishable from random for an adversary even if the
key is output by one role before the end of the protocol. Also, if both roles receive a key, the two keys are
guaranteed to coincide. Conversely, a corrupted Fke, i.e., one or both roles are corrupted, does not provide
security guarantees; the keys the roles obtain (if any) are determined by the simulator and they do not need
to coincide. As usual, the environment may ask whether a role of Fke has been corrupted; such a request

32The condition that both roles have sent their key exchange requests models authenticated key exchange and could be
dropped, but is convenient.
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is only allowed on the tapes of the respective role. Note that Fke is environmentally bounded as in every
activation it performs at most a polynomial number of steps in the current input and the security parameter.

Tapes: from/to iorole (role ∈ {A,B}): (ioin
role, io

out
role); from/to net: (netin, netout)


two pairs of I/O tapes for initiator
A and responder B, one pair of net-
work tapes to the adversary. See also
Figure 16State:

– stateA, stateB ∈ {⊥, started, finished, corrupt}
{
Current status of initiator and responder;
initially ⊥

– k ∈ {0, 1}η ∪ {⊥} {session key of an honest session; initially ⊥
CheckAddress: Accept every input on every tape.
Compute:

Process messages on I/O tapes:

recv StartExchange from iorole s.t. role ∈ {A,B} ∧ staterole = ⊥: {Start the key exchange
staterole := started
send (StartExchange, role) to net {Notify adversary about the start of the key exchange

recv CorrStatus? from iorole s.t. role ∈ {A,B}: {Ask for corruption status
if staterole = corrupt:

send (CorrStatus, true) to iorole
else:

send (CorrStatus, false) to iorole

recv m from iorole s.t. role ∈ {A,B} ∧ staterole = corrupt: {Forwarding for corrupted roles
send (Forward, role,m) to net

Process messages on the network tape:

recv (OutputKey, role, ksim) from net s.t. role ∈ {A,B} ∧ staterole = started:


Output a session key. The key ksim
is ignored unless at least one role is
corrupted, in which case the key ksim
is output.staterole := finished

if stateA = corrupt ∨ stateB = corrupt:
send (SessionKey, ksim) to iorole

else if stateA 6= ⊥ ∧ stateB 6= ⊥:
{
If no role is corrupted: Ensure that both roles have actually
started the key exchangeif k = ⊥:

k $← {0, 1}η {Choose a fresh session key uniformly at random and store it
send (SessionKey, k) to iorole

recv (Corrupt, role) from net s.t. role ∈ {A,B} ∧ stateA 6= finished ∧ stateB 6= finished: {Allow corruption
staterole := corrupt
send Ok to net

recv (Forward, role,m) from net s.t. role ∈ {A,B} ∧ staterole = corrupt: {Forwarding for corrupted roles
send m to iorole

Figure 11: Formal definition of the ideal key exchange functionality Fke in the IITM model. Note that the
session version Fke of this functionality accepts SIDs of the form (sid ′, pidI , pidR) where pidI and pidR are
the party IDs of the initiator and responder role, respectively, in that session. Thus, Fke guarantees that, if
the session is uncorrupted, only those two parties in the same session will receive the session key. In particular,
both parties agree on their session partners.

As mentioned, Fke captures only a single key exchange between two roles (played by arbitrary parties).
Key exchange for an unbounded number of sessions and between an unbounded number of pairs of parties
can be described by the multi-session version !Fke of Fke.33 We define the domain of SIDs that Fke accepts
to be SIDs of the form sid = (sid ′, pidA, pidB).34 Intuitively, an instance of Fke addressed by such an SID is
an ideal functionality for the key exchange between the parties pidA and pidB in session sid ′. (Note that by
this, there can be multiple key exchange sessions between the same two parties.)

33Note that an instance of Fke does not need to be aware of its SID, and hence, it is not necessary to provide a multi-session
and multi-party version F ′ke of Fke as a σprefix-session version.

34See Section 5.2.1 for a discussion on domains of SIDs. Domains were also briefly mentioned in Section 2.
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Modeling our example protocol in the IITM model. We now specify the example protocol as a
protocol system P = !MA | !MB following the general approach outlined in Section 10.1. We define MA

and MB to be IITMs that are addressed by structured SIDs of the form sid = (sid ′, pidA, pidB). Every
message received and output by MA and MB is prefixed by such an SID. In other words, MA and MB are
σprefix-session versions with SIDs of the described form.

Ultimately, we are interested in the protocol system P |P js
pke | !Ppke, where the protocol P uses (the joint

state realization for) public-key encryption, and for this system we want to show that it realizes the ideal
multi-session key exchange functionality !Fke (see above). The system P |P js

pke | !Ppke will precisely model
our example protocol. Note that in a run of this system (in the context of some environment) there can be
multiple sessions (with multiple parties) of our example protocol running concurrently and a party will use
the same public/private key pair across all sessions, due to the joint state realization.

However, we do not want to show P |P js
pke | !Ppke ≤SS !Fke directly, but rather make full use of the

composition and joint state theorems as described in Section 10.2. Therefore, we first replace P js
pke | !Ppke

by the ideal functionality !Fpke (the multi-session version of the multi-party version of Fpke) and show that
P | !Fpke ≤SS !Fke. This needs to be shown even only for a single session of P/Fke, since by the composition
theorem we can later replace !Fpke by its (joint state) realization P js

pke | !Ppke.
Now, let us describe P in more detail; a formal definition of MA and MB in the IITM model can be found

in Figures 12 to 15. We define MA and MB such that they use !Fpke, where every instance of Fpke, denoted
by Fpke[sid, pid], is addressed by an SID sid of the form (sid ′, pidA, pidB) as discussed above and a party name
pid (see also Section 10.1). We assume that parties can ask Fpke for the public key of the party that owns
Fpke. More precisely, given an instance Fpke[sid, pid] of Fpke, which is the “encryption/decryption-box” of
party pid, we assume Fpke to be defined in such a way that parties can ask this instance to receive the public
key of pid (in session sid). Clearly, the realization of Fpke would require a public-key infrastructure.

Both machines MA and MB have I/O tapes to connect to the environment and to connect to !Fpke.
Furthermore, they have network tapes to connect to the adversary. The system P | !Fpke is depicted in
Figure 16 and a run of this system is depicted in Figure 17 (w.r.t. an environment that created several
sessions).

Let sid = (sid ′, pidA, pidB) be an SID. Next, we describe the actions performed by MA[sid] and MB [sid],
i.e., the instances of MA and MB with SID sid, in more detail. Since P | !Fpke has to provide the same I/O
interface as !Fke, MA[sid] and MB [sid] first wait to receive key exchange requests. If, say, MA[sid] receives
such a request, MA[sid] asks for the public key of the instance Fpke[sid, pidB ];35 analogously for MB [sid]. Both
MA[sid] and MB [sid] also inform the adversary about the key exchange requests that they got. In the rest
of the protocol, for encryption under kA and decryption with the corresponding private key, the instance
Fpke[sid, pidA] is used by MA[sid] and MB [sid], where MB [sid] of course uses Fpke[sid, pidA] only for encryption;
analogously for kB . Since the joint state realization prefixes all messages by the corresponding SID, we define
MA[sid] and MB [sid] such that sid is not added to the plaintexts. For example, the first message that MA[sid]

encrypts (using Fpke[sid, pidB ]) is the nonce NA rather than the concatenation of sid and NA. The protocol
messages (i.e., the ciphertexts) are sent and received via the network tapes (i.e., to/from the adversary who
represents the network). If MA[sid] (and analogously for MB [sid]) successfully finishes its run (according to
the protocol specification), it outputs the session key (i.e., NA) on the I/O tape to the environment. Note
that the system P | !Fpke is environmentally bounded as, similar to Fke, in every activation it performs at
most a polynomial number of steps in the current input and security parameter.

We define static corruption of MA as follows, following the description in Section 10.1; corruption of MB

is defined analogously. The adversary may corrupt MA[sid] at the beginning (when the adversary is informed
about the key exchange request that MA[sid] got) by sending a corrupt message to this instance. If corrupted,
MA[sid] forwards all input to the adversary and lets the adversary determine its output. Additionally, MA[sid]

35If that instance is invoked for the first time, and hence, has not generated a key pair yet, it first generates a key pair.
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Tapes: from/to ioA : (ioin
A , io

out
A ); from/to iopke

A : (iopke-in
A , iopke-out

A );


One pair of I/O tapes to connect to the en-
vironment/ higher-level protocols, one pair to
connect to Fpke, and one pair of network tapes
to connect to the adversary. Also see Figure 16from/to netA: (netin

A , netout
A )

State:
– sid ∈ {0, 1}∗ ∪ {⊥} {SID of this instance of MA; initially ⊥
– pidA, pidB ∈ {0, 1}∗ ∪ {⊥} {Party IDs of A and B; initially ⊥
– pkB ∈ {0, 1}η ∪ {⊥} {Public encryption key of B; initially ⊥
– NA ∈ {0, 1}∗ ∪ {⊥} {Nonce NA from the protocol; initially ⊥
– finalMessage ∈ {0, 1}∗ ∪ {⊥} {Final protocol message; initially ⊥
– stateA ∈ {⊥, started, finished, corrupt} {Current status of initiator A; initially ⊥

CheckAddress:
Try to parse an incomming message m as m = ((sid′, pidA, pidB),m′) or, if it is received on the iopke

A tape pair, as
m = (((sid′, pidA, pidB), pid′),m′). If this fails, reject the message.
if sid = ⊥:

Accept the message.
else:

Accept the message iff sid = (sid′, pidA, pidB).

Initialization: Upon receiving the first message in mode Compute do:
Set sid := (sid′, pidA, pidB), pidA := pidA, pidB := pidB (where sid′, pidA, pidB are the same as in mode CheckAddress).
Then, continue processing the first request as defined below.

Compute:
Process Messages on I/O tapes:

recv (sid, StartExchange) from ioA s.t. stateA = ⊥: {Start the key exchange
stateA := started
send ((sid, pidB), PubKey?) to iopke

A {Get public encryption key of B
recv ((sid, pidB), PubKey, pk) from iopke

A
pkB := pk
send (sid, StartExchange) to netA

{
Notify adversary about the start of the key exchange. Wait
for optional corruption by the adversaryrecv (sid,m′) from netA

if m′ = Corrupt:
stateA := corrupt {Adversary corrupts this instance. Instance stops without sending a message

else:
NA

$← {0, 1}η {Instance is honest. Generate and send first message of the protocol
send ((sid, pidB), Enc, pkB ,NA) to iopke

A

recv ((sid, pidB), Ciphertext, y) from iopke
A

send (sid, y) to netA
recv (sid, CorrStatus?) from ioA: {Ask for corruption status a

send ((sid, pidA), CorrStatus?) to iopke
A {Check corruption status of subroutines

recv ((sid, pidA), CorrStatus, corrA) from iopke
A

send ((sid, pidB), CorrStatus?) to iopke
A

recv ((sid, pidB), CorrStatus, corrB) from iopke
A

corr = corrA ∨ corrB ∨ (stateA = corrupt)
{
Consider instance corrupted if it was corrupted
directly or any of the subroutines is corruptedsend (sid, CorrStatus, corr) to ioA

recv (sid,m′) from ioA s.t. stateA = corrupt: {Forwarding of messages if instance is corrupted
send (sid, Forward,m′) to netA

aNote that this special request is always processed, even if the protocol instance is currently waiting to receive a response
from, e.g., the subroutine Fpke.

Figure 12: Formal definition of the machine MA in the IITM model, part 1. See Figure 13 for part 2.
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Compute (continued):
Process Messages on the network tape:

recv (sid, ProtocolMessage,m′) from netA s.t. stateA = started: {Receive the second protocol message from B
send ((sid, pidA), Dec,m′) to iopke

A {Decrypt and check whether second message fits expected format
recv ((sid, pidA), Plaintext, x) from iopke

A
Try to parse x as x = (NA, NB). If not possible, stop this computation.
stateA := finished {Second protocol message accepted. Generate third message and output key
send ((sid, pidB), Enc, pkB , NB) to iopke

A

recv ((sid, pidB), Ciphertext, y) from iopke
A

finalMessage := y
send (sid, SessionKey,NA) to ioA

recv (sid, GetFinalMessage) from netA s.t. stateA = finished:
{
Allow the adversary to retrieve the final
protocol message

a

send (sid, finalMessage) to netA
recv (sid, Forward,m) from netA s.t. stateA = corrupt: {Forward messages to the environment if corrupted

send (sid,m) to ioA
recv (sid, Dec, y) from netA s.t. stateA = corrupt: {Allow adversary to decrypt messages for A

send ((sid, pidA), Dec, y) to iopke
A

recv ((sid, pidA), Plaintext, x) from iopke
A

send (sid, Plaintext, x) to netA
aRecall that machines can output at most one message in each activation. However, MA actually has to send two messages

after accepting the second protocol message, namely, it has to output the session key to the environment and the third protocol
message to the adversary on the network. We deal with this modeling issue by outputting only the key and allowing the
adversary on the network to manually request the last protocol message, which is still a reasonable (albeit slightly artificial)
modeling. We emphasize that this limitation of machines occurs in all universal composability models and is not specific to
the IITM model.

Figure 13: Formal definition of the machine MA in the IITM model, part 2. See Figure 12 for part 1.

allows the adversary to decrypt messages using Fpke[sid, pidA]. (Encryption requests could also be allowed,
but they do not make the adversary stronger, because he knows the public keys of all parties and can encrypt
messages by himself.)

Just as in the case of Fpke, the environment may ask the instance MA[sid] (analogously for MB [sid]) about
its corruption status. It returns yes if and only if it was directly corrupted or Fpke[sid, pidA] is corrupted.
(We note that the adversary has the ability to corrupt an instance of Fpke without explicitly corrupting the
respective instance of MA or MB , and hence, these instances will still follow the prescribed protocol. However,
MA and MB report to the environment that they are corrupted if their instance of Fpke that they use is
corrupted, because the key exchange protocol cannot guarantee a secure key exchange in this situation.)

It is easy to see that the protocol system P | !Fpke is environmentally strictly bounded. Hence, all
preconditions of the composition theorems about runtime properties are trivially satisfied. Furthermore, it is
an σprefix-session version (because all messages are prefixed by an SID) and we can apply the reasoning as
described in Section 10.1.

First, we state that the protocol as modeled above is secure in a single-session setting (see also Figure 16).
Claim 1. P | !Fpke ≤SS

σprefix-single !Fke.

The proof of this claim, which we omit for the sake of brevity, is relatively simple because one needs to
consider only a single session of the protocol and encryption is idealized by Fpke. In particular, the proof
can be done by information-theoretic arguments alone, without reductions to the security of the encryption
scheme. We note that the above claim even holds true in an information-theoretic setting with unbounded
environments.

We further note that Claim 1 does not hold true if the nonce NB (instead of NA) is used as the session
key. Canetti and Herzog [9] showed that the Needham-Schroeder-Lowe (NSL) protocol is insecure when
NB is used as the session key. The reason here is the same: When A has output the session key, NB in
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Tapes: from/to ioB : (ioin
B , io

out
B ); from/to iopke

B : (iopke-in
B , iopke-out

B );


One pair of I/O tapes to connect to the en-
vironment/ higher-level protocols, one pair to
connect to Fpke, and one pair of network tapes
to connect to the adversary. Also see Figure 16from/to netB : (netin

B , netout
B )

State:
– sid ∈ {0, 1}∗ ∪ {⊥} {SID of this instance of MB; initially ⊥
– pidA, pidB ∈ {0, 1}∗ ∪ {⊥} {Party IDs of A and B; initially ⊥
– pkA ∈ {0, 1}η ∪ {⊥} {Public encryption key of A; initially ⊥
– NA,NB ∈ {0, 1}∗ ∪ {⊥} {Nonces NA and NB from the protocol; initially ⊥
– stateB ∈ {⊥, started, sentSecondMessage, finished, corrupt} {Current status of responder B; initially ⊥

CheckAddress:
Try to parse an incomming message m as m = ((sid′, pidA, pidB),m′) or, if it is received on the iopke

B tape pair, as
m = (((sid′, pidA, pidB), pid′),m′). If this fails, reject the message.
if sid = ⊥:

Accept the message.
else:

Accept the message iff sid = (sid′, pidA, pidB).

Initialization: Upon receiving the first message in mode Compute do:
Set sid := (sid′, pidA, pidB), pidA := pidA, pidB := pidB (where sid′, pidA, pidB are the same as in mode CheckAddress).
Then, continue processing the first request as defined below.

Compute:
Process Messages on I/O tapes:

recv (sid, StartExchange) from ioB s.t. stateB = ⊥: {Start the key exchange
stateB := started
send ((sid, pidA), PubKey?) to iopke

B {Get public encryption key of A
recv ((sid, pidA), PubKey, pk) from iopke

B
pkA := pk
send (sid, StartExchange) to netB

{
Notify adversary about the start of the key exchange. Wait
for optional corruption by the adversaryrecv (sid,m′) from netB

if m′ = Corrupt:
stateB := corrupt {Adversary corrupts this instance. Instance stops without sending a message.

recv (sid, CorrStatus?) from ioB : {Ask for corruption status a

send ((sid, pidA), CorrStatus?) to iopke
B {Check corruption status of subroutines

recv ((sid, pidA), CorrStatus, corrA) from iopke
B

send ((sid, pidB), CorrStatus?) to iopke
B

recv ((sid, pidB), CorrStatus, corrB) from iopke
B

corr = corrA ∨ corrB ∨ (stateB = corrupt)
{
Consider instance corrupted if it was corrupted
directly or any of the subroutines is corruptedsend (sid, CorrStatus, corr) to ioB

recv (sid,m′) from ioB s.t. stateB = corrupt: {Forwarding of messages if instance is corrupted
send (sid, Forward,m′) to netB

aNote that this special request is always processed, even if the protocol instance is currently waiting to receive a response
from, e.g., the subroutine Fpke.

Figure 14: Formal definition of the machine MB in the IITM model, part 1. See Figure 15 for part 2.
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Compute (continued):
Process Messages on the network tape:

recv (sid, ProtocolMessage,m′) from netB s.t. stateB = started: {Receive the second protocol message from A
send ((sid, pidB), Dec,m′) to iopke

B {Decrypt and check format of first message
recv ((sid, pidB), Plaintext, x) from iopke

B
Try to parse x as x = NA. If not possible, stop this computation.
stateB := sentSecondMessage {First message was accepted, so generate and send second message
NA := NA

NB
$← {0, 1}η

send ((sid, pidA), Enc, pkB , (NA,NB)) to iopke
B

recv ((sid, pidA), Ciphertext, y) from iopke
B

send (sid, y) to netB
recv (sid, ProtocolMessage,m′) from netB s.t. stateB = sentSecondMessage: {Receive the third protocol message from A

send ((sid, pidB), Dec,m′) to iopke
B {Decrypt and check whether third message fits expected format

recv ((sid, pidB), Plaintext, x) from iopke
B

Try to parse x as x = NB . If not possible, stop this computation.
stateB := finished {Third protocol message accepted. Output key
send (sid, SessionKey,NA) to ioB

recv (sid, Forward,m) from netB s.t. stateB = corrupt: {Forward messages to the environment if corrupted
send (sid,m) to ioB

recv (sid, Dec, y) from netB s.t. stateB = corrupt: {Allow adversary to decrypt messages for A
send ((sid, pidB), Dec, y) to iopke

B

recv ((sid, pidB), Plaintext, x) from iopke
B

send (sid, Plaintext, x) to netB

Figure 15: Formal definition of the machine MB in the IITM model, part 2. See Figure 14 for part 1.

!MA !MB

netA netB

!Fpke
netFpke

ioA ioB

iopke
A

iopke
B

!Fke
net

ioA ioB

≤SS
σprefix-single

Figure 16: P | !Fpke single-session realizes !Fke (see Claim 1). In this figure, horizontal arrows denote network
tapes and vertical arrows denote I/O tapes. Every pair of input/output tapes is labeled by a name. The
actual tape names are decorations of this name, e.g., Fke has the input tapes ioin

A , ioin
B , and netin and the

output tapes ioout
A , ioout

B , and netout.
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E

MA[sid1] MB [sid1]

Fpke[sid1, pidA] Fpke[sid1, pidB ]

MA[sid2]

Fpke[sid2, pidA] Fpke[sid2, pidC ]

MA[sid3]

...

... MA[sid4]

...

...

Session 1
sid1 = (sid ′1, pidA, pidB)

Session 2
sid2 = (sid ′2, pidA, pidC)

Session 3
sid3 =

(sid ′3, pidB , pidA)

Session 4
sid4 =

(sid ′4, pidA, pidB)

Figure 17: A run of E | P | !Fpke for some environment E that created four sessions: two sessions with party
pidA playing role A and pidB playing role B (Sessions 1 and 4), one session with pidA playing role A and pidC
playing role B (Session 2), and one session with pidB playing role A and pidA playing role B (Session 3). Every
box denotes an instance of a machine that has been created in this run. For example, MA[sid1] is the instance
of MA that is addressed by sid1 (i.e., party pidA in role A talking to pidB in session sid ′1) and !Fpke[sid1, pidA]

is the instance of Fpke that is addressed by sid1 and pidA (modeling the encryption/decryption-box of party
pidA in session sid1). The arrows denote the connections between the instances via I/O tapes and addressing
with SIDs. In addition, all instances connect to E via network tapes. These connections are not displayed.

this case, but B has not yet received the last protocol message (a situation that an environment can easily
create), then the environment can use B to test whether it is in the real world (i.e., interacting with P | !Fpke)
or in the ideal world (i.e., interacting with !Fke); see [9] for details. Interestingly, even if NB is used as a
session key, the protocol would still satisfy the key usability property, i.e., it would realize !Fkeyuse, where
Fkeyuse is an ideal functionality for key usability introduced in [26] and extended in [23]. This functionality
works just like Fke but instead of outputting the session key it allows the party to use the session key in
cryptographic operations, e.g., for (ideal) symmetric encryption. This functionality is often more useful than
Fke in applications (see below for an example), and being weaker than key indistinguishability, it can be
realized by more protocols.

As described in Section 10.2, from Claim 1 we can directly deduce, by applying the composition theorem
and the joint state theorem for Fpke, that P is secure when multiple sessions run concurrently and a party
uses the same public/private key pair across all sessions. Moreover, by the composition theorem, we can
replace Fpke by its realization Ppke using an IND-CCA2 secure public-key encryption scheme (in conjunction
with a public-key infrastructure), as illustrated in Figure 18.
Claim 2. P |P js

pke | !Ppke ≤SS !Fke.

We note that the protocol system P |P js
pke | !Ppke precisely models our example protocol. A run of this

system is depicted in Figure 19. As already mentioned, every party uses its public/private key pair across all
protocol sessions. This is due to the use of the joint state realization. Furthermore, the joint state realization
yields that the SID is added to every plaintext before encryption just as in the example protocol. Finally,
the realization Ppke uses a standard IND-CCA2 secure public-key encryption scheme, no modifications are
required, again just like in our example protocol.

Of course, P |P js
pke | !Ppke precisely models the example protocol only because the protocol uses pre-

established SIDs in the way they are used by the joint state realization. As already mentioned in Section 10.1,
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!MA !MB

netA netB

P js
pke

!Ppke
netPpke

iopke′
A

iopke′
B

ioA ioB

iopke
A

iopke
B

!MA !MB

netA netB

!Fpke
netFpke

ioA ioB

iopke
A

iopke
B

≤SS

composition theorem
+

joint state theorem
for Fpke

!Fke
net

ioA ioB

≤SS

composition theorem
+

Claim 1

Figure 18: P |P js
pke | !Ppke realizes !Fke (see Claim 2). Tapes are labeled as in Figure 16.

E

MA[sid1] MB [sid1] MA[sid2] MA[sid3] MB [sid3] MA[sid4] MB [sid4]

P js
pke

Fpke[pidA] Fpke[pidB ] Fpke[pidC ]

Session 1 Session 2 Session 3 Session 4

joint state between the sessions

Figure 19: The run of E | P |P js
pke | !Ppke that corresponds to the run depicted in Figure 17. In this run, the

joint state between the sessions consists of the instances of Fpke. For example, the instance Fpke[pidA] (which
models the encryption/decryption-box of party pidA) is used by all four sessions.
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one can also precisely model and analyze protocols in the IITM model even if they do not use pre-established
SIDs (or not in the way stipulated by the joint state realization) [26, 23].

We further emphasize that static corruption is modeled in a strong sense: The adversary can corrupt
public/private keys for every party individually (upon first use) and he can corrupt individual roles of
sessions (upon session start). Motivation for this kind of fine-grained corruption was already given in
Section 10.1. Clearly, this encompasses that the adversary can take complete control of a party by corrupting
its public/private key and its roles in all sessions.

Building secure channels from key exchange protocols. To illustrate how more complex protocols
can be built from the ideal key exchange functionality (or a realization thereof) using the composition
theorems, we consider a secure channel protocol.

An ideal secure channel protocol Fsc (for two-parties/two-roles) works similarly to Fke described above:
It expects to receive a request to establish a secure channel from both roles and upon every such request
informs the simulator about it, who can then decide to corrupt a role of Fsc, at which point the simulator
obtains full control of Fsc. At some point, the simulator can send a “session established” message to Fsc
for one of the two roles. If both roles have sent their requests to establish a secure channel to Fsc before
(this models authentication, similarly to Fke), Fsc will inform the role that the session is established. From
this point on, this role can send and receive messages to/from Fsc. If a role sends a message via Fsc, this
message is delivered to the other role if the adversary instructs Fsc to deliver the message; the adversary is
informed about every “message send” request and learns the length of the message that is to be delivered.
The functionality Fsc guarantees confidentiality and integrity of the messages, that messages are not dropped,
and delivered in order. As usual, the environment can ask about the corruption status of the roles in Fsc
(on the respective tapes). For more details, see, e.g., [2, 26]. Just like Fke, Fsc captures only a single secure
channel between two roles. Secure channels for an unbounded number of sessions and between an unbounded
number of pairs of parties can be specified by the multi-session version !Fsc of Fsc where we define the
domain of SIDs that Fsc accepts to be SIDs of the form sid = (sid ′, pidA, pidB).

An example of a simple real secure channel protocol is the following: The roles first establish a session key
(using a key exchange protocol). Now, messages are encrypted under the session key using an authenticated
symmetric encryption scheme, i.e., an IND-CPA and INT-CTXT secure scheme, along with a counter that is
added to every message (in order to prevent messages to be dropped or reordered).

Formally, let Pke be a secure (multi-session) key exchange protocol, i.e., Pke ≤SS !Fke. For example,
Pke could be the example protocol P |P js

pke | !Ppke discussed above. Furthermore, let Psc = !M sc
A | !M sc

B be a
secure channel protocol that uses the key exchange protocol Pke. The protocol system Psc is defined similarly
to the key exchange protocol P above except that it does not use Fpke but Pke: Instances of M sc

A and M sc
B are

again addressed by SIDs of the form (sid ′, pidA, pidB). They first, at the I/O interface, wait to be instructed
to establish a secure channel; the adversary is informed about such a request and can decide to corrupt
that instance (see below). The instance then, if not corrupted, sends a key exchange request to Pke using
its SID (sid ′, pidA, pidB). When it receives a session key, it outputs to the party that the secure channel is
established. The instance is now ready to receive and send messages. To send messages it uses a counter and
an authenticated symmetric encryption scheme as sketched above.

As mentioned, an instanceM sc
A (orM sc

B ) can be corrupted by the adversary when the adversary is informed
about the request to establish a secure channel by M sc

A . When corrupted, M sc
A provides full control to the

adversary, including the interface of M sc
A to Pke. (We do not require Pke to be corrupted as well.) If an

instance is asked whether it is corrupted by the environment, it returns yes iff it was explicitly corrupted by
the adversary or the corresponding role in the instance of Pke it interacts with was corrupted. We note that,
by this, (static) corruption is again modeled in a quite general and fine-grained way.

Now, we want to show security of the protocol system Psc | Pke, i.e., the composition of the secure channel
protocol Psc and the key exchange protocol Pke. More precisely, we want to show that Psc | Pke realizes !Fsc,
i.e., Psc | Pke ≤SS !Fsc. For this purpose, it suffices to show that:

Psc | !Fke ≤SS
σprefix-single !Fsc . (26)
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Figure 20: Psc | !Fke single-session realizes !Fsc (see Equation (26)). Tapes are labeled as in Figure 16.
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Equation (26)

Pke = P |P js
pke | !Ppke

Figure 21: Psc | Pke realizes !Fsc (see Equation (27)). Tapes are labeled as in Figure 16. There can be
multiple instances of the machines M sc

A and M sc
B as well as of the machines MA and MB .

This statement is depicted in Figure 20. From (26), Pke ≤SS !Fke, and by Theorem 8 and 10, we immediately
obtain the following (see also Figure 21):

Psc | Pke ≤SS !Fsc . (27)

This statement says that multiple session of the secure channel protocol realize multiple sessions of the ideal
secure channel functionality.

Note that the proof of (26) is relatively simple because it involves reasoning about only a single session of
the protocol and because the key exchange is idealized. But it still requires a reduction proof to the security
of the authenticated encryption scheme. This can be avoided if we do not use Fke, which outputs the session
key, but instead an ideal key usability functionality Fkeyuse (as already mentioned above), which does not
output the session key but instead allows Psc to use the session key in an ideal way (similar to encryption
and decryption with Fpke). Such a key usability functionality has been proposed in [26] and extended in [23].

10.5 Another Instantiation: the SUC Model
Above we presented one possible set of conventions for modeling of real and ideal protocol. Of course
other instantiations are conceivable as well. In this subsection, we briefly sketch an alternative instantiation
motivated by the SUC model [6].

The SUC model was proposed by Canetti et al. with the goal to adjust and simplify the UC model for
secure multi-party computation (MPC) by removing features that are not needed (in this specific case) and
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fixing several conventions for the protocol structure that are closer to what protocol designers for MPC are
used to.

More precisely, some of the changes compared to the UC model are the following: Most notably, SUC runs
with a fixed set of machines, representing one party each; new (instances of) machines may not be created
during a run. This change also allows for simplifying the original runtime notion of the UC model, namely,
machines in SUC are required to run in polynomial time in the length of their input from the environment
plus security parameter. Furthermore, SUC defines a protocol structure that is very close to what protocol
designers are used to from classic game based security definitions for MPC. In particular, machines in SUC
communicate with each other only via authenticated channels that are controlled by the adversary; no direct
connections between machines are allowed.

Because SUC changes some fundamental aspects of the UC model, such as the ability to invoke an
arbitrary number of machines and the runtime definition, it is not a mere instantiation of the UC model
but rather a different model; thus, the composition theorems have to be re-stated and re-proven for SUC.
The work of [6] does so by providing a transformation of a SUC protocol to a UC protocol such that SUC
security implies UC security of the transformed protocol and vice versa. However, this transformation is
quite cumbersome and yields unnatural protocol specifications that rely on artificial padding of inputs to
work. The proof of this transformation is quite involved, taking up several pages just for relating the runtime
notions of SUC and UC.

In contrast, we can easily provide a set of conventions to express the SUC model in the IITM model
without having to change the model itself: To fix the number of protocol participants, we can use a fixed
number of machines that are not in the scope of a bang (alternatively, we can also bound the number of
instances of a single machine via the CheckAddress mode). The runtime requirements in the IITM model are
even simpler and more general than in SUC, as we do not require every single machine to be polynomial, but
only require the protocol as a whole to be polynomial. To model authenticated channels, one can use an
appropriate subroutine that all protocol participants connect to and which is controlled by the adversary
on the network. Using this set of conventions, we directly obtain the following corollary of Theorem 8
(composition theorem).

Corollary 7. Let P be a protocol system modeled via the above SUC conventions for the IITM model, and
let Q be any other protocol system. If P ≤SS F for some ideal functionality F , then Q |P ≤SS Q |F .

Unlike [6], we do not have to re-prove the composition theorem but can use the SUC conventions for the
IITM model straightaway. We also note that, as we do not have to change the underlying model, all security
results obtained by using SUC conventions can seamlessly be combined with other results via the same
general composition theorems of the IITM model. For example, SUC protocols could be used as subprotocols
of more general protocols.

11 Related Work
As already mentioned in the introduction, the IITM model proposed here coincides with the (old) IITM
model proposed in [21], except that we now use more general runtime notions. In particular, we introduce the
notion of environmentally bounded systems, which conceptually builds on the notion of reactive polynomial
time proposed by Hofheinz et al. in [19], but which we adjust to IITMs.

We concentrate our comparison of the IITM model with other models on Canetti’s UC model [2] and the
GNUC model [17] by Hofheinz and Shoup. Further models, including [33, 22, 5], are not considered as they
either fix the runtime of a machine by a fixed polynomial in the security parameter, which has many problems
as discussed in [21, 16], or do not consider systems with a polynomial number of instances of machines, which,
however, is needed to even state general composition theorems. A recent cryptographic model by Maurer and
Renner [30] (see also [29]) does not define a full model on the machine level, and hence, cannot directly be
compared with the IITM model.

Before we discuss each model in detail, we provide a brief overview of the history of these models. The
original UC model was proposed by Canetti in his seminal paper in 2001 [3]. In this model, the runtime of
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machines was bounded by a constant polynomial in the security parameter, which caused several problems
[21, 16]. Motivated by this, Canetti proposed a major revision of the UC model in 2005 [2] which includes
a new runtime definition. However, even the 2005 version of the UC model has several issues; to fix these
issues and create a formally sound universal composability framework, both the original IITM model in 2006
[21] and the GNUC model in 2011 [17] were proposed. This paper, which dates back to January 2013 [28],
extends, as mentioned before, the original IITM model with a more general runtime definition. Later in July
2013, Canetti proposed the second major revision of the UC model [2] to fix issues of the 2005 version.

In the following, we will first discuss the 2005 version of the UC model, as that was the most recent one
when this paper was written. We then discuss the 2013 version and show that there are still several severe
problems. We then discuss the GNUC model.

11.1 UC Model (2005)
In this section, we discuss the 2005 version of the UC model [2] which was the most up to date one when
this paper was written. In-depth discussions of this model can also be found in [21, 24, 19, 17]. We refer to
Section 11.2 for the 2013 version of UC.

The UC model has several severe technical flaws, for example, concerning the validity of the composition
and joint state theorems. While, formally speaking, the gaps in the model often invalidate cryptographic
proofs carried out in the UC model in the literature, conceptually on a higher level of abstraction the
cryptographic results and proofs might still be valid. However, it is clearly highly unsatisfying if statements
and proofs do not rest on solid ground.

In [17], a concrete example is given showing that the composition theorem does not hold true in the
UC model. The main reason is that interactive machines do not necessarily know who they are interacting
with. In the composition theorem, this leads to the problem that a simulator might not know what kind of
simulation needs to be performed as he is unaware of the protocol structure and the code of the instance he
is interacting with. As a result, one can construct, (natural) protocols Q, F , and P such that P realizes F
but the composition of Q and P does not realize the composition of Q and F , in contradiction to what the
composition theorem says. This problem is not present in the IITM model since the protocol structure is
clearly defined by the connections via tapes, and every protocol machine has unique network tapes. Thus, the
simulator is aware of the structure and code of the protocol while being able to uniquely identify machines
(including their code) via the network tape that messages are sent/received on.

Another reason why the composition theorem is problematic is the fact that there does not exist a so-called
dummy adversary in the UC model, i.e., an adversary which forwards all messages back and forth between the
environment and the protocol. This in turn is due to the way the runtime of machines is defined in the UC
model. In the UC model the total runtime of the ITMs is bounded by a polynomial in the security parameter
and the length of the input received on I/O tapes (minus the runtime provided to “subroutine ITMs”); input
received on communication tapes (the network interface) does not increase the runtime resources available to
a machine. Now, in the UC model the adversary has I/O tapes to the environment but only network tapes to
the protocol. Consequently, such an adversary cannot forward arbitrarily many and arbitrarily long messages
from the protocol to the environment since it might not have the runtime resources to do that. In the UC
model, the dummy adversary has to ask for resources from the environment in order to be able to forward
arbitrary messages from the protocol to the environment. With a full-fledged dummy adversary, i.e., one
that can forward all messages without asking for resources, one can prove that a real protocol realizes an
ideal one by simply constructing a simulator for the dummy adversary (instead of constructing simulators
for all real adversaries). However, as shown in [19], the restricted dummy adversary available in the UC
model—the one that has to ask the environment for resources—is incomplete in this respect: considering
only this adversary does not guarantee security for all adversaries. Now, the composition theorem in the
UC model has only been proven with respect to the (restricted) dummy adversary. But since in the UC
model dummy adversaries are incomplete in the sense explained above the proof of the composition theorem
is incomplete—in addition to the fact that the composition theorem does not hold true due to the above
mentioned orthogonal problem. In the IITM model, an unrestricted dummy adversary is obviously available
as shown in Lemma 5. Completeness of the dummy adversary follows from Theorem 7 (see also Remark 12).
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It was shown in [24] that the general joint state theorem (such theorems have been discussed in Section 10.2)
does not hold true in the UC model either; Canetti and Rabin proposed this theorem in [12]. This is mainly
due to the way the runtime of ITMs is defined in the UC model (see above). As a consequence of this
definition, by sending many messages to an ITM (on the network interface), the ITM can be forced to stop.
Also, in general, a single ITM M cannot simulate a concurrent composition of a fixed finite number of ITMs
or an unbounded number of (copies of) ITMs: Assume that the ITM M internally simulates (a fixed number
of) other machines. Now, by sending many messages to M intended for some internally simulated machine,
M will eventually stop, and hence, cannot simulate the other machines internally anymore, even though, in
the actual composition these machines could still perform actions. Due to the way the runtime of machines
and systems of machines is defined in the IITM model these problems do not occur. In particular, in the
IITM model one machine can simulate any system of machines in any polynomial context (see Lemmas 6 and
7) and an IITM cannot be exhausted, it can perform computations in every activation. In particular, it can
always read its input in both modes, CheckAddress and Compute.

Besides the technical flaws of the UC model sketched above, the UC model is also quite complex and
many things are hard-wired into the model. For example:

• The UC model uses control functions, dummy parties, and subroutines.

• The runtime a machine has depends on how much data it has sent to its subroutines, a quite complex
and not very intuitive runtime notion.

• The way machines are addressed (by SIDs and PIDs) and the way corruption is handled is fixed in the
UC model.

In the IITM model, control functions, dummy parties, and the notion of a subroutine are not needed. The
runtime notions employed in the IITM model are quite intuitive and straightforward. The CheckAddress
mode allows for a generic and very flexible addressing mechanism where we do not have to talk about SIDs
and PIDs. This is important in order to model protocols in a faithful way [26]. Also, corruption is not
hard-wired into the model. The way corruption is handled is entirely left to the specification of the protocols
and functionalities, and hence, is very flexible (as illustrated in Section 10).

As pointed out in [17], there are in fact two problems with the way corruption is handled in the UC model.
First, in order for the adversary to be able to corrupt a party, the adversary needs to receive an authorization
message from the environment. Such a message contains a machine name which the adversary is allowed
to corrupt. However, there are different sets of machines in the real and the ideal world, and hence, it is
unclear what such a message means in the different worlds. Second, in the UC model an adversary can create
machines and determine their program and IDs. By this he can “impersonate” or “hijack” honest machines
without actually corrupting them. But then it is, in most cases, impossible for the simulator to achieve its
goals because it is not allowed to corrupt the ideal functionality. So, as already explained in [17], formally
most security claims in the literature are simply false.

The UC model is also less expressive than the IITM model. For example:

• In order to deal with joint state or global setup the UC model needed to be extended [12, 7]. This is not
necessary in the IITM model as discussed in Section 10.2 and 10.3, respectively. The joint state theorem
and the main global setup theorems are even direct consequences of the composition theorem in the
IITM model. Since the UC model fixes things like the addressing of machines by SIDs and PIDs as well
as the way machines can be corrupted, the composition and joint state theorems are less general. For
example, if the way machines can be corrupted is changed, these theorems would have to be reproven.

• The way the runtime is defined in the UC model makes it hard to formulate protocols and functionalities.
In fact, many, maybe most protocols/functionalities found in the literature cannot be expressed in
the UC model. For example, it is very common that a protocol machine/functionality drops messages
received from a communication tape (the network interface) if they do not have the correct format.
However, as explained before, in the UC model machines can easily be “exhausted” by sending them
many useless messages on the communication tapes and there is nothing a machine can do about it.
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Thus, a machine will not have sufficient resources to even read incoming messages at some point and it
will be forced to stop, which typically is not the intended behavior of functionalities/protocols. Dealing
with this issue in a formally correct way in the UC model is, if at all possible, very tricky and has, as far
as we know, never been done in the literature. Note that in the IITM model one can easily formulate
protocols and functionalities within the class of environmentally bounded protocol systems that simply
reject messages that have the wrong format.

11.2 UC Model (2013)
The 2013 version of the UC model [2] adds several modifications to address some of the problems mentioned
in Section 11.1. These modifications include:

• Instances of protocol machines are now required to send a special setup notification to the adversary
upon first activation. This notification contains the code of the machine and some information about
the protocol structure, i.e., the parent of the instance. This solves the problem that the adversary does
not know who he is talking to. As mentioned in Section 11.1, this invalidated the composition theorem
in the 2005 version; as mentioned above, the IITM model does not need such a requirement as the
adversary can identify the machine (code) of the sender of a message via the tape the message was
received on.

• The class of environments is restricted to balanced environments that provide at least a minimal
amount of runtime to the adversary, which addresses the incompleteness of the dummy adversary. This
restriction is not necessary in the IITM model due to its general runtime notion.

• The corruption mechanism has been redefined, which addresses the ambiguities between the real and
ideal world, and is no longer hard-wired into the underlying model. In this aspect the current UC
model follows the spirit of the IITM model.

However, many issues of the 2005 version remain unaddressed: the runtime definition is still the same, leading
to all of the aforementioned problems such as exhaustible machines. There are still many parts, such as
addressing mechanisms and protocol structure, that are hard-wired into the model, which limits the overall
expressivity. The complexity of the model increase even further due to the additional modifications; it is very
tedious and hard to deal with all those details in a security proof. This was acknowledged by Canetti et al. in
[6] where the authors say that they are “not aware of any written proof in the UC framework that actually
takes these details into account”. This situation is quite disturbing and unsatisfying. In contrast, protocol
designers using the IITM model indeed do not have to worry about, e.g., artificial runtime bounds, artificial
padding of messages, or setup notifications.

In addition to the issues that remain from the 2005 version, the 2013 version also introduces new issues.
The most glaring problem is that the composition theorem still does not hold true, even for very simple
protocols. To see this, first recall that an environment may send messages to the challenge protocol36 in the
name of other instances, where both the machine code and the ID (consisting of PID and SID) of the sender
are chosen by the environment. This allows the environment to simulate higher level protocols that use the
challenge protocol, which is the underlying argument used in the proof of the composition theorem. However,
in the 2013 version of UC, the environment may not send any messages in the name of an instance that has
the same SID as the challenge session;37 this is probably meant to prevent the environment from taking part
in the challenge session in the name of one of the (uncorrupted) parties (cf. [2, p. 35]). This restriction
causes the composition theorem to fail as the environment cannot simulate a higher level protocol in the
same session. Let us illustrate this issue by giving a concrete example where composition fails.

36The term “challenge protocol” denotes the protocol, including its subroutines, that the environment and adversary/simulator
is interacting with (in the real or ideal world, depending on the context).

37We use the term “challenge session” to denote the session/SID of the top layer of the challenge protocol, i.e., the layer that
can be accessed by the environment. Note that this session is uniquely defined in every run as the environment may invoke at
most one session.
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Recall that the composition theorem (cf. [2, p. 37 and p. 48]) essentially states the following: Given
protocol π that realizes protocol φ, we have that protocol ρ using (possibly several instances of a) subroutine
π (written ρπ) realizes ρ using (possibly several instances of a) subroutine φ (written ρφ). In other words, we
can replace the subroutine such that no environment notices the difference. We now construct three protocols
π, φ, and ρ such that π realizes φ but ρπ does not realize ρφ. The protocol π accepts only inputs from higher
level protocols; all other messages are ignored. Each time some input is received from a higher level protocol,
π returns 0 to the sender. Protocol φ behaves just like π, except for cases where the SID of the sender of
an input is the same as the SID of this instance of φ. In such a case, φ returns 1 instead of 0. Clearly, we
have that π realizes φ, as the only way to distinguish both protocols is to send an input in the name of
the challenge session, which the environment is not allowed to do. Now, let ρ be a “dummy protocol” that
forwards inputs from higher level protocols to a subroutine of π/φ and returns the responses. Importantly,
we require ρ to use its own SID (and a different PID) to create an instance of its subroutine π/φ. Note that
ρ is allowed to do this in the UC model as the model does not impose any restrictions on the way SIDs are
chosen. Hence, an instance of π/φ will be invoked via ρ with an SID that coincides with its own one. As a
result, ρπ always outputs 0, whereas ρφ always outputs 1; thus both protocols can easily be distinguished.

In Appendix D, we show that the composition theorem fails even if the requirement were added that
on every protocol layer different SIDs are used. Also, the restriction placed on environments is not just a
minor technical detail but rather seems to be an important feature of the UC model that is actively used in
the literature. For example, Canetti uses this property in [10] to prevent the environment from accessing a
global random oracle in the same session as the challenge session. Furthermore, this restriction forbids the
environment from mounting some severe and artificial distinguishing attacks that can potentially prevent
natural and reasonable realizations (see the following paragraph and Appendix E for details). So if one
were to drop this restriction to fix the composition theorem, much of the current UC literature would be
invalidated as security proofs might no longer hold true in the presence of a more powerful environment.

Another major issue of the 2013 version of the UC model (and partly also older versions) is that it allows
the environment to perform several artificial distinguishing attacks. That is, it enables the environment to
artificially distinguish the real world from the ideal world even in cases where, intuitively, this should not be
the case. In particular, due to some of these attacks, in common settings it becomes impossible to formally
prove the realization relation for any pair of real and ideal protocols altogether.

More concretely, the artificial distinguishing attacks make use of the fact that environments can do the
following (and more), with details provided in Appendix E:

• Exhaust machines in the real protocol,

• Prevent a real protocol from using (some of) its subroutines,

• Intercept and read outputs sent from subroutines (such as ideal secure channel functionalities) to higher
level protocols,

• Prevent the simulator from interacting with the ideal functionality.

While dealing with distinguishing attacks is an important part of both protocol design and security analysis,
the above capabilities of the environment do not relate to any meaningful attack scenarios in reality and thus
only hinder a protocol designer. Indeed, because these capabilities are so unnatural and very hard or even
impossible to deal with, they are ignored in the literature. In Appendix E, the capabilities are described
in more detail and it is shown that due to some of these capabilities it in fact is impossible to prove any
realization relations in common settings.

Clearly, this is an undesirable situation that formally invalidates most, if not all, of the current UC
literature. In contrast, none of these attacks exist in the IITM model. We note that, on a conceptual level, it
should be possible to transfer most of the UC literature to the IITM to obtain sound results.
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11.3 GNUC Model
The GNUC model was proposed by Hofheinz and Shoup in [17]. Compared to the IITM model, many things
are hard-wired into the model and fixed in a specific way, as explained next.

Features of the GNUC model compared to the IITM model. In the GNUC model, a strict hierarchical structure
is assumed for protocols: In a run of a system, every machine has a unique caller, hence machines form a
call tree. Also, an acyclic (static) subroutine graph is assumed. In the IITM model, we do not put such
restrictions on systems. A (protocol) system is simply a system of IITMs which are connected via (named)
I/O tapes, with network tapes to the adversary; the notion of a subroutine is not even explicitly defined
in the IITM model. For instance, it is possible to specify a system of the form P1 | P2 | P3 where all three
protocols are mutually connected via I/O tapes or where P1 is connect to P2, P2 to P3, and P3 to P1. In
particular, no acyclic subroutine graph is imposed. Of course, if desired, acyclic subroutine graphs and call
trees can also be modeled in the IITM model. For instance, if P2 is the only subroutine that the protocols
P1 and P3 should be able to use, one would have I/O tapes only between P1 and P2 as well as between P3
and P2, but not between P1 and P3.38 If one requires call trees, one can easily define the machines in P1
and P2 in such a way that they generate different IDs to address (different) copies of P2. (As usual, the
CheckAddress mode of machines in P2 could be defined as (σ-)session versions.) However, it is also possible
to specify the protocols in such a way that, say, both an instance of P1 and an instance of P3 access the same
instance of P2, as required for example in joint state realizations. It is also not a problem to specify that
all (instances of) machines in a system, including (the machines of) the protocol, the environment, and the
adversary access the same instance of another machine, as required for example for settings with global state.

The GNUC model also fixes the way instances of machines are addressed by SIDs and PIDs in a very
specific way. PIDs have to contain, besides the actual PID, a label whether a machine is a so-called real or
ideal machine. Also, SIDs need to contain, besides the actual SID, the protocol name. It is required that if a
machine calls a subroutine, then it extends its SID in a unique way. In this way, a call tree is enforced where
every machine has a unique caller. This, however, is problematic in settings with joint and/or global state
(see below). In contrast, the IITM model does not fix a specific addressing mechanism, but allows for a very
flexible way of addressing machines by a general addressing mechanism, namely using the CheckAddress mode
of IITMs. In particular, it would be easy to model exactly the kind of addressing enforced in the GNUC
model. However, other ways of addressing machines in the IITM are possible and often desirable or necessary
(e.g., for joint/global state), as illustrated in Section 10.

Corruption is also fixed in a specific way in the GNUC model. To corrupt a machine, a machine expects
to receive a corrupt message at its I/O interface. This implies that in a call tree first the top-level machines
have to be corrupted by the environment (the environment in the GNUC model can only access machines
on the top-level). If a machine is corrupted, the adversary can corrupt subroutines of that machine so that
altogether corruption spreads from the top of a call tree to the bottom. If a machine is corrupted, it forwards
all messages to the adversary. However, the adversary is not allowed to send messages to the I/O interface of
subroutines of a corrupted machine, except for special corrupt messages. This form of corruption is quite
specific and restricted, as discussed below. In contrast, in the IITM model corruption is not hard-wired into
the model. We do not fix any form of corruption at all. Corruption can be modeled in a very flexible way as
part of the specification of protocols, as illustrated in Section 10. In particular, it would be easy to model the
kind of corruption fixed in the GNUC model in the IITM model, i.e., to specify protocol systems in such a
way that corruption is modeled as in the GNUC model. However, this is just one possible way of modeling
corruption in the IITM model, other sometimes more desirable formulations, see the explanation below, are
illustrated in Section 10.

As mentioned before, in the GNUC model, the environment can only access top-level machines. It cannot
directly access lower-level machines, which, for example, in settings with global state would be necessary.
Also, unlike the IITM model, the adversary cannot create machines. This can be useful, for instance, in

38We note that even if there are I/O tapes between say P1 and P3, this does not mean that the protocols have to use them.
The protocols could be specified in such a way that they ignore such tapes and don’t communicate over such tapes.

81



a secure channel protocol where a machine should be created on the receiver side upon receipt of the first
message.

In order to guarantee that a system consisting of an environment, an adversary, and a protocol runs in
polynomial time in the security parameter, in the GNUC model the runtime of the adversary is restricted in
that the number of bits he is allowed to send to the protocol is bounded by a polynomial in the number of
bits the adversary received from the environment. This is a kind of acyclicity condition in terms of the length
of the messages that may flow between the different system components (environment, adversary, protocol).
However, by this the adversary/simulator is quite restricted. For example, consider the situation where an
environment invokes many instances of a protocol/functionality. Now, even if every such instance contacts
the adversary, the adversary could not respond to all instances because he is restricted in the number of bits
he may send to the protocol. To slightly mitigate this problem, the concept of so-called “invited messages”
is introduced in the GNUC model. These messages can be sent by the protocol to invite the adversary to
send a message, even though he otherwise would not be allowed to send a message. However, the adversary
is only allowed to send exactly the invited messages received from the protocol before. So if the protocol
cannot know in advance which message the adversary will send, this mechanism is still insufficient. For
example, due to the restriction put on the adversary/simulator, it is impossible to realize certain common
functionalities in the GNUC model, e.g., for public-key and symmetric encryption, digital signatures, and
MACs (see [2, 27, 25, 24]). In the IITM model, the adversary/simulator is not restricted in this way. In
particular, the mentioned functionalities can easily be expressed and realized in the IITM model.

Due to the design choices and restrictions of the GNUC model sketched above, the GNUC model has several
disadvantages in terms of simplicity, expressivity, and generality as discussed next.

Simplicity. The GNUC model introduces many concepts and fixes many details, as sketched above: distinction
between regular and ideal machine, dummy parties, hierarchical protocol structure, very specific addressing
mechanism with SID and PID having specific forms, specific form of corruption, invited and uninvited
messages. This makes the model much more complex than the IITM model, where these concepts are not
required and these things are not fixed. Also, when formulating protocols and functionalities in the GNUC
model one has to think more about runtime issues. In particular, due to the need for invited messages the
specifications tend to be artificial. In the IITM one does not have to think about runtime issues too much
when specifying protocols and functionalities because typical formulations will simply be environmentally
(strictly) bounded.

A slight advantage of the runtime notion of the GNUC model is that it guarantees that if a protocol
running with an ideal functionality is polynomially bounded in the GNUC sense, then this is also the case
when the ideal functionality is replaced by its realization. However, since it is typically easy to see whether a
protocol is polynomially bounded in the IITM sense, i.e., whether it is environmentally (strictly) bounded,
and since in most applications protocol systems are environmentally (strictly) bounded anyway, we do not
consider this to be a big advantage; even more so considering the disadvantages of the runtime notion used
in the GNUC model, which makes the model harder to use and less expressive (additional flow restrictions,
necessity of invited messages, certain natural functionality cannot be realized at all due to the restrictions
put on simulators).

Expressivity and generality. The IITM model is much more expressive than the GNUC model in many
respects. As already mentioned, the IITM model does not impose a hierarchical structure on protocol systems.
This, in combination with the fact that in the IITM model the environment is not restricted to only access
top-level protocols, not only allows for modeling a bigger class of protocols (see above), but also allows us
to handle joint and global state without changing the model. The joint state theorem and the main global
setup theorems are even direct consequences of the composition theorem. In the GNUC model, dealing with
joint state and global state required non-trivial extensions of the model and to reprove theorems, such as the
composition theorem, where global state is not even dealt with in its full generality. The IITM model is also
more expressive and flexible in terms of the kind of corruption it can handle, as already explained above and
illustrated in Section 10. In fact, the way corruption is handled (and fixed) in the GNUC model is quite
restricted and sometimes insufficient. As explained, machines can only be corrupted top-down. However,
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it might make sense to corrupt a subroutine without corrupting the top-level protocol. For example, a
protocol might use some kind of double encryption to guarantee that if one encryption fails, confidentiality
is still guaranteed. So the higher level protocol can potentially still achieve its task even though parts of
the subroutines are corrupted. Another example is that in e-voting a fraction of mixnet servers can be
corrupted while the overall e-voting system is still secure. Such settings cannot be handled in the GNUC
model. Moreover, the fact that in the GNUC model an adversary cannot send messages via a corrupted
machine to uncorrupted subroutines is also a restriction. Consider for example a system were several processes
use the same secure channel (which might be established using some hardware tokens). If one of the processes
is corrupted, the adversary should be allowed to send and receive messages over the secure channel via the
corrupted process. In the current formulation of the GNUC model this cannot be modeled. Another aspect
where the IITM model is much more expressive and flexible is the addressing of machines. This, as explained
above, is fixed in the GNUC model by a specific use and form of SIDs and PIDs. Since, as explained in [26],
such IDs are used in an essential way in protocols (not just for the purpose of addressing instances), the
kind of protocols that can be designed in the GNUC model is restricted and the faithful analysis of existing
protocols is often impossible. The notion of runtime used in the GNUC model is more restricted than the
one used in the IITM model as well. In particular, certain (natural) functionalities cannot be realized due
to the notion of runtime that is used, as already mentioned above. Finally, we remark that in the GNUC
model, unlike the IITM model, the adversary may not create machines. However, this is inconvenient. It, for
example, does not allow one to model a secure channel in such a way that only one party indicates that it
wants to establish a secure channel and an instance of the other party is created when that instance receives
the first message from the network.

The fact that the IITM model does not a priori fix certain details (addressing of machines, corruption,
protocol structure, etc.) has also the big advantage that the theorems proved, such as the composition,
joint state, and global setup theorems, are much more general than in the GNUC model, as they hold true
independently of specific choices; put otherwise, they hold true for all specific choices. The generality also
often makes the proofs simpler and more elegant in that they are not cluttered with unessential details. In
the GNUC model, the proof of the joint state theorem, for example, used in an essential way the concept of
invited messages and the way corruption is defined.

Compared to the GNUC model, one could take the simplicity, expressivity, and generality of the IITM
model against the model: For the design and analysis of concrete protocols several things have to be fixed, as
part of the protocol specification, because they are not a priori fixed in the IITM model. However, we consider
the high flexibility a big advantage because it makes the model much simpler as well as more expressive and
general compared to the GNUC model and other models, as explained above. Also, one can easily define
conventions (as illustrated in Section 10.1), e.g., for corruption, and later refer to them for concrete design
and analysis tasks.

A Proof of Lemma 9
Let P,Q be protocol systems such that !P is environmentally bounded, Q is environmentally bounded, and
P ∼= Q. Let E ∈ Env(!P) = Env(!Q). In the following, by a hybrid argument where we replace the copies of
P by copies of Q, we show that E | !Q is almost bounded, and hence, that !Q is environmentally bounded.

By Lemma 7, we may assume that E is a single IITM which, in mode CheckAddress, accepts all messages.
Moreover, we may assume, without loss of generality, that E is such that every message m that E outputs
(except if m is output on tape decision) is prefixed by some SID, i.e., m = (s,m′) for some bit strings s and
m′:39 since E will only interact with session versions, message not of the form (s,m′) would be rejected by
these session versions anyway. Since E is universally bounded, it follows that there exists a polynomial pE
such that the number of different sessions (i.e., messages with distinct SIDs output by E) is bounded from
above by pE(η + |a|) (where η is the security parameter and a is the external input).

39More formally, for every system S ∈ Con(E) and all parameters η, a in every run of (E | S)(1η , a) the system E should only
output messages of the described form.
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In what follows, let Q′ be the variant of Q obtained from Q by renaming every tape c occurring in Q
to c′. Analogously, let P ′′ be obtained from P by renaming every tape c occurring in P to c′′. By this, we
have that P, Q′, and P ′′ have pairwise disjoint sets of external tapes, and hence, these systems are pairwise
connectable.

We now define an IITM Eperm
r (for every r ∈ N) which basically simulates E and which will run in the

system Eperm
r | !P ′′ | !Q′ | P or Eperm

r | !P ′′ | !Q′ | Q, respectively. The IITM Eperm
r randomly shuffles the copies

of the protocols invoked by E by choosing a random permutation on {1, . . . , pE(η + |a|)}. The first r − 1
copies (after shuffling) of the protocol invoked by E will be copies of Q′, the r-th copy will be the external
system P or Q, respectively, and the remaining copies will be copies of P ′′. Intuitively, the permutation of
protocol instances is needed because E must not “know” whether a copy invoked in the system !P ′′ | !Q′ | P is
a copy of P or P ′′; analogously for the system !P ′′ | !Q′ | Q. Without the permutation in Eperm

r , the internally
simulated environment E might create, for example, protocol instances with increasingly large runtime, i.e.,
the runtime of the r-th instance would depend on r. However, we need to establish a runtime bound that is
independent of r in Lemma 28, which then directly implies this theorem. Due to the permutation, even if the
simulated E tries to use one instance much more than others, the expected runtimes of every instance of P
and P ′′ (Q and Q′) are identical, allowing us to prove Lemma 28.

Formally, Eperm
r is obtained from E as follows (recall that we assume that E is a single IITM which accepts

every message in mode CheckAddress). The IITM Eperm
r will also always accept every message in mode

CheckAddress. The behavior of Eperm
r in mode Compute is specified next.

First, we need to make sure that Eperm
r has the appropriate tapes to connect to the different entities. The

IITM E already has tapes to connect to the external tapes of P and Q. For each such tape c, we add to
Eperm
r a tape c′ and c′′ to connect to the external tapes of Q′ and P ′′, respectively.
Next, we need to specify how Eperm

r redirects protocol invocations of E in the way sketched above: Eperm
r

keeps a list L of SIDs, which initially is empty, and the length l of the list, which initially is 0. By definition
of pE , it will always hold that l ≤ pE(η + |a|). Furthermore, in the first activation with security parameter
η ∈ N and external input a ∈ {0, 1}∗, Eperm

r chooses a permutation π of {1, . . . , pE(η + |a|)} uniformly at
random. From now on, Eperm

r simulates E with security parameter η and external input a. In particular,
if E produces output, then so does Eperm

r , and if Eperm
r receives input, then E is simulated with this input.

However, as explained next, the behavior of Eperm
r deviates from that of E when it comes to sending and

receiving messages to the different copies of protocols.

1. If E produces output m = (s,m′), for some SID s and some message m′, on some external tape c of P
(and hence, Q), then Eperm

r checks whether s occurs in L. If s does not occur in L, s is first appended
at the end of L and l is increased by 1. Let j ∈ {1, . . . , l} be the position where s occurs in L.

(a) If π(j) < r, then Eperm
r writes m on tape c′.

(b) If π(j) = r, then Eperm
r outputs m′ on c.

(c) If π(j) > r, then Eperm
r writes m on tape c′′.

2. If Eperm
r receives input on tape c′′ (where c′′ is an external tape of P ′′ corresponding to an external

tape c of P), then Eperm
r behaves as E in case input was received on tape c.

3. If Eperm
r receives input on tape c′ (where c′ is an external tape of Q′ corresponding to an external tape

c of Q), then Eperm
r behaves as E in case input was received on tape c.

4. If Eperm
r receives input m on tape c where c is an external tape of P (and hence, Q), then Eperm

r behaves
as E in case input (L[π−1(r)],m) was received on tape c where L[π−1(r)] denotes the π−1(r)-st entry
of L. By construction, this entry exists in L (i.e., π−1(r) ≤ l) since E must have invoked the π−1(r)-th
copy.

It is easy to see that Eperm
r is universally bounded for every r ∈ N since E is universally bounded.

We also consider a variant E$ of Eperm
r which in the first activation additionally chooses r ∈ {1, . . . , pE(η +

|a|)} uniformly at random and then behaves exactly like Eperm
r .
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We define the following hybrid systems, for every r ∈ N:

Hr := Eperm
r | !P ′′ | !Q′ ,

which can be connected to P (and hence Q), i.e., Hr ∈ Con(P) = Con(Q).
By Eperm

pE and HpE we denote the systems Eperm
r and Hr, respectively, which use r = pE(η + |a|). By

construction, for every r ∈ N, the systems E | !P and H1 | P, Hr | Q and Hr+1 | P, and E | !Q and HpE | Q,
respectively, behave exactly the same (see below). In particular, for all r ∈ N, we have that:

E | !P ≡0 H1 | P , (28)
Hr | Q ≡0 Hr+1 | P , and (29)
E | !Q ≡0 HpE | Q . (30)

For (28) we use that P is a protocol system. In particular, we use property (ii) of protocol systems (see
Definition 11). If this property were not satisfied, i.e., P contains an IITM M which is not in the scope of
a bang but which could reject a message in mode CheckAddress, the following could happen. In a run of
(H1 | P)(1η, a) a message is sent to M , but it is rejected by M (in mode CheckAddress). Then, since M is not
in the scope of a bang, no new copy of M will be generated. Conversely, if in a run of E | !P a message is
sent to a copy of the session version M of M prefixed with the first SID generated by E and the simulated
M in M would reject the message, then it could happen that a new copy of M is generated (since M is
in the scope of a bang in E | !P) which then would not have a corresponding entity in a run of the system
(H1 | P)(1η, a). In short, by property (ii) of protocol systems it is guaranteed that for IITMs that do not
occur in the scope of a bang in P only at most one copy is generated per SID in the run of E | !P. A similar
argument is used to prove (29) and (30).

Since E | !P is almost bounded, it is easy to see that H1 | P is almost bounded too. Moreover, it is easy to
see that E | !Q is almost bounded if and only if HpE | Q is almost bounded.

Next, we define the event (i.e., a set of runs or equivalently a set of random coins) that the j-th copy of
the protocol takes more than q(η + |a|) steps. More specifically, for every polynomial q, natural numbers
r, i, j, η ∈ N, and a ∈ {0, 1}∗ we define:

1. Bq,jHr | P = Bq,jHr | P(1η, a) is the following set of runs of (Hr | P)(1η, a). A run ρ belongs to Bq,jHr | P iff one
of the following conditions is satisfied:

(a) π(j) < r and the copies of machines in Q′ with SID L[j] took more than q(η+ |a|) steps in ρ, where
according to Section 3.4 only the steps in mode Compute are counted and where in addition the
overhead created by the session version is not counted either; in other words, only the computation
steps carried out by Q′ (and hence, Q) are counted.

(b) π(j) = r and the machines in P took more than q(η + |a|) steps in ρ, with the steps counted as
above.

(c) π(j) > r and the copies of machines in P ′′ with SID L[j] took more than q(η + |a|) steps in ρ,
with the steps counted as above.

2. BqHr | P :=
⋃
i∈N Bq,iHr | P .

3. Bq,6=jHr | P :=
⋃
i∈N\{j}B

q,i
Hr | P .

4. A run ρ belongs to Bq,π
−1(i)

Hr | P iff for the permutation, say π′, chosen in ρ, it holds that ρ ∈ Bq,jHr | P with

j = π′−1(i). The event Bq,6=π
−1(i)

Hr | P is defined analogously.

5. Analogously to the above events, we define the following events where the external system P is replaced
by Q: Bq,jHr | Q, B

q
Hr | Q, B

q,6=j
Hr | Q, B

q,π−1(i)
Hr | Q , Bq,6=π

−1(i)
Hr | Q .
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We note that for all r, the systemsHr | P (resp., Hr | Q) is almost bounded if and only if there exists a negligible
function f and a polynomial q such that Prob[BqHr | P(1η, a)] ≤ f(η, a) (resp., Prob[BqHr | Q(1η, a)] ≤ f(η, a))
for all η ∈ N and a ∈ {0, 1}∗. The direction from left to right is trivial. For the other direction first recall
that (the simulated) E is universally bounded, and hence, only a polynomial number of copies of the protocol
is created (the length l of the list L in Hr is bounded by pE(η + |a|)). Now since, by assumption, the number
of steps taken by every copy of the protocol is polynomially bounded (except with negligible probability)
and the number of steps taken by (the simulated) E is polynomially bounded, the number of steps taken by
Hr | P (resp., Hr | Q) is polynomially bounded. (The overhead for the session versions is only polynomial.)

The next simple lemma shows that there exists a polynomial q1 such that the event Bq1H1 | Q occurs with
negligible probability. As argued above, this is equivalent to H1 | Q being almost bounded. By induction on
r, using Theorem 4 and P ∼= Q, one can even easily show that Hr | Q is almost bounded for every r ∈ N.
This however does not suffice to prove Lemma 9 because we need to show that HpE | Q is almost bounded.
That is, we need a uniform bound that is independent of r (as will be established in Lemma 28). This is in
fact the only real difficulty in proving this lemma and the only reason the permutation π is required.

Lemma 26. There exists a polynomial q1 and a negligible function f1 such that for all η ∈ N and a ∈ {0, 1}∗:

Prob[Bq1H1 | Q(1η, a)] ≤ f1(η, a) .

Proof. By construction, H1 | P behaves exactly like E | !P, which is almost bounded by assumption. By
definition of H1, the subsystem !Q′ of H1 is never invoked, and hence, can be removed from H1. Since !P is
environmentally bounded by assumption, it is easy to see that the system !P ′′ | P is environmentally bounded
as well. Now, by Theorem 4 (with S = !P ′′) and P ∼= Q, we obtain that E | !P ′′ | Q is almost bounded,
and hence, H1 | Q is almost bounded. As argued above, this implies the existence of a polynomial q1 and a
negligible function f1 with Prob[Bq1H1 | Q(1η, a)] ≤ f1(η, a) for all η ∈ N and a ∈ {0, 1}∗.

Throughout the rest of the proof we fix the polynomial q1 and the negligible function f1 from the above
lemma.

The next lemma shows that for all r ≤ pE(η + |a|) the difference of the probabilities that the events
B
q1, 6=π−1(r)
Hr | P and Bq1, 6=π

−1(r)
Hr | Q occur is negligible. Note that this statement does not consider the number of

steps taken by the external protocol copy P and Q, respectively, because this copy, which corresponds to
π−1(r), is excluded in these events.

Lemma 27. There exists a negligible function f2 such that for all η ∈ N, a ∈ {0, 1}∗, and r ≤ pE(η + |a|):∣∣∣Prob
[
B
q1,6=π−1(r)
Hr | P (1η, a)

]
− Prob

[
B
q1, 6=π−1(r)
Hr | Q (1η, a)

]∣∣∣ ≤ f2(η, a) .

Proof. We first prove the lemma for non-uniform environments, i.e., environments that use the external input
a, because this proof is simpler and better highlights the main idea. In Appendix B we present a proof for
this lemma in the uniform setting.

We define an IITM D ∈ Env(P) which expects to receive (r, a) as external input and then simulates Hr
with external input a until the runtime bound q1(η + |a|) is hit by any of the internally simulated sessions. If
the runtime bound is hit, D outputs 1 on decision. If the run stops and the runtime bound has not been hit,
D outputs 0 on decision.

More formally, D is defined as follows. In mode CheckAddress, D accepts every message. In mode Compute,
D behaves as follows: First, D parses the external input on start as (r, a) with r ∈ {1, . . . , pE(η + |a|)} and
a ∈ {0, 1}∗. If the external input is not of this form, D outputs 0 on decision. Otherwise, D simulates the
system Hr = Eperm

r | !P ′′ | !Q′ with external input a, i.e., it first activates Eperm
r with input a on start and

then simulates all the machines in Hr. If Hr produces output, then so does D and if D receives input, then
D forwards this input to the simulated Hr. Additionally, D counts the number of transitions taken by all
the simulated machines and checks if the conditions of the event Bq1,6=π

−1(r)
Hr | P (1η, a) and Bq1,6=π

−1(r)
Hr | Q (1η, a),

respectively, are satisfied. (Note that D can do this even though it cannot inspect the number of transitions
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in the external systems, P and Q, respectively.) If such a condition is satisfied (i.e., some internal session
takes more than q1(η + |a|) steps), then D halts with output 1 on decision. If the run terminates (i.e., Eperm

r

outputs something on decision or Eperm
r produces empty output, which terminates the run because Eperm

r is a
master IITM) but these conditions are not satisfied, then D halts with output 0 on decision.

It is easy to see that D is universally bounded (i.e., D ∈ Env(P)) and that for all η ∈ N, a ∈ {0, 1}∗, and
r ≤ pE(η + |a|):

Prob[(D | P)(1η, (r, a)) = 1] = Prob
[
B
q1,6=π−1(r)
Hr | P (1η, a)

]
and

Prob[(D | Q)(1η, (r, a)) = 1] = Prob
[
B
q1,6=π−1(r)
Hr | Q (1η, a)

]
.

(31)

Since P ∼= Q and D ∈ Env(P), we have that D | P ≡ D | Q. In particularly, there exists a negligible function
f ′2 such that for all η ∈ N, a ∈ {0, 1}∗, and r ≤ pE(η + |a|):

f ′2(η, (r, a)) ≥ |Prob[(D | P)(1η, (r, a)) = 1]− Prob[(D | Q)(1η, (r, a)) = 1]|
(31)=

∣∣∣Prob
[
B
q1,6=π−1(r)
Hr | P (1η, a)

]
− Prob

[
B
q1,6=π−1(r)
Hr | Q (1η, a)

]∣∣∣ .
Let f2(η, a) := maxr≤pE(η+|a|) f

′
2(η, (r, a)). It is easy to see that f2 is a negligible function. Now, obviously

we have that ∣∣∣Prob
[
B
q1,6=π−1(r)
Hr | P (1η, a)

]
− Prob

[
B
q1,6=π−1(r)
Hr | Q (1η, a)

]∣∣∣ ≤ f2(η, a)

for all η ∈ N, a ∈ {0, 1}∗, and r ≤ pE(η + |a|). This concludes the proof.

Throughout the rest of the proof, we fix the negligible function f2 from the above lemma. Finally, we
show that there exists a negligible function such that for all r ≤ pE(η + |a|) the probability that the event
Bq1Hr | Q occurs is bounded by this negligible function. This will conclude the proof.

Lemma 28. There exists a negligible function f3 such that for all η ∈ N, a ∈ {0, 1}∗, and r ≤ pE(η + |a|):

Prob
[
Bq1Hr | Q(1η, a)

]
≤ f3(η, a) .

Proof. Let η ∈ N, and a ∈ {0, 1}∗. For all r ≤ pE(η + |a|) we define

tr := tr(1η, a) := Prob
[
Bq1Hr | Q(1η, a)

]
.

We need to show that there exists a negligible function that bounds tr from above for every r ≤ pE(η + |a|).
Let r ≤ pE(η + |a|). If r = 1, then tr = t1 ≤ f1(η, a) by Lemma 26. Next, we consider the case r > 1.

Since the permutation π is chosen uniformly at random, we obtain for all j ≤ r the following equality:

Prob
[
B
q1,π

−1(r)
Hr | Q (1η, a) \Bq1, 6=π

−1(r)
Hr | Q (1η, a)

]
= Prob

[
B
q1,π

−1(j)
Hr | Q (1η, a) \Bq1,6=π

−1(j)
Hr | Q (1η, a)

]
. (32)

Intuitively, the event B1 := B
q1,π

−1(r)
Hr | Q (1η, a) \ Bq1, 6=π

−1(r)
Hr | Q (1η, a) says that the number of steps taken in

the external protocol system Q exceeded q1, but not the number of steps in the internal systems. The
event B2 := B

q1,π
−1(j)

Hr | Q (1η, a) \Bq1,6=π
−1(j)

Hr | Q (1η, a) says that the number of steps taken in the jth copy of the
internally simulated protocol system Q exceeded q1, but not the number of steps taken in the other protocol
systems, i.e., in the other internal copies and the external system. Since π is chosen uniformly at random, it
does not make a difference whether q1 is exceeded by the external system or one of the internal copies of Q.

Formally, the equality (32) can easily be established by defining a bijection between the runs in B1 and
those in B2: a run ρ ∈ B1 in which the permutation π was chosen is mapped to the corresponding run in B2
where a permutation π′ is chosen which coincides with π except that π−1(r) and π−1(j) are swapped, i.e.,
π′−1(r) = π−1(j) and π′−1(j) = π−1(r).

87



Now, with (32) we have that:

Prob[Bq1,6=π
−1(r)

Hr | Q (1η, a)] ≥ Prob
[r−1⋃
j=1

B
q1,π

−1(j)
Hr | Q (1η, a)

]

≥ Prob
[r−1⋃
j=1

B
q1,π

−1(j)
Hr | Q (1η, a) \Bq1,6=π

−1(j)
Hr | Q (1η, a)

]

=
r−1∑
j=1

Prob
[
B
q1,π

−1(j)
Hr | Q (1η, a) \Bq1,6=π

−1(j)
Hr | Q (1η, a)

]
(32)= (r − 1) · Prob

[
B
q1,π

−1(r)
Hr | Q (1η, a) \Bq1,6=π

−1(r)
Hr | Q (1η, a)

]
.

(33)

We conclude that:

tr = Prob
[
Bq1Hr | Q(1η, a)

]
= Prob

[
B
q1,6=π−1(r)
Hr | Q (1η, a)

]
+ Prob

[
B
q1,π

−1(r)
Hr | Q (1η, a) \Bq1,6=π

−1(r)
Hr | Q (1η, a)

]
≤ r

r − 1 · Prob
[
B
q1, 6=π−1(r)
Hr | Q (1η, a)

]
due to (33)

≤ r

r − 1 ·
(

Prob
[
B
q1, 6=π−1(r)
Hr | P (1η, a)

]
+ f2(η, a)

)
due to Lemma 27

≤ r

r − 1 ·
(

Prob
[
Bq1Hr | P(1η, a)

]
+ f2(η, a)

)
.

Since the systems Hr | P and Hr−1 | Q behave exactly the same, we have that

Prob[Bq1Hr | P(1η, a)] = Prob[Bq1Hr−1 | Q(1η, a)] = tr−1

and we obtain the following simple recurrence relation:

tr ≤
r

r − 1 · (tr−1 + f2(η, a)) .

By induction on r it can be shown that:

tr ≤

r−1∏
j=1

j + 1
j

 · t1 +

r−1∑
j=1

r−1∏
i=j

i+ 1
i

 · f2(η, a) . (34)

From this we obtain:

tr ≤

r−1∏
j=1

j + 1
j

 · t1 +

r−1∑
j=1

r−1∏
i=j

i+ 1
i

 · f2(η, a) due to (34)

= r · t1 +

r−1∑
j=1

r

j

 · f2(η, a)

≤ r · t1 + (r − 1) · r · f2(η, a)
≤ pE(η + |a|) · f1(η, a) + p2

E(η + |a|) · f2(η, a) due to Lemma 26.

Hence, with
f3(η, a) := pE(η + |a|) · f1(η, a) + p2

E(η + |a|) · f2(η, a)
it holds that

Prob[Bq1Hr | Q(1η, a)] = tr ≤ f3(η, a) ,

for all r ≤ pE(η + |a|). Note that f3 is negligible and does not depend on r.
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Lemma 28 immediately implies that Prob[Bq1HpE (η+|a|) | Q(1η, a)] ≤ f3(η, a) for all η ∈ N and a ∈ {0, 1}∗.
As argued above, it follows that HpE | Q, and hence, E | !Q are almost bounded. Since this is true for any
E ∈ Env(!Q), we obtain that !Q is environmentally bounded, which concludes the proof of Lemma 9.

B Proof of Lemma 27 for Uniform Environments
We present the proof of Lemma 27 for uniform environments, i.e., environments which do not get any external
input. Let η ∈ N. We define:

δr := δr(1η) := Prob
[
B
q1, 6=π−1(r)
Hr | P (1η)

]
− Prob

[
B
q1,6=π−1(r)
Hr | Q (1η)

]
for all r ≤ pE(η). (Recall that pE is the polynomial that bounds the number of different sessions created by
E . Since E does not get any external input this polynomial is now in the security parameter alone.) Let
r∗ ≤ pE(η) such that it maximizes |δr|, i.e., |δr∗ | = max{|δr| | r ≤ pE(η)}. The basic idea of this proof is due
to [20] and goes as follows: D, instead of reading r from the external input (recall that in this setting D does
not obtain external input) first samples runs of (Hr | P)(1η) and (Hr | Q)(1η) and tries to compute r∗. Then
D simulates Hr as in the non-uniform case (see Appendix A) with r = r∗. Of course, D might only find an r
such that |δr| approximates |δr∗ |, but this will be good enough.

Let r+, r− ≤ pE(η) such that it maximizes/minimizes δr, i.e., δr+ = max{δr | r ≤ pE(η)} and δr− =
min{δr | r ≤ pE(η)}. Note that |δr∗ | = max{|δr+ |, |δr− |}. To simplify the proof, we show that both |δr+ | and
|δr− | are negligible (as functions in η), which implies that |δr∗ | is negligible. Since |δr∗| ≥ |δr| for all r, this
concludes the proof of the lemma.

First, we show that |δr+ | is negligible. Let q be a polynomial. We define D+
q , which is parameterized by q,

as follows:

1. For every r ≤ pE(η) and i ≤ q(η), D+
q simulates a run of (Hr | P)(1η) and checks if the event

B
q1,6=π−1(r)
Hr | P (1η) occurs. Note that with negligible probability this run might not be polynomial time, in

which case D+
q aborts the run. Without loss of generality and for simplicity of presentation, we ignore

such runs in the following. Let P ri ∈ {0, 1} be 1 if the event occurred and 0 otherwise. Similarly, D+
q

simulates runs of (Hr | Q)(1η) and obtains the results Qri ∈ {0, 1}.

2. For every r ≤ pE(η), D+
q computes:

δ̃r := 1
q(η)

q(η)∑
i=1

P ri −Qri .

3. D+
q computes r̃+ which maximizes δ̃r, i.e., δ̃r̃+ = max{δ̃r | r ≤ pE(η)}. (If there exist multiple such r̃+,

D+
q chooses one arbitrarily.)

4. D+
q simulates Hr as in the non-uniform case (see the proof of Lemma 27 in Appendix A) with r = r̃+.

Note that for all r ≤ pE(η) (considering r̃+ as a random variable):

δr = Prob
[
(D+

q | P)(1η) = 1 | r̃+ = r
]
− Prob

[
(D+

q | Q)(1η) = 1 | r̃+ = r
]
.

Furthermore, it is easy to see that D+
q is universally bounded (i.e., D+

q ∈ Env(P)). Since, P ∼= Q, there
exists a negligible function fq such that:

fq(η) ≥
∣∣Prob[(D+

q | P)(1η) = 1]− Prob[(D+
q | Q)(1η) = 1]

∣∣ . (35)

For every r, the random variables P r1 , . . . , P rq(η) (resp., Qr1, . . . , Qrq(η)) are independent and identically

distributed, all Bernoulli distributed with success probability prP := Prob[Bq1,6=π
−1(r)

Hr | P (1η)] (resp., prQ :=
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Prob[Bq1,6=π
−1(r)

Hr | Q (1η)]). So, the expected value of δ̃r (considered as a random variable where the probability
space is over runs of D+

q ) is:

E[δ̃r] = prP − prQ = δr

and its variance is:

Var(δ̃r) =
prP(1− prP) + prQ(1− prQ)

q(η) ≤ 1
2q(η) .

Using Chebyshev’s inequality, we obtain that for every r ≤ pE(η) and ε > 0:

Prob
[∣∣δ̃r − δr∣∣ ≥ ε] ≤ Var(δ̃r)

ε2 ≤ 1
2q(η)ε2 .

Let p be a polynomial. Then, choosing ε := 1
p(η) and q(η) := p3(η)

2 yields for all r:

Prob
[∣∣δ̃r − δr∣∣ ≥ 1

p(η)

]
≤ 1
p(η) . (36)

Let Bp be the event that in a run of D+
q (with some system) there exists an r ≤ pE(η) such that |δ̃r − δr| ≥ 1

p(η)
(i.e., the sampling is off by too much). By Bp we denote the complement of Bp, i.e., that for all r ≤ pE(η):
|δ̃r − δr| < 1

p(η) . With this, we obtain that:

Prob [Bp] ≤
pE(η)∑
r=1

Prob
[∣∣δ̃r − δr∣∣ ≥ 1

p(η)

]
(36)
≤ pE(η)

p(η) . (37)

It is easy to see that if Bp does not hold, then |δr̃+ − δr+ | < 2
p(η) where r̃+ is the value computed by D+

q in
step 3. That is, it holds that

Prob
[
|δr̃+ − δr+ | ≥ 2

p(η) ∧Bp
]

= 0 . (38)

where, as usual, r̃+ is a random variable and the probability space is taken over runs of D+
q .

By (38), we conclude that Prob
[
r̃+ = r | Bp

]
= 0 for all r ≤ pE(η) such that |δr − δr+ | ≥ 2

p(η) . Hence,
for all r ≤ pE(η):

Prob
[
r̃+ = r | Bp

]
· |δr − δr+ | < 2

p(η) . (39)

For all r ≤ pE(η), we define:

δ′r := Prob
[
(D+

q | P)(1η) = 1 | Bp ∧ r̃+ = r
]
− Prob

[
(D+

q | Q)(1η) = 1 | Bp ∧ r̃+ = r
]
. (40)

That is, δ′r is defined like δr but under the condition that Bp does not occur. It is easy to show that for all
r ≤ pE(η):40

|δ′r − δr| ≤ 2 · Prob [Bp] . (41)
40We use the obvious fact that for Prob [C] > 0 it holds that |(Prob [A]− Prob [B])− (Prob [A | C]− Prob [B | C])| ≤

2 · Prob
[
C
]
.
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We conclude that:

fq(η)
(35)
≥
∣∣Prob[(D+

q | P)(1η) = 1]− Prob[(D+
q | Q)(1η) = 1]

∣∣
≥
∣∣Prob

[
(D+

q | P)(1η) = 1 | Bp
]
− Prob

[
(D+

q | Q)(1η) = 1 | Bp
]∣∣− 2 · Prob [Bp]

(40)=

∣∣∣∣∣∣
pE(η)∑
r=1

Prob
[
r̃+ = r | Bp

]
· δ′r

∣∣∣∣∣∣− 2 · Prob [Bp]

(41)
≥

∣∣∣∣∣∣
pE(η)∑
r=1

Prob
[
r̃+ = r | Bp

]
· δr

∣∣∣∣∣∣− 2pE(η) · Prob [Bp]− 2 · Prob [Bp]

=

∣∣∣∣∣∣δr+ +
pE(η)∑
r=1

Prob
[
r̃+ = r | Bp

]
· (δr − δr+)

∣∣∣∣∣∣− 2pE(η) · Prob [Bp]− 2 · Prob [Bp]

≥ |δr+ | −

pE(η)∑
r=1

Prob
[
r̃+ = r | Bp

]
· |δr − δr+ |

− 2pE(η) · Prob [Bp]− 2 · Prob [Bp]

(39)
> |δr+ | − pE(η) · 2

p(η) − 2pE(η) · Prob [Bp]− 2 · Prob [Bp]

(37)
≥ |δr+ | − 2p2

E(η) + 4pE(η)
p(η) .

Since this holds for every polynomial p and fq is negligible (recall that q = p3

2 ), we conclude that |δr+ | is
negligible.

To prove that |δr− | is negligible, in the argument above, we simply have to replace D+
q by D−q , r+ by r−,

and r̃+ by r̃−. D−q only differs from D+
q in step 3: D−q computes r̃− such that it minimizes δ̃r.

C Proof of Theorem 7
In Section 6.3, we already proved that SS and UC are equivalent. To complete the proof of Theorem 7, we
first show that UC implies dummyUC implies SS implies BB implies SS (Appendix C.1, C.2, C.3., and C.4,
respectively), which altogether proves equivalence of SS, UC, dummyUC, and BB. As mentioned in Section 6,
these equivalences also hold true in the case where the environment does not get external input, i.e., is
uniform. In Appendix C.5, we then prove that SS is equivalent to RS, which concludes the proof of Theorem 7.
As mentioned in Section 6, for this equivalence, we (have to) use that the environment gets external input,
i.e., is non-uniform.

In what follows, let P and F be protocol systems. Furthermore, let P be environmentally bounded. We
assume that the set of network tapes of P and F are disjoint; otherwise the tapes can be renamed to satisfy
this assumption.

C.1 UC ⇒ dummyUC
It is easy to see that P ≤UC F implies P ≤dumUC F : It holds that DP = D(T net

in (P), T net
out (P)) ∈ Adv(P)

(i.e., the dummy adversary is a valid adversary for P). Hence, by definition of P ≤UC F , there exists
I ∈ SimDP | P(F) such that DP | P ∼= I |F . We conclude that P ≤dumUC F .

C.2 dummyUC ⇒ SS
The proof that dummyUC implies SS is exactly as the proof that UC implies SS, which is given in Section 6.3.
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C.3 SS ⇒ BB
It follows directly from Theorem 4 that P ≤SS F implies P ≤BB F : By definition of P ≤SS F , there
exists S ∈ SimP(F) such that P ∼= S |F . Let A ∈ Adv(P). By Lemma 6, we may assume that both S
and A are single IITMs that accept every message in mode CheckAddress.41 Since A |P, P, and S |F are
environmentally bounded and P ∼= S |F , by Theorem 4 (note that A and S |F are protocol systems because
A and S accept every message in mode CheckAddress), we have that A |P ∼= A |S |F . We conclude that
P ≤BB F .

C.4 BB ⇒ SS
We show that P ≤BB F implies P ≤SS F : By definition of P ≤BB F there exists S ∈ SimP(F) such
that A |P ∼= A |S |F for all A ∈ Adv(P). Since the dummy adversary is a valid adversary for P, i.e.,
DP ∈ Adv(P), we immediately obtain that DP | P ∼= DP | S | F . By Lemma 5, we conclude P ∼= S |F , and
hence, P ≤SS F .

C.5 SS ⇔ RS
It is trivially seen that P ≤UC F implies P ≤RS F . Since, as shown before, UC and SS are equivalent, it
follows that P ≤SS F implies P ≤RS F . We now prove that P ≤RS F implies P ≤SS F . The main argument
is similar to the one presented in [2]. We therefore only present the proof sketch.

By definition of P ≤RS F , for all A ∈ Adv(P) and all E ∈ Env(A |P) there exists I ∈ SimA |P(F) such
that:

E |A |P ≡ E | I | F . (42)

We chooseA = DP = D(T net
in (P), T net

out (P)) to be the dummy adversary for P . We also choose E ∈ Env(DP | P)
to be a “universal” Turing machine (more precisely, a universal IITM) which takes as external input (i.e., input
on start) a tuple of the form (a, e, 1t) where e is an encoding of some IITM (representing an environmental
system E ′), a is interpreted as an external input to E ′, and t is interpreted as a runtime. (By Lemma 7, we
may assume that e encodes a single IITM which accepts every message in mode CheckAddress.) The universal
IITM E simulates E ′ with external input a up to t steps. Clearly, E is universally bounded because its runtime
is polynomial in the security parameter plus the length of the external input. Now, given a security parameter
η, external input a, and an environmental system E ′, there exists a tuple (a, e, 1t) of length polynomial in
η + |a| (it suffices to choose t polynomial in η + |a| because E ′ is universally bounded) such that E with
external input (a, e, 1t) precisely simulates E ′. Hence, (42) implies E ′ | DP | P ≡ E ′ | I | F , i.e., P ≤dumUC F .
Since we already know that P ≤dumUC F implies P ≤SS F , we obtain P ≤SS F .

D Problems with the Composition Theorem in the UC model
This section proves the claim from Section 11.2 that the composition theorem of the 2013 version of the UC
model does not hold true even if one were to require different SIDs for every layer of a protocol.

Recall from Section 11.2 that the 2013 version of the UC model disallows the environment from sending
any inputs in the name of the challenge session (cf. [2, p. 35]). One of the implications of this restriction is
that the environment cannot simulate a higher level protocol in the same session as a subroutine, which in
turn invalidates the composition theorem, as illustrated in Section 11.2. A straightforward idea to try to fix
this is to limit the composition theorem to protocols that use different SIDs for every protocol layer such that
the environment does not need to be able to simulate higher level protocols in the same session. However,
the theorem does not work even for this restricted type of protocol, as explained next.

On a high level, this is due to the way protocols send outputs to the environment in the 2013 UC model. A
protocol is not allowed to directly send an output to the environment; instead, if the environment sends some

41We note that this assumption is actually not required. We could have used the mentioned stronger variant of Theorem 4
instead.
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input in the name of an instance, then that instance is registered and every future output for that instance is
redirected to the environment instead (cf. [2, p. 35]). An environment can (ab)use this to register subroutine
instances of the protocol as long as they are running in a different session42 and then receive all outputs
that were supposed to be sent to those subroutines (see Appendix E for more details). Because the challenge
session is protected from this attack, the environment might not be able to mount it on some protocol π
when it is analyzed in isolation. However, this attack might be possible when using π as a subroutine for
another protocol ρ if ρ uses π with a different SID, leading to a potential security breach. Thus, intuitively,
the security guarantees obtained when analyzing π in isolation do not necessarily carry over to the setting
where π is a subprotocol.

To illustrate this issue, let us give a simple concrete example where the composition theorem fails (cf. [2,
p. 37 and p. 48] for the formal definitions of the realization relation and composition theorem): We construct
three protocols π, φ, and ρ such that π realizes φ but ρπ does not realize ρφ, even though all layers of these
protocols use different SIDs. The protocol φ is defined as follows: Once it receives some input, it activates a
subroutine φ′ with a different SID and input 1 and waits to receive output from φ′. Once it has received the
output, φ outputs 1 to the environment. All other messages are ignored, including all communication on the
network. The subroutine φ′ expects to receive some input and, upon receiving one, immediately returns 1;
all other messages are ignored by φ′. The protocol π is identical to φ except that it uses a subroutine π′.
The protocol π′ is the same as φ′ but returns 0 instead of 1. The protocol ρ is just a dummy protocol that
expects some input, forwards it to a subroutine instance of π/φ (with a different SID), waits for the output,
and returns the output to the environment. Again, all other messages are ignored.

We obviously have that π realizes φ: both protocols, including their subroutines, are identical in their
behavior, except that π′ and φ′ produce different outputs. However, these outputs are never forwarded by
π/φ and, because π and φ run in the challenge session when they are analyzed, the environment also cannot
redirect these outputs. So overall, there is no way for the environment to distinguish the two protocols.

However, the situation is quite different when π/φ are used as subroutines of ρ. Assume that ρ runs in
the challenge session sid, its direct subroutine π/φ runs in session sid ′, and the subroutine π′/φ′ runs in
session sid ′′. In this situation, the environment can send an arbitrary input to ρ in the name of the machine
π in session sid ′. Note that this is possible because sid 6= sid ′ by construction, i.e., the environment may act
in the name of the subroutine π as it does not run in the challenge session. From that point onwards, every
output sent to π in session sid ′ will be redirected to the environment instead. Now, if the environment is
running with ρπ, the following happens: Once ρ receives the initial message, it forwards it to π which will
then activate π′. The subroutine π′ immediately returns 0 as output to π, however, as mentioned, this output
will be redirected to the environment. So the environment receives 0 as a response from some instance in
session sid ′′. In contrast, if the environment is running with ρφ, the following happens: Once ρ receives the
initial message, it forwards it to φ which will then activate φ′. The subroutine φ′ immediately returns 1 as
output to φ, which is not redirected as the environment has sent an input only in the name of an instance of
π, not φ. So φ will output 1 to ρ, which forwards the output to the environment. Overall, in this setting the
environment receives the output 1 from an instance in session sid. So the environment can easily distinguish
between the real world and the ideal world, which means that the composition fails.

E Model Specific Distinguishing Attacks in the UC Model
As mentioned in Section 11.2, the most recent version of the UC model [2] (and partly also older versions)
allows for several artificial distinguishing attacks that are specific to the model. This section explains these
attacks and illustrates why they cause problems. Again, we emphasize that while dealing with distinguishing
attacks is an important part of both protocol design and security analysis, the attacks from this section
do not relate to any attack scenarios in reality and thus only hinder a protocol designer. They are hard to
deal with, lead to unnatural protocol specifications and complex security proofs, and can prevent intuitive

42This is due to the restriction imposed on environments that they may not send any inputs in the name of the challenge
session. Thus, they cannot register any instances in the challenge session.
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realizations, or in fact realizations at all when standard conventions (such as the structure of ideal protocols
and corruption mechanisms) from the UC model are used, as explained in what follows.

Exhausting machines. As explained in Section 11.1, the UC model bounds the runtime of instances of
machines by a polynomial in the number of bits they receive from higher-level protocols minus the number of
bits they send to subroutines (cf. [2, p. 30]). This allows the environment to exhaust instances in the real
protocol by sending several messages on the network.

This is quite troublesome, as the real protocol now has to deal with blocked instances and might not be
able to do so. In fact, if there is any way for the environment to detect whether a real protocol is blocked (for
example, because the protocol usually generates some output after receiving a message from the network),
then such a real protocol can hardly realize any of the ideal protocols from the literature. This is because ideal
protocols generally do not tell the simulator the number of input bits (including malformed inputs) they have
received, so the simulator cannot calculate the runtime bound of the real protocol. One can only fix this
issue by leaking the length of all inputs from the ideal functionality to the simulator, which is undesirable
and has not been done in the literature so far. Also, leaking the length of the input is not always viable, as
some tasks require this information to be secret.

Preventing interaction with subroutines. The environment can block a real protocol from interacting
with some of its subroutines. The severity of this problem strongly depends on the protocols at hand. While
a protocol designer might be able to deal with this problem for some protocols, in other cases one might not
be able to change a protocol such that it can handle missing subroutines. Either way, at the very least, this
problem drastically complicates protocol specifications and security analyses as protocol designers have to
consider and deal with many annoying details. There are two different ways for the environment to prevent
interaction with subroutines.

The first possibility is due to the runtime notion. Recall that in the UC model the runtime of an instance
is bounded by a polynomial p(n) where n = nI − nO, nI is the number of bits received from higher-level
protocols, and nO is the number of bits sent to subroutines. Also recall that higher level protocols have to
send the security parameter to new instances of subroutines (cf. [2, p. 30f]). In other words, the security
parameter for each subroutine instance is included in nO. Thus, if the environment sends a very short input
to the challenge protocol, say the security parameter 1η and some constant number of bits, then the challenge
protocol can invoke at most one subroutine instance: in order to invoke a second subroutine, the challenge
protocol would have to provide this subroutine with at least 1η again, which, however, is not possible anymore.
Clearly, the environment can use this to influence the number of subroutines a protocol can create.43

The second possibility is due to the ability of the adversary to create new machines and determine their
machine code. Recall that the adversary specifies both the ID and the machine code of the receiver to send a
message. If there is some instance with that ID already, then the message will be delivered to that instance
regardless of its machine code. However, if there is no instance with that ID yet, then a new one will be
created that executes the code provided by the adversary (cf. [2, p. 19f, 35]). Thus, the adversary can, at the
start of the run before any instances of the challenge protocol exist, create instances with IDs that belong to
subroutines that will be called by the challenge protocol. While the challenge protocol will notice that its
subroutines do not exist (it receives a special error when its subroutine uses the wrong machine code), the
protocol execution is disrupted as now the protocol has to deal with a missing subroutine.

Intercepting outputs from subroutines. The environment can intercept the outputs from subroutines
even though these outputs are meant to be sent directly on a protected channel to a higher-level protocol.

43We note that one mechanism to try to deal with this issue is to expect a sufficiently long (padded) initial input in the real
protocol such that all subroutines are accessible (and block the real protocol until sufficiently many bits have been received).
However, this approach is not generally applicable as it works only if (i) the number of subroutine instances is known at the
start of a run and (ii) the simulator is able to block an uncorrupted party in the ideal functionality if the initial input was too
short. Furthermore, padding of inputs is usually not done in the literature as it yields very unnatural protocol specifications and
is an annoying detail.

94



For this attack, recall from the UC model (see also Section 11.2) that an environment can send inputs
to the highest level of the challenge protocol and claim that it was sent by an arbitrary sender, as long
as that sender has a different SID than the challenge protocol. The identities of those senders are stored
and if some instance of the protocol sends some output to those identities, the output is redirected to the
environment instead (cf. [2, p. 35]). This is a problem if the challenge protocol uses subroutines that have
a different SID than the highest-level instances, as the environment can redirect all outputs sent to these
subroutines to itself.44 To illustrate this, consider the following example: The challenge protocol π uses two
ideal protocols φ and φ′ (which consist of a dummy and an ideal functionality) as subroutines. By convention,
these subroutines have different SIDs as otherwise the IDs of the ideal functionalities would coincide; w.l.o.g.
let π and φ have SID sid, and let φ′ have SID sid ′. Now, the environment can send an input in the name of
a dummy instance of φ′ to the challenge protocol to register this ID. Any future output sent by the ideal
functionality of φ′ to the dummy instance will then be redirected to the environment instead.

Again, the severity of this attack depends on the protocols at hand. In many cases, the integrity of
the real protocol π is disrupted if one can eavesdrop on direct connections between this protocols and its
subroutines, allowing the environment to distinguish the real protocol from the ideal one. For example, if the
subroutine φ′ from above is a secure channel, then the environment might be able to acquire a secret key sent
via this channel and use this key to distinguish the real from the ideal world. Even if eavesdropping is not a
concern, the higher-level protocol still has to deal with the possibility that it might not receive any outputs
from subroutines, even when they are supposed to immediately and always provide one.

Prevent interaction with the ideal functionality The environment can essentially “delete” the ideal
functionality, thus forcing the simulation to fail as the simulator receives no inputs and cannot corrupt any
parties. One version of this attack, which we describe in the following, can even be used to distinguish any
real protocol from any ideal protocol if standard UC conventions (structure of ideal functionalities and in
particular corruption mechanisms) are used.

On a high level, the attack works as follows. Recall that the environment can send inputs to arbitrary
challenge protocol instances with some ID (pid, sid). If no instance with that ID exists yet, a new instance of
the challenge protocol is created (cf. [2, p. 19f, 35]). Thus, if the environment sends its first input to the
instance with ID (⊥, sid), then this will create a new dummy with this ID in the ideal world. As this ID is now
bound to the instance of a dummy, the dummy cannot access its ideal functionality: this is because in the UC
model the convention is that for an instance of a dummy with an ID of the form (pid, sid) the corresponding
ideal functionality has ID (⊥, sid), which now, however, is taken by the dummy instance. Hence, an input
sent by the dummy to the ideal functionality would result in an error of the write command, which is then
forwarded to the environment (cf. [2, p. 40]). This already allows the environment to distinguish many real
protocols from ideal protocols. Some real protocols might also produce an error in the same situation, though.
We can distinguish even these protocols by using the standard corruption mechanism to let the real protocol
send a notification to the environment, which cannot be done by the simulator. In what follows, this is made
more precise.

We first define the behavior of the environment when running with the dummy adversary and then show
that no simulator can simulate a real protocol that uses any of the corruption mechanisms (static, adaptive,
honest-but-curious) defined in the 2013 version of the UC model. Let the environment E be such that it
activates the adversary at the start of the run (this is required by the model, cf. [2, p. 35]). As soon as E
regains control, it sends some input to the (ideal/real) challenge protocol instance with ID (⊥, sid) for some
random sid of length η (where η is the security parameter). When E regains control, it corrupts the instance
(⊥, sid) (an instance with an ID of the form (pid, sid) for any pid would work as well) and waits to receive a
confirmation (recall that, by convention, real protocols send a confirmation to all higher level protocols upon
corruption; cf. [2, p. 58]). If the whole run proceeds as expected, E outputs 0; otherwise, it outputs 1.

44The following attack requires the environment to send some input in the name of a subroutine. As the environment may
only do so for instances that have a different SID as the challenge session, this attack does not work for subroutines with the
same SID. Note, however, that as explained in Section 11.2 this restriction imposed on the environment actually causes the
composition theorem to fail. If this restriction is removed to fix the composition theorem, then the environment will be able to
intercept outputs even from subroutines with the same SID as the challenge session.
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First note that in the real world, E will always output 0. Now, assume, by contradiction, that there is a
simulator S such that the real protocol is indistinguishable from the ideal protocol. First observe that S does
not know the SID sid that E will use at the start of the run, so there is at most a negligible probability that
S has already activated any instances in session sid before E sends the first input. Thus, we can ignore this
negligible set of runs in the following. When E sends the first input to the ideal challenge protocol, a fresh
dummy instance with ID (⊥, sid) will be created. By definition, the dummy will try to forward its input to
its ideal functionality with ID (⊥, sid), which fails since the instance with this ID is a dummy instance, not
an instance of the ideal functionality. The dummy returns an error to the environment in this case. Now the
environment tries to corrupt the instance (⊥, sid) and expects to receive a confirmation. The simulator cannot
simulate this in the ideal world: by convention, dummies only forward output from the ideal functionality
with ID (⊥, sid) while ignoring corruption messages from the simulator. Instead, the instance (⊥, sid) of the
ideal functionality is supposed to handle corruption (cf. [2, p. 61]). However, such an instance does not and
cannot exist. Thus, the simulator cannot send any messages via the dummy and is unable to simulate the
behavior of the real world, allowing the environment to distinguish the real from the ideal world.

Note that this argument does not assume anything other than that standard UC conventions are used and
thus affects virtually all of the current UC literature. We also note that this attack cannot be prevented by
restricting the environment to never send input to an instance with ID (⊥, sid). Such a restricted environment
can, at the start of the run, advise the dummy adversary to create an instance with (⊥, sid) but different
machine code, similar to what is described in the paragraph “prevent interaction with subroutines”. In order
to simulate the behavior of this instance (with a machine code that is determined by the environment) in the
ideal world, the simulator will generally be forced to also create a similar instance with the same ID, thus
overwriting the ideal functionality. The same attack from above then still works.

References
[1] B. Barak, Y. Lindell, and T. Rabin. Protocol Initialization for the Framework of Universal Composability.

Technical Report 2004/006, Cryptology ePrint Archive, 2004. Available at http://eprint.iacr.org/
2004/006.

[2] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. Technical
Report 2000/067, Cryptology ePrint Archive, 2000. Available at http://eprint.iacr.org/2000/067
with new versions from December 2005 and July 2013.

[3] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In
Proceedings of the 42nd Annual Symposium on Foundations of Computer Science (FOCS 2001), pages
136–145. IEEE Computer Society, 2001.

[4] R. Canetti. Security and Composition of Cryptographic Protocols: A Tutorial. Technical Report
2006/465, Cryptology ePrint Archive, 2006. Available at http://eprint.iacr.org/2006/465.

[5] R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira, and R. Segala. Time-Bounded
Task-PIOAs: A Framework for Analyzing Security Protocols. In S. Dolev, editor, 20th International
Symposium on Distributed Computing (DISC 2006), pages 238–253. Springer, 2006.

[6] R. Canetti, A. Cohen, and Y. Lindell. A Simpler Variant of Universally Composable Security for
Standard Multiparty Computation. In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, volume 9216 of Lecture
Notes in Computer Science, pages 3–22. Springer, 2015.

[7] R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally Composable Security with Global Setup. In
S. P. Vadhan, editor, Theory of Cryptography, Proceedings of TCC 2007, volume 4392 of Lecture Notes
in Computer Science, pages 61–85. Springer, 2007.

96

http://eprint.iacr.org/2004/006
http://eprint.iacr.org/2004/006
http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2006/465


[8] R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. D. MacKenzie. Universally Composable Password-
Based Key Exchange. In R. Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, 24th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, volume 3494 of
Lecture Notes in Computer Science, pages 404–421. Springer, 2005.

[9] R. Canetti and J. Herzog. Universally Composable Symbolic Analysis of Mutual Authentication and
Key-Exchange Protocols. In S. Halevi and T. Rabin, editors, Theory of Cryptography, Third Theory of
Cryptography Conference, TCC 2006, volume 3876 of Lecture Notes in Computer Science, pages 380–403.
Springer, 2006.

[10] R. Canetti, A. Jain, and A. Scafuro. Practical UC security with a Global Random Oracle. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security, Scottsdale, AZ, USA,
November 3-7, 2014, pages 597–608. ACM, 2014.

[11] R. Canetti and H. Krawczyk. Universally Composable Notions of Key Exchange and Secure Channels. In
Advances in Cryptology - EUROCRYPT 2002, International Conference on the Theory and Applications
of Cryptographic Techniques, Proceedings, volume 2332 of Lecture Notes in Computer Science, pages
337–351. Springer, 2002.

[12] R. Canetti and T. Rabin. Universal Composition with Joint State. In Advances in Cryptology, 23rd
Annual International Cryptology Conference (CRYPTO 2003), Proceedings, volume 2729 of Lecture
Notes in Computer Science, pages 265–281. Springer, 2003.

[13] R. Canetti, D. Shahaf, and M. Vald. Universally Composable Authentication and Key-Exchange with
Global PKI. In Public-Key Cryptography - PKC 2016 - 19th IACR International Conference on Practice
and Theory in Public-Key Cryptography, Taipei, Taiwan, March 6-9, 2016, Proceedings, Part II, volume
9615 of Lecture Notes in Computer Science, pages 265–296. Springer, 2016.

[14] A. Datta, R. Küsters, J. Mitchell, and A. Ramanathan. On the Relationships Between Notions of
Simulation-Based Security. In J. Kilian, editor, Proceedings of the 2nd Theory of Cryptography Conference
(TCC 2005), volume 3378 of Lecture Notes in Computer Science, pages 476–494. Springer, 2005.

[15] C. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[16] D. Hofheinz, J. Müller-Quade, and D. Unruh. Polynomial Runtime in Simulatability Definitions. In
18th IEEE Computer Security Foundations Workshop (CSFW-18 2005), pages 156–169. IEEE Computer
Society, 2005.

[17] D. Hofheinz and V. Shoup. GNUC: A New Universal Composability Framework. Technical Report
2011/303, Cryptology ePrint Archive, 2011. Available at http://eprint.iacr.org/2011/303.

[18] D. Hofheinz and D. Unruh. Comparing two Notions of Simulatability. In J. Kilian, editor, Theory of
Cryptography, Proceedings of TCC 2005, volume 3378 of Lecture Notes in Computer Science, pages
86–103. Springer, 2005.

[19] D. Hofheinz, D. Unruh, and J. Müller-Quade. Polynomial Runtime and Composability. Technical Report
2009/023, Cryptology ePrint Archive, 2009. Available at http://eprint.iacr.org/2009/023.

[20] D. Hofheinz, D. Unruh, and J. Müller-Quade, 2011. [19, footnote 26 on page 40] and personal communi-
cation.

[21] R. Küsters. Simulation-Based Security with Inexhaustible Interactive Turing Machines. In Proceedings
of the 19th IEEE Computer Security Foundations Workshop (CSFW-19 2006), pages 309–320. IEEE
Computer Society, 2006. See http://eprint.iacr.org/2013/025/ for a full and revised version.

[22] R. Küsters, A. Datta, J. C. Mitchell, and A. Ramanathan. On the Relationships Between Notions of
Simulation-Based Security. Journal of Cryptology, 21(4):492–546, 2008.

97

http://eprint.iacr.org/2011/303
http://eprint.iacr.org/2009/023
http://eprint.iacr.org/2013/025/


[23] R. Küsters and D. Rausch. A Framework for Universally Composable Diffie-Hellman Key Exchange. In
IEEE 38th Symposium on Security and Privacy (S&P 2017), pages 881–900. IEEE Computer Society,
2017.

[24] R. Küsters and M. Tuengerthal. Joint State Theorems for Public-Key Encryption and Digital Signature
Functionalities with Local Computation. In Proceedings of the 21st IEEE Computer Security Foundations
Symposium (CSF 2008), pages 270–284. IEEE Computer Society, 2008. The full version is available at
https://eprint.iacr.org/2008/006.

[25] R. Küsters and M. Tuengerthal. Universally Composable Symmetric Encryption. In Proceedings of the
22nd IEEE Computer Security Foundations Symposium (CSF 2009), pages 293–307. IEEE Computer
Society, 2009.

[26] R. Küsters and M. Tuengerthal. Composition Theorems Without Pre-Established Session Identifiers. In
Y. Chen, G. Danezis, and V. Shmatikov, editors, Proceedings of the 18th ACM Conference on Computer
and Communications Security (CCS 2011), pages 41–50. ACM, 2011.

[27] R. Küsters and M. Tuengerthal. Ideal Key Derivation and Encryption in Simulation-based Security.
In A. Kiayias, editor, Topics in Cryptology – CT-RSA 2011, The Cryptographers’ Track at the RSA
Conference 2011, Proceedings, volume 6558 of Lecture Notes in Computer Science, pages 161–179.
Springer, 2011.

[28] R. Küsters and M. Tuengerthal. The IITM Model: a Simple and Expressive Model for Universal
Composability. Technical Report 2013/025, Cryptology ePrint Archive, 2013. Available at http:
//eprint.iacr.org/2013/025.

[29] U. Maurer. Constructive Cryptography - A New Paradigm for Security Definitions and Proofs. In
Theory of Security and Applications - Joint Workshop, TOSCA 2011, Saarbrücken, Germany, March
31 - April 1, 2011, Revised Selected Papers, volume 6993 of Lecture Notes in Computer Science, pages
33–56. Springer, 2011.

[30] U. Maurer and R. Renner. Abstract Cryptography. In B. Chazelle, editor, Innovations in Computer
Science - ICS 2010. Proceedings, pages 1–21. Tsinghua University Press, 2011.

[31] R. Milner. A Calculus of Communicating Systems. Springer, 1980.

[32] R. Needham and M. Schroeder. Using Encryption for Authentication in Large Networks of Computers.
Communications of the ACM, 21(12):993–999, 1978.

[33] B. Pfitzmann and M. Waidner. A Model for Asynchronous Reactive Systems and its Application to
Secure Message Transmission. In IEEE Symposium on Security and Privacy, pages 184–201. IEEE
Computer Society, 2001.

[34] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-Lock Puzzles and Timed-Release Crypto. Technical
Report MIT/LCS/TR-684, MIT, March 1996. Available at http://theory.lcs.mit.edu/~rivest/
RivestShamirWagner-timelock.ps.

98

https://eprint.iacr.org/2008/006
http://eprint.iacr.org/2013/025
http://eprint.iacr.org/2013/025
http://theory.lcs.mit.edu/~rivest/RivestShamirWagner-timelock.ps
http://theory.lcs.mit.edu/~rivest/RivestShamirWagner-timelock.ps

	Introduction
	The IITM Model in a Nutshell
	The General Computational Model
	Inexhaustible Interactive Turing Machines
	Syntax
	Computation

	Systems of IITMs
	Running a System
	Probability Space and Relevant Random Variables
	Equivalence/Indistinguishability of Systems

	Polynomial Time and Properties of Systems
	Further Notation and Terminology
	Polynomially Bounded Systems
	Environments and Environmental Indistinguishability
	Protocols and Environmentally Bounded Systems
	Properties of Systems

	Composition Theorems for Environmental Indistinguishability
	Composition Theorem for a Constant Number of Systems
	Composition Theorem for Unbounded Self-Composition
	Session Versions of Systems
	The Composition Theorem for Session Versions

	Composition Theorem for Unbounded Self-Composition of SID Dependent Systems
	Generalized Session Versions
	A Composition Theorem for -Session Versions


	Notions of Universal Composability
	Further Notation and Terminology
	Network and I/O Tapes
	Adversarial Systems

	Defining the Notions of Universal Composability
	Relationships Between the Notions of Universal Composability
	Reflexivity and Transitivity

	Composition Theorems for the Realization Relations
	Composition Theorem for a Constant Number of Protocol Systems
	Composition Theorem for Unbounded Self-Composition
	Composition Theorem for Unbounded Self-Composition of SID Dependent Protocols
	Composition Theorem for More Complex Systems

	On the Composability of Runtime Notions
	On the Composability of Environmentally Strictly Bounded Systems
	On the Composability of Environmentally Almost Bounded Systems

	On Basing Universal Composability on Environmentally Strictly Bounded Systems
	Strict Simulatability
	No Universal Composability for a Constant Number of Protocol Systems
	No Transitivity
	Strict SS does not Imply Strict UC (Incompleteness of the Dummy Adversary)

	Instantiation of the IITM Model
	Modeling of Real Protocols and Ideal Functionalities
	Composition with Joint State and Shared State
	Composition with Global State / Global Setup
	A Concrete Example
	Another Instantiation: the SUC Model

	Related Work
	UC Model (2005)
	UC Model (2013)
	GNUC Model

	Proof of Lemma 9
	Proof of Lemma 27 for Uniform Environments
	Proof of Theorem 7
	UC  dummyUC
	dummyUC  SS
	SS  BB
	BB  SS
	SS  RS

	Problems with the Composition Theorem in the UC model
	Model Specific Distinguishing Attacks in the UC Model

