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Abstrat

We introdue a variant of the Universal Composability framework (UC; Canetti,

FOCS 2001) that uses symboli ryptography. Two salient properties of the UC

framework are seure omposition and the possibility of easily de�ning seurity by

giving an ideal funtionality as spei�ation. These advantages are now also available

in a symboli modeling of ryptography, allowing for a modular analysis of omplex

protools.

We furthermore introdue a new tehnique for modular design of protools that

uses UC but avoids the need for powerful ryptographi primitives that often omes

with UC protools; this �virtual primitives� approah is unique to the symboli

setting and has no ounterpart in the original omputational UC framework.
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1 Introdution

In the analysis of ryptographi protools, symboli analysis tehniques (going bak to

Dolev and Yao [DY81℄) have shown to be very fruitful. Symboli tehniques allow for

muh better automation than tehniques working in the omputational model (wherein

messages are bitstrings and adversaries are runtime-limited omputations). In a symboli

model of ryptography, messages are typially modeled as terms in a ertain algebra, and

the apaities of the adversary are desribed by, e.g., ertain dedution rules over these

terms.

In this work, we show how to apply the idea of Universal Composability (UC) [Can01℄

to the setting of symboli ryptography. (The independently developed Reative Simu-

latability [BPW07℄ has the same idea. For simpliity, we only refer to UC in the following.)

The Universal Composability framework is a framework for speifying seurity properties

of ryptographi protools that has the following two salient properties:

• Speifying seurity properties via funtionalities. In the UC framework, the seurity

goals of a protool are spei�ed by desribing a so-alled ideal funtionality whih

is a hypothetial entity whih, by onstrution, ahieves all the desired seurity

goals. For example, if we wish to ask whether a protool is a seure ommuniation

protool, we simply speify the seure hannel funtionality. This very simple

funtionality just takes a message from Alie, informs the adversary that Alie sent

a message, and gives that message to Bob. From the desription of the funtionality,

it is then obvious what properties we ahieve: The adversary learns nothing exept

that a message is delivered (serey). The message Bob reeives is the same as the

one that Alie sent (integrity).

Given the desription of an ideal funtionality, we then all a protool seure if it

�UC-emulates� that funtionality. UC-emulation essentially means that the proto-

ol is as seure as the funtionality, i.e., that any seurity property satis�ed by the

funtionality (serey and integrity in our example) is also satis�ed by the protool.
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Using ideal funtionalities to desribe what seurity a protool ahieves is often

simpler than expliitly desribing all required properties one by one. For example,

the seurity of the Diret Anonymous Attestation protool [BCC04℄ is only spei�ed

by an ideal funtionality.

Another view on this de�nition is one of seurity preserving re�nement. The fun-

tionality is an abstrat spei�ation, and the protool is a re�nement that preserves

seurity.

1

Note that the fat that UC-emulation preserves seurity an be formalized: For a

ertain lass of seurity properties we have that if the funtionality has this property,

so has any protool that UC-emulates that funtionality. (See Setion 6).

• Composition and modular design and analysis. Seurity in the UC framework im-

plies seure omposition. That is, assume a seure protool ρ that uses an ideal

funtionality F as a building blok (e.g., ρ uses a seure hannel F). Then, if

another protool π UC emulates F (i.e., π is a message transmission protool), we

an replae F by π in ρ and again get a seure protool.

This omposition operation enables the modular design and analysis of a protool.

For example, in Setion 8, we show that a variant of the Needham-Shroeder-Lowe

protool NSL [Low95℄ UC-emulates the key exhange funtionality FKE whih gives

a seure key to two parties. Another protool SC UC-emulates the seure hannel

funtionality FSC . And �nally, assume we had some omplex protool X imple-

menting some omplex funtionality FX (think, e.g., of some large e-ommere

appliation), and that X uses seure hannels. Then we an plug X, NSL, and

SC together, and get a protool X∗
that still UC-emulates FX . (And due to the

omposition theorem, we do not need to verify the omposed protool anew.) In

ontrast, without the omposition theorem, we would have had to analyze X∗
in

one go; that analysis being muh more omplex beause the implementation of the

seure hannel would be intermixed with the omplex protool X.

The omposition theorem also has the impliation that a protool will keep its seu-

rity when run in other, as yet unknown, ontexts. This is a very important property,

beause on the Internet, a protool will hardly run alone. (Cryptographers often

all seurity de�nitions that do not have this property �stand-alone models�.)

The UC framework has been de�ned in the ontext of omputational ryptography.

However, its two salient properties, seurity spei�ation via funtionalities and seure

omposition, are as useful in a ontext where ryptography is modeled symbolially.

In partiular, even though omputer veri�ation in the symboli setting sales muh

better than the usually manual veri�ation in the omputational setting, most analysis

1

Many other re�nement notions do not preserve, e.g., anonymity. For example, imagine a protool

where user Alie sends A or B over the network (hosen non-deterministially). And Bob sends A or B.

Then the adversary annot distinguish Alie and Bob. A re�nement might be that Alie sends A and

Bob sends B. Obviously, the anonymity of Alie and Bob is now violated.
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tehniques still annot deal with arbitrarily omplex protools.

2

So being able to design

and verify a protool modularly will allow us to analyze more omplex protools.

Our ontribution. In this work, we show that the ideas of the UC framework arry

over to the symboli setting. We show that the omposition theorem and the fat that

seurity properties arry over still hold in the symboli UC framework. (Conurrent om-

position turns out to be non-trivial beause we need to enode a speial variant of proess

repliation in the applied pi alulus that provides session ids to repliated proesses.)

We present an example analysis of a key exhange using the Needham-Shroeder-Lowe

protool, and how to use it in a seure hannel protool via omposition.

We show that impossibilities from the omputational UC framework unfortunately

still apply in the symboli setting; in partiular, implementing a ommitment funtion-

ality without any trusted setup is impossible. On the positive side, we show that this

impossibility an be irumvented to a large part by a trik that we all �virtual primi-

tives�; here we perform the proof of seurity under the assumption that the ryptographi

primitives have some exoti features, but in the end onlude seurity for the original ryp-

tographi primitives without these exoti features. This �virtual primitives�-approah is

unique to the symboli setting, to the best of our knowledge no orresponding tehnique

exists in the omputational world.

We also show how to use Proverif as a helping tool for performing the observational

equivalene proofs when showing seurity in our framework. For this we develop a set of

lemmas that help in rewriting proesses and allows us to use Proverif as a tool even for

observational equivalene proofs that do not involve so-alled biproesses and are thus

out of the sope of Proverif. (See Setion 8.) We believe that this set of lemmas is useful

also in other settings than that of our work.

Prior work. The problem of transporting the ideas of the UC framework into the

symboli setting has already been takled by Delaune, Kremer, and Pereira [DKP09℄.

They do, however, di�er from the original UC framework (and from our work) in one

ruial point: In the original framework, the existene of a so-alled simulator is required

that makes two di�erent protool exeutions � the �real and ideal exeution� � indis-

tinguishable (this will beome learer later). Instead of indistinguishability, [DKP09℄

use an observational preorder. That is, everything that an happen in the real world

an non-deterministially be mathed by the ideal world, but not neessarily vie-versa.

This was due to ertain problems in onstruting simulators when using observational

equivalene instead. However, we show that using an observational preorder limits the

strength of the seurity de�nition onsiderably. For example, if a funtionality guarantees

anonymity (e.g., an anonymous broadast), a protool that emulates that funtionality

will not neessarily satisfy anonymity. On the other hand, we show that using observa-

tional equivalene instead of an observational preorder gives a stronger de�nition that

does, e.g., preserve anonymity properties. Furthermore, we show that, when designing

2

Veri�ation by type heking (e.g., [BBF

+
11℄) being a notable exeption; this approah usually sales

very well. But annotating a protool with types suitable for veri�ation an be daunting.
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the funtionality aording to a simple guideline, the problems with observational equiv-

alene that [DKP09℄ observed vanish. (However, there are hallenges when dealing with

onurrent omposition that apply only in our setting, and not when using the weaker

de�nition based on observational preorders.) We explain the issues related to [DKP09℄

in more detail in Setion 7.

On the omputational side, relevant prior work is of ourse the UC framework

[Can01℄ itself. Other models based on the same ideas are Reative Simulatability

(RSIM) [BPW07℄, SPPC [DKMR05℄, IITM [Küs06℄, Task-PIOA [CCK

+
06a, CCK

+
06b℄,

and GNUC [HS11℄. Some of our results are adaptations of existing omputational sound-

ness results: the impossibility of ommitments [CF01℄ in Setion 9.3 and the joint state

tehnique [CR03℄ in Setion 8. Finally, the symboli setting is not the �rst example of

the fat that the UC framework an easily adapted to other settings to get di�erent

or stronger seurity guarantees, e.g., GUC (UC with shared funtionalities) [CDPW07℄,

quantum-UC [Unr10, Unr11℄, UC with loal adversaries [CV12℄, UC/ (inoeribility)

[UMQ10℄, UC with everlasting seurity [MQU07℄. Furthermore, links between UC and

symboli models ourred where UC-like models were used to establish omputational

soundness results [BPW03, CH11℄. Furthermore, [PS04, BS05℄ present UC protool

onstrutions where impossibilities are irumvented by giving the simulator additional

power (namely superpolynomial-time omputation); this shows some parallels to our

�virtual primitives�-approah, see the disussion on page 80.

Outlook. Further researh might takle the following points:

• Using our framework for analyzing the seurity of existing protools. A partiu-

lar interesting andidate is the Diret Anonymous Attestation protool [BCC04℄

beause its seurity is already formulated in a UC model.

• Although we partially used Proverif for some of the proof steps, the analysis of our

example protools still used a lot of manual work. Can the veri�ation of symboli

UC seurity be automated?

• There are extensions of the UC framework. For example [UMQ10℄ provides an ex-

tension that aptures inoeribility. That model ould be translated to the symboli

setting and used for the analysis of voting protools.

• In ombination with omputational soundness results (these are results that show

that symboli seurity in ertain ases implies omputational seurity), the virtual

primitives approah ould be a viable new tehnique for showing omputational

seurity: Design the protool symbolially modularly using virtual primitives, and

then arry the seurity over to the omputational setting.

2 Review of the applied pi alulus

In this setion we review the variant of the applied pi alulus from [BAF08℄ that we use

in our paper. Below (Setion 2.2) we list some non-standard de�nitions that we will use,
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readers familiar with the applied pi alulus an diretly skip to that setion.

The proess alulus presented in [BAF08℄ is a ombination of the original applied pi

alulus [AF01℄ and one of its dialets [Bla04℄.

We have a set of terms that is built upon three basi sets. The in�nite set of names N ,

the in�nite set of variables V and the set of funtion symbols (alled the signature Σ).
Names desribe all kinds of atomi data, i.e. are used as nones or to represent messages.

We distinguish two ategories of funtion symbols: onstrutors, whih are used to on-

strut terms of higher order, and destrutors. Let T (Σ) be the set of terms built from

names in N , variables in V and onstrutors in Σ.
A substitution is a funtion from variables to terms σ : V → T (Σ). For a term T Tσ

denotes the substitution of every variable x in T by σ(x ) (all variables are replaed at

one). We write {M1/x1 , . . . ,Mn/xn} for a substitution σ s. t. σ(xi ) = Mi and σ(x ) = x

for all x ∈ V \ {x1 , . . . , xn}.
Sometimes it is desirable to onsider two terms, that were onstruted di�erently,

equivalent. Therefore we have a �nite set E of equations (M ,N ) (for M = N ) where

M and N are terms that ontain only variables and onstrutors. E is alled equational

theory.

The equivalene relation =E on terms is de�ned as the re�exive, transitive and sym-

metri losure of E losed under the appliation of substitutions

3

and ontexts (i.e. for

all terms M , N and T M =E N ⇒ T{M /x} =E T{N /x}).
To de�ne the semantis of a destrutor d we introdue a �nite set R of rewrite rules

d(M1 , . . . ,Mn) →P M where M and Mi , i ∈ {1, . . . , n} are terms that ontain only

variables and onstrutors and the variables in M must be a subset of the variables used

in M1 , . . . ,Mn , and P is a prediate on n-tuples of terms invariant under =E
4

. (We write

→ instead of →P when P (. . . ) = true always.) Analogous to [BAF08℄ we introdue the

rewrite rule f(x1 , . . . , xn) → f(x1 , . . . , xn) for eah onstrutor f ∈ Σ.(Destrutors with
onditional rewrite rules have been introdued in Proverif 1.87, see also [CB13℄. None

of our results need this additional generality. However, we explain in Setion 9.1.1 why

suh destrutors an be useful in some ases.)

D ⇓ M denotes the evaluation of D to M where D is a destrutor term, i.e., a term

or the appliation of a funtion to destrutor terms. For all terms M we de�ne M ⇓ M

(i.e. when evaluating a term we obtain the term itself). If we have D = g(D1 , . . . ,Dn) for
a funtion g whereDi are destrutor terms we de�ne g(D1 , . . . ,Dn) ⇓ Mσ for substitution
σ i� there is a rewrite rule g(M1 , . . . ,Mn) →P M and terms N1 , . . . ,Nn s.t. Di ⇓ Ni ,

Ni =E Miσ, and P (N1, . . . , Nn) = true.

De�nition 2.1 (Symboli model) By symboli model, denoted M = (Σ,E,R), we
refer to the entity of a signature Σ, a �nite set of equations E and a �nite set of rewrite

3

I.e., for every substitution σ and M =E N we have Mσ =E Nσ.
4

I.e., �Invariant under =E� means that if Ni =E N ′

i for i = 1, . . . , n, then P (N1, . . . , Nn) =
P (N ′

1, . . . , N
′

n).
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P ::= 0

P |Q

!P

M (x ).P

M 〈N 〉.P

let x = D in P else Q

νa.P

Figure 1: Syntax of proesses in the applied pi alulus

rules R.
Note that the in�nite set of names and in�nite set of variables are not expliitly part

of the symboli model sine they are not spei� for any onrete model in our setting.

We refer to them globally as N and V respetively.

Exept for Setion 9, it will be lear from the ontext whih symboli model we use.

In Setion 9 we fous on the relation between di�erent symboli models. Only then we

will introdue a notation that expliitly states the symboli model underlying a property,

e.g., observational equivalene of two proesses.

We an desribe proesses in our proess alulus using the indutively de�ned gram-

mar from Figure 1. For a better understanding of the syntax we antiipate the following

setion about its semantis and give a quik overview of the intuition onneted to the

syntax. The 0-proess simply does nothing and terminates (and is therefore often omit-

ted). Two proesses, P and Q, an be exeuted in parallel (denoted P |Q) They may

interat with eah other or with the environment independently of eah other. A repli-

ation (!P ) behaves as an in�nite number of opies (instanes) of P running in parallel.

The sope of a name n may be restrited to a proess P (νn.P ). M (x ).P allows P to

reeive a message (a term) T on a hannel identi�ed by the term M . The variable x is

used in P as a referene to the input. The ounterpart of M (x ) is M 〈T 〉.P whih sends

a message (a term) T on M and then behaves like P .
In let x = D in P else Q the symbol D stands for a term or a destrutor term. If we

have D ⇓ M for a term M the proess behaves like P{M /x} otherwise it behaves like Q.
Exept for the let-statement and parallel exeution, proesses do have the struture

statement.P and we say for P (or any part of P ) that it is under the statement (e.g. we

say that �P is under a bang� in !P or that P is under an input in c(x ).νn.P ). We say

that P is under a let if P ours in one of the two branhes of a let.

An ourrene of a name n in a proess is bound if it is under a νn. An ourrene of

a variable x is bound if it is under a M (x ) or in the P -branh of a let x = D in P else Q.
bn(P ) resp. bv(P ) denotes the set of names resp. variables with bound ourrenes in P .
If an ourrene is not bound, it is alled free and fn(P ), fv(P ) denote the orresponding
sets for names resp. variables. A proess is losed if it has no free variables.
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PAR-0 P ≡ P | 0
PAR-A P | (Q | R) ≡ (P | Q) | R
PAR-C P | Q ≡ Q | P
NEW-C νu.νv .P ≡ νv .νu.P
NEW-PAR u 6∈ fn(P ) ⇒

P | νu.Q ≡ νu.(P | Q)

Figure 2: Rules for strutural equivalene

REPL !P → P |!P
COMM C 〈T 〉.P | C ′(x ).Q

→ P | Q{T/x} if C =E C ′

LET-THEN let x = D in P else Q
→ P{M /x} if D ⇓ M

LET-ELSE let x = D in P else Q
→ Q if ∄M s.t. D ⇓ M

Figure 3: Rules for internal redution

A ontext C is a proess where exatly one ourrene of 0 is replaed with �. C[P ]
denotes the proess resulting from the replaement of � with P in C. An evaluation

ontext is a losed ontext C built from �, C|P , P |C, and νa.C. We all an ourrene of

a term or proess within a proess unproteted if it is only below parallel ompositions

(|) and restritions (ν).

De�nition 2.2 (Strutural equivalene (≡)) Strutural equivalene, denoted ≡, is
the smallest equivalene relation on proesses that is losed under α-onversion5 on names

and variables, appliation of evaluation ontexts and the rules from Figure 2.

6

De�nition 2.3 (Internal redution (→)) Internal redution, denoted →, is the

smallest relation on losed proesses losed under strutural equivalene and appliation

of evaluation ontexts suh that the rules from Figure 3 hold for any losed proesses P
and Q. →∗

denotes the re�exive, transitive losure of →.

5

An α-onversion is a renaming proess that doesn't hange the meaning of a term. E.g. renam-

ing b to c in νa.νb.net〈a〉.net〈b〉 is a valid α-onversion (and thus we have that νa.νb.net〈a〉.net〈b〉 ≡
νa.νc.net〈a〉.net〈c〉), renaming b to a is not.

6

We di�er from [BAF08℄ by de�ning ≡ also for non-losed proesses. But on losed proesses, our

de�nition oinides with that from [BAF08℄.
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A losed proess P emits on M (denoted P ↓M ) if P ≡ C[M ′〈N 〉.Q] for some eval-

uation ontext C that does not bind fn(M ) and M =E M ′
.

7

Analogously it reads on

M (denoted P ↑M ) if P ≡ C[M ′(N ).Q]. We say that P ommuniates on M (denoted

P lM ) if P ↓M or P ↑M .

De�nition 2.4 A simulation R is a relation on losed proesses suh that (P,Q) ∈ R
implies

(i) if P ↓M then for some Q′
we have that Q→∗ Q′

and Q′ ↓M

(ii) if P → P ′
then for some Q′

we have that Q→∗ Q′
and (P ′, Q′) ∈ R

(iii) (C[P ], C[Q]) ∈ R for all evaluation ontexts C.

A relation R is a bisimulation if both R and R−1
are a simulation.

Observational equivalene (≈) is the largest bisimulation.

It is easy to hek that the transitive hull of ≈ satis�es the onditions (i), (ii) and (iii)

from above. Hene ≈ ontains its own transitive hull and thus is indeed an equivalene

relation.

Substitutions on proesses work like substitutions on terms but must additionally

respet the sopes of names and variables (bound or free). Sine renaming of bound

names and variables doesn't hange the strutural equivalene lass of a proess we

assume w.l.o.g. from now on that for Pσ we have σ(x ) = x for all x ∈ bv(P ) and σ(x )
does not ontain names n ∈ bn(P ) for all x ∈ fv(P ).

2.1 Syntati sugar

We introdue if D = D ′
then P else Q as syntati sugar for

let x = equals(D ,D ′) in P else Q where x must not our in P or Q and D ,D ′

are destrutor terms. Note that we assume the existene of an equals destrutor

with the rewrite rule equals(x , x ) → x throughout this paper (see De�nition 2.5 (iii)).

Furthermore, we write C().P for C(x).P where x is a fresh variable, and C〈〉.P for

C〈empty〉 assuming a nullary onstrutor empty (see De�nition 2.5 (i)).

Later, when dealing with Proverif proesses, e.g., in De�nition 8.3, we use the Proverif

syntax for pattern mathing in inputs and lets: E.g., (let (=n, x ) = D in P else Q)
exeutes P{T/x} if D ⇓ (n,T ) (i.e., D has to evaluate to a pair with n beeing the �rst

value while x is used as a referene for the arbitrary seond value T ) and Q otherwise.

Inputs of type C ((x,_)) expet a pair as input where the �rst value is referened by x

while the seond value is dropped (i.e., when reeiving an input (T ,T ′) on C , C ((x ,_)).P
ontinues to run as P{T/x}. For more details see the Proverif manual [Bla12b℄ We stress

7

It is indeed intentional that the de�nition requires C not to bind fn(M) (as opposed to fn(M ′)) even
though we onsider the proess C[M ′〈N 〉.Q]. This way the de�nition is equivalent to the following: P ↓M
i� P ≡E C[M〈N〉.Q] for some evaluation ontext C not binding fn(M), and some proess Q [Bla12a℄.

Here ≡E is strutural equivalene modulo replaing terms by equivalent ones, see De�nition 2.6.
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that these onstrutions are just syntati sugar and an be replaed by statements

aoding to the grammar of the pi alulus we desribed above.

2.2 Additional onepts used in this work

In this setion, we desribe several nonstandard onepts related to the applied pi alulus

that we use in this work.

Misellaneous. A ontext always ontains a single ourrene of the hole. Sometimes

we need a ontext whih may or may not ontain a hole: A 0-1-ontext is de�ned like a

ontext, exept that there may be zero or one ourrenes of the hole.

We refer to ourrenes of terms that identify hannels in a proess as hannel iden-

ti�ers. E.g., in M 〈T 〉 M is a hannel identi�er and T is not � even if M and T were the

same term (beause M and T are di�erent ourrenes).

We allow destrutors with onditional rewrite rules following [CB13℄, see page 6. None

of our results atually requires these onditional destrutors, though. The reader may

safely assume the usual, unonditional de�nition of onstrutors.

Natural symboli models. A number of lemmas in this paper only hold when the

symboli model we use satis�es ertain natural onditions. Instead of stating these

expliitly eah time, we ollet all these onditions in the following de�nition:

De�nition 2.5 (Natural symboli model) We say a symboli model is natural if it

satis�es the following onditions:

(i) there is a onstrutor empty/0 ∈ Σ,
(ii) a onstrutor for pairings, denoted (�,�), is part of the signature Σ,
(iii) there is a destrutor equals/2 ∈ Σ with rewrite rule equals(x , x ) → x and no further

rewrite rules that ontain equals ,

(iv) there are destrutors fst/1, snd/1 ∈ Σ with rewrite rules fst((x , y)) → x and

snd((x , y)) → y,

(v) for all terms T , T1 with fst(T ) ⇓ T1 there exists a term T2 with snd(T ) ⇓ T2 and

furthermore (T1,T2) =E T for all suh T2 and vie versa,

(vi) for arbitrary terms T1,T2,T
′
1,T

′
2 we require that (T1,T2) =E (T ′

1,T
′
2) entails

T1 =E T ′
1 and T2 =E T ′

2,

(vii) for any destrutor term D and any name n 6∈ fn(D) we require that D ⇓ T for a

term T entails the existene of a term T ′
with D ⇓ T ′

, n 6∈ fn(T ′) and T =E T ′
,

(viii) there are terms T, T ′
with T 6=E T

′
.

In the following, we will always assume that the symboli model is natural in the

sense of De�nition 2.5.

Equivalene of proesses modulo rewriting. Strutural equivalene ≡ does not

allow us to replae a term M by another term M ′ =E M . In some plaes, we will
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therefore need to apply =E to proesses, and we will also use an extension ≡E of ≡ that

allows us to replae terms:

De�nition 2.6 We extend =E to destrutor terms and proesses as follows:

Given two destrutor terms D,D′
, we have D =E D

′
i� D an be rewritten into D′

by

replaing subterms by =E-equivalent subterms. (But replaing destrutors is not allowed.

E.g., if d is a destrutor and f, g are onstrutors, and f(x) =E g(x) is in the equational

theory, we have d(f(a)) =E d(g(a)) but not f(d(a)) =E g(d(a)). Formally, =E is the

smallest equivalene relation on destrutor terms suh that D{M/x} =E D{M ′/x} for

destrutor terms D and terms M =E M
′
.

Given two proesses P,P ′
, we have P =E P ′

i� P an be rewritten into P ′
by α-

onversion and by replaing terms and destrutor terms by =E-equivalent ones. Formally,

=E is the smallest equivalene relation losed under α-renaming suh that P{M/x} =E

P{M ′/x} for proesses P and terms M =E M
′
.

Given two proesses P,P ′
, we have P ≡E P

′
i� P an be rewritten into P ′

by =E and

≡. Formally, ≡E := (=E ∪ ≡)∗.

Full observational equivalene. A substitution σ is a losing substitution if Pσ is

losed. We all two (not neessarily losed) proesses P and Q fully observationally

equivalent (denoted P ∼∼∼ Q) i� Pσ ≈ Qσ for all losing substitutions σ (where we

impliitly assume that the bound names in P,Q are renamed so that they are distint

from the free names of σ). Sine ≈ is losed under ≡ it follows in a straightforward way

that

∼∼∼ is losed under ≡.
The motivation behind the de�nition of

∼∼∼ is the following lemma whih allows us to

replae fully observationally equivalent subproesses by eah other.

Lemma 2.7 Let P and Q be proesses and P ∼∼∼ Q. Then C[P ] ∼∼∼ C[Q] for every on-

text C.

To show this lemma, we �rst prove the following lemma:

Lemma 2.8 Let P and Q be losed proesses. We have P ≈ Q ⇒ !P ≈ !Q .

Proof. We de�ne a relationR := ≈ ∪ {(νn.(IP |!P ), νn .(IQ |!Q)) : IP , IQ losed proesses

with IP ≈ IQ and n a vetor of names } losed under strutural equivalene. Intuitively,

IP and IQ represent the running instanes of P resp. Q. For (A,B) ∈ R we show the

three points of observational equivalene.

If (A,B) ∈ ≈ there is nothing to show. Otherwise (A,B) = (νn.(IP |!P ), νn .(IQ |!Q)).

• If νn.(IP |!P ) ↓M we have νn.IP ↓M and, sine IQ ≈ IQ , νn.IQ ↓M . Therefore

νn.(IQ |!Q) ↓M .

• For internal redutions → in νn.(IP |!P ) we distinguish two ases:

11



� A new instane of P spawns, i.e., νn.(IP |!P ) → νn.(IP |P |!P ). We de�ne

IP ′ := IP |P and IQ ′
analogously. Then there is a orresponding internal

redution (following the REPL rule) for the Q-side νn.(IQ |!Q) → νn.(IQ ′|!Q)
and therefore (νn.(IP ′|!P ), νn .(IQ ′|!Q) ∈ R (note that IP ′ ≈ IQ ′

sine IP ≈
IQ and P ≈ Q).

� The redution → only a�ets !P struturally. That is, we basially have

νn.(IP |!P ) → νn.(IP ′|!P ). Sine IP ≈ IQ we �nd IQ ′
s.t. IQ →∗ IQ ′

and

IP ′ ≈ IQ ′
. Hene (νn.(IP ′|!P ), νn .(IQ ′|!Q)) ∈ R.

• For any evaluation ontext C we have C[νn.(IP |!P )] ≡ νn ′.(C′[IP ]|!P ) where C′

is C with all restritions moved into n ′
. Analogously we have C[νn.(IQ |!Q)] ≡

νn ′.(C′[IQ ]|!Q) with the same C′
, n ′

. Sine C′
is an evaluation ontext, C′[IP ] ≈

C′[IQ ]. Altogether we have (νn ′.(C′[IP ]|!P ), νn ′.(C′[IQ ]|!Q)) ∈ R.

This onludes our proof sine the de�nition of R is symmetri. �

We an now show Lemma 2.7:

Proof of Lemma 2.7. First onsider the ase that C is an evaluation ontext whih is

allowed to have free variables here. For all losing substitutions σ we have Pσ ≈ Qσ and

hene Cσ[Pσ] ≈ Cσ[Qσ]. Therefore C[P ]σ ≈ C[Q ]σ whih entails C[P ] ∼∼∼ C[Q ].
To expand the proof from evaluation ontexts to general ontexts C we show the

following properties for

∼∼∼ from whih the Lemma immediately follows by indution:

1. If P ∼∼∼ Q then M〈T 〉.P ∼∼∼M〈T 〉.Q for arbitrary terms M and T :

Let σ be a losing substitution for M〈T 〉.P and M〈T 〉.Q . We de�ne the relation

R := ≈ ∪ {(C[(M 〈T 〉.P)σ], C[(M 〈T 〉.Q)σ]) : C losed evaluation ontext} losed

under strutural equivalene. We show that R satis�es the three points of obser-

vational equivalene. Let (A,B) ∈ R. For (A,B) ∈ ≈ there is nothing to do.

Otherwise (A,B) = (C[(M 〈T 〉.P)σ], C[(M 〈T 〉.Q)σ]) for some losed evaluation

ontext C.

• A ↓N : If C[0] ↓N obviously B ↓N as well. Otherwise (M 〈T 〉.P)σ ↓N where

the free names of N are not bound by C whih requires N =E M and hene

leads to (M 〈T 〉.Q)σ ↓N⇒ B ↓N .

• For internal redutions in A we distinguish two ases:

� → is the COMM redution C[(M 〈T 〉.P)σ] → C′[Pσ] (up to strutural

equivalene). In the same way we an redue C[(M 〈T 〉.Q)σ] → C′[Qσ].
Sine Pσ ≈ Qσ and C′

is losed we have (C′[Pσ], C′[Qσ]) ∈≈⊆ R .

� The redution → a�ets (M 〈T 〉.P)σ only struturally. That is, we basi-

ally have C[0] → C′[0]. In this ase we apply the same redution in e�et

to B and have (C′[(M 〈T 〉.P)σ], C′[(M 〈T 〉.Q)σ]) ∈ R.

• Obviously, R is losed under the appliation of losed evaluation ontexts.

This onludes our proof sine the de�nition of R is symmetri.
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2. If P ∼∼∼ Q then M (x ).P ∼∼∼ M (x ).Q for an arbitrary term M :

We prove this statement analogously to the previous one: It only di�ers in the

diretion of message �ow on M . In the orresponding branh of the proof an input

of N on M results in P{N /x} resp. Q{N /x} (note that C is losed and hene N

is losed). Sine we have Pσ ≈ Qσ in partiular for every losing σ with σ(x ) = N

we have that P{N /x} ∼∼∼ Q{N /x} holds.

3. If P ∼∼∼ Q then !P ∼∼∼ !Q:
A losing substitution σ with Pσ ≈ Qσ but !Pσ 6≈ !Qσ ontradits Lemma 2.8.

4. If P1
∼∼∼ Q1 and P2

∼∼∼ Q2 then (let x = D in P1 else P2) ∼∼∼ (let x =
D in Q1 else Q2) for an arbitrary destrutor term D:

Again, the omplete proof is analogous to the one in ase 2. Hene we only

disuss the redution of the let-statement here: For all losing substitutions σ
for let x = D in P1 else P2 and let x = D in Q1 else Q2 we have that Dσ is

losed. If we have Dσ ⇓ M for a (losed!) term M the let-statement redues

to P1{M /x}σ ≈ Q1{M /x}σ (note that σ(x ) = x sine x is a bound variable)

whih holds sine P1
∼∼∼ Q1. Otherwise it redues to P2σ ≈ Q2σ whih holds sine

P2
∼∼∼ Q2. �

Produt proesses. In order to argue about onurrent omposition, as a tehnial

tool, we will need an extension of the applied pi alulus that supports in�nite parallel

ompositions of proesses whih are tagged with distint terms.

Intuitively, the indexed repliation

∏
x∈S P stands for P{s1/x}|P{s2/x}| . . . when

S = {s1, s2, . . . }. (Like !P stands for P |P | . . . .) We all proesses from this extended

alulus produt proesses. Note that our main de�nitions and results are still stated

with respet to the original alulus from [BAF08℄; we only use produt proesses in

some spei� situations.

De�nition 2.9 (Produt proesses) Produt proesses are de�ned by the grammar

in Figure 1 with the additional onstrut

∏
x∈S P where x is a variable, S a (possibly

in�nite) set of terms, and P a produt proess. (We all

∏
x∈S P an indexed repliation.)

(Note that we onsider

∏
x∈S to be a binder. I.e., in

∏
x∈S P , we onsider x a bound

variable.)

Strutural equivalene (≡) on produt proesses is de�ned using the same rules as on

proesses (see Figure 2).

The redution relation → on produt proesses is de�ned using the same rules as on

proesses (see Figure 3), with the following additional rule (IREPL): If M ∈ S, then∏
x∈S P →

(∏
x∈S′ P

)
| P{M/x} with S′ := S \ {M ′ : M =E M ′}. (Essentially S is

treated as a set of session ids whih ontains eah sid at most one modulo =E.)

Observational equivalene (≈) on produt proesses is de�ned like observational equiv-

alene on proesses (De�nition 2.4). In partiular, as in De�nition 2.4, in rule (iii) we

quantify over evaluation ontexts that do not ontain indexed repliations.
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Notie that proesses are also produt proesses, and that on proesses, the new

de�nitions of ≡, →, and ≈ from De�nition 2.9 oinide with the original de�nitions.

3 Useful properties of the pi alulus

In this setion, we introdue a number of useful lemmas for the applied pi alulus.

These lemmas are useful to derive observational equivalenes of proesses by step by step

rewriting (and for using Proverif as a tool in deriving equivalenes that Proverif annot

handle). We believe that they may be useful in other similar situations, too.

Lemma 3.1 For natural symboli models, the following hold:

(i) If n /∈ fn(M), then n 6=E M .

(ii) n 6=E m for names n 6= m.

(iii) (n,M ′) 6=E M for all terms M,M ′
and names n 6∈ fn(M).

Proof. We show (i):

Fix a term M with n /∈ fn(M). Assume for ontradition n =E M . Fix a renaming

α suh that α(n) =: n∗ 6= n and α(m) = m for all m ∈ fn(M). (This is possible sine

n /∈ fn(M).) Hene n =E M = Mα =E nα = n∗ (sine the rules de�ning =E are

losed under renaming). Thus n =E n
∗ 6= n. Intuitively, this means that all names are

equivalent under =E.

By De�nition 2.5 (viii) (natural symboli model) there are terms T, T with T 6=E T
′
.

Sine the equations in E ontain by de�nition only variables and onstrutors, all rules

de�ning =E are losed under substitutions of names by terms. Hene n =E n∗ implies

T =E T
′
.

We have a ontradition, hene (i) follows.

(ii) follows from (i) with M := m.

We show (iii):

Assume (n,M ′) =E M towards ontradition. SineM does not ontain n,M =Mσ
for σ := (n 7→ n′, n′ 7→ n) and any n′ /∈ fn(M). Then (n′,M ′σ) = (n,M ′)σ =E Mσ =
M =E (n,M ′). (Here we use that =E is losed under renaming whih follows from the

fat that equations and redution rules in the symboli model do not ontain names.)

By De�nition 2.5 (vi) (natural symboli model), this implies n′ =E n whih ontradits

(ii). Thus, the assumption that (n,M ′) =E M was wrong. (iii) follows. �

Lemma 3.2 Let P,P ′
be proesses. Let D,D′

be destrutor terms. Let M,M ′
be terms.

(i) If a /∈ fn(P ), then P ∼∼∼ νa.P .
(ii) If a /∈ fn(M), then νa.M(x).P ∼∼∼M(x).νa.P .
(iii) Assume P is losed and that P does not ontain unproteted inputs or outputs.

Assume P → P ′
, and that for all P ′′

with P → P ′′
we have P ′ ≈ P ′′

. Then

P ≈ P ′
.
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(iv) If M,M ′
are terms with M =E M

′
, then P{M/x} ∼∼∼ P{M ′/x}.

(v) If for all substitutions σ that lose D,M we have Dσ ⇓ Mσ, and for all M ′
with

Dσ ⇓M ′σ we have Mσ =E M
′σ, then (let x = D in P else P ′) ∼∼∼ P{M/x}.

(vi) If D is losed and there is no M with D ⇓M , then (let x = D in P else P ′) ∼∼∼ P ′
.

(vii) If for all substitution σ that lose D,D′
there exist M,M ′

with Dσ ⇓ Mσ, D′σ ⇓
M ′σ and Mσ =E M

′σ then (if D = D′
then P else P ′) ∼∼∼ P

(viii) We have !P ≈ P |!P .
(ix)

∏
x∈SID P ≈

∏
x∈SID\{t1,...,tn}

P |P{ t1
x }| . . . |P{

tn
x } for t1, . . . , tn ∈ SID .

Proof. We show (i): Let R := {(Q, νa.Q) : Q a losed proess, a /∈ fn(Q) a name} up to

strutural equivalene. It is easy to see that R is a bisimulation. Thus Q ≈ νa.Q for

any losed proess. This implies that Pσ ≈ νa.(Pσ) ≡ (νa.P )σ for any losing σ. Hene
P ∼∼∼ νa.P .

We show (ii): Let R := {(E[νa.M(x).Q], E[M(x).νa.Q])}∪≈ up to strutural equiv-

alene where E ranges over all evaluation ontexts, Q over losed proesses, a over names,

and M over terms with a /∈ fn(M). One an hek that R satis�es the onditions for

a bisimulation. To show νa.M(x).P ∼∼∼ M(x).νa.P , �x a losing substitution σ. Then(
(νa.M(x).P )σ, (M(x).νa.P )σ

)
∈ R, thus (νa.M(x).P )σ ≈ (M(x).νa.P )σ. Sine this

holds for any losing σ, we have νa.M(x).P ∼∼∼M(x).νa.P and (ii) follows.

We show (iii): Let R := {(E[P ], E[P ′]) : E evaluation ontext}∪≈. (Here P,P ′
refer

to the proesses from the statement of the lemma.) We hek that R is a bisimulation. In

all the following ases, if A ≈ B, the statement is immediate. Thus we assume A ≡ E[P ],
B ≡ E[P ′] in eah ase.

• If (A,B) ∈ R and A ↓M then there exists a B′
with B →∗ B′

and B′ ↓M : If

A ≈ B, then this is immediate. Thus assume A ≡ E[P ], B ≡ E[P ′]. Sine P does

not ontain unproteted outputs, we have that the output on M is in E. Hene

B ≡ E[P ′] ↓M .

• If (A,B) ∈ R and B ↓M then there exists an A′
with A →∗ A′

and A′ ↓M : If

A ≈ B, then this is immediate. Thus assume A ≡ E[P ], B ≡ E[P ′]. Sine P → P ′

we have A→ A′ := E[P ′] ≡ B. Sine B ↓M , also A′ ↓M .

• If (A,B) ∈ R and A→ A′
then there exists a B′

with B →∗ B′
and (A′, B′) ∈ R: If

A ≈ B, then this is immediate. Thus assume A ≡ E[P ], B ≡ E[P ′]. Sine P does

not ontain unproteted inputs or outputs, A′ ≡ E′[P ] for some evaluation ontext

E or A′ ≡ E[P ′′] for some P ′′
with P → P ′′

. In the �rst ase, B → B′ := E′[P ′] and
hene (A′, B′) ∈ R. In the seond ase, P ′′ ≈ P ′

and thus A′ ≈ E[P ′] ≡ B =: B′
.

Thus B →∗ B′
and (A′, B′) ∈ R.

• If (A,B) ∈ R and B → B′
then there exists a A′

with A→∗ A′
and (A′, B′) ∈ R: If

A ≈ B, then this is immediate. Thus assume A ≡ E[P ], B ≡ E[P ′]. Sine P → P ′
,

we have A → A′′ := E[P ′] ≡ B. Sine B → B′
, we have A → A′′ → A′ := B′

.

Hene A→∗ A′
and (A′, B′) ∈ R.
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• R is losed under appliation of evaluation ontexts by onstrution.

We show (iv): Let (A,B) ∈ R i� A results from B by replaing terms M by terms

M ′
with M =E M

′
. It is easy to hek that R is a bisimulation. Fix a proess P , terms

M,M ′
with M =E M ′

, and σ a substitution mapping variables to ground terms that

loses P{M/x} and P{M ′/x}. Then P{M/x}σ results from P{M ′/x}σ by replaing

some ourrenes of M ′σ by Mσ. Sine M =E M ′
, we have Mσ =E M ′σ. Thus

(P{M/x}σ, P{M ′/x}σ) ∈ R, hene P{M/x}σ ≈ P{M ′/x}σ. Sine this holds for any

losing σ, P{M/x} ∼∼∼ P{M ′/x}.

We show (v): First, assume that A := (let x = D in P else P ′) is losed. We have

that if A → A′
, then A′ ≡ P{M ′/x} for some M ′

with D ⇓ M ′
. By (iv) and using that

M =E M
′
for all M ′

with D ⇓M ′
, this implies A′ ≈ P{M/x}. Furthermore A does not

ontain unproteted inputs or outputs. Thus by (iii), we have A ≈ P{M/x}. From this

follows that (let x = D in P else P ′) ∼∼∼ P{M/x} even if (let x = D in P else P ′) is not
losed, analogously to (i).

We show (vi): First, assume that A := (let x = D in P else P ′) is losed. We

have that if A → A′
, then A′ ≡ P ′

. Furthermore A does not ontain unproteted

inputs or outputs. Thus by (iii), we have A ≈ P ′
. From this follows that (let x =

D in P else P ′) ∼∼∼ P ′
even if (let x = D in P else P ′) is not losed, analogously to (i).

We show (vii): First, assume that A := (if D = D′
then P else P ′) is losed. We

resolve the syntati sugar for �if� and have A = (let x = equals(D,D′) in P else P ′). If
A→ A′

, then A′ ≡ P (x 6∈ fv(P )). Thus by (iii), we have A ≈ P ′
. From this follows that

(let x = D in P else P ′) ∼∼∼ P ′
even if (let x = D in P else P ′) is not losed, analogously

to (i).

We show (viii): If !P → P ′′
, then P ′′ ≡ P |!P by de�nition of →. By (iii) this implies

!P ≈ P |!P .

We show (ix): Given a set A = {t1, . . . , tk} ⊆ SID , we write

∑
x∈A P for

P{t1/x}| . . . |P{tk/x}. Let

R := {
(
E[

∏

x∈SID\A\D

P |
∑

x∈A

P ], E[
∏

x∈SID\B\D

P |
∑

x∈B

P ]
)
}

up to strutural equivalene where E ranges over evaluation ontexts and A,B,D range

over subsets of SID with D disjoint of A∪B. One an hek thatR satis�es all onditions

for being a bisimulation. Sine (
∏

x∈SID P,
∏

x∈SID\{t1,...,tn}
|P{t1/x}| . . . |P{tn/x}) ∈ R,

(ix) follows. �

Lemma 3.3 Let C be a 0-1-ontext whose hole is not under a bang and suh that n does

not our in C, Q, or t. Assume that C does not bind any of fv(Q) \ {x} or fn(Q) over
its hole. Then νn.C[n〈t〉]|n(x).Q ∼∼∼ C[Q{t/x}]
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Proof. We show the lemma for ≈ instead of

∼∼∼, and assuming that νn.C[n〈t〉]|n(x).Q and

C[Q{t/x}] are losed and that fn(Q) ⊆ {x}. The general ase then follows by de�nition

of

∼∼∼. We de�ne the relation R: (A,B) ∈ R i� A ≈ B or there is a name n, a list of

names ã, a term t, a variable x, an integer k, a 0-1-ontext C not ontaining n and not

having its hole under a bang and not binding fn(Q) over its hole, suh that the following

holds:

A ≡ νnã.C[n〈t〉]|n(x).Q, B ≡ νnã.C[Q{t/x}] (1)

We hek the three onditions for bisimulations (in both diretions).

• If (A,B) ∈ R and A ↓M , then B ↓M :

The ase A ≈ B is trivial. We thus assume that A,B are as in (1).

If νnã.C[n〈t〉]|n(x).Q ↓M , then the output on M is in C. (n〈t〉 annot be that

output, beause n is bound.) Hene νnã.C[Q{t/x}] ↓M .

• If (A,B) ∈ R and B ↓M , then there exists an A′
with A→∗ A′

and A′ ↓M :

The ase A ≈ B is trivial. We thus assume that A,B are as in (1).

If νnã.C[Q{t/x}] ↓M , we distinguish two ases. If the output on M is in C, then
νnã.C[n〈t〉]|n(x).Q ↓M . Consider the ase that the output on M is in Q{t/x}.
Without loss of generality, we an assume that no name in t is bound in C (otherwise

we ould move the orresponding restritions from C into νã sine C does not bind

fn(Q) over its hole). Sine the output on M is in Q{t/x}, C is an evaluation

ontext and thus νnã.C[n〈t〉]|n(x).Q → νnã.C[0]|Q{t/x} ↓M .

• If (A,B) ∈ R and A→ A′
, then there is a B′

with B →∗ B′
and (A′, B′) ∈ R:

The ase A ≈ B is trivial. We thus assume that A,B are as in (1).

We distinguish the following ases:

If the redution A→ A′
involves only C, then A′ ≡ νnã.C̃[n〈t〉σ]|n(x).Q for some

0-1-ontext C̃. Here the substitution σ represents possible variable assignments

performed over the hole of C (e.g., if C = a〈T 〉 | a(y).�, then σ = {T/y}).

Then B → B′ := νnã.C̃[Q{t/x}σ] = νnã.C̃[Q{tσ/x}] where the last equality uses

that fn(Q) ⊆ x. Also, C̃ does not have more that one hole (in whih ase C̃ would

not be a zero-or-one-hole ontext) beause the hole in C does not our under a

bang.

Thus we have (A′, B′) ∈ R.

If the redution involves n〈t〉 or n(x).Q, then the hole of C is only under restritions

and parallel ompositions. We assume without loss of generality that the hole in C
is not under any restrition (otherwise we ould move the orresponding restritions

into νã sine C does not bind fn(Q) over its hole). Then A′ ≡ νnã.C[0]|Q{t/x} ≡
νnã.C[Q{t/x}] =: B′ ≡ B. Thus B →∗ B′

and (A′, B′) ∈ R (sine A′ ≈ B′
).
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• If (A,B) ∈ R and B → B′
, then there is an A′

with A→∗ A′
and (A′, B′) ∈ R:

The ase A ≈ B is trivial. We thus assume that A,B are as in (1).

If the redution B → B′
involves only C, then B′ ≡ νnã.C̃[Q{t/x}σ]

(∗)
=

νnã.C̃[Qσ{t/x}] for some zero-or-one-hole ontext C̃. Here the substitution σ
represents possible variable assignments performed over the hole of C (e.g., if

C = a〈T 〉 | a(y).�, then σ = {T/y}). And the equality (∗) uses that fn(Q) ⊆ x.

Then A → A′ := νnã.C̃[n〈t〉σ]|n(x).Q. Also, C̃ does not have more that one hole

(in whih ase C̃ would not be a ontext) beause the hole in C does not our

under a bang.

Thus we have (A′, B′) ∈ R.

If the redution B → B′
involves Q{t/x}, then the hole of C is only under re-

stritions and parallel ompositions. We assume without loss of generality that

the hole in C is not under any restrition (otherwise we ould move the orre-

sponding restritions into νã sine C does not bind fn(Q) over its hole). Then

A → νnã.C[0]|Q{t/x} ≡ νnã.C[Q{t/x}] ≡ B → B′ =: A′
. Thus trivially

(A′, B′) ∈ R (sine A′ = B′
and thus A′ ≈ B′

), and A→∗ A′
.

• If E is an evaluation ontext, and (A,B) ∈ R, then (E[A], E[B]) ∈ R:

The ase A ≈ B is trivial. We thus assume that A,B are as in (1). Then E[A] ≡
E[νnã.C[n〈t〉]|n(x).Q] ≡ νnã.C[n〈t〉]|P |n(x).Q for some proess P up to renaming

of the names n, ã. And E[B] ≡ E[νnã.C[Q{t/x}]] ≡ νnã.C[Q{t/x}]|P . Thus

(using the ontext C|P instead of C), we have (E[A], E[B]) ∈ R.

Thus R is a bisimulation. Thus νn.C[n〈t〉]|n(x).Q ≈ νn.C[Q{t/x}] (where n,C, t, x
refer to the values from the statement of the lemma). And sine n does not our in C,Q, t,
we have νn.C[Q{t/x}] ≈ C[Q{t/x}] by Lemma 3.2 (i). Thus νn.C[n〈t〉]|n(x).Q ≈
C[Q{t/x}]. �

Lemma 3.4 Let C,D be ontexts, Q a proess, n,m names, t, t′ terms, and x a variable.

Assume that C,D have no bang over their holes. Assume that n,m /∈ fn(C,D,Q, t, t′).
Assume that C,D do not bind n,m, fn(Q). Assume that fv(Q) ⊆ {x}.

Then νn.(C[!n〈t〉] | D[n(x).Q]) ≈ νm.(C[m().Q{t/x}] | D[m〈t′〉]).

Proof. We de�ne the relation R as follows: We have (A,B) ∈ R i� A ≈ B or there exist

0-1-ontexts C,D without a bang over their holes and not binding n, fn(Q), terms t, t′, a
name n /∈ fn(C,D,Q, t, t′), a list of names ã not ontaining n, and an integer i ≥ 0 suh

that

A ≡ νnã.(C[n〈t〉i | !n〈t〉] | D[n(x).Q])

B ≡ νnã.(C[n().Q{t/x}] | D[n〈t′〉]) (2)
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Here n〈t〉i denotes n〈t〉| . . . |n〈t〉 (i opies). Note: Q is the proess from the statement

of the lemma. (It is intentional that we use n in the de�nition of B, not m as in the

statement of the lemma. We will rename n into m at the end of the proof.)

We show that R is a bisimulation. In all ases below, the ase A ≈ B is trivial by

the properties of ≈, so we assume in eah ase that A,B are as in (2).

• If (A,B) ∈ R and A ↓M , then B →∗↓M :

Sine n is bound, the output onM is not one of the n〈t〉 (here we use that M 6=E n
if n /∈ fn(M) by Lemma 3.1 (i)). Hene C ↓M or D ↓M . Thus B ↓M .

• If (A,B) ∈ R and B ↓M , then A→∗↓M :

Sine n is bound, the output on M is not n〈t′〉. Hene C ↓M or D ↓M . Thus A ↓M .

• If (A,B) ∈ R and A→ A′
, then there is a B′

suh that B →∗ B′
and (A′, B′) ∈ R:

We distinguish the following ases:

� A → A′
is a redution !n〈t〉 → n〈t〉 | !n〈t〉: Then A′ ≡ νnã.(C[n〈t〉i+1 |

!n〈t〉] | D[n(x).Q]) and hene (A′, B′) ∈ R for B′ := B.
� A → A′

is a redution within C, within D, or a ommuniation between

C and D (in all ases not involving the argument of C,D): Then A′ ≡
νnã.(C ′[n〈t〉i | !n〈t〉] | D′[n(x).Q]) for suitable ontexts C ′,D′

(satisfying all

the onditions required for C,D in the de�nition of R), and B → B′ :=
νnã.(C ′[n().Q{t/x}] | D′[n〈t′〉]). (Note: This uses impliitly that Q has no

free variables exept x, otherwise Q might hange in this redution.)

� A→ A′
is a ommuniation between n〈t〉 and n(x).Q:

Then C and D are evaluation ontexts.

Without loss of generality, we an assume that C,D do not bind any names

over their holes: For this, we �rst rename the bound names in C,D suh that

they beome distint from all free names (possibly also renaming the names

in t in the proess, but not in Q sine fn(Q) are not bound), and then move

the restritions up into νã.
Then A′ ≡ νnã.(C[n〈t〉i−1 | !n〈t〉] | D[Q{t/x}]). Furthermore

B′ := B ≡ ν ã.(C[0] | D[νn.(n().Q{t/x} | n〈t′〉)])
(∗)

≈ νã.(C[0] | D[Q{t/x}])
(∗∗)

≈ νã.(C[νn.(n〈t〉i−1 | !n〈t〉)] | D[Q{t/x}]) ≡ A′

Here (∗) follows from Lemma 3.3. And (∗∗) uses that νn.(n〈t〉i−1 | !n〈t〉) ≈ 0,
whih an be seen by verifying that R′ := {(E[νn.(n〈t〉i−1 | !n〈t〉)], E[0]) :
E evaluation ontext} is a bisimulation.

Thus A′ ≈ B′
and hene (A′, B′) ∈ R. And B = B′

implies B →∗ B′
.

� A → A′
is a ommuniation between C or D and n〈t〉 or n(x).Q: This

ase does not our beause n /∈ fn(C,D).
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• If (A,B) ∈ R and B → B′
, then there is a A′

suh that A→∗ A′
and (A′, B′) ∈ R:

We distinguish the following ases:

� B → B′
is a redution within C, within D, or a ommuniation between

C and D (in all ases not involving the argument of C,D): Then B′ =
νnã.(C ′[n().Q{t/x}] | D′[n〈t′〉]) for suitable ontexts C ′,D′

(satisfying all

the onditions required for C,D in the de�nition of R), and A → A′ ≡
νnã.(C ′[n〈t〉i | !n〈t〉] | D′[n(x).Q]).

� B → B′
is a ommuniation between n().Q{t/x} and n〈t′〉:

Then C,D are evaluation ontexts.

Without loss of generality, we an assume that C,D do not bind any names

over their holes (analogous to the orresponding subase of A→ A′
above).

Then B′ ≡ νnã.(C[Q{t/x}] | D[0]).
Furthermore,

A→∗ A′ := νã.(C[νn.(n〈t〉i | !n〈t〉)] | D[Q{t/x}])
(∗)

≈ νã.(C[0] | D[Q{t/x}]) ≡ νã.(C[Q{t/x}] | D[0])
(∗∗)

≈ B′

Here (∗) uses that νn.(n〈t〉i | !n〈t〉) ≈ 0 (see the orresponding subase of

A→ A′
above). And (∗∗) uses Lemma 3.2 (i). So A′ ≈ B′

, hene (A′, B′) ∈ R.

Hene A→∗ A′
and (A′, B′) ∈ R.

� B → B′
is a ommuniation between C or D and n〈t〉 or n(x).Q: This

ase does not our beause n /∈ fn(C,D).

• If (A,B) ∈ R and E is an evaluation ontext, then (E[A], E[B]) ∈ R:

Then E ≡ νb̃.(�|P ) for some names b̃ and some proess P .

Without loss of generality, n does not our in b̃ or fn(P ) (otherwise we rename n).

Thus with ã′ := ãb̃ and C ′ := C|P , we have

E[A] ≡ νnã′.(C ′[n〈t〉i | !n〈t〉] | D[n(x).Q])

E[B] ≡ νnã′.(C ′[n().Q{t/x}] | D[n〈t′〉])

Hene (E[A], E[B]) ∈ R.

Under the onditions of the lemma, we have (νn.C[!n〈t〉] |
D[n(x).Q], νn.C[n().Q{t/x}] | D[n〈t′〉]) ∈ R where C,D,Q, n, t, t′, x are as in the

statement of the lemma. Sine R is a bisimulation, this implies

νn.C[!n〈t〉] | D[n(x).Q] ≈ νn.C[n().Q{t/x}] | D[n〈t′〉] ≡ νm.C[m().Q{t/x}] | D[m〈t′〉])

�

Lemma 3.5 Let A,B,C be losed proesses. If A ≡E B → C, then there is a losed

proess B′
suh that A→ B′ ≡E C.
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Proof. It is easy to see that → is the smallest relation satisfying the following rules:

STREQ If P ≡ P ′ → Q′ ≡ Q, then P → Q
E-REPL E[!P ] → E[P | !P ]
E-COMM E[C 〈T 〉.P | C ′(x ).Q] → E[P | Q{T/x}] if C =E C ′

E-LET-THEN E[let x = D in P else Q] → E[P{M /x}] if D ⇓ M

E-LET-ELSE E[let x = D in P else Q] → E[Q] if ∄M s.t. D ⇓ M

Here in all rules E ranges over evaluation ontexts with the following property: Let

E[R] denote the left hand side of the rule. Then all bound names in E[R] are di�erent
from eah other and from the free names in E[R]. (In a derivation of →, we an always

enfore this latter property by �rst using STREQ to alpha-rename the left hand side of

the redution.) We say E[R] has no name on�its.

For stating the next laim, we also need to introdue an asymmetri variantր≡ of the

strutural equivalene ≡. The di�erene is that in ≡, we are allowed to apply the rule

NEW-PAR in both diretions, while inր≡ we are only allowed to move restritions up

(P | νu.Qր≡ νu.(P | Q)), but not down (not: νu.(P | Q)ր≡ P | νu.Q). More formally,ր≡
is the smallest transitive, re�exive (but not neessarily symmetri) relation losed under

α-onversion, and losed under appliation of evaluation ontexts, and satisfying the

rules PAR-0, PAR-A, PAR-C, NEW-C, NEW-PAR from Figure 2 as well as the reversed

rule PAR-0-rev (but not NEW-PAR-rev). (By reversed rule we mean the rules with left

hand side and right hand side exhanged. E.g., PAR-0-rev says P |0 ր≡ P . Note that

PAR-C-rev and NEW-C-rev are not needed sine PAR-C and NEW-C are symmetri.

And PAR-A-rev follows from PAR-C and PAR-A via (P |Q)|Rր≡ R|(P |Q)ր≡ (R|P )|Qր≡
Q|(R|P )ր≡ (Q|R)|Pր≡ P |(Q|R).)

Also, we de�neր≡E analogously to ≡E: ր≡E orresponds to a sequene of rewritings

usingր≡ and =E, i.e.,ր≡E:= (ր≡ ∪ =E)
∗
.

Claim 1 For losed proesses A,B,C, if A =E Bր≡ C, then there exists a losed proess

B′
suh that Aր≡ B′ =E C.

We show this laim by indution over the derivation of Bր≡ C. We distinguish the

following ases:

• α-onversion: Then B = C up to α-onversion. Hene A =E B implies A =E C
sine =E allows α-onversions. Thus Aր≡ B∗ =E C with B∗ := A.

• Closure under evaluation ontexts: Then B = E[B̃] and C = E[C̃] for proesses
B̃ ր≡ C̃ and an evaluation ontext E. And the indution hypothesis holds for

B̃ր≡ C̃. Sine A =E B = E[B̃], we have that A = E∗[B̃∗σ] for some evaluation

ontext E∗ =E E, some proess B̃∗ =E B̃, and a renaming σ that orresponds to

the alpha-renaming over the hole of E. Sine B̃∗ =E B̃, the indution hypothesis

implies that B̃∗ր≡ B̃′ =E C̃ for some proess B̃′
. Hene

A = E∗[B̃∗σ]ր≡ E∗[B̃′σ] =E E[B̃′] =E E[C̃] = C.

Thus Aր≡ B′ =E C with B′ := E∗[B̃′σ].
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• Re�exivity: Then B = C. Hene Aր≡ B∗ =E C with B∗ := A.
• Transitivity: Then Bր≡ Sր≡ C for some proess S. And the indution hypothesis

applies to Bր≡ S and Sր≡ C. Sine A =E Bր≡ S, by indution hypothesis, there

is a proess B′
with Aր≡ B′ =E S. Sine B′ =E Sր≡ C, by indution hypothesis

there is a proess S∗
with B′ ր≡ S∗ =E C. Thus Aր≡ S∗ =E C, and the laim

follows with B∗ := S∗
.

• PAR-0 : In this ase, C = B|0 and A =E B. Hene Aր≡ B∗ =E C with B∗ := A|0.
• PAR-0-rev : In this ase, B = C|0 and A =E B. Hene A = B∗|0 for some proess

B∗ =E C. Then Aր≡ B∗ =E C.
• PAR-A: In this ase, B = B1|(B2|B3) and C = (B1|B2)|B3. Sine A =E B,
A = A1|(A2|A3) for some proesses Ai with Ai =E Bi, i = 1, 2, 3. Then with

B∗ := (A1|A2)|A3, we have Aր≡ B∗ =E C.
• PAR-C, PAR-C : Analogous to PAR-A.

• NEW-C : In this ase, B = νnm.B̂ and C = νmn.B̂ for some names n,m and

a proess B̂. Sine A =E B, we have that A = νab.Â for some names a, b and

a proess Â. (Not neessarily ab = nm, beause =E allows α-onversion.) Thus

νab.Â =E νnm.B̂. This implies νba.Â =E νmn.B̂ (by indution over the derivation

of νab.Â =E νnm.B̂). Hene with B
∗ := νba.Â, we have that Aր≡ B∗ =E C.

• NEW-PAR: Then B = B1|νn.B2 and C = νn.(B1|B2) with n /∈ fn(B1). Sine

A =E B, we have A = A1|νa.A2 for some name a and proesses A1, A2 with

A1 =E B1 and νa.A2 =E νn.B2. (Not neessarily a = n, beause =E al-

lows α-onversion.) Let m be a fresh name, i.e., m /∈ fn(A1, A2, B1, B2). Let

B∗ := νm.(A1|A2{m/a}). Sine νn.B2 =E νa.A2 and m /∈ fn(A2, B2), we have

νm.B2{m/n} =E νm.A2{m/a}. Hene νm.(A1|B2{m/n}) =E νm.(A1|A2{m/a}).
And using A1 =E B1, we get νm.(B1|B2{m/n}) =E νm.(A1|A2{m/a}) = B∗

. Fur-

thermore C = νn.(B1|B2) =E νm.(B1|B2{m/n}) sine n,m /∈ fn(B1), m /∈ fn(B2).
Thus B∗ =E C. And A = A1|νa.A2 ր≡ A1|νm.A2{m/a} ր≡ νm.(A1|A2{m/a}) =
B∗

. Thus B∗
is a proess with Aր≡ B∗ =E C.

This shows Claim 1.

Claim 2 If Aր≡E B, then there exists an S suh that Aր≡ S =E B.

This follows diretly from Claim 1.

Claim 3 If B,C are losed proesses and B → C (derived using the rules listed at the

beginning of this proof), then for any losed A with A ≡E B there exists a losed B′
with

A→ B′ ≡E C.

This laim will then immediately prove the lemma. We show the laim by indution

over the derivation of B → C. We distinguish the following rule appliations:

• STREQ: Then B ≡ B̃ → C̃ ≡ C for some B̃, C̃, and the indution hypothesis

holds for B̃ → C̃. Sine A ≡E B ≡ B̃, the indution hypothesis implies that

A→ B′ ≡E C̃ for some losed B′
. Sine C̃ ≡ C, we have A→ B′ ≡E C.
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• E-REPL: Then B = E[!B̃] and C = E[B̃ | !B̃] where E is an evaluation ontext

and E[!B̃] has no name on�its. We have A ≡E E[!B̃]. From this it follows that

Aր≡E E′[!B̃] where E′
results from E by moving all unproteted restritions to the

top (no names in B̃ need to be renamed beause E[!B̃] has no name on�its). By

Claim 2, this implies that Aր≡ S =E E
′[!B̃] for some S. Hene S = E′′[!B̃′σ] where

E′′ =E E
′
and B̃′ =E B̃ and where σ is a renaming that orresponds to the alpha-

onversions between E′
and E′′

over the hole. Thus Aր≡ S → E′′[(B̃|!B̃)σ] =E

E′[B̃ | !B̃] ≡ E[B̃ | !B̃] = C and hene A→ B′ ≡E C with B′ := E′′[(B̃|!B̃)σ].

• E-COMM: Then B = E[M 〈T 〉.P | N(x).Q] and C = E[P | Q{T/x}] where E is

an evaluation ontext, M =E N , and B has no name on�its. As in the E-REPL

ase, we have Aր≡E E′[M〈T 〉.P | N(x).Q] where E′
results from E by moving

all unproteted restritions to the top. By Claim 2, this implies that Aր≡ S =E

E′[M〈T 〉.P | N(x).Q] for some S. Hene S = E′′[(M ′〈T ′〉.P ′ | N ′(x).Q′)σ] where
E′′ =E E

′
, M ′ =E M , T ′ =E T , P

′ =E P , N
′ =E N , Q′ =E Q, and σ is as in the

ase of E-REPL. Then

Aր≡ S → E′′[P ′ | Q′{T ′/x}σ] =E E
′[P | Q{T ′/x}]

(∗)
=E E

′[P | Q{T/x}] ≡ E[P | Q{T/x}] = C.

(Note that (∗) also uses the fat that =E may also rewrite terms that are subterms

of destrutor terms; this is needed if x ours in a destrutor term in Q.)

Hene A→ B′ ≡E C for B′ := E′′[P ′ | Q′{T ′/x}σ].

• E-LET-THEN: Then B = E[let x = D in P else Q] and C = E[P{M/x}] where E
is an evaluation ontext, D ⇓M , and B has no name on�its. As in the E-REPL

ase, we have Aր≡E E′[let x = D in P else Q] where E′
results from E by moving

all unrestrited restritions to the top. By Claim 2, this implies that Aր≡ S =E

E′[let x = D in P else Q] for some S. Hene S = E′′[(let x = D′
in P ′

else Q′)σ]
where E′′ =E E′

, D′ =E D, P ′ =E P , Q′ =E Q, and σ is as in the ase of E-

REPL. Then D′ =E D and DM ⇓ imply D′M ⇓′
for some M ′ =E M . Hene

(let x = D′
in P ′

else Q′) → P ′{M ′/x}. Then

Aր≡ S → E′′[P ′{M ′/x}σ] =E E
′[P{M ′/x}]

(∗)
=E E

′[P{M/x}] ≡ E[P{M/x}] = C.

(Here (∗) again uses that =E rewrites destrutor terms, see the ase E-COMM.)

Hene A→ B′ ≡E C for B′ := E′′[P ′{M ′/x}σ].

• E-LET-ELSE: Then B = E[let x = D in P else Q] and C = E[Q] where E is

an evaluation ontext, ∀M. D 6⇓ M , and B has no name on�its. As in the

E-REPL ase, we have A ր≡E E′[let x = D in P else Q] where E′
results from

E by moving all unrestrited restritions to the top. By Claim 2, this implies

that Aր≡ S =E E′[let x = D in P else Q] for some S. Hene S = E′′[(let x =
D′

in P ′
else Q′)σ] where E′′ =E E′

, D′ =E D, P ′ =E P , Q′ =E Q, and σ is as

in the ase of E-REPL. Sine D′ =E D and ∀M. D 6⇓ M , we have ∀M. D′ 6⇓ M .

Hene (let x = D′
in P ′

else Q′) → Q′
. Then

Aր≡ S → E′′[Q′σ] =E E
′[Q] ≡ E[Q] = C.

23



Hene A→ B′ ≡E C for B′ := E′′[Q′σ].

This shows Claim 3. And from that laim the lemma follows. �

3.1 Relating events and observational equivalene

For stating Lemma 3.7 below, we will need proesses ontaining events. The variant

of the applied pi alulus presented in Setion 2 (whih is used by Proverif for obser-

vational equivalene proofs) does not support events. When using Proverif for showing

trae properties de�ned in terms of events, a di�erent variant of the applied pi alu-

lus is used [Bla09℄. We will all proesses in that alulus event proesses. Syntati-

ally, event proesses di�er from proesses as in Figure 1 only by an additional onstrut

event f(t1, . . . , tn).P whih means that the event f is raised, with arguments t1, . . . , tn
(these are normal terms), and then the event proess P is exeuted.

The semantis of event proesses are formulated in [Bla09℄ in a di�erent way from

the semantis used here. Fortunately, we will be able to enapsulate everything that we

need to know about that semantis in Lemma 3.6 below, so we do not need to repeat

those semantis here.

Instead, we extend the de�nition of the internal redution relation → to event pro-

esses. → is de�ned as in De�nition 2.3, exept that we add the following rule:

EVENT: event f(t1, . . . , tn).P → P

The semantis de�ned by → will be related to those from [Bla09℄ by Lemma 3.6 below.

Finally, [Bla09℄ de�nes the onept of a trae property . We will only need trae

properties of a spei� form, namely

end(x) ⇒ start(x) ∨ x = t1 ∨ · · · ∨ x = tn

Intuitively, an event proess P satis�es a trae property end(x) ⇒ start(x)∨x = t1∨· · ·∨
x = tn if in any exeution P |R → P1 → . . . → Pn, we have that if one of the transitions

raises the event end(t), then t ∈ {t1, . . . , tn} and in the same trae, the event start(t) is
also raised (for any adversarial R not ontaining events).

Formally, satisfying a trae property is de�ned with respet to the semantis from

[Bla09℄.

8

Instead of giving those semantis here, we present the following lemma whih

summarizes seven fat about that de�nition. We will not use any other fats. The fats

an be veri�ed by inspeting the semantis and de�nitions from [Bla09℄.

8

Stritly speaking, the semantis desribed in [Bla09℄ does not allow expressions of the form x = ti
in trae properties. Suh expressions are, however, supported by Proverif. Also, [Bla09, footnote 3 in

the full version℄ explains how to enode suh equality tests in the trae properties supported by [Bla09℄.

In their notation, our trae property beomes the somewhat less readable trae property: end(x) ⇒
(end(x) start(x)) ∨ (end(t1) true) ∨ · · · ∨ (end(tn) true).

Also, the semantis desribed [Bla09℄ do not support equations (i.e., t =E t′ i� t = t′ in their semantis).

However, Proverif supports these, so we assume the intended semantis of Proverif is that of [Bla09℄ with

the natural extension of equality tests to equality modulo =E.
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Lemma 3.6 Let t1, . . . , tn be terms. Let ℘ stand for the trae property start(x) ⇒
end(x) ∨ x = t1 ∨ · · · ∨ x = tn. Let P be an event proess.

(i) If P ≡ P ′
and P satis�es ℘, then P ′

satis�es ℘.
(ii) Assume P → P ′

and P satis�es ℘ and the redution P → P ′
does not use the

EVENT rule. Then P ′
satis�es ℘.

(iii) Let t be a losed term. Assume P = C[event start(t).Q] where C is an event ontext

not binding fn(t) over its hole. Assume that P satis�es ℘. Then P ′ := C[Q] satis�es
℘ ∨ x = t.

(iv) Assume P = C[event end(t).Q] where C is an event ontext. Assume that P
satis�es ℘. Then P ′ := C[Q] satis�es ℘.

(v) Assume P satis�es ℘ and E is an evaluation ontext (not ontaining events) and

E does not bind fn(t1, . . . , tn) over its hole. Then E[P ] satis�es ℘.
(vi) Assume E is an evaluation event ontext that does not bind any names over its

hole. Assume P = E[event end(t).Q]. Assume that P satis�es ℘. Then t =E ti for
some i.

(vii) If νa.P satis�es ℘, then P satis�es ℘.

We explain the intuitive reason for eah fat:

(i) Struturally equivalent proesses behave identially and thus raise the same events.

(ii) If P → P ′
without raising an event, then for any event trae that P ′

may produe,

P may produe the same by �rst reduing to P ′
.

(iii) P ′
has the same event traes as P , exept that some start(t)-events are removed.

If P ′
does not satisfy ℘ ∨ x = t, then there must be an event end(t′) with t 6= t′

that is not preeded by a start(t′)-event. But then also in a trae of P , there would
be an end(t′)-event not preeded by start(t′) (sine the traes only di�er in their

start(t)-events and start(t) 6= start(t′)).

(iv) P ′
has the same event traes as P , exept that various end(·)-events are removed.

(Sine t is not neessarily losed, end(t) may be instantiated to di�erent end(·)-
events.) If a trae of P ′

does not satisfy ℘, this means there was an end(t′)-event
not preeded by a start(t′) event. Then also in P the orresponding end(t′)-event
is not preeded by a start(t′)-event, as P has the same start(·)-events, and more

end(·)-events.

(v) The semantis of satisfying trae properties are de�ned with respet to P running in

parallel with an adversary R not ontaining events. Thus the ase of an evaluation

ontext running with P is already overed. (It is important that E does not bind

fn(t1, . . . , tn) beause otherwise the terms t1, . . . , tn ourring in the proess would

be onsidered di�erent from those in ℘.)

(vi) There is a trae of P that onsists only of an end(t)-event. That trae does not

satisfy end(t) ⇒ start(t). Thus it satis�es ℘ only if ℘ ontains x = t as one of its
lauses.
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(vii) νa.P has the same traes as P , exept that ourrenes of a in the P -traes are
replaed by a fresh restrited name a′. Thus, if P does not satisfy ℘, then there

is a trae ontaining an end(t)-event without preeding start(t)-event suh that

t /∈ {t1, . . . , tn}. In the orresponding νa.P -trae, we have an end(t{a′/a})-event
without preeding start(t{a′/a})-event. Sine t /∈ {t1, . . . , tn} and a is fresh, also

t{a′/a} /∈ {t1, . . . , tn}. Hene the νa.P -trae does not satisfy ℘, either.

Lemma 3.7 Let s be a name. Let P be a proess ontaining s only in onstruts of the

form (!(s, t)〈t′〉)|P ′
and (s, t)().P ′

(for arbitrary and possibly di�erent t, t′, P ′
).

Let plains(P ) denote the proess resulting from P by replaing all ourrenes

!(s, t)〈t′〉|P ′
and (s, t)().P ′

by P ′
.

Let ev s(P ) denote the proess resulting from P by replaing all ourrenes

!(s, t)〈t′〉|P ′
by event start(t).P ′

and (s, t)().P ′
by event end(t).P ′

.

Assume that ev s(P ) satis�es the trae property end(x) ⇒ start(x).
Then plains(P ) ≈ νs.P .

Proof. We all a proess P s-well-formed if it ontains s only in onstruts of the form

!(s, t)〈t′〉|P ′
and (s, t)().P ′

(for arbitrary and possibly di�erent t, t′, P ′
). Given a multiset

T = {t1 7→ t′1, . . . , tn 7→ t′n} with ti, t
′
i terms, we all an event-proess P T -good if P

satis�es the trae property end(x) ⇒ start(x) ∨ x = t1 ∨ · · · ∨ x = tn.
For example, the proess P from the statement of the lemma is s-well-formed, and

ev s(P ) is ∅-good.
We de�ne the following relation R (up to strutural equivalene):

R :=
{(
νa.plains(P ), νas.(P | !(s, t1)〈t

′
1〉 | · · · | !(s, tn)〈t

′
n〉 | (s, u1)〈u

′
1〉 | · · · | (s, um)〈u′m〉

)

P s-well-formed, s, a distint names, evs(P ) is {t1, . . . , tn}-good
}

Here P, n,m, ti, t
′
i, ui, u

′
i, s, a refer to arbitrary values, not only to the values P, s from

the statement of the lemma.

We write short syncout s({t1 7→ t′1, . . . , tn 7→ t′n}; {u1 7→ u′1, . . . , un 7→ u′n}) for

!(s, t1)〈t′1〉 | · · · | !(s, tn)〈t
′
n〉 | (s, u1)〈u

′
1〉 | · · · | (s, um)〈u′m〉.

We now show that R is a bisimulation:

• If (A,B) ∈ R, and A ↓M , then B ↓M :

Then A = νa.plains(P ). Hene plains(P ) ↓M and a /∈ fn(M). Also, s /∈
fn(plains(P )), so s /∈ fn(M). By de�nition of plains(·), plains(P ) ↓M implies

P ↓M . Sine a, s /∈ fn(M), it follows B = νas.(P | . . . ) ↓M .

• If (A,B) ∈ R, and B ↓M , then A ↓M :

Then B = νas.(P |syncout s(T ;U)). Thus a, s /∈ fn(M) and P |syncout s(T ;U) ↓M .

Sine all hannels in syncouts(T ;U) are of the form (s, ·), we have

syncout s(T ;U) 6↓M .

9

Hene P ↓M . By de�nition of plains(P ) and sine M does

not ontain s, this implies plains(P ) ↓M . Hene A = νa.plains(P ) ↓M .

9

Here we impliitly use the fat that (s, ·) 6=E M for any M not ontaining s (Lemma 3.1 (iii)).
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• If (A,B) ∈ R, and A→ A′
, then there exists a B′

with B →∗ B′
and (A′, B′) ∈ R:

Then A ≡ νa.plains(P ) and B ≡ νas.(P |syncout s(T ;U)). We all an event proess

name-redued , if it does not ontain unproteted restritions.

Without loss of generality, assume that P (and hene also evs(P )) is name-redued

(otherwise we ould move the super�uous restritions into the νa).

Let a0 := a and P0 := P and T0 := T . We �rst onstrut a sequene P1, . . . , Pk

of proesses and a sequene of lists of names a1, . . . , ak, and a sequene of sets

T1, . . . , Tk suh that Pk does not ontain unproteted inputs (s, ·)().Q or unpro-

teted outputs !(s, ·)〈·〉, and for all i = 0, . . . , k we have:

(a) νs.(P |syncout s(T ;U)) →∗ νais.(Pi|syncout s(Ti;U)), and
(b) ev s(Pi) is Ti-good, and
() plains(P ) ≡ νai.plain

s(Pi).
(d) Pi is s-well-formed.

For i = 0, these onditions are trivially satis�ed. When onstruting Pi for i > 0,
we already have a proess Pi−1 satisfying these onditions. We distinguish three

ases:

� If Pi−1 does not ontain unproteted inputs (s, ·)(), we are done (k := i− 1).

� If Pi−1 does ontain an unproteted input (s, t)() that is not part of a subterm
of the form !(s, ·)〈·〉|Q, then we an write Pi−1 as Pi−1 = νb.E[(s, t)().P ′] for
some names b and some evaluation ontext E that has no restritions over its

hole. Sine (s, t)() is not part of a subterm of the form !(s, ·)〈·〉|Q, evs(E) is
an evaluation ontext (!(s, ·)〈·〉|Q would have translated to event start(·).Q).
Without loss of generality, b ∩ fn(Ti−1, U) = ∅.

Sine evs(Pi−1) ≡ νb.evs(E)[event end(t).evs(P ′)] is Ti−1-good

by (b), Lemma 3.6 (vii) implies that ev s(E)[event end(t).ev s(P ′)]
is Ti−1-good. Sine E does not bind any names over its hole,

Lemma 3.6 (vi) implies that t =E t∗ for some t∗ ∈ Ti−1. Thus

Pi−1|syncout s(Ti−1;U) ≡ (νb.E[(s, t)().P ′])|syncout (Ti−1;U) →∗

(νb.E[P ′])|syncout(Ti−1;U). Sine without loss of generality, b∩ fn(Ti−1, U) =
∅, (νb.E[P ′])|syncout (Ti−1;U) ≡ νb.Pi|syncout(Ti−1;U) with Pi := E[P ′].

Hene νs.P |syncout s(T ;U)
(a)

→∗νai−1s.(Pi−1|syncouts(Ti−1;U)) →∗

νai−1sb.Pi|syncout s(Ti−1;U) ≡ νais.Pi|syncout s(Ti;U) with Ti := Ti−1

and ai := ai−1b. Thus (a) is satis�ed by Pi, ai, Ti.

Sine evs(Pi−1) ≡ νb.ev s(E)[event end(t).ev s(P ′)] is Ti−1-good by (b) and

thus Ti-good, we have by Lemma 3.6 (vii) that evs(E)[event end(t).ev s(P ′)]
is Ti-good. Sine E does not bind names over its hole, neither does evs(E).
Thus by Lemma 3.6 (iv), evs(E)[ev s(P ′)] = evs(Pi) is Ti-good. Thus (b) is

satis�ed by Pi, ai, Ti.

Sine Pi−1 = νb.E[(s, t)().P ′] is s-well-formed by (d), so is Pi = E[P ′]. Thus
(d) is satis�ed by Pi, ai, Ti.
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Finally, plains(Pi−1) = νb.plains(E)[plain s(P ′)] = νb.plains(Pi). Sine by

() we have that plains(P ) ≡ νai−1.plain
s(Pi−1), we have plains(P ) ≡

νai.plain
s(Pi). Thus () is satis�ed by Pi, ai, Ti.

� If Pi−1 ontains an unproteted output !(s, t)〈t′〉 that is not part of a subterm
of the form !(s, ·)〈·〉|Q, then we an write Pi−1 as Pi−1 = νb.E[(s, t)〈t′〉|P ′] for
some names b and some evaluation ontext E that has no restritions over its

hole. Sine (s, t)〈t′〉 is not part of a subterm of the form !(s, ·)〈·〉|Q, ev s(E) is
an evaluation ontext (!(s, ·)〈·〉|Q would have translated to event start(·).Q).
Without loss of generality, b ∩ fn(Ti−1, U) = ∅.

We have Pi−1|syncout s(Ti−1;U) ≡ (νb.E[!(s, t)〈t′〉|P ′])|syncout(Ti−1;U)
(∗)

≡
νb.(E[!(s, t)〈t′〉|P ′]|syncout (Ti−1;U)) ≡ νb.(E[P ′]|syncout(Ti;U)) with

Ti := Ti−1 ∪ {t 7→ t′}. Here (∗) uses that b ∩ fn(Ti−1, U) =

∅. Hene νs.P |syncouts(T ;U)
(a)

→∗νai−1s.(Pi−1|syncout s(Ti−1;U)) →∗

νai−1sb.(E[P ′]|syncout s(Ti;U)) ≡ νais.(Pi|syncout s(Ti;U)) with Pi := E[P ′]
and ai := ai−1b (remember that Ti = Ti−1 ∪ {t 7→ t′}. Thus (a) is satis�ed by

Pi, ai, Ti.

Sine evs(Pi−1) ≡ νb.evs(E)[event start(t).evs(P ′)] is Ti−1-good by (b),

we have by Lemma 3.6 (vii) that evs(E)[event start(t).evs(P ′)] is Ti−1-good.

Sine E does not bind names over its hole, neither does ev s(E). Thus by

Lemma 3.6 (iii), ev s(E)[ev s(P ′)] = ev s(Pi) is Ti-good. Thus (b) is satis�ed

by Pi, ai, Ti.

Sine Pi−1 = νb.E[(s, t)〈t′〉.P ′] is s-well-formed by (d), so is Pi = E[P ′]. Thus
(d) is satis�ed by Pi, ai, Ti.

That () is satis�ed by Pi, ai, Ti is shown as in the previous ase.

Note that in the last two ases, the size of Pi is smaller than that of Pi−1, so

we eventually reah the �rst ase. Hene the onstrution terminates and we

get a proess Pk that satis�es (a)�(d) and that does not ontain unproteted

inputs (s, ·)() or unproteted outputs !(s, ·)〈·〉. We have A ≡ νa.plains(P )
()

≡
νaak.plain

s(Pk). Thus A → A′
implies that νaak.plain

s(Pk) → A′
and and

thus plains(Pk) → A′′
where A′′

is A′
with the restritions νaak removed. (I.e.

A′ ≡ νaak.A
′′
.) Sine Pk is s-well-formed by (d) and does not ontain unproteted

inputs (s, ·)() or unproteted outputs !(s, ·)〈·〉, by inspetion of the de�nition of

plains
, ev s, and →, it follows that Pk → P ′

and ev s(Pk) → ev s(P ′) for some

s-well-formed P ′
with plains(P ′) ≡ A′′

. The redution evs(Pk) → evs(P ′) does

not use the EVENT rule. Sine evs(Pk) is Tk-good by (b), from Lemma 3.6 (ii)

we have that evs(P ′) is Tk-good. Let B′ := νaaks.(P
′|syncout s(Tk;U)). Then

(A′, B′) ≡ (νaak.plain
s(P ′), B′) ∈ R. Finally, B = νas.(P |syncout s(T ;U))

(a)

→∗

νaaks.(Pk|syncout
s(Tk;U)) → νaaks.(P

′|syncout s(Tk;U)) = B′
.

• If (A,B) ∈ R, and B → B′
, then there exists an A′

with A→∗ A′
and (A′, B′) ∈ R:
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We have A ≡ νa.plains(P ) and B ≡ νas.(P |syncout s(T ;U)) for some s-well-formed

P and T -good ev s(P ).

We distinguish three ases for B → B′
:

� B → B′
is a redution within syncouts(T ;U):

In this ase, the redution of the form E[!(s, t)〈t′〉] → E[(s, t)〈t′〉|!(s, t)〈t′〉] for
some t, t′. Thus B′ ≡ νas.(P |syncout s(T ;U ∪ {t 7→ t′})). Then A = A′ :=
νa.plains(P ) and evs(P ) is T -good. Hene A→∗ A′

and (A′, B′) ∈ R.

� B → B′
is a COMM redution between P and syncouts(T ;U):

Then for some terms t, t′, some proess Q, and some evaluation ontext E, we
have P ≡ E[(s, t)().Q] for some t, t′, and B′ ≡ νas.(P ′|syncout s(T ;U ′)) with
P ′ := E[Q] and U ′

with U = U ′ ∪ {t 7→ t′}. Sine plains((s, t)().Q) =
plains(Q), we have A ≡ A′ := νa.plains(P ′). Furthermore, evs(P ) =
ev s(E)[event end(t).evs(Q)] and evs(P ′) = evs(E)[ev s(Q)]. Thus by

Lemma 3.6 (iv), the fat that evs(P ) is T -good implies that evs(P ′) is T -good.

Hene A→∗ A′
and (A′, B′) ∈ R.

� B → B′
is a redution within P .

Thus P → P ′
for some P ′

, and B′ ≡ νas.(P ′|syncout s(T ;U)). Sine P is

s-well-formed, we have P ≡ E[Q] → E[Q′] ≡ P ′
for some evaluation ontext

E and proess Q, suh that Q is of the form !(s, t)〈t′〉|Q1, or Q is a redex

not of the form !(s, ·)〈·〉, or Q = M〈N〉.Q1|M ′(x).Q2 with M 6=E (s, ·). (We

annot have a redution on a hannel (s, ·), sine s-well-formed terms have

outputs on suh hannels only below bangs.) Without loss of generality, we

an assume that all unproteted ourrenes of !(s, t)〈t′〉 in E are not below

a restrition (otherwise we ould move these restritions from E to νa).

Let E∗
be E with all unproteted ourrenes of !(s, t)〈t′〉 removed (for arbi-

trary t, t′). Let T ∗
be the multiset of the pairs (t 7→ t′) from these ourrenes.

Then E[Q] ≡ E∗[Q]|syncout s(T ∗;∅). Sine evs(P ) = ev s(E[Q]) is T -good,
and sine ev s(E∗[Q]) results from ev s(P ) by removing event start(t) for all
(t 7→ ·) ∈ T ∗

, by Lemma 3.6 (iii) we have that ev s(E∗[Q]) is T ∪ T ∗
-good.

We now distinguish on the form of Q:

∗ If Q =!(s, t)〈t′〉|Q1:

Then B′ ≡ νas.(E∗[Q1]|syncout s(T ′;U ′)) for T ′ := T ∪ T ∗ ∪ {t 7→
t′} and U ′ := U ∪ {t 7→ t′}, and A′ := νas.plain(E∗[Q1]) =
νas.plain(E∗[!(s, t)〈t′〉|Q1]) ≡ A. And sine ev s(E∗[Q]) =
ev s(E∗)[event start(t).ev s(Q1)] is T∪T ∗

-good, we have that ev s(E∗[Q]) ≡
ev s(E∗)[ev s(Q1)] is T

′
-good by Lemma 3.6 (iii). Thus A →∗ A′

and

(A′, B′) ∈ R.

∗ If Q is a redex, or Q = M〈N〉.Q1|M ′(x).Q2 with M =E M
′
and M 6=E

(s, ·):
Then B′ ≡ νas.(P ′|syncouts(T ′;U)) with P ′ = E∗[Q′] and Q 7→ Q′

and

T ′ := T ∪ T ∗
. And A → A′ := νa.plain(P ′). And evs(Q) → evs(Q′).
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Sine E∗
is an evaluation ontext and does not ontain unproteted

!(s, t)〈t′〉, we have that evs(E∗) is an event evaluation ontext. Hene

ev s(E∗[Q]) = ev s(E∗)[ev s(Q)] → ev s(E∗)[ev s(Q′)] = ev s(P ′), not us-

ing the EVENT rule. By Lemma 3.6 (ii) and using that evs(E∗[Q]) is

T ′
-good, this implies that ev s(P ′) is T ′

-good, too. Thus A →∗ A′
and

(A′, B′) ∈ R.

• If (A,B) ∈ R, and E is an evaluation ontext, then (E[A], E[B]) ∈ R:

We have A ≡ νa.plains(P ) for some s-well-formed P . And B ≡ νas.(P |
syncout s(T ;U)) for some sets T,U . And ev s(P ) is T -good. Without loss of general-

ity, a, s do not our in E (neither bound nor free). Let νb.E′
be E with all restri-

tions over the hole moved up into b. Then E[A] ≡ νb.E′[A] and E[B] ≡ νb.E′[B].

Sine P is s-well-formed, and E and hene E′
does not ontain s, E′[P ] is s-well-

formed.

Sine E does not ontain a, s, we have that abs are distint names.

Sine ev s(P ) is T -good, by Lemma 3.6 (v) we have evs(E′[P ])) = E′[evs(P )] is T -
good. (We use the fat that E′

does not bind the fn(T ) as they have been moved

into νb.)

Thus (νab.plains(E′[P ]), νabs.(E′[P ]|syncout s(T ;U))) ∈ R with E′[P ] instead of

P and ab instead of a.

By de�nition of plains(·), E[A] ≡ νb.E′[A] ≡ νb.E′[νa.plains(P )] =
νab.plains(E′[P ]). And E[B] ≡ νb.E′[B] ≡ νb.E[νas.(P |syncout s(T ;U))] ≡
νabs.(E′[P ]|syncout s(T ;U)).

Sine R is losed under strutural equivalene, this implies that (E[A], E[B]) ∈ R.

Sine R is a bisimulation, and (plains(P ), νs.P ) ∈ R (using P, s as in the statement

of the lemma), we have plains(P ) ≈ νs.P . �

3.2 Unpreditability of nones

Lemma 3.8 (Unpreditability of nones) Let C be a ontext not binding the vari-

able x and let P,Q be proesses. Then νr.C[if x = r then P else Q] ∼∼∼ νr.C[Q].

Proof. In the following, a multi-hole ontext is a ontext C with zero, one, or more holes.

C[P ] means C with every ourrene of the hole replaed by the same proess P .
We de�ne the following relation R:

R :=
{
(νr.C[if T = r then P else Q], νr.C[Q])

}

up to strutural equivalene. Here C ranges over multi-hole ontexts, T over terms,

r /∈ fv(T ) over names, and P,Q over proesses.

We show that R is a bisimulation:
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• If (A,B) ∈ R and A ↓M , then B →∗↓M :

Immediate sine �if T = r then P else Q� does not have unproteted outputs.

• If (A,B) ∈ R and B ↓M , then A→∗↓M :

If the output on M is in C, A ↓M . Otherwise the output is in an unproteted

instane of Q in νr.C[Q] ≡ B. Sine r /∈ fn(T ), we have T 6=E r by Lemma 3.1 (i)

and hene (if T = r then P else Q) → Q. Then A → A′
where A′

results from

replaing one instane of �if T = r then P else Q� by Q. Then A′ ↓M .

• If (A,B) ∈ R and A→ A′
then there is a B′

with B →∗ B′
and (A′, B′) ∈ R:

Then A ≡ νr.C[if T = r then P else Q] and B ≡ νr.C[Q]. If the redution A→ A′

takes plae in C, then there is a orresponding redution B → B′
and (A′, B′) ∈ R.

Thus we an assume that one of the �if T = r then P else Q� is being redued in

A. Sine T 6=E r by Lemma 3.1 (i), that subproess redues to Q. Thus A′ ≡
νr.C ′[if T = r then P else Q] where C ′

is C with one of the holes replaed by Q.
Then B′ := B ≡ νr.C[Q] = νr.C ′[Q]. Hene B →∗ B′

and (A′, B′) ∈ R.

• If (A,B) ∈ R and B → B′
then there is an A′

with A→∗ A′
and (A′, B′) ∈ R:

Then A ≡ νr.C[if T = r then P else Q] and B ≡ νr.C[Q]. As before, we have

(if T = r then P else Q) → Q. The redution B → B′
may involve C and up to two

instanes of Q. We an thus write B as B ≡ C ′′[Q] where C ′′
results from replaing

in C the holes orresponding to these instanes of Q. These instanes of Q are not

proteted, so the holes we have replaed by Q are not proteted, either. Thus A→∗

C ′′[if T = r then P else Q] =: A′′
. Then the redution B ≡ C ′′[Q] → B′

involves

only C ′′
. Hene B′ ≡ C ′[Q] for some C ′

, and A′′ → C ′[if T = r then P else Q] =:
A′
. Thus A→∗ A′

and (A′, B′) ∈ R.

• If (A,B) ∈ R and E is an evaluation ontext, then (E[A], E[B]) ∈ R:

Then A ≡ νr.C[if T = r then P else Q] and B ≡ νr.C[Q]. Without loss of gen-

erality, r /∈ fn(E), bn(E). Hene E[A] ≡ νr.E[C[if T = r then P else Q]] and
E[B] ≡ νr.E[C[Q]]. Hene (E[A], E[B]) ∈ R (with E[C] instead of C).

We an now show the lemma. Let C,P,Q, r be as in the lemma. Let σ be a

substitution losing νr.C[if x = r then P else Q] and νr.C[Q]. Without loss of gener-

ality, r /∈ fn(σ) (otherwise we rename r and hange C,P,Q aordingly). In partiular,

σ(x) will be some losed term T with r /∈ fn(T ). Then C[if x = r then P else Q]σ =
C ′[if T = r then P ′

else Q′] and C[Q]σ = C ′[Q′] where C ′, P ′, Q′
are the result of apply-

ing σ to C,P,Q. (In the ase of P,Q, restrited to those variables not bound by C.) And
(C ′[if T = r then P ′

else Q′], C ′[Q′]) ∈ R. Thus C ′[if T = r then P ′
else Q′] ≈ C ′[Q′].

Sine this holds for any losing σ, we have C[if x = r then P else Q] ∼∼∼ C[Q]. �
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4 Symboli UC

Intuition. We start by presenting the intuition that underlies the original UC frame-

work [Can01℄ and thus also our work. The basi idea is to de�ne seurity of a protool π
by omparing it to a so-alled ideal funtionality F . The ideal funtionality is a mahine

that by de�nition does what the protool should ahieve. For example, if the task of the

protool is to transmit a messagem seurely from Alie to Bob, then the funtionality is a

trusted mahine that expets a message m from Alie over a seure hannel, sends to the

adversary that suh a message was reeived (but does not send the message itself), and

then after the adversary allows delivery, forwards the message to Bob. (In the applied pi

alulus, this funtionality would be netscstart ().ioA(x).(netnotify〈〉 | netdeliver ().ioB 〈x〉)
where the net ...-hannels belong to the adversary; see De�nition 6.2 below.) In a sense,

the funtionality is an abstrat spei�ation of the protool behavior, and the protool is

supposed to be a onrete instantiation of that spei�ation using rypto, in a way that

preserves the seurity properties of the spei�ation.

So how to model that a protool π is as seure as a funtionality F? The basi idea

is to ensure that any attak on π is also possible on F . Sine by assumption F does not

allow any attaks, this implies that π does not allow any attaks either, so π is seure. To

model that any attak on π is possible on F , we require that for any adversary attaking

π, there is a orresponding adversary (the �simulator�) attaking F that performs an

equivalent attak. And what do we mean by equivalent? Any �environment� that an

observe the overall protool outome (inputs and outputs), and that an talk to the

adversary (i.e., it learns what seret information the adversary might have obtained),

annot distinguish between the two attaks. In other words, for any adversary A, there
is a simulator S suh that for all environments Z, we have that π+A+Z (the protool

running with A and Z) and F + S + Z are indistinguishable from Z's point of view.

Notie that we do not wish to allow Z to observe the internal protool ommuniation �

doing so would require that π and F work the same way internally, but we only want that

the two have the same �observable e�ets�, we do not are about their inner workings.

Due to this, in a formal de�nition, we need to distinguish between the protool-internal

ommuniation hannels (net-hannels), and the protool's interfae (io-hannels). Only

the latter is aessible to the environment.

Formal de�nition. To formalize the above intuition in the applied pi alulus, we

�rst formalize the distintion between hannels that make up the protool's input/output

interfae, and those that make up the protool's internal hannels. We partition the set of

all names into two sets IO and NET (both in�nite). We will then require adversaries and

simulators to only ommuniate on NET hannels. (We do not forbid the environment

to aess NET hannels. But we will give the adversary/simulator the ability to rename

and hide NET hannels, and thus e�etively protet the protool's NET hannels from

the environment.)

In order to keep the distintion between NET-hannels and IO-hannels, we also want

to avoid that NET-hannels are transmitted to the environment (we use this in a few
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plaes in our proofs):

De�nition 4.1 We all a proess P NET-stable if every name n ∈ NET ∩ fn(P ) in P

ours only in hannel identi�ers (i.e., in partiular, P does not send n to the environ-

ment).

Note that there is no restritions on the bound names. Thus a NET-stable adversary
is free to share arbitrary fresh names with the environment and to use them as hannels.

We now de�ne the onept of an adversary. Essentially, an adversary is just a proess

A that is intended to interat with the protool (or funtionality). Sine the adversary

onnets to the protool over some NET-names, the spei�ation of the adversary ad-

ditionally inludes a list of NET-names n of the protool that will be aessed by A
(and are thus private between A and the protool). Finally, an adversary/simulator

sometimes needs to rename NET-hannels of the protool/funtionality to avoid name

lashes. Sine NET-hannels are protool internal and not part of the externally visible

interfae, it should not matter whether the same name is used in protool and funtional-

ity or not. This is ahieved by letting the adversary rename NET-names, we model this

by speifying a renaming ϕ as part of the adversary.

De�nition 4.2 An adversary is a triple (A,ϕ,n) where A is a losed NET-stable proess
with IO ∩ fn(A) = ∅, ϕ : NET → NET a bijetion and n a list of names n ⊆ NET.

We an now state our seurity de�nition. Both protool and funtionality are modeled

by proesses P and Q , respetively. An adversary (A,ϕA, nA) onneting to P is modeled

as νnA.(PϕA|A), as we would expet from the meaning of ϕ and n explained above. To

model that P emulates Q, we would require that νnA.(PϕA|A) and νnS .(QϕS |S) are

indistinguishable for any environment for a suitable simulator (S,ϕS , nS). We do not

need to speify the environment expliitly beause we have the notion of observational

equivalene: νnA.(PϕA|A) ≈ νnS .(QϕS |S) means that no ontext an distinguish the

left and right hand side. The following de�nition aptures this, exept that we make one

simpli�ation: Instead of quantifying over all adversaries (A,ϕA, nA), we �x A := 0, ϕA

the identity, and nA the empty list, so that νnA.(PϕA|A) = P . (Suh an adversary, that

essentially just leaves all NET-hannels aessible to the environment, is usually alled

a dummy adversary .) This de�nition is often tehnially muh simpler to handle, and

Lemma 4.4 below guarantees that it is equivalent to the more natural de�nition that

quanti�es over all adversaries.

De�nition 4.3 Let P and Q be proesses. We say P emulates Q (written P ≤ Q) i�

there exists an adversary (S,ϕ, n) suh that P ∼∼∼ νn.(Qϕ|S). (S,ϕ, n) will often be alled

simulator.

We use

∼∼∼ instead of ≈ to get a more general de�nition, allowing non-losed P,Q. For
the appliations presented in this paper, the speial ase using ≈ (whih is equivalent to

our de�nition restrited to losed proesses) is su�ient. (Note however that we would

still use

∼∼∼ to state various tehnial lemmas more onveniently.)
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Note that there is no formal distintion between protools and funtionalities. Indeed,

it an sometimes be onvenient to ompare two protools P,Q. Furthermore, note that

≤ is weaker than

∼∼∼: P ∼∼∼ Q entails P ≤ Q (and Q ≤ P ) with the simulator (0, id , ∅).
As observed in [KDMR08℄ there are several approahes to de�ne simulation based se-

urity. The following Lemma shows that our de�nition (resembling strong simulatability)

is equivalent to the two alternatives: blak-box simulatability and universally-omposable

simulatability (the latter being the de�nition that orresponds diretly to the intuition

given at the beginning of this setion).

Lemma 4.4 For proesses P , Q we have that the following are equivalent:

(i) strong simulatability: P ≤ Q
(ii) blak-box simulatability: ∃(S,ϕS , nS) ∀(A,ϕA, nA) νnA.(PϕA|A) ∼∼∼

νnA.((νnS.(QϕS |S))ϕA|A)
(iii) universally-omposable simulatability: ∀(A,ϕA, nA) ∃(S,ϕS , nS) νnA.(PϕA|A) ∼∼∼

νnS .(QϕS |S)
where all triples are adversaries aording to De�nition 4.2.

Proof.

• (i) ⇒ (ii):

P ≤ Q⇒ ∃(S,ϕS , nS) P ∼∼∼ νnS .(QϕS |S)
(∗)
⇒ ∀ bijetions ϕA PϕA

∼∼∼ (νnS .(QϕS |S))ϕA

(∗∗)
⇒ ∀(A,ϕA, nA) νnA.(PϕA|A) ∼∼∼ νnA.((νnS .(QϕS |S))ϕA|A)

(∗) sine ∼∼∼ is losed under renaming and (∗∗) sine ∼∼∼ is losed under the appliation

of evaluation ontexts.

• (ii) ⇒ (iii): Let (S,ϕS , nS) be the simulator from (ii), (A,ϕA, nA) be an adversary

and ϕ a bijetion on names suh that nS(ϕ◦ϕA)∩ fn(A) = ∅ and ϕ is the identity

on the free names of Q(ϕA ◦ ϕS) and SϕA (this ϕ an be used as α-onversion in

step three below). We observe

νnA.((νnS .(QϕS |S))ϕA|A)

≡ νnA.(νnSϕA.(Q(ϕA ◦ ϕS)|SϕA)|A)

≡ νnA.(νnS(ϕ ◦ ϕA).(Q(ϕ ◦ ϕA ◦ ϕS)|S(ϕ ◦ ϕA))|A)

≡ νnA.νnS(ϕ ◦ ϕA).(Q(ϕ ◦ ϕA ◦ ϕS)|S(ϕ ◦ ϕA)|A)

and thus (SA, nSA
, ϕSA

) := (S(ϕ ◦ ϕA)|A,nA ∪ nS(ϕ ◦ ϕA), (ϕ ◦ ϕA ◦ ϕS)) is an

adversary suh that

νnA.(PϕA|A) ∼∼∼ νnSA
.(QϕSA

|SA)

• (iii) ⇒ (i) We onstrut the simulator from the last step for the adversary (0,∅, id)
and have (i).
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Lemma 4.5 (Re�exivity, transitivity) Let P,Q,R be proesses. Then P ≤ P . And

if P ≤ Q and Q ≤ R, then P ≤ R.

Proof. P ≤ P follows diretly from De�nition 4.3 by setting S := 0, ϕ as the identity,

and n := ∅.
Assume now that P ≤ Q and Q ≤ R. Then there are proesses S1, S2 with IO ∩

fn(S1) = IO ∩ fn(S2) = ∅, bijetions ϕ1, ϕ2 : NET → NET, and lists of names n1, n2 ⊆
NET suh that P ∼∼∼ νn1.(Qϕ1|S1) and Q ∼∼∼ νn2.(Rϕ2|S2). Without loss of generality we

an hoose n2 suh that n2ϕ1 ∩ fn(S1) = ∅. It follows

P ∼∼∼ νn1.(Qϕ1|S1)
(∗)
∼∼∼ νn1.((νn2.(Rϕ2|S2))ϕ1|S1)]
(∗∗)

≡ νn1.((νn2ϕ1.(R(ϕ1 ◦ ϕ2)|S2ϕ1))|S1)
(∗∗∗)

≡ νn1.νn2ϕ1.(R(ϕ1 ◦ ϕ2)|S2ϕ1|S1)

Here (∗) follows sine ∼∼∼ is losed under the appliation of evaluation ontexts and under

renaming of free names.

And (∗∗) follows sine for any proess R, we have (νn2.R)ϕ1 ≡ νn2ϕ1.(Rϕ1).
And (∗∗∗) follows sine n2ϕ1 ∩ fn(S1) = ∅.
Thus, hoosing n := n1∪n2ϕ1, ϕ := ϕ1◦ϕ2, and S := S2ϕ1|S1, we get P ∼∼∼ νn.(Rϕ|S).

Hene P ≤ R. �

Corruption. So far, we have not yet modeled the ability of the adversary to orrupt

parties. There are two main variants of orruption: stati and adaptive orruption. In

the ase of stati orruption, it is determined in the beginning of the protool who is or-

rupted. For adaptive orruption, orruption may our during the protool and depend

on protool messages. Modeling stati orruption is quite easy in our model: When a

party X is orrupted, we simply remove the subproess PX orresponding to that party

from the protool P , make all NET-names ourring in PX publi, and � in the ase of a

funtionality � additionally rename all IO-names of PX into NET-names. For example,

if P = νnet1net2.(PA|PB |F) where net1 ours in PA and PB and net2 only in PB , and

F has IO-names ioFA, ioFB then orrupting A leads to P ′ = νnet2.(PB |F{netFA/ioFA}).
And a funtionality G with IO-names ioA, ioB beomes G{netA/ioA}.

So, if we want to verify that a P emulates G for any orruption, we need to hek:

• Unorrupted: P ≤ G.

• Alie orrupted: νnet2.(PB |F{netFA/ioFA}) ≤ G{netA/ioA}.

• Bob orrupted: PA|F{netFB/ioFB} ≤ G{netB/ioB}.
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An example is given in Setion 9.1 in the ase of UC seure ommitments.

Modeling adaptive orruptions is more omplex. For this one would need to introdue

speial parties that reat to a speial signal from the environment and then swith into

a orrupted mode. We do not follow that approah here.

5 Composition

One of the salient properties of the UC framework is omposition. Assume a protool

π UC-emulates a funtionality F . And ρ is a protool using F . Then ρπ/F (whih is ρ
with F replaed by π) UC-emulates ρ. And hene, by transitivity, if ρ emulates some

funtionality G, ρπ/F UC-emulates G.
In our ontext, ideally we would like a omposition theorem suh as P ≤ Q =⇒

C[P ] ≤ C[Q] for arbitrary ontexts C. Unfortunately, the situation is not as simple.

A simple observation is that if C may ontain NET-names, then omposition will not

work: For example, assume P ≤ Q, and P is a protool using some NET-hannel net to

implement an ideal funtionality Q (whih does not use net). And C = �|R reeives on

a NET-hannel net and outputs the reeived messages on an IO-hannel io. Then C[P ]
will output protool-internal messages on io (observable to the environment), while C[Q]
will not (sine the funtionality Q will not use the hannel net). Hene C[P ] 6≤ C[Q].
(We give a formal analysis of the various ases in whih the omposition theorem does

not hold in Appendix A.)

Thus a �rst ondition on C is that it may not use the same NET-names. In fat,

we show below (Theorem 5.37) that if C is an evaluation ontext binding only IO-names

and not using any of the NET-names of P,Q, then P ≤ Q =⇒ C[P ] ≤ C[Q] holds.
This already allows for a large range of omposition operations. (In partiular, we

an onnet di�erent protools through their interfaes seurely by omposing them in

parallel, and restriting the IO-hannels through whih they are onneted.) But one

important operation is missing, namely onurrent omposition. Conurrent omposition

means that if P ≤ Q, then P ′ ≤ Q′
where P ′

onsists of many instanes of P and Q′

analogously. Suh a result is important in many ases, e.g., if P is a single session key-

exhange, but an embedding protool needs a large number of keys. The most obvious

way to model this in our setting would be a theorem stating P ≤ Q =⇒ !P ≤ !Q.
Unfortunately, suh a theorem annot hold, either. The intuitive reason is as follows:

When trying to onstrut a simulator for !Q, then this simulator will not be able to

distinguish messages from di�erent instanes of Q. The simulator will then be unable to

even deide whether he talks to a single instane or several. For example:

P := νnm.
(
io1〈n〉 | io2(x).if x = n then net2〈m〉

| io3(x).if x = n then net3〈m〉
)

Q := νn.
(
io1〈n〉 | io2(x).if x = n then net2〈empty〉

| io3(x).if x = n then net3〈empty〉
)

Here we have P ≤ Q beause a simulator reeiving empty on net2 or net3 just has to

replae it by some fresh name m. However, we do not have !P ≤ !Q. Depending on
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the messages the environment sends on io2, !P will output either the same name m on

net2,net3, or di�erent names m,m′
. However, a simulator interating with !Q in both

ases gets empty , empty on net2,net3. The simulator then does not know whether he

should hange this into m,m or m,m′
for fresh m,m′

. Thus the simulator fails. (The

formal argument is in Appendix A.)

So we annot have a theorem stating P ≤ Q =⇒ !P ≤ !Q. Does this mean on-

urrent omposition is not possible? No, just that ! is not the right operator to model

it. In the omputational UC framework, omposition also does not involve a number of

indistinguishable instanes. Instead, eah instane of P and Q is given a unique session

id, and all ommuniation is tagged with that session id so that it an be routed to the

right instane. In our setting, one possibility to ahieve this is to de�ne an operator !!
[Che66℄ suh that !!P behaves like an unlimited number of instanes of P , where eah

instane is tagged with a unique session id sid . I.e., eah hannel C in P is replaed by

(sid , C).10

The question is how to de�ne !!P . The applied pi alulus does not have any onstrut

that onveniently allows to perform in�nite branhing with di�erent ids. Thus, we have

to work around this restrition by introduing a more elaborate onstrution. As a �rst

step, we de�ne the tagged version P ((M)) of the proess P :

De�nition 5.1 Let P be a proess, and let M be a term. We write P((M )) for P with

every ourrene of C (x ) replaed by (M ,C )(x ) and every ourrene of C 〈T 〉 replaed
by (M ,C )〈T 〉. (If M ontains bound variables or bound names from P , we assume that

these bound variables/names are �rst renamed in P .)

Now we have to somehow de�ne !!P as P ((s1))|P ((s2))| . . . where s1, s2, . . . range over
some in�nite set SID of session ids. Using produt proesses (see Setion 2.2) this is

easy: !!P :=
∏

x∈SID P ((x)) does the job. However, produt proesses are a nonstan-

dard extension of the applied pi alulus, but we wish to stay ompatible with existing

variants (in partiular, to be able to use Proverif for veri�ation). Thus, instead of

using

∏
x∈SID P ((x)), we de�ne a suitable ontext C suh that C[P ((x))] behaves like∏

x∈SID P ((x)). Then we an de�ne !!P := C[P ((x))]. Of ourse, depending on the parti-

ular set SID we hoose, a di�erent ontext C will be needed. Instead of �xing a partiular

one, we thus give a general de�nition what ontexts are suitable for a given set SID , and

from then on, just assume an arbitrary suh ontext.

De�nition 5.2 (Indexing ontext) Given a set S of terms, a variable x (will be used

for tagging), and names n, we all a losed ontext Cx ,n with bn(Cx ,n) = n and fn(Cx ,n) =
∅ (not ontaining indexed repliations) an S-indexing ontext i� for all proesses P with

10

One might instead onsider tagging the messages sent over the hannel with sid . This, however, does

not work as well: One would need a spei� multiplexer proess that given a message (sid , T ) disovers
the orresponding instane of P and delivers to it. This might be possible, but is probably onsiderably

more ompliated than the approah we take below.

37



x 6∈ bv(P) 11

and n ∩ fn(P) = ∅ we have

Cx ,n [P((x ))] ∼∼∼
∏

x∈S

P((x ))

In the following, we �x a set SID of terms ontaining no names or variables. The set

SID will represent the set of all session IDs. We assume that id =E id ′
entails id = id ′

for id , id ′ ∈ SID (di�erent IDs are never equivalent by the equational theory).

Note that not for every set SID a SID-indexing ontext exists. For example, if SID is

not semi-deidable (but the equational theory is), then there is no SID-indexing ontext.

One might be onerned that our de�nition of SID -indexing ontexts annot be ful�lled.

The following de�nition shows that this is not the ase, at least if we use suitably enoded

bitstrings as SIDs.

De�nition 5.3 Assume that a nullary onstrutor nil and unary onstrutors zero and

one are part of our symboli model. Let SIDbits be the set of all terms built from nil , zero
and one. Assume furthermore that for id , id ′ ∈ SIDbits in our symboli model id =E id ′

entails id = id ′
. Let

CSIDbits
x ,a := νa.(a〈nil〉|!a(x ).(a〈zero(x )〉|a〈one(x )〉|�))

Intuitively, CSIDbits
x ,a is a fatory with parameters x and a for tagged instanes of P

that realizes the abstrat onstrution of

∏
x∈SIDbits

P ((x)). We now show that CSIDbits
x ,a

atually is an SIDbits-indexing ontext. Towards this goal we �rst de�ne an intermediate

representation of CSIDbits
x ,a .

De�nition 5.4 Let P be a proess. We write Pn
for n parallel instanes of P (P | . . . |P).

We de�ne the following funtions on the set of proesses:

Gx ,a(P) :=a(x ).(a〈zero(x )〉 | a〈one(x )〉 | P)

Gn
x ,a(P) :=(Gx ,a(P))n | !Gx ,a (P)

C(sID ,gID ,n)
x ,a (P) :=Σx∈sIDP | νa.(Σx∈gIDa〈x 〉 | G

n
x ,a(P))

where Σx∈T P for a �nite set of terms T = {T1 , . . . ,Tl} is syntati sugar for

P{T1/x}| . . . |P{Tl/x} (this is only well-de�ned up to strutural equivalene), sID ⊆
SID , gID ⊆ SID and n ∈ N.

Intuitively, sID (spawned IDs) ontains the ids for all instanes of P , that have

already been tagged but are still formally a part of CSIDbits
x ,a (i.e., �are still in the fatory�).

gID is the foundation for the ids yet to be generated. These ids are the elements of the

span of gID whih we will introdue in the following de�nition. The last parameter n
exists mainly for tehnial reasons and ounts the number of urrently ative generator

instanes Gx ,a(P).

11P may have x ∈ fv(P) but we forbid x ∈ bv(P) to avoid tehnialities in the de�nition of P((x)) due
to the shadowed x .
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De�nition 5.5 (Span) Let S ⊆ SIDbits be a set of IDs. We all 〈S〉 := S ∪
{cn(. . . c2(c1(s)) . . . ) : s ∈ S, ci ∈ {zero, one}} the span of S (note that 〈S〉 ⊆ SIDbits).

The following de�nition bridges the gap between C
(sID ,gID,n)
x ,a (P((x ))) and

∏
x∈S P((x )).

Have in mind that S denotes the set of ids that are yet to be used by the produt proess

for tagging and we have S = SIDbits at the beginning.

De�nition 5.6 (S-valid) Let sID ⊆ SIDbits , gID ⊆ SIDbits and S ⊆ SIDbits be sets of

ids and sID and gID be �nite. We all C
(sID ,gID,n)
x ,a S-valid if sID = ∅ and gID = {nil}

or if

(i) sID ⊆ S

(ii) gID = {f(x) : x ∈ G, f(x) 6∈ G, f ∈ {zero, one}} where G := (SIDbits \ S) ∪ sID

(intuitively, G is the set of ids already generated)

(iii) 〈gID〉 = S \ sID

Lemma 5.7 Let S ⊆ SIDbits and C
(sID ,gID ,n)
x ,a be S-valid where n ≥ 1. Then for any

id ∈ gID we have that C
(sID ′,gID ′,n−1)
x ,a is S-valid where sID ′ := sID ∪ {id} and gID ′ :=

gID \ {id} ∪ {zero(id), one(id)}.

Proof. Due to De�nition 5.6 point iii we have that gID ∩ sID = ∅ and gID ⊆ S. We

hek the three points of De�nition 5.6 for sID ′
and gID ′

:

(i) id ∈ gID ⊆ S and sID ⊆ S entail sID ′ = (sID ∪ {id}) ⊆ S

(ii) For a set G ⊆ SIDbits we de�neM(G) := {f(x) : x ∈ G, f(x) 6∈ G, f ∈ {zero, one}}.
By assumption we have gID = {nil} or gID = M(G) for G := (SIDbits \ S) ∪ sID .

The �rst ase leads to sID ′ = {nil} and gID ′ = {zero(nil), one(nil)} for whih

this point an easily be veri�ed. For the seond ase we de�ne G′ := G ∪ {id}.
id 6∈ M(G′) sine id ∈ G′

. f(id) ∈ M(G′) for f ∈ {zero, one} i� f(id) 6∈ G′
. We

assume towards ontradition that f(id) ∈ G′
. Then f(id) ∈ G and by de�nition

of G f(id) ∈ (SIDbits \ S) ∪ sID . However

• f(id) ∈ (SIDbits \ S) entails f(id) 6∈ S and thus f(id) 6∈ 〈gID〉. This ontra-

dits f(id) ∈ 〈gID〉 (whih holds sine id ∈ gID).

• f(id) ∈ sID entails f(id) 6∈ 〈gID〉 and leads to a ontradition analogously.

All together we have f(id) 6∈ G′
and hene M(G′) = M(G) \ {id} ∪

{zero(id), one(id)} = gID ′
.

(iii) 〈gID ′〉 = 〈gID\{id}∪{zero(id), one(id)}〉 = 〈gID〉\{id} = S\sID\{id} = S\gID ′
.

�

To show that CSIDbits
x ,a is a SIDbits-indexing ontext (see Lemma 5.10) we �rst show

C
(sID ,gID ,n)
x ,a (P((x ))) ∼∼∼ νa.

∏
x∈S P((x )) for every S-valid C

(sID ,gID ,n)
x ,a .
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Lemma 5.8 Let P be a proess and M be a term. If C
(sID ,gID ,n)
x ,a (P((x ))) lM there is

exatly one id ∈ sID suh that P((id)) lM .

Proof. It is easy to see that C
(sID ,gID ,n)
x ,a (0) never ommuniates on a hannel (note that

a is bound). Hene for C
(sID ,gID ,n)
x ,a (P((x ))) lM we need one of the tagged instanes of P

in C
(sID ,gID ,n)
x ,a (P((x ))) to ommuniate on M , i.e., P((id)) lM for some id ∈ sID requiring

M =E (id ,�). Analogously, for any id ′ ∈ sID with P((id ′)) lM we have M =E (id ′,�).
Due to De�nition 2.5 (vi) (natural symboli model) this entails id =E id ′

whih leads to

id = id ′
by de�nition of SIDbits (sID ⊆ SIDbits). Thus, the ID id with P((id)) lM is

unique. �

Lemma 5.9 Let P be a proess with at most one free variable, whih we all x if existent,

and x 6∈ bv(P). Let a 6∈ fn(P) be a name. Then

C(∅,{nil},0)
x ,a (P((x ))) ≈

∏

x∈SIDbits

P((x ))

Proof. We de�ne the relation

R := ≈ ∪ {(E [C(sID ,gID ,n)
x ,a (P((x )))], E [

∏

x∈S

P((x ))]) : for any n ≥ 0, S ⊆ SIDbits ,

evaluation ontext E , proess P and C(sID ,gID ,n)
x ,a S-valid}

losed under strutural equivalene. Then we show that R ⊆ ≈. Towards this goal we
show that R and R−1

are simulations. We start with R:

• E [C
(sID ,gID,n)
x ,a (P((x )))] ↓M : If E [0] ↓M we obviously have E [

∏
x∈S P((x ))] ↓M . Oth-

erwise C
(sID ,gID ,n)
x ,a (P((x ))) ↓M . In this ase, aording to Lemma 5.8, there is

a distint id ∈ sID suh that P((id)) ↓M and, sine E [C
(sID ,gID ,n)
x ,a (P((x )))] ↓M ,

E [P((id))] ↓M . On the other hand, due to the S-validity of C(sID ,gID ,n)
x ,a , sID ⊆

S. With id ∈ S we have

∏
x∈S P((x )) → P((id))|

∏
x∈S\{id} P((x )) and hene

E [
∏

x∈S P((x ))] →↓M .

• E [C
(sID ,gID,n)
x ,a (P((x )))] → (E [C

(sID ,gID ,n)
x ,a (P((x )))])′: We distinguish three ases

1. → does only a�et C
(sID ,gID ,n)
x ,a (P((x ))) up to strutural equivalene. In

this ase we have E [0] → E ′[0], E [
∏

x∈S P((x ))] → E ′[
∏

x∈S P((x ))] and

(E ′[C
(sID ,gID ,n)
x ,a (P((x )))], E ′[

∏
x∈S P((x ))]) ∈ R.

2. → is a COMM redution that interferes with E and C
(sID ,gID,n)
x ,a (P((x ))). Due

to Lemma 5.8 we �nd a distint id ∈ sID suh that

E [C(sID ,gID ,n)
x ,a (P((x )))] → E ′[P((id))′|C(sID\{id},gID ,n)

x ,a (P((x )))]
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Analogously to the ase for E [C
(sID ,gID ,n)
x ,a (P((x )))] ↓M we spawn a properly

tagged instane of P from

∏
x∈S P((x )). With Ẽ [�] := E ′[P((id))′|�] we have

(Ẽ [C(sID\{id},gID ,n)
x ,a (P((x )))], Ẽ [

∏

x∈S\{id}

P((x ))]) ∈ R

sine C
(sID\{id},gID ,n)
x ,a is (S \ {id})-valid.

3. → does only a�et E up to strutural equivalene. In this ase we have

C
(sID ,gID ,n)
x ,a (P((x ))) → C

(sID ,gID,n)
x ,a (P((x )))′. We distinguish three ases:

� → is a REPL redution and spawns a new instane of Gx ,a (see

De�nition 5.4). In this ase C
(sID ,gID ,n)
x ,a (P((x ))) → C

(sID ,gID ,n+1)
x ,a (P((x )))

and (E [C
(sID ,gID ,n+1)
x ,a (P((x )))], E [

∏
x∈S P((x ))]) ∈ R.

� → is a COMM redution on hannel a (a〈id〉) (note that this requires

n ≥ 1). In this ase id ∈ gID ⊆ S and C
(sID ,gID,n)
x ,a (P((x ))) →

C
(sID ′,gID ′,n−1)
x ,a (P((x ))) where sID ′ := sID ∪{id} and gID ′ := gID \{id}∪

{zero(id), one(id)}. By Lemma 5.7 we see that C
(sID ′,gID ′,n−1)
x ,a (P((x ))) is

still S-valid. Hene (E [C
(sID ′,gID ′,n−1)
x ,a (P((x ))))], E [

∏
x∈S P((x ))]) ∈ R.

� → is a redution of one of the P -instanes P((id)) (id ∈ sID) (note that

due to Lemma 5.8 and a 6∈ fn(P) only one instane an be a�eted). In

this ase we proeed analogously to ase 2.

• Obviously R is losed under the appliation of evaluation ontexts.

We ontinue by showing the three points of observational equivalene for R−1
:

• E [
∏

x∈S P((x ))] ↓M i� E [0] ↓M . Therefore E [C
(sID ,gID ,n)
x ,a (P((x )))] ↓M .

• E [
∏

x∈S P((x ))] → E [
∏

x∈S P((x ))]′: If we have E [
∏

x∈S P((x ))] → E ′[
∏

x∈S P((x ))] we

have (E ′[
∏

x∈S P((x ))], E ′[C
(sID ,gID ,n)
x ,a (P((x )))]) ∈ R−1

. Otherwise → is an IREPL

redution:

∏
x∈S P((x )) → P((id))|

∏
x∈S\{id} P((x )) with id ∈ S. On the right side

of the relation we have E [C
(sID ,gID ,n)
x ,a (P((x )))]. Sine C

(sID ,gID ,n)
x ,a (P((x ))) is S-valid,

we have that id ∈ sID or id ∈ 〈gID〉.

If id 6∈ sID , i.e., id ∈ 〈gID〉, id is of the form id = cl(. . . c1(id0 ) . . . ) for some

id0 ∈ gID , some l ∈ N and ci ∈ {zero, one} for i ∈ {1, . . . , l}. We write idi for

ci(. . . c1(id0 ) . . . ) for i ∈ {1, . . . , l}, ci := zero if ci = one, ci := one otherwise and

idi for ci(ci−1(. . . c1(id0 ) . . . )). The redution
a〈idi 〉
−−−→ denotes a REPL redution that

spawns an instane of Gx ,a (see De�nition 5.4) and a following COMM redution

on hannel a with message idi ∈ gID . The appliation of the sequene

a〈id0 〉
−−−−→

. . .
a〈idk 〉
−−−−→ to E [C

(sID ,gID ,n)
x ,a (P((x )))] for some 0 ≤ k ≤ l yields a proess that is

struturally equivalent to E [C
(sIDk ,gIDk,n)
x ,a (P((x )))] with sIDk := sID∪{id0 , . . . , idk}

and gIDk := gID \ {id0 } ∪ {id1 , . . . , idk−1} ∪ {zero(idk ), one(idk )}. For eah step
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k  k + 1 the S-validity of C
(sIDk,gIDk,n)
x ,a is guaranteed by Lemma 5.7. We de�ne

sID ′ := sID l and gID ′ := gID l and have that id ∈ sID ′
.

Otherwise, if id ∈ sID , we de�ne sID ′ := sID and gID ′ := gID .

With id ∈ sID ′
and E ′[�] := E [P((id))|�] we have that

(E ′[
∏

x∈S\{id}

P((x ))], E ′[C(sID ′\{id},gID ′,n)
x ,a (P((x )))]) ∈ R−1

sine C(sID ′\{id},gID ′,n)
x ,a is (S \ {id})-valid.

• Obviously R−1
is losed under the appliation of evaluation ontexts.

Sine C
(∅,{nil},0)
x ,a is SIDbits-valid the Lemma holds. �

Lemma 5.10 CSIDbits
x ,a is an SIDbits-indexing ontext.

Proof. Let, aording to De�nition 5.2, P be a proess and x be a variable with x 6∈ bv(P).
We pik a name a with a 6∈ fn(P). We laim

CSIDbits
x ,a

∼∼∼
∏

x∈SIDbits

P((x ))

We have to show CSIDbits
x ,a [P((x ))]σ ≈ (

∏
x∈SIDbits

P((x )))σ for all losing substitutions σ.
W.l.o.g. a 6∈ σ and σ(x) = x and thus it su�es to show

CSIDbits
x ,a [P((x ))σ] ≈

∏

x∈SIDbits

(P((x ))σ) (3)

Note that Pσ is a proess with at most one free variable, denoted x . Furthermore

x 6∈ bv(Pσ), a 6∈ fn(Pσ) and CSIDbits
x ,a [P((x ))σ] = C

(∅,{nil},0)
x ,a (P((x ))σ) by De�nition 5.4.

By Lemma 5.9 we have (3) whih onludes our proof. �

We stress that CSIDbits
x ,a is just one example of an indexing ontext. From now on SID is

an arbitrary but �xed set of indexes and CSID
x ,n an arbitrary but �xed SID -indexing ontext

aording to De�nition 5.2. All our results then hold independently of the partiular

hoie of SID .

We an now �nally de�ne !!P :

De�nition 5.11 (Indexed repliation) Let P be a proess. We de�ne !!xP :=
CSID
x ,n [P((x ))] for some arbitrary n with n ∩ fn(P) = ∅. We write !!P for !!xP with

x 6∈ (fv(P) ∪ bv(P)).

Notie that our de�nition is a bit more general, we an even write !!xP , in this ase P
will have aess to the sid via the variable x. We need this added �exibility in Setion 8.3

for the protool KE
∗
.

Note that sine CSID
x ,n [P((x ))] ∼∼∼

∏
x∈S P ((x)) by de�nition, we an atually think of

!!xP as being de�ned as

∏
x∈S P ((x)). Our de�nition, however, has the advantage that

!!xP is atually a proess in the original alulus, the onept of produt proesses was

only used as a tool for de�ning !!.
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On real-life implementations of !!. When implementing a proess !!P in real life

(i.e., in software for atual deployed protools), a proess suh as !!c(x).P ′
is probably best

implemented by a proess that listens on c for messages of the form (sid ,m). Whenever

suh a message is reeived, a new instane of P ′
with session id sid is spawned, and all

further messages with that sid are routed to that instane of P ′
. On the other hand,

a proess suh as !!c〈M〉.P ′
annot be implemented, beause suh a proess would non-

deterministially send (sid ,M) for all possible sid . A proess !!(A|B), where A and B
orrespond to proesses run on di�erent omputers, does not immediately make sense,

beause if, e.g., A reeives a message that spawns a new instane, B would have to

spawn a new instane, too, without ommuniation between A and B. Fortunately, we
show in Lemma 5.36 below that !!(A|B) ∼∼∼ !!A | !!B; then A and B an spawn instanes

independently.

Properties of !!. The following four lemmas state several important properties of !!.
We will need these to prove the omposition theorem below. Lemmas 5.12, 5.13, and 5.36

also hold for ! instead of !!. But Lemma 5.35 is spei� to !!, and is ruial for enabling

the omposition theorem.

Lemma 5.12 Let P be a proess and ϕ : N → N be a permutation on names. Then

(!!xP)ϕ ≡ !!x (Pϕ) for all variables x 6∈ bv(P).

Proof. Pik names n with n ∩ fn(P) = ∅ and ϕ(n) ∩ fn(P) = ∅. Note that (!!xP)ϕ ≡
CSID
x ,n [P((x ))]ϕ. Therefore (!!xP)ϕ ≡ CSID

x ,n [P((x ))]ϕ = CSID
x ,ϕ(n)[P((x ))ϕ] ≡ !!x (Pϕ) sine

ϕ(n) ∩ fn(P) = ∅. �

Lemma 5.13 Let P , Q be proesses. Then P ∼∼∼ Q ⇒ !!xP ∼∼∼ !!xQ for all variables

x 6∈ bv(P) ∪ bv(Q).

This lemma was surprisingly hard to prove. Before we proeed to the proof (for whih

we have to develop a number of auxiliary onepts and de�nitions �rst) We very roughly

sketh the proof idea here: The main thing to show is that P ≈ Q =⇒ P ((M)) ≈ Q((M))
for arbitrary �xed M . To show this, we de�ne an operation untag that maps P ((M)) to
P , i.e., removes the tag M from all hannels. Then we wish to prove that the following

relation is a bisimulation: ∼Ssid
:= {(P ,Q) : untag(P) ≈ untag(Q)}. One we have that,

we see that P ((M)) ∼Ssid
Q((M)) and hene P ((M)) ≈ Q((M)). Unfortunately, ∼Ssid

is

not really a bisimulation. A bisimulation must be losed under evaluation ontexts, even

under ontexts in whih not all hannels are tagged with M . To solve this problem, we

tweak untag in suh a way that non-tagged hannels C are mapped to speially marked

hannels (using a speial name nsid )whih an then be mapped bak to C when tagging

again. And we need to tweak the notion of a bisimulation slightly, so that ∼Ssid
only

needs to be losed under evaluation ontexts on whih our operation untag works properly.

These tweaks lead to an unexpetedly omplex proof of Lemma 5.13.

Before we prove Lemma 5.13 (on page 56), we will need to develop a number of tools

and lemmas.
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De�nition 5.14 A set S of losed proesses is n-omplete for a name n i� for any

losed proess P with n 6∈ fn(P) ∪ bn(P), there is a losed proess S ∈ S suh that

P ≈ S.

De�nition 5.15 (S-n-observational equivalene) Let S be a set of losed proesses

and n be a name. An S-n-simulation R is a relation on losed proesses P , Q with

n 6∈ (fn(P) ∪ fn(Q) ∪ bn(P) ∪ bn(Q)) suh that (P ,Q) ∈ R implies

(i) if P ↓M then Q →∗↓M

(ii) if P → P ′
with n 6∈ fn(P ′) ∪ bn(P ′) then Q →∗ Q ′

and (P ′,Q ′) ∈ R for some Q ′

(iii) (νs.(S|P), νs.(S|Q)) ∈ R for all losed S ∈ S and names s ⊆ N with n 6∈ (fn(S)∪
bn(S) ∪ s).

A relation R is an S-n-bisimulation if both R and R−1
are S-n-simulations. S-n-

observational equivalene (≈n
S) is the largest S-n-bisimulation.

Intuitively ≈n
S is like observational equivalene on proesses that do not ontain n

where the environment is restrited to be a proess from S. It is easy to hek that

the transitive hull of ≈n
S satis�es the onditions (i), (ii) and (iii) from above. Hene ≈n

S

ontains its own transitive hull and thus is indeed an equivalene relation.

Lemma 5.16 If a set of proesses S is n-omplete and n 6∈ (fn(S)∪bn(S)) for all S ∈ S,
then P ≈n

S Q ⇔ P ≈ Q for all losed proesses P , Q with n 6∈ (fn(P)∪ fn(Q)∪ bn(P)∪
bn(Q)).

Proof.

Let P ,Q ∈ {(P ,Q) : P ,Q losed proesses with n 6∈ (fn(P)∪fn(Q)∪bn(P)∪bn(Q)}.

P ≈ Q ⇒ P ≈n
S QP ≈ Q ⇒ P ≈n
S QP ≈ Q ⇒ P ≈n
S Q. We show that observational equivalene restrited to proesses that

do not ontain n is an S-n-bisimulation. Points (i) and (iii) of De�nition 5.15 follow

diretly from points (i) and (iii) of observational equivalene (see De�nition 2.4). It

remains to show that for P → P ′
with n 6∈ fn(P ′) ∪ bn(P ′) we an �nd a sequene of

orresponding internal redutions for Q . Sine P ≈ Q we �nd a sequene Q =: Q1 →
. . .→ Qℓ =: Q ′

with P ′ ≈ Q ′
. However, we do not neessarily have n 6∈ fn(Q ′) ∪ bn(Q ′)

sine this is not a requirement for observational equivalene. Fortunately, we we will see

that we an �nd a proess Q̂ ′
with Q →∗ Q̂ ′

, P ′ ≈ Q̂ ′
and n 6∈ fn(Q̂ ′) ∪ bn(Q̂ ′). For

this, we transform the sequene Q1 → . . . → Qℓ to a sequene Q̂1 → . . . → Q̂ℓ with

Qi ≡E Q̂i and n 6∈ fn(Q̂i) ∪ bn(Q̂i) for i ∈ {1, . . . , ℓ}: First, we set Q̂1 := Q1 and in

partiular have Q1 ≡E Q̂1 and n 6∈ fn(Q̂1) ∪ bn(Q̂1). For i ∈ {2, . . . , ℓ} we de�ne Q̂i as

follows: By Lemma 3.5, sine Q̂i−1 ≡E Qi−1 → Qi, we �nd Q̃ with Q̂i−1 → Q̃ ≡E Qi.

W.l.o.g. we an assume n 6∈ bn(Q̃) sine → and ≡E allow for renaming of bound names.

We distinguish two ases:
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• n 6∈ fn(Q̃): Then Q̂i := Q̃ meets our requirements.

• n ∈ fn(Q̃): Sine Q̂i−1 → Q̃ and n 6∈ fn(Q̂i−1), the free ourrenes of n an

only be the result of a destrutor evaluation (LET-THEN, Figure 3). Let D denote

the orresponding destrutor term with D ⇓ T . By De�nition 2.5 (vii) (natural

symboli model) and sine n 6∈ fn(D) we �nd a term T ′
with n 6∈ fn(T ′) suh that

D ⇓ T ′
and T =E T ′

. Then Q̂i := Q̃{T/T ′} meets our requirements.

Finally, Q̂ℓ does not ontain n and Q = Q̂1 →∗ Q̂ℓ ≡E Qℓ = Q ′ ≈ P ′
. Hene

(P ′, Q̂ℓ) ∈ ≈ ∩ {(P ,Q) : P ,Q losed proesses with n 6∈ (fn(P)∪fn(Q)∪bn(P)∪bn(Q)}
and thus observational equivalene restrited to proesses that do not ontain n ful�lls

De�nition 5.15 (ii).

P ≈n
S Q ⇒ P ≈ QP ≈n
S Q ⇒ P ≈ QP ≈n
S Q ⇒ P ≈ Q. We �rst introdue a bisimulation ≈ϕ and then show P ≈n

S Q ⇒
P ≈ϕ Q ⇒ P ≈ Q : Let ϕ : N → N \ {n} be a bijetion on names. We de�ne

≈ϕ:= {(P ,Q) : Pϕ ≈n
S Qϕ}

We laim that ≈ϕ is a bisimulation: It is easy to verify that ≈ϕ satis�es points (i) and

(ii) of De�nition 2.4 (both follow straightforwardly by De�nition 5.15). For point (iii)

we have to show C[P ] ≈ϕ C[Q ], i.e., C[P ]ϕ ≈n
S C[Q ]ϕ, for all evaluation ontexts C and

P ≈ϕ Q , i.e., Pϕ ≈n
S Qϕ. For any evaluation ontext C we have C[�] ≡ νn.(C|�) for

some proess C and names n ⊆ N . Due to the ompleteness of S we �nd an evaluation

ontext C̃[�] := νnϕ.(C̃ |�) suh that Cϕ ≈ C̃ with C̃ ∈ S. Sine n is not in the

range of ϕ and n 6∈ (fn(C̃) ∪ bn(C̃)) for C̃ ∈ S we have C̃[Pϕ] ≈n
S C̃[Qϕ]. Furthermore

C̃[Pϕ] ≈ C[P ]ϕ and hene (both sides do not ontain n) C̃[Pϕ] ≈n
S C[P ]ϕ (analogously for

Q). Altogether we have C[P ]ϕ ≈n
S C̃[Pϕ] ≈n

S C̃[Qϕ] ≈n
S C[Q ]ϕ. Sine ≈ϕ is symmetri

by de�nition this loses the proof of our laim that ≈ϕ is a bisimulation.

We have that P ≈n
S Q entails P ≈ϕ Q by de�nition of ≈ϕ. Furthermore P ≈ϕ Q

entails P ≈ Q sine ≈ is the largest bisimulation. Hene P ≈n
S Q entails P ≈ Q . This

loses the seond part of our proof. �

In the following we �x a name nsid and losed term Msid with nsid 6∈ fn(Msid ).

De�nition 5.17 (Sid-sensitive proesses) Ssid , the set of sid-sensitive proesses, is

the set of proesses following the grammar from Figure 4.

De�nition 5.18 (Ssid -transformation) We de�ne the funtion Φ : P 7→ Φ(P) = S,
whih maps a losed proess P with nsid 6∈ P to a sid-sensitive proess S ∈ Ssid , as

follows:

1. For eah proteted ourrene of an input C (x ).P ′
in P we replae C (x ).P ′

by

if Msid = fst(C ) then (let y = snd(C ) in (Msid , y)(x ).P
′) else C (x ).P ′

2. For eah ourrene of an output in P we proeed analogously.
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P ,Q ::= 0

(Msid ,C )(x ).P

(Msid ,C )〈T 〉.P

C ∗(x ).P

C ∗〈T 〉.P

if Msid = fst(C ) then P else C (x ).Q

if Msid = fst(C ) then P else C 〈T 〉.Q

P | Q

!P

νa.P

let x = D in P else Q

Figure 4: Syntax of sid-sensitive proesses. Msid is the �xed term. C , T range over all

terms with nsid 6∈ fn(C ) and nsid 6∈ fn(T ), C ∗
over all terms with nsid 6∈ fn(C ∗) suh

that there is no substitution σ with C ∗σ =E (Msid ,�) for some term �. D is a destrutor

term with nsid 6∈ fn(D) and a 6= nsid is a name. Note that in the if-onstrutions both

ourrenes of C stand for the same term.

Lemma 5.19 Ssid is nsid -omplete.

Proof.

• Claim 1: For all proesses P we have

if Msid = fst(C ) then (let y = snd(C ) in (Msid , y)(x ).P) else C (x ).P ∼∼∼ C (x ).P
(4)

(analogously for outputs). Proof: Let σ be a losing substitution for Equation 4.

We remember that

if Msid = fst(C ) then (let y = snd(C ) in (Msid , y)(x ).P) else C (x ).P

is just syntati sugar for

let z = equals(Msid , fst(C )) in (let y = snd(C ) in (Msid , y)(x ).P) else C (x ).P

By de�nition of equals we have equals(Msid , fst(C ))σ ⇓ Msid i� fst(C )σ ⇓ Msid .

We distinguish two ases:

� If fst(Cσ) ⇓ Msid , then by De�nition 2.5 (v) (natural symboli model) we have
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that (Msid ,C2) =E Cσ for all C2 with snd(Cσ) ⇓ C2. Hene

if Msid = fst(Cσ) then (let y = snd(Cσ) in (Msid , y)(x ).Pσ) else Cσ(x ).Pσ
(∗)

≈ if Msid = fst((Msid ,C2)) then

let y = snd((Msid ,C2)) in (Msid , y)(x ).Pσ

else

(Msid ,C2)(x ).Pσ
(∗∗)

≈ let y = snd((Msid ,C2)) in (Msid , y)(x ).Pσ
(∗∗)

≈ (Msid ,C2)(x ).Pσ
(∗)

≈ C (x ).P

(∗) by Lemma 3.2 (iv) and (∗∗) by Lemma 3.2 (vii).

� If fst(C )σ 6⇓ Msid , then the laim follows by Lemma 3.2 (vi).

• Claim 2: P ∼∼∼ Φ(P). We prove this by strutural indution on P . Sine Φ does

only a�et in- and outputs we an fous on those: If P = C (x ).P ′
then

P = C (x ).P ′

(∗)
∼∼∼ C (x ).Φ(P ′)
(∗∗)
∼∼∼ if Msid = fst(C ) then (let y = snd(C ) in (Msid , y)(x ).P

′) else C (x ).P ′

= Φ(P)

where (∗) holds by the indution hypothesis and (∗∗) by Claim 1.

For any losed P we have P ∼∼∼ Φ(P) by Claim 2. Φ(P) is losed sine P is losed and

hene P ≈ Φ(P). For P with nsid 6∈ (fn(P) ∪ bn(P)) we have Φ(P) ∈ Ssid . Thus Ssid is

nsid -omplete. �

Lemma 5.20 For losed S ∈ Ssid and S → S′
with nsid 6∈ fn(S′) ∪ bn(S′) we have

S′ ∈ Ssid .

Proof. First, we observe that all proesses not ontaining nsid and being struturally

equivalent to a sid-sensitive proess are sid-sensitive as well. Furthermore C[P ], where C
is an evaluation ontext and P a proess, is sid-sensitive i� C[0] and P are sid-sensitive.

In all ases w.l.o.g. nsid 6∈ fn(C) ∪ bn(C) beause ≡ does not introdue free names and

bound names are w.l.o.g. not nsid . We have the following ases:

• REPL: S ≡ C[!P ] → C[P |!P ] ≡ S′
. !P is sid-sensitive, hene P and P |!P are.

• COMM: S ≡ C[C 〈T 〉.P |C̃ (x ).Q ] → C[P |Q{T/x}] ≡ S′
. Q is sid-sensitive and

nsid 6∈ fn(T ) sine nsid 6∈ fn(S) ∪ bn(C). We an easily hek the grammar of sid-

sensitive proesses from Figure 4 to see that a substitution {T/x} with nsid 6∈ T

applied to a sid-sensitive proess yields a sid-sensitive proess. Therefore Q{T/x}
and P |Q{T/x} are sid-sensitive.

47



P ,Q ::= 0

C (x ).P

C 〈T 〉.P

(nsid ,C
∗)(x ).P

(nsid ,C ∗)〈T 〉.P

if Msid = fst(C ) then P else (nsid ,C )(x ).Q

if Msid = fst(C ) then P else (nsid ,C )〈T 〉.Q

P | Q

!P

νa.P

let x = D in P else Q

Figure 5: Syntax of nsid -good proesses. Msid is the �xed term. C , T range over all

terms with nsid 6∈ fn(C ), nsid 6∈ fn(T ). C ∗
ranges over all terms with nsid 6∈ fn(C ∗) suh

that there is no substitution σ with C ∗σ =E (Msid ,T ) for some term T . D is a destrutor

term with nsid 6∈ fn(D) and a 6= nsid is a name. Note that in the if-onstrutions both

ourrenes of C stand for the same term.

• LET-THEN: S ≡ C[let x = D in P else Q ] → C[P{T/x}] ≡ S′
for some term T

with D ⇓ T and nsid 6∈ fn(T ) sine nsid 6∈ fn(S′) ∪ bn(C). Analogously to the

argument in the COMM ase, P{T/x} is sid-sensitive.

• LET-ELSE: Here, aording to the grammar of sid-sensitive proesses from

Figure 4, we distinguish three ases:

� S ≡ C[if Msid = fst(C ) then P else C (x ).Q ] → C[C (x ).Q ] ≡ S′
. C is losed

sine S is losed. Msid = fst(C ) is false, i.e., there is no term M suh

that equals(Msid , fst(C )) ⇓ M . Therefore fst(C ) 6⇓=E Msid . This implies

C 6=E (Msid ,X ) for all terms X by De�nition 2.5 (v) (natural symboli model).

Hene C (x ).Q is sid-sensitive (mathing the C ∗(x ).P rule).

� S ≡ C[if Msid = fst(C ) then P else C 〈T 〉.Q ] → C[C 〈T 〉.Q ] ≡ S′
. Analo-

gously to the previous ase.

� S ≡ C[let x = D in P else Q ] → C[Q ] ≡ S′
. Q is sid-sensitive by de�nition.

This onludes our proof. �

De�nition 5.21 (nsid -good) A proess P is nsid -good if it follows the grammar from

Figure 5.
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De�nition 5.22 (tag) We de�ne the funtion tag on terms:

tag((nsid ,C )) :=C

tag(C ) :=(Msid ,C ) otherwise

Let P be an nsid -good proess. Then we write tag(P) for the proess that results from

replaing any hannel identi�er C by tag(C ) in P .

The funtion tag adds a tag Msid to all hannel identi�ers in a proess. We will see

that tag returns a sid-sensitive proess. We will need that tag is a bijetive mapping

between nsid -good proesses and sid-sensitive proesses. The speial name nsid is needed

to over the orner ases when onstruting that bijetion.

Lemma 5.23 Let P be an nsid -good proess. Then tag(P) ∈ Ssid .

Proof. We do a strutural indution over the grammar of nsid -good proesses from

Figure 5. Assume that tag(P ′) and tag(Q ′) are in Ssid .

• For the ommuniation on a hannel C with nsid 6∈ fn(C ) we have tag(C (x ).P ′) =
(Msid ,C )(x ).tag(P ′) whih is obviously in Ssid . tag(C 〈T 〉.P ′) analogous.

• For the ommuniation on a hannel C = (nsid ,C
∗) we have

tag((nsid ,C
∗)(x ).P ′) = C ∗(x ).tag(P ′). C ∗(x ).tag(P ′) is in Ssid sine, by

de�nition of nsid -good, there is no substitution σ with C ∗σ =E (Msid ,T ) for some

term T . (nsid ,C ∗)〈T 〉.P ′
analogous.

• For the �rst pair of if statements we have that

tag(if Msid = fst(C ) then P ′
else (nsid ,C )(x ).Q ′)

= (if Msid = fst(C ) then tag(P ′) else C (x ).tag(Q ′))

is in Ssid sine nsid 6∈ fn(C ). Analogous for (nsid ,C )〈T 〉.Q ′
in the ELSE branh.

Cheking the remaining rules from Figure 5 is a straightforward task. �

De�nition 5.24 (untag) We de�ne the funtion untag on terms:

untag((Msid ,C )) :=C

untag(C ) :=(nsid ,C ) otherwise

Let P be a sid-sensitive proess. Then we write untag(P) for the proess that results from
replaing any hannel identi�er C by untag(C ).

Lemma 5.25 Let P ∈ Ssid be a sid-sensitive proess. Then untag(P) is nsid -good.

Proof. Analogous to the proof of Lemma 5.23 a straightforward strutural indution

shows this Lemma. We quikly sketh the interesting ases:
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• untag((Msid ,C )(x ).P ′) = C (x ).untag(P ′) mathes rule C (x ).P from Figure 5

(note that nsid 6∈ fn(C )). (Msid ,C )〈T 〉.P ′
analogous.

• untag(C ∗(x ).P ′) = (nsid ,C
∗)(x ).untag(P ′): untag(C ∗) = (nsid ,C

∗) sine there is
no substitution σ with C ∗σ =E (Msid ,�) for some term �. The expression mathes

rule (nsid ,C
∗)(x ).P from Figure 5. C ∗〈T 〉.P analogous.

• For the �rst if-rule we distinguish two ases:

� C 6= (Msid ,�). Then

untag(if Msid = fst(C ) then P ′
else C (x ).Q ′)

= (if Msid = fst(C ) then untag(P ′) else (nsid ,C )(x ).untag(Q ′))

mathes rule (if Msid = fst(C ) then P else (nsid ,C )(x ).Q) from Figure 5.

� C = (Msid ,C
′). Then

untag(if Msid = fst(C ) then P ′
else C (x ).Q ′)

= (if Msid = fst((Msid ,C
′)) then untag(P ′) else C ′(x ).untag(Q ′))

= (let y = equals(Msid , fst((Msid ,C
′))) in untag(P ′) else C ′(x ).untag(Q ′))

nsid 6∈ fn(C ′) sine nsid 6∈ fn(C ). Hene

C ′(x ).untag(Q ′) is nsid -good. The proess (let y =
equals(Msid , fst((Msid ,C

′))) in untag(P ′) else C ′(x ).untag(Q ′)) mathes rule

(let x = D in P else Q) from Figure 5 with D = equals(Msid , fst((Msid ,C
′))).

Analogous for C 〈T 〉.Q ′
in the ELSE branh.

�

Lemma 5.26 Let P be an nsid -good proess. Then untag(tag(P)) ∼∼∼ P .

Proof.

We prove this lemma by strutural indution over P aording to the grammar from

Figure 5.

• P = C (x ).P ′
where C is a hannel identi�er with nsid 6∈ C : Then C 6= (nsid ,C

′)
for some term C ′

and thus tag(C ) = (Msid ,C ). Hene untag(tag(C )) = C and

untag(tag(P)) = untag(tag(C (x ).P ′)) = C (x ).untag(tag(P ′)) ∼∼∼ C (x ).P ′ = P by

the indution hypothesis and sine

∼∼∼ is losed under the appliation of ontexts

(Lemma 2.7). P = C 〈T 〉.P ′
analogously.

• P = (nsid ,C
∗)(x ).P ′

for some term C ∗
with nsid 6∈ fn(C ∗) and C ∗σ 6=E (Msid , C̃

∗)
for all substitutions σ and terms C̃ ∗

. Certainly tag((nsid ,C
∗)) = C ∗

. By assump-

tion C ∗ 6= (Msid , C̃
∗) and thus untag(tag((nsid ,C

∗))) = untag(C ∗) = (nsid ,C
∗).

The rest of this ase, as well as the ase for P = (nsid ,C ∗)〈T 〉.P ′
, is analogous to

the previous ase.

• P = if Msid = fst(C ) then P ′
else (nsid ,C )(x ).Q ′

where nsid 6∈ fn(C ): Clearly

tag((nsid ,C )) = C . We now distinguish two ases for C :
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� C = (Msid ,C
′) for some term C ′

. Then untag(C ) = untag((Msid ,C
′)) =

C ′ 6= C . This is the reason why we annot have untag(tag(P)) = P in

general. However,

untag(tag(P))

= untag(tag(if Msid = fst(C ) then P ′
else (nsid ,C )(x ).Q ′))

= if Msid = fst((Msid ,C
′)) then untag(tag(P ′)) else untag(tag((nsid ,C )(x ).Q ′))

(∗)
∼∼∼ untag(tag(P ′))

(∗∗)
∼∼∼ P ′

(∗)
∼∼∼ if Msid = fst((Msid ,C

′)) then P ′
else (nsid ,C )(x ).Q ′

= if Msid = fst(C ) then P ′
else (nsid ,C )(x ).Q ′ = P

In both ases (∗) holds by Lemma 3.2 (vii) and De�nition 2.5 (iv) (natural

symboli model). (∗∗) holds by the indution hypothesis.

� Otherwise untag(C ) = (nsid ,C ) and it is easy to see that untag(tag(P)) = P .

P = if Msid = fst(C ) then P ′
else (nsid ,C )〈T 〉.Q ′

analogously.

The missing ases for parallel omposition, bang, name restrition and let-statement all

work straightforwardly.

�

Lemma 5.27 Let P be a sid-sensitive proess. Then tag(untag(P)) = P .

Proof. Sine tag and untag do only modify hannel identi�ers we show tag(untag(C )) =
C for the di�erent kinds of hannel identi�ers that are allowed in an sid-sensitive proess

by Figure 4:

• C is a hannel identi�er with C = (Msid ,C
′) for some term C ′

with nsid 6∈ fn(C ′):
Then untag(C ) = C ′

and tag(C ′) = (Msid ,C
′) = C sine nsid 6∈ fn(C ). Hene

untag(tag(C )) = C .

• C is a hannel identi�er C ∗
with nsid 6∈ fn(C ∗) and C ∗σ 6=E (Msid , C̃

∗) for all

substitutions σ and terms C̃ ∗
. Then tag(untag(C )) = tag((nsid ,C

∗)) = C ∗ = C .

• C is a hannel identi�er with nsid 6∈ fn(C ) in the ELSE-branh of (if tag = fst(C )).
We distinguish two ases:

� C = (Msid ,C
′) for some term C ′

. Then untag(C ) = C ′
and tag(C ′) =

(Msid ,C
′) sine nsid 6∈ fn(C ′) ⊆ fn(C ).

� Otherwise untag(C ) = (nsid ,C ) and tag((nsid ,C )) = C .

In both ases we have untag(tag(C )) = C .

�
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De�nition 5.28 We de�ne a relation ∼Ssid
:= {(P ,Q) : P ,Q ∈ Ssid , untag(P) ≈

untag(Q)}.

Lemma 5.29 Assume that ∼Ssid
is an Ssid -bisimulation and P ≈ Q for losed nsid -good

proesses P and Q . Then tag(P) ≈ tag(Q).

Proof. Note that tag(P) and tag(Q) are sid-sensitive proesses by Lemma 5.23 and thus

do not ontain nsid . We have

P ≈ Q ⇒untag(tag(P)) ≈ P ≈ Q ≈ untag(tag(Q)) (by Lemma 5.26)

⇒tag(P) ∼Ssid
tag(Q)

⇒tag(P) ≈nsid

Ssid
tag(Q) (sine ≈nsid

Ssid
is the largest Ssid -bisimulation by De�nition 5.15)

⇒tag(P ) ≈ tag(Q) (by Lemmas 5.16, 5.19)

�

Lemma 5.30 Let P be a losed nsid -good proess with P ≡E Q → Q ′
for some losed

proesses Q , Q ′
. Then there is a losed nsid -good proess P ′

suh that P → P ′ ≡E Q ′

and tag(P) → tag(P ′).

Proof. Aording to Lemma 3.5 we �nd a losed proess P̃ ′
suh that P → P̃ ′ ≡E Q ′

(this

holds for any P , not just for nsid -good ones). Now we show that if P is additionally nsid -

good, there is a losed nsid -good proess P ′
with P → P ′ ≡E P̃ ′

and tag(P) → tag(P ′)
whih proves the Lemma.

First, we make some general observations: For P → P̃ ′
we �nd an evaluation ontext

C and proesses R,R′
suh that P ≡ C[R] → C[R′] ≡ P̃ ′

and R → R′
is a diret

appliation of one of the rules for internal redutions from Figure 3. Furthermore, it is

easy to verify that any proess A with P ≡ A and nsid 6∈ bn(A) is also nsid -good and

tag(P) ≡ tag(A). Additionally, C[R] is nsid -good i� C[0] and R are nsid -good. Hene,

w.l.o.g. (sine ≡ allows for renaming of bound names), we an assume C[0] and R to be

nsid -good. Sine tag(C[R]) = tag(C)[tag(R)], it remains to show that R′
is nsid -good and

that tag(R) → tag(R′). We will be able to show this for the REPL, the COMM and the

THEN-ELSE rules and have that P ′ := C[R′] ≡ P̃ ′ ≡ Q ′
in these ases. In the LET-

THEN ase however, the destrutor evaluation might introdue a term T ontaining a

free ourrene of nsid . Fortunately, replaing T with an equivalent term T ′
will solve

the problem and we have that P ′ := C[R′{T/T ′}] ≡E P̃ ′ ≡ Q ′
for R′{T/T ′} being

nsid -good. In detail:

• REPL: !R → C[R|!R] ≡ P̃ ′
where w.l.o.g. C[!R] and therefore C[R|!R] are nsid -

good. We set P ′ := C[R|!R] and have tag(P) ≡ tag(C[!R]) = tag(C)[!tag(R)]
(∗)
→

tag(C)[tag(R)|!tag(R)] = tag(C[R|!R]) = tag(P ′). (∗) by the REPL rule.

• COMM: Analogously to REPL P ≡ C[C 〈T 〉.R|C̃ (x ).R̃] → C[R|R̃{T/x}] ≡ P̃ ′

where C =E C̃ and w.l.o.g. C[C 〈T 〉.R|C̃ (x ).R̃] and C[R|R̃{T/x}] are nsid -good.

We observe

tag(C 〈T 〉.R) = tag(C )〈T 〉.tag(R) and tag(C̃ (x ).R̃) = tag(C̃ )(x ).tag(R̃)
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by De�nition 5.22. Analogously to REPL we have to show

tag(C)[tag(C )〈T 〉.tag(R)|tag(C̃ )(x ).tag(R̃)] → tag(C)[tag(R)|tag(R̃){T/x}]

Note that tag(R̃){T/x} = tag(R̃{T/x}) sine nsid 6∈ fn(T ). Hene it is neessary
and su�ient to show tag(C ) =E tag(C̃ ). Now we distinguish two ases to show

tag(C ) =E tag(C̃ ):
� C = (nsid ,C

′) for some term C ′
. By assumption we have C =E C̃ and hene

C̃ =E (nsid ,C
′). By the grammar of nsid -good proesses (Figure 5) we have

nsid 6∈ fn(C̃ ) or C̃ = (nsid ,C
∗) for some C ∗

. Lemma 3.1 (iii) above exludes

the �rst ase and leaves us with C̃ = (nsid ,C
∗). By De�nition 2.5 (vi) (natural

symboli model) we have C ′ =E C ∗
and hene tag(C̃ ) = C ∗ =E C ′ = tag(C ).

� C 6= (nsid ,C
′) for any term C ′

. By the grammar of nsid -good proesses

(Figure 5) we then have nsid 6∈ fn(C ). C̃ = (nsid ,C
′) for some term C ′

leads

to C =E (nsid ,C
′) whih ontradits Lemma 3.1 (iii). Hene (again by the

grammar of nsid -good proesses) nsid 6∈ fn(C̃ ). Thus tag(C ) = (Msid ,C ) =E

(Msid , C̃ ) = tag(C̃ ).
• LET-THEN: P ≡ C[let x = D in R else R̃] → C[R{T/x}] ≡ P̃ ′

with D ⇓ T . By

De�nition 2.5 (vii) (natural symboli model) we �nd T ′
with nsid 6∈ T ′

, D ⇓ T ′

and T ′ =E T . Hene we have

P ≡ C[let x = D in R else R̃] → C[R{T ′/x}] =: P ′

and P ′ ≡E P̃ ′ ≡ Q ′
. Altogether

tag(P) ≡ tag(C[let x = D in R else R̃])

= tag(C)[let x = D in tag(R) else tag(R̃)]

→ tag(C)[tag(R){T ′/x}]
(∗)
= tag(C)[tag(R{T ′/x})]

≡ tag(P ′)

(∗) sine nsid 6∈ fn(T ′).
• LET-ELSE is not a�eted by tag and the proof is analogous to that for the REPL

rule.

�

Lemma 5.31 Let P be a losed sid-sensitive proess and P ′
be a losed proess with

nsid 6∈ fn(P ′). Then there is a proess P∗
with untag(P) → P∗

and P∗ ≈ untag(P ′).

Proof. The rest of this proof is partially analogous to that of Lemma 5.30. Similarly, we

an fous on the rules from Figure 3 diretly. The main di�erene is that, for some sid-

sensitive proess R and term T with nsid 6∈ fn(T ), untag(R){T/x} 6= untag(R{T/x}).
Instead, we only have untag(R){T/x} ∼∼∼ untag(R{T/x}) (we are going to prove that

�rst). Therefore the COMM rule and the LET-THEN rule, where substitutions our,

have to be handled di�erently. The arguments for the REPL rule and the LET-ELSE

rule are analogous.
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Claim: If R is a sid-sensitive proess, untag(R){T/x} ∼∼∼ untag(R{T/x})untag(R){T/x} ∼∼∼ untag(R{T/x})untag(R){T/x} ∼∼∼ untag(R{T/x}) for all
TTT with nsid 6∈ fn(T )nsid 6∈ fn(T )nsid 6∈ fn(T ). For all hannel identi�ers C = (Msid ,C

′) and C = C ∗
aord-

ing Figure 4 we obviously have untag(C ){T/x} = untag(C{T/x}) for all substitutions
{T/x}. However, in the ELSE-branh of (if Msid = fst(C )), C an be an arbitrary

term with nsid 6∈ fn(C ). If C = (Msid ,C
′) for some term C ′

, untag(C ){T/x} =
untag(C{T/x}) holds. Otherwise, for a substitution {T/x}, we distinguish two ases:

• C{T/x} 6= (Msid ,C
′) for all terms C ′

. Then untag(C ){T/x} = (nsid ,C{T/x}) =
untag(C{T/x}).

• Otherwise C{T/x} = (Msid ,C
′) for some term C ′

. Then untag(C ){T/x} =
(nsid ,C{T/x}) 6= C ′ = untag(C{T/x}). Sine fst(C{T/x}) ⇓ Msid the ELSE-

branh of R will never be exeuted and we, analogously to the proof of Lemma 5.26,

replae (nsid ,C{T/x}) by C ′
to have untag(R){T/x} ∼∼∼ untag(R{T/x}).

Note that P ′
is sid-sensitive by Lemma 5.20.

We now handle the COMM rule and the LET-THEN rule:

• COMM: Analogously to Lemma 5.30 we have to prove untag(C ) =E untag(C̃ )
where C and C̃ are the hannel identi�ers used for ommuniation. By the gram-

mar of sid-sensitive proesses from Figure 4 all hannel identi�ers whih our

unrestrited are either of the form (a) (Msid ,C
′) for some term C ′

or (b) C ∗
suh

that C ∗σ 6=E (Msid ,C
′) for all substitutions σ and all terms C ′

. We distinguish

two ases

� C = (Msid ,C
′). C̃ annot be of form (b) sine C =E C̃ . Hene C̃ = (Msid , C̃

′)
and C ′ =E C̃ by De�nition 2.5 (vi) (natural symboli model). Therefore

untag(C ) = C ′ =E C̃ ′ = untag(C̃ ).

� Otherwise, C is of form (b). Then C̃ annot be of form (a) sine C =E C̃ .

We thus have untag(C ) = (nsid ,C ) =E (nsid , C̃ ) = untag(C̃ ).

We �nd

P ≡ C[C 〈T 〉.R|C̃ (x ).R̃] → C[R|R̃{T/x}] ≡ P ′

⇒untag(P) ≡ untag(C)[untag(C )〈T 〉.untag(R)|untag(C̃ )(x ).untag(R̃)]
(∗)
→ untag(C)[untag(R)|untag(R̃){T/x}] =: P∗

(∗) sine untag(C ) =E untag(C̃ ). Due to the laim above P∗ ≈ untag(P ′) whih
proves the COMM ase.

• LET-THEN: We have P ≡ C[let x = D in R else R̃] → C[R{T/x}] ≡ P ′
. In

ontrast to Lemma 5.30 the evaluation of the destrutor may not lead to a term

T with nsid ∈ fn(T ) here if x ∈ fv(R) sine we required P ′
to be sid-sensitive.

(Otherwise, if x 6∈ fv(R), we obviously have untag(R){T/x} = untag(R{T/x}).)
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Thus

untag(P) ≡ untag(C)[let x = D in untag(R) else untag(R̃)]

→ untag(C)[untag(R){T/x}] =: P ∗ (∗)

≈ untag(C[R{T/x}]) = untag(P ′)

(*) due to the laim above. This proves the LET-THEN ase.

Sine untag dos not a�et the REPL and LET-ELSE ases these an be handled exatly

like the REPL ase in the proof of Lemma 5.30. �

Lemma 5.32 ∼Ssid
is an Ssid -nsid -bisimulation

Proof.

Let (P ,Q) ∈ ∼Ssid
. We show the three points of an Ssid -nsid -simulation.

• P ↓C : We have P ↓C i� P ↓
Ĉ

for a hannel identi�er Ĉ =E C whih ours in

P and thus follows the grammar from Figure 4. Sine P ∼Ssid
Q : untag(P) ≈

untag(Q) holds by de�nition. Sine P ↓
Ĉ

we have untag(P) ↓
untag(Ĉ ) and thus

untag(Q) =: Q̂1 → . . . → Q̂n ↓
untag(Ĉ ) for some n ∈ N and proesses Qi, i ∈

{1, . . . , n}. By Lemma 5.25 Q̂1 = untag(Q) is nsid -good. By Lemma 5.30 we get

a sequene of nsid -good proesses Q̂ ′
1 → . . . → Q̂ ′

n with Q̂ ′
1 = Q̂1, Q̂ ′

i ≡E Q̂i

and tag(Q̂ ′
1) → . . . → tag(Q̂ ′

n). Sine Q̂ ′
1 = Q̂1 = untag(Q) we have tag(Q̂ ′

1) =
Q by Lemma 5.27. Furthermore, Q̂ ′

n ≡E Q̂n ↓
untag(Ĉ ) implies Q̂ ′

n ↓
untag(Ĉ ) (see

Footnote 7) and tag(Q̂ ′
n) ↓

tag(untag(Ĉ )). Sine Ĉ is a term aording to Figure 4

we have tag(untag(Ĉ )) = Ĉ (=E C ) (see Lemma 5.27). Hene Q = tag(Q̂ ′
1) →

∗

tag(Q̂ ′
n) ↓C .

• P → P ′
with nsid 6∈ fn(P ′)∪bn(P ′): Aording to Lemma 5.31 we �nd P∗

suh that

untag(P) → P∗ ≈ untag(P ′). Sine P ∼Ssid
Q we also have untag(Q) =: Q̂1 →

. . . → Q̂n ≈ P∗
. Analogously to the previous part we �nd some nsid -good Q̂ ′

n suh

that Q →∗ tag(Q̂ ′
n) and Q̂ ′

n ≡E Q̂n. By Lemma 5.26 we have untag(tag(Q̂ ′
n)) ≈ Q̂ ′

n

(Q̂ ′
n is losed). Thus untag(tag(Q̂ ′

n)) ≈ Q̂ ′
n ≡E Q̂n ≈ P∗ ≈ untag(P ′) whih

implies untag(tag(Q̂ ′
n)) ≈ untag(P ′) sine ≡E entails ≈ by Lemma 3.2 (iv). Hene

Q →∗ tag(Q̂ ′
n) and P ′ ∼Ssid

tag(Q̂ ′
n).

• Assume P ∼Ssid
Q and let R ∈ Ssid be a proess and a names. We have

untag(P ) ≈ untag(Q) by de�nition of ∼Ssid
and ≈ is losed under the appliation

of evaluation ontexts. Hene untag(νa.(P | R)) = νa.(untag(P)|untag(R)) ≈
νa.(untag(Q)|untag(R)) = untag(νa.(Q |R)). Thus, by de�nition of ∼Ssid

,

νa.(P |R) ∼Ssid
νa.(Q |R).

Sine ∼Ssid
is symmetri it is an Ssid -nsid -bisimulation.

�
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Lemma 5.33 Let P and Q be losed proesses and M be an arbitrary losed term. Then

P ≈ Q ⇒ P((M )) ≈ Q((M )).

Proof. Fix a name nsid 6∈ (fn(M )∪ fn(P)∪ bn(P)∪ fn(Q)∪ bn(Q))and Msid := M . Re-

member that all lemmas in this setion were proven for an arbitrary �xedMsid with nsid 6∈
fn(Msid ). Now P , Q are nsid -good and P((Msid )) = tag(P) and Q((Msid)) = tag(Q). By
Lemmas 5.29,5.32: tag(P) ≈ tag(Q). Hene P((M )) = P((Msid )) ≈ Q((Msid)) = Q((M )).
�

Lemma 5.34 Let P and Q be proesses and M be a term with fv(M )∩(bv(P)∪bv(Q)) =
∅. Then P ∼∼∼ Q ⇒ P((M )) ∼∼∼ Q((M )).

Proof. For all losing substitutions σ we have P ∼∼∼ Q ⇒ Pσ ≈ Qσ. By Lemma 5.33 we

have Pσ((Mσ)) ≈ Qσ((Mσ)) for the losed proesses Pσ and Qσ and the losed term

Mσ. This entails P((M ))σ ≈ Q((M ))σ sine fv(M ) ∩ (bv(P) ∪ bv(Q)) = ∅. Therefore

P((M )) ∼∼∼ Q((M )). �

Proof of Lemma 5.13. By Lemma 5.34 P((x )) ∼∼∼ Q((x )). Aording to De�nition 5.11

!!xP = C
x ,np

SID [P((x ))] for some names np ∩ fn(P) = ∅ and !!xQ = C
x ,nq

SID [Q((x ))] for
some names nq ∩ fn(Q) = ∅. Let n be names suh that n ∩ (fn(P) ∪ fn(Q)) = ∅ and

|n| ≥ max(|np|, |nq |). We have

C
x ,np

SID [P((x ))] ≡ C
x ,n
SID [P((x ))]

(∗)
∼∼∼ C

x ,n
SID [Q((x ))] ≡ C

x ,nq

SID [Q((x ))]

(*) sine P((x )) ∼∼∼ Q((x )) and ∼∼∼ is losed under the appliation of ontexts (Lemma 2.7).

Therefore !!xP ∼∼∼ !!xQ . �

Note that Lemma 5.13 also implies P ∼∼∼ Q ⇒ !!P ∼∼∼ !!Q .

Lemma 5.35 Let P be a proess and n be a name that ours only in hannel identi�ers

in P . Then νn.!!xP ∼∼∼ !!xνn.P for all variables x 6∈ bv(P).

Proof. First, we observe that instanes of P with distint tags annot ommuniate with

eah other. This an be formalized by the following

Claim. Let id , id ′ ∈ SID be distint IDs and P , Q arbitrary proesses. Then

P((id)) →∗lC and Q((id ′)) →∗lC ′
for terms C ,C ′

implies C 6=E C ′
. Proof: By

De�nition 5.1 every hannel identi�er in P((id)) is of the form (id ,X ) for some term

X . Analogously, every hannel identi�er in Q((id ′)) is of the form (id ′,Y ). Towards

ontradition we assume C = (id ,X ) =E (id ′,Y ) = C ′
. Then, by De�nition 2.5 (vi)

(natural symboli model), we have id =E id ′
. However, id 6=E id ′

is required for all pairs

of distint IDs id , id ′ ∈ SID . This proves the laim.
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It is now easy to hek that

R := {(C[νn.(P1((id1 ))| . . . |Pℓ((idℓ))|
∏

x∈S

P((x )))], C[νn.P1((id1 ))| . . . |νn.Pℓ((idℓ))|
∏

x∈S

νn.P ((x ))]) :

P1, . . . ,Pℓ proesses where n ours only in hannel identi�ers,

id1 , . . . , idl ⊆ SID \ S are distint, S ⊆ SID and C evaluation ontext}

is a bisimulation and thereby prove the lemma. Although the Pi in R are formally

arbitrary proesses that ontain n only in hannel identi�ers, they intuitively allow to

represent the running instanes of P . Note that the laim above holds for any pair

Pi((idi )), Pj((idj )) with i 6= j. Intuitively, sine n ours only in hannel identi�ers and

thus is never transmitted, no ontext an tell the di�erene between a private n that is

shared among all instanes and an n individual n for eah instane. �

Lemma 5.36 Let P and Q be proesses. Then !!x(P |Q) ∼∼∼ !!xP |!!xQ for all variables

x 6∈ bv(P) ∪ bv(Q).

Proof. We use the semantis of produt proesses (see De�nition 2.9) for this proof. By

De�nition 5.2 and De�nition 5.11 we have !!xR ∼∼∼
∏

x∈SID R((x )) for any proess R. Let
σ be a losing substitution for !!xP and !!xQ (i.e., fv(P((x ))σ), fv (Q((x ))σ) ⊆ {x}). We

set ΠP (X) :=
∏

x∈X P((x ))σ for arbitrary X ⊆ SID and

∑
P (X) :=

∑
x∈X P((x ))σ =

P((x1))σ| . . . |P((xℓ))σ for �nite X = {x1, . . . , xℓ} ⊆ SID . Analogously ΠQ(X),
∑

Q(X)
and ΠPQ(X) :=

∏
x∈X (P((x ))σ|Q((x ))σ). We then de�ne the relation R:

R := {(C[
∑

P

(SP ) |
∑

Q

(SQ) | ΠPQ (SPQ)], C[ΠP (SPQ ∪ SP ) | ΠQ(SPQ ∪ SQ)]) :

C evaluation ontext, SP , SQ, SPQ ⊆ SID , SP ∩ SPQ = ∅, SQ ∩ SPQ = ∅}

losed under strutural equivalene. Note that

(
∏

x∈SID

(P((x ))σ|Q((x ))σ),
∏

x∈SID

P((x ))σ |
∏

x∈SID

Q((x ))σ

)
∈ R

for SP := ∅, SQ := ∅ and SPQ := SID whih proves this lemma if R ⊆≈. Therefore, we
show the three points of a simulation for R and R−1

respetively. First, we show that

R is a simulation. For (A,B) ∈ R:

1. A ↓C : Produt proesses do not emit on hannels. Three ases remain:

(a) If C[0] ↓C , then B ↓C .
(b) If P((id))σ ↓C for some id ∈ SP , then B an spawn the instane P((id))σ from

ΠP (SPQ ∪ SP ) and then emit on C . Hene B →↓C .
() Analogously for Q((id))σ ↓C for some id ∈ SQ.
Hene A ↓C entails B →∗↓C .

2. A→ A′
: We distinguish two ases:
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(a) → follows the IREPL rule: Then → spawns a new instane with id id from

ΠPQ (SPQ): We set C′[�] := C[P((id))σ | Q((id))σ | �] and S′
PQ := SPQ \{id}.

Hene we have A→ C′[
∑

P (SP ) |
∑

Q(SQ) | ΠPQ (S′
PQ)]. Additionally, we ob-

serve B ≡ C[ΠP (SPQ∪SP ) | ΠQ(SPQ∪SQ)] →→ C′[ΠP (S
′
PQ∪SP ) | ΠQ(S

′
PQ∪

SQ)] by spawning P((id))σ from ΠP (SPQ ∪ SP ) and Q((id))σ from

ΠQ(SPQ ∪ SQ). We have (C′[
∑

P (SP ) |
∑

Q(SQ) | ΠPQ(S
′
PQ)], C

′[ΠP (S
′
PQ ∪

SP ) | ΠQ(S
′
PQ ∪ SQ)]) ∈ R.

(b) → follows a rule from Figure 3: Then we distinguish two ases:

i. If we have C[0] → C′[0], → translates anonially to C in B → B′
suh

that (A′, B′) ∈ R.

ii. Otherwise, → a�ets instanes from

∑
P (SP ) |

∑
Q(SQ). We re-

move the ids of the a�eted instanes from SP and SQ yielding

sets S′
P and S′

Q and de�ne a ontext C′
(inluding the a�eted in-

stanes) suh that A → C′[
∑

P (S
′
P ) |

∑
Q(S

′
Q) | ΠPQ(SPQ)]. We now

spawn the orresponding instanes in B �rst and then mimi → ex-

atly yielding B →∗ C′[ΠP (SPQ ∪ S′
P ) | ΠQ(SPQ ∪ S′

Q)]. We have

(C′[
∑

P (S
′
P ) |

∑
Q(S

′
Q) | ΠPQ (SPQ)], C′[ΠP (SPQ∪S′

P ) | ΠQ(SPQ∪S′
Q)]) ∈

R.

3. By de�nition R is losed under the appliation of evaluation ontexts.

Now we show that R−1
is a simulation. For (A,B) ∈ R−1 :

1. A ↓C : Sine produt proesses do not emit on hannels we have C[0] ↓C and thus

B ↓C .
2. A→ A′

: We distinguish two ases:

(a) → follows the IREPL rule: We distinguish four ases:

i. A new instane P((id))σ is spawned from ΠP (SPQ ∪ SP ) with id ∈
SP : We de�ne the ontext C′[�] := C[P((id))σ | �], S′

P := SP \
{id} and have A → C′[ΠP (SPQ ∪ S′

P ) | ΠQ(SPQ ∪ SQ)] and B ≡
C′[
∑

P (S
′
P ) |

∑
Q(SQ) | ΠPQ(SPQ)]. Hene (C′[ΠP (SPQ∪S′

P ) | ΠQ(SPQ∪

SQ)], C′[
∑

P (S
′
P ) |

∑
Q(SQ) | ΠPQ(SPQ)] ∈ R−1

.

ii. A new instane Q((id))σ is spawned from ΠQ(SPQ ∪ SQ) with id ∈ SQ:
Analogous to the previous ase.

iii. A new instane P((id))σ is spawned from ΠP (SPQ ∪ SP ) with id ∈ SPQ:

We de�ne the ontext C′[�] := C[P((id))σ | �], S′
PQ := SPQ \{id}, S′

Q :=
SQ ∪ {id} and have A → C′[ΠP (S

′
PQ ∪ SP ) | ΠQ(S

′
PQ ∪ S′

Q)]. Note

that SPQ ∪ SQ = S′
PQ ∪ S′

Q. In B we spawn P((id))σ | Q((id))σ from

ΠPQ (SPQ) and have B → C′[
∑

P (SP ) |
∑

Q(S
′
Q) | ΠPQ (S′

PQ)]. Hene

(C′[ΠP (S
′
PQ∪SP ) | ΠQ(S

′
PQ∪S′

Q)], C
′[
∑

P (SP ) |
∑

Q(S
′
Q) | ΠPQ (S′

PQ)] ∈

R−1
.

iv. A new instane Q((id))σ is spawned from ΠQ(SPQ ∪ SQ) with id ∈ SPQ:

Analogous to the previous ase.

(b) → follows a rule from Figure 3: Then we basially have C[0] → C′[0] whih
translates anonially to C in B → B′

suh that (A′, B′) ∈ R.

3. By de�nition R is losed under the appliation of evaluation ontexts.
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This shows that R is a bisimulation and hene R ⊆≈. �

Alternative de�nitions of !!!!!!. Of ourse, our de�nition of !!P is not the only possible

de�nition of a repliation with session ids. For example, one might try to de�ne !!P in

suh a way that an instane of P is spawned for arbitrary terms as sessions id, not only

terms in some �xed set SID . In partiular, a fresh name ould then be used as session id

whih is not possible with our modeling. (Then, of ourse, the set of proesses to whih

!! may be applied should be restrited to proesses whih wait for an input before doing

anything. Otherwise proesses ould spawn spontaneously that use some other proess'

fresh names as session ids.)

Any de�nition of !! that satis�es Lemmas 5.12, 5.13, 5.35, and 5.36 would lead to the

same omposition theorem. (If that de�nition !! is appliable only to a ertain set P of

proesses, we additionally need that P is losed under parallel omposition, restritions,

renaming, and !!, and that the de�nition of≤ (De�nition 4.3) is with respet to simulators

in P.)

The omposition theorem. We an now state and prove the omposition theorem.

It says that if P ≤ Q, we an restrit the IO-names, ompose in parallel with proesses

that have disjoint NET-names, rename names (as long as NET- and IO-names are not

interhanged), and perform onurrent omposition.

Theorem 5.37 (Composition Theorem) Let P , Q be proesses with P ≤ Q . Then

(i) For any list of names io ⊆ IO we have νio.P ≤ νio.Q .

(ii) For any proess R with (fn(R) ∩ (fn(P) ∪ fn(Q))) ⊆ IO we have P |R ≤ Q |R.
(iii) For any permutation ψ : NET → NET we have Pψ ≤ Q and P ≤ Qψ.
(iv) For any permutation ψ : IO → IO we have Pψ ≤ Qψ.
(v) If Q is a NET-stable proess, !!xP ≤ !!xQ for all variables x 6∈ bv(P) ∪ bv(Q).

Proof. In the following, let (S,ϕ,n) be as in De�nition 4.3. (They exist beause P ≤ Q .)

(i) P ∼∼∼ νn.(Qϕ|S)
(∗)
⇒ νio.P ∼∼∼ νio.νn.(Qϕ|S)

(∗∗)
∼∼∼ νn.((νio.Q)ϕ|S)

(∗) sine ∼∼∼ is losed under the appliation of evaluation ontexts.

(∗∗) sine neither S nor ϕ ontain names from IO

(ii) W.l.o.g. we an assume fn(R) ∩ n = ∅ and that ϕ is the identity on (fn(R) ∪
bn(R)) ∩NET. These assumptions guarantee (∗) in the upoming equations. P ∼∼∼

νn.(Qϕ|S) ⇒ P |R ∼∼∼ νn.(Qϕ|S)|R
(∗)
∼∼∼ νn.((Q|R)ϕ|S)

(iii) P ∼∼∼ νn.(Qϕ|S) ⇒ Pψ ∼∼∼ (νn.(Qϕ|S))ψ ≡ νnψ.(Q(ψ ◦ ϕ)|Sψ). Therefore, with

(Sψ,ψ ◦ ϕ,nψ) as simulator, we have Pψ ≤ Q . With (S,ϕ ◦ ψ−1,n) we have

P ≤ Qψ.

(iv) P ∼∼∼ νn.(Qϕ|S) ⇒ Pψ ∼∼∼ (νn.(Qϕ|S))ψ ≡ νn.(Q(ϕ ◦ ψ)|S) sine S,ϕ and n do

not ontain IO names and thus are not a�eted by ψ : IO → IO.
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(v) Note that Qϕ is NET-stable sine Q is NET-stable. Then P ∼∼∼ νn.(Qϕ|S) entails

!!xP ∼∼∼ !!xνn.(Qϕ|S) (by Lemma 5.13)

∼∼∼ νn.!!x (Qϕ|S) (by Lemma 5.35 sine Qϕ|S NET-stable)
∼∼∼ νn.(!!x (Qϕ)|!!xS) (by Lemma 5.36)

≡ νn.((!!xQ)ϕ|!!xS) (by Lemma 5.12)

Thus (!!xS,ϕ,n) is a proper simulator for !!xP ≤ !!xQ . �

6 Property preservation

Besides seure omposition, the seond salient property of the UC framework is the fat

that seurity properties of the ideal funtionality F automatially arry over to any

protool emulating F . For example, a seure hannel funtionality that takes a message

m from Alie and gives it diretly to Bob will obviously have the property that m stays

seret. Then, if π UC-emulates F , any message given to π will also stay seret. A similar

property preservation law holds in our ase, the following theorem formalizes it:

Theorem 6.1 (Property preservation) Let P,Q be NET-stable proesses with P ≤
Q. Let E1 and E2 be ontexts whose holes are proteted only by parallel ompositions (|),
restritions (ν), and indexed repliations (!!x). Assume that E1, E2 do not ontain NET-

names (neither bound nor free). Assume that the number of !!x (possibly with di�erent

x) over the hole is the same in E1 and E2.

If E1[Q] ∼∼∼ E2[Q], then E1[P ] ∼∼∼ E2[P ].

Proof. Let b denote the number of !!x over the hole of E1, E2. We write !!bS for b ≥ 0
appliations of !! to S.

Sine P ≤ Q, there are S,ϕ, n with P ∼∼∼ νn.(Qϕ|S) and S losed and NET-stable,

and IO ∩ fn(A) = ∅, ϕ : NET → NET a bijetion and n a list of names n ⊆ NET.
Without loss of generality, we an assume that n∩ fn(E1, E2) = n∩ bn(E1, E2) = ∅. For
i = 1, 2, we have

Ei[P ]
(i)

∼∼∼ Ei[νn.(Qϕ|S)]
(ii)

∼∼∼ νn.Ei[(Qϕ|S)]
(iii)

∼∼∼ νn.(Ei[Qϕ]|!!
bS)

(iv)

= νn.(Ei[Q]ϕ|!!bS).

Here (i) uses Lemma 2.7.

And (ii) uses that the names n do not our in Ei, the rules NEW-C and NEW-PAR

from Figure 2, and Lemma 5.35 for swapping !!x in Ei and the names n (the preonditions
of Lemma 5.35 are ful�lled beause n are NET-names and thus do not our in Ei).
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free netsstart, netnotify, netdeliver, n1, n2.

fun empty/0.

let FSC = in(netstart,y); in(ioA,x);

( out(netnotify,empty) | in(netdeliver,z); out(ioB,x) ).

proess new ioA; new ioB; out(ioA,hoie[n1,n2℄) | in(ioB,z) | FSC

Figure 6: Proverif ode for showing E1[FSC ] ≈ E2[FSC ] in Lemma 6.3 (prop-pres.pv,

see [BU13℄).

And (iii) uses that the names in Ei (IO-names only) and the names in S (NET-names

only) are disjoint, as well as Lemma 5.36 for moving S over a !! in Ei. (Lemma 5.36

guarantees !!x(R|S) ≈ !!xR|!!xS, this is why S aumulates on !!x for eah !!x over the

hole of Ei. Sine S is losed, we an drop the x from !!x.)
And (iv) uses that Ei does not ontain NET-names (bound or free) while ϕ is a

substitution on NET-names.

Furthermore, sine

∼∼∼ is losed under renaming of free names, and under applia-

tion of ontexts (Lemma 2.7), from E1[Q] ∼∼∼ E2[Q] it follows that νn.(E1[Q]ϕ|!!bS) ∼∼∼
νn.(E2[Q]ϕ|!!bS) and hene E1[P ] ∼∼∼ E2[P ]. �

Thus, any seurity property that an be expressed by an indistinguishability game

of the form �E1[P ] ∼∼∼ E2[P ]� with E1, E2 as in the theorem will arry over from the

ideal funtionality Q to the protool P , given P ≤ Q. Note that even many trae based

properties an be expressed in suh a way. E.g., if we want to say that E1[P ] does not
raise an event bad (modeled by emitting on a speial hannel), we just de�ne E2 to be

like E1, but without the event. Then E1[P ] ∼∼∼ E2[P ] implies that E1[P ] does not raise
the event.

Example: Strong serey. We illustrate the use of this theorem with an example.

Consider the seure hannel funtionality:

De�nition 6.2 (Seure hannel)

FSC := net scstart().ioA(x).(netnotify〈〉 | netdeliver ().ioB 〈x〉)

We want to show:

Lemma 6.3 If P ≤ FSC , then P has strong serey in the following sense: We have

P1 ≈ P2 where Pi := νioAioB .ioA〈ni〉|ioB ()|P .

Proof. Let Ei := νioAioB .ioA〈ni〉|ioB ()|�. We use Proverif to show that E1[FSC ] ≈
E2[FSC ]. The Proverif ode is given in Figure 6. By Theorem 6.1 (and using that ≈
and

∼∼∼ oinide for losed proesses), we have P1 = E1[FSC ] ≈ E2[FSC ] = P2. �

Anonymity properties are modeled very similarly, exept that instead of di�erent

payloads n1, n2, di�erent user ids are provided to the two proesses.
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Example: Unlinkability. The next example is strong unlinkability [ACRR10℄. This

property requires that the adversary annot distinguish whether every user runs only one

session of a protool, or whether every user runs many sessions. Formally: !νid .!νsid .P ≈
!νid .νsid .P if we assume that P ontains free names id , sid for the user id and the

session id. At a �rst glane, suh a property seems to be exluded by the restrition of

Theorem 6.1 that E1, E2 may not have a ! over their hole. This is, however, not the ase
if protool P (and the funtionality Q) are modeled suitably, namely if P is already a

multi-session protool. For example, if P expets a pair of user id and session id on an

IO-hannel init for eah session to be run, then strong unlinkability an be expressed as

follows:

De�nition 6.4 A protool P has strong unlinkability i�

νinit .(P |!νid .!νsid .init〈(id , sid)〉) ≈ νinit .(P |!νid .νsid .init〈(id , sid)〉).

Then Theorem 6.1 guarantees that if Q has strong unlinkability and P ≤ Q, then P has

strong unlinkability.

Notie that if we model a di�erent session id mehanism, we also need a di�erent

de�nition. For example, if P and Q are onstruted using the !! operator, session ids

will be part of the hannel name (we would have hannels suh as (sid , (id , init))). The
variant desribed above seems most realisti for unlinkability, though, beause !! inludes
session ids in the lear in all network-messages, so onstruting unlinkable protools by

onurrent omposition of individual sessions using !! does not seem to work well.

In Appendix A we show that the various restritions in Theorem 6.1 are neessary.

In partiular, property preservation for ontexts E1, E2 having a ! over their hole (instead
of a !!) does not hold. The reasons are similar to those that forbid ! in the omposition

theorem (f. Setion 5). This is another indiation that an operator like !! is more natural

in this ontext.

7 Relation to Delaune-Kremer-Pereira

DKP-seurity. As mentioned in the introdution, Delaune, Kremer, and Pereira

[DKP09℄ have already presented a variant of the UC model in the applied pi alulus.

In this setion, we desribe the di�erenes between their and our model, and why these

di�erenes are neessary to ahieve stronger seurity results.

In [DKP09℄, seurity is de�ned as follows:

De�nition 7.1 (DKP-seurity) Let � ( observational preorder) be the largest simula-

tion (not bisimulation).

Let P,Q be proesses. Then P ≤SS Q i� there exists a simulator S (a ontext) suh

that P � S[Q].
Here a simulator S is an evaluation ontext subjet to ertain onditions, see [DKP09℄,

notably that it only binds NET-names.
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Notie that in this de�nition, the main di�erene to our de�nition is that P and S[Q]
do not have to be observationally equivalent, but only observationally preordered. (Also,

the notion of the simulator S is somewhat di�erent from ours, but not in essene.) The

e�et of this is that the simulator may introdue additional non-determinism. For exam-

ple, in our model, if the protool P an take one out of two ations, the simulator needs

to simulate the appropriate ation, he thus needs to �gure out whih of the two ations

is taken. With respet to DKP-seurity, the simulator an just non-deterministially

hoose whih ation to take; the observational preorder takes are that the right ation

is taken in the right situation. This makes simulators for DKP-seurity muh easier to

onstrut and DKP-seurity into a onsiderably weaker notion.

DKP-seurity satis�es similar laws as our notion. In partiular, ≤SS
is re�exive and

transitive and it satis�es a omposition theorem (whih di�ers from ours mainly in that

P ≤SS Q =⇒ !P ≤SS !Q holds, no need to introdue !!). They do not state a property

preservation theorem. We believe, though, that their DPK-seurity supports property

preservation for ertain kinds of trae properties.

12

The problem with observational preorder. We explain why we believe that a

de�nition based on observational preorder instead of equivalene does not give su�ient

seurity guarantees. We illustrate this by the following example. Consider a simple

funtionality that is supposed to model an inseure but anonymous hannel:

Fanon := ioA(x).net〈x〉|ioB (x).net〈x〉

Obviously, this funtionality preserves anonymity about whether Alie or Bob

sends a message (i.e., whether an input on ioA or ioB ours). Formally:

νioAioB .(ioA〈T 〉|Fanon ) ≈ νioAioB .(ioB 〈T 〉|Fanon ). (In fat, we even have ≡.) Now

onsider a naive protool in whih Alie and Bob send their message over distint han-

nels netA,netB . Formally:

P := ioA(x).netA〈x〉|ioB (x).netB 〈x〉

Obviously, P does not provide anonymity, it is easy to see that νioAioB .(ioA〈T 〉|P ) 6≈
νioAioB .(ioB 〈T 〉|P ). Consequently (Theorem 6.1), we have P 6≤ Fanon as we would

expet sine P gives less seurity than Fanon .

On the other hand, with respet to DKP-seurity, P is onsidered as seure as Fanon ,

i.e., P ≤SS Fanon . We use the following simulator: S := net(x).netA〈x〉 | net(x).netB 〈x〉 |
�. Then P � S[Fanon ] beause S relays messages sent on net onto netA or netB , and

the de�nition of � makes sure that the message is non-deterministially delivered on the

right hannel netA or netB . Hene P ≤SS Fanon .

Lemma 7.2 (with non-rigorous proof) P ≤SS Fanon .

12

Probably a law of the following kind holds: Assume P ≤SS Q. Let c /∈ fv(P,Q), and E be a ontext

satisfying ertain properties. Then E[Q] 6 ↓c =⇒ E[P ] 6 ↓c. Compare with Theorem 6.1 whih an deal

with indistinguishability properties.
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Proof. In this proof, we assume that Lemma 3.3 also holds for the alulus from [DKP09℄.

Sine that alulus is somewhat di�erent from ours, this makes the present proof non-

rigorous. (However, probably the proof of Lemma 3.3 an be easily adapted to the

alulus of [DKP09℄.)

Then we have

P
(∗)

≈ νnet .(ioA(x).net〈x〉|net(x).netA〈x〉)

| νnet .(ioB (x).net〈x〉|net(x).netB 〈x〉)
(∗∗)

� ioA(x).net〈x〉|net(x).netA〈x〉

| ioB (x).net〈x〉|net(x).netB 〈x〉

≡ S[Fanon ] with S := net(x).netA〈x〉 | net(x).netB 〈x〉 | �.

Here (∗) uses two appliations of Lemma 3.3 (in the reverse diretion), the �rst with

n := net , t := x, x := x, and Q := netA〈x〉, and the seond with n := net , t := x, x := x,
and Q := netB 〈x〉. And (∗∗) uses that νc.P � P ([DKP, Lemma 8℄).

Sine ≈ implies � and � is transitive, we have P � S[Fanon ]. Furthermore, S is a

valid simulator for DKP-seurity. Thus P ≤SS Fanon . �

Thus, the seurity of a protool in the sense of [DKP09℄ does not imply that the

protool has the same anonymity properties as the ideal funtionality. The same probably

holds for other equivalene properties suh as strong serey et. We onsider this a strong

restrition of the notion and thus believe that a symboli analogue to UC seurity should

use observational equivalene or a similar notion of equivalene.

Why observational preorder? The reader may wonder why [DKP09℄ use observa-

tional preorder instead of observational equivalene, in partiular sine observational

equivalene is the more diret analogue to the indistinguishability in the omputational

UC framework [Can01℄. We explain the reasons as we understand them (this is based

both on explanations in [DKP09℄ and on our own insights while working on the urrent

result), and due to what de�nitional deisions we managed to get around those reasons:

• It is not possible to model �relays�. That is, if we have a proess P that outputs

on a hannel c, then as a tehnial tool we might wish to onstrut a proess

R (a relay) that forwards all message on c to another hannel c′, i.e., we want

νc.(P |R) ≈ P{c′/c}. Unfortunately, suh a relay does not seem to exist in the

applied pi alulus. R :=!c(x).c′〈x〉 does not work. Consider, e.g., P := c〈n〉.a〈n〉.
Then νc.(P |R) ↓a but P{c′/c} 6 ↓a. With respet to �, however, we an have relays

(P{c′/c} � νc.(P |R)).

Why are relays important? One reason is whether a dummy adversary exists. Suh

a dummy adversary is an adversary that forwards all messages on NET-hannels

from the protool to the environment and vie versa. (So, essentially, a relay.) The

existene of the dummy adversary is used impliitly or expliitly in most stru-

tural theorems (re�exivity, transitivity, onurrent omposition). In fat, it seems

64



that when using observational equivalene in [DKP09℄, one would not even have

re�exivity.

We get around this problem by using a slightly di�erent de�nition of adver-

saries/simulators (De�nition 4.2). In our setting, a dummy an be trivially on-

struted as (0, ϕ,∅) where ϕ just renames the protool's NET-hannels to the

NET-hannels that the environment expets the messages on. This simple trik

obviates the need for using relays in the onstrution of the dummy adversary.

• The seond problem is that one does not get a omposition theorem that guaran-

tees P ≤SS Q =⇒ !P ≤SS !Q when using observational equivalene. However, we

believe that this is a natural limitation beause we an show that property preser-

vation does not even hold for equivalene-based seurity properties that repliate

the protool. Thus we annot expet to get suh a omposition theorem and simul-

taneously have property preservation for equivalene properties. We get around

this problem by de�ning a di�erent notion of onurrent omposition, using the !!
operator (see Setion 5).

• Finally, the non-existene of relays is a problem when proving the seurity of on-

rete protools P ≤ F : A typial thing a simulator has to do is to take a message

m on a NET-hannel and somehow rewrite it (e.g., to enc(k,m)) before sending

it on to the environment. This, of ourse, is a generalization of the onept of a

relay. Thus, if relays are impossible, we an hardly expet to onstrut sensible

simulators. This, however, is not true if we pay some attention in the de�nition of

the funtionality and obey the following guideline:

Guideline: When designing a funtionality, use di�erent names for all

NET-hannels and, whenever sending something on a NET-hannel C,
use C〈T 〉|P ′

instead of C〈T 〉.R.

In these ases, R :=!c(x).c′〈x〉 will usually work as a relay (e.g., νc.(P |R) ≈ P{c′/c}
for P := c〈n〉|a〈n〉).

8 Example: Seure hannels

In this setion we apply symboli UC hands on. We illustrate how our results from

Setion 5 an be usefully applied in pratie to onstrut a seure hannel from the

widely known NSL protool and a PKI. Furthermore, when extending the seure hannel

to multiple sessions, we present an example for a joint state, i.e., multiple instanes of

one protool that jointly use one instane of another funtionality. While the original UC

model of Canetti [Can01℄ requires an additional theorem to handle joint states [CR03℄,

we an diretly use !! in our ase. We used Proverif

13

for our proofs as muh as possible

to show how it helps with the veri�ation of various properties in the ontext of symboli

UC.

13

Version 1.86pl4
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fun sen/3. (* sen(key,msg,rand) *)

redu sde(k,sen(k,m,r)) = m.

fun empty/0.

fun hash/1.

fun pk/1.

fun sk/1.

fun pen/3. (* pen(pk,msg,rand) *)

redu pde(sk(k),pen(pk(k),m,r)) = m.

redu pkofsk(sk(k)) = pk(k).

redu pkofen(pen(p,m,r)) = p.

Figure 7: Key-exhange example: Proverif ode for the symboli model

(sehan-model.pv, see [BU13℄)

In this setion, we only onsider an example where we assume all parties to be honest

(as the goal of seure hannels is to protet from an outside adversary). For an example

with orruption, see Setion 9.

We �rst de�ne the symboli model used in this setion. The onstrutors are:

penc/3, pk/1, sk/1, senc/3, (·, ·), hash/1, and empty/0, representing publi-key enryp-

tion, publi and seret keys, symmetri enryption, pairs, hashing, and empty messages,

respetively. Enryption has a third argument modeling randomness used for enrypt-

ing. More spei�ally, penc(pk(k),m, r) models a publi key enryption using key pk(k),
plaintext m, and randomness r, and senc(k,m, r) a symmetri enryption using key k,
plaintext m, and randomness r. We believe that senc without the additional random-

ness argument r would also work in our setting. However, we introdue this additional

none to help Proverif, whih an then better distinguish iphertexts (e.g., the proof

of sehan-s2.pv fails without r due to Proverif's overapproximation tehnique). We

have no equations in our theory.

Furthermore we have the destrutors pdec/2, sdec/2, pkofsk/1, and pkofenc/1, mod-

eling publi-key deryption, symmetri deryption, extration of a publi key from a

seret key, and extration of a publi key from a iphertext. (The latter two are not

needed in our protools, but we provide them to make the adversary more realisti.) The

behavior of the destrutors is spei�ed by the following rewrite rules:

pdec(sk(x), penc(pk(x), y, z)) → y

sdec(x, senc(x, y, z)) → y

pkofsk (sk(x)) → pk(x)

pkofenc(penc(x, y, z)) → x

The Proverif ode for this symboli model is given in Figure 7.
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8.1 Key exhange using NSL

With the symboli model set up we next show how to tailor a UC-seure key exhange

from NSL using a PKI funtionality FPKI . Towards this goal we model the ideal key

exhange funtionality FKE , the PKI FPKI and the NSL protool based on FPKI as

follows:

De�nition 8.1 (Key exhange funtionality)

FKE := νk.netdelA().ioka〈k〉 | netdelB ().iokb〈k〉

De�nition 8.2 (Publi key infrastruture funtionality)

FPKI := νkakb.iopkeA〈(sk (ka), pk (ka), pk (kb))〉

| iopkeB 〈(sk (kb), pk (ka), pk (kb))〉

| netpke〈(pk (ka), pk (kb))〉

De�nition 8.3 (Needham-Shroeder-Lowe)

NSLA := iopkeA((xsk ,_, xpkB
)).νna.νr1.

netnslA〈penc(xpkB
, na, r1)〉.netnslA(xc).

let (=na, xnb
,=B) = pdec(xsk , xc) in

νr2.netnslA〈penc(xpkB
, xnb

, r2)〉.

ioka〈hash((na, xnb
))〉

NSLB := iopkeB ((xsk , xpkA
,_)).netnslB (xc).

let xna
= pdec(xsk , xc) in

νnb.νr.netnslB 〈penc(xpkA
, (xna

, nb, B), r)〉.

netnslB (x
′
c).if nb = pdec(xsk , x

′
c) then

iokb〈hash((xna
, nb))〉

NSL := νiopkeAiopkeB .(NSLA | NSLB | FPKI )

The di�erenes to the original NSL protool [Low95℄ are: The original protool in-

ludes A's identity in the �rst message, and the original protool does not speify what

to do with the nones na, nb, while we use them to derive a key hash((na, nb)). Also,

[Low95℄ also presents an extended version of the protool that expliitly ommuniates

with a server S for getting the keys for Alie and Bob. We ould get this extended

protool by proving that this retrieval protool implements FPKI , and then omposing

our NSL protool with the retrieval protool.

We an now state the �rst result of this setion, namely that the NSL is a UC-seure

realization of FKE .

Lemma 8.4 NSL ≤ FKE .
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Proof. Let NSL
′
A be NSLA without the initial iopkeA((xsk ,_, xpkB

)). NSL
′
B anal-

ogously. And NSL
′′
A := NSL

′
A{netdelA/ioka , sk (ka)/xsk , pk(kb)/xpkB } and NSL

′′
B :=

NSL
′
B{netdelB/iokb , sk(kb)/xsk , pk (ka)/xpkA}.
We have

NSL ≡ νiopkeAiopkeBkakb.
(
iopkeA((xsk ,_, xpkB )).NSL

′
A | iopkeA((xsk , xpkA ,_)).NSL′B

| iopkeA〈(sk(ka), pk (ka), pk (kb))〉 | iopkeB 〈(sk(kb), pk (ka), pk (kb))〉 | netpke〈(pk (ka), pk (kb))〉
)

(v)

≈ νkakb.
(
let (xsk ,_, xpkB ) = (sk(ka), pk (ka), pk (kb)) in NSL

′
A

| let (xsk , xpkA ,_) = (sk(kb), pk (ka), pk(kb)) in NSL
′
B | netpke〈(pk (ka), pk (kb))〉

)

(vi)

≈ νkakb.
(
NSL

′
A{sk(ka)/xsk , pk (kb)/xpkB } | NSL′B{sk(kb)/xsk , pk (ka)/xpkA}

| netpke〈(pk(ka), pk (kb))〉
)

(vii)

≈ νnetdelAnetdelBkakb.
(
NSL

′′
A | NSL′′B | netpke〈(pk(ka), pk(kb))〉

| netdelA(x).ioka〈x〉 | netdelB (x).iokb〈x〉
)

(viii)

≈ νnetdelAnetdelBkakb.
(
NSL

′′
A | NSL′′B | netpke〈(pk(ka), pk(kb))〉

| νk.(netdelA(x).ioka〈x〉 | netdelB (x).iokb〈x〉)
)
=: NSL1

Here (v) uses two onseutive appliations of Lemma 3.3, the �rst with n := iopkeA
and C := � and t := (sk (ka), pk (ka), pk (kb)), and the seond with n := iopkeB and

C := � and t := (sk(kb), pk (ka), pk (kb)). Remember also that iopkeA((xsk ,_, xpkB )) is
syntati sugar for iopkeA(x).let (xsk ,_, xpkB ) = x.

And (vi) uses two onseutive appliations of Lemma 3.2 (v) and the fat that ≈ is

losed under evaluation ontexts.

And (vii) uses two appliations of Lemma 3.3 (both in the opposite diretion), the �rst

with n := netdelA, Q := ioka〈x〉, and t := H((na, xnb
)), and the seond with n := netdelB ,

Q := iokb〈x〉, and t := H((xna
, nb)).

And (viii) uses Lemma 3.2 (i) to add νk.
Using Proverif, we an show the following observational equivalene:

NSL1
(∗)

≈ νnetdelAnetdelBkakb.(NSL
′′
A | NSL′′B | netpke〈(pk (ka), pk (kb))〉 | FKE )

≡ νnetdelAnetdelB .(FKE |S)

for S := νkakb.(NSL
′′
A|NSL

′′
B |netpke〈(pk (ka), pk (kb))〉). The Proverif ode for heking (∗)

is given in Figure 8.

Hene NSL ≤ FKE . �

8.2 Seure hannel from key exhange.

Next, we realize a seure hannel. Sine we already have a realization of a seure key

exhange at hand, we realize the seure hannel SC from the idealized key exhange FKE .

Later we replae FKE by NSL. We model FSC and SC based on FKE as follows:
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free B, netnsla, netnslb, netpke.

free ioka, iokb.

let A =

new na;

new r1;

out(netnsla,pen(pk(kb),na,r1));

in(netnsla,x);

let (=na,xnb,=B) = pde(sk(ka),x) in

new r2;

out(netnsla,pen(pk(kb),xnb,r2));

out(netdela,hash((na,xnb))).

let B =

in(netnslb,x);

let xna = pde(sk(kb),x) in

new nb;

new r;

out(netnslb,pen(pk(ka),(xna,nb,B),r));

in(netnslb,x2);

if nb = pde(sk(kb),x2) then

out(netdelb,hash((xna,nb))).

let KE =

new k;

(in(netdela,x);out(ioka,hoie[x,k℄)) |

(in(netdelb,x);out(iokb,hoie[x,k℄)).

proess

new netdela; new netdelb;

new ka; new kb; (A | B | out(netpke,(pk(ka),pk(kb))) | KE)

Figure 8: Key-exhange example: Proverif ode for analyzing NSL (sehan-nsl.pv, see

[BU13℄). (Has to be pre�xed with the ode from Figure 7.)
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De�nition 8.5 (Seure hannel)

14

FSC := netscstart ().ioA(x).(netnotify〈〉 | netdeliver ().ioB 〈x〉)

De�nition 8.6 (Seure hannel protool)

SCA := ioka(xk).ioA(xm).νr.netA〈senc(xk, xm, r)〉

SCB := iokb(xk).netB (xc).let xm = sdec(xk, xc) in ioB 〈xm〉

SC := νioka iokb .(SCA|SCB |FKE )

Lemma 8.7 SC ≤ FSC .

Proof. We have:

SC ≡ νioka iokbk.
(
ioka(xk).ioA(xm).νr.netA〈senc(xk, xm, r)〉 | iokb(xk).netB (xc).

let xm = sdec(xk, xc) in ioB 〈xm〉 | netdelA().ioka〈k〉 | netdelB ().iokb〈k〉
)

(∗)

≈ νk.
(
netdelA().ioA(xm).νr.netA〈senc(k, xm, r)〉 | netdelB ().netB (xc).

let xm = sdec(k, xc) in ioB 〈xm〉
)
=: SC1

Here (∗) uses two onseutive appliations of Lemma 3.3, the �rst with n := ioka and

C := netdelA().� and t := k, and the seond with n := iokb and C := netdelB ().� and

t := k. (And it uses Lemma 2.7, so that we an apply Lemma 3.3 to a subproess instead

of the whole proess.)

We show next:

SC1 ≈ νs k.
(
netdelA().ioA(xm).νr.(!(s, senc(k, xm, r))〈xm〉 | netA〈senc(k, xm, r)〉) |

netdelB ().netB (xc).let xm = sdec(k, xc) in (s, xc)(x
′
m).ioB 〈xm〉

)
=: SC2

By Lemma 3.7, to show the above it is su�ient to show that the trae property end() ⇒
start() holds in the following event proess:

νk.
(
netdelA().ioA(xm).νr.event start(senc(k, xm, r)).netA〈senc(k, xm, r)〉 |

netdelB ().netB (xc).let xm = sdec(k, xc) in event end(xc).ioB 〈xm〉
)
.

We show this trae property using Proverif, the required ode is given in Figure 9.

Note: We ould also have shown an analogous observational equivalene with s instead
of (s, senc(k, xm, r)). Then, however, Proverif fails on the ode given in Figure 10 beause
it does not see there is only one message xm sent over the hannel. Thus, it believes that

di�erent xm ould be onfused. Adding xc to the hannel name helps Proverif to see that

xm is unique (sine xc already determines xm).
Sine we send the message xm diretly to Bob via the hannel (s, ·) (who reeives

it as x′m), we an let Bob output the message x′m reeived over that hannel instead of

14

This de�nition was already given in Setion 6 (De�nition 6.2) and is repeated here for onveniene.
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free ioa. (* A-input of F_SC *)

free iob. (* B-output of F_SC *)

free neta. (* A-end of inseure hannel in P_SC *)

free netb. (* B-end of inseure hannel in P_SC *)

free netdela, netdelb.

query ev:end(x) ==> ev:start(x).

let PA =

in(netdela,x);

in(ioa,xm);

new r;

event start(sen(k,xm,r));

out(neta,sen(k,xm,r)).

let PB =

in(netdelb,x);

in(netb,x);

let xm=sde(k,x) in

event end(x);

out(iob,xm).

proess

new k;

PA | PB

Figure 9: Key-exhange example: Proverif ode for analyzing the trae property of SC

(sehan-s1.pv, see [BU13℄). (Has to be pre�xed with the ode from Figure 7.)
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free ioa. (* A-input of F_SC *)

free iob. (* B-output of F_SC *)

free neta. (* A-end of inseure hannel in P_SC *)

free netb. (* B-end of inseure hannel in P_SC *)

free netdela, netdelb.

let PA =

in(netdela,x);

in(ioa,xm);

new r;

(!out((s,sen(k,hoie[xm,empty℄,r)),xm)) |

out(neta,sen(k,hoie[xm,empty℄,r)).

let PB =

in(netdelb,x);

in(netb,x);

let xm=sde(k,x) in

in((s,x),xm2);

out(iob,hoie[xm,xm2℄).

proess

new s;

new k;

PA | PB

Figure 10: Key-exhange example: Proverif ode for analyzing the observation equiv-

alene in SC (sehan-s2.pv, see [BU13℄). (Has to be pre�xed with the ode from

Figure 7.)

using the derypted value xm. Sine then the plaintext of the iphertext xc is then not

used any more, we an enrypt empty instead of xm (as the adversary annot tell the

di�erene). Formally, we show the following observational equivalene:

SC2 ≈ νs k.(netdelA().ioA(xm).νr.(!(s, senc(k, empty , r))〈xm〉 | netA〈senc(k, empty , r)〉) |

netdelB ().netB (xc).let xm = sdec(k, xc) in (s, xc)(x
′
m).ioB 〈x

′
m〉) =: SC3.

We show this observational equivalene using Proverif, the required ode is given in

Figure 10.

Then we move the restrition νr to the top and replae the hannel

(s, senc(k, empty , r)) by s:

SC3
(∗)

≈ νs k r.(netdelA().ioA(xm).(!(s, senc(k, empty , r))〈xm〉 | netA〈senc(k, empty , r)〉) |

netdelB ().netB (xc).let xm = sdec(k, xc) in (s, xc)(x
′
m).ioB 〈x

′
m〉)
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free ioa. (* A-input of F_SC *)

free iob. (* B-output of F_SC *)

free neta. (* A-end of inseure hannel in P_SC *)

free netb. (* B-end of inseure hannel in P_SC *)

free netdela, netdelb.

let PA =

in(netdela,x);

in(ioa,xm);

(!out(hoie[(s,sen(k,empty,r)),s℄,xm)) |

out(neta,sen(k,empty,r)).

let PB =

in(netdelb,x);

in(netb,x);

let xm=sde(k,x) in

in(hoie[(s,x),s℄,xm2);

out(iob,xm2).

proess

new s;

new k;

new r;

PA | PB

Figure 11: Key-exhange example: Proverif ode for analyzing the seond observation

equivalene in SC (sehan-s3.pv, see [BU13℄). (Has to be pre�xed with the ode from

Figure 7.)

(∗∗)

≈ νs k r.(netdelA().ioA(xm).(!s〈xm〉 | netA〈senc(k, empty , r)〉) |

netdelB ().netB (xc).let xm = sdec(k, xc) in s(x
′
m).ioB 〈x

′
m〉) =: SC4

Here (∗) follows from Lemma 3.2 (ii), and (∗∗) is proven using Proverif. The required

ode is given in Figure 11.

We ontinue:

SC4
(∗)

≈ νnetdeliver k r.(netdelA().ioA(xm).(netdeliver ().ioB 〈xm〉 | netA〈senc(k, empty , r)〉) |

netdelB ().netB (xc).let xm = sdec(k, xc) in netdeliver 〈〉)
(∗∗)

≈ νnetdeliver k r netnotify .(netdelA().ioA(xm).(netdeliver ().ioB 〈xm〉 | netnotify〈〉) |

netdelB ().netB (xc).let xm = sdec(k, xc) in netdeliver 〈〉 | netnotify().netA〈senc(k, empty , r)〉)

≡ νnetdeliver netnotify .(FSC {netdelA/net scstart}|S)

with S := νkr.netdelB ().netB (xc).let xm = sdec(k, xc) in netdeliver 〈〉
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| netnotify().netA〈senc(k, empty , r)〉

Here (∗) uses Lemma 3.4 with Q := ioB 〈x′m〉, x := x′m, n := s, and m := netdeliver .

And (∗∗) uses Lemma 3.3 with Q := netA〈senc(k, empty , r)〉, n := netnotify , t :=
empty .

So SC ≈ νn.(FSCσ|S) for σ := {netdelA/net scstart} and n := netdeliver netnotify .

Hene SC ≤ FSC . �

With NSL ≤ FKE (Lemma 8.4) and SC ≤ FSC (Lemma 8.7) at hand we an now

use the ompositional apabilities of UC: We de�ne an evaluation ontext C[�] :=
νioka iokb .(SCA|SCB|�) where SCA and SCB are the proesses from De�nition 8.6. Sine

C meets the requirements of Theorem 5.37 NSL ≤ FKE implies C[NSL] ≤ C[FKE ]. Sine
C[FKE ] = SC and SC ≤ FSC we have, by transitivity of ≤ (Lemma 4.5), C[NSL] ≤ FSC .

We did onstrut a seure hannel from a PKI using the NSL protool. More interest-

ing than this result is the way we ahieved it: We did not have to analyze the omplete

system C[NSL] in one piee but ould replae the NSL protool with an idealized fun-

tionality. This illustrates two striking advantages of the UC approah:

• The fat that NSL realizes an ideal key exhange an be re-used for seurity proofs

of further systems.

• We annot only plug NSL into C but any protool that realizes a seure key exhange

(e.g., if no PKI is available and thus NSL is not an option).

Instead of one monolithi seurity proof for C[NSL] we end up with smaller proofs and

results whih an be used �exibly. Furthermore, to split the seurity analysis of a omplex

system into smaller parts might be the only feasible option to takle it at all.

8.3 Generating many keys from one

While the example until now illustrates omposition and the power of UC, C[NSL] only
realizes a single-use seure hannel. To transfer multiple messages, we ould just use

onurrent omposition to have !!C[NSL] ≤ !!FSC . However, the resulting protool uses

one instane of NSL per message, and � sine NSL ontains FPKI , another PKI for eah

message that is sent. This is learly unrealisti. To get rid of this overhead we want to

have all the instanes of SC to jointly use just one key exhange FKE , i.e., we want to

use the previously mentions joined state tehnique here. Towards this goal we model a

wrapper protool KE
∗
whih uses one key exhange to emulate multiple key exhanges

(from a key k it derives session keys hash((sid , k)) where sid is the session id). Formally,

we de�ne KE
∗
as follows and then show KE

∗ ≤ !!FKE .

De�nition 8.8

KE
∗
A := io′ka(xk).!!xsid

ioka〈hash((xsid , xk))〉

KE
∗
B := io′kb(xk).!!xsid

iokb〈hash((xsid , xk))〉

KE
∗ := νio′ka io

′
kb .(KE

∗
A | KE∗

B | F ′
KE )

where F ′
KE := FKE{io′ka/ioka , io

′
kb/iokb}.
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Lemma 8.9 KE
∗ ≤ !!FKE .

Proof. Let S := netdelA().!!net
′
delA〈〉 | netdelB ().!!net ′delB 〈〉. Here we use the shorthand

t〈〉 for t〈empty〉. Let n := net ′delAnet
′
delB . Let σ := {net ′delA/netdelA,net

′
delB/netdelB}.

We have

KE
∗ (i)

≈ νk.netdelA().!!xsid
ioka〈hash((xsid , k))〉 | netdelB ().!!xsid

iokb〈hash((xsid , k))〉
(ii)

≈ νk.netdelA().!!xsid
νnet ′delA.(net

′
delA〈〉 | net

′
delA().ioka〈hash((xsid , k))〉)

| netdelB ().!!xsid
νnet ′delB .(net

′
delB 〈〉 | net

′
delB ().iokb〈hash((xsid , k))〉)

(iii)

≈ νk.νnet ′delA.netdelA().(!!xsid
net ′delA〈〉 | !!xsid

net ′delA().ioka〈hash((xsid , k))〉)

| νnet ′delB .netdelB ().(!!xsid
net ′delB 〈〉 | !!xsid

net ′delB ().iokb〈hash((xsid , k))〉)
(iv)

≈ νk.νnet ′delA.(netdelA().!!xsid
net ′delA〈〉 | !!xsid

net ′delA().ioka〈hash((xsid , k))〉)

| νnet ′delB .(netdelB ().!!xsid
net ′delB 〈〉 | !!xsid

net ′delB ().iokb〈hash((xsid , k))〉)
(v)

≈ νn.
(
νk.!!xsid

(
net ′delA().ioka〈hash((xsid , k))〉 | net

′
delB ().iokb〈hash((xsid , k))〉

)
| S
)

(vi)

≈ νn.(!!xsid
νk.(net ′delA().ioka〈k〉 | net

′
delB ().iokb〈k〉) | S)

= νn.(!!FKE σ | S)

Here (i) uses two appliation of Lemma 3.3, the �rst with C := netdelA().�, n := io′ka ,

and t := k, the seond with C := netdelB ().�, n := io′kb , and t := k. (And it uses

Lemma 2.7, so that we an apply Lemma 3.3 to a subproess instead of the whole pro-

ess.)

And (ii) uses Lemma 3.3 with C := � to show ioka〈hash((xsid , k))〉 ∼∼∼
νnet ′delA.(net

′
delA〈〉 | net ′delA().ioka〈hash((xsid , k))〉 and iokb〈hash((xsid , k))〉 ∼∼∼

νnet ′delB .(net
′
delB 〈〉 | net

′
delB ().iokb〈hash((xsid , k))〉.

And (iii) uses Lemma 3.2 (ii) and Lemma 5.36 and Lemma 5.35.

And (iv) uses the following laim (proven below) twie. First with n := net ′delA,

m := netdelA, Q := ioka〈hash((xsid , k))〉. Then with n := net ′delB , m := netdelB , Q :=
iokb〈hash((xsid , k))〉.

Claim 4 For names n,m, and for any proess Q, we have νn.m().(!!xn〈〉 | !!xn().Q) ≈
νn.((m().!!xn〈〉) | !!xn().Q).

(Intuitively, this laim holds beause !!xn().Q annot perform any observable ations

until !!xn〈〉 is exeuted. So it makes no di�erene whether both !!xn().Q and !!xn〈〉 wait
for the input on m to our, or whether only !!xn().Q waits for it.)

And (v) follows from the de�nition of ≡ and Lemma 5.36.

Finally, (vi) follows from the following laim (proven below):

Claim 5 For any proess P , we have νk.!!xP{hash((x, k))/k} ≈ !!xνk.P .
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Thus we have derived KE
∗ ≈ νn.(!!FKE σ | S). This shows KE∗ ≤ !!FKE . It remains

to show the two laims.

To show Claim 4, onsider the following relation:

R :=
{
E[νn.m().(

∏

x∈SID

n〈〉 |
∏

x∈SID

n().Q((x)))],

E[νn.(m().
∏

x∈SID

n〈〉 |
∏

x∈SID\S

n().Q((x)) |
∑

x∈S

n().Q((x)))]
}
∪ ≈

up to strutural equivalene. Here E ranges over evaluation ontexts, and S over �nite

subsets of SID . n,m,Q are from the statement of the lemma.

∑
x∈S P stands short for

P{s1/x}| . . . |P{sk/x} with S =: {s1, . . . , sk}. I.e.,

∑
x∈S is almost the same as

∏
x∈S ,

exept that

∑
x∈S is syntati sugar (and only makes sense for �nite S) while

∏
x∈S is a

proper onstrut in the syntax of produt proesses.

We show that R is a bisimulation:

• If (A,B) ∈ R and A ↓M , then B ↓M :

In the ase A ≈ B, the statement is immediate. We an thus assume A ≡
E[νn.m().(

∏
x∈SID n〈〉 |

∏
x∈SID n().Q((x)))] and B ≡ E[νn.(m().

∏
x∈SID n〈〉 |∏

x∈SID\S n().Q((x)) |
∑

x∈S n().Q((x)))].

In the argument to E, there are no unproteted outputs. Thus the output on M
is in E and thus B ↓M trivially follows.

• If (A,B) ∈ R and B ↓M , then A ↓M : Analogous to the previous ase.

• If (A,B) ∈ R and A→ A′
, then there is a B′

with B →∗ B′
and (A′, B′) ∈ R:

In the ase A ≈ B, the statement is immediate. We an thus assume A ≡
E[νn.m().(

∏
x∈SID n〈〉 |

∏
x∈SID n().Q((x)))] and B ≡ E[νn.(m().

∏
x∈SID n〈〉 |∏

x∈SID\S n().Q((x)) |
∑

x∈S n().Q((x)))].

If A→ A′
is a redution within E, then let B → B′

be the orresponding redution,

and then (A′, B′) ∈ R.

Otherwise, A → A′
is a ommuniation on m between E and the input m() in its

argument, hene A′ ≡ E′[νn.(
∏

x∈SID n〈〉 |
∏

x∈SID n().Q((x)))]. And B → B′ :=
E′[νn.(

∏
x∈SID n〈〉 |

∏
x∈SID\S n().Q((x)) |

∑
x∈S n().Q((x)))].

From Lemma 3.2 (ix), we have A′ ≈ B′
, hene (A′, B′) ∈ R.

• If (A,B) ∈ R and B → B′
, then there is a A′

with A→∗ A′
and (A′, B′) ∈ R:

In the ase A ≈ B, the statement is immediate. We an thus assume A ≡
E[νn.m().(

∏
x∈SID n〈〉 |

∏
x∈SID n().Q((x)))] and B ≡ E[νn.(m().

∏
x∈SID n〈〉 |∏

x∈SID\S n().Q((x)) |
∑

x∈S n().Q((x)))].

If B → B′
is a redution within E, or if B → B′

is a ommuniation on m between

E and m() in its argument, then the reasoning is as in the previous ase.
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Otherwise, we have that B → B′
is a redution of the seond produt, i.e. B′ ≡

E[νn.(m().
∏

x∈SID n〈〉 |
∏

x∈SID\S′ n().Q((x)) |
∑

x∈S′ n().Q((x)))] with S′ := S \

{t} for some t ∈ SID \ S. Then (A′, B′) ∈ R with A′ := A.

• If (A,B) ∈ R, then (E[A], E[B]) ∈ R:

Immediate from the de�nition of R.

The statement of the laim is equivalent to

P1 := νn.m().(
∏

x∈SID

n〈〉 |
∏

x∈SID

n().Q((x))) ≈ νn.((m().
∏

x∈SID

n〈〉) |
∏

x∈SID

n().Q((x)) =: P2.

And this follows from the fat that R is a bisimulation sine (P1, P2) ∈ R. Thus Claim 4

is shown.

To show Claim 5, onsider the following relation:

R :=
{(
νnk.Qσ |

∏

x∈S

P{hash((x, k))/k}, νn kσ.Q |
∏

x∈S

νk.P
)}

up to strutural equivalene. Here k /∈ fn(S) is an arbitrary name, S ⊆ SID is a set of

terms, σ is a (�nite) substitution mapping names to distint (with respet to =E) terms

hash((t, k)) with t ∈ SID \ S, kσ = domσ, kσ ∩ fn(P, S) = ∅, n is a list of names, and

Q is an arbitrary proess with k /∈ fn(Q).
We show that R is a bisimulation:

• If (A,B) ∈ R and A ↓M then B ↓M :

Sine k and kσ are bound names, we have that M does not ontain either of them.

But only terms ontaining k or kS are di�erent in A and B. Thus B ↓M .

• If (A,B) ∈ R and B ↓M then A ↓M :

Analogous.

• If (A,B) ∈ R and A→ A′
, then there is a B′

with B →∗ B′
and (A′, B′) ∈ R:

If the redution is

∏
x∈S P{hash((x, k))/k} → P{hash((t, k))/k, t/x} |∏

x∈S′ P{hash((x, k))/k} with S′ := S \ {t}, then we have B →∗ B′
and (A′, B′) ∈

R with B′ := νnkσ′ .Q | P{kt/k, t/x} |
∏

x∈S′ νk.P and σ′ := σ ∪ {kt 7→ H((t, k))}
for some fresh name kt. Notie that the terms in the range of σ′ are still distint

beause S ⊆ SID ontains only distint terms, and t ∈ SID \ S.

If the redution is a redution of Qσ → Q′
, then it is easy to see (by heking,

in partiular, for all destrutors that f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ)) that Q →
Q′σ−1

. From this it follows that B →∗ B′
and (A,B) ∈ R with B′ := νnkσ.Q

′σ−1 |∏
x∈S νk.P .
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• If (A,B) ∈ R and B → B′
, then there is a A′

with A→∗ A′
and (A′, B′) ∈ R:

If the redution is

∏
x∈S νk.P → νk.P{t/x} |

∏
x∈S′ νP with S′ := S \{t}, then we

have (A′, B′) ∈ R with A′ := νnk.(Q | P{H((t, k))/k})σ |
∏

x∈S′ P{H((x, k))/k}
and B′ ≡ νnkσ′ .Q | P{kt/k} |

∏
x∈S′ νk.P and σ′ := σ∪{kt 7→ H((t, k))} and some

fresh name kt. Notie that the terms in the range of σ′ are still distint beause

S ⊆ SID ontains only distint terms, and t ∈ SID \ S.

If the redution is a redution of Q → Q′
, then it is easy to see (by heking, in

partiular, for all destrutors that f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ)) that Qσ → Q′σ.
From this it follows that (A,B) ∈ R with A′ := νnk.Q′σ |

∏
x∈S P{hash((x, k))/k}.

• If (A,B) ∈ R and E is an evaluation ontext, then (E[A], E[B]) ∈ R:

Then A = νnk.Qσ |
∏

x∈S P{hash((x, k))/k} and B = νnkσ.Q |
∏

x∈S νk.P .
Without loss of generality, k, kσ /∈ fn(E) ∪ fn(E). (Otherwise we ould replae

k, kσ by other names in A,B.) There is a proess Q′
and a list of names n′ suh

that E[P ] ≡ νn′.(P |Q′) for all P . Then

(E[A], E[B]) ≡
(
νn′ nk.(Q|Q′)σ |

∏

x∈S

P{hash((x, k))/k}, νn′ nkσ.(Q|Q′) |
∏

x∈S

νk.P
)
∈ R.

Sine (νk.
∏

x∈SID P{hash((x, k))/k},
∏

x∈SID νk.P ) ∈ R, we have

νk.!!xP{hash((x, k))/k} ≈ νk.
∏

x∈SID P ((x)){hash((x, k))/k} ≈
∏

x∈SID νk.P ((x)) ≈
!!νk.P . This shows Claim 5. �

Analogously to the single session ase we de�ne a suitable ontext C∗
by replaing

F ′
KE in KE

∗
with � and have

C∗[NSL] ≤ C∗[F ′
KE ] = KE

∗ ≤ !!FKE

Furthermore, !!SC ≈ νioka iokb .(!!SCA|!!SCB|!!FKE ) (by Lemmas 5.35,5.36). Hene

νioka iokb .(!!SCA|!!SCB |C
∗[NSL])

≤ νioka iokb .(!!SCA|!!SCB |!!FKE )

≤ !!SC ≤ !!FSC .

Finally, we have a protool whih realizes multiple seure hannels while invoking the

NSL protool and using only one PKI.

9 Virtual primitives

In this setion, we present a tehnique for deriving seurity of protools in the symboli

UC model that is spei� to the symboli model. No analogue in the omputational

world seems to exist. The idea is the following: When onstruting UC seure pro-

tools, it is often neessary to inlude spei� �trapdoors� that allow the simulator to

extrat or modify ertain information. For example, when onstruting a simulator for
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a ommitment sheme, we need to inlude in the protool some way for the simulator

to extrat the value of the ommitment when given a ommitment by the environment

(extratability), or to hange the ontent of a ommitment when produing a ommit-

ment for the environment (equivoality), see [CF01℄. These additional trapdoors often

make the protools more omplex, and they often also need more omplex ryptographi

primitives. A simple ommitment protool in whih the ommitter just sends hash(m, r)
for message m and randomness r is not UC seure beause the simulator annot extrat

or equivoke. Instead, one would need to assume a speial hash funtion that takes an

additional parameter crs (the ommon referene string) hash(crs ,m, r) in suh a way

that given a suitably hosen �fake� crs , one an �nd ollisions in hash or extrat m from

hash(crs ,m, r). With suh a hash funtion, one an onstrut a UC seure ommitment

relatively easily (see De�nition 9.3 below). However, now our protool uses a onsider-

ably more omplex primitive than a simple hash funtion. And ertainly ommon hash

funtions suh as SHA-3 do not have these properties.

This leads to a strange situation: We have a protool that we an only prove seure

using a hash funtion that has additional weaknesses (namely that given a �bad� rs, one

an heat). One might be tempted to state that if the protool is seure for suh weak

hash funtions, it should in partiular be seure for good hash funtions. Unfortunately,

suh reasoning does not work in the omputational setting: We annot just remove the

existene of trapdoors from the hash funtion � if we do so, we have a ompletely di�erent

hash funtion and our seurity proof makes no laims about that funtion.

In the symboli world, things are di�erent. Here it turns out that we an indeed

�rst analyze a protool using a hash funtion with trapdoors, and then remove these

trapdoors in a later step, still preserving seurity. We all this approah the �virtual

primitives� approah, beause we use primitives (in this example a hash funtion with

trapdoors) that do not need to atually exist, and that are removed in the �nal protool.

In a nutshell, the virtual primitives approah when trying to realize a funtionality F
(e.g., a ommitment) works as follows:

• First, identify a symboli model Mreal ontaining ryptographi primitives (e.g. a

hash funtion) that should be used in the �nal protool.

• Extend Mreal by additional onstrutors, destrutors, or equality rules, all the

resulting model Mvirt . The extension Mvirt should be �safe� in the sense that in

Mvirt an adversary will have at least as muh power as in Mreal (this will be made

formal in Setion 9.2).

• Design a protool P . Show that P emulates F with respet to Mvirt .

• Compose P with other protools, leading to a omplex protool C[P ] ≤ C[F ] ≤ G
(with respet to Mvirt) where G is some desired �nal goal, e.g., some rypto-heavy

voting protool.

• Property preservation guarantees that any property ℘ that holds for G also holds

for C[P ] (with respet to Mvirt). Sine Mvirt only makes adversaries stronger, ℘
also holds for C[P ] with respet to Mreal .

• Summarizing, we have onstruted a protool C[P ] in a modular way suh that C[P ]
uses the symboli model Mreal (without any trapdoors) and has all the seurity
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properties of the funtionality G.
The virtual primitive approah is not limited to ommitments. But in the following

setions, we illustrate it in the ase of a ommitment protool. Note however, that the

main theorem that allows us to onlude that Mvirt -seurity implies Mreal -seurity is

formulated for general safe extensions.

A few words are in order why the virtual primitives approah works in the symboli

setting. What is the spei� property of the symboli model � in ontrast to the om-

putational one � that makes it possible? In our interpretation, this is due to the fat

that a primitive (like hashes) in the symboli world is a onrete objet (i.e., a partiular

onstrutor with ertain redution rules and equalities) while in the omputational world

it is a lass of objets (hash funtions) that are desribed by some negative properties

(�funtions suh that the adversary annot. . . �). Therefore in the symboli world, it is

possible to formally ompare exeutions using di�erent kinds of a primitive (e.g., hashes

with and without trapdoors); exeutions in one setting an be mapped into exeutions in

the other setting by rewriting the terms sent around. In ontrast, in the omputational

setting, this is not possible: a seurity result for hash funtions with trapdoors has no

impliations for hash funtions without trapdoors � these two are ompletely di�erent

mathematial funtions on bitstrings, and it is not possible to rewrite an exeution that

uses one hash funtion into an exeution using another (in partiular if the adversary

makes his ations depend on individual bits of the hashes). This di�erene between the

symboli and the omputational setting seems to be the reason why virtual primitives

work in the symboli setting.

Related approahes in the omputational model. Although virtual primitives

as desribed above are restrited to the symboli setting, somewhat related tehniques

do exist in the omputational model. [PS04, BS05℄ show how to irumvent UC im-

possibility results (suh as the impossibility of OT, ommitment, or general multi-party

omputation without trusted setup) by giving the simulator additional power. Namely

the simulator is allowed to run in (slightly) superpolynomial time. This is in some sense

similar to giving the simulator aess to additional onstrutors/destrutors for extra-

tion/equivoation as we do. Yet, there are three ruial di�erenes to our setting: First,

they an only use primitives that an atually exist omputationally. For example, even a

superpolynomial-time simulator annot invert a �xed-length hash funtion, as part of the

input is information-theoretially lost. In ontrast, we an add arbitrary properties to,

e.g., hash funtions by introduing new equations in the symboli model. Seond, their

�nal protools have to use whatever primitives have been introdued for proof purposes;

it is not possible to remove additional properties in the end as done in our approah.

Third, their protools involve advaned ryptographi tehniques whih makes the pro-

tools onsiderably more involved and, onsequently, ine�ient. On the other hand, of

ourse, protools designed with our tehniques are only proven seure in the symboli

model but lak a proof in the omputational model � we believe therefore that our and

their approahes are inomparable with respet to their advantages and disadvantages.
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fun hash/2.

fun empty/0.

fun fake/3.

fun fakeH/2.

fun rseqv/1.

fun rsext/1.

equation hash(rseqv(n),(m,fake(n,m,r))) = fakeH(n,r).

redu extrat(n,hash(rsext(n),(m,r))) = m.

Figure 12: Virtual primitives example: Proverif ode for the symboli model

(virtprim-model.pv, see [BU13℄)

9.1 Realizing ommitments

For simpliity, we formulate a ommitment funtionality where the adversary is not

informed that a ommitment takes plae (when both Alie and Bob are honest). Of

ourse, suh a funtionality an only be realized if we assume perfetly seure hannels

between Alie and Bob that do not even allow the adversary to notie or blok messages.

If our protools were to use seure hannels where the adversary an notie and blok

ommuniation, we would instead realize a somewhat weaker funtionality whih noti�es

the adversary

15

(the resulting hanges in the proof are orthogonal to the issues of this

hapter).

De�nition 9.1 (Commitment) FCOM := iocoma (xm).(iocomb〈〉|ioopena ().ioopenb〈xm〉).

Symboli model. The symboli model Mreal has onstrutors hash/2, empty/0, and
(·, ·) (pairs) � f/n means f has arity n �, has destrutors fst , snd , has no equalities, and

has the rewrite rules for fst , snd , equals presribed by De�nition 2.5. This model Mreal is

quite standard and does not use any ryptography exept hash funtions (hash is binary

for onveniene only).

As explained above, to onstrut UC-seure ommitments, we need additional �trap-

doors� in our equational theory. Let Mvirt be the symboli model Mreal with the follow-

ing additions: Construtors fake/3, fakeH /2, crseqv/1, crsext/1, destrutor extract/2,
equation hash(crseqv(xn), (xm, fake(xn, xm, xr))) =E fakeH (xn, xr), and rewrite rule

extract(xn, hash(crsext(xn), (xm, xr))) → xm.

The Proverif ode for this symboli model is given in Figure 12.

Notie that if we have a CRS crseqv(n) and know n, we an open fakeH (n, r) to

arbitrary values. Similarly, if the CRS is crsext(n) and we know n, we an extrat m
from hash(crsext(n), (m, r)). These two fats allow us to onstrut a simulator that does

equivoation and extration.

15

Namely, FCOM := iocoma(xm).(netcoma〈〉|netcomb().iocomb〈〉|ioopena().(netopena 〈〉|netopenb().
ioopenb〈xm〉))
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Note that we introdued two di�erent CRS-onstrutors for faking, crsext

and crseqv . It would be tempting to use only one of them, i.e., use the

equation hash(fakecrs(x), (y, fake(x, y, z))) =E fakeH (x, z) and the redution rule

extract(x, hash(fakecrs(x), (y, z))) → y. But then we would have for any terms k,m, r
that extract(k, fakeH (k, r)) =E extract(k, hash(fakecrs(k), (m, r))) → m, so by omput-

ing extract(k, fake(k, r)) the adversary an derive any term m, thus the adversary will

know all serets. This is learly not a sensible symboli model.

The ommitment protool. The protool we onstrut uses a rs, so we �rst need to

de�ne the rs funtionality FCRS that gives a random non-seret value k to Alie, Bob,

and the adversary.

De�nition 9.2 (Common referene string) FCRS := νk.iocrsa〈k〉 | iocrsb〈k〉 | netcrs〈k〉.

Our protool is then as expeted. To ommit to a message xm, Alie fethes the rs
xcrs , piks a random r, and sends h := hash(xcrs , (xm, r)) to Bob. To unveil, Alie sends

(xm, r), so that Bob an hek whether h indeed ontained these values. We all Alie's

part of the protool COMA and Bob's part COMB .

De�nition 9.3 (Commitment protool)

COMA := iocrsa(xcrs).iocoma (xm).

νr.
(
net1〈hash(xcrs , (xm, r))〉

|ioopena ().net2〈(xm, r)〉
)

COMB := iocrsb(xcrs).net1(xh).
(
iocomb〈〉|net2((xm, xr)).

if xh = hash(xcrs , (xm, xr)) then ioopenb〈xm〉
)

COM := νiocrsa iocrsbnet1net2.(COMA|COMB |FCRS )

To show that COM is a seure ommitment protool, we need to show the following

lemma (f. also the disussion on how to model orruptions in Setion 4):

Lemma 9.4 With respet to Mvirt , we have

(i) Unorrupted ase: COM ≤ FCOM .

(ii) Alie orrupted: νiocrsb .(COMB |FCRS{
netcrsa
iocrsa

}) ≤ FCOM {netcoma

iocoma
,
netopena
ioopena

}

(iii) Bob orrupted: νiocrsa .(COMA|FCRS{
netcrsb
iocrsb

}) ≤ FCOM {netcomb

iocomb
,
netopenb
ioopenb

}.

In the proof, we show the various observational equivalenes by a sequene of rewriting

steps on the protool, interspersed with automated Proverif proofs for the steps that

atually involve the symboli model (i.e., we do not have to manually deal with the

omplex symboli model Mvirt).

We split this lemma into the following three lemmas:

Lemma 9.5 (Commitment � unorrupted ase) COM ≤ FCOM .
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Proof.

COM ≡ νiocrsa iocrsbnet1net2 k r. iocrsa〈k〉 | iocrsb〈k〉 | netcrs〈k〉

| iocrsa(xcrs).iocoma (xm).
(
net1〈hash(xcrs , (xm, r))〉 | ioopena ().net2〈(xm, r)〉

)

| iocrsb(xcrs).net1(xh).
(
iocomb〈〉|net2((x

′
m, xr)).

if xh = hash(xcrs , (x
′
m, xr)) then ioopenb〈x

′
m〉
)

(i)

≈ ν net1net2 k r. netcrs〈k〉

| iocoma(xm).
(
net1〈hash(k, (xm, r))〉 | ioopena ().net2〈(xm, r)〉

)

| net1(xh).
(
iocomb〈〉|net2((x

′
m, xr)).

if xh = hash(k, (x′m, xr)) then ioopenb〈x
′
m〉
)

(ii)

≈ ν net2 k r. netcrs〈k〉

| iocoma (xm).
(
iocomb〈〉 | net2((x

′
m, xr)).

if hash(k, (xm, r)) = hash(k, (x′m, xr)) then ioopenb〈x
′
m〉

| ioopena ().net2〈(xm, r)〉
)

(iii)

= νnet2 k r. netcrs〈k〉

| iocoma (xm).
(
iocomb〈〉 | net2(xtmp).let (x

′
m, xr) = z in

if hash(k, (xm, r)) = hash(k, (x′m, xr)) then ioopenb〈x
′
m〉

| ioopena ().net2〈(xm, r)〉
)

(iv)

≈ ν k r. netcrs〈k〉

| iocoma (xm).
(
iocomb〈〉 | ioopena (). let (x′m, xr) = (xm, r) in

if hash(k, (xm, r)) = hash(k, (x′m, xr)) then ioopenb〈x
′
m〉

)

(v)

≈ νk r. netcrs〈k〉 | iocoma (xm).
(
iocomb〈〉 | ioopena (). ioopenb〈xm〉

)

≡ FCOM | S with S := νk r.netcrs〈k〉

Here (i) uses two invoations of Lemma 3.3, one with n := iocrsa , t := k, and x := xcrs ,
and one with n := iocrsb , t := k, and x := xcrs .

And (ii) uses one invoation of Lemma 3.3 with n := net1, x := xh, and t :=
hash(k, (xm, r)).

And (iii) uses the fat that t(p).P is syntati sugar for t(z).let p = z in P for a

pattern p and a fresh variable z.
And (iv) uses one invoation of Lemma 3.3 with n := net2, x := xtmp , and t :=

(xm, r). (And it uses Lemma 2.7, so that we an apply Lemma 3.3 to a subproess

instead of the whole proess.)

And (v) uses several invoations of Lemma 3.2 (v) to evaluate the let- and the if-

statement.

So COM ≈ FCOM | S for some S with IO ∩ fn(S) = ∅. Hene COM ≤ FCOM . �

Lemma 9.6 (Commitment � Alie orrupted)

νiocrsb .(COMB |FCRS{
netcrsa
iocrsa

}) ≤ FCOM {netcoma

iocoma
,
netopena
ioopena

}
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free netrs,netrsa,net1,net2,ioomb,ioopenb.

proess

new k;

out(netrsa,hoie[k,rsext(k)℄) |

out(netrs,hoie[k,rsext(k)℄) |

in(net1,xh);

out(ioomb,empty) |

in(net2,(xm,xr));

if xh = hash(hoie[k,rsext(k)℄,(xm,xr)) then

out(ioopenb,hoie[xm,extrat(k,xh)℄)

Figure 13: Virtual primitives example: Proverif ode for orrupted Alie

(virtprim-aorr.pv, see [BU13℄). (Has to be pre�xed with the ode from Figure 12.)

Proof. We have

νiocrsb .(COMB |FCRS{
netcrsa
iocrsa

})

(i)

≈ νk.netcrsa〈k〉 | netcrs〈k〉 | net1(xh).
(
iocomb〈〉|

net2((xm, xr)).if xh = hash(k, (xm, xr)) then ioopenb〈xm〉
)

(ii)

≈ νk.netcrsa〈crsext(k)〉 | netcrs〈crsext(k)〉 | net1(xh).
(
iocomb〈〉|

net2((xm, xr)).if xh = hash(crsext(k), (xm, xr)) then ioopenb〈extract(k, xh)〉
)

(iii)

≈ νk.netcrsa〈crsext(k)〉 | netcrs〈crsext(k)〉 | net1(xh).νnetopena .
(
iocomb〈〉|netopena ().ioopenb〈extract(k, xh)〉|

net2((xm, xr)).if xh = hash(crsext(k), (xm, xr)) then netopena 〈〉
)

(iv)

≈ νnetopena k.netcrsa〈crsext(k)〉 | netcrs〈crsext(k)〉 | net1(xh).
(
iocomb〈〉|netopena ().ioopenb〈extract(k, xh)〉|

net2((xm, xr)).if xh = hash(crsext(k), (xm, xr)) then netopena 〈〉
)

(v)

≈ νnetcoma netopenak.netcrsa〈crsext(k)〉 | netcrs〈crsext(k)〉 | net1(xh).
(
netcoma 〈extract(k, xh)〉|

net2((xm, xr)).if xh = hash(crsext(k), (xm, xr)) then netopena 〈〉
)
|

netcoma (x
′
m).
(
iocomb〈〉|netopena ().ioopenb〈x

′
m〉
)

≡ νnetcoma netopena .(FCOM {netcoma

iocoma
,
netopena
ioopena

}|S) for some S with IO ∩ fn(S) = ∅.

Here (i) uses Lemma 3.3 with n := iocrsb , C := νk.netcrsa〈k〉 | netcrs〈k〉 | �, x := xcrs ,
and t := k.

And (ii) is shown using Proverif, the required ode is given in Figure 13. Note that in

the rhs of (ii), we have replaed all ourrenes of the CRS k by crsext(k), and instead

of outputting xm in the end, we output extract(k, xh).
And (iii) uses Lemma 3.3 (in the opposite diretion) with n :=

netopena , Q := ioopenb〈extract (k, xh)〉, and C := iocomb〈〉|net2((xm, xr)).
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if xh = hash(crsext(k), (xm, xr)) then �. (And it uses Lemma 2.7, so that we an

apply Lemma 3.3 to a subproess instead of the whole proess.)

And (iv) uses Lemma 3.2 (ii) to swap νnetopena and net1(xh). (And Lemma 2.7 to

apply Lemma 3.2 (ii) to a subproess.)

And (v) uses Lemma 3.3 (in the opposite diretion) with n := netcoma , x := x′m,
t := extract(k, xh), and Q := iocomb〈〉|netopena ().ioopenb〈x

′
m〉
)
.

So we have νiocrsb .(COMB |FCRS{
netcrsa
iocrsa

}) ≈ νnetcomanetopena .(FCOM {netcoma

iocoma
,
netopena
ioopena

}|S)

for some S with IO ∩ fn(S) = ∅. Hene νiocrsb .(COMB |FCRS{
netcrsa
iocrsa

}) ≤

FCOM {netcoma

iocoma
,
netopena
ioopena

}. �

Lemma 9.7 (Commitment � Bob orrupted)

νiocrsa .(COMA|FCRS{
netcrsb
iocrsb

}) ≤ FCOM {netcomb

iocomb
,
netopenb
ioopenb

}.

Proof. We have

νiocrsa .(COMA|FCRS{
netcrsb
iocrsb

})

(i)

≈ νk.netcrsb〈k〉 | netcrs〈k〉 | iocoma (xm).νr.
(
net1〈hash(k, (xm, r))〉|ioopena ().net2〈(xm, r)〉

)

(ii)

≈ νk.netcrsb〈crseqv(k)〉 | netcrs〈crseqv(k)〉 | iocoma (xm).νr.(
net1〈fakeH (k, r)〉|ioopena ().net2〈(xm, fake(k, xm, r))〉

)

(iii)

≈ νk.netcrsb〈crseqv(k)〉 | netcrs〈crseqv(k)〉 | iocoma (xm).νr.

νnetopenb .
(
net1〈fakeH (k, r)〉|ioopena ().netopenb〈xm〉|netopenb(x

′
m).net2〈(x

′
m, fake(k, x

′
m, r))〉

)

(iv)

≈ νnetopenb k r.netcrsb〈crseqv(k)〉 | netcrs〈crseqv (k)〉 | iocoma (xm).(
net1〈fakeH (k, r)〉|ioopena ().netopenb〈xm〉|netopenb(x

′
m).net2〈(x

′
m, fake(k, x

′
m, r))〉

)

(v)

≈ νnetcomb netopenb k r.netcrsb〈crseqv(k)〉 | netcrs〈crseqv(k)〉 | iocoma (xm).(
ioopena ().netopenb〈xm〉|netcomb〈〉

)
|

netcomb().
(
net1〈fakeH (k, r)〉|netopenb(x

′
m).net2〈(x

′
m, fake(k, x

′
m, r))〉

)

≡ νnetcombnetopenb .(FCOM {netcomb

iocomb
,
netopenb
ioopenb

}|S) for some S with IO ∩ fn(S) = ∅.

Here (i) uses Lemma 3.3 with n := iocrsa , C := νk.netcrsb〈k〉 | netcrs〈k〉 | �, x := xcrs ,
and t := k.

And (ii) is shown using Proverif, the required ode is given in Figure 14. Note that in

the rhs of (ii), we have replaed all ourrenes of the CRS k by crseqv(k), and instead

of sending the hash value hash(k, (xm, r)) we send fakeH (k, r) whih does not depend

on xm, and in the end, instead of sending the randomness r, we send fake(k, xm, r).
Intuitively, this replaement is indistinguishable beause our symboli model ontains

the equation hash(crseqv (k), (m, fake(k,m, r))) =E fakeH (k, r).
And (iii) uses Lemma 3.3 (in the opposite diretion) with n := netopenb , x := x′m,

t := xm, Q := net2〈(x′m, fake(k, x
′
m, r))〉, and C := net1〈fakeH (k, r)〉 | ioopena ().�. (And
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free netrs,netrsb,net1,net2,iooma,ioopena.

proess

new k;

out(netrs,hoie[k,rseqv(k)℄) |

out(netrsb,hoie[k,rseqv(k)℄) |

in(iooma,xm);

new r;

out(net1,hoie[hash(k,(xm,r)),fakeH(k,r)℄) |

in(ioopena,x);

out(net2,(xm,hoie[r,fake(k,xm,r)℄))

Figure 14: Virtual primitives example: Proverif ode for orrupted Bob

(virtprim-borr.pv, see [BU13℄). (Has to be pre�xed with the ode from Figure 12.)

it uses Lemma 2.7, so that we an apply Lemma 3.3 to a subproess instead of the whole

proess.)

And (iv) uses Lemma 3.2 (ii) to swap νr and νnetopenb with iocoma (xm). (And

Lemma 2.7 to apply Lemma 3.2 (ii) to a subproess.)

And (v) uses Lemma 3.3 (in the opposite diretion) with n := netcomb , t := empty ,

and Q := net1〈fakeH (k, r)〉 | netopenb(x
′
m).net2〈(x′m, fake(k, x

′
m, r))〉.

So we have νiocrsa .(COMA|FCRS{
netcrsb
iocrsb

}) ≈ νnetcombnetopenb .(FCOM {netcomb

iocomb
,
netopenb
ioopenb

}|S)

for some S with IO ∩ fn(S) = ∅. Hene νiocrsa .(COMA|FCRS{
netcrsb
iocrsb

}) ≤

FCOM {netcomb

iocomb
,
netopenb
ioopenb

}. �

9.1.1 A note on adaptive orruption

We have only modeled stati orruption in our examples, i.e., it is �xed in the be-

ginning of the exeution whih parties are orrupted. If we were to model adaptive

orruption where parties may be orrupted during the protool exeution, we would

fae an additional hallenge (besides the fat that the desriptions of the proesses

would be muh more omplex): Sine the simulator may have to provide the CRS

before he knows whether Alie or Bob will be orrupted, he will not know whether

he should use crseqv(k) or crsext(k) as CRS. And on page 82 we explained why we

annot just replae both crseqv and crseqv by a single onstrutor fakecrs beause

then the adversary would be able to dedue any term. However, this problem an

be solved using the onditional destrutors supported by Proverif 1.87: we an make

sure that the rewrite rule extract(xn, hash(crsext(xn), (xm, xr))) → xm only triggers

if hash(crsext(xn), (xm, xr)) 6=E fakeH (M,M ′) for all M,M ′
. The resulting symboli

model is shown in Figure 15. We an show Lemmas 9.5, 9.6, and 9.7 also using this sym-

boli model by replaing all ourrenes of crseqv and crsext in the simulators by fakecrs .

Proverif still shows all the neessary equivalenes. Although this does not show adaptive
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(* Needs proverif1.87 beta *)

fun hash(bitstring,bitstring):bitstring.

onst empty:bitstring.

fun fake(bitstring,bitstring,bitstring):bitstring.

fun fakeH(bitstring,bitstring):bitstring.

fun fakers(bitstring):bitstring.

equation forall n:bitstring,m:bitstring,r:bitstring;

hash(fakers(n),(m,fake(n,m,r))) = fakeH(n,r).

fun extrat(bitstring,bitstring):bitstring

redu forall n:bitstring,r:bitstring;

extrat(n,fakeH(n,r)) = empty

otherwise forall n:bitstring,m:bitstring,r:bitstring;

extrat(n,hash(fakers(n),(m,r))) = m.

Figure 15: Virtual primitives example: Proverif ode for the symboli model when using

fakecrs onstrutor (virtprim-model-x.pv, see [BU13℄) Note that we use the typed

Proverif syntax here beause Proverif 1.87 does not support onditional destrutors in

the untyped syntax.

seurity, it shows that the simulator does not need to hoose the CRS depending on who

is orrupted, giving hope for the adaptive ase. We leave that ase for future work.

9.2 Removing the virtual primitives

In this setion, we will onsider di�erent symboli models. Sine the relation symbols

→,⇓,≈, ↓,=E et. do not expliitly speify the symboli model, we use the following

onvention: When referring to a symboli model Mi, we write →i,⇓i,≈i, ↓i,=Ei
et. We

say a term (or destrutor term) is an M-term (or M-destrutor term) if it ontains only

onstrutors (and destrutors) from M. We all a proess an M-proess if it ontains

only M-terms and M-destrutor terms.

We have now shown that COM is a seure ommitment protool with respet toMvirt .

However, we would like to dedue seurity of protools using COM with respet to Mreal .

For this, we �rst need to formalize what it means that Mvirt is a safe extension of Mreal :

De�nition 9.8 (Safe extension) We all a symboli model M1 = (Σ1,E1,R1) a safe

extension of a symboli model M2 = (Σ2,E2,R2) i� the following holds:

(i) Σ1 ⊇ Σ2.

(ii) If D is an M2-destrutor term, and M is an M1-term, and D ⇓1 M , then there

exists an M2-term M ′ =E1 M with D ⇓2 M
′
.

(iii) For all M2-destrutor terms D and M2-terms M , we have D ⇓2 M ⇒ D ⇓1 M .
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(iv) For all M2-terms M,M ′
we have M =E1 M

′ ⇔M =E2 M
′
.

The following lemma is relatively easy to show:

Lemma 9.9 Mvirt is a safe extension of Mreal .

Proof. Obviously, Σvirt ⊇ Σreal . So De�nition 9.8 (i) is satis�ed.

We show that De�nition 9.8 (ii) is satis�ed: Let D be an Mreal -destrutor term and

M be an Mvirt -term. Sine Mreal ontains no destrutors, D is an Mreal -term. Thus

D ⇓virt M implies D =M . This implies that M ′ :=M is an Mreal -term and D ⇓real M
′
.

We show that De�nition 9.8 (iii) is satis�ed: Let D be an Mreal -destrutor term and

M be an Mreal -term. Sine Mreal ontains no destrutors, D is an Mreal -term. Thus

D ⇓virt M implies D =M whih implies D ⇓real M .

We show that De�nition 9.8 (iv) is satis�ed: For Mreal -terms M,M ′
, obviously

M =Ereal
M ′

implies M =Evirt
M ′

. We show the opposite diretion: The only equa-

tion in Evirt (namely hash(crseqv (k), (m, fake(k,m, r))) =E fakeH (k, r)) only allows us

to rewrite terms ontaining crseqv or fakeH . Sine M,M ′
are Mreal -terms, they do not

ontain these onstrutors. Hene M =Evirt
M ′

only ifM =M ′
. SoM =Evirt

M ′
implies

M =Ereal
M ′

. �

The following theorem justi�es the above de�nition of safe extensions:

Theorem 9.10 Assume that M1 is a safe extension of M2. Then for all M2-proesses

P,P ′
we have P ≈1 P

′ ⇒ P ≈2 P
′
.

Proof. We �rst show some auxiliary laims:

Claim 1 For all M2-proesses P,P
′
, we have P →2 P

′ ⇒ P →1 P
′
.

We show this laim by indution over the derivation of P →2 P
′
. We distinguish the

following ases:

• Closure under strutural equivalene: In this ase P →2 P
′
has been derived from

P ≡ P̂ →2 P̂
′ ≡ P ′

for M2-proesses P̂ , P̂
′
, and the indution hypothesis implies

P̂ →1 P̂
′
. Thus P ≡ P̂ →1 P̂

′ ≡ P ′
whih implies P →1 P

′
. The laim follows.

• Closure under evaluation ontexts: In this ase P →2 P
′
has been derived from

P = E[P̂ ], P ′ = E[P̂ ′], and P̂ →2 P̂ ′
for some M2-proesses P̂ , P̂

′
and some

M2-evaluation ontext E. The indution hypothesis implies P̂ →1 P̂ ′
. Hene

P = E[P̂ ] →1 E[P̂ ′] = P ′
.

• REPL: In this ase P = !P̂ and P ′ = P̂ |!P̂ . Hene P →1 P
′
.

• COMM: In this ase P = C〈T 〉.P̂ | C ′(x).Q̂ and P ′ = P̂ | Q{T/x} and C =E2 C
′
.

Sine P is an M2-proess, C,C
′
are M2-terms. Sine M1 is a safe extension of

M2, C =E2 C
′
implies C =E1 C

′
. Thus P →1 P

′
. The laim follows.

• LET-THEN: In this ase P = (let x = D in P̂ else Q̂) and P ′ = P̂{M/x} for

some M2-proesses P̂ , Q̂, and some M2-destrutor term D and M2-term M with

D ⇓2 M . Sine P is an M2-proess, D is an M2-destrutor term. Sine M1 is a

safe extension of M2, D ⇓2 M implies that D ⇓1 M . Thus P →1 P
′
. The laim

follows.
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• LET-ELSE: In this ase P = (let x = D in P̂ else Q̂) and P ′ = Q̂ and for all

M2-terms M we have D 6⇓2 M . Sine P is an M2-proess, D is an M2-destrutor

term. If we had D ⇓1 M for some M1-term M , we would have D ⇓2 M
′
for some

M2-term M ′
sine M1 is a safe extension of M2. This ontradits D 6⇓2 M for all

M2-terms M . Thus D 6⇓1 M for all M1-terms M . Hene P →1 P
′
. The laim

follows.

Claim 2 For all M2-proesses P , and all M1-proesses P
′′
with P →1 P

′′
, there exists

an M2-proess P
′
suh that P →2 P

′ ≡E1 P
′′
.

We show this laim by indution over the derivation of P →1 P
′′
. We distinguish the

following ases:

• Closure under strutural equivalene: In this ase P →1 P ′′
has been derived

from P ≡ P̂ →1 P̂
′′ ≡ P ′′

for M1-proesses P̂ , P̂
′′
, and the indution hypothesis

(Claim 2) holds for P̂ →1 P̂
′′
. Sine strutural equivalene does not rewrite terms,

the fat that P is an M2-proess implies that P̂ is an M2-proess. Thus P̂ →1 P̂
′′

implies together with the indution hypothesis that P̂ →2 P
′ ≡E1 P̂

′′
for some

M2-proess P
′
. Thus P ≡ P̂ →2 P

′
whih implies P →2 P

′
and we have P ′ ≡E1

P̂ ′′ ≡ P ′′
whih implies P ′ ≡E1 P

′′
. The laim follows.

• Closure under evaluation ontexts: In this ase P →1 P
′′
has been derived from

P = E[P̂ ], P ′′ = E[P̂ ′′], and P̂ →1 P̂
′′
for some M1-proesses P̂ , P̂

′′
and some

M1-evaluation ontext E. And the indution hypothesis holds for P̂ →1 P̂
′′
. Sine

P is an M2-proess and P = E[P̂ ], we have that P̂ is an M2-proess and E and

M2-evaluation ontext. Thus by indution hypothesis, there exists an M2-proess

P̂ ′
suh that P̂ →2 P̂

′ ≡E1 P̂
′′
. Let P ′ := E[P̂ ′]. Obviously P ′

is an M2-proess.

And P = E[P̂ ] →2 E[P̂ ′] = P ′
and P ′′ = E[P̂ ′′] ≡E1 E[P̂ ′] = P ′

. The laim

follows.

• REPL: In this ase P = !P̂ and P ′′ = P̂ |!P̂ . Sine P is an M2-proess, so is P̂ ,
and hene also P ′ := P ′′

is an M2-proess. Then P →2 P
′
and P ′′ ≡E1 P

′
and the

laim follows.

• COMM: In this ase P = C〈T 〉.P̂ | C ′(x).Q̂ and P ′′ = P̂ | Q̂{T/x} and C =E1 C
′
.

Sine P is an M2-proess, C,C
′
are M2-terms and P̂ , Q̂ are M2-proesses. Sine

M1 is a safe extension of M2, C =E1 C
′
implies C =E2 C

′
. Thus P →2 P

′′
. With

P ′ := P ′′
, the laim follows.

• LET-THEN: In this ase P = (let x = D in P̂ else Q̂) and P ′′ = P̂{M/x} for

some M1-proesses P̂ , Q̂, and some M1-destrutor term D and M1-term M with

D ⇓1 M . Sine P is an M2-proess, P̂ , Q̂ are M2-proesses and D is an M2-

destrutor term. SineM1 is a safe extension ofM2, D ⇓1 M implies thatD ⇓2 M
′

for some M2-term M ′ =E1 M . Let P ′ := P̂{M/x}. Then P ′′ = P̂{M/x} ≡E1

P̂{M ′/x} = P ′
and P →2 P

′
. The laim follows.

• LET-ELSE: In this ase P = (let x = D in P̂ else Q̂) and P ′′ = Q̂ and for all M1-

terms M we have D 6⇓1 M . Sine P is an M2-proess, P̂ , Q̂ are M2-proesses and

D is an M2-destrutor term. Sine M1 is a safe extension of M2, for all M2-terms
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M , D 6⇓1 M implies that D 6⇓2 M . With P ′ := Q̂ = P ′′
, we thus have P ′′ ≡E1 P

′

and P →2 P
′
. The laim follows.

Claim 3 For all M2-proesses P , and all M1-proesses P
′′
with P →∗

1 P
′′
, there exists

an M2-proess P
′
suh that P →∗

2 P
′ ≡E1 P

′′
.

Proof. To show this laim, we show that for all n ≥ 0, all M2-proesses P , and all M1-

proesses P ′′
with P →n

1 P
′′
, there exists an M2-proess P

′
suh that P →∗

2 P
′ ≡E1 P

′′
.

Here→n
1 means exatly n appliations of→. We show this by indution over n. For n = 0,

the statement is trivial. Assume the statement holds for n, we show it for n+1: We have

P →n+1
1 P ′′

hene P →n
1 P̂

′′ →1 P
′′
for some M1-proess P̂

′′
. By indution hypothesis

there exists an M2-proess P̂
′
with P →∗

2 P̂
′ ≡E1 P̂

′′
. Sine P̂ ′ ≡E1 P̂

′′ →1 P
′′
, by

Lemma 3.5, we have P̂ ′ →1 P2 ≡E1 P
′′
for some M1-proess P2. Sine P̂ ′

is an M2-

proess and P̂ ′ →1 P2, by Claim 2, there is anM2-proess P
′
suh that P̂ ′ →2 P

′ ≡E1 P2.

Combining all this, we have

P →∗
2 P̂

′ →2 P
′ ≡E1 P2 ≡E1 P

′′.

Thus P →∗
2 P

′ ≡E1 P
′′
. �

We are now ready to show Theorem 9.10. Let R := {(P,Q) :
P,Q M2-proesses, P ≈1 Q}. We show that R is an M2-simulation (and due to its

symmetry also an M2-bisimulation):

• If (P,Q) ∈ R and P ↓2M for some M2-term M , then Q →∗
2 Q′ ↓2M for some

M2-proess Q
′
.

P ↓2M implies (see Footnote 7) P ≡E2 E[M 〈T 〉.P ′] for some evaluation ontext E
not binding fn(M). This implies P ≡E1 E[M 〈T 〉.P ′] (sine M1 =E2 M2 implies

M1 =E1 M2 for M2-terms M1,M2). Thus P ↓1M . Sine (P,Q) ∈ R, we have that

P ≈1 Q and thus Q→∗
1 Q

′′ ↓1M for some M1-proess Q
′′
. By Claim 3, this implies

that Q →∗
2 Q

′ ≡E1 Q
′′
for some M2-proess Q

′
. Sine Q′′ ≡E1 Q

′′ ↓1M , we have

Q′ ↓1M (this follows immediately using the haraterization from Footnote 7). Sine

Q′ ↓1M , by de�nition of ↓, we have Q′ ≡ E[M ′〈T ′〉.Q̃] for some M1-terms M ′, T ′

with M ′ =E1 M and M1-proess Q̃, and some evaluation ontext not binding

fn(M). Sine Q′
is an M2-proess, E[M ′〈T ′〉.Q̃] is an M2-proess, hene M

′
is

an M2-term. Thus M,M ′
are M2-terms, and M ′ =E1 M . Sine M1 is a safe

extension of M2, this implies M ′ =E2 M . Thus Q′ ≡ E[M ′〈T ′〉.Q̃] implies Q′ ↓2M .

So we have Q →∗
2 Q

′ ↓2M and Q′
is an M2-proess.

• If (P,Q) ∈ R and P →2 P
′
for an M2-proess P

′
, then there exists an M2-proess

Q′
with (P ′, Q′) ∈ R and Q→∗

2 Q
′
:

Sine P,P ′
are M2-proesses, and P →2 P

′
, by Claim 1 we have P →1 P

′
. Sine

(P,Q) ∈ R, we have P ≈1 Q and thus Q →∗
1 Q

′′
for some M1-proess Q

′′ ≈1

P ′
. By Claim 3, there is an M2-proess Q

′
suh that Q′′ ≡E1 Q

′
and Q →∗

2 Q
′
.
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Furthermore, by Lemma 3.2 (iv), we have =E1⊆ ≈1 and trivially ≡⊆≈1, hene

≡E1⊆ ≈1. Thus Q′′ ≡E1 Q
′
implies Q′′ ≈1 Q

′
. Together with Q′′ ≈1 P

′
, we have

P ′ ≈1 Q
′
and thus (P ′, Q′) ∈ R.

• If (P,Q) ∈ R and E is an M2-evaluation ontext, then (E[P ], E[Q]) ∈ R.

Sine (P,Q) ∈ R, we have P ≈1 Q. Furthermore, sine E is an M2-evaluation

ontext, E is also an M1-evaluation ontext. Hene E[P ] ≈1 E[Q] and thus

(E[P ], E[Q]) ∈ R.

Sine R is a M2-bisimulation, R ⊆ ≈2. Thus for M2-terms P,P ′
we have P ≈1 P

′ ⇒
(P,P ′) ∈ R ⇒ P ≈2 P

′
. Theorem 9.10 follows. �

Now we an �nally state the following result that derives seurity of COM with respet

to Mreal in any ontext (we state it generally, though):

Lemma 9.11 Let P,F be Mreal -proesses (representing a protool and an ideal funtion-

ality, e.g., P = COM and F = FCOM ). Let Mvirt be a safe extension of Mreal . Assume

that P ≤virt F .

Let C be an Mreal -ontext whose hole is proteted only by νio for IO-names io, by

parallel ompositions, and by !, and that does not ontain any NET-names in fn(P,F).
Assume that C[F ] ≤virt G for some Mreal -proess G.

Let E1, E2 be Mreal -ontexts satisfying the onditions of Theorem 6.1 (property

preservation).

If E1[G] ≈virt E2[G] then E1[C[P ]] ≈real E2[C[P ]].

Proof. By the omposition theorem (Theorem 5.37), P ≤virt F implies C[P ] ≤virt C[F ].
With transitivity and C[F ] ≤virt G, this implies C[P ] ≤virt G. Then by the property

preservation theorem (Theorem 6.1), E1[G] ≈virt E2[G] implies E1[C[P ]] ≈virt E2[C[P ]].
Sine Mvirt is a safe extension of Mreal , this implies E1[C[P ]] ≈real E2[C[P ]] by

Theorem 9.10. �

9.3 On removing the CRS

Using virtual primitives, we have managed to get rid of the need for trapdoors in our

ommitment protool. However, we still use a ommon referene string. This leads to

the question whether the CRS an also be removed from the protool. We do not answer

that question here, but we give some indiations as to how it might be possible to remove

the CRS, also.

First, the question is whether we an onstrut a UC seure ommitment protool

without using a CRS in the �rst plae (i.e., instead of the protool from Setion 9.1). We

know that this is impossible in the omputational UC setting (no matter what primitives

we use) [CF01℄. Unfortunately, their impossibility result arries over to the symboli

setting:

Lemma 9.12 There are no losed proesses A,B and NET-names net with the following

three properties:
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(i) νnet .(A|B) ≤ FCOM . (Unorrupted ase.)

(ii) A ≤ FCOM {netcomb

iocomb
,
netopenb
ioopenb

}. (Bob orrupted.)

(iii) B ≤ FCOM {netcoma

iocoma
,
netopena
ioopena

}. (Alie orrupted.)

Thus, a UC seure ommitment protool has to be of the form νnet .(A|B|F) for some

funtionality F , e.g., FCRS .

Proof. Assume that there are suh proesses A,B and NET-names net .

Then there are simulators (S0, ϕ0, n0), (SA, ϕA, nA), and (SB, ϕB , nB) suh that

νnet .(A|B) ≈ νn0.(FCOMϕ0|S0) = νn0.(FCOM |S0) (5)

A ≈ νnA.(FCOM {netcomb

iocomb
,
netopenb
ioopenb

}ϕA|SA) = νnA.(FCOM {
net ′

comb

iocomb
,
net′

openb

ioopenb
}|SA)

(6)

B ≈ νnB.(FCOM {netcoma

iocoma
,
netopena
ioopena

}ϕB |SB) = νnB.(FCOM {net ′coma

iocoma
,
net ′opena
ioopena

}|SB)

(7)

for suitable names net ′coma ,net
′
opena ,net

′
comb ,net

′
openb . The equalities use the fat that

FCOM does not ontain any NET-names.

Let

E := νiocoma iocomb ioopena ioopenb .((
νr.
(
iocoma 〈r〉|iocomb().(ioopena 〈〉|ioopenb(x).if x = r then c〈〉)

))
|�
)

where c is a fresh name. Intuitively, this ontext ommits to a fresh none r, waits until
the ommit sueeds, then opens the ommitment and heks whether the unveiled value

is indeed r. For a �good� ommitment sheme, this should always be the ase. Indeed:

By de�nition of FCOM (and using that n0 does not ontain IO-names), we have that

E[νn0.(FCOM |S0)] →∗↓c. By (5) we have E[νnet .(A|B)] ≈ E[νn0.(FCOM |S0)] and thus

E[νnet .(A|B)] →∗↓c.
We now use (6) and (7) to transform E[νnet .(A|B)] into a proess that does not use

the ommitment protool A|B any more, but instead uses two instanes of FCOM :

E[νnet .(A|B)]
(6,7)

≈ E[νnet .(νnA.(FCOM {
net ′

comb

iocomb
,
net ′

openb

ioopenb
}|SA)|νnB .(FCOM {net ′coma

iocoma
,
net ′opena
ioopena

}|SB))]

By moving all restritions up (and potentially renaming names to avoid lashes of bound

variables), we get:

E[νnet .(A|B)] ≈ νnet ′.E[FCOM {
net ′′

comb

iocomb
,
net ′′

openb

ioopenb
}|FCOM {net ′′coma

iocoma
,
net ′′opena
ioopena

}|SAB ] =: P

Here net ′ is the list of all names that were moved up. net ′′coma et are potentially renamed

names, and SAB := SA|SB potentially up to renamings. Note that SAB does not ontain

IO-names.
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We now use several appliation of Lemma 3.3 to simplify P . Eah of the following

observational equivalenes orresponds to one appliation of Lemma 3.3.

P ≡ νnet iocoma iocomb ioopena ioopenbr.

iocoma 〈r〉 | iocomb().(ioopena 〈〉 | ioopenb(x).if x = r then c〈〉)

| FCOM {net ′′coma

iocoma
,
net ′′opena
ioopena

} | FCOM {
net ′′

comb

iocomb
,
net ′′

openb

ioopenb
} | SAB

= νnet iocoma iocomb ioopena ioopenbr.

iocoma 〈r〉 | iocomb().(ioopena 〈〉 | ioopenb(x).if x = r then c〈〉)

| FCOM {net ′′coma

iocoma
,
net ′′opena
ioopena

} | iocoma(xm).(net ′′comb〈〉 | ioopena ().net ′′openb〈xm〉) | SAB

(i)

≈ νnet iocomb ioopena ioopenbr.

net ′′comb〈〉 | ioopena ().net
′′
openb〈r〉 | iocomb().(ioopena 〈〉 | ioopenb(x).if x = r then c〈〉)

| FCOM {net ′′coma

iocoma
,
net ′′opena
ioopena

} | SAB

(ii)

≈ νnet iocomb ioopenbr.

net ′′comb〈〉 | iocomb().(net
′′
openb〈r〉 | ioopenb(x).if x = r then c〈〉)

| FCOM {net ′′coma

iocoma
,
net ′′opena
ioopena

} | SAB

= νnet iocomb ioopenbr.

net ′′comb〈〉 | iocomb().(net
′′
openb〈r〉 | ioopenb(x).if x = r then c〈〉)

| net ′′coma (xm).(iocomb〈〉 | net
′′
opena ().ioopenb〈xm〉) | SAB

(iii)

≈ νnet ioopenbr. net
′′
comb〈〉

| net ′′coma (xm).(net ′′openb〈r〉 | ioopenb(x).if x = r then c〈〉 | net ′′opena ().ioopenb〈xm〉) | SAB

(iv)

≈ νnet r. net ′′comb〈〉

| net ′′coma (xm).(net ′′openb〈r〉 | net ′′opena ().if xm = r then c〈〉) | SAB

Here (i) uses Lemma 3.3 with n := iocoma , t := r, and x := xm.
And (ii) uses Lemma 3.3 with n := ioopena .

And (iii) uses Lemma 3.3 with n := iocomb .

And (iv) uses Lemma 3.3 with n := ioopenb , t := xm, and x := x (and Lemma 3.2 (ii)

to move the νioopenb below the net ′′coma (xm) �rst, and Lemma 2.7, so that we an apply

Lemma 3.3 to a subproess instead of the whole proess.)

Thus we have

E[νnet .(A|B)] ≈ P ≈

νnet r. net ′′comb〈〉 | net
′′
coma (xm).(net ′′openb〈r〉 | net

′′
opena ().if xm = r then c〈〉) | SAB =: P2

Note that in P2, xm is reeived before the fresh none r is revealed. Thus we expet
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that the omparison xm = r will always fail. Indeed:

P2
(∗)

≡ νnet .net ′′comb〈〉 | net
′′
coma (xm).νr.(net ′′openb〈r〉 | net

′′
opena ().if xm = r then c〈〉) | SAB

(∗∗)

≈ νnet .net ′′comb〈〉 | net
′′
coma (xm).νr.(net ′′openb〈r〉 | net

′′
opena ().0) | SAB =: P3

Here (∗) uses Lemma 3.2 (ii) with x := xm to move the restrition νr down, and (∗∗)
uses Lemma 3.8 to replae the if-statement by its else-branh (whih is 0).

Thus we have that E[νnet .(A|B)] ≈ P2 ≈ P3. Furthermore, we showed above that

E[νnet .(A|B)] →∗↓c. But sine c does not our in P3 (we hose it as a fresh name, thus

it also does not our in SAB), we have that P3 →∗↓c annot hold. This is a ontradition
to the observational equivalene E[νnet .(A|B)] ≈ P3. Thus our assumption was wrong

that proesses A,B and NET-names net as in the statement of the lemma exist. �

However, Lemma 9.12 does not exlude that an approah similar to the virtual primi-

tives approah might work: We �rst onstrut a UC seure ommitment protool (again,

ommitments are just one example), build a omplex protool from it using the ompo-

sition theorem, and then show that seurity of the omplex protool implies (non-UC)

seurity of a modi�ation that does not use the CRS. It is likely that this works as the

CRS returned by the CRS funtionality is just a fresh publi name, so instead of the

CRS we should be able to just use some fresh (non-restrited) name a.
There is one subtlety, though: When omposing the ommitment protool P , we end

up with a omplex protool C[P ] that may use multiple instanes of FCRS . In partiular,

if C[P ] ontains !!P , then C[P ] will ontain an unbounded number of FCRS -instanes. So

we annot replae FCRS just by a single name, we will need a way to generate an arbitrary

number of fresh values. The obvious way for this is to use something like hash(a, sid)
instead of the CRS that we get from the FCRS -instane with session-id sid (here a is a

fresh name).

A lemma roughly like the following onjeture should therefore lead to a method for

removing the CRS from a protool that was produed by UC omposition:

Conjeture 9.13 Let hash be a free onstrutor (i.e., not ourring in any equations or

rewrite rules in the symboli models). Let P be a proess. Let E1, E2 be ontexts. Assume

that hash does not our in E1, E2, P . Let a /∈ fn(E1, E2, P ) ∪ bn(E1, E2, P ).
(i) Let P ′

result from P by replaing all subterms �netcrsa(x).Q� by �let x = a in Q�.
Then E1[νnetcrsa .(P |FCRS )] ∼∼∼ E2[νnetcrsa .(P |FCRS )] implies E1[νnetcrsa .(P

′)] ∼∼∼
E2[νnetcrsa .(P

′)].
(ii) Let P ′

result from P by replaing all subterms �(Msid ,netcrsa)(x).Q� by �let x =
hash(a,Msid ) in Q�. Then E1[νnetcrsa .(P |!!FCRS )] ∼∼∼ E2[νnetcrsa .(P |!!FCRS )] im-

plies E1[νnetcrsa .(P
′)] ∼∼∼ E2[νnetcrsa .(P

′)].

Proving (i) is probably onsiderably simpler than proving (ii). An alternative to

proving (ii) ould be to make sure that C[P ] does not ontain FCRS under a !!. This

ould be ahieved if we design a ommitment protool P that does not implement FCOM ,

but !!FCOM (ompare with Setion 8.3). Then a single opy of P would be su�ient in

C[P ].
We leave further exploration of approahes to get rid of the CRS to future researh.
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fun empty/0.

free net2, net3.

let Q = new n; out(io1,n) |

(in(io2,x); if x=n then out(net2,empty)) |

(in(io3,x); if x=n then out(net3,empty)).

proess new io1; new io2; new io3; in(io1,x1); in(io1,x2);

out(io2,x1) | out(io3,hoie[x1,x2℄) | !Q

Figure 16: Proverif ode for showing E1[Q] ≈ E2[Q] in Lemma A.1

(prop-pres-bang1.pv, see [BU13℄).

A Limits for omposition and property preservation

In this setion, we show that the restritions of the omposition theorem are neessary.

More preisely, we show that if P ≤ Q, then not neessarily !P ≤ !Q or io(x).P ≤ io(x).Q
or io〈t〉.P ≤ io〈t〉.Q or νnet .P ≤ νnet .Q or P |R ≤ Q|R (for R that has NET-names

in ommon with P,Q). We show that this is not just a limitation of the omposition

theorem, we show that similar limitations also apply to property preservation. More

preisely, property preservation P ≤ Q,E1[Q] ≈ E2[Q] =⇒ E1[P ] ≈ E2[P ] does not

neessarily hold if E1, E2 ontain a bang (!) over their hole, or an input/output over

their hole, or an if/let over their hole, or a di�erent number of !!'s over their respetive
holes, or restrit NET-names over their holes, or use NET-names.

Example A.1

P := νnm. io1〈n〉 | io2(x).if x = n then net2〈m〉 | io3(x).if x = n then net3〈m〉

Q := νn . io1〈n〉 | io2(x).if x = n then net2〈empty〉 | io3(x).if x = n then net3〈empty〉

E1 := νio1 io2 io3. io1(x1).io1(x2).(io2〈x1〉 | io3〈x1〉) | !�

E2 := νio1 io2 io3. io1(x1).io1(x2).(io2〈x1〉 | io3〈x2〉) | !�

Lemma A.1 Using the notation from Example A.1, we have P ≤ Q, and E1[Q] ≈ E2[Q],
but E1[P ] 6≈ E2[P ].

Proof. We show P ≤ Q: We have P ≈ νnet ′2net
′
3.(Q{

net ′2
net2

,
net ′3
net3

}|S) for S :=

νm.(net ′2(x).net2〈m〉|net ′3(x).net3〈m〉) by two invoations of Lemma 3.3 (�rst with

n := net ′2, x := x, and t := empty , seond with n := net ′3, x := x, and t := empty).

Hene P ≤ Q.
The laim E1[Q] ≈ E2[Q] is shown using Proverif. The Proverif ode is given in

Figure 16
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fun empty/0.

free net2, net3.

private free .

query mess:,.

let P = new n; new m; out(io1,n) |

(in(io2,x); if x=n then out(net2,m)) | (in(io3,x); if x=n then out(net3,m)).

let E2P = new io1; new io2; new io3; in(io1,x1); in(io1,x2);

out(io2,x1) | out(io3,x2) | !P.

let D = in(net2,y1); in(net3,y2); if y1=y2 then out(,empty).

proess D | E2P

Figure 17: Proverif ode for showing that D|E2[P ] →∗↓c does not hold in the proof of

Lemma A.1 (prop-pres-bang2.pv, see [BU13℄).

We now show E1[P ] 6≈ E2[P ]. Let D := net2(y1).net3(y2).if y1 = y2 then c〈empty〉.
Then D | E1[P ] →∗ D | · · · | νm.(net2〈m〉 | net3〈m〉) →∗ νm.(· · · |
if m = m then c〈〉) →∗↓c. Using Proverif, we show that D | E2[P ] →∗↓c does not

hold (for any ontext D not ontaining c). The Proverif ode is given in Figure 17.

E1[P ] ≈ E2[P ] would imply D | E1[P ] ≈ D | E2[P ] whih together with D | E1[P ] →∗↓c
would imply the wrong fat D | E2[P ] →∗↓c. Thus E1[P ] 6≈ E2[P ].

�

Lemma A.2 Using the notation from Example A.1, we have P ≤ Q but not !P ≤!Q.

Proof. From Lemma A.1 we have P ≤ Q and E1[Q] ≈ E2[Q]. Assume !P ≤ !Q. We

an write E1 = E′
1[!�] and E2 = E′

2[!�] for NET-free evaluation ontexts E1, E2. Then

E′
1[!Q] = E1[Q] ≈ E2[Q] = E′

2[!Q] and thus by Theorem 6.1, we have E1[P ] = E′
1[!P ] ≈

E′
2[!P ] = E2[P ]. This is a ontradition to Lemma A.1. Thus the assumption !P ≤ !Q

was wrong. �

Example A.2

P := net〈empty〉

Q := 0

E1 := νio. (io().� | io〈empty〉)

E2 := νio. (io().�)
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Lemma A.3 Using the notation from Example A.2, we have P ≤ Q, and E1[Q] ≈ E2[Q],
but E1[P ] 6≈ E2[P ].

Proof. Obviously, P ≈ Q|S with S := net〈empty〉. Hene P ≤ S.
We show E1[Q] ≈ E2[Q]: We have E1[Q] = νio. (io().0 | io〈empty〉) ≈ 0 by

Lemma 3.3 with n := io and C := �. And E2[Q] = νio.io().0 ≈ 0 by Lemma 3.3

with n := io and C := 0. Hene E1[Q] ≈ E2[Q].
We show E1[P ] 6≈ E2[P ]: We have E1[P ] →∗ νio.net〈empty〉 ↓net . But E2[P ] 6↓net ,

and E2[P ] does not redue. Thus there is no suessor of E2[P ] that emits on net . This

ontradits E1[P ] ≈ E2[P ] by de�nition of observational equivalene. �

Lemma A.4 Using the notation from Example A.2, we have P ≤ Q but not io().P ≤
io().Q.

Proof. From Lemma A.3 we have P ≤ Q and E1[Q] ≈ E2[Q]. Assume io().P ≤ io().Q.
We an write E1 = E′

1[io().�] and E2 = E′
2[io().�] for NET-free evaluation ontexts

E1, E2. Then E′
1[io().Q] = E1[Q] ≈ E2[Q] = E′

2[io().Q] and thus by Theorem 6.1, we

have E1[P ] = E′
1[io().P ] ≈ E′

2[io().P ] = E2[P ]. This is a ontradition to Lemma A.3.

Thus the assumption io().P ≤ io().Q was wrong. �

Example A.3 Let P,Q be as in Example A.2.

E1 := νio. (io〈empty〉.� | io())

E2 := νio. (io〈empty〉.�)

Lemma A.5 Using the notation from Example A.3, we have P ≤ Q, and E1[Q] ≈ E2[Q],
but E1[P ] 6≈ E2[P ].

Lemma A.6 Using the notation from Example A.3, we have P ≤ Q but not

io〈empty〉.P ≤ io〈empty〉.Q.

The proofs of Lemmas A.5 and A.6 are idential to those of Lemmas A.5 and A.6,

exept that io() and io〈empty〉 are exhanged.

Example A.4 Let P,Q be as in Example A.2.

E1 := if true then �

E2 := if false then �

Here true is an equality t = t for an arbitrary losed t (e.g., empty = empty), and false

is an equality t = t′ for arbitrary losed t, t′ with t 6=E t
′
(e.g., empty = (empty , empty)).

Remember that if x = y is syntati sugar for let z = equals(x, y). So this example

is a ounterexample for let-statements.
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Lemma A.7 Using the notation from Example A.4, we have P ≤ Q, and E1[Q] ≈ E2[Q],
but E1[P ] 6≈ E2[P ].

Proof. P ≤ Q was already shown in Lemma A.3. By Lemma 3.2 (v) we have that

E1[P ] ≈ P and E1[Q] ≈ Q = 0 and by Lemma 3.2 (v) we have that E1[P ] ≈ 0 and

E2[Q] ≈ 0. Obviously, P 6≈ 0. E1[P ] 6≈ E2[P ], but E1[Q] ≈ E2[Q]. �

Example A.5 Let P,Q be as in Example A.2.

E1 := !!�

E2 := �

Lemma A.8 Using the notation from Example A.5, we have P ≤ Q, and E1[Q] ≈ E2[Q],
but E1[P ] 6≈ E2[P ].

Proof. P ≤ Q was already shown in Lemma A.3. Let t ∈ SID be arbitrary. We have

E1[P ] ≈
∏

x∈SID (x,net)〈empty〉 →∗↓(t,net). But no suessor of E2[P ] = net〈empty〉
emits on (t,net) 6=E net . Thus E1[P ] 6≈ E2[P ].

It is easy to see that 0 ≈
∏

x∈SID 0 (by showing that R := {(R,R|
∏

x∈SID\S 0)} up

to strutural equivalene is a bisimulation). Thus

E1[Q] = !!0 ≈
∏

x∈SID

0 ≈ 0 = E2[Q].

�

Example A.6

P := net().io().io ′〈〉

Q := net ′().io().io ′〈〉

E1 := νio.(io〈〉 | νnet ′.�)

E2 := νio.(νnet ′.�)

Lemma A.9 Using the notation from Example A.6, we have P ≤ Q, and E1[Q] ≈ E2[Q],
but E1[P ] 6≈ E2[P ].

Proof. P ≤ Q holds with simulator S := 0, ϕ := (net ′ 7→ net), n := ∅.
It is easy to see that νnet ′.Q ≈ 0. Hene E1[Q] ≈ νio.io〈〉 and E2[Q] ≈ νio.0. Thus

E1[Q] ≈ E2[Q].
But E1[P ] →∗↓io′

and E2[P ] 6→∗↓io′
. Hene E1[P ] 6≈ E2[P ]. �

Lemma A.10 Using the notation from Example A.1, we have P ≤ Q but not νnet ′.P ≤
νnet ′.Q.
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Proof. From Lemma A.9 we have P ≤ Q and E1[Q] ≈ E2[Q]. Assume νnet ′.P ≤ νnet ′.Q.
We an write E1 = E′

1[νnet
′.�] and E2 = E′

2[νnet
′.�] for NET-free evaluation ontexts

E1, E2. Then E
′
1[νnet

′.Q] = E1[Q] ≈ E2[Q] = E′
2[νnet

′.Q] and thus by Theorem 6.1, we

have E1[P ] = E′
1[νnet

′.P ] ≈ E′
2[νnet

′.P ] = E2[P ]. This is a ontradition to Lemma A.9.

Thus the assumption νnet ′.P ≤ νnet ′.Q was wrong. �

Example A.7

P := io().net〈〉

Q := io().net ′〈〉

E1 := νio.(io〈〉 | � |!net ′〈〉)

E2 := (νio.� |!net ′〈〉)

Lemma A.11 Using the notation from Example A.6, we have P ≤ Q, and E1[Q] ≈
E2[Q], but E1[P ] 6≈ E2[P ].

Proof. P ≤ Q holds with simulator S := 0, ϕ := (net ′ 7→ net), n := ∅.
By Lemma 3.3, we have E1[Q] ≈ net ′〈〉 |!net ′〈〉. And by Lemma 3.2 (viii), net ′〈〉 |

!net ′〈〉 ≈!net ′〈〉. Finally E2[Q] ≈ 0 |!net ′〈〉. Hene E1[Q] ≈ E2[Q].
But E1[P ] →∗↓net and E2[P ] 6→∗↓net . Hene E1[P ] 6≈ E2[P ]. �

Lemma A.12 Using the notation from Example A.1, we have P ≤ Q but not P |
!net ′〈〉 ≤ Q | !net ′〈〉.

Proof. From Lemma A.11 we have P ≤ Q and E1[Q] ≈ E2[Q]. Assume P | !net ′〈〉 ≤
Q | !net ′〈〉. We an write E1 = E′

1[� | !net ′〈〉] and E2 = E′
2[� | !net ′〈〉] for NET-free

evaluation ontexts E1, E2. Then E
′
1[Q | !net ′〈〉] = E1[Q] ≈ E2[Q] = E′

2[Q | !net ′〈〉] and
thus by Theorem 6.1, we have E1[P ] = E′

1[P | !net ′〈〉] ≈ E′
2[P | !net ′〈〉] = E2[P ]. This

is a ontradition to Lemma A.11. Thus the assumption P | !net ′〈〉 ≤ Q | !net ′〈〉 was

wrong. �
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Symbol index

N The set of names 6

V The set of variables 6

Σ The Signature � a set of funtion symbols (ap-

plied pi alulus)

6

T The set of terms 6

E The �nite set of equations that are to hold in the

equational theory (applied pi alulus)

6

M =E N Terms M and N are equal with respet to the

equational theory E
6

D(M1 , . . . ,Mn) → M Redution rule for destrutor D 6

R Finite set of rewrite rules for destrutors 6

DM ⇓ Term D evaluates to M 6

M Symboli model M 6

0 Empty proess (applied pi alulus) 7

!P Conurrent exeutions of instanes of P (applied

pi alulus

7

νa Restrition of the name a (applied pi alulus) 7

M(x) Reeiving x on hannel N 7

M〈N〉 Sending N on hannel N 7

let x = D in P else Q Let it be 7

fn(P ) Free names in P 7

fv(P ) Free variables in P 7

bn(P ) Bound names in P 7

bv(P ) Bound variables in P 7

P ≡ Q Strutural equivalene of P and Q 8

P → Q Proess P redues to Q 8

P ↓M The proess P emits on a hannel M 8

P ↑M The proess P reads on a hannel M 9

P lM The proess P ommuniates on a hannel M 9

P ≈ Q Observational equivalene of the losed proesses

P and Q
9

if M = N then P else Q Syntati sugar for let x =
equals(M ,N ) in P else Q

9
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C().P Syntati sugar for C(x).P with fresh variable x 9

C〈〉.P Syntati sugar for C(empty).P 9

equals Destrutor equals 10

fst Destrutor: Extrats the �rst omponent of a tag 10

snd Destrutor: Extrats the seond omponent of a

tag

10

≡E Strutural equivalene modulo equational theory

E
11

P ∼∼∼ Q Full observational equivalene of the non-losed

proesses P and Q
11

∏
x∈S P Indexed repliation of the proess P 13

{a/b} Substitution replaing b with a 14

ր≡ Asymmetri variant of strutural equivalene 21

ր≡E ր≡ modulo equational theory 21

event f(t) Raise event f(t) 24

plains(P ) P with synhronization hannel s removed 26

evs(P ) P with synhronization hannel s replaed by

events

26

syncout s(t1 7→ t′1, . . . ;u1 7→ u′1, . . . ) Outputs on synhronization hannel s 26

IO Set of all I/O names 32

NET Set of all network names 32

P ≤ Q P emulates Q 33

P ((M)) Proess P with session-id M 37

SID Set of all session IDs 38

CSID
x ,n An arbitrary but �xed SID -indexing ontext 38

nil Construtor denoting the empty bitstring 38

zero Construtor pre�xing a bitstring with 0 38

one Construtor pre�xing a bitstring with 1 38

SIDbits Conrete set of session IDs built from bitstrings 38

CSIDbits
x ,a A onrete �xed SIDbits-indexing ontext 38

Gn
x ,a Auxiliary de�nition in analysis of CSIDbits

x ,a 38

C
(sID ,gID ,n)
x ,a Auxiliary de�nition in analysis of CSIDbits

x ,a 38

sID Auxiliary de�nition in analysis of CSIDbits
x ,a � set of

spawned IDs

38

gID Auxiliary de�nition in analysis of CSIDbits
x ,a � set of

generator IDs

38

Σx∈SP Short for P{s1/x}|P{s2/x}| . . . for S =
{s1, s2, . . . }

38

〈�〉 Span of a set of IDs 39

!!P Conurrent omposition of P with session ids 42

≈n
S Observational equivalene restrited to proesses

that do not ontain n and ontexts build from S
44

nsid Fixed name for sid-sensitive proesses 45
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Msid Fixed term for sid-sensitive proesses 45

Ssid The set of sid-sensitive proesses 45

Φ Transformation of a generi plain proess into a

sid-sensitive proess

45

tag Tag hannel identi�ers 48

untag Untag hannel identi�ers 49

∼Ssid
An Ssid -observational equivalene relation 52

FSC Seure hannel funtionality 61

� Observational preorder 62

P ≤SS Q P emulates Q in the sense of Delaune et al.

[DKP09℄.

62

Fanon Inseure but anonymous hannel funtionality 63

penc Construtor: publi key enryption 66

pk Construtor: publi key 66

sk Construtor: seret key 66

senc Construtor: symmetri enryption 66

hash Construtor: hash funtion 66

empty Construtor: empty message 66

pdec Destrutor: publi key deryption 66

sdec Destrutor: symmetri deryption 66

pkofsk Destrutor extrating seret from publi key 66

pkofenc Destrutor extrating publi key from iphertext 66

FKE Key exhange funtionality 67

FPKI Publi key infrastruture funtionality 67

NSL Needham-Shroeder-Lowe protool 67

SC Seure hannel protool 70

KE
∗

Protool for generating many keys 74

FCOM Commitment funtionality 81

Mvirt Symboli model with virtual primitives 81

Mreal Symboli model without virtual primitives 81

crsext Construtor: CRS for extration 81

crseqv Construtor: CRS for equivoation 81

fakeH Construtor: Fake (equivoal) hash 81

fake Construtor: Randomness for fake hash 81

extract Destrutor: Extrating from a hash 81

FCRS Common referene string funtionality 82

COM Commitment protool 82

Index
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S-n-bisimulation, 44
S-n-observational equivalene, 44
S-n-simulation, 44
0-1-ontext, 10

adversary, 33

dummy, 33

α-onversion, 8

bisimulation, 9

blak-box simulatability, 34

hannel identi�ers, 10

ommuniate, 9

omplete (set of proesses), 44

omposition

onurrent, 36

onurrent omposition, 36

ontext, 8

0-1-, 10

evaluation, 8

indexing, 37

multi-hole, 30

destrutor term, 6

M-, 87

DKP-seurity, 62

dummy adversary, 33

emit, 9

empty, 10

emulate, 33

equals, 10

equivalene

full observational, 11

observational, 9

strutural, 8

event proess, 24

EVENT rule, 24

extension

safe, 87

free, 7

full observational equivalene, 11

if-statement, 9

indexed repliation, 13

indexing ontext, 37

internal redution, 8

IREPL, 13

M-destrutor term, 87

M-proess, 87

M-term, 87

model

symboli, 6

multi-hole ontext, 30

name, 6

bound, 7

name-redued, 27

natural symboli model, 10

NET-stable, 33

observational equivalene, 9

full, 11

observational preorder, 62

preorder

observational, 62

proess

M-, 87

losed, 7

event, 24

produt, 13

produt proess, 13

proteted, see unproteted

read, 9

relay, 64

repliation

indexed, 13

safe extension, 87

satisfy

trae property, 24

signature, 6

simulatability

blak-box, 34

strong, 34

universally-omposable, 34
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simulation, 9

simulator, 33

strong simulatability, 34

strong unlinkability, 62

strutural equivalene, 8

substitution, 6

losing, 11

symboli model, 6

natural, 10

term

M-, 87

trae property, 24

satisfy, 24

universally-omposable simulatability,

34

unlinkability

strong, 62

unproteted, 8

variable, 6

bound, 7

virtual primitives, 78
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