
An extended abstract of this work appears in Financial Cryptography and Data Security - 16th International Conference (FC 2013).

The PACE|AA Protocol for Machine Readable Travel Documents,

and its Security

Jens Bender1 Özgür Dagdelen2 Marc Fischlin2 Dennis Kügler1

1 German Federal Office for Information Security (BSI), Germany
2 Darmstadt University of Technology, Germany

Abstract. We discuss an efficient combination of the cryptographic protocols adopted by the

International Civil Aviation Organization (ICAO) for securing the communication of machine

readable travel documents and readers. Roughly, in the original protocol the parties first run the

Password-Authenticated Connection Establishment (PACE) protocol to establish a shared key

and then the reader (optionally) invokes the Active Authentication (AA) protocol to verify the

passport’s validity. Here we show that by carefully re-using some of the secret data of the PACE

protocol for the AA protocol one can save one exponentiation on the passports’s side. We call

this the PACE|AA protocol. We then formally prove that this more efficient combination not

only preserves the desirable security properties of the two individual protocols but also increases

privacy by preventing misuse of the challenge in the Active Authentication protocol. We finally

discuss a solution which allows deniable authentication in the sense that the interaction cannot

be used as a proof towards third parties.

1 Introduction

Through ISO/IEC JTC1 SC17 WG3/TF5 [ICA10] the International Civil Aviation Organiza-
tion (ICAO) has adopted the Password Authenticated Connection Establishment (PACE) pro-
tocol [BSI10] to secure the contactless communication between machine-readable travel documents
(including identity cards), and a reader. Roughly, the protocol generates a secure Diffie-Hellman
key out of a low-entropy password which the owner of the passport has to enter at the reader, or
which is transmitted through a read-out of the machine-readable zone. The Diffie-Hellman key is
subsequently used to secure the communication. In [BFK09] it has been shown that the PACE pro-
tocol achieves the widely accepted security notion of password-based authenticated key agreement
of Bellare-Pointcheval-Rogaway [BPR00], in its strong form of Abdalla et al. [AFP05]. This holds
under a variant of the Diffie-Hellman assumption, assuming secure cryptographic building blocks,
and idealizing the underlying block cipher and the hash function.

According to European endeavors, the PACE protocol should be followed by the extended access
control (EAC) authentication steps, called Chip Authentication (CA) and Terminal Authentication
(TA), with high-entropic certified keys. This should ensure that access for either party is granted
based on strong cryptographic keys (i.e., not relying on low-entropy passwords only). The security
of the EAC protocols and of the composition with PACE has been discussed in [DF10,BDF12].

1

In the specifications of the ICAO 9303 standard [ICA06] for the border control scenario, the
normative document about machine-readable travel documents, however, only passive authenti-
cation of the passport is mandatory, where the passport essentially merely sends its (authen-
ticated) data. Active Authentication (AA) of the passport, implemented through a signature-
based challenge-response protocol, is only optional. If AA is not enforced this potentially al-
lows to bypass authentication through cloning of passports. Even if AA is used, then the (plain)
challenge-response protocol introduces a potential threat to privacy, as discussed in [BSI10] (see
also [BPSV08b,BPSV08a,MVV07]). Namely, if the terminal can encode a time stamp or the loca-
tion into the challenge, then the signature on that challenge can be used as a proof towards third
parties about the location or time of the border check. In this sense, the passport cannot deny
this interaction. This problem has been explicitly addressed in the European Chip Authentication
protocol (where a message authentication code for a shared key is used for the challenge-response
step instead).

Combining PACE and AA. We discuss that, on the chip’s side, we can re-use some of the
(secret) data in the PACE step for the AA step to save the exponentiation for the signature in AA
on the chip’s side, giving Active Authentication (almost) for free.

To understand our technique, we need to take a closer look at the PACE protocol. The PACE
protocol first maps the short password to a random group element through an interactive sub proto-
col Map2Point, followed by a Diffie-Hellman key exchange step for this group element, and concludes
with an authentication step. While the latter steps are somewhat canonical, the Map2Point step can
be instantiated by different means and allows a modular design. The most common instantiations
are based on another Diffie-Hellman step (used within the German identity card), or on hashing
into elliptic curves as proposed by Icart [Ica09] and Brier et al. [BCI+10]. The security proof for
PACE [BFK09] holds for general Map2Point protocols satisfying some basic security properties.

Our improvement works for the Diffie-Hellman based Map2Point protocol as implemented on the
German identity cards, for example, since the chip can re-use its secret exponent from the Diffie-
Hellman step of the Map2Point protocol. We discuss two alternatives how to carry out the AA step
with this exponent more efficiently, one based on DSA signatures and the other one using Schnorr
signatures. We note that the idea applies more generally to other discrete-log based signature
schemes. The challenge in the new AA step is now the authentication data sent by the terminal in
the PACE step.

Security of the Combined Protocol. Whenever secret data is used throughout several sub
protocols great care must be taken in cryptography not to spoil the security of the overall protocol.
We thus show that sharing the data between the PACE protocol and the new AA sub protocol
preserves the desirable security properties. More precisely, we show that:

• In the combined PACE|AA protocol we still achieve the security of a password-based authen-
ticated key exchange protocol (thus showing that the deployment of the randomness in the
extra AA step does not violate the security of the PACE protocol), and

• the overall protocol still authenticates the chip securely (in a high-entropy sense), even when
many executions of PACE|AA take place. To this end, we define a strong security model for
authentication, essentially only excluding trivial attacks, e.g., if the adversary gets possession
of the secret key, or simply relays information in executions.

2

It follows that the PACE|AA protocol achieves the previous security standards of the individual
protocols but comes with a clear efficiency improvement. We note that the underlying assumptions
are essentially the same as for PACE and AA, i.e., besides the common assumptions about secure
encryption, signature, and MAC algorithms, we reduce the security of the combined protocol to the
security of PACE (as an authenticated key-exchange protocol) and to a variant of the security of
Schnorr signatures resp. DSA signatures (where the adversary now also gets access to a decisional
Diffie-Hellman oracle and can decide upon the message to be signed after seeing the first half of
the signature).

A Deniable Schnorr Version. As explained before, for privacy reasons it may be important that
the terminal cannot derive a proof for others from the interaction with the passport or identity card
that an interaction took place. Put differently, the protocol should provide deniable authentication
[DDN00]. This roughly means that the terminal could have generated its view in the protocol itself
from the public data, without communicating with the passport. This implies that the passport
holder can deny any actual interaction and claim the terminal to have made up this conversation.

We note that the previously discussed signature based protocols do not support deniability.
The reason is that the terminal could not have created the signature under the passport’s key
without the signing key —or without communicating with the actual chip. For the (ordinary) AA
variant the terminal is even allowed to encode any information in the challenge, in our improved
combinations the challenge is “only” a MAC computed over data provided by the passport and the
shared Diffie-Hellman key. If this allows to encode information depends on the MAC.

In contrast, our proposed deniable variant does not rely on Schnorr signatures, but in some
sense rather on the interactive Schnorr identification scheme for honestly chosen challenges. This
identification scheme is deniable because one can simulate the interaction via the well-known zero-
knowledge simulator.1 Interestingly, our variant is essentially as efficient as the signature based
one, but comes with the advantage of deniability.

Organization. In Section 2 we discuss the security model for authenticated key exchange and
impersonation resistance. Section 3 then presents the PACE|AA protocol (variants). In Section 4 we
discuss the relevant (number-theoretic and cryptographic) security assumptions, before we present
our security proofs in Section 5. Finally, in Section 6 we discuss our deniable version and its
security.

2 Security Model

We use the real-or-random security model of Abdalla et al. [AFP05] which extends the model of
Bellare et al. [BPR00] for password-based key exchange protocols. Some changes are necessary,
though, because we now incorporate a long-term signing key of the chip.

Attack Model. The security model assumes a set of honest participants, also called users. Each
user may run several instances of the key agreement protocol, and the j-th instance of a user U

1It is this property which is not known to work for the DSA case and why we restrict ourself to the Schnorr
scheme. Note also that Schnorr signatures are also somewhat simulatable but only if one programs the random oracle
hash function; this, however, is not admissible for the notion of deniability. We nonetheless still use a hash function
in the solution but use programmability only to show the unforgeablity/impersonation resistance property, not the
deniability proof.

3

is denoted by Uj or (U, j). Each pair of users initially shares a secret password π —which in the
passport scenario is transferred from the chip to the terminal by entering it at the reader or by
reading the machine readable zone. The password π may be used multiple times to generate session
keys. We assume that the password is chosen randomly from a (public) dictionary with N elements.
A set of users, called the chip cards (or chips), also hold a long-lived key pair (sk, pk) and we assume
that the public key is registered with a certification authority (e.g., some approved organization
for identity cards). The certification authority somehow verifies the well-formedness of the keys,
e.g., that they belong to an approved group. The other users in the scenario are called readers or
terminals.

We consider security against active attacks where the adversary’s goal is to distinguish genuine
keys from random keys, which are picked independently of the actual protocol run. This corresponds
to the so-called real-or-random setting [AFP05], a stronger model than the original find-then-guess
model of [BPR00], where the adversary can see several test keys (instead of a single one only).

In the attack, each user instance is given as an oracle to which an adversary has access, basically
providing the interface of the protocol instance. By assumption, the adversary is in full control of
the network, i.e., decides upon message delivery. If honest parties may engage in many sessions
at the same time, then we are in a concurrent setting; else, we are in a non-concurrent setting.
Initially, the adversary is given all (registered) public keys of the users. These users are called
honest whereas the other users, for which the adversary registers chosen public keys, are called
adversarially controlled.2

The adversary can gain control over a user during the execution by issuing a Corrupt query
with which the adversary obtains the secrets of an honest party. We need to modify here since we
consider two types of secrets, i.e., the long-term secret and the password of the chip. Therefore,
for sake of convenience, we split these queries into Corrupt.pw and Corrupt.key queries, where the
former reveals the password only and the latter discloses the long-term key only (in case of a chip);
in both cases, the other secret remains private. Note that we now can model Corrupt queries by
both queries (since we work in the weak corruption model where the parties’ internal states are
not revealed upon corruption). An honest party gets adversarially controlled if it does not have
any secrets left (i.e., if the adversary issues both Corrupt query types for a chip, or the Corrupt.pw
query for the terminal). We occasionally speak of executions with honest chips or honest readers
if the adversary (or an honest partner) runs an execution such that the party is not, and does not
get, adversarial controlled during this execution.

The adversary can make the following queries to the interface oracles:

Execute(A, i,B, j) Causes the users A and B to run the protocol for (fresh) instances i and j. The
final output is the transcript of a protocol execution. This query simulates a passive attack
where the adversary merely eavesdrops the network.

Send(U, i,m) Causes the instance i of user U to proceed with the protocol when having received
message m. The output is the message generated by U for m and depends on the state of
the instance. This query simulates an active attack of the adversary where the adversary
pretends to be the partner instance.

Reveal(U, i) Returns the session key of the input instance. The query is answered only if the
session key was generated and the instance has terminated in accepting state. This query

2We remark that the adversary may register public keys chosen by honest parties on behalf of adversarially
controlled users.

4

models the case when the session key has been leaked. We assume without loss of generality
that the adversary never queries about the same instance twice.

Corrupt.pw(U) The adversary obtains the party’s password π.

Corrupt.key(U) The adversary obtains the party’s cryptographic key sk (if it exists).

Test(U, i) The oracle test is initialized with a random bit b (which is then fixed for all subsequent
calls). Assume the adversary makes a test query about (U, i) during the attack and that the
instance has terminated in accepting state, holding a secret session key k. Then the oracle
returns k if b = 0 or a random key k′ from the domain of keys if b = 1. If the instance has not
terminated yet or has not accepted, then the oracle returns ⊥. This query should determine
the adversary’s success to tell apart a genuine session key from an independent random key.
We assume again without loss of generality that the adversary never queries about the same
instance twice.

Register(U∗,pk∗) allows the adversary to register a public key pk∗ in the name of a new user (iden-
tity) U∗. The user is immediately considered to be adversarial controlled and the password
of the user is revealed to (or even chosen by) the adversary.

In addition, since the original PACE protocol was cast in the random oracle and ideal cipher model
where oracles providing a random hash function oracle and an encryption/decryption oracle are
available, the attacker may also query these oracles here. (We note that we only use the ideal cipher
implicitly through the reduction to the security to PACE.)

Partners, Correctness and Freshness. Upon successful termination, we assume that an
instance Ui outputs a session key k, the session ID sid, and a user ID pid identifying the intended
partner (assumed to be empty in PACE for anonymity reasons but containing the chip’s certificate
in the combined PACE|AA protocol). We note that the session ID usually contains the entire
transcript of the communication but, for efficiency reasons, in PACE it only contains a part thereof.
This is inherited here. We say that instances Ai and Bj are partnered if both instances have
terminated in accepting state with the same output. In this case, the instance Ai is called a partner
to Bj and vice versa. Any untampered execution between honest users should be partnered and,
in particular, the users should end up with the same key (this correctness requirement ensures the
minimal functional requirement of a key agreement protocol).

Neglecting forward security for a moment, an instance (U, i) is called fresh at the end of the
execution if there has been no Reveal(U, i) query at any point, neither has there been a Reveal(B, j)
query where Bj is a partner to Ui, nor has somebody been corrupted (i.e., neither kind of Corrupt
query has been issued). Else, the instance is called unfresh. In other words, fresh executions require
that the session key has not been leaked (by neither partner) and that no Corrupt-query took place.

To capture forward security we refine the notion of freshness and further demand from a fresh
instance (U, i) as before that the session key has not been leaked through a Reveal-query, and that
for each Corrupt.pw(U)- or Corrupt.key(U)-query there has been no subsequent Test(U, i)-query
involving U , or, if so, then there has been no Send(U, i,m)-query for this instance at any point.3

In this case we call the instance fs-fresh, else fs-unfresh. This notion means that it should not
help if the adversary corrupts some party after the test query, and that even if corruptions take

3In a stronger notion the adversary may even issue a Corrupt.key command for the user before the testing; Due to
the entanglement of the PACE and the AA protocol here our protocol does not achieve this, though.

5

place before test queries, then executions between honest users are still protected (before or after
a Test-query).

AKE Security. The adversary eventually outputs a bit b′, trying to predict the bit b of the Test
oracle. We say that the adversary wins if b = b′ and instances (U, i) in the test queries are fresh
(resp. fs-fresh). Ideally, this probability should be close to 1/2, implying that the adversary cannot
significantly distinguish random keys from session keys.

To measure the resources of the adversary we denote by

t the number of steps of the adversary, i.e., its running time,
(counting also all the steps required by honest parties)

qe the maximal number of initiated executions
(bounded by the number of Send- and Execute-queries),

qh the number of queries to the hash oracle, and
qc the number of queries to the cipher oracle.

We often write Q = (qe, qh, qc) and say that A is (t, Q)-bounded.
Define now the AKE advantage of an adversary A for a key agreement protocol P by

AdvakeP (A) := 2 · Prob[A wins]− 1

AdvakeP (t, Q) := max
{

AdvakeP (A)
∣∣∣A is (t, Q)-bounded

}
The forward secure version is defined analogously and denoted by Advake−fsP (t, Q).

Impersonation Resistance. This security property says that the adversary, in the above attack,
successfully impersonates if an honest reader in some session accepts with partner identity pid and
session id sid, but such that (a) the intended partner U in pid is not adversarially controlled or the
public key in pid has not been registered, and (b) no Corrupt.key command to U has been issued
before the reader has accepted, and (c) the session id sid has not appeared in another accepting
session. This roughly means that the adversary managed to impersonate an honest chip or to make
the reader accept a fake certificate, without knowing the long-term secret or relaying the data in a
trivial man-in-the-middle kind of attack.

Define now the IKE advantage (I for impersonation) of an adversary A for a key agreement
protocol P by

AdvikeP (A) := Prob[A successfully impersonates]

AdvikeP (t, Q) := max
{

AdvikeP (A)
∣∣∣A is (t, Q)-bounded

}
Note that we do not need to define a forward secure version here.

3 The PACE|AA Protocol

In this section, we describe the PACE|AA protocol and both options for authentication in the last
message, i.e., active authentication (AA) via Schnorr and via DSA. The deniable Schnorr variant
and its security is addressed in Section 6.

6

A : B :
password π password π
secret xA, public XA = gxA

certificate certC for XA, and pkCA pkCA
authenticated group parameters G = (a, b, p, q, g, k)

PACE
Kπ = H(0||π) Kπ = H(0||π)
choose s← {0, 1}` ⊆ Zq
z = Enc(Kπ, s)

G, z−−−−−−−−−−−−−−→ abort if G incorrect
s = Dec(Kπ, z)

choose yA ← Z∗q choose yB ← Z∗q
YA = gyA YB = gyB

YB←−−−−−−−−−−−−−−
abort if YB 6∈ 〈g〉 \ {1}

YA−−−−−−−−−−−−−−→ abort if YA 6∈ 〈g〉 \ {1}
h = Y yA

B h = Y yB
A

ĝ = h · gs ĝ = h · gs
choose y′A ← Z∗q choose y′B ← Z∗q
Y ′A = ĝy

′
A Y ′B = ĝy

′
B

Y ′B←−−−−−−−−−−−−−−

check that Y ′B 6= YB
Y ′A−−−−−−−−−−−−−−→ check that Y ′A 6= YA

K = (Y ′B)y
′
A K = (Y ′A)y

′
B

KENC = H(1||K) KENC = H(1||K)
K′SC = H(2||K) K′SC = H(2||K)
KMAC = H(3||K) KMAC = H(3||K)
K′MAC = H(4||K) K′MAC = H(4||K)
TA = MAC(K′MAC, (Y

′
B,G)) TB = MAC(K′MAC, (Y

′
A,G))

TB←−−−−−−−−−−−−−−

abort if TB invalid
TA−−−−−−−−−−−−−−→

abort if TA invalid
. Version: Schnorr Signature .

σ = yA +H(5||YA, TB) · xA
Send(K′SC, (σ, certC))
−−−−−−−−−−−−−−→ recover and validate certificate

abort if gσ 6= YAX
H(5||YA,TB)
A

. Version: DSA Signature .
r = YA mod q

σ = y−1A (H(5||TB) + rxA)
Send(K′SC, (σ, certC))
−−−−−−−−−−−−−−→ recover and validate certificate

w = σ−1

r = YA
v = gwH(5||TB) ·Xrw

A

abort if v 6= YA
key=(KENC,KMAC) key=(KENC,KMAC)
sid = (Y ′A, Y

′
B,G) sid = (Y ′A, Y

′
B,G)

pid = certC pid = certC

Figure 1: The PACE|AA protocol (all operations are modulo q)

7

3.1 Protocol Description

Figure 1 illustrates the PACE|AA protocol with both options of authentication at the end. The
scheme itself uses a block cipher C(Kπ, ·) : {0, 1}` → {0, 1}` and a hash function H, with values
1, 2, . . . in fixed-length encoding prepended to make evaluations somewhat independent.

The chip already holds a certificate certC for its public key XA under the authorities’ public
key pkCA, and (authenticated) group parameters G = (a, b, p, q, g, k) describing a subgroup of order
q, generated by g, of an elliptic curve for parameters a, b, p for security parameter k. We also
note that, throughout the paper, we use the multiplicative notation for group operations. It is
understood that, if working with elliptic curves, multiplications correspond to additions and ex-
ponentiations to multiplications. Then the parties run the PACE protocol, with the chip sending
a nonce encrypted under the password, running the Diffie-Hellman based Map2Point protocol to
derive another generator ĝ on which another Diffie-Hellman key exchange is then performed. In
this Map2Point step the chip uses some secret exponent yA to send YA = gyA . The parties in the
PACE protocol finally exchange message authentication codes TA,TB.

The idea is now roughly to re-use the secret exponent yA in the Map2Point sub protocol on
the chip’s side for the signature generation, and use the authentication value TB of the terminal
as the challenge on which the signature is computed. The chip then sends its certificate (along
with the missing signature part) over the secure channel, via a Send command for the key K′SC
derived from the Diffie-Hellman exchange. The reader may think for now of the secure channel as
an authenticated encryption, but other channel instantiations work as well.

3.2 Instantiations

There are essentially two possible instantiations. One is based on the Schnorr signature scheme
[Sch90] where the chip uses the values yA and YA as the (private resp. public) randomness and
TB as the challenge for creating the signature under its long-term signature key XA. We call this
option Active Authentication via Schnorr signatures. Alternatively, the chip card might prove its
authenticity by providing a DSA signature where again yA and YA are used as the randomness for
the signature generation [Kra95]. This version is called Active Authentication via DSA signatures.
We note that the computation of the final signatures requires only modular multiplications (and,
in case of DSA, an inversion) instead of exponentiations.

4 Security Assumptions

As remarked above we carry out our security analysis assuming an ideal hash function (random
oracle model). Basically, this assumption says that H acts like a random function to which all
parties have access. We do not make any explicit assumption about the cipher C here, but note
that the security proof for PACE in [BFK09] (to which we reduce AKE security to) relies on an
ideal cipher.

4.1 Cryptographic Primitives

Message Authentication. A message authentication code M = (KGen,MAC,Vf) consists of
three efficient algorithms where we assume again that keys are just random strings in the range of
the hash function —making KGen obsolete— and that MAC(k,m) maps any message to a MAC
(resp. tag) T which is verifiable with the help of Vf(k,m, T) with binary output. Completeness

8

demands again that for any key k and any message m the value T ← MAC(k,m) makes Vf(k,m, T)
return 1.

We require that the message authentication code MAC is unforgeable under adaptively chosen-
message attacks (see, for instance, [Gol04]). That is, the adversary is granted oracle access to
MAC(k, ·) and Vf(k, ·, ·) for random key k and wins if it, at some point, makes a verification query
(m,T) about a message m which has not been sent previously to MAC, and such that Vf returns 1

for this message. We denote by AdvforgeM (t, qm, qv) a (bound on the) value ε for which no attacker
in time t can win (making at most qm MACs queries and qv verification queries) with probability
more than ε.

Signatures and Certificates. A signature scheme S = (SKGen,Sig, SVf) consists of efficient
algorithms for creating key pairs (sk, pk), signing messages s← Sig(sk,m), and verifying signatures,
d← SVf(pk,m, s) with d ∈ {0, 1}. It must be that for signatures created under valid key pairs SVf
always returns 1 (correctness). Unforgeability says that no algorithm should be able to forge the
signer’s signature. That is, a signature scheme S = (SKGen,Sig, SVf) is (t, qs, ε)-unforgeable if for
any algorithm A running in time t the probability that A outputs a signature to a fresh message
under a public key is Advforge

S (t, qs) (which should be negligible small) while A has access (at most
qs times) to a singing oracle. We note that for Schnorr signatures and DSA signatures, we actually
need a stronger notion discussed in the next section.

We also assume a certification authority CA, modeled like the signature scheme through algo-
rithms CA = (CKGen,Certify,CVf), but where we call the “signing” algorithm Certify. This is in
order to indicate that certification may be done by other means than signatures. We assume that
the keys (skCA, pkCA) of the CA are generated at the outset and that pkCA is distributed securely
to all parties (including the adversary). We also often assume that the certified data is part of
the certificate. We define unforgeability for a certification scheme CA analogously to signatures,
and denote the advantage bound of outputting a certificate of a new value in time t after seeing
qc certificates by Advforge

CA (t, qc). We assume that the certification authority only issues unique
certificates in the sense that for distinct parties the certificates are also distinct; we besides assume
that the authority checks whether the keys are well-formed group elements and that certificates are
of a fixed length (depending on the security parameter only).

Secure Channel. A secure channel SC = (KGen,Send,Rec) consists of algorithms for generating
keys KGen (we assume in this paper that the keys are random strings and that the hash function
H maps to such strings), a sending algorithm Send(k,m) wrapping the message usually in an
encrypted and authenticated container C, and a recover algorithm Rec(k,C) which on input a key
k and a container C returns a message m or an error symbol ⊥. We assume the usual notion of
completeness that any faithfully wrapped message under any key is recovered through the recover
algorithms. Roughly, we demand that a secure channel hides messages (as encryption schemes) but
at the same time also provides authenticity of the sent messages (as in MAC schemes). Below we
cover both notions in a single security experiment.

As for security of the secure channel, we consider left-or-right security in the multi-user set-
ting. That is, we assume that u users pick random keys k1, k2, . . . , ku and that a secret challenge
bit b ← {0, 1} is chosen. The adversary A gets no input and can then access a sending oracle
OSend(b, k1, . . . , ku, ·, ·, ·) which for triples (i,m0,m1) returns a container Send(ki,mb) of the left or
right message under the i-th key. Here, we assume that 1 ≤ i ≤ u and that m0 and m1 are of equal
length. In addition, the adversary can ask a recovering oracle ORec(k1, . . . , ku, ·, ·) about indices i

9

and containers C of its choice, recovering either a message under key ki or the error symbol. The
adversary eventually outputs a guess a ∈ {0, 1} for the challenge bit b. To measure simultaneously
successful attacks against the authenticity property we set a← b if at some point during the attack
the adversary manages to submit a container C to the recover oracle ORec such that it receives
m 6= ⊥ and such that C has not been created by oracle OSend for the same user before.

Let AdvlorE (A) be the probability that a = b minus the pure guessing probability 1/2, taking also
into account the deliberate switch of a to b in case of successful attacks against the authenticity.
Let AdvlorE (t, u, q) be the maximal advantage for any adversary running in time t, with access
to at most u users, and making in total q queries. We note that a standard hybrid argument
shows that the advantage increases only by a factor u when moving to the single-user case, i.e.,
AdvlorE (t, u, q) ≤ u ·AdvlorE (t, 1, q). Hence, the common notion of security for symmetric schemes
implies security in the multi-user setting (with a loss of a factor u).

4.2 Number-Theoretic Assumptions

Our proof for the AKE security of the PACE|AA protocol follows by reduction to the security of the
original PACE protocol (and from the security of cryptographic primitives for the channel). For
the IKE security against impersonators, we nonetheless need two number-theoretic assumptions
related to the Diffie-Hellman resp. discrete-log problems. The first one is the gap Diffie-Hellman
problem [BLS01]. For a group G generated by g let DH(X,Y) be the Diffie-Hellman value Xy for
y = logg Y (with g being an implicit parameter for the function). Then the gap Diffie-Hellman

assumption says that solving the computational DH problem for (ga, gb), i.e., computing DH(ga, gb)
given only the random elements (ga, gb) and G, g, is still hard, even when one has access to a
decisional oracle DDH(X,Y, Z) which returns 1 iff DH(X,Y) = Z, and 0 otherwise.

Definition 4.1 (GDH Hardness) The Gap Diffie-Hellman (GDH) problem is (t, qDDH , ε)-hard
if any algorithm A, running in time t and making at most qDDH oracle queries, makes the following
experiment output 1 with probability at most ε:

pick a cyclic group G of order q with a generator g and pick a, b← Zq
let Z ← ADDH(·,·,·)(G, g, ga, gb)
output 1 iff Z = DH(ga, gb) = gab

We let AdvGDH(t, qDDH) denote (a bound on) the value ε for which the GDH problem is (t, qDDH , ε)-
hard.

Furthermore, for the Schnorr signature based solution we rely on the following version which
(a) allows access to a decisional DH oracle for the forger, and (b) considers access to a signer in
an online/offline fashion in the sense that the adversary may ask to see the public randomness
part first before deciding on a message to be signed. Still, the goal is to create a signature on
a new message for which the signing has not been completed. We note that the proof in [PS00]
for Schnorr signatures still holds, assuming that computing discrete-logarithms relative to a DDH-
oracle is hard. In particular, the hardness of this “gap discrete-log problem” is implied by the GDH
hardness. We call this security notion robust unforgeability as it should still hold in presence of the
DDH oracle and the delayed message choice.

Definition 4.2 (Robust Unforgeability of Schnorr Signatures) The Schnorr signature scheme
is (t, Q, ε)-robustly-unforgeable with Q = (qR, qDDH) if for any adversary A running in total time

10

t, making at most qDDH DDH oracle queries and at most qR init-queries to oracle O the probability
that the following experiment returns 1 is most ε:

pick G (including a generator g of prime order q)
pick sk← Zq and let pk = gsk

(m∗, σ∗)← AO(sk,·),DDH(G, g, pk)
parse (c∗, s∗)← σ∗

output 1 iff

c∗ = H(gs
∗
pkc
∗
,m∗)

and m∗ /∈ M

Set id = 0 and R,M = ∅.
If A queries O(sk, init),

pick r ← Zq,
set id = id + 1 ,
add (id, r) to R,
return (id, gr).

If A queries O(sk, (complete, id,m)),
if (id, r) ∈ R for some r,

update R← R\{(id, r)}
add m to M,
return r +H(gr,m) · sk mod q;

else, return ⊥.
If A queries DDH(X,Y, Z),

return 1 iff DH(X,Y) = Z.

We let Advr−forgeSchnorr(t, Q) be the maximal advantage for any adversary running in time t, making in
total Q = (qR, qDDH) queries.

As it turns out to be useful for our deniable version, we remark that the proof of Pointcheval
and Stern [PS00] holds as long as the input to the hash oracle in the forgery is new, i.e., one can
extract the discrete-logarithm of the public key even if the hash function in signature requests is
evaluated on quasi unique inputs, and the forgery, too, uses a previously unqueried hash function
input. For the notion of signature unforgeability this holds because each signature request uses a
high-entropic random group element and the message m∗ in the forgery cannot have been signed
before. We take advantage of this fact for our deniable version where we insert (Y ′A,G) instead of
(R,m) into the hash function for the random group element Y ′A chosen by the chip respectively,
signer. We also show that for the proof of impersonation resistance the adversary cannot re-use
one of these values (Y ′A,G) but needs to pick a new value Y ′A, thus showing the second property.

For the DSA based solution we require an analogous assumption:

Definition 4.3 (Robust Unforgeability of DSA Signatures) The DSA signature scheme is
(t, Q, ε)-robustly-unforgeable with Q = (qr, qDDH) if for any adversary A running in total time t,
making at most qDDH DDH oracle queries and at most qr init queries to oracle O the probability
that the following experiment returns 1 is most ε:

11

pick G (including a generator g of prime order q)
pick sk← Zq and let pk = gsk

(m∗, σ∗)← AO(sk,·),DDH(G, g, pk)
parse (c∗, s∗)← σ∗

output 1 iff

r∗ = gwH(m∗)pkwr
∗

mod q
for w = (s∗)−1 mod q,

and m∗ /∈ M

Set id = 0 and R,M = ∅.
If A queries O(sk, init),

pick k ← Zq,
set id = id + 1 ,
add (id, k) to RL,
return (id, k).

If A queries O(sk, (complete, id,m)),
if (id, k) ∈ R for some k,

update R← R\{(id, k)}
add m to M,
return k−1(H(m) + gksk) mod q;

else, return ⊥.
If A queries DDH(X,Y, Z),

return 1 iff DH(X,Y) = Z.

We let Advr−forgeDSA (t, Q) be the maximal advantage for any adversary running in time t, making in
total Q = (qr, qDDH) queries.

It is currently not known if DSA signatures are still secure in the robust sense; likewise, it is
neither known whether DSA can be proven unforgeable in the common sense. For an overview
about (limited) security results on DSA and its elliptic curve version see [Vau03]. In particular, it
is not known that the additional DDH oracle or the offline/online kind of attack facilitates the task
of breaking the signature scheme.

5 Security Analysis of PACE|AA

In this section, we discuss the security of the PACE|AA protocol when active authentication is done
via Schnorr signatures; the case of DSA signatures follows, too, because we do not use any specific
properties of the underlying signature scheme (except for the robust unforgeability). That is, we
assume that the chip, holding public key XA = gxA with certificate certC , signs the message YB with
key xA and randomness YA. The signature is given by σ = yA + cxA mod q for c = H(5||YA, TB).
After the final authentication step of PACE, the chip sends (using already a secure channel) the
values σ and certC to the reader who verifies the signatures and the certificate (and aborts in case
one of the verification fails).

As noted in [BFK09] using the derived keys already in the key agreement step does not allow
for a proof in the Bellare-Pointcheval-Rogaway model. We hence also use the variant that the keys
K′SC and K′MAC are independent from the keys output as the result of the key agreement.

5.1 Security as a Key Exchange Protocol

Theorem 5.1 The protocol PACE|AA (with Schnorr or DSA signatures) satisfies:

AdvakePACE|AA(t, Q) ≤ q2e
2q

+ AdvlorSC(t
∗, qe, qe) + AdvakePACE(t∗, Q)

where t∗ = t+O(kq2e + kq2h + kq2c + k2) and Q = (qe, qc, qh).

12

We remark that the time t∗ covers the additional time to maintain lists and perform look-ups.
Since PACE is secure (under cryptographic assumptions) it follows together with the security of
the underlying encryption scheme that the PACE|AA scheme is secure as well.

The idea of the proof is roughly that the additional Schnorr signature does not violate the
security of the underlying PACE protocol as it is encrypted. This is shown through a reduction
to the security of the original PACE protocol, mildly exploiting the structure of the original proof
in [BFK09] and the properties of the Schnorr signature scheme. We roughly show that, in the
PACE|AA protocol, we can simulate the final transmission of the signature token by sending dummy
values through the channel, because the keys used to secure this transmission are “as secure as”
the PACE keys. That is, even though the strength of the keys is only password-protected (i.e., one
can try to guess the low-entropy password), this is sufficient for our purpose, as we do not plan to
be more secure than that.

Proof. The proof uses the common game-hopping technique, gradually taking away adversarial
success strategies and discussing that each modification cannot contribute significantly to the overall
success probability. Note that the original proof of PACE in [BFK09] actually shows something
stronger than indistinguishability of keys (from random). The proof rather shows that computing
the Diffie-Hellman key K in an execution is hard (unless one knows or has guessed the password);
key indistinguishability then follows from this. We will use this more fine-grained view on the proof
below and also consider the adversary on the PACE|AA protocol in this regard, i.e., we measure its
success probability according to the probability of making a hash query about K in a Test session
(called target hash query).

Game0: Corresponds to an AKE attack on the PACE|AA protocol (with the more fine-grained
success notion).

Game1: Abort Game0 if an honest chip would compute the same Diffie-Hellman key in two exe-
cutions.

Note that, since the honest chip always goes second for the Diffie-Hellman key exchange step,
sending Y ′A, the keys in such executions are random elements and the probability that such a
collision occurs is thus at most 1

2q
2
e/q.

Game2: Change the previous game slightly such that, an honest chip when sending the encrypted
signature, instead picks and uses random and independent (independent of the hash function
output) keys K′SC.

Note that the only difference between the two cases can occur if the adversary makes a target
hash query since Reveal and Test sessions never output these keys and Diffie-Hellman keys
are distinct by the previous game. It follows that the adversarial success can only decrease
by the probability of making a target hash query in this new game.

Game3: Change the game once more and replace channeled transmissions of the signatures sent
by an honest chip by encryptions of 0-bits of the same length and, at the same time, let any
honest terminal reject any final message unless it has really been sent by the honest chip in
the same session.

Note that the length (of the signature part and the certificate) is known in advance. Note also
that the probability of making a target hash query in Game3 cannot be significantly larger, by
the distinguishing advantage of genuine transmissions from all-zero transmissions. To make

13

this claim more formally, assume that we mount an attack on the left-or-right security of the
(multi-user) encryption scheme by simulating the entire Game2 with two exceptions: (1) If
an honest chip is supposed to send the signature and certificate, then we simply call the next
transmission challenge oracle about the signature part and the certificate and about an all-
zero message of the same length. Then the challenge bit of the left-or-right oracle corresponds
exactly to the difference between the two games. (2) If the adversary successfully modifies
the final transmission of an honest chip and the honest terminal would accept the message,
then this would also constitute a security breach of the channel protocol. Hence, if the success
probabilities of the adversary dropped significantly, we would get a successful attacker against
the secure channel scheme.

The final game can now be easily cast as an attack on the original PACE protocol. That is, if there
was a successful attacker in Game3 (making a target hash query), then there was a straightforward
attacker with the same probability in the original PACE protocol: this attacker would run the
Game3-adversary and simulate the additional signature steps itself (i.e., creating keys and certifi-
cates), inject the values from the PACE protocol (i.e., relay the communication), but send dummy
values 0 . . . 0 through the channel on behalf of honest chips under independent random keys. It
follows that the probability of making a target hash query in Game3 is also bounded by the PACE
security.

Given that no target hash query is made, the advantage in the final game is now bounded from
above by the advantage against PACE. Note that the advantage of breaking PACE simultaneously
covers both the case of target hash queries and of breaks otherwise (such that we do not need to
account for the advantage of target hash queries and then of other breaks, resulting in a factor 2).
�

On Forward Security. Note that the PACE|AA protocol inherits the forward security of PACE
(when used as authenticated key exchange protocol). That is, even if the adversary knows the
password, then executions between honest parties remain protected. Since the security of PACE|AA
essentially reduces to the security of PACE any successful attack against the forward security of
PACE|AA would yield a successful attack against PACE; the other protocol steps do not violate
this property.

5.2 Security against Impersonation

It remains to show that the protocol is IKE-secure. Here, we only rely on the unforgeability of
certificates and MACs and the robust unforgeability of the Schnorr/DSA signature scheme.

Theorem 5.2 For the PACE|AA protocol (with Schnorr or DSA signatures) it holds:

AdvikePACE|AA(t, Q)

≤ q2e + qeqh
q

+ AdvforgeCA (t∗, qe) + 2qe ·AdvforgeM (t∗, 2qe, 2qe)

+Advr−forge{Schnorr|DSA}(t
∗, qe)

where t∗ = t+O(kq2e + kq2h + k2) and Q = (qe, qh).

14

The idea is to show first that the adversary cannot inject its own unregistered key (unless it
breaks the unforgeability of the certification authority). Since any successful attack must be then
for an uncorrupt party whose secret signing key was not revealed, it follows that the adversary
must produce a signature under the (registered) public key of an honest user. Because the session
id must be new and is somewhat signed via TB, it follows that the adversary must forge Schnorr
respectively DSA signatures in order to break the IKE property.

Proof. We again proceed in games. We can assume that the adversary (and all reductions below)
know all passwords at the outset. For the adversary this can be achieved by issuing Corrupt.pw
passwords in the beginning, and the reductions can choose the passwords themselves.

Game0: Corresponds again to the original attack.

Game1: Abort if an honest reader accepts an unregistered key as valid.

Abort and declare the adversary to lose if it manages to make the honest reader accept
an unregistered key in any execution. It follows straightforwardly from the unforgeability
of certificates that this can decrease the adversary’s success probability only by a negligible
term. It is straightforward to make this claim formally by simulating the attack (including the
honest players, thus being also able to decrypt the final message with the certificate forgery),
and using an external certificate issuing oracles for registering the user’s public keys.

Game2: Abort if (possibly distinct) honest chips in two executions derive the same key K.

Note that, once a chip selects Y ′A at random in an execution, an honest or malicious reader
has already sent Y ′B. Hence, the key K is a uniformly random element and the probability
that it matches any of the previous i keys, is at most i/q. Summing over all maximal qe
executions shows that the adversary’s success probability can only drop by 1

2q
2
e/q .

Game3: Abort if there are collisions among the Y ′B values of honest readers.

In case there appears the same value Y ′B chosen by (possibly distinct) honest readers in two
executions also declare the adversary to lose. By the birthday bound and since there are at
most qe such values, this can only deduct 1

2q
2
e/q from the success probability.

Game4: Abort if a malicious reader submits a valid TB in an execution to the honest chip, and
such that neither (A) the same valid TB appears in an execution with an honest reader for
the same session identifier, nor (B) the adversary has made a hash query to the key K derived
by the honest chip in the execution before.

Let sid = (Y ′A, Y
′
B,G) be the session identifier in an execution with an honest chip in which

the adversary submits a valid TB without having made a hash query before and such that TB
does not appear in a session with an honest reader for the same session identifier. Call this
a target execution and fix it for now. Let K be the Diffie-Hellman key derived by the chip in
this execution.

According to the previous games we can assume that all keys in executions with honest chips
are unique, and that there is at most one execution with an honest reader in which the same
sid (because the values Y ′B chosen by honest readers are distinct). Consider now all executions
between the adversary (as a chip) and honest readers in which the same values Y ′A,G as in
the target execution appear. Since the Y ′B values are unique there is at most one execution
with the same key K and the same pair (Y ′A,G) —and this execution must then carry the

15

same value Y ′B— and thus the same session identifier as the target execution. In other words,
for a successful attack in the target execution the adversary must send a valid MAC for an
unknown key K, or for a new value (Y ∗A,G∗) (or both). We can therefore derive a contradiction
to the unforgeability of the MAC as follows.

Simulate an attack against the MAC scheme by running the entire PACE|AA protocol and
the adversary. Pick at random an execution among the at most qe ones in advance and follow
exactly the description of Game3, except with the following differences: Compute the key K
in the pre-selected execution as before (abort if the execution aborts before or the party is
corrupt) as well as the keys KENC,KMAC, . . . , but not the key K′MAC. Proceed accordingly
if the key appears in another execution and ignore, too, when asked to compute K′MAC.
When it comes to verify or to compute a MAC under this key K′MAC in any execution, call
the external verification resp. MAC oracle instead. (Stop if a verification request for a new
message is accepted.)

For the analysis note that the simulation is perfect if the adversary never makes a hash query
for the target execution. Also, if the adversary at some point submits a valid MAC TB under
the key K in the target execution, then we guess the right execution in which this key appears
for the first time with probability 1/qe. Given this, we successfully forge a MAC, i.e., submit
a new message (Y ′A,G) with a valid MAC to the verification oracle. To see this note that for
the key K′MAC in question we only compute MACs on behalf of honest readers, but then only
for pairs (Y ′A,G) different from the one used by the successful adversary resp. for a new key
no MAC has been computed before (as discussed above). It follows that the adversary’s loss
when proceeding from Game3 to Game4 can only be qe times the probability of forging a
MAC.

Game5 Abort if the adversary queries its hash function oracle about a Diffie-Hellman key K in an
execution with the honest chip, before it is determined by the value Y ′A.

Note that, once Y ′B has been sent, the random and independent value Y ′A in such an execution
makes the key K random and thus the probability of the adversary having queried H about
K before is at most qh/q times the number qe of such keys.

Game6 Abort if a malicious reader submits a valid TB in an execution to the honest chip, but such
that TB has been sent by an honest reader before in a session for a different session identifier.

According to the previous games the adversary, when sending a valid TB, must query the
random oracle about the key before, when the session identifier is distinct. In this case,
however, we can apply an information-theoretic argument based on the unforgeability of the
MAC. Recall that in executions with an honest chip the key K is unique. Fix one such
execution for the moment and call this the target execution. Let TB be the set of (at most
qe) values TB sent in executions with honest readers. Then, in the target execution with
values Y ′A, Y

′
B,G, the probability that the (unique) key K hashes to a key K′MAC such that

Vf(K′MAC, TB, (Y
′
A,G)) = 1 for some TB ∈ TB, is negligible. This can be seen as follows:

Since the K is uniquely determined from the target execution before, the value K′MAC, when
returned to the adversary upon a hash query about K, is random and independent from all
other keys. If, by chance, Vf(K′MAC, TB, (Y

′
A,G)) = 1 for a fixed TB ∈ TB, then we can easily

devise a forgery against the MAC scheme as follows. Mount an attack against the MAC
scheme by simulating the security game, but record all values in TB and make a verification
query about TB, (Y

′
A,G) for all values TB ∈ TB and the values Y ′A,G after having sent Y ′A in

16

an execution on behalf of an honest chip. Note that the adversary cannot have made a hash
query about this key K before, according to the previous game. Hence, it follows that the key
K′MAC is still an undetermined random value and the probability that a verification query in
the simulation succeeds is exactly equal to the probability in the attack on the MAC (for an
unknown random key).

Game7 Abort if the adversary sends a valid signature on behalf of an honest chip for a fresh
session.

Abort if the adversary manages to send a valid (encapsulated) signature on behalf of an
honest chip to the honest reader (for a session with a fresh sid which does not appear in
another accepting execution) for the challenge value TB in this execution. By the previous
game the adversary cannot have a value TB be signed by an honest chip, before sending it
in an execution with the honest reader, unless the session identifiers match. In other words,
in order to impersonate successfully, the adversary needs to send a valid signature for a new
value TB. This can be straightforwardly turned into an attack against the signature scheme,
as discussed next.

Pick at the outset one of the at most qu active users. Our forger against the signature scheme
injects the given public key of the signature scheme as the chosen user’s public key. Whenever
the adversary invokes a run of this user then we call the token step of the Schnorr signature
scheme to get a value YA. Similarly, we run the token step in case of DSA signatures but
take the output modulo q. We inject this value in the execution and later send a random
value Y ′A on behalf of the user. Note that we thus do not know the key K in this execution,
but according to the previous games we can check in executions with the adversary for a
candidate among the hash queries via the Decisional Diffie-Hellman Oracle for a candidate
and the two values Y ′A, Y

′
B from the execution —if we do not find any match we can simply

reject. In executions with an honest reader we can actually derive the key from the reader’s
view on the execution. It follows that we can still compute the right key and then complete
the signature token once we have to send the encrypted signature for TB.

Note that the simulation is perfect from the adversary’s view. Hence, if the adversary in
Game7 eventually convinces an honest reader to accept a signature for the value TB in the
execution then it follows that this value has not been signed before (or the session identifiers
are identical and the adversary cannot win then), we derive a successful forger against the
signature scheme.

This concludes the description of the games. Note that in the final game the adversary cannot
successfully impersonate anymore. �

6 A Deniable Schnorr Variant

Deniability basically demands that for any (possibly malicious) party on either side, there exists a
simulator which produces the same output distribution as the malicious party but without commu-
nicating with the honest party. This implies that the malicious party could have generated these
data itself, without the help of the other party, and thus cannot use it as a proof towards a third
party.

17

6.1 Defining Deniability

Unlike in the key exchange setting we assume a setting where only one chip and one terminal are
present (but may run many executions concurrently), and that the adversary controls either party
from the beginning and no further corrupt queries are allowed. We note that the deniability in
the multi-user setting immediately follows via a hybrid argument if the parties’ secret inputs are
otherwise picked independently (as is the case here).

Since we work in the random oracle model, there is a peculiarity due to the (non-)programmability
of the hash function [Pas03]. Roughly, it is important that the distinguisher (receiving either the
view of the malicious party or the simulated view) cannot distinguish these two random variables,
even if it gets access to the same random oracle as the parties and the simulator. The distinguisher’s
access to the same hash function prevents the simulator from programming the hash values (as it
would be the case for a real-world hash function).

Definition 6.1 (Deniability) A password-based key-exchange protocol P is deniable in the random-
oracle model if for any possibly adversary-controlled party with access to the random oracle H there
exists an efficient algorithm SH such that SH on input the party’s secret and public input, as well
as the other party’s public input, generates the same output distribution as the malicious party
in concurrent executions of the protocol. That is, for any algorithm DH the output of DH when
receiving the public data of both parties and the secret input of the malicious party, in addition
to either the output of SH or the output of the malicious party, is indistinguishable in both cases.
We write AdvdenP (T,Q) for a bound on the difference

∣∣Prob
[
DH(AH) = 1

]
− Prob

[
DH(SH) = 1

]∣∣,
where DH(AH) is the output of D (in time t∗ with at most q∗h hash queries) when run in the exper-
iment with A (running in time t, invoking at most qe protocol executions and with at most qh hash
queries); analogously, DH(SH) is the output of D when run in the experiment with S (running in
time t′ with at most q′h hash queries). Let T = (t, t′, t∗) and Q = (qe, qh, q

′
h, q
∗
h).

Clearly, it wlog. suffices that the distinguisher outputs a bit only. Ideally, the advantage should
be small for any efficient D and A and where the simulator’s efficiency characteristics are close to
the one of the adversary. We note that there are even stronger versions, called online deniability
[DKSW09] where the distinguisher can communicate with the malicious party resp. the simulator
while the protocol is executed. This notion, however, is much harder to achieve and not known to
work here.

6.2 Deniability of Our Protocol

Our deniable version of the Schnorr schemes works as before, only that this time we hash (Y ′A,G)
instead of TB. We call this protocol the deniable Schnorr-based PACE|AA protocol. Roughly, the
idea is now that the chip itself determines the challenge! Given that the challenge can be determined
beforehand and that it is created independently of the first signature step one can simulate the
final signature part as in the interactive Schnorr identification protocol [Sch91]. We only need to
take care that the other security properties are not violated through this.

Note that security as an AKE protocol follows as in the Schnorr signature based version (with
the very same bounds). It suffices to show impersonation resistance (which follows similar to the
case of signatures) and deniability. We note that our deniability simulator will actually need some
assistance in form of a decisional Diffie-Hellman oracle (which, for sake of fairness, we then also
give the adversary and the distinguisher). We comment that this does not trivialize the task as
such a decision oracle is not known to help compute discrete logarithms, such that the simulator

18

cannot simply derive the chip’s secret key from the public key and use this key to show deniability.
We note that the query parameters Q thus take additional bounds qDDH, q′DDH, and q∗DDH.

Theorem 6.2 For the deniable Schnorr-based PACE|AA protocol it holds that:

AdvikePACE|AA(t, Q)

≤ 2q2e + qeqh
q

+ AdvforgeCA (t∗, qe) + 2qe ·AdvforgeM (t∗, 2qe, 2qe) + Advr−forgeSchnorr(t
∗, qe)

where t∗ = t+O(kq2e + kq2h + k2) and Q = (qe, qh).

Proof. The proof follows almost identically to the one of Theorem 5.2 (impersonation resistance).
We start after the hop to Game6 and make another game hop, aborting if in two executions with
honest chips, the chips send the same value Y ′A. Since these values are random group elements
we only lose a term 1

2q
2
e/q, analogously to the hop to Game3 in the previous proof. Analogously,

we can assume that there are no collisions among the values Y ′A and Y ′B picked by honest chips or
terminals, respectively. This decreases the adversary’s success probability also by at most 1

4q (2qe)
2,

since there are at most 1
2(2qe)

2 pairs and the probability that there is a collision among the values
chosen by chip and terminal, is at most 1/2q.

Assume now that the adversary at some point successfully impersonates as an honest chip to
an honest terminal, by using a pair (Y ′A,G) in the hashing step of our Schnorr version which has
been used by an honest chip before. Since the values Y ′A are unique there exists at most one such
execution. In this execution the adversary must have sent a different value than Y ′B in the successful
impersonation, or else the session identifiers would be identical. It follows that both executions have
distinct keys. It furthermore holds that Y ′B 6= Y ′A. We can now apply an argument analogously to
the one in Game4,Game5, and Game6 that the adversary cannot find a valid token TA on behalf
of the honest chip. Only here we need to make the MAC query about K′MAC, (Y

′
A,G) before to

compute TB on behalf of the honest terminal. But since Y ′A and Y ′B are then both picked by honest
users and this implies by assumption that (Y ′A,G) is different from (Y ′B,G) in this execution, the
MAC TB does not help to forge the MAC TA.

Hence, we can assume that the adversary uses a fresh pair (Y ′A,G), not previously authenticated
under the key of an honest chip. This, however, contradicts the unforgeability of the special Schnorr
identification version, as discussed after Definition 4.2. �

Theorem 6.3 The deniable Schnorr-based PACE|AA protocol is deniable in the random oracle
model if the MAC is unforgeable (and the adversary, simulator, and distinguisher are granted access
to a decision Diffie Hellman oracle). That is, for any malicious chip or terminal A (with access
to the random oracle and a DDH oracle) there exists a simulator S (with the same oracle access)
such that for any distinguisher D (with the same oracle access) we have

AdvdenPACE|AA(T,Q)

≤ q2e
q

+ 2qe ·AdvforgeM (t′, 2qe, 2qe)

where t′ = t+ t∗ +O(kq2e + kq2h + k2) and q′h = qh + q∗h and q′DDH = q2h + qDDH + q∗DDH.

19

Proof. It is easy to see that one can simulate the view of a malicious chip easily, by just following
the protocol on the terminal’s side (since the password is considered a joint secret input it is easy
to run the terminal’s steps) and mount a black-box simulation of the malicious chip, outputting
whatever this party outputs. The output distribution is identical and the simulator makes the same
calls to the hash functions as the honest party.

The more interesting case is the one of a malicious terminal. We present our simulator SH
for this case. Recall that, this time, the simulator only has access to the chip’s public key XA,
the group data, and the password (but not the chip’s secret key). The simulator now proceeds as
follows, running a black-box simulation of the adversarial terminal (playing the honest chip). In
each execution the simulator initially picks values yA, y

′
A ← Zq and computes Y ′A = gy

′
A as well as

c = H(Y ′A,G) and YA = X−cA gyA . Note that both values are not computed according to the protocol
description but still have the same distribution. In particular, even though the simulator may not
be able to compute the shared Diffie-Hellman key K in the execution, it can later complete the
signature generation by setting sσ = yA (such that gσ = YAX

H(Y ′A,G)). For the other steps the
simulator proceeds as the chip would, using knowledge of the password. Only when the simulator
receives TB from the malicious token, it searches (with the decisional Diffie-Hellman oracle) in the
list of hash queries of the malicious terminal for queries about a key DH(Y ′A, Y

′
B). If no key is found

then abort this execution; else use the found key K to finish the execution (using the signature
tokens as computed above). If the adversary stops then let the simulator output the same value.

It remains to show that, with overwhelming probability, the malicious terminal cannot send
a valid token unless it has queried the random oracle about the Diffie-Hellman key before. This
follows as in the proof of Theorem 5.2 (impersonation resistance). There, in game hops from
Game0 to Game4 it is shown that any such execution would yield a contradiction against the
unforgeability of the MAC (some of the hops, namely to Game1,Game3, and case (A) of Game4,
do not apply here because only the chip is honest). Hence, unless the malicious terminal can forge
MACs, the simulator will find a (unique) key in the list such that the behavior of the simulator is
indistinguishable from the one of the honest party. Additionally, the simulator only queries the hash
function as the chip would, allowing us to conclude that the output of DH is also indistinguishable
in both cases. �

Acknowledgments

We thank the anonymous reviewers of FC’12 for helpful comments. This work was supported by
the German Federal Office for Information Security (BSI) and CASED (http://www.cased.de).
The content and views expressed in this article are those of the authors and do not necessarily
reflect the position or policy of the supporting authorities.

References

[AFP05] Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval. Password-based authen-
ticated key exchange in the three-party setting. In Serge Vaudenay, editor, PKC 2005,
volume 3386 of LNCS, pages 65–84. Springer, January 2005.

[BCI+10] Eric Brier, Jean-Sébastien Coron, Thomas Icart, David Madore, Hugues Randriam,
and Mehdi Tibouchi. Efficient indifferentiable hashing into ordinary elliptic curves. In

20

Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 237–254. Springer,
August 2010.

[BDF12] Christina Brzuska, Özgür Dagdelen, and Marc Fischlin. Tls, pace, and eac: A crypto-
graphic view at modern key exchange protocols. In Sicherheit, pages 71–82, 2012.

[BFK09] Jens Bender, Marc Fischlin, and Dennis Kügler. Security analysis of the PACE key-
agreement protocol. In Pierangela Samarati, Moti Yung, Fabio Martinelli, and Clau-
dio Agostino Ardagna, editors, ISC 2009, volume 5735 of LNCS, pages 33–48. Springer,
September 2009.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In
Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 514–532. Springer,
December 2001.

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange
secure against dictionary attacks. In Bart Preneel, editor, EUROCRYPT 2000, volume
1807 of LNCS, pages 139–155. Springer, May 2000.

[BPSV08a] Carlo Blundo, Giuseppe Persiano, Ahmad-Reza Sadeghi, and Ivan Visconti. Improved
security notions and protocols for non-transferable identification. In Sushil Jajodia and
Javier López, editors, ESORICS 2008, volume 5283 of LNCS, pages 364–378. Springer,
October 2008.

[BPSV08b] Carlo Blundo, Giuseppe Persiano, Ahmad-Reza Sadeghi, and Ivan Visconti. Resettable
and non-transferable chip authentication for e-passports. In RFIDSec08, 2008.

[BSI10] BSI. Advanced security mechanism for machine readable travel documents extended
access control (eac). Technical Report (BSI-TR-03110) Version 2.05 Release Candidate,
Bundesamt fuer Sicherheit in der Informationstechnik (BSI), 2010.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM
Journal on Computing, 30(2):391–437, 2000.

[DF10] Özgür Dagdelen and Marc Fischlin. Security analysis of the extended access control
protocol for machine readable travel documents. In Mike Burmester, Gene Tsudik,
Spyros S. Magliveras, and Ivana Ilic, editors, ISC 2010, volume 6531 of LNCS, pages
54–68. Springer, October 2010.

[DKSW09] Yevgeniy Dodis, Jonathan Katz, Adam Smith, and Shabsi Walfish. Composability and
on-line deniability of authentication. In Omer Reingold, editor, TCC 2009, volume
5444 of LNCS, pages 146–162. Springer, March 2009.

[Gol04] Oded Goldreich. The Foundations of Cryptography, volume 2. Cambridge University
Press, 2004.

[ICA06] ICAO. Machine readable travel documents. Technical Report Doc 9303, Part 1 Machine
Readable Passports, Sixth Edition, International Civil Aviation Organization (ICAO),
2006.

21

[Ica09] Thomas Icart. How to hash into elliptic curves. In Shai Halevi, editor, CRYPTO 2009,
volume 5677 of LNCS, pages 303–316. Springer, August 2009.

[ICA10] ICAO. Supplemental access control for machine readable travel documents.
http://www2.icao.int/en/MRTD/Pages/Downloads.aspx, 2010.

[Kra95] D. W. Kravitz. Digital signature algorithm. Computer Engineering, 44(5):6–17, 1995.

[MVV07] Jean Monnerat, Serge Vaudenay, and Martin Vuagnoux. About machine-readable travel
documents – privacy enhancement using (weakly) non-transferable data authentication.
RFIDSEC ’07, 2007.

[Pas03] Rafael Pass. On deniability in the common reference string and random oracle model.
In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 316–337. Springer,
August 2003.

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures and
blind signatures. Journal of Cryptology, 13(3):361–396, 2000.

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles
Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 239–252. Springer, August
1990.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryp-
tology, 4(3):161–174, 1991.

[Vau03] Serge Vaudenay. The security of DSA and ECDSA. In Yvo Desmedt, editor, PKC 2003,
volume 2567 of LNCS, pages 309–323. Springer, January 2003.

22

