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Abstract

The notion of zero-knowledge [GMR85] is formalized by requiring that for every malicious
efficient verifier V ∗, there exists an efficient simulator S that can reconstruct the view of V ∗

in a true interaction with the prover, in a way that is indistinguishable to every polynomial-
time distinguisher. Weak zero-knowledge weakens this notions by switching the order of the
quantifiers and only requires that for every distinguisher D, there exists a (potentially different)
simulator SD.

In this paper we consider various notions of zero-knowledge, and investigate whether their
weak variants are equivalent to their strong variants. Although we show (under complexity as-
sumption) that for the standard notion of zero-knowledge, its weak and strong counterparts are
not equivalent, for meaningful variants of the standard notion, the weak and strong counterparts
are indeed equivalent. Towards showing these equivalences, we introduce new non-black-box sim-
ulation techniques permitting us, for instance, to demonstrate that the classical 2-round graph
non-isomorphism protocol of Goldreich-Micali-Wigderson [GMW91] satisfies a “distributional”
variant of zero-knowledge.

Our equivalence theorem has other applications beyond the notion of zero-knowledge. For
instance, it directly implies the dense model theorem of Reingold et al (STOC ’08), and the
leakage lemma of Gentry-Wichs (STOC ’11), and provides a modular and arguably simpler
proof of these results (while at the same time recasting these result in the language of zero-
knowledge).
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1 Introduction

The notion of zero-knowledge, and the simulation-paradigm used to define it, is of fundamental
importance in modern cryptography—most definitions of protocol security rely on it. In a zero-
knowledge protocol, a prover P can convince a verifier V of the validity of some mathematical
statement x ∈ L, while revealing “zero (additional) knowledge” to V . This zero-knowledge property
is formalized by requiring that for every potentially malicious efficient verifier V ∗, there exists an
efficient simulator S that, without talking to P , is able to “indistinguishably reconstruct” the view of
V ∗ in a true interaction with P . The traditional way of defining what it means to “indistinguishably
reconstruct” is to require that the output of S cannot be distinguished (with more than negligible
probability) from the true view of V ∗ by any efficient distinguisher D; that is, we have a universal
simulator that works for all distinguishers D.

A seemingly weaker way to define the zero-knowledge property is to require that for every
distinguisher D, there exists a “distinguisher-dependent” simulator SD such that the output of
SD cannot be distinguished from the true view of V ∗ by the particular distinguisher D; following
[DNRS03], we refer to this weaker notion of zero-knowledge as weak zero-knowledge.

The main question addressed in this paper is whether this switch in the order of the quanti-
fiers yields an equivalent notion. More specifically, we consider various notions of zero-knowledge,
and investigate whether their weak (distinguisher-dependent simulator) variants are equivalent to
their strong (universal simulator) variants. Towards addressing this question, we introduce new
non-black-box simulation techniques permitting us, for instance, to demonstrate that the classi-
cal 2-round graph non-isomorphism protocol of Goldreich-Micali-Wigderson [GMW91] satisfies a
“distributional” variant of zero-knowledge. Our results also reveal deep connections between the
notion of zero-knowledge and the dense model theorem of Reingold et al [RTTV08] (which in turn
is related to questions such as the XOR Lemma [Yao82] and Szemeredi’s regularity lemma [FK99];
see [TTV09] for more details).

1.1 From Weak to Strong Zero-Knowledge

Our first result shows that (under plausible complexity-theoretic assumptions) for the standard
definition of zero-knowledge, weak zero-knowledge is a strictly weaker requirement than (strong)
zero-knowledge.

Theorem 1 (Informally stated). Assume the existence of “timed commitments” and “timed one-
way permutations”. Then, there exists an interactive proof for a language L ∈ NP that is weak
zero-knowledge but not (strong) zero-knowledge.

Motivated by this separation, we turn to consider relaxed notions of zero-knowledge. We first
consider a concrete security variant of the notion of zero-knowledge. Roughly speaking, we call
a protocol (t, ε)-zero-knowledge if the zero-knowledge property holds with respect to all t(n)-time
bounded distinguishers (as opposed to all polynomial-time distinguishers), and we require that the
distinguishability gap is bounded by ε(n) (as opposed to being negligible), where n is the length of
the statement x being proved. Weak (t, ε)-zero-knowledge is defined analogously (by again switching
the order of the quantifiers).

Note that if (P, V ) is (t, ε)-zero-knowledge (resp. weak (t, ε)-zero-knowledge) for some super-
polynomial function t and some negligible function ε, then (P, V ) is zero-knowledge (resp. weak
zero-knowledge) in the classic sense. We here consider a slightly relaxed notion where we only
require (P, V ) to be (t, ε)-zero-knowledge for all polynomials t and all inverse polynomials ε. (Note
that this is weaker than the standard definition of zero-knowledge since now the running-time of
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the simulator may depend on the bounds t and ε.) Perhaps surprisingly, we show that for this
relaxed notion of zero-knowledge, the weak and strong versions lead to an equivalent definition.

Theorem 2 (Informally stated). If an interactive proof (P, V ) is weak (t, ε)-zero knowledge for
every polynomial t and every inverse polynomial ε, then (P, V ) is also (t′, ε′)-zero knowledge for
every polynomial t′ and every inverse polynomial ε′.

We highlight that the “universal” simulator S constructed in the proof of Theorem 2 makes
use of the malicious verifier V ∗ in a non-black-box way. On a very high-level (and significantly
oversimplifying), the idea behind Theorem 2 is to rely on Von Neumann’s minimax theorem to
obtain the universal simulator from the “distinguisher-dependent” simulators; the non-black-box
nature of the universal simulator comes from the fact that defining the “utility function” we use
with the minimax theorem requires knowing the auxiliary inputs received by V ∗, and thus we make
non-black-box use of V ∗.

Implementing this approach becomes quite non-trivial since we require the existence of a uniform
polynomial-time simulator for every uniform polynomial-time verifier—the minimax theorem only
guarantees the existence of a distribution over polynomial-time machines that simulates the view
of the verifier, but it is not clear if this distribution can be computed in uniform polynomial time.
We overcome this issue by instead relying on a multiplicative weights algorithm to appropriately
implement an approximate minimax strategy; see Section 1.4 for more details.

1.2 From Super-Weak to Strong Distributional Zero-Knowledge

Note that although in the definition of weak zero-knowledge the simulator may depend on the
distinguisher, we still require that the probability that the distinguisher outputs 1 when given the
output of the simulator is close to the probability that the distinguisher outputs 1 when given
the true view of the malicious verifier V ∗. An even weaker condition (considered in [HP10]) only
requires that the simulator manages to make the distinguisher output 1 with at least as high
probability (minus some “small” gap) as the probability that the distinguisher outputs 1 when
given a true view of V ∗. That is, we only consider “one-sided” indistinguishability. We refer to
such a zero-knowledge property as super-weak zero-knowledge.

It is not hard to see that super-weak (t, ε)-zero-knowledge is not equivalent to weak (t, ε)-zero-
knowledge (see Appendix D for the proof). Thus, we here consider an alternative “distributional”
notion of zero-knowledge (a la [Gol93]) where indistinguishability of the simulation is only required
for any distribution over statements (and auxiliary inputs), and the simulator as well as the dis-
tinguisher can depend on the distribution. Additionally, we here model both the distinguisher
and the simulator as non-uniform polynomial-time algorithms (as opposed to uniform ones). (The
combination of these variants was previously considered by [DNRS03].1) We refer to such a notion
of zero-knowledge as distributional zero-knowledge, and analogously define distributional (t, ε)-zero-
knowledge as well as weak (resp. super-weak) distributional (t, ε)-zero-knowledge. Roughly speaking,
distributional zero-knowledge captures the intuition that proofs of “random” statements do not pro-
vide the verifier with any new knowledge (beyond the statement proved). Perhaps surprisingly, we
show that super-weak distributional (t, ε)-zero-knowledge is equivalent to (strong) distributional
(t, ε)-zero-knowledge if we consider all polynomials t and all inverse polynomials ε.

Theorem 3 (Informally stated). If an interactive proof (P, V ) is super-weak distributional (t, ε)-
zero-knowledge for every polynomial t and every inverse polynomial ε, then (P, V ) is also distribu-
tional (t′, ε′)-zero knowledge for every polynomial t′ and every inverse polynomial ε′.

1More specifically, the notion of “ultra-weak zero-knowledge” of [DNRS03] considers both of these relaxations,
but relaxes the notion even further.
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In contrast to Theorem 2, the proof of Theorem 3 follows from a rather direct use of the minimax
theorem; see Section 1.4 for more details. We also show that any protocol where the prover is
“laconic” [GVW01]—that is, it sends only O(log n) bits in total, is super-weak (distributional)
zero-knowledge; combining this result with Theorem 3 thus yields the following theorem.

Theorem 4 (Informally stated). Let (P, V ) be an interactive proof with a laconic prover for a
language L. Then (P, V ) is distributional (t, ε)-zero-knowledge for every polynomial t and every
inverse polynomial ε.

Given Theorem 3, the proof of Theorem 4 is very straight-forward: to show that laconic proofs
are super-weak zero-knowledge, have the simulator simply enumerate all possible prover messages
and keep the one that the distinguisher “likes the most” (i.e., makes the distinguisher output 1
with as high probability as possible); note that we here rely crucially on the fact that we only need
to achieve “one-sided” indistinguishability.

Theorem 4 may seem contradictory. An interactive proof with a laconic prover (i.e., with small
prover communication complexity) can reveal, say, the first logn bits of the witness w to the
statement x proved, yet Theorem 4 states that such a protocol satisfies a notion of zero-knowledge.
But if we leak something specific about the witness, how can we expect the protocol to be “zero-
knowledge”? The key point here is that (as shown in Theorem 4), for random statements x, the
information revealed about the witness can actually be efficiently generated. In other words, the
whole process where the prover first picks the statement (at random), and then provides the proof,
is zero-knowledge.

Despite the simplicity of the proof of Theorem 4, it has many (in our eyes) intriguing corollaries.
The first one is that the classic two-round graph non-isomorphism protocol of [GMW91] (which is
only known to be “honest-verifier” zero-knowledge) is distributional (t, ε)-zero-knowledge for every
polynomial t and every inverse polynomial ε.2 In fact, by the complete problem for SZK [SV03],
we can show that every language in SZK has a 2-round interactive proof that is distributional
(t, ε)-zero-knowledge for every polynomial t and every inverse polynomial ε.

Theorem 5 (Informally stated). For every language L ∈ SZK and every polynomial p, there exists
a 2-round interactive proof (P, V ) for L with completeness 1−negl(·) and soundness error 1

p(·) , and

is distributional (t, ε)-zero-knowledge for every polynomial t and every inverse polynomial ε.

We proceed to outline two other applications of Theorem 4.

Leakage Lemma of Gentry-Wichs. Roughly speaking, the “Leakage Lemma” of Gentry-Wichs
[GW11] states that for every joint distribution (X,π(X)), where |π(x)| = O(log |x|) (π should
be thought of as leakage on X), and for every distribution Y that is indistinguishable from
X, there exists some leakage π̃ such that the joint distributions (X,π(X)) and (Y, π̃(Y )) are
indistinguishable. As we now argue, this lemma (and in fact, a stronger version of it) is a
direct consequence of Theorem 4.

In the language of zero-knowledge, let X be a distribution over statements, and consider a
one-message interactive proof where π(x) denotes the distribution over the prover’s message
when the statement is x. By Theorem 4, this protocol is distributional zero-knowledge, and
thus there exists an efficient simulator S that can simulate the interaction (i.e, (X,S(X)) is
indistinguishable from (X,π(X))). By the indistinguishability of Y and X (and the efficiency

2Recall that in the classic Graph Non-Isomorphism protocol the prover sends just a single bit and thus is very
laconic.
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of S), it directly follows that (Y, S(Y )) is indistinguishable from (X,π(X)). Thus we have
found π̃ = S.

Let us note that our proof of the leakage lemma yields an even stronger statement—namely,
we have found an efficient simulator π̃; such a version of the leakage lemma was recently
established by Jetchev and Pietrzak [JP14]. (As an independent contribution, our proof
of Theorem 4 is actually significantly simpler than both the proof of [GW11] and [JP14].)
Additionally, since our result on zero-knowledge applies also to interactive protocols, we
directly also get an interactive version of the leakage lemma.

Dense Model Theorem. Roughly speaking, the Dense Model Theorem of [RTTV08, TTV09]
states that if X is indistinguishable from the uniform distribution over n-bits, Un, and R is
δ-dense3 in X, then there exists a “model-distribution” M that is (approximately) δ-dense
in Un such that M is indistinguishable from R. Again, we show that this lemma is a direct
consequence of Theorem 4. (Furthermore, our proof of Theorem 4 is arguably simpler and
more modular than earlier proofs of the dense model theorem.)

Let us first translate the statement of the dense model theorem into the language of zero-
knowledge. Let X be a distribution over statements x, and consider some distribution R
that is δ-dense in X, i.e., there exists a joint distribution (X,B(X)) with Pr[B(X) = 1] ≥ δ
such that R = X|(B(X) = 1). Define a one-bit proof where the prover sends the bit B(x),
where x is the statement. By Theorem 4, there exists a simulator S for this interactive
proof; let M = Un|(S(Un) = 1). By the indistinguishability of the simulation, (X,S(X)) is
indistinguishable from (X,B(X)), and thus by indistinguishability of X and Un, (Un, S(Un))
is indistinguishable from (X,B(X)). It follows that M is (approximately) δ-dense in Un, and
M is indistinguishable from R.

1.3 A Note on Our Non-Black-Box Simulation Technique

The universal simulators in Theorem 3, 4, and 5 are indirectly obtained via the minimax theorem
used in the proof of Theorem 3, and again we make non-black-box usage of the verifier V ∗. We
remark that our non-black-box usage of V ∗ is necessary (assuming standard complexity-theoretic
assumptions): We show that black-box simulation techniques cannot be used to demonstrate dis-
tributional (t, ε)-zero-knowledge for 2-round proof systems for languages that are hard-on-average.

Theorem 6 (Informally stated). Let L be any language that is hard-on-average for polynomial-
size circuits, and let (P, V ) be any 2-round interactive proof (with completeness 2/3 and soundness
error 1/3) for L. Then, there exists a polynomial t such that for every ε(n) < 1/12, (P, V ) is not
black-box distributional (t, ε)-zero-knowledge

As as consequence we have that as long as SZK contains a language that is hard-on-average, our
non-black-box techniques are necessary (otherwise, Theorems 5 and 6 would contradict each other).
As far as we know, the above yields the first example where a non-black-box simulation technique
can be used to analyze “natural” protocols (e.g., the classic graph non-isomorphism protocol) that
were not “tailored” for non-black-box simulation, but for which black-box simulation is not possible.
This stands in sharp contrast to the non-black-box technique of Barak [Bar01] and its follow-ups (see
e.g., [PR03, Pas04, PR05, BS05, DGS09, BP12, CPS13, BP13]), where non-black-box simulation is
enabled by a very specific protocol design. This gives hope that non-black-box techniques can be
used to analyze simple/practical protocols.

3R is said to be δ-dense in X if for every r, Pr[R = r] ≤ (1/δ) ·Pr[X = r]; equivalently, R is δ-dense in X if there
exists a joint distribution (X,B(X)) with Pr[B(X) = 1] ≥ δ such that R = X|(B(X) = 1).
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Let us finally remark that in our non-black-box technique, we only need to make non-black-box
use of the malicious verifier V ∗’s auxiliary input z and its running-time t, but otherwise we may
treat V ∗’s Turing machine as a black-box. Although the non-black-box simulation technique of
Barak [Bar01] also makes non-black-box usage of V ∗’s Turing machine, it is not hard to see that
also this technique can be modified to only make non-black-box usage of z and t (but not its Turing
machine)—since the description of V ∗’s Turing machine is of constant length the non-black-box
simulator can simply enumerate all possible Turing machines in the protocol of Barak.

1.4 Our Techniques

As mentioned, both Theorem 2 and 3 rely on the minimax theorem from game theory. Recall that
the minimax theorem states that in any finite two-player zero-sum game, if for every distribution
over the actions of Player 1, there exists some action for Player 2 that guarantees him an expected
utility of v, then there exists some (universal) distribution of actions for Player 2 such that no matter
what action Player 1 picks, Player 2 is still guaranteed an expected utility of v. For us, Player 1 will
be choosing a distinguisher, and Player 2 will be choosing a simulator; roughly speaking, Player 2’s
utility will be “high” if the simulation is “good” for the distinguisher chosen by Player 1. Now, by
the weak zero-knowledge property, we are guaranteed that for every distinguisher chosen by Player
1, there exists some simulator for Player 2 that guarantees him a high utility. Thus intuitively, by
the minimax theorem, Player 2 should have a simulator that yields him high utility with respect
to any distinguisher.

There are two problems with this approach. First, to apply the minimax theorem, we require the
existence of a good “distinguisher-dependent” simulator for every distribution over distinguishers.
Secondly the minimax theorem only guarantees the existence of a distribution over simulators that
works well against every distinguisher. We resolve both of these issues in quite different ways for
Theorem 3 and Theorem 2.

In the context of Theorem 3, since we model both the simulator and distinguisher as non-
uniform machines, we can use standard techniques to “derandomize” any distribution over simula-
tors/distinguishers into a single simulator/distinguisher that gets some extra non-uniform advice:
we simply approximate the original distribution by sufficiently many samples from it, and these
samples can be provided to a single machine as non-uniform advice. (Such “derandomization”
techniques originated in the proof of the hard-core lemma [Imp95].)

In the context of Theorem 2, the situation is more difficult since we need both the distinguisher
and the simulator to be uniform. In particular, we are only guaranteed the existence of a good
distinguisher-dependent simulator for every uniform distinguisher and not necessarily for non-
uniform ones. Here, we instead try to efficiently and uniformly find the “minimax” distribution
over simulator strategies. If this can be done, then we do have a single uniform (and efficient)
simulator algorithm. Towards this, we use a multiplicative weights algorithm, which can be used
to approximately find the minimax strategies of two-player zero-sum games (e.g., see [FS99]). The
multiplicative weights algorithm roughly works as follows. In the first round, Player 1 chooses the
uniform distribution over the set of all t(n)-time Turing machines with description size ≤ log n
(note that any t(n)-time uniform distinguisher will be a member of this set for sufficiently large
n), and then Player 2 chooses a “good simulator” that yields high payoff with respect to Player
1’s distribution (note that since Player 1’s distribution is uniformly and efficiently computable, we
can view the process of sampling from it, and next running the sampled distinguisher, as a single
uniform and efficient distinguisher, and thus we may rely on the weak zero-knowledge definition
to conclude that a good simulator exists). In the next round, Player 1 updates its distribution
using a multiplicative update rule that depends on Player 2’s chosen simulator in the previous
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round; Player 2 again chooses a simulator that yields high payoff with respect to Player 1’s new
distribution, etc. By repeating this procedure for polynomially many rounds, Player 2 obtains a
sequence of simulators such that the uniform distribution over the multiset of simulators yields
high payoff no matter what distinguisher Player 1 chooses.

There are some issues that need to be resolved. In each round, we need to pick a simulator
that works well against a (uniformly and efficiently computable) distribution over t(n)-time distin-
guishers. Although the running-time of the underlying distinguishers is bounded by t(n), the time
needed to sample from this distribution could be growing (exponentially) in each round, which in
turn could potentially lead to an exponential growth in the running-time of the simulator. Thus
after polynomially many rounds, it is no longer clear that the simulator or the distribution over
distinguishers is polynomial-time.4 To deal with this issue, we rely on the “good” distinguisher-
dependent simulator for a single universal distinguisher that receives as auxiliary input the code of
the actual distinguisher it is running; we can then at each step approximate the distribution over
distinguishers and feed this approximation as auxiliary input to the universal distinguisher.

Another important issue to deal with is the fact that to evaluate the “goodness” of a simulation
w.r.t. to some distinguisher (i.e., to compute the utility function), we need to be able to sample
true views of the malicious verifier in an interaction with the honest prover—but if we could do
this, then we would already be done! Roughly speaking, we overcome this issue by showing that
the goodness of a simulation w.r.t. a particular distinguisher D can be approximated by using the
distinguisher-dependent simulator SD for D.

We remark that in both of the above proofs, the reason that we work with a (t, ε)-notion of
zero-knowledge is that the running-time of the simulator we construct is polynomial in t and 1/ε.

1.5 Related Work

As mentioned above, the notion of weak zero-knowledge was first introduced by Dwork, Naor,
Reingold and Stockmeyer [DNRS03]. Dwork et al also considered non-uniform versions and distri-
butional versions of zero-knowledge; distributional versions of zero-knowledge were first considered
by Goldreich [Gol93] in a uniform setting (called uniform zero-knowledge).

The minimax theorem from game-theory has been applied in various contexts in complexity
theory (e.g., [Imp95, BSW03, RTTV08, TTV09, VZ13]) and more recently also in cryptography
(e.g., [RTTV08, DP08, CKLR11, GW11, VZ13, JP14]). The proof of Theorem 4 is related to
the approaches taken in these previous works, and most closely related to the approach taken in
[TTV09]. However, as far as we know, none of the earlier results have applied the minimax theorem
in the context of zero-knowledge. Nevertheless, as we mentioned above, our Theorem 4 implies some
of these earlier results (and shows that they can be understood in the language of zero-knowledge).

In a recent paper [VZ13], Vadhan and Zheng proved a uniform minimax theorem, but our
usage of the multiplicative weights algorithm cannot be simplified by using their uniform minimax
theorem. One reason is that in our setting, the payoff (utility) function of the zero-sum game cannot
be efficiently computed, and thus we have to approximate it. The uniform minimax theorem of
[VZ13] does not handle the usage of an approximate payoff function (their theorem does allow
the usage of approximate KL projections in the algorithm, but from what we can see, this is not
sufficient for handling our approximate payoff function).

4A similar issue appeared in a recent paper by us in the context of forecast testing [CLP13], where we used a
related, but different, technique to overcome it.
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1.6 Overview

In Section 2, we show that weak zero-knowledge is not equivalent to zero-knowledge (Theorem 1
above). In Section 3, we show that weak and strong (t, ε)-zero-knowledge are equivalent (Theorem
2 above). In Section 4, we show that super-weak and strong distributional (t, ε)-zero-knowledge
are equivalent (Theorem 3 above), and interactive proofs with a laconic prover are distributional
zero-knowledge (Theorem 4 above), and we also describe applications of this result. In Appendix
D, we separate the notion of super-weak and weak (t, ε)-zero-knowledge.

2 Separation of Weak and Strong Zero-Knowledge

Given a prover P , a verifier V ∗, and x, z ∈ {0, 1}∗, let OutV ∗ [P (x)↔ V ∗(x, z)] denote the output of
V ∗(x, z) after interacting with P (x). We now state the definition of zero-knowledge for convenient
reference.

Definition 7 (zero-knowledge). Let (P, V ) be an interactive proof system for a language L. We
say that (P, V ) is zero-knowledge if for every PPT adversary V ∗, there exists a PPT simulator S
such that for every PPT distinguisher D, there exists a negligible function ν(·) such that for every
n ∈ N, x ∈ L ∩ {0, 1}n, and z ∈ {0, 1}∗, we have

|Pr[D(x, z,OutV ∗ [P (x)↔ V ∗(x, z)]) = 1]− Pr[D(x, z, S(x, z)) = 1]| ≤ ν(n).

Remark. If L is a language in NP with witness relation RL, we usually require the prover P to be
efficient, but on common input x, we also give any witness y ∈ RL(x) to the prover P . We refer to
such a notion as efficient prover zero-knowledge. More formally, in the definition of zero-knowledge
above, we would change “x ∈ L ∩ {0, 1}n, and z ∈ {0, 1}∗” to “x ∈ L ∩ {0, 1}n, y ∈ RL(x), and
z ∈ {0, 1}∗”, and we would change P (x) to P (x, y) and require P to be efficient. All subsequent
definitions can be extended to an efficient prover setting in an obvious way.

One can relax the definition of zero-knowledge by switching the order of the quantifiers ∃S and
∀D so that the simulator S can depend on the distinguisher D. We call the relaxed definition weak
zero-knowledge (following [DNRS03]).

Definition 8 (weak zero-knowledge). Let (P, V ) be an interactive proof system for a language
L. We say that (P, V ) is weak zero-knowledge if for every PPT adversary V ∗ and every PPT
distinguisher D, there exists a PPT simulator S and a negligible function ν(·) such that for every
n ∈ N, x ∈ L ∩ {0, 1}n, and z ∈ {0, 1}∗, we have

|Pr[D(x, z,OutV ∗ [P (x)↔ V ∗(x, z)]) = 1]− Pr[D(x, z, S(x, z)) = 1]| ≤ ν(n).

We now show that weak zero-knowledge is not equivalent to zero-knowledge if we assume the
existence of two-round “timed” commitment schemes and “timed” worst-case weak one-way per-
mutations satisfying certain properties. More precisely, we assume that there exists a polynomial
p(·) such that for sufficiently large n ∈ N, the following hold:

• There exists a collection of two-round “timed” commitment schemes {Comi}i∈[`], where ` =

log2 n, such that Comi is hard to break in p(n)i−1 steps, but can always be broken in p(n)i

steps to obtain the committed value (e.g., one can get such timed commitment schemes from
a timed commitment scheme in [BN00]).
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• There exists a collection of “timed” worst-case weak one-way permutations {fi}i∈[`], where

` = log2 n, such that fi is somewhat hard to invert in p(n)i+1 steps in the worst case (i.e., an
adversary running in p(n)i+1 steps will fail to invert some instance fi(x

′) with probability at
least 1/poly(n)), but can always be inverted in p(n)i+2 steps.

Theorem 9. Assume the existence of two-round “timed” commitment schemes and “timed” worst-
case weak one-way permutations as described above. Then, there exists an interactive proof system
(P, V ) for an NP language L such that (P, V ) is weak zero-knowledge but not zero-knowledge.

Proof sketch. The proof roughly works as follows. Let L be the trivial NP language {0, 1}∗ with
witness relation RL(x) = {(f−11 (x), . . . , f−1

log2 |x|(x))}.
Let (P (x, y), V (x)) be the following interactive proof, where x ∈ {0, 1}∗, n = |x|, ` = log2 n,

and y = (f−11 (x), . . . , f−1` (x)):

1. The verifier V generates and sends ρi for i = 1, . . . , ` to the prover, where ρi is the first
message of an execution of Comi.

2. The prover P sends Comi(f
−1
i (x), ρi) for i = 1, . . . , ` to the verifier, where Comi(v, r) denotes

the commitment of v using Comi with first message r.

3. The verifier V accepts (i.e., outputs 1).

To see that (P, V ) is weak zero-knowledge, consider any PPT verifier V ∗ and any PPT distinguisher
D, and let T (n) be a polynomial that bounds the combined running time of V ∗ and D. Then, a
simulator S can compute the smallest positive integer j such that p(n)j−1 > T (n), and then break
f−11 (x), . . . , f−1j−1(x) in polynomial time. Then, the simulator S can simulate the protocol except

that for i = j, . . . , `, the simulator S sends Comi(0
n, ρi) to V ∗ since S does not know f−1i (x). By

the hiding property of Comj , . . . ,Com`, the distinguisher D cannot distinguish between the output
of the verifier V ∗ (in a true interaction with P ) and the output of the simulator S, since D and V ∗

(combined) cannot break any of the commitment schemes Comj , . . . ,Com` (since D and V ∗ do not
run long enough).

Intuitively, (P, V ) is not zero-knowledge because the existence of a (universal) simulator S
would allow us to invert a worst-case weak one-way permutation fj with overwhelming probability
and in less time than what is specified in our hardness assumption for fj . To see this, consider a
PPT distinguisher D that, given x and a view of V , runs longer than S and breaks a commitment
Comj(wj , ρ

′
j) from the view of V such that the time needed to break fj is much longer than the

running time of the simulator S, and then verifies whether or not f(wj) = x. The fact that the
simulator S works for the distinguisher D will ensure that with overwhelming probability, the
output of S(x) will contain a commitment Comj(wj , ρ

′
j) of some wj such that fj(wj) = x. Thus, we

can now construct an adversary A that inverts fj(wj) with overwhelming probability by running
the simulator S on input fj(wj) and breaking the commitment Comj(wj , ρ

′
j) in the output of S.

Since breaking fj takes longer time than running the simulator S and breaking the commitment
Comj(wj , ρ

′
j), the adversary A contradicts our hardness assumption for fj .

See Appendix A for the full proof of Theorem 9.

3 From Weak to Strong (t, ε)-Zero-Knowledge

From Theorem 9, we know that zero-knowledge and weak zero-knowledge are not equivalent. Thus,
we now consider relaxed notions of zero-knowledge. We first consider a concrete security variant of
the notion of zero-knowledge.
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Definition 10 ((t, ε)-zero-knowledge). Let (P, V ) be an interactive proof system for a language
L. We say that (P, V ) is (t, ε)-zero-knowledge if for every PPT adversary V ∗, there exists a PPT
simulator S such that for every t-time distinguisher D, there exists an n0 ∈ N such that for every
n ≥ n0, x ∈ L ∩ {0, 1}n, and z ∈ {0, 1}∗, we have

|Pr[D(x, z,OutV ∗ [P (x)↔ V ∗(x, z)]) = 1]− Pr[D(x, z, S(x, z)) = 1]| ≤ ε(n).

Similar to before, we can relax the definition of zero-knowledge by switching the order of the
quantifiers ∃S and ∀D so that the simulator S can depend on the distinguisher D. We call the
relaxed definition weak (t, ε)-zero-knowledge.

Definition 11 (weak (t, ε)-zero-knowledge). Let (P, V ) be an interactive proof system for a
language L. We say that (P, V ) is weak (t, ε)-zero-knowledge if for every PPT adversary V ∗ and
every t-time distinguisher D, there exists a PPT simulator S and an n0 ∈ N such that for every
n ≥ n0, x ∈ L ∩ {0, 1}n, and z ∈ {0, 1}∗, we have

|Pr[D(x, z,OutV ∗ [P (x)↔ V ∗(x, z)]) = 1]− Pr[D(x, z, S(x, z)) = 1]| ≤ ε(n).

Note that if (P, V ) is (t, ε)-zero-knowledge (resp. weak (t, ε)-zero-knowledge) for some super
polynomial function t and some negligible function ε, then (P, V ) is zero-knowledge (resp. weak
zero-knowledge) in the classic sense. We now show that (t, ε)-zero-knowledge and weak (t, ε)-zero-
knowledge are equivalent if we consider all polynomials t and inverse polynomials ε.

Theorem 12. Let (P, V ) be an interactive proof system for a language L. Then, (P, V ) is weak
(t, ε)-zero-knowledge for every polynomial t and inverse polynomial ε if and only if (P, V ) is (t′, ε′)-
zero-knowledge for every polynomial t′ and inverse polynomial ε′.

Proof. The “if” direction clearly holds by definition. We will now prove the “only if” direction.
Suppose (P, V ) is weak (t, ε)-zero-knowledge for every polynomial t and inverse polynomial ε. Let
t′ be any polynomial, and let ε′ be any inverse polynomial.

Let V ∗ be any PPT adversary, and let TV ∗(·) be any polynomial that bounds the running time
of V ∗. It is not hard to see that without loss of generality, we can assume that the auxiliary input
z ∈ {0, 1}∗ in the definition of (t′, ε′)-zero-knowledge is exactly C · (TV ∗(n) + t′(n)) bits long, where
C is some constant ≥ 1.5 Furthermore, it is easy to see that without loss of generality, we can also
remove the absolute value | · | and change ε′(n) to O(ε′(n)). Thus, it suffices to construct a PPT
simulator S such that for every t′-time distinguisher D, there exists an n0 ∈ N such that for every
n ≥ n0, x ∈ L ∩ {0, 1}n, and z ∈ {0, 1}∗ with |z| = C · (TV ∗(n) + t′(n)), we have

Pr[D(x, z,OutV ∗ [P (x)↔ V ∗(x, z)]) = 1]− Pr[D(x, z, S(x, z)) = 1] ≤ O(ε′(n)).

We will now construct the required PPT simulator S for V ∗.

High-level description of the simulator S: We first give a high-level description of the simulator
S. The simulator S uses the multiplicative weights algorithm described in [FS99]. The simulator
S, on input (x, z) with n := |x|, first runs a multiplicative weights algorithm to find a “good set”
of simulator machines {S1, . . . , SL}; then, the simulator S randomly and uniformly chooses one of
the simulator machines in {S1, . . . , SL} to perform the simulation, i.e., S runs the chosen simulator
machine on input (x, z) and outputs whatever the simulator machine outputs.

5This follows from standard padding techniques and the fact that the adversary V ∗ and the distinguisher D cannot
read any of the bits after the first TV ∗(n) + t′(n) bits of z.
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Before we describe the multiplicative weights algorithm run by the simulator S, let us introduce
some notation. Given a simulator S′ and a distinguisher D′, let the “payoff” of S′ (with respect to
D′) be

µ(S′, D′) := Pr[D′(x, z, S′(x, z)) = 1]− Pr[D′(x, z,OutV ∗ [P (x)↔ V ∗(x, z)]) = 1].

Given a simulator S′ and a distribution D(i) over distinguishers, let

µ(S′,D(i)) := ED′∼D(i) [µ(S′, D′)] =
∑

D′∈Supp(D(i))

D(i)(D′) · µ(S′, D′).

We note that we want to design the simulator S so that for every t′-time distinguisher D, we have
µ(S,D) ≥ −O(ε′(n)).

LetD1, D2, D3, . . . be an enumeration of the set of all (uniform) distinguishers, and letD′1, D
′
2, D

′
3, . . .

be the corresponding sequence where D′j is the same as Dj except that after t′(n) steps, D′j stops
and outputs 0. We note that each fixed t′-time distinguisher D will eventually appear in the set
{D′1, . . . , D′n} as n gets larger.

We now describe the multiplicative weights algorithm run by S. In the multiplicative weights
algorithm, S simulates L rounds (repetitions) of a zero-sum game between a “simulator player” Sim
and a “distinguisher player” Adv, where the payoff function for Sim is the function µ(·, ·) defined
above. In each round i, Adv chooses a mixed strategy (i.e., a distribution) D(i) over its set of
pure strategies {D′1, . . . , D′n} (a set of distinguishers), and then Sim chooses a simulator machine
Si := Si(D(i)) that hopefully “does well” against Adv’s mixed strategy D(i), i.e., Sim’s (expected)
payoff µ(Si,D(i)) is high.

In the first round, Adv chooses the uniform distribution D(1) over {D′1, . . . , D′n}. After each
round i, Adv updates its mixed strategy to get D(i+1) in a manner similar to the multiplicative
weights algorithm described in [FS99], which involves the payoff function µ. However, Adv cannot
compute µ efficiently, since µ involves the prover P , which may be inefficient (or has a witness y
that Adv does not have). Thus, Adv uses an approximation µ̂ of the payoff function µ. In particular,
given a distinguisher D′, Adv can approximate µ(Si, D

′) by approximating OutV ∗ [P (x)↔ V ∗(x, z)]
with the output of a simulator SD′ that is good w.r.t. the distinguisher D′; the existence of such
a simulator is guaranteed by the weak zero-knowledge property of (P, V ). There are still some
issues: Adv might not be able to find SD′ efficiently and uniformly, and SD′ only works well for
sufficiently large n. We resolve these issues by using a “universal” distinguisher that essentially
takes a description of a distinguisher D′ as auxiliary input and runs D′, and we use a simulator
that is good w.r.t. this universal distinguisher.

Using an analysis similar to that in [FS99], we will show that if Sim manages to choose a
simulator machine Si that does well against Adv’s mixed strategy D(i) in every round i ∈ [L], then
the uniform mixed strategy over the set {S1, . . . , SL} of chosen simulator machines does well against
all the distinguishers in {D′1, . . . , D′n}. To choose a simulator machine Si that does well against Adv’s
mixed strategy D(i), Sim makes use of the weak zero-knowledge property of (P, V ), which guarantees
that for every distinguisher D, there exists a simulator SD that does well against D. However, there
are some complications: (1) D(i) is a mixture of distinguishers, not a single distinguisher; (2) Sim
might not be able to efficiently and uniformly find the distinguisher-dependent simulator; and (3)
even if Sim can efficiently and uniformly find the distinguisher-dependent simulator, the simulator
depends on the mixed strategy D(i), and the time needed to sample from D(i) could be growing
(exponentially) in each round, which in turn can potentially lead to an exponential growth in the
running time of the distinguisher-dependent simulator as more rounds are performed.
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Sim overcomes these problems by (also) using a “universal” distinguisher DU that takes the
weights (i.e., probability masses) of a distribution D over {D′1, . . . , D′n} as auxiliary input, samples
a distinguisher from the distribution D, and then runs the sampled distinguisher. Let SDU

be the
simulator that is good w.r.t. DU ; again, the existence of such a simulator is guaranteed by the weak
zero-knowledge property of (P, V ). Sim chooses Si to be the simulator machine that runs SDU

with
the weights of the distribution D(i) provided as auxiliary input. We now give a formal description
of the simulator S.

The simulator S: Let D1, D2, D3, . . . be an enumeration of the set of all (uniform) distinguishers,
and let D′1, D

′
2, D

′
3, . . . be the corresponding sequence where D′j is the same as Dj except that after

t′(n) steps, D′j stops and outputs 0.
The simulator S, on input (x, z) with n := |x|, proceeds as follows:

1. Let TDU
(n) = O((TV ∗(n) + t′(n) + n)2).

Given a distribution D over {D′1, . . . , D′n}, let ~pD denote the vector of weights (i.e., probability
masses) representing D, i.e., ~pD = (D(D′1), . . . ,D(D′n)).

Let DU be a “universal” distinguisher that, on input (x, z′, v), first parses z′ as z′ = z||~pD,
where ~pD is a vector the weights representing some distribution D over {D′1, . . . , D′n}; then,
DU samples a distinguisher D′j from the distribution D, and then runs D′j on input (x, z, v),
but DU always stops after TDU

(n) steps regardless of whether or not D′j finishes running.

Let SDU
be the PPT simulator forDU that is guaranteed by the weak (TDU

, ε′)-zero-knowledge
property of (P, V ).

2. Let L = Θ( logn
ε′(n)2 ) and β = 1

1+
√

(2 lnn)/L
. (L is the number of rounds we will run the multi-

plicative weights algorithm for, and β is used in the multiplicative update rule.)

3. Multiplicative weights algorithm:

Let D(1) be the uniform distribution over {D′1, . . . , D′n}. (The probability mass D(1)(D′j) for
D′j can be thought of as the “weight” for D′j .)

For i = 1, . . . , L do:

(a) Choosing a simulator machine Si that does well against D(i):

Let Si be a simulator machine that, on input (x, z), outputs SDU
(x, z||~pD(i)).

(b) Weight update:

Compute the distribution D(i+1) from D(i) by letting

D(i+1)(D′j) ∼ β
µ̂(Si,D

′
j) · D(i)(D′j)

for every D′j ∈ {D′1, . . . , D′n} (and renormalizing), where

µ̂(Si, D
′
j) := freqk[D

′
j(x, z, Si(x, z))]− freqk[D

′
j(x, z, SDU

(x, z||~pD′j ))],

where freqk[D
′
j(x, z, Si(x, z))] and freqk[D

′
j(x, z, SDU

(x, z||~pD′j ))] are approximations of

Pr[D′j(x, z, Si(x, z)) = 1] and Pr[D′j(x, z, SDU
(x, z||~pD′j )) = 1] by taking k := Θ( log(nL/ε

′(n))
ε′(n)2 )

samples, respectively, and computing the relative frequency in which 1 is outputted.

The function µ̂ should be viewed as being an approximation of the payoff function µ.

End for
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4. Choose Si ∈ {S1, . . . , SL} uniformly at random.

5. Run the simulator Si on input (x, z) and output Si(x, z).

We now continue with the formal proof. It can be easily verified that S runs in time poly(n, t′(n), 1
ε′(n)).

Let D be any distinguisher whose running time is bounded by t′(n). Fix an integer n that is suf-
ficiently large so that the distinguisher D appears in {D1, . . . , Dn} and SDU

works for the distin-
guisher DU on input size n for x. We note that the distinguisher D also appears in {D′1, . . . , D′n},
since the running time of D is bounded by t′(n). Fix x ∈ L ∩ {0, 1}n and z ∈ {0, 1}∗ with
|z| = C · (TV ∗(n) + t′(n)). To prove the theorem, it suffices to show that

µ(S,D) ≥ −O(ε′(n)).

To show this, we will proceed as follows: (1) We first show that if, in every round i the chosen
simulator Si does well against the distribution D(i) with respect to our approximation µ̂ of µ, then
the simulator S does well against D with respect to µ̂; this is the first lemma below; (2) We then
show that the first lemma holds even if we replace µ̂ with µ; this is the second lemma below;
(3) Finally, we show that in each round i, the chosen simulator Si indeed does well against the
distribution D(i) with respect to µ.

We now proceed with the proof. For i = 1, . . . , L, let

µ̂(Si,D(i)) := ED′∼D(i) [µ̂(Si, D
′)] =

n∑
k=1

D(i)(D′k) · µ̂(Si, D
′
k).

One should view µ̂(Si,D(i)) as an approximation of µ(Si,D(i)).

Lemma 13. For every distinguisher D′j ∈ {D′1, . . . , D′n}, if we run the simulator S(x, z), then

(with probability 1) S(x, z) generates D(1), . . . ,D(L) and S1, . . . , SL such that

1

L

L∑
i=1

µ̂(Si, D
′
j) ≥

1

L

L∑
i=1

µ̂(Si,D(i))−O(ε′(n)).

The proof of Lemma 13 is essentially the same as a lemma found in [CLP13], whose proof is
very similar to the analysis of the multiplicative weights algorithm found in [FS99]. In [FS99], the
multiplicative weights algorithm updates the weights of D(i) using the exact value of µ(Si, D

′
j);

here, we only have an approximation µ̂(Si, D
′
j) of µ(Si, D

′
j), but with minor changes, the analysis

in [FS99] can still be used to show Lemma 13. For completeness, we provide a proof of Lemma 13
in Appendix B.

We now show that we can essentially replace the µ̂ in Lemma 13 with µ.

Lemma 14. For every D′ ∈ {D′1, . . . , D′n}, if we run the simulator S(x, z), then with probability
1−O(ε′(n)) over the random coins of S, S(x, z) generates D(1), . . . ,D(L) and S1, . . . , SL such that

1

L

L∑
i=1

µ(Si, D
′) ≥ 1

L

L∑
i=1

µ(Si,D(i))−O(ε′(n)).

The proof of Lemma 14 roughly works as follows. We take Lemma 13 and show that each
time we approximate µ via µ̂, the approximation is good with high probability; this follows from
Chernoff bounds and the fact that SDU

is a simulator for V ∗ that is good with respect to the
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“universal” distinguisher DU . Lemma 14 then follows from the union bound. See Appendix B for
the proof of Lemma 14.

To complete the proof of Theorem 12, we will now show that µ(S,D) ≥ −O(ε′(n)). We first
show that for every i ∈ [L], we always have µ(Si,D(i)) ≥ −O(ε′(n)). Fix i ∈ [L]. Now, we observe
that

µ(Si,D(i))

=
n∑
j=1

D(i)(D′j) ·
(
Pr[D′j(x, z, Si(x, z)) = 1]− Pr[D′j(x, z,OutV ∗ [P (x)↔ V ∗(x, z)]) = 1]

)
= Pr[DU (x, z||~pD(i) , Si(x, z)) = 1]− Pr[DU (x, z||~pD(i) , OutV ∗ [P (x)↔ V ∗(x, z)]) = 1]

= Pr[DU (x, z||~pD(i) , SDU
(x, z||~pD(i))) = 1]

− Pr[DU (x, z||~pD(i) , OutV ∗ [P (x)↔ V ∗(x, z||~pD(i))]) = 1]

≥ − ε′(n), (2)

where the second equality follows from the definition of DU , the third equality follows from the
definition of Si and the fact that V ∗(x, z) = V ∗(x, z||~pD(i)) (since |z| ≥ TV ∗(n)), and the last
inequality follows from the fact that SDU

is a simulator for DU in the weak (t′, ε′)-zero-knowledge
property of (P, V ).

Now, combining Lemma 14 and (2), we have that with probability 1 − O(ε′(n)) over the ran-
domness of S, S(x, z) generates S1, . . . , SL such that

1

L

L∑
i=1

µ(Si, D) ≥ −O(ε′(n)). (3)

Now, recall that after generating S1, . . . , SL, the simulator S(x, z) chooses a uniformly random
Si ∈ {S1, . . . , SL} and runs Si(x, z). Thus, conditional on S(x, z) generating a particular sequence
S1, . . . , SL, we have µ(S,D) =

∑L
i=1

1
L · µ(Si, D). Combining this with (3) (which holds with

probability 1−O(ε′(n)) over the randomness of S), we get

µ(S,D) ≥ −O(ε′(n))−O(ε′(n)) = −O(ε′(n)),

as required. This completes the proof of Theorem 12.

4 From Super-Weak to Strong Distributional (T, t, ε)-Zero-Knowledge

In this section we consider a “super-weak” notion of zero-knowledge, where not only do we allow
the simulator to depend on the distinguisher, but also, we only require that the simulator manages
to make the distinguisher output 1 with at least as high probability (minus some “small” gap) as
the probability that the distinguisher outputs 1 when given a true view of V ∗. That is, we only
consider “one-sided” indistinguishability. (Such a notion was previously considered in [HP10].)

In Appendix D, we show that super-weak (t, ε)-zero-knowledge is not equivalent to weak (t, ε)-
zero-knowledge. Thus, we here consider an alternative “distributional” notion of zero-knowledge
(a la [Gol93]) where indistinguishability of the simulation is only required for any distribution
over statements (and auxiliary inputs), and the simulator as well as the distinguisher can depend
on the distribution. Additionally, we here model both the distinguisher and the simulator as
non-uniform algorithms (as opposed to uniform ones). (The combination of these variants was
previously considered by [DNRS03]). For concreteness, we also add a parameter T to the definition
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and require that the simulator is of size at most T (n), and thus we also bound the size of the
malicious verifier V ∗ by t(n).

Definition 15 (distributional (T, t, ε)-zero-knowledge). Let (P, V ) be an interactive proof
system for a language L. We say that (P, V ) is distributional (T, t, ε)-zero-knowledge if for every
n ∈ N, every joint distribution (Xn, Yn, Zn) over (L∩{0, 1}n)×{0, 1}∗×{0, 1}∗, and every random-
ized t(n)-size adversary V ∗, there exists a randomized T (n)-size simulator S such that for every
randomized t(n)-size distinguisher D, we have

|Pr[D(Xn, Zn, OutV ∗ [P (Xn, Yn)↔ V ∗(Xn, Zn)]) = 1]− Pr[D(Xn, Zn, S(Xn, Zn)) = 1]|
≤ ε(n).

In the above definition, if L is an NP-language, then we require (i.e., assume) Yn to be a witness
of Xn (this also applies to the corresponding definition below). Weak distributional (T, t, ε)-zero-
knowledge can be defined in an analogous way by switching the ordering of the quantifiers ∃S and
∀D. We now turn to define super-weak distributional (T, t, ε)-zero-knowledge.

Definition 16 (super-weak distributional (T, t, ε)-zero-knowledge). Let (P, V ) be an inter-
active proof system for a language L. We say that (P, V ) is super-weak distributional (T, t, ε)-zero-
knowledge if for every n ∈ N, every joint distribution (Xn, Yn, Zn) over (L∩{0, 1}n)×{0, 1}∗×{0, 1}∗,
every randomized t(n)-size adversary V ∗, and every randomized t(n)-size distinguisher D, there ex-
ists a randomized T (n)-size simulator S such that

Pr[D(Xn, Zn, OutV ∗ [P (Xn, Yn)↔ V ∗(Xn, Zn)]) = 1]− Pr[D(Xn, Zn, S(Xn, Zn)) = 1]

≤ ε(n).

We may consider an even weaker notion of super-weak distributional zero-knowledge—let us
refer to it as super-weak* distributional zero-knowledge—where we only require indistinguishability
to hold against deterministic distinguishers D that may output a real value in [0, 1] (such a distin-
guisher can easily be converted to a randomized distinguisher by simply first computing the output
p of the deterministic one and then sampling a decision bit b = 1 with probability p).

We now show that super-weak distributional (T, t, ε)-zero-knowledge is equivalent to distribu-
tional (T, t, ε)-zero-knowledge if we consider all polynomials for T and t and all inverse polynomials
for ε. In fact, we prove a more general theorem that also describes the loss in the parameters T , t,
and ε.

Theorem 17. Let (P, V ) be an interactive proof system for a language L, and suppose (P, V )
is super-weak distributional (T, t, ε)-zero-knowledge. Then, (P, V ) is also distributional (T ′, t′, 2ε)-

zero-knowledge, where t′(n) = Ω(ε(n)
√
t(n)− n) and T ′(n) = O( t

′(n) ln(n+t′(n))
ε(n)2

) · T (n).

Proof. Let n ∈ N, let (Xn, Yn, Zn) be any joint distribution over (L ∩ {0, 1}n)× {0, 1}∗ × {0, 1}∗,
and let V ∗ be any t(n)-size adversary. It is easy to see that w.l.o.g., we can assume that the length
of Zn is always bounded by t′(n), and we can remove the absolute value | · | in the definition of
distributional (T ′, t′, 2ε)-zero-knowledge. Thus, it suffices to show the following claim:

Claim 18. There exists a T ′(n)-size simulator S such that for every t′(n)-size distinguisher D,

Pr[D(Xn, Zn, S(Xn, Zn)) = 1]− Pr[D(Xn, Zn, OutV ∗ [P (Xn, Yn)↔ V ∗(Xn, Zn)]) = 1]

≥ −2ε(n).
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We now proceed to showing the above claim. We define a two-player zero-sum game between
a “simulator player” Sim and a “distinguisher player” Adv. The set StratSim of pure strategies for
Sim is the set of all T (n)-size simulators, and the set StratAdv of pure strategies for Adv is the set
of all t′(n)-size distinguishers. The payoff for Sim when Sim chooses a simulator S ∈ StratSim and
Adv chooses a distinguisher D ∈ StratAdv is

µn(S,D)

:= Pr[D(Xn, Zn, S(Xn, Zn)) = 1]− Pr[D(Xn, Zn, OutV ∗ [P (Xn, Yn)↔ V ∗(Xn, Zn)]) = 1].

For mixed strategies (i.e., distributions) S over StratSim, and D over StratAdv, we define

µn(S,D) := ES←S,D←D[µn(S,D)].

The following simple lemma states that any distribution over circuits can be approximated
by a small randomized circuit, obtained by taking an appropriate number of samples from the
original distribution. This proof technique was used in [Alt94] and [LY94] for obtaining sparse
approximations to randomized strategies in two-player zero-sum games. A fact similar to our
lemma was implicitly used by Impagliazzo [Imp95] and several subsequent works, but we find it
useful to explicitly formalize it as a lemma (that we hope will be useful also in other contexts).

Lemma 19 (Approximating a distribution over circuits by a small circuit obtained via sampling).
Let X and A be finite sets, let Y be any random variable with finite support, let C be any distribution
over s-size randomized circuits of the form C : X × Supp(Y ) → A, and let U be any finite set of
randomized circuits of the form u : X × Supp(Y )×A→ {0, 1}. Then, for every ε > 0, there exists

a randomized circuit Ĉ of size T = O( log |X|+log |U |
ε2

· s) such that for every u ∈ U and x ∈ X, we
have

|EC←C [u(x, Y, C(x, Y ))]− E[u(x, Y, Ĉ(x, Y ))]| ≤ ε.

Additionally, there exists a deterministic circuit C̃ of size T such that for all inputs x, y, C̃(x, y) =
Pr[Ĉ(x, y) = 1].

The lemma follows easily from a Chernoff bound and a union bound; see Appendix C for the
proof. This proof of the main theorem now follows from three relatively simple steps:

Step 1. We first show that for any mixed strategy D for Adv (i.e., any distribution over t′(n)-
size distinguishers), there exists a T (n)-size simulator SD ∈ StratSim such that µn(SD,D) ≥
−3ε(n)/2. By Lemma 19, we can approximate D by a t(n)-size distinguisher D̂, and then use
the super-weak distributional (T, t, ε)-zero-knowledge property of (P, V ) to get a T (n)-size
simulator S

D̂
for D̂ such that µn(S

D̂
, D̂) ≥ −ε(n). Since D̂ approximates D to within ε(n)/2,

we have µn(S
D̂
,D) ≥ −3ε(n)/2, as required.

Step 2. We now apply the minimax theorem to the result of Step 1 to get a mixed strategy S for
Sim (i.e., a distribution over T (n)-size simulators) such that for every t′(n)-size distinguisher
D ∈ StratAdv, we have µn(S, D) ≥ −3ε(n)/2.

Step 3. By Lemma 19, we can approximate S (from Step 2) by a T ′(n)-size simulator Ŝ so that
µn(Ŝ,D) ≥ −2ε(n) for every t′(n)-size distinguisher D ∈ StratAdv.
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The result of Step 3 shows Claim 18, which completes the proof of the theorem. We now provide
the details for Steps 1 and 3.

Details of Step 1. By Lemma 19 (in the statement of the lemma, we let X = Supp(Xn) ×
Supp(Zn)×{0, 1}t′(n), A = {0, 1}, Y = 0, C = D, U be a set containing only the circuit (x, y, a) 7→ a,
and ε = ε(n)/2), there exists a distinguisher D̂ of size O((n + t′(n))2/ε(n)2) = t(n) such that for
every x ∈ Xn, z ∈ Zn, and v ∈ {0, 1}t′(n), we have |PrD←D[D(x, z, v) = 1] − Pr[D̂(x, z, v) = 1]| ≤
ε(n)/2. Since (P, V ) is super-weak distributional (T, t, ε)-zero-knowledge, there exists a T (n)-size
simulator S

D̂
such that µn(S

D̂
, D̂) ≥ −ε(n). From the result above and the definition of µn, we

have |µn(S
D̂
,D)− µn(S

D̂
, D̂)| ≤ ε(n)/2, so µn(S

D̂
,D) ≥ −3ε(n)/2, as required.

Details of Step 3. By Lemma 19, there exists a simulator Ŝ of size O((log |StratAdv|/ε(n)2)·T (n))
such that for every t′(n)-size distinguisher D ∈ StratAdv, we have |PrS←S [D(Xn, Zn, S(Xn, Zn)) =
1]− Pr[D(Xn, Zn, Ŝ(Xn, Zn)) = 1]| ≤ ε(n)/2, which implies |µn(S, D)− µn(Ŝ,D)| ≤ ε(n)/2. Com-
bining this with the result of Step 2, we have µn(Ŝ,D) ≥ −2ε(n) for every t′(n)-size distinguisher
D ∈ StratAdv. Furthermore, the simulator Ŝ has size at most T ′(n), since there are at most
O(q(n)+t′(n))O(t′(n)) circuits of size t′(n) on q(n) input bits, so |StratAdv| ≤ O(n+t′(n))O(t′(n)).

We note that by the “additional” part of Lemma 19, the above proof actually directly shows
equivalence also between super-weak* distributional zero-knowledge and distributional zero-knowledge:

Theorem 20. Let (P, V ) be an interactive proof system for a language L, and suppose (P, V ) is
super-weak* distributional (T, t, ε)-zero-knowledge. Then, (P, V ) is also distributional (T ′, t′, 2ε)-

zero-knowledge, where t′(n) = Ω(ε(n)
√
t(n)− n) and T ′(n) = O( t

′(n) ln(n+t′(n))
ε(n)2

) · T (n).

4.1 Laconic Prover Implies Distributional (T, t, ε)-Zero-Knowledge

In this section, we first use Theorem 20 to show that an interactive proof with short prover commu-
nication complexity implies distributional (T, t, ε)-zero-knowledge. We then describe applications
of this result.

Theorem 21. Let (P, V ) be an interactive proof system for a language L, and suppose that the
prover P has communication complexity `(n), i.e., the total length of the messages sent by P is
`(n), where n is the length of the common input x. Then, for every function t′(n) ≥ Ω(n) and

ε′(n), (P, V ) is distributional (T ′, t′, ε′)-zero-knowledge, where T ′(n) = O
(

2`(n) · t
′(n)3 ln(t′(n))

ε′(n)4

)
.

Proof. By Theorem 20, it suffices to show that (P, V ) is super-weak* distributional (T, t, ε′/2)-

zero-knowledge, where t(n) = Θ( t
′(n)2

ε′(n)2 ) and T (n) = O(2`(n) · t
′(n)2

ε′(n)2 ). Let n ∈ N, let (Xn, Yn, Zn)

be a joint distribution over (L ∩ {0, 1}n) × {0, 1}∗ × {0, 1}∗, let V ∗ be any randomized t(n)-size
adversary, and let D be any deterministic t(n)-size distinguisher outputting a real value in [0, 1].
Consider some inputs x, z and randomness r for the verifier V ∗. For any sequence of messages
(m1, . . . ,mk), let (m1, . . . ,mk)↔ V ∗r (x, z) denote the protocol where the prover sends the message
mi to V ∗ in round i, where the randomness of V ∗ is fixed to r.

Let S be the simulator that, on input (x, z) and given randomness r, enumerates each of the 2`(n)

possible sequences of messages (m1, . . . ,mk) of total length `(n) (that the prover P may possibly
send) and picks the sequence of messages that maximizes D(x, z, OutV ∗ [(m1, . . . ,mk)↔ V ∗r (x, z)]).
By construction it follows that for every random tape r, D(x, z,OutV ∗ [P (x) ↔ V ∗r (x, z)]) ≤
D(x, z, Sr(x, z)) and thus

Pr[D(x, z,OutV ∗ [P (x)↔ V ∗(x, z)]) = 1]− Pr[D(x, z, S(x, z)) = 1] ≤ 0.
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Furthermore, we note that the size of the simulator S is O(2`(n) · t(n)) = T (n). Thus, (P, V ) is
super-weak* distributional (T, t, 0)-zero-knowledge, which completes the proof.

Let us now provide a few corollaries of Theorem 21. The first two are new proofs of old theorems
(with some new generalizations). The third one is a new result on 2-round zero-knowledge.

4.1.1 Application 1: Leakage Lemma of Gentry-Wichs

Roughly speaking, the “Leakage Lemma” of Gentry-Wichs [GW11] states that for every joint
distribution (X,π(X)), where |π(x)| = O(log |x|) (π should be thought of as leakage on X), and
for every distribution Y that is indistinguishable from X, there exists some leakage π̃ such that the
joint distributions (X,π(X)) and (Y, π̃(Y )) are indistinguishable. We now show that this result
follows as a simple corollary of Theorem 21.

Two distributions X and Y are (s, ε)-indistinguishable if every s-size circuit C can only distin-
guish X from Y by at most ε, i.e., |Pr[C(X) = 1]− Pr[C(Y ) = 1]| ≤ ε.

Corollary 22 (The leakage lemma of Gentry-Wichs [GW11]). Let (X,π(X)) be any joint
distribution, where |π(X)| ≤ `. Let Y be any distribution that is (s, ε)-indistinguishable from X.
Then, there exists a joint distribution (Y, π̃(Y )) such that (X,π(X)) and (Y, π̃(Y )) are (s′, 2ε)-

indistinguishable, where s′ = Ω
(

3

√
ε4·s

2`·ln(s)

)
.

Proof. Let L = {0, 1}∗ be the trivial language with the trivial witness relation RL(x) = {0, 1}∗.
Let (P, V ) be an interactive proof system for L where the prover P , on input a statement x with
witness y, simply sends the first ` bits of y to the verifier V , who simply always accepts. By Theorem
21, (P, V ) is distributional (T, s′, ε)-zero-knowledge, where T ≤ s/2. By considering the statement
distribution X with witness distribution π(X), it follows that there exists a T -size simulator S
such that (X,π(X)) and (X,S(X)) are (s′, ε)-indistinguishable. Also, (X,S(X)) and (Y, S(Y )) are
(s/2, ε)-indistinguishable, since X and Y are (s, ε)-indistinguishable and T ≤ s/2. It follows that
(X,π(X)) and (Y, S(Y )) are (s′, 2ε)-indistinguishable, so letting π̃ = S yields the result.

Let us note that our proof of the leakage lemma yields an even stronger statement—namely, we
have found an efficient simulator π̃; such a version of the leakage lemma was recently established by
Jetchev and Pietrzak [JP14]. (As an independent contribution, our proof of Theorem 4 is actually
significantly simpler than both the proof of [GW11] and [JP14].) Additionally, since our result on
zero-knowledge applies also to interactive protocols, we directly also get an interactive version of
the leakage lemma.

4.1.2 Application 2: Dense Model Theorem

We proceed to show that the dense model theorem (e.g., see [RTTV08, TTV09, DP08]) follows as
a corollary of Theorem 21. A distribution R is δ-dense in a distribution X if for every r, Pr[R =
r] ≤ 1

δ Pr[X = r]. Equivalently, R is δ-dense in X if there exists a joint distribution (X,B(X))
with Pr[B(X) = 1] ≥ δ such that R = X|(B(X) = 1). Let Un be the uniform distribution over
{0, 1}n.

Corollary 23 (The dense model theorem). Let X be any distribution over {0, 1}n that is
(s, ε)-indistinguishable from Un, and suppose R is δ-dense in X. Then, there exists a distribution

M that is (δ−2ε)-dense in Un, and M and R are (s′, 2εδ )-indistinguishable, where s′ = Ω
(

3

√
ε4·s
ln(s)

)
.
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Proof. Since R is δ-dense in X, there exists a joint distribution (X,B(X)) with Pr[B(X) = 1] ≥ δ
such that R = X|(B(X) = 1). Without loss of generality, we can assume that B(X) is always either
0 or 1. Let L = {0, 1}∗ be the trivial language with the trivial witness relation RL(x) = {0, 1}∗.
Let (P, V ) be an interactive proof system for L where the prover P , on input a statement x with
witness y, simply sends the first bit of y to the verifier V , who simply always accepts. By Theorem
21, (P, V ) is distributional (T, 2s′, ε)-zero-knowledge, where T ≤ s/2. By considering the statement
distribution X with witness distribution B(X), it follows that there exists a T -size simulator S
such that (X,B(X)) and (X,S(X)) are (2s′, ε)-indistinguishable. Also, (X,S(X)) and (Un, S(Un))
are (s/2, ε)-indistinguishable, since X and Un are (s, ε)-indistinguishable and T ≤ s/2. It follows
that (X,B(X)) and (Un, S(Un)) are (2s′, 2ε)-indistinguishable. Thus, Pr[S(Un) = 1] ≥ δ − 2ε
(since Pr[B(X) = 1] ≥ δ), so Un|(S(Un) = 1) is (δ − 2ε)-dense in Un. Also, X|(B(X) = 1)
and Un|(S(Un) = 1) are (s′, 2ε/δ)-indistinguishable, so letting M = Un|(S(Un) = 1) yields the
result.

4.1.3 Application 3: 2-Round ZK

A final corollary of Theorem 21 is that the classic two-round graph non-isomorphism protocol (which
is only known to be honest-verifier zero-knowledge) is also distributional (T, t, ε)-zero-knowledge
for T (n) = poly(t(n), 1

ε(n)).
6 In fact, by using the complete problem for SZK (the class of promise

problems having a statistical zero-knowledge proof for an honest verifier) by Sahai and Vadhan
[SV03], we can show that every language in SZK has a 2-round distributional (T, t, ε)-zero-knowledge
proof for T (n) = poly(t(n), 1

ε(n)).

Theorem 24. For every language L ∈ SZK and every function δ(n) ≥ 1
2poly(n) , there exists

a two-round interactive proof (P, V ) for L with completeness 1 − negl(n) and soundness error
δ(n) such that for every function t and ε, (P, V ) is distributional (T, t, ε)-zero-knowledge, where
T (n) = poly( 1

δ(n) , t(n), 1
ε(n)).

Proof. From [SV03], there exists a two-round interactive proof (P ′, V ′) for a complete problem
LSZK for SZK with completeness negligibly close to 1 and soundness error negligibly close to 1

2 ,
and the prover P ′ only sends a single bit to the verifier V ′. By repeating the proof in parallel
O(log 1

δ(n)) times, we get a two-round interactive proof for LSZK with completeness negligibly close

to 1 and soundness error δ(n), and the prover only sends O(log 1
δ(n)) bits to the verifier. Then,

by Theorem 21, this interactive proof for LSZK is distributional (T, t, ε)-zero-knowledge, where
T (n) = poly( 1

δ(n) , t(n), 1
ε(n)). Since LSZK is a complete problem for SZK, the theorem follows.

In Theorem 24, if we choose δ(n) = 1
nlogn , t(n) = nlogn, and ε(n) = 1

nlogn , then every language
in SZK has a 2-round “quasi-polynomial-time simulatable” distributional zero-knowledge proof
(i.e., T (n) is a quasi-polynomial) with completeness 1 − negl(n) and negligible soundness error.
Alternatively, if we choose δ(n) = 1

poly(n) , t(n) = poly(n), and ε(n) = 1
poly(n) , then every language

in SZK has a 2-round “polynomial-time simulatable” (T, t, ε)-distributional zero-knowledge proof
(i.e., T (n) is a polynomial) with completeness 1− negl(n) and soundness error 1

poly(n) .

4.2 Necessity of Non-Black-Box Simulation

The universal simulator in Theorem 24 is obtained via Theorem 21, which uses Theorem 17, so the
universal simulator makes non-black-box usage of V ∗. We remark that this non-black-box usage

6Recall that in the classic GNI protocol the prover sends just a single bit.
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is also necessary (assuming standard complexity theoretic assumptions): We will show that black-
box simulation techniques cannot be used to demonstrate distributional (T, t, ε)-zero-knowledge for
2-round proof systems for languages that are hard-on-average. Thus, as long as SZK contains a
problem that is hard-on-average, our non-black-box techniques are necessary. Let us first give the
definition of black-box distributional (T, t, ε)-zero-knowledge.

Definition 25 (black-box distributional (T, t, ε)-zero-knowledge). Let (P, V ) be an interac-
tive proof system for a language L. We say that (P, V ) is black-box distributional (T, t, ε)-zero-
knowledge if for every n ∈ N and every joint distribution (Xn, Yn, Zn) over (L∩{0, 1}n)×{0, 1}∗×
{0, 1}∗, there exists a T (n)-size simulator S such that for every t(n)-size adversary V ∗ and every
t(n)-size distinguisher D, we have

|Pr[D(Xn, Zn, OutV ∗ [P (Xn, Yn)↔ V ∗(Xn, Zn)]) = 1]

− Pr[D(Xn, Zn, S
V ∗(Xn,Zn)(Xn, Zn)) = 1]| ≤ ε(n).

where SV
∗(Xn,Zn) means that S is given oracle access to the verifier V ∗(Xn, Zn).

For any language L and any x ∈ {0, 1}∗, let L(x) = 1 if x ∈ L, and L(x) = 0 otherwise. We
now show that any 2-round interactive proof for a language L with “hard-on-average” instances is
not black-box distributional zero-knowledge.

Theorem 26. Let L be any language with hard-on-average instances, i.e., there exists an ensemble
{Xn}n∈N of distributions Xn over {0, 1}n such that for every non-uniform PPT algorithm A and
for sufficiently large n ∈ N, we have Pr[A(Xn) = L(Xn)] ≤ 1

2 + ε(n), where ε is any function such
that ε(n) < 1

12 for sufficiently large n ∈ N.
Then, there exists a polynomial t such that any 2-round interactive proof (P, V ) for L with

completeness 2
3 and soundness error at most 1

3 is not black-box (T, t, ε)-distributional zero-knowledge
for any polynomial T .

Proof. Let t(n) = O(TV (n)), where TV (n) is a polynomial bound on the running time of V on
instances x of length n. To obtain a contradiction, suppose (P, V ) is black-box (T, t, ε)-distributional
zero-knowledge for some polynomial T . Let n ∈ N, let X ′n be Xn conditioned on the event Xn ∈ L,
let X ′′n be Xn conditioned on the event Xn /∈ L, let Yn always be the empty string, and let Zn be
the uniform distribution over {0, 1}t(n). Then, there exists a polynomial-size simulator S such that
for every t(n)-size adversary V ∗ and every t(n)-size distinguisher D, we have

|Pr[D(X ′n, Zn, OutV ∗ [P (X ′n, Yn)↔ V ∗(X ′n, Zn)]) = 1]

− Pr[D(X ′n, Zn, S
V ∗(X′n,Zn)(X ′n)) = 1]| ≤ ε(n). (1)

Let V ∗ be the verifier that, on input (x, z), runs the honest verifier Vz(x) with random tape z to
interact with the prover, and then outputs the message a received from the prover. Let D be the
distinguisher that, on input (x, z, a), outputs 1 if Vz(x, a) = 1, and 0 otherwise, where Vz(x, a)
represents the output of V (x) with random tape z and with message a received from the prover.

Claim 27. Pr[D(X ′n, Zn, S
V ∗(X′n,Zn)(X ′n)) = 1] ≥ 2

3 − ε(n).

Proof of claim. Since (P, V ) has completeness 2
3 , we have

Pr[D(X ′n, Zn, OutV ∗ [P (X ′n, Yn)↔ V ∗(X ′n, Zn)]) = 1]

= Pr[OutV [P (X ′n, Yn)↔ V (X ′n)] = 1]

≥ 2

3
.
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Now, combining this with (1), we have

Pr[D(X ′n, Zn, S
V ∗(X′n,Zn)(X ′n)) = 1] ≥ 2

3
− ε(n),

as required. This completes the proof of the claim.

Claim 28. Pr[D(X ′′n, Zn, S
V ∗(X′′n ,Zn)(X ′′n)) = 0] ≥ 2

3 − ε(n).

Proof of claim. To obtain a contradiction, suppose Pr[D(X ′′n, Zn, S
V ∗(X′′n ,Zn)(X ′′n)) = 0] < 2

3 −
ε(n). We note that the event D(X ′′n, Zn, S

V ∗(X′′n ,Zn)(X ′′n)) = 0 occurs if and only if the event
VZn(X ′′n, S

V ∗(X′′n ,Zn)(X ′′n)) = 0 occurs, where VZn(X ′′n, S
V ∗(X′′n ,Zn)(X ′′n)) represents the output of

V (X ′′n) with random tape Zn and with message SV
∗(X′′n ,Zn)(X ′′n) received from the prover. Thus,

we have Pr[VZn(X ′′n, S
V ∗(X′′n ,Zn)(X ′′n)) = 0] < 2

3 − ε(n).
Now, consider an adversarial prover P ∗ that, on input x and upon receiving a message c from

the verifier V , simulates S(x) while responding to oracle queries with the message c, and then sends
the output of S(x) to V . Now, we note that the event VZn(X ′′n, S

V ∗(X′′n ,Zn)(X ′′n)) = 0 occurs if and
only if the event OutV (P ∗(X ′′n, Yn)↔ VZn(X ′′n)) = 0 occurs. Thus, we have

Pr[OutV (P ∗(X ′′n, Yn)↔ VZn(X ′′n)) = 0] <
2

3
− ε(n),

and since we always have X ′′n /∈ L, this contradicts the assumption that (P, V ) has soundness error
at most 1

3 . This completes the proof of the claim.

Now, using the polynomial-size simulator S and the t(n)-size distinguisher D, we will construct
a non-uniform PPT algorithm A that contradicts the assumption that L has hard-on-average in-
stances, i.e., for infinitely many n ∈ N, we have

Pr[A(Xn) = L(Xn)] >
1

2
+ ε(n).

Let A be the non-uniform PPT algorithm that, on input x ∈ {0, 1}n, samples a uniformly ran-
dom z from Zn, computes SV

∗(x,z)(x) (while simulating the oracle V ∗(x, z) for S(x)) and outputs
D(x, z, SV

∗(x,z)(x)). Then, for infinitely many n ∈ N, we have

Pr[A(Xn) = L(Xn)]

= Pr[D(Xn, Zn, S
V ∗(Xn,Zn)(Xn)) = L(Xn)]

= Pr[Xn ∈ L] · Pr[D(X ′n, Zn, S
V ∗(X′n,Zn)(X ′n)) = 1]

+ Pr[Xn /∈ L] · Pr[D(X ′′n, Zn, S
V ∗(X′′n ,Zn)(X ′′n)) = 0]

≥ Pr[Xn ∈ L] · (2/3− ε(n)) + Pr[Xn /∈ L] · (2/3− ε(n))

=
2

3
− ε(n),

where the inequality follows from the two claims above. This contradicts the assumption that L
has hard-on-average instances. This completes the proof.
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Appendix A Proof of Theorem 9

In this section, we prove Theorem 9. We begin by describing the assumptions we make regarding the
existence of certain cryptographic primitives. We first make the following assumption regarding the
existence of a collection of two-round “timed” commitment schemes (see [BN00]) satisfying certain
properties:

• There exists a polynomial p(·) and a negligible function ν(·) such that for every sufficiently
large n ∈ N, there exists a collection of two-round commitment schemes {Comi}i∈[`], where

` = log2 n, such that for every i ∈ [`], Comi is hiding with respect to adversaries running in
p(n)i−1 steps, but Comi can always be broken in p(n)i steps, i.e., the following two properties
hold:

– [Hiding for adversaries running in p(n)i−1 steps] For every adversary D running in
p(n)i−1 steps, for every x, x′ ∈ {0, 1}n, and for every possible first message ρ for Comi,
we have

|Pr[D(Comi(x, ρ)) = 1]− Pr[D(Comi(x
′, ρ)) = 1]| ≤ ν(n),

where Comi(v, r) denotes the commitment of v using Comi with first message r.

– [Can always be broken in p(n)i steps] There exists an algorithm A running in p(n)i

steps such that for every x ∈ {0, 1}n and every ρ, we have Pr[A(Comi(x, ρ)) = x] = 1.

One can use the timed commitment scheme in [BN00] to get such a collection of commitment
schemes. Let p(·) be the polynomial described above. We also make the following assumption
that there exists a collection of (length-preserving) “timed” worst-case weak one-way permutations
satisfying certain properties:

• There exists a polynomial q(·) such that for every sufficiently large n ∈ N, there exists
a collection of worst-case weak one-way permutations {fi : {0, 1}n → {0, 1}n}i∈[`], where

` = log2 n, such that for every i ∈ N, fi is somewhat hard to break in p(n)i+1 steps in the
worst case, but can always be broken in p(n)i+2 steps, i.e., the following two properties hold:

– [Somewhat hard to break in p(n)i+1 steps in the worst case] For every adversary A
running in p(n)i+1 steps, there exists an x ∈ {0, 1}n such that Pr[A(fi(x)) = x] ≤ 1− 1

q(n) .

– [Can always be broken in p(n)i+2 steps] There exists an algorithm A running in p(n)i+2

steps such that for every x ∈ {0, 1}n, we have Pr[A(fi(x)) = x] = 1.

We note that fi is slightly harder to break than Comi, which is a property we will use later in
our proof.

23



Theorem 29 (Theorem 9). Assume the existence of two-round “timed” commitment schemes and
“timed” worst-case weak one-way permutations as described above. Then, there exists an interactive
proof system (P, V ) for an NP language L such that (P, V ) is weak zero-knowledge but not zero-
knowledge.

Proof. Let L be the trivial language {0, 1}∗ with witness relation RL defined by RL(x) =
{(f−11 (x), . . . , f−1` (x)) : ` = log2 |x|} for every x ∈ {0, 1}∗.

Let (P (x, y), V (x)) be the following interactive proof, where x ∈ {0, 1}∗, n = |x|, ` = log2 n,
and y = (f−11 (x), . . . , f−1` (x)):

1. The verifier V generates and sends ρi for i = 1, . . . , ` to the prover, where ρi is the first
message of an execution of Comi.

2. The prover P sends Comi(f
−1
i (x), ρi) for i = 1, . . . , ` to the verifier, where Comi(v, r) denotes

the commitment of v using Comi with first message r.

3. The verifier V accepts (i.e., outputs 1).

We first show that (P, V ) is weak zero-knowledge.

Claim 30. The interactive protocol (P, V ) is weak zero-knowledge.

Proof of claim. Let V ∗ be any PPT adversary, and let D be any PPT distinguisher. Let TV ∗ and
TD be polynomials that bound the running time of V ∗ and D, respectively, and let T = O(TV ∗+TD).
Let S be a PPT simulator that does the following on input (x, z), where x, z ∈ {0, 1}∗, n = |x|,
and ` = log2 n:

1. Run V ∗(x, z) to get ρi for i = 1, . . . , `.

2. Let j be the smallest integer such that p(n)j−1 > T (n). For i = 1, . . . , j − 1, use p(n)i+2 =
poly(n) steps to break fi to get f−1i (x).

3. For i = 1, . . . , j − 1, send Comi(f
−1
i (x), ρi) to V ∗. For i = j, . . . , `, send Comi(0

n, ρi) to V ∗.

4. Continue running V ∗(x, z) and output whatever V ∗ outputs.

It is easy to see that the simulator S runs in polynomial time. We now claim that the simulator
S works. To see this, consider a “hybrid” simulator S′, where S′ is the same as S except that for
i = j, . . . , `, S′ sends Comi(f

−1
i (x), ρi) to V ∗ instead of Comi(0

n, ρi).
Consider the probability Pr[D(x, z, S(x, z)) = 1]. Since the hiding property of Comi for i =

j, . . . , ` is hard to break in p(n)i−1 ≥ p(n)j−1 steps, and since T (n) < p(n)j−1, it is easy to verify
that the probability Pr[D(x, z, S(x, z)) = 1] is negligibly close to Pr[D(x, z, S′(x, z)) = 1]. Now,
we note that the message sent by S′ to V ∗ has the exact same distribution as the message sent by
the prover P . Thus, Pr[D(x, z, S′(x, z)) = 1] is equal to Pr[D(x, z,OutV ∗ [P (x) ↔ V ∗(x, z)]) = 1],
so Pr[D(x, z, S(x, z)) = 1] is negligibly close to Pr[D(x, z,OutV ∗ [P (x) ↔ V ∗(x, z)]) = 1]. Thus,
(P, V ) is weak zero-knowledge, as required.

We now show that (P, V ) is not zero-knowledge.

Claim 31. The interactive protocol (P, V ) is not zero-knowledge.
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Proof of claim. Let V ∗ be the same as V except that at the end, V ∗ outputs its view. To obtain
a contradiction, suppose that a PPT simulator S for V ∗ exists, and suppose the running time of
S is bounded by nd for some constant d ≥ 1. Now, let D be the distinguisher that, on input
x ∈ {0, 1}n, z ∈ {0, 1}∗, and a view of V ∗, does the following:

1. Let j be the smallest positive integer such that p(n)j is greater than Cnd, where C ≥ 2 is
some universal constant.

2. Use p(n)j = poly(n) steps to break Comj(wj , ρj) in the view of V ∗ to get wj .

3. Output 1 if fj(wj) = x, and output 0 otherwise.

Using the simulator S, we will construct an adversary A that breaks fj . The fact that S works for
V ∗ and the distinguisher D will ensure that with overwhelming probability, the output of S(x, z)
will contain a commitment Comj(wj , ρ

′
j) such that fj(wj) = x. The adversary A, on input fj(w)

for some w, will run the simulator S(fj(w)) to get this commitment Comj(wj , ρ
′
j), and then break

it using p(n)j steps to get wj , and then output wj . Now, it is easy to verify that the adversary
A contradicts our assumption that fj is somewhat hard to break in p(n)j+1 steps in the worst
case.

This completes the proof of the theorem.

Appendix B Missing Proofs for Theorem 12

Lemma 32 (Lemma 13). For every distinguisher D′j ∈ {D′1, . . . , D′n}, if we run the simulator

S(x, z), then (with probability 1) S generates D(1), . . . , D(L) and S1, . . . , SL such that

1

L

L∑
i=1

µ̂(Si, D
′
j) ≥

1

L

L∑
i=1

µ̂(Si,D(i))−O(ε′(n)).

Proof. Recall that given two distributions X and Y , the Kullback-Leibler divergence (also called
the relative entropy) of X and Y , denoted KL(X||Y ), is defined by

KL(X||Y ) =
∑

x∈Supp(X)

Pr[X = x] · ln
(

Pr[X = x]

Pr[Y = x]

)
.

Consider a distinguisher D′j ∈ {D′1, . . . , D′n}. Fix the random tape of the simulator S, and
consider running S(x, z) with the fixed random tape. Then, all the random variables (e.g., the
D(i)’s) that appear in the simulator algorithm S(x, z) become fixed. We first show that for every
i ∈ [L], we have

KL(D′j ||D(i+1))−KL(D′j ||D(i)) ≤ (ln
1

β
) · µ̂(Si, D

′
j)− (1− β)

n∑
k=1

Pr[D(i) = D′k] · µ̂(Si, D
′
k). (1)
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Fix an i ∈ [L]. Then, we have

KL(D′j ||D(i+1))−KL(D′j ||D(i)) = ln
1

Pr[D(i+1) = D′j ]
− ln

1

Pr[D(i) = D′j ]

= ln
Pr[D(i) = D′j ]

Pr[D(i+1) = D′j ]

= ln
Zi

βµ̂(Si,D′j)
, where Zi :=

n∑
k=1

βû(Si,D
′
k)D(i)(D′k)

= (ln
1

β
) · µ̂(Si, D

′
j) + ln

n∑
k=1

βµ̂(Si,D
′
j) Pr[D(i) = D′k]

≤ (ln
1

β
) · µ̂(Si, D

′
j) + ln(1− (1− β)

n∑
k=1

Pr[D(i) = D′k] · µ̂(Si, D
′
k))

≤ (ln
1

β
) · µ̂(Si, D

′
j)− (1− β)

n∑
k=1

Pr[D(i) = D′k] · µ̂(Si, D
′
k),

where the first inequality follows from the fact that βx ≤ 1− (1− β)x for β ≥ 0 and x ∈ [0, 1], and
the second inequality follows from the fact that ln(1 − x) ≤ −x for x < 1. Thus, we have shown
(1).

Now, summing inequality (1) over i = 1, . . . , L, we have

KL(D′j ||D(L+1))−KL(D′j ||D(1)) ≤ (ln
1

β
) ·

L∑
i=1

µ̂(Si, D
′
j)− (1− β)

L∑
i=1

n∑
k=1

Pr[D(i) = D′k] · µ̂(Si, D
′
k).

Now, using the inequalities KL(D′j ||D(L+1)) ≥ 0, KL(D′j ||D(1)) ≤ lnn, and ln 1
β ≤ (1 − β2)/(2β)

(which holds for every β ∈ (0, 1]), we get

− lnn ≤ 1− β2

2β

L∑
i=1

µ̂(Si, D
′
j)− (1− β)

L∑
i=1

n∑
k=1

Pr[D(i) = D′k] · µ̂(Si, D
′
k).

Rearranging the inequality and using the fact that β = 1

1+
√

(2 lnn)/L
, we have

L∑
i=1

n∑
k=1

Pr[D(i) = D′k] · µ̂(Si, D
′
k) ≤

1− β2

2β(1− β)

L∑
i=1

µ̂(Si, D
′
j) +

1

1− β
lnn

=
1 + β

2β

L∑
i=1

µ̂(Si, D
′
j) +

1

1− β
lnn

=

L∑
i=1

µ̂(Si, D
′
j) + (

1 + β

2β
− 1)

L∑
i=1

µ̂(Si, D
′
j) +

√
2L lnn

2
+ lnn

≤
L∑
i=1

µ̂(Si, D
′
j) +

1− β
2β

· L+

√
2L lnn

2
+ lnn

=

L∑
i=1

µ̂(Si, D
′
j) +

√
2L lnn+ lnn.

Finally, dividing both sides by L and rearranging the inequality yields the result.
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Lemma 33 (Lemma 14). For every D′ ∈ {D′1, . . . , D′n}, if we run the simulator S(x, z), then with
probability 1−O(ε′(n)) over the random coins of S, S(x, z) generates D(1), . . . ,D(L) and S1, . . . , SL
such that

1

L

L∑
i=1

µ(Si, D
′) ≥ 1

L

L∑
i=1

µ(Si,D(i))−O(ε′(n)).

Proof. We first show that for every D′j ∈ {D′1, . . . , D′n} and every i ∈ [L], with probability 1 −
O( ε

′(n)
nL ) (over the random coins of S), we have

|µ̂(Si, D
′
j)− µ(Si, D

′
j)| ≤ O(ε′(n)). (1)

Fix D′j ∈ {D′1, . . . , D′n} and i ∈ [L]. Let µ̃(Si, D
′
j) be defined by

µ̃(Si, D
′
j) = Pr[D′j(x, z, Si(x, z)) = 1]− Pr[D′j(x, z, SDU

(x, z||~pD′j )) = 1].

One should view µ̃ as a “hybrid” between µ̂ and µ. We now have the following equalities:

µ̂(Si, D
′
j) = freqk[D

′
j(x, z, Si(x, z))]− freqk[D

′
j(x, z, SDU

(x, z||~pD′j ))]

µ̃(Si, D
′
j) = Pr[D′j(x, z, Si(x, z)) = 1]− Pr[D′j(x, z, SDU

(x, z||~pD′j )) = 1]

µ(Si, D
′
j) = Pr[D′j(x, z, Si(x, z)) = 1]− Pr[D′j(x, z,OutV ∗ [P (x)↔ V ∗(x, z)]) = 1]

We note that |µ̂(Si, D
′
j) − µ̃(Si, D

′
j)| ≤ O(ε′(n)) with probability 1 − O( ε

′(n)
nL ) by two applications

of a Chernoff bound, the union bound, and the triangle inequality. Thus, to prove (1), it suffices
to show that |µ̃(Si, D

′
j)− µ(Si, D

′
j)| ≤ O(ε′(n)) with probability 1. Observe that

|µ̃(Si, D
′
j)− µ(Si, D

′
j)|

= |Pr[D′j(x, z, SDU
(x, z||~pD′j )) = 1]− Pr[D′j(x, z,OutV ∗ [P (x)↔ V ∗(x, z)]) = 1]|

= |Pr[DU (x, z||~pD′j , SDU
(x, z||~pD′j )) = 1]− Pr[DU (x, z||~pD′j , OutV ∗ [P (x)↔ V ∗(x, z||~pD′j )]) = 1]|

≤ ε′(n),

where the second equality follows from the definition ofDU and the fact that V ∗(x, z) = V ∗(x, z||~pD′j )
(since |z| ≥ TV ∗(n)), and the last inequality follows from the fact that SDU

is a simulator for DU

in the weak (TDU
, ε′)-zero-knowledge property of (P, V ), as required.

Now, by the union bound, with probability 1− nL ·O( ε
′(n)
nL ) = 1−O(ε′(n)), we have

|µ̂(Si, D
′
j)− µ(Si, D

′
j)| ≤ O(ε′(n)) (2)

for every D′j ∈ {D′1, . . . , D′n} and every i ∈ [L]. Thus, for every D′ ∈ {D′1, . . . , D′n}, with probability
1−O(ε′(n)), we have

1

L

L∑
i=1

µ(Si, D
′) ≥ 1

L

L∑
i=1

µ̂(Si, D
′)−O(ε′(n))

≥ 1

L

L∑
i=1

n∑
j=1

D(i)(D′j) · µ̂(Si, D
′
j)−O(ε′(n))

≥ 1

L

L∑
i=1

n∑
j=1

D(i)(D′j) ·
(
µ(Si, D

′
j)−O(ε′(n))

)
−O(ε′(n))

=
1

L

L∑
i=1

µ(Si,D(i))−O(ε′(n)),
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where the first and third inequalities follow from (2), and the second inequality follows from Lemma
13. This completes the proof of the lemma.

Appendix C Missing Proofs for Theorem 17

Lemma 34 (Lemma 19 (Approximating a distribution over circuits by a small circuit obtained via
sampling)). Let X and A be finite sets, let Y be any random variable with finite support, let C be
any distribution over s-size randomized circuits of the form C : X × Supp(Y ) → A, and let U be
any finite set of randomized circuits of the form u : X × Supp(Y ) × A → {0, 1}. Then, for every

ε > 0, there exists a randomized circuit Ĉ of size T = O( log |X|+log |U |
ε2

· s) such that for every u ∈ U
and x ∈ X, we have

|EC←C [u(x, Y, C(x, Y ))]− E[u(x, Y, Ĉ(x, Y ))]| ≤ ε.

Additionally, there exists a deterministic circuit C̃ of size T such that for all inputs x, y, C̃(x, y) =
Pr[Ĉ(x, y) = 1].

Proof. Without loss of generality, we can assume that all the circuits in Supp(C) are deterministic,
since the randomness of the circuits can be absorbed by the distribution C. Fix ε > 0. Let
C1, . . . , Ck ← C be k circuits drawn independently from C, where k ≥ 1 will be specified later. By
a Chernoff bound, for every x ∈ X and u ∈ U , we have

Pr
C1,...,Ck←C

[∣∣EC←C [u(x, Y, C(x, Y ))]− Ei←[k][u(x, Y, Ci(x, Y ))]
∣∣ > ε

]
≤ 2e−2kε

2
.

By a union bound over x ∈ X and u ∈ U , we have

Pr
C1,...,Ck←C

[
∃x ∈ X,u ∈ U :

∣∣EC←C [u(x, Y, C(x, Y ))]− Ei←[k][u(x, Y, Ci(x, Y ))]
∣∣ > ε

]
≤ |X| · |U | · 2e−2kε2 .

Now, we choose k = O( log |X|+log |U |
ε2

) so that |X| · |U | · 2e−2kε2 in the above expression is strictly
less than 1. Then, there exist C1, . . . , Ck ∈ Supp(C) such that for every x ∈ X and u ∈ U , we have∣∣EC←C [u(x, Y, C(x, Y ))]− Ei←[k][u(x, Y, Ci(x, Y ))]

∣∣ ≤ ε.
Now, the first part of the lemma follows by choosing Ĉ to be a T = O( log |X|+log |U |

ε2
· s)-size circuit

that chooses a circuit in {C1, . . . , Ck} uniformly at random and then runs the chosen circuit on the
input. The second part of the lemma follows by choosing C̃ to be a T -size circuit that, on input
(x, y), computes the fraction of circuits Ci in {C1, . . . , Ck} such that Ci(x, y) = 1.

Appendix D Separation of Weak and Super-Weak (t, ε)-Zero-Knowledge

In this section we separate the notion of weak and super-weak (t, ε)-zero-knowledge. First, let us
formally define super-weak (t, ε)-zero-knowledge.

Definition 35 (super-weak (t, ε)-zero-knowledge). Let (P, V ) be an interactive proof system
for a language L. We say that (P, V ) is super-weak (t, ε)-zero-knowledge if for every PPT adversary
V ∗ and every t-time distinguisher D, there exists a PPT simulator S and an n0 ∈ N such that for
every n ≥ n0, x ∈ L ∩ {0, 1}n, and z ∈ {0, 1}∗, we have

Pr[D(x, z,OutV ∗ [P (x)↔ V ∗(x, z)]) = 1]− Pr[D(x, z, S(x, z)) = 1] ≤ ε(n).
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Theorem 36. There exists an interactive proof system (P, V ) for an NP language L, such that
(P, V ) is super-weak (t, ε)-zero-knowledge for every polynomial t and inverse polynomial ε, but
(P, V ) is not weak (t′, 13)-zero-knowledge for some polynomial t′.

Proof. Let L be the trivial language {0, 1}∗ with witness relation RL(x) = {0, 1} for every x ∈
{0, 1}∗, and let (P, V ) be the interactive proof system where the prover P , on auxiliary input a bit
y, sends the bit y to the verifier V , who simply outputs 1 (accepts). We first show that (P, V ) is
super-weak (t, ε)-zero-knowledge for every polynomial t and inverse polynomial ε. Let V ∗ be any
PPT adversary, and let D be any t-time distinguisher. Let S be the PPT simulator that, on input
(x, z), estimates Pr[D(x, z,OutV ∗ [0↔ V ∗(x, z)]) = 1] and Pr[D(x, z,OutV ∗ [1↔ V ∗(x, z)]) = 1] by
running V ∗ and D sufficiently (polynomially) many times so that with probability 1− negl(n), the
error is at most 1

2ε(n) , where b ↔ V ∗(x, z) denotes the protocol where the prover sends the bit b

to V ∗; then, S outputs OutV ∗ [b
∗ ↔ V ∗(x, z)], where b∗ is the bit b that had the higher estimated

value for Pr[D(x, z,OutV ∗ [b ↔ V ∗(x, z)]) = 1]. It is easy to see that with probability 1− negl(n),
we have

Pr[D(x, z,OutV ∗ [P (x, y)↔ V ∗(x, z)]) = 1]− Pr[D(x, z, S(x, z)) = 1] ≤ 1

ε(n)
.

Thus, (P, V ) is super-weak (t, ε)-zero-knowledge.
Let t′(n) = O(n). We now show that (P, V ) is not weak (t′, 13)-zero-knowledge. Let V ∗ be the

PPT adversary that simply outputs whatever the prover sends, and letD be the t′-time distinguisher
that, on input D(x, z, s), simply outputs the first bit of s. Now, we note that

Pr[D(x, z,OutV ∗ [P (x, 0)↔ V ∗(x, z)]) = 1] = Pr[D(x, z, 0) = 1] = 0

and

Pr[D(x, z,OutV ∗ [P (x, 1)↔ V ∗(x, z)]) = 1] = Pr[D(x, z, 1) = 1] = 1.

Since Pr[D(x, z, S(x, z)) = 1] cannot be simultaneously close to both 0 and 1, we see that (P, V ) is
not weak (t′, 13)-zero-knowledge.

The above theorem uses an NP language L with non-unique witnesses. However, under standard
cryptographic assumptions, we can still prove the same result for an NP language L with unique
witnesses.

Theorem 37. Suppose there exists a one-way permutation f : {0, 1}∗ → {0, 1}∗ with a hard-
core predicate φ : {0, 1}∗ → {0, 1}. Then, there exists an interactive proof system (P, V ) for an
NP language L with unique witnesses, such that (P, V ) is super-weak (t, ε)-zero-knowledge for
every polynomial t and inverse polynomial ε, but (P, V ) is not weak (t′, 13)-zero-knowledge for some
polynomial t′.

Proof. Let L be the trivial language {0, 1}∗ with unique witness relation RL(x) = f−1(x). Let
(P, V ) be the interactive proof system where the prover P , on input (x, y), sends the bit φ(y) to
the verifier V , who simply outputs 1 (accepts). We first show that (P, V ) is super-weak (t, ε)-zero-
knowledge for every polynomial t and inverse polynomial ε. Let V ∗ be any PPT adversary, and let
D be any t-time distinguisher. Let S be the PPT simulator that, on input (x, z), first estimates
Pr[D(x, z,OutV ∗ [0↔ V ∗(x, z)]) = 1] and Pr[D(x, z,OutV ∗ [1↔ V ∗(x, z)]) = 1] by running V ∗ and
D sufficiently (polynomially) many times so that with probability 1− negl(n), the error is at most

1
2ε(n) , where b ↔ V ∗(x, z) denotes the protocol where the prover sends the bit b to V ∗. Then,
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S outputs OutV ∗ [b
∗ ↔ V ∗(x, z)], where b∗ is the bit b that had the higher estimated value for

Pr[D(x, z,OutV ∗ [b↔ V ∗(x, z)]) = 1]. It is easy to see that with probability 1− negl(n), we have

Pr[D(x, z,OutV ∗ [P (x)↔ V ∗(x, z)]) = 1]− Pr[D(x, z, S(x, z)) = 1] ≤ 1

ε(n)
.

Thus, (P, V ) is super-weak (t, ε)-zero-knowledge.
Let t′(n) = O(n). We now show that (P, V ) is not weak (t′, 13)-zero-knowledge. Let V ∗ be the

PPT adversary that simply outputs whatever the prover sends, and let D be the distinguisher that,
on input D(x, z, s), simply outputs the first bit of s. Now, we note that

Pr[D(x, z,OutV ∗ [P (x, f−1(x))↔ V ∗(x, z)]) = 1] = Pr[D(x, z, φ(f−1(x))) = 1] = φ(f−1(x)).

Now, suppose that (P, V ) is weak (t′, 13)-zero-knowledge. Then, there exists a PPT simulator S
and an n0 ∈ N such that for every n ≥ n0, x ∈ L ∩ {0, 1}n, and z ∈ {0, 1}∗, we have

|Pr[D(x, z,OutV ∗ [P (x, f−1(x))↔ V ∗(x, z)]) = 1]− Pr[D(x, z, S(x, z)) = 1]| ≤ 1

3
,

which is equivalent to

|φ(f−1(x))− Pr[D(x, z, S(x, z)) = 1]| ≤ 1

3
.

Now, using the simulator S and the distinguisher D, it is easy to construct an adversary A that
computes the hard-core predicate with non-negligible probability. This contradicts the assumption
that φ is a hard-core predicate for the one-way permutation f .
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