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Abstract. We adapt the concept of a programmable hash function
(PHF, Crypto 2008) to a setting in which a multilinear map is avail-
able. This enables new PHFs with previously unachieved parameters.
To demonstrate their usefulness, we show how our (standard-model)
PHFs can replace random oracles in several well-known cryptographic
constructions. Namely, we obtain standard-model versions of the Boneh-
Franklin identity-based encryption scheme, the Boneh-Lynn-Shacham
signature scheme, and the Sakai-Ohgishi-Kasahara identity-based non-
interactive key exchange (ID-NIKE) scheme. The ID-NIKE scheme is the
first scheme of its kind in the standard model.
Our abstraction also allows to derive hierarchical versions of the above
schemes in settings with multilinear maps. This in particular yields sim-
ple and efficient hierarchical generalizations of the BF, BLS, and SOK
schemes. In the case of hierarchical ID-NIKE, ours is the first such scheme
with full security, in either the random oracle model or the standard
model.
While our constructions are formulated with respect to a generic multilin-
ear map, we also outline the necessary adaptations required for the recent
“noisy” multilinear map candidate due to Garg, Gentry, and Halevi.
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1 Introduction

Programmable hash functions. Programmable hash functions (PHFs) have
been proposed in [18] as an abstraction of random oracles that can also be
instantiated in the standard model. In a nutshell, a PHF H maps a bitstring
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X (e.g., a message to be signed) to a group element H(X); a special trapdoor
allows to decompose H(X) = caXhbX for previously chosen c, h. In a larger proof,
c will usually be a “challenge element” (e.g., a part of a given Diffie-Hellman
challenge), so that H(X) contains a challenge component if and only if aX 6= 0.

PHFs can be used to employ partitioning strategies: e.g., Waters’ CDH-
based signature scheme [24] (implicitly) uses a PHF to partition the set of all
messages into “signable” and “unsignable” messages. (In his case, a message
X is signable iff aX 6= 0.) During the proof of unforgeability, we hope that all
messages for which an adversary requests a signature are signable, while the
adversary’s forgery corresponds to an unsignable message.

Limitations of PHFs. While initially meant as a standard-model replace-
ment for random oracles, many applications require a degree of “programmabil-
ity” that is not met by current PHF constructions. Technically, we have PHF
constructions with aX 6= 0 for most, but not all preimages X. Such PHFs are
suitable, e.g., in certain signature or identity-based encryption schemes [24, 18].

However, several prominent schemes that are formulated in the random oracle
model (e.g., [23, 4, 6]) would require a PHF with aX = 0 for most (but not all)
preimages. (Roughly speaking, in these schemes, adversarial queries X can be
handled iff the corresponding hash does not have a challenge component, i.e., if
aX = 0.) Unfortunately, a recent result [17] shows that no black-box construction
of such a PHF with aX = 0 for most (but not all) X exists.

Our work. We construct PHFs with aX = 0 for most (but not all) X by
slightly adapting the PHF definition to a setting in which a multilinear map is
available.1 We use our PHFs to give standard-model versions of prominent cryp-
tographic schemes whose security has so far only been proven in the random or-
acle model. Specifically, we give standard-model versions of the Boneh-Franklin
(BF) identity-based encryption scheme [4], Boneh-Lynn-Shacham (BLS) signa-
tures [6], and the Sakai-Ohgishi-Kasahara (SOK) identity-based non-interactive
key exchange (ID-NIKE) [23]. We also use our PHFs to realise a completely
new secure cryptographic functionality: we present the first fully secure hierar-
chical ID-NIKE, with security either in the standard-model or the random oracle
model. Our constructions assume the existence of an O(k)-linear map, where k is
the security parameter.2 We use an abstraction of multilinear maps that is com-
patible with the recent “noisy” candidate for multilinear maps of Garg, Gentry,
and Halevi [13].

Some technical details. We circumvent the black-box impossibility result [17]
by slightly adapting the PHF definition to a setting with multilinear maps. Intu-
itively, [17] uses that aX is an exponent that can be viewed as a known function
in certain unknown variables. This function is linear, because all involved group
elements are from the same group, and only group operations are allowed. But

1 Concretely, we construct (poly, n)-MPHFs for any constant n. This denotes a slight
variant of PHFs in a multilinear setting, with the following property. For any poly-
nomial number of Xi and Z1, . . . , Zn (with Xi 6= Zj), we have aXi = 0 and aZj 6= 0
for all i, j with significant probability. The Xi, Zj need not be known during setup.

2 In fact, our optimizations only require a O(k/ log(k))-linear map.
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the number of zeros of such a (nontrivial) linear function can be reasonably
upper bounded. This contradicts the goal that aX = 0 for many, but not all X.

By moving to a multilinear setting, we essentially allow (a limited number of)
multiplications in the exponent. Hence, the exponent aX is now no longer limited
to be a linear function, but can be a multivariate polynomial. Such polynomials
can have exponentially many zeros. For instance, we could choose secret values
αi,b (for 1 ≤ i ≤ |X| and b ∈ {0, 1}), such that exactly one element of each pair
(αi,0, αi,1) is nonzero; say αi,bi 6= 0. Then the function

aX = α(X) =

|X|∏
i=1

αi,Xi (1)

(where Xi denotes the i-th bit of X) evaluates to zero everywhere except for
X = (b1, . . . , b|X|). In fact, we implement a suitable variant of the function in

(1) in the exponent (in the sense that H(X) = caXhbX = cα(X)hbX for a suitable
blinding term hbX ) through multilinear maps.3 In the process, we also recognize
and refine an admissible hash function (AHF [3, 8, 1]) implicit in [19]. This
yields the – by far – most efficient known AHFs. As a result, we get PHFs in
the multilinear setting with aX = 0 for many (but not all) X.

Applications. To demonstrate their power, we use our new PHFs to replace
random oracles in three example applications. As one application, we obtain from
BLS signatures [6] an existing standard-model signature scheme due to Boneh
and Silverberg [5]; as a natural extension, we give a standard-model variant of the
Boneh-Franklin IBE scheme [4]. However, our central application is the SOK [23]
ID-NIKE scheme; from this scheme, we get the first fully secure ID-NIKE in the
standard model.

In all cases, the analysis is completely modular: we prove the security of
the PHF-based schemes solely from generic PHF properties. In particular, we
can also view (programmable) random oracles as PHFs to obtain the original
schemes, with essentially the original proofs.4 We view these results as strong
evidence that PHFs are a useful abstraction of random oracles that also allows
for standard-model instantiations.

In addition, we give natural hierarchical versions of all schemes in a setting
with multilinear maps. (Recall that we require multilinear maps for our PHFs
anyway.) Again, we can either use random oracles as PHFs to obtain reasonably
efficient new schemes, or use our new PHFs to obtain (somewhat less efficient)
standard-model versions.

More on our ID-NIKE schemes. In the signature and IBE applications,
we mainly explain (and slightly improve) existing schemes through PHFs. While

3 We stress that these ideas are not new; essentially the same function in the exponent
has been considered by Boneh and Silverberg [5] for a concrete signature scheme,
building on work of Lysyanskaya [19]. Our contribution here is an abstraction (along
with a few quantitative optimizations) that enables new applications.

4 The exception is the SOK scheme, for which we only get a proof under a slightly
stronger computational assumption.
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this already hints at the potential of our notion of PHFs, their actual useful-
ness in building novel cryptographic functionalities is best demonstrated by our
application to ID-NIKE.

Loosely speaking, a non-interactive key exchange (NIKE) provides any two
parties registered in the system with a unique shared key, without any inter-
action. For NIKE in the identity-based setting, there is a single master public
key held by a trusted authority (TA); each party additionally gets an individual
user secret key from the TA, and combines its secret key with the identity of
the other party to compute the shared key. This primitive is a powerful one.
For one thing, it implies secure IBE under a minor technical requirement [20].
More importantly, it has important applications in managing keys and enabling
secure communications in mobile ad hoc and sensor networks, where the energy
cost of communication is at a premium [14, 9]. In the hierarchical setting, H-
ID-NIKE allows the same functionality, but also allows the TA’s operations to
be distributed over a hierarchy, which is well-suited to military and emergency
response scenarios. The advantages of ID-NIKE, in terms of reducing communi-
cation costs and latency in a realistic adversarial environment, are demonstrated
in [9]. For further discussion of applications of NIKE and ID-NIKE, see [14, 12].

However, ID-NIKE has proven surprisingly hard to instantiate in the stan-
dard model, even more so in a hierarchical setting. Currently, to the best of our
knowledge, there is precisely one efficient, secure ID-NIKE scheme with a proof
of security in the random oracle model, namely the SOK scheme [23] (with
security models and analysis in [11, 20]). There are no schemes secure in the
standard model. One might think that such schemes could easily be obtained
from known standard-model-secure IBE schemes, but this is not the case; the
essential technical barrier seems to be the randomised key derivation in these
IBE schemes.

In the hierarchical setting, Gennaro et al. [14] constructed H-ID-NIKE
schemes that are secure under certain classes of key exposure, but which do
not offer full security, the desirable and natural generalisation of the existing
ID-NIKE security notion from [20] to the hierarchical setting. Moreover, their
schemes do not scale well to large numbers of levels. The same criticisms ap-
ply to earlier schemes [2, 21] on which the scheme of Gennaro et al. [14] is
based. Indeed, one of the open problems left in [14] is to construct a H-ID-NIKE
scheme with security against not only compromise of any number of leaves, but
also against any number of nodes at higher levels of the hierarchy.5

By substituting the random oracles in the SOK scheme [23] with our new
PHFs, we obtain the first secure ID-NIKE schemes in the standard model. Fur-
thermore, our construction extends naturally to the hierarchical setting, yielding
the first fully secure H-ID-NIKE schemes. The construction can be instantiated
using random oracles to obtain a reasonably efficient scheme, or using PHFs for
security in the standard model. We also show how multilinear maps can be used

5 We note that there are other papers claiming to solve this open problem (eg. [16]),
but these can be easily shown to provide insecure schemes.
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to achieve security in the broader scenario of multiple TAs, and for shared keys
among whole groups of parties.

Note on the recent candidate for multilinear maps. Recently, Garg, Gen-
try, and Halevi [13] have announced a candidate for a family of cryptographically
interesting multilinear maps. Their candidate is lattice-based, heavily relies on
the notion of noise, and thus does not provide groups in the usual sense. We
comment on the necessary adaptations of our schemes to their setting inside.

2 Preliminaries

Notation. For n ∈ R, let [n] := {1, . . . , bnc}. Throughout the paper, k ∈ N
denotes the security parameter. For a finite set S, we denote by s ← S the
process of sampling s uniformly from S. For sets S1,S2, . . . and n ∈ N, we
write S≤n :=

⋃n
i=1 Si. For a probabilistic algorithm A, we write y ← A(x) for

the process of running A on input x with uniformly chosen random coins, and
assigning y the result. If A’s running time is polynomial in k, then A is called
probabilistic polynomial-time (PPT). A function f : N → R is negligible if
it vanishes faster than the inverse of any polynomial (i.e., if ∀c∃k0∀k ≥ k0 :
|f(k)| ≤ 1/kc). f is significant if it dominates the inverse of some polynomial
(i.e., if ∃c, k0∀k ≥ k0 : f(k) ≥ 1/kc).

Multilinear maps. An `-group system consists of ` cyclic groups G1, . . . ,G`

of prime order p, along with bilinear maps ei,j : Gi × Gj → Gi+j for all
i, j ≥ 1 with i + j ≤ `. Let gi be a canonical generator of Gi (included
in the group’s description). The map ei,j satisfies ei,j(g

a
i , g

b
j) = gabi+j (for all

a, b ∈ Zp). When i, j are clear, we will simply write e instead of ei,j . It will
also be convenient to abbreviate e(h1, . . . , hj) := e(h1, e(h2, . . . , e(hj−1, hj) . . . ))
for hj ∈ Gij and i = (i1 + i2 + . . . + ij) ≤ `. By induction, it is easy to see
that this map is j-linear. Additionally, we define e(g) := g. Finally, it can also
be useful to define the group G0 = Z

+
|G1| of exponents to which this pairing

family naturally extends. In the following, we will assume an `-group system
MPG` = {{Gi}i∈[`], p, {ei,j}i,j≥1,i+j≤`} generated by a multilinear maps pa-

rameter generator MG` on input a security parameter 1k.

The GGH candidate. We currently do not have candidates for multilinear
maps between groups with cryptographically hard problems. However, Garg,
Gentry, and Halevi [13] (henceforth GGH) suggest a concrete candidate for an
“approximation” of multilinear maps, named graded encoding systems. With the
GGH candidate, group elements have a randomized (and thus non-unique) repre-
sentation dubbed “encoding”. While it is possible to extract a unique “canonical
bitstring” from an encoding, it is not possible to perform further computations
with this extracted bitstring. An encoding can be re-randomized (e.g., to hide
the sequence of operations that were performed), but only at the cost of in-
troducing an artificial “noise” term in the encoding. Further operations (and
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re-randomizations) on this group element cause the noise to grow; once this
noise grows beyond a certain bound, encodings can no longer be worked with.6

Our abstraction. For readability and universality, we will generally use the
notation from the abstract notion of multilinear maps described above. When
instantiated with the GGH candidate, operations are meant to occur on en-
codings, without implicit re-randomizations. In particular, e.g., g now denotes
an encoding (not a group element). Additionally, we will employ the following
notation to indicate necessary re-randomizations, extractions, and comparisons
when using encodings instead of group elements.

– g ← Gi means choosing a random encoding g at level i. (This corresponds
to uniformly choosing a group element from Gi.) We assume that encodings
g chosen in such a way have a low noise level, say, 1.

– g
enc
= h holds iff the encodings g and h match.

– g
grp
= h holds iff the group elements encoded by g and h match, that is, iff

the GGH isZero procedure identifies g−1h as the neutral element.7

– reRandj(g) is the re-randomization of encoding g. This re-randomization in-
creases the noise level to a certain, a-priori fixed bound j. For simplicity, and
abstracting, we only consider noise levels j ∈ N. If g’s noise level is already
at least j (e.g., because g is the output of reRandj), then randomization fails.
We note that the distributions reRandj(g) and reRandj(h) are statistically

close for any two encodings g, h with g
grp
= h and noise level less than j.

– ext(g) denotes the canonical bitstring extracted from encoding g. We have

ext(g) = ext(h) for any g, h with g
grp
= h of sufficiently small noise level.

Like [13], we omit parameters (such as noise bounds) to computations; asymp-
totic parameters can be derived from the suggestions in [13, Section 4.2].

Hard problems. The `-MDDH assumption is: given (g, gx1 , . . . , gx`+1), (for
g ← G1 and uniform exponents xi), the element e(gx1 , . . . , gx`)x`+1 ∈ G`

is computationally indistinguishable from a uniform G`-element. The (` + 1)-
power assumption is: given (g, gx) (for g ← G1 and uniform x), the element
e(gx, . . . , gx︸ ︷︷ ︸

` times

)x ∈ G` is computationally indistinguishable from a uniformly cho-

sen G`-element.8

6 We further ignore a (negligible) error probability in most of the GGH procedures.
Technically, however, this leads to applications with, e.g., negligible correctness error.

7 Technically, the GGH isZero procedure only allows to compare two encodings on the
“highest level” `. To compare two level-i encodings (for i < `), we can first “lift”
both to level ` by pairing them with a nonzero level-(`− i) element.

8 We note that in the GGH setting, all elements gxi (resp. gx), and the challenge
e(gx1 , . . . , gx`)x`+1) (resp. e(gx, . . . , gx)x) are produced with knowledge of the expo-
nents x, xi as fully randomized but low-noise encodings.
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3 Programmable hash functions in the multilinear setting

3.1 Motivation

Programmable hash functions (PHFs) have been defined in [18] as a special
type of a group hash function (i.e., a hash function with images in a group).
Namely, the image H(X) of a PHF can always be explained as H(X) = caXhbX

for externally given c, h. Usually, c will be a “challenge element” (e.g., from a
Diffie-Hellman-like problem), and h will be a “controlled element” (e.g., with
known exponent relative to a fixed group generator) used for blinding purposes.
Intuitively, we require that both the events aX = 0 and aX 6= 0 occur with
significant probability. Even more, an (m,n)-PHF guarantees that with signifi-
cant probability, aXi = 0 for any m given inputs Xi, while aZj 6= 0 for any n
given inputs Zj (with Xi 6= Zj of course). This means that the H(Xi) contain
no challenge component, while all H(Zj) do.

For our purposes, we will strive to construct efficient (poly, n)-PHFs for con-
stant n (i.e., group hash functions which are (q(k), n)-PHFs for any polynomial
q). However, there are indications that such PHFs do not exist [17], at least
according to the original definition from [18]. Thus, we will adapt the definition
of PHFs to the multilinear setting, and construct the “multilinear analog” of a
(poly, n)-PHF. Concretely, an (m,n)-PHF maps to a “target” group G`. Here
instead of explaining H(X) as a product caXhbX for c, h in the target group G`

(as the case of PHFs), we will explain H(X) as a product e(c1, . . . , c`)
aXe(BX , h),

for externally given challenges ci ∈ G1 (which means c = e(c1, . . . , c`) ∈ G`)
and controlled h ∈ G1. Note that the coefficient bX in the usual definition of a
PHF now becomes a preimage BX ∈ G`−1 under a pairing operation.

3.2 Definitions

Definition 1 (Group hash function). A group hash function H into G con-
sists of two polynomial-time algorithms: the probabilistic algorithm HGen(1k)
outputs a key hk, and HEval(hk , X) (for a key hk and X ∈ {0, 1}k) determinis-
tically outputs an image Hhk (X) ∈ G.

Definition 2 (MPHF). Assume an `′-group system MPG`′ as generated by
MG`′(1k). Let H be a group hash function into G` (` ≤ `′), and let m,n ∈ N.
We say that H is an (m,n)-programmable hash function in the multilinear setting
((m,n)-MPHF) if there are PPT algorithms TGen and TEval as follows.

– TGen(1k, c1, . . . , c`, h) (for ci, h ∈ G1 and h
grp

6= 1) outputs a key hk and a
trapdoor td. We require that for all ci, h, the distribution of hk is statistically
close to the output of HGen.9

9 There is a subtlety here: in case of encoded group elements, the output of TGen may
consist of group elements whose noise level depends on the noise level of the ci or
h. Hence, we will assume a known a-priori bound on the noise level of the ci and h.
This assumption will be fulfilled in our applications.
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– TEval(td , X) (for a trapdoor td and X ∈ {0, 1}k) deterministically outputs

aX ∈ Z and BX ∈ G`−1 with Hhk (X)
grp
= e(c1, . . . , c`)

aX · e(BX , h). We
require that there is a polynomial p(k) such that for all hk and X1, . . . , Xm,
Z1, . . . , Zn ∈ {0, 1}k with {Xi}i ∩ {Zj}j = ∅,

Phk ,{Xi},{Zj} := Pr [aX1 = · · · = aXm = 0 ∧ aZ1 , . . . , aZn 6= 0] ≥ 1/p(k), (2)

where the probability is over possible trapdoors td output by TGen along with
the given hk. Furthermore, we require that Phk ,{Xi},{Zj} is close to statis-
tically independent of hk. (Formally, |Phk ,{Xi},{Zj} − Phk ′,{Xi},{Zj}| ≤ ν(k)

for all hk , hk ′ in the range of TGen, all {Xi}, {Zj}, and negligible ν(k).)
We say that H is a (poly, n)-MPHF if it is a (q(k), n)-MPHF for every polynomial
q(k), analogously for (m, poly)-MPHFs.

Note that the TEval algorithm of an MPHF into G1 yields BX ∈ G0, i.e.,
exponents BX . In fact, in this case, the MPHF definition coincides with the
original PHF definition from [18].

Readers interested only in how to use MPHFs in cryptographic constructions
may safely skip the remainder of this section.

3.3 Warmup: programmable random oracles as MPHFs

A programmable random oracle RO with images in G1 can be interpreted as a
group hash function in the obvious way. (By “programmable”, we mean that
during a security proof, we can freely and adaptively determine images of RO,
even depending on the inputs of TGen. The only restriction of this programming
is that images should appear uniformly and independently distributed to an
adversary who sees only public information.) However, note for this modeling to
make sense in the first place, we should require that we can hash into G1.

Theorem 1 (PROs as (poly, n)-MPHFs). A programmable random oracle
RO (in the above sense) with images in G1 can be programmed to act as a
(poly, n)-MPHF for any constant n.

Proof (Proof sketch.). Fix a polynomial q = q(k). We show that RO is a (q, n)-
MPHF (with empty hk). For each new preimage X, we program RO(X) :=
caXhBX for the inputs c := c1 and h to TGen, and a uniformly chosen exponent
BX ∈ G0 = Z|G1|. We choose aX = 1 with probability 1/2q, and aX = 0 oth-
erwise. TEval outputs these aX , BX , assigning them as necessary for previously
unqueried inputs X. For any pairwise different X1, . . . , Xq, Z1, . . . , Zn, we thus
have

Pr
[
∀i : aXi = 0 ∧ ∀j : aZj 6= 0

]
=

(
1− 1

2q

)q
·
(

1

2q

)n
≥ 1

2
·
(

1

2q

)n
,

which is significant for polynomial q and constant n. ut
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3.4 Ingredient: efficient admissible hash functions

At the heart of our standard-model constructions lies a primitive dubbed “ad-
missible hash function” (AHF) [3]. Unfortunately, the AHFs from [3] are not
very efficient (and in fact only achieve a weaker AHF definition, see [8]). How-
ever, luckily, an earlier work by Lysyanskaya [19] already contains an implicit
and much more efficient AHF.

Intuitively, an AHF can be thought of as a combinatorial counterpart of
(poly, 1)-(M)PHFs. An AHF input X is mapped to an image AHF(X) in a way
that X can fall in the set of controlled, CO, inputs (meaning that we know a trap-
door that allows to answer adversary’s queries for that input) or uncontrolled,
UN, inputs (meaning that we do not know any trapdoor but hope to embed a
challenge element). (Unlike with (M)PHFs, however, this is a purely combinato-
rial property.) An AHF guarantees that for any X1, . . . , Xq, Z, with significant
probability, all Xi are controlled, and Z is uncontrolled.

We now give a definition that is a somewhat simpler variant of the AHF
definitions from [8, 1], and then show a result implicit in [19].

Definition 3 (AHF). For a function AHF : {0, 1}k → R` (with a finite set10

R and polynomial ` = `(k)) and K ∈ (R ∪ {⊥})`, define the function FK :
{0, 1}k → {CO, UN} through FK(X) = UN ⇐⇒ ∀i : Ki = AHF(X)i ∨ Ki = ⊥,
where AHF(X)i denotes the i-th component of AHF(X).11 We say that AHF is
q-admissible if there exists a PPT algorithm KGen and a polynomial p(k), such
that for all X1, . . . , Xq, Z ∈ {0, 1}k with Z 6∈ {Xi},

Pr [FK(X1) = · · · = FK(Xq) = CO ∧ FK(Z) = UN] ≥ 1/p(k), (3)

where the probability is over K ← KGen(1k). We say that AHF is an admissible
hash function (AHF) if AHF is q-admissible for all polynomials q = q(k).

Thus, X is controlled (i.e., FK(X) = CO) if there is an i with Xi 6= Ki 6= ⊥.

Theorem 2 ([19]). Assume a family of codes {Ck} with Ck : {0, 1}k → R`

denoting both the code and its encoding function. Suppose that Ck has minimum
distance at least c · ` for a fixed constant c > 0. (That is, X1 6= X2 implies that
the vectors Ck(X1) and Ck(X2) differ in ≥ c ·` positions.) Then {Ck} is an AHF.

Proof. Let q = q(k) be a polynomial. We need to devise a PPT algorithm KGen
such that (3) holds. KGen(1k) sets d := b(ln 2q)/cc (so d is the smallest integer

such that (1− c)d ≤ 1/2q), and picks K uniformly among all elements from
(R ∪ {⊥})` with exactly d non-⊥ components. Hence, the set I := {i | Ki 6= ⊥}
is of size d.

Now fix X1, . . . , Xq, Z ∈ {0, 1}k with Z 6∈ {Xi}. Our choice of K implies
Pr [FK(Z) = UN] = |R|−d. For any fixed i, we want to upper bound the prob-
ability Pr [FK(Xi) = UN | FK(Z) = UN]. (This step loosely corresponds to [19,

10 One should have R = {0, 1} in mind here. Larger R (e.g., R = [k]) lead to slightly
less pairing-intensive constructions of MPHFs, see the paragraph before Theorem 4.

11 That is, for R = {0, 1}, we have FK(X) = CO iff there is an i with Ki = 1−AHF(X)i.
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Lemma 4].) Hence, assume FK(Z) = UN; note that this conditioning leaves the
distribution of I uniform. Now Ck(Xi) and Ck(Z) differ in a set ∆ ⊆ [`] of
positions with |∆| ≥ c`. Hence, FK(Xi) = UN is equivalent to I ∩∆ = ∅. Thus,

Pr [FK(Xi) = UN | FK(Z) = UN] = Pr [I ∩∆ = ∅ | FK(Z) = UN]

≤ (1− c)d ≤ e−cd ≤ 1

2q
.

A union bound over i gives Pr [∀i : FK(Xi) = UN | FK(Z) = UN] ≤ 1/2, so that

Pr [FK(Z) = UN ∧ ∀i : FK(Xi) = CO] ≥ 1

2
· |R|−d ≥ 1

2
·
(

1

2q

) 1
c·log|R|(e)

,

which is significant. ut

3.5 Main result: MPHFs from multilinear maps

Our main result in this section is a simple construction of a (poly, n)-MPHF
from an AHF.

Construction 1 (MM). Let AHF : {0, 1}k → R` be an admissible hash function
and assume an `′-group system MPG`′ . The group hash function MM into G`

(` ≤ `′) is given by the following algorithms:
– HGen(1k) picks h̃i,j ← G1\{1} (for (i, j) ∈ [`]×R), sets hi,j := reRand2(h̃i,j),

and outputs hk := {hi,j}i∈[`],j∈R. 12

– HEval(hk , X) computes (t1, . . . , t`) := AHF(X) and outputs MMhk (X) :=
e(h1,t1 , . . . , h`,t`).

Theorem 3. The group hash function MM above is a (poly, 1)-MPHF.

Proof. Fix a polynomial q = q(k). We need to exhibit TGen and TEval algorithms
as in Definition 2. TGen(1k, c1, . . . , c`, h) invokes K ← KGen(1k) and, for all
(i, j) ∈ [`]×R and uniform exponents ri,j 6= 0, it sets up

hi,j :=

{
reRand2(hri,j ) if Ki 6= j and Ki 6= ⊥,
reRand2(c

ri,j
i ) if Ki = j or Ki = ⊥.

(4)

For now, assume ci
grp

6= 1 for all i, so our setup yields a perfectly distributed
key hk := {hi,j}i,j that is in fact independent of K.13 The trapdoor is td :=
((ci), h,K, (ri,j)).

TEval(td , X) computes (t1, . . . , t`) := AHF(X) and distinguishes two cases:

12 The additional re-randomization step guarantees that the noise levels in scheme and
simulation are the same. The concrete noise level of re-randomized elements depends
on the maximal noise considered in the arguments of TGen.

13 In case of randomized encodings, the distribution of hk in the simulation may (e.g.,
with the GGH candidate) only be statistically close to the one in the scheme.
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Case FK(X) = CO, i.e., there is at least an i∗ with Ki∗ 6= ti∗ and Ki∗ 6= ⊥. If
we set aX = 0 and

BX := e(h1,t1 , . . . , hi∗−1,ti∗−1
, hi∗+1,ti∗+1

, . . . , h`,t`)
ri∗,ti∗ ,

for any chosen i∗, we can decompose MMhk (X)
grp
= e(c1, . . . , c`)

aXe(BX , h).

Case FK(X) = UN, i.e., Ki = ti or Ki = ⊥ for all i. This means that hi,ti
grp
=

c
ri,ti
i for all i, so MMhk (X)

grp
= e(c1, . . . , c`)

aXe(BX , h) for aX =
∏
i ri,ti and

BX := 1.
The AHF property (3) implies (2). (Note that Phk ,{Xi},{Z} only depends on K
but not on hk .)

Finally, in case ci
grp
= 1 for some i, we have e(c1, . . . , c`)

grp
= 1. If we replace

all ci in (4) with h, we can explain any image MMhk (X)
grp
= e(h, . . . , h)

∏
i ri,ti as

MMhk
grp
= e(c1, . . . , ck)aXe(BX , h) with arbitrary aX . Adjusting the probability

for aX 6= 0 in the order of 1/2q (as in the proof of Theorem 1) allows to prove
(2) for p(k) = 2 · (2q)n. ut

Examples. For R = {0, 1} and binary codes Ck : {0, 1}k → R` with large
minimum distance, we get the AHF implicit in [19]. This yields MPHFs that use
O(k) groups Gi, and have keys of 2k group elements. Larger R give new AHFs
that yield MPHFs that use fewer groups, but have larger keys. For instance, with
R = F2κ , for κ := blog2(k)c, along with MDS codes over R, we obtain MPHFs
that use O(k/ log2(k)) groups, and have keys consisting of k2 group elements.

Theorem 4. Let n be a constant, q = q(k) be a polynomial, and let H =
(HGen,HEval) be a (q + n − 1, 1)-MPHF into G`. Then the group hash func-
tion H′ = (HGen′,HEval′) with
– HGen′(1k) that outputs hk ′ = (hkν)ν∈[n] for hkν ← HGen(1k), and
– HEval′(hk ′, X) that outputs H′hk ′(X) :=

∏
ν∈[n] Hhkν (X)

is a (q, n)-MPHF into G`.

Combining Theorems 3 and 4 yields a (poly, n)-MPHF for any constant n.

Proof. We construct suitable TGen′ and TEval′ algorithms from the respective
TGen and TEval algorithms for H:
– TGen′(1k, c1, . . . , c`, h) runs (hkν , tdν) ← TGen(1k, c1, . . . , c`, h) for ν ∈ [n],

and outputs hk ′ := (hkν)ν∈[n] and td ′ := (tdν)ν∈[n].
– TEval′(hk ′, X) invokes (aν,X , Bν,X)) ← TEval(tdν , X) and outputs aX :=∑

ν∈[n] aν,X and BX :=
∏
ν∈[n]Bν,X . This output can be justified with

H′hk ′(X)
grp
=
∏
ν∈[n]

Hhkν (X)
grp
=
∏
ν∈[n]

e(c1, . . . , c`)
aν,Xe(Bν,X , h)

grp
= e(c1, . . . , c`)

aXe(BX , h).

Now fix X1, . . . , Xq, Z1, . . . , Zn with {Xi} ∩ {Zj} = ∅. For each ν, we hope
for the following event: aν,Xi = 0 for all i, and aν,Zj = 0 exactly for j 6= ν.
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For fixed ν, this event happens with probability at least 1/p(k) (over tdν) for
some polynomial p. Since aX =

∑
ν aν,X , we get that with probability at least

(1/p(k))n, we have aXi = 0 for all i and aZj = aj,Zj 6= 0 for all j. ut

4 (Hierarchical) ID-based non-interactive key exchange

Hierarchical identity-based non-interactive key exchange (H-ID-NIKE) is the
natural generalisation of ID-NIKE [23, 11, 20] to the hierarchical setting: a root
authority calculates and distributes private keys to sub-authorities, who in turn
do the same for sub-sub-authorities, and so on, until leaf nodes are reached.
Each node is identified by a vector of identities, and any pair of nodes in the
tree should be able to non-interactively compute a common key based on their
private keys and identities. We recall from the introduction that H-ID-NIKE
schemes are rare, and, to the best of our knowledge, there are not even any
ROM constructions that meet all the desirable criteria (efficiency, scalability,
and full security in the sense of resilience to arbitrary node compromises).

Formally, an H-ID-NIKE scheme H-ID-NIKE consists of three PPT algorithms
(see below), an identity space ID and shared-key space SHK. The users are
organized in a tree of depth L whose root (at level 0) is the trusted authority
(TA). The identity of a user at level d ∈ [L] is represented by a vector id =
(id1, . . . , idd) ∈ IDd.
Setup. The setup algorithm Setup(1k, L) is run by the TA. Given the security

parameter 1k and a parameter L ∈ N, it outputs a master public key mpk
and a master secret key msk . We also interpret msk as the user secret key
uskε for the empty identity ε.

Key delegation. The key delegation algorithm Del(mpk , usk id, id
′) can be run

by any user to generate a secret key for any of its children. Given the master
public key mpk , the user secret key usk id for an identity id = (id1, . . . , idd) ∈
IDd, the algorithm outputs a user secret key usk id′ for any of its children
id′ = (id1, . . . , id `, idd+1) ∈ IDd+1 (for 0 ≤ d < L).

Shared key generation. Given the master public key mpk , a user secret key
usk id1 for an identity id1 ∈ ID≤L, and an identity id2 ∈ ID≤L,
ShK(mpk , usk id1 , id2) outputs either a shared key Kid1,id2 ∈ SHK or a
failure symbol ⊥. (If id1 is an ancestor of id2 (or vice-versa) the algorithm
is assumed to always output ⊥ 14; here, id is in particular considered to be
an ancestor of itself. Otherwise the output is assumed to be in SHK.)
For correctness, we require that for any k, L ∈ N, for any (mpk ,msk) ←

Setup(1k, L), for any pair of identities (id1, id2) ∈ IDd1 × IDd2 , such that nei-
ther is an ancestor of the other, and corresponding user secret keys usk id1 and
usk id2

generated by repeated applications of Del from uskε = msk , we have
ShK(mpk , usk id1

, id2) = ShK(mpk , usk id2
, id1).

A (non-hierarchical) ID-NIKE scheme is a H-ID-NIKE scheme in which the
depth L of the tree is fixed to L = 1. (Note that in this case, Del gets as input

14 If id1 is an ancestor of id2, it can always compute the user secret key usk id2 ; a key
derived from usk id2 can be used as a shared key between the two users.
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uskε = msk and outputs user secret keys for level-1 identities. We may thus also
speak of extraction of user secret keys.)

4.1 Security definition for (H-)ID-NIKE

We present a security model for H-ID-NIKE that is the natural generalisation
of the PS model for ID-NIKE from [20] to the hierarchical setting. The model
significantly strengthens the previous model of Gennaro et al. [14] by being
fully adaptive, allowing arbitrary numbers of node corruptions, and allowing the
adversary access to shared keys as well as user secret keys of inner (i.e., non-leaf)
nodes. The model is defined in terms of a game between an adversary A and a
challenger C. C takes as input the security parameter 1k and a depth L, runs
algorithm Setup of the H-ID-NIKE scheme and gives A the master public key
mpk. It keeps the master secret key, msk, to itself. A then makes queries of the
following three types:

Extract : A supplies an identity id = (id1, . . . , idd) ∈ IDd (for d ∈ [L]). C uses
Del repeatedly, starting from msk , to derive usk id and hands usk id to A.

Reveal : Here A supplies a pair (id1, id2) ∈ IDd1 × IDd2 . C extracts usk id1
as

above, runs Kid1,id2
← ShK(mpk , usk id1

, id2), and hands Kid1,id2
to A.

Test : A supplies two target identities (id∗1, id
∗
2) ∈ IDd1×IDd2 such that neither

is an ancestor of the other. C computes Kid∗1 ,id
∗
2

as above, and tosses a coin
b← {0, 1}. If b = 0 then C gives Kid∗1 ,id

∗
2

to A; otherwise, if b = 1, then C gives
A a uniform element from SHK.

Finally, A outputs a guess b̂ for b. In our security model, the adversary is
allowed to make an arbitrary (but polynomial) number of Extract and Reveal
queries. Furthermore, the adversary is fully adaptive, in the sense that it can
compromise nodes (by making Extract and/or Reveal queries) in any order.
In order to prevent the adversary from trivially winning, we require that the
adversary is not allowed to make any Extract queries on an ancestor of id∗1 or
id∗2, and no Reveal query on the pairs (id∗1, id

∗
2) and (id∗2, id

∗
1). The advantage

of an adversary A against a H-ID-NIKE scheme H-ID-NIKE is

AdvIND-SK
A,H-ID-NIKE(k) =

∣∣∣Pr[b̂ = b]− 1/2
∣∣∣

= 2
∣∣∣Pr
[
b̂ = 1 | b = 1

]
− Pr

[
b̂ = 1 | b = 0

]∣∣∣ .
We say that H-ID-NIKE is IND-SK secure iff AdvIND-SK

A,H-ID-NIKE(k) is negligible for
all PPT adversaries A.

In the non-hierarchical case (i.e., L = 1), we recover the definition and se-
curity model for (non-hierarchical) ID-NIKE from [20]. Note also that versions
of these models in which multiple Test queries are permitted for a single bit b
can be shown to be polynomially equivalent to the versions with a single Test
query using standard hybrid arguments.
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4.2 Fully-secure ID-NIKE from MPHFs

In this section we revisit the ID-NIKE scheme of Sakai, Ohgishi and Kasahara
(SOK) [23]. We replace random oracles with (poly, 2)-MPHFs in their scheme
and prove security of the generalized scheme. Using our standard-model MPHFs,
this yields the first standard-model ID-NIKE scheme.15 We then consider a hi-
erarchical generalisation.

We assume a 2`-group system MPG2` = {{Gi}i∈[2`], p, {ei,j}i,j≥1,i+j≤2`}
generated by a multilinear maps parameter generatorMG2`(1k), and a (poly, 2)-
MPHF H = (HGen,HEval) with input length in {0, 1}k and output in G`. The
component algorithms of our ID-NIKE scheme IDNIKEMPHF are then defined in
Figure 1. (For compatibility with existing notation, we present an extraction
algorithm Ext instead of an equivalent delegation algorithm.) Correctness of the
scheme is easy to verify. We now prove security.

Algorithm Setup(1k)
MPG2` ←MG2`(1k)
x← Zp, hk ← HGen(1k)
mpk := (MPG2`, hk),msk := x
return (mpk ,msk)

Algorithm Ext(mpk ,msk , id)
usk id ← reRand3(Hhk (id)msk )
return usk id

Algorithm ShK(mpk , usk id1 , id2)
Kid1,id2 := ext(e(usk id1 ,Hhk (id2)))
return Kid1,id2

Fig. 1. The ID-NIKE scheme IDNIKEMPHF.

Theorem 5 (Security of the MPHF-based ID-NIKE scheme). Assume
H is a (poly, 2)-MPHF into G`. Then IDNIKEMPHF is IND-SK secure under the
(2`+ 1)-power assumption.

Proof. Assume an IND-SK adversary A against IDNIKEMPHF. We construct a
(2`+1)-power distinguisher B that, given a 2`-group systemMPG2`, and group

elements g, gx ∈ G1 and S ∈ G2`, distinguishes between S
grp
= e(g, . . . , g)x

2`+1

(i.e., S is real), and random S.
Concretely, B will internally simulate A, together with the IND-SK ex-

periment. Let id∗1, id
∗
2 be the identities from A’s Test query. Furthermore,

let q = q(k) be a polynomial upper bound on the total number of identities
id i 6∈ {id∗1, id

∗
2} that appear in A’s Extract and Reveal queries. In the follow-

ing, we will use the (q, 2)-MPHF property of H (and the corresponding algorithms
TGen and TEval). B first runs (hk , td) ← TGen(1k, gx, . . . , gx, g) and and sets
mpk := (MPG2`, hk). Implicitly, we will have msk := x.

15 If we instantiate the MPHFs again with random oracles (using Theorem 1), we
retrieve the original SOK scheme in pairing-friendly groups, along with a security
proof. However, we note that our security proof uses a different, seemingly stronger
computational assumption.
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We will first describe how B answers an Extract(id) query of A. If aid = 0
(for (aid , Bid) := TEval(td , id)), thenB can compute usk id ← reRand3(e(Bid , g

x))
grp
= Hhk (id)msk . Otherwise, B aborts with output 0. We will hope for the event
that aidi = 0 for all q identities id i 6∈ {id∗1, id

∗
2} from B’s Extract and Reveal

queries. In that case, B can answer not only all Extract queries from A, but
also all Reveal queries (by first computing the user secret key usk id of one of
the two involved identities, and then using usk id to compute the shared key).

We will additionally hope for aid∗1 , aid∗2 6= 0; in this case, B can embed its
own challenge into the reply K∗ to A’s Test query as

K∗ := ext(S
aid∗1

aid∗2 · e(Bid∗1
, Bid∗2

, g, gx)

· e(Bid∗1
, gx, . . . , gx︸ ︷︷ ︸
`+1 times

)
aid∗2 · e(Bid∗2

, gx, . . . , gx︸ ︷︷ ︸
`+1 times

)
aid∗1 ). (5)

By using Hhk (id∗i )
grp
= e(

` times︷ ︸︸ ︷
gx, . . . , gx)

aid∗
i e(Bid∗i

, g), we see that K∗ =

ext(e(Hhk (id∗1)x,Hhk (id∗2))) = Kid∗1 ,id
∗
2

whenever S
grp
= e(gx, . . . , gx)x. Conversely,

if S is random, then so is K∗. (If aid∗i = 0 for some i ∈ {1, 2}, then B aborts
with output 0.)

Finally, B outputs b̂ (i.e., A’s guess for the bit b in the IND-SK experiment).
If the event that B aborts is independent of the queried identities id i and id∗i
(as is the case for the RO-based MPHF from Theorem 1), we have

|Pr [B = 1 | S real]− Pr [B = 1 | S random]| = Pr [¬abort]·AdvIND-SK
A,IDNIKEMPHF

(k)/2.

Hence, B breaks the (2`+1)-power assumption iff A breaks the IND-SK security
of IDNIKEMPHF.

However, in the general case, abort might not be independent of the id i and
id∗i . Hence, we will have to resort to an “artificial abort” strategy as in [24].
That is, even if aidi = 0 and aid∗i 6= 0 for all i, B will “artificially” abort
with probability 1 − 1/(P(idi),(id∗i )

· p(k)) for the polynomial p(k) from (3) and
P(idi),(id∗i )

:= Pr [¬abort | (id i), (id∗i )]. This keeps the (new) abort probability
at 1/p(k), independently of the id i and id∗i , and enables an analysis as above.
Unfortunately, in the general case, we can only approximate P(idi),(id∗i )

(up to
an inversely polynomial error, by running TEval with freshly generated keys
sufficiently often), which introduces an additional error term in the analysis. We
refer to [24] for details on the artificial abort technique. ut

A variant secure under a weaker assumption. We can also construct an
ID-NIKE scheme in the standard model using two instances (with keys hk1, hk2)
of a (poly, 1)-MPHF instead of a single instance of a (poly, 2)-MPHF. Shared keys
are computed as K := ext(e(Hhk1

(id1)msk ,Hhk2
(id2))); user secret keys are of the

form usk id = (reRand3(Hhk1(id)msk ), reRand3(Hhk2(id)msk )). The benefit of this
variant is that it is possible to prove security under the 2`-MDDH assumption (as
opposed to the potentially stronger (2`+1)-power assumption we use above). The
proof is similar to the one above; however, we will hope that a1,idi = a2,idi = 0 for
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all non-challenge queries id i, and that a1,id∗1 , a2,id∗2 6= 0 and a1,id∗2 = a2,id∗1 = 0,
where (aj,id , Bj,id) = TEval(td j , id).

4.3 Extension to H-ID-NIKE

We can extend our ID-NIKE scheme to a H-ID-NIKE scheme of constant depth
L. To this end, we work in a 2`L-group system MPG2`L, and use L instances
of a (poly, 2)-MPHF H into G`. The resulting H-ID-NIKE scheme, denoted by
HIDNIKEMPHF, is given in Figure 2. In that description, and in the following,
we write iddi := (id1, . . . , id i) for an identity id = (id1, . . . , idd) and i ≤ d. We
assume that all involved identities (including “shortened identities” iddi) can be
uniquely encoded as k-bit strings. (If this is not the case, we can always first
apply a collision-resistant hash function.)

Algorithm Setup(1k, L)
MPG2`L ←MG2`L(1k)
x← Zp, ũ← G`, u← reRand2(ũ)
hk i ← HGen(1k)(i ∈ [L]); msk := x
mpk := (MPG2`L, {hk i}i∈[L], u)
return (mpk ,msk)

Algorithm Del(mpk , usk id, id
′)

parse id′ =: (id1, . . . , idd+1)
if id 6= (id1, . . . , idd) return ⊥
usk id′ ← reRandd+2(e(usk id,Hhkd+1(id′dd+1)))
return usk id′

Algorithm ShK(mpk , usk id1 , id2)
Yid2 := e(Hhk1(id2,d1), . . . ,Hhkd2

(id2,dd2))
Kid1,id2 := ext(e(usk id1 , Yid2 , u, . . . , u︸ ︷︷ ︸

2L−d1−d2 times

))

return Kid1,id2

Fig. 2. The H-ID-NIKE scheme HIDNIKEMPHF.

Note. msk = uskε = x ∈ Zp = G0, so Del can be used to derive level-1 user secret
keys from msk . (Recall that our definition of e is consistent with the implicit exponent
group G0 = Zp; e.g., e(x, g) = gx for x ∈ G0.)

We postpone a proof of the following theorem to Appendix C.

Theorem 6 (Security of the MPHF-based H-ID-NIKE scheme). Let H
be a (poly, 2)-MPHF into G`. For fixed depth L ∈ N, HIDNIKEMPHF is secure
under the (2`L+ 1)-power assumption.

A more efficient variant in the random oracle model. We can replace
the 2`L-group system with a 2L-group system and the L different MPHFs with
a random oracle hashing into G1 in the above scheme HIDNIKEMPHF to obtain
a second H-ID-NIKE scheme which can be proven secure in the random ora-
cle model. In this case, the 2L-group system can be instantiated with smaller
parameters than the 2`L-group system required in our standard model scheme.

Security with multiple TAs and group-ID-NIKE. We can also achieve
security in the more general setting of multiple trusted authorities and shared
keys that can be computed by groups of parties instead of just pairs. The details
can be found in Appendix B.
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5 IBE and signature schemes from MPHFs

Identity-based encryption. An identity-based encryption (IBE) scheme IBE
with identity space ID and message space M consists of four PPT algorithms:
Gen,Ext,Enc,Dec. Key generation Gen(1k), on input a security parameter 1k,
outputs a master public key mpk and a master secret key msk . Key extraction
Ext(msk , id), given msk and an identity id ∈ ID, outputs a user secret key usk id .
Encryption Enc(mpk , id ,M), given mpk , an identity id ∈ ID, and a message
M ∈ M, outputs a ciphertext C. Decryption Dec(usk id , C), given usk id and a
ciphertext C, outputs a message M ∈M∪{⊥}. For correctness, we require that
for any k ∈ N, all (mpk ,msk)← Gen(1k), all id ∈ ID, all usk id ← Ext(msk , id),
all M ∈M, and all C ← Enc(mpk , id ,M), Dec satisfies Dec(usk id , C) = M .

IBE-IND-CPA security. An IBE scheme IBE as above is IBE-IND-CPA se-
cure iff every PPT adversary A succeeds in the following experiment with prob-
ability at most negligibly larger than 1/2. First, A gets an honestly generated
master public key mpk ; in all of the following, A has access to an Ext(msk , ·)
oracle for the corresponding msk . Next, A selects an identity id∗ ∈ ID and
two equal-length messages M0,M1 ∈ M. The experiment then computes C∗ ←
Enc(mpk , id∗,Mb) for uniformly chosen b ← {0, 1} and sends C∗ to A. Finally,
A outputs a guess b′ and succeeds iff b = b′ and it has not queried Ext with id∗.

IBE from (poly, 1)-MPHFs. Figure 3 depicts IBEMPHF, which is the Boneh-
Franklin IBE scheme [4], implemented with (poly, 1)-MPHFs. Message and iden-
tity space areM = ID = {0, 1}k. We assume an (`+1)-group systemMPG`+1 =
{{Gi}i∈[`+1], p, {ei,j}i,j≥1,i+j≤`+1} generated by a multilinear maps parameter

generator MG`+1(1k), and a (poly, 1)-MPHF H into G`. If we take a random
oracle as (poly, 1)-MPHF (as in Theorem 1), then ` = 1, and we get the original
BF scheme. Correctness of IBEMPHF is easy to verify. We now prove its security:

Algorithm Gen(1k)
MPG`+1 ←MG`+1(1k)
hk ← HGen(1k), h← G1, x← Zp

mpk := (MPG`+1, hk , h, reRand2(hx))
msk := (hk , x)
return (mpk ,msk)

Algorithm Ext(msk , id)
parse msk =: (hk , x)
return usk id := reRand3(Hhk (id)x)

Algorithm Enc(mpk , id ,M)
parse mpk =: (MPG`+1, hk , h, h̃)
r ← Zp

C :=
(reRand2(hr

1), ext(e(Hhk (id), h̃)r)⊕M)
return C

Algorithm Dec(usk id , C)
parse C =: (C1, C2)
return M := C2 ⊕ ext(e(usk id , C1))

Fig. 3. The IBE scheme from (poly, 1)-MPHFs.

Theorem 7. Assume IBEMPHF is implemented in an (`+ 1)-group system, and
with a (poly, 1)-MPHF H into G`. Then, under the (`+ 1)-MDDH assumption,
IBEMPHF is IBE-IND-CPA-secure.
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Proof sketch. Assume an IBE-IND-CPA adversary A on IBEMPHF that makes
q Ext queries. We construct an (` + 1)-MDDH distinguisher B that internally
simulates the IBE-IND-CPA experiment for A. B gets as input an (`+ 1)-group
system MPG`+1 and group elements g, gx1 , . . . , gx`+2 ∈ G1 and S ∈ G`+1,

where either S
grp
= e(gx1 , . . . , gx`+1)x`+2 (i.e., S is real) or S ∈ G`+1 uniform (i.e.,

S is random). B sets up the master public key as mpk := (MPG`+1, hk , h, h̃) for
(h, h̃) := (g, gx`+1) and (hk , td) ← TGen(1k, gx1 , . . . , gx` , g). (Here, we use the
(q, 1)-MPHF property of H, and the corresponding TGen and TEval algorithms.)
B can answer an Ext query of A for identity id i precisely when aidi = 0 (i.e.,
TEval(td , id i) = (0, Bidi) for some Bidi): then,

usk idi ← reRand3(e(Bidi , g
x`+1))

grp
= e(Bidi , h)x

grp
= Hhk (id i)

x.

Conversly, we hope that aid∗ 6= 0 for A’s selected challenge identity id∗. Then,
we can embed our (`+ 1)-MDDH challenge S ∈ G`+1 as

C∗ ← (reRand2(gx`+2), ext(Said∗ · e(Bid∗ , gx`+1 , gx`+2))⊕Mb)

for b← {0, 1}. Note that if S
grp
= e(gx1 , . . . , gx`+1)xl+2 , this is a valid encryption

of Mb; otherwise, C∗ contains no information about b. If the simulation has to
abort (because aidi 6= 0 for some i, or aid∗ = 0), then B outputs 0. Otherwise,
B outputs 1 iff A correctly guesses b.

If the event that B aborts is independent of the id i and id∗ (as is the case for
the RO-based MPHF from Theorem 1), Pr [B = 1 | S real] = Pr [¬abort] ·εA and
Pr [B = 1 | S random] = Pr [¬abort] · 1/2, where 1/2 + εA is the probability that
A succeeds in the original IBE-IND-CPA experiment. Hence, B breaks (`+ 1)-
MDDH iff A breaks IBEMPHF. However, as in the proof of Theorem 5, we will
also have to deal with the case that abort is not independent of the id i and id∗.
An analysis using an “artificial abort” step is necessary that enforces an abort
probability that is (almost) independent of the id i and id∗. The details are as
in the proof of Theorem 5. ut
Extension to HIBE. We can extend the above IBE scheme to a hierarchical
IBE (HIBE) scheme of constant depth D. This generalization works similarly as
in the ID-NIKE case. We postpone a more detailed exposition to Appendix A.

(Hierarchical) signatures from (poly, 1)-MPHFs. We can convert any
(H)IBE scheme into a (hierarchical) signature scheme using the techniques of [4,
15, 10]. If we apply this transformation to IBEMPHF above, we obtain an abstrac-
tion of BLS signatures [7]. Indeed, if we instantiate the involved MPHF with a
random oracle, we get the original BLS scheme. On the other hand, if we use
the standard-model MPHF from Theorem 3, we obtain (a slight variant of) the
signature scheme of Boneh and Silverberg [5]. In fact, with suitable parameters
(i.e., a larger R, see Section 3.5), we obtain a signature scheme that uses only
O(k/ log(k)) groups and multilinear operations (as opposed to O(k) groups and
multilinear operations in the Boneh-Silverberg scheme). It seems natural to ex-
pect that, using the techniques of [22], this also yields an aggregatable signature
scheme.
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A Hierarchical identity-based encryption from MPHFs

Hierarchical identity-based encryption. A hierarchical identity-based en-
cryption (HIBE) scheme HIBE of depth D ∈ N with identity space ID and mes-
sage space M consists of four PPT algorithms. (For a hierarchical user identity
we use the vector notation id = (id1, . . . , idd) ∈ IDd, with d ∈ [D ]. In addition,
to denote prefixes of an identity we write iddi := (id1, . . . , id i), for i ∈ [d].)

The key generation Gen(1k,D), given the security parameter 1k in unary and
the depth D ∈ N, outputs a master public key mpk and a master secret key
msk . (Note that msk can be seen as the user secret key uskε for the empty
identity ε.) The key delegation Del(mpk , usk id , id

′), given the master public key
mpk and the user secret key usk id for an identity id ∈ IDd that is a prefix of
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a given id ′ ∈ IDd+1, for any d ∈ [D − 1], outputs a user secret key usk id′ for
identity id ′. Given the master public key mpk , an identity id ∈ ID≤D , and a
message M ∈M, Enc(mpk , id ,M) outputs a ciphertext C. The decryption algo-
rithm Dec(usk id , C), given the user secret key usk id for an identity id ∈ ID≤D ,
and a ciphertext C, outputs a message M ∈ M ∪ {⊥}. For correctness, we re-
quire for any k,D ∈ N, all (mpk ,msk) ← Gen(1k,D), all id , id ′ ∈ ID≤D such
that id is a prefix of id ′, all usk id′ ← Del(mpk , usk id , id

′), all M ∈ M, and all
C ← Enc(mpk , id ′,M) that Dec(usk id′ , C) = M .

HIBE-IND-CPA security. For D ∈ N a HIBE scheme HIBE as above is
HIBE-IND-CPA-secure iff in the following experiment the success probability of
every PPT adversary A is at most negligibly larger than 1/2. First, the exper-
iment runs Gen(1k,D) to obtain a master public mpk and a master secret key
msk . Then, A receives mpk and outputs a challenge identity id∗ and messages
M0,M1 of equal length. During the whole experiment, A can query user secret
keys for identities of its choice. The experiment answers these queries by iterat-
ing Del. (Note that from msk the experiment can derive any user secret key in
the hierarchy.) After handing out a prepared ciphertext C∗ ← Enc(mpk , id∗,Mb)
with uniformly chosen b← {0, 1} to A, the adversary outputs a guess b′. If b = b′

and A never queried a user secret key for id∗ the adversary succeeds.

Extension to HIBE. We can extend our IBE scheme IBEMPHF to a HIBE
of constant depth D . We work in a (D` + 1)-group system MPGD`+1, and
use D instances of a (poly, 1)-MPHF H into G`. The resulting HIBE scheme
HIBEMPHF = (Gen,Del,Enc,Dec) with message spaceM is given in Figure 4. For
simplicity, we assume an identity space ID such that all involved (potentially
multi-level) identities can be uniquely encoded as k-bitstrings. (Larger identities
can be used if any identity is first hashed using a collision-resistant hash func-
tion.) As in our H-ID-NIKE scheme, we have msk = uskε = x ∈ Zp = G0; so
from msk we can delegate level-1 user secret keys using Del. (In case of an RO
as (poly, 1)-MPHF, we get an efficient and simple HIBE in the ROM.) Again,
the scheme’s correctness is easy to verify. We now turn to the security theorem
of HIBEMPHF.

Theorem 8. For a constant D ∈ N assume a (D`+ 1)-group system, and let H
be a (poly, 1)-MPHF into G`. Then, the HIBE scheme HIBEMPHF = (Gen,Ext,
Enc,Dec) in Figure 4 is HIBE-IND-CPA-secure under the (D`+ 1)-MDDH as-
sumption.

Proof sketch. This system can be proven similar to the IBE case in Theorem 7.
Assume a HIBE-IND-CPA adversary A on HIBEMPHF with q user secret key
queries. We then build a (D` + 1)-MDDH distinguisher B that simulates the
HIBE-IND-CPA experiment for A. Given a (D` + 1)-group system MPGD`+1,

and the challenge g, gx1 , . . . , gxD`+2 ∈ G1 and S ∈ GD`+1, where either S
grp
=

e(gx1 , . . . , gxD`+1)xD`+2 or S ∈ GD`+1 uniform, B first guesses the length d∗ ∈ [D ]
of the designated challenge identity id∗ = (id1, . . . , idd∗) that A will output.
Then, B sets up the master public key mpk := (MPGD`+1, hk1, . . . , hkD , h, h̃,
u2, . . . , uD) with (h, h̃) := (g, gxD`+1) and (hk i, td i) ← TGen(1k, gx(i−1)`+1 , . . . ,
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Algorithm Gen(1k,D)
MPGD`+1 ←MGD`+1(1k)
hk i ← HGen(1k) for all i ∈ [D ] , h← G1, x← Zp

ũi ← G`, ui ← reRand2(ũi) for all i ∈ [D ] , i 6= 1
mpk := (MPGD`+1, hk1, . . . , hkD , h, reRand2(hx), u2, . . . , uD)
msk := x
return (mpk ,msk)

Algorithm Del(mpk , usk id , id
′)

parse mpk =: (MPGD`+1, hk1, . . . , hkD , h, h̃, u2, . . . , uD)
parse id ′ =: (id1, . . . , idd+1)
if id 6= (id1, . . . , idd) return ⊥
return reRandd+2(e(usk id ,Hhkd+1(idd(d+1))))

Algorithm Enc(mpk , id ,M)
parse mpk =: (MPGD`+1, hk1, . . . , hkD , h, h̃, u2, . . . , uD)
parse id =: (id1, . . . , idd), for d ∈ [D ], r ← Zp

return (reRand2(hr), ext(e(Hhk1(idd1), . . . ,Hhkd(iddd), ud+1, . . . , uD , h̃
r))⊕M)

Algorithm Dec(usk id , C)
parse C =: (C1, C2)
return C2 ⊕ ext(e(usk id , ud+1, . . . , uD , C1))

Fig. 4. The HIBE scheme from (poly, 1)-MPHFs.
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gxi` , g), for i ∈ [D ], and ui ← reRand2(ũi) for uniform ũi ∈ G`, for all i ≤ d∗.
For uj , with d∗ < j ≤ D , B sets uj := reRand2(e(gx(j−1)`+1 , . . . , gxj`)). Implicitly,
we have msk := xD`+1. To answer user secret key queries for id = (id1, . . . , idd)
we hope for aid :=

∏
i∈[d] aiddi = 0, where (aiddi , Biddi) := TEval(td i, iddi). Thus,

we have aiddi∗ = 0 for some i∗ and we can compute the user secret key

usk id ←reRandd+2(e(Hhk1
(idd1), . . . ,Hhki∗−1

(idd(i∗−1)), Biddi∗ , g
xD`+1 ,

Hhki∗+1
(idd(i∗+1)), . . . ,Hhkd(iddd)))

grp
= e(Hhk1

(idd1), . . . ,Hhkd(iddd))
msk .

Conversely, we hope that aid∗ :=
∏
i∈[d∗] aid∗di 6= 0 with (aid∗di , Bid∗ei

) =

TEval(td i, id
∗
di) for the challenge identity id∗ = (id∗1, . . . , id

∗
d∗). Then, we can

embed our (D` + 1)-MDDH challenge S ∈ GD`+1 into the challenge cipher-
text C∗ := (C1, C2) for adversarially chosen M0,M1 as follows: set C1 ←
reRand2(gxD`+2); for C2 consider the group element

e(Hhk1
(id∗d1), . . . ,Hhkd∗ (id∗dd∗), ud∗+1, . . . , uD , h̃

r), (6)

whose bit representation (extracted via ext) is used to blind the challenge mes-
sage Mb.

We can embed B’s own challenge S into (6) since (6) contains an implicit
e(gx1 , . . . , gxD`+1)xD`+2·aid∗ -factor in (6), which can be replaced by Said∗ . The
remaining 2d

∗ − 1 factors of (6) can be computed as during user secret key
extraction.

As an example, assume decompositions Hhki(id
∗
di)

grp
= e(gx(i−1)`+1 , . . . , gxi`)

aid∗di ·
e(Bid∗di

, g), and further uj
grp
= e(gx(j−1)`+1 , . . . , gxj`) for i ≤ d∗ < j ≤ D , with

D = 3, d∗ = 2. Then

e(Hhk1
(id∗d1),Hhk2

(id∗d2), u3, h̃
r)

grp
= e(e(gx1 , . . . , gx`)

aid∗d1 · e(Bid∗d1
, g),

e(gx`+1 , . . . , gx2`)
aid∗d2 · e(Bid∗d2

, g),

e(gx2`+1 , . . . , gx3`), (gx3`+1)x3`+2)
grp
= e(gx1 , . . . , gx3`+1)x3`+2·aid∗ ·

e(Bid∗d1
, g, e(gx`+1 , . . . , gx2`)

aid∗d2 ·

e(Bid∗d2
, g), gx2`+1 , . . . , gx3` , (gx3`+1)x3`+2)·

e(e(gx1 , . . . , gx`)
aid∗d1 , Bid∗d1

, g,

gx2`+1 , . . . , gx3` , (gx3`+1)x3`+2)
grp
= e(gx1 , . . . , gx3`+1)x3`+2·aid∗ ·

e(Bid∗d1
, gx3`+2 , e(gx`+1 , . . . , gx2`)

aid∗d1 ·

e(Bid∗d2
, g), gx2`+1 , . . . , gx3` , gx3`+1)·

e(e(gx1 , . . . , gx`)
aid∗d1 , Bid∗d1

,
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gx3`+2 , gx2`+2 , . . . , gx3` , gx3`+1).

Now, back to the general case, C∗ is a valid encryption of Mb iff S
grp
=

e(gx1 , . . . , gxD`+1)xD`+2 . Else, for uniform S ∈ GD`+1, the ciphertext C∗ con-
tains no information about b. Further, if B has to abort because of aidi 6= 0 for
some i or aid∗ = 0 for the challenge identity id∗, then B ouputs 0. Otherwise,
if the adversary guesses b correctly, B ouputs 1. Again, the event that B aborts
might not be independent of id i for some i and id∗. Hence, we have to implement
an artificial abort step such that the probability of aborting B’s simulation is
(almost) independent of the id i and id∗. This is done as in the proof of Theo-
rem 5. ut

B (H-)ID-NIKE with multiple TAs and
group-H-ID-NIKE

Multilinear maps are sufficiently powerful to allow further, powerful generalisa-
tions of our (H)-ID-NIKE construction. In particular, we may consider a situ-
ation where we have multiple TAs, each issuing secret keys to (a hierarchy of)
users, and we wish to enable any pair of users with secret keys issued by possibly
different TAs to be able to compute a shared key. Going further, we may wish
to enable groups of users (rather than just pairs of users) in the “forest” of hier-
archies to compute shared keys. All of this is enabled in the multilinear setting
by generalisation of our ID-NIKE and H-ID-NIKE schemes. For simplicity, we
sketch just one such scheme here, leaving detailed development of these ideas to
future work.

Suppose we have a 3-group system and let H be a random oracle with outputs
in G1. Then we can instantiate our ID-NIKE scheme with the MPHF being
replaced by H and with secret keys of the form usk id,i ← reRand2(H(id)mski) ∈
G1. Now assume we have two trusted authorities TA1, TA2 with master secrets
msk1, msk2. We augment mpk i to include the element hi = reRand2(gmski).
Consider the chain of equalities:

e(usk id1,1,H(id2), h2)
grp
= e(H(id1)msk1 ,H(id2), gmsk2)
grp
= . . .

grp
= e(usk id2,2,H(id1), h1).

The first computation in the chain can be carried out by user id1 using its
secret key issued by TA1, while the last can be done by id2 using its secret key
issued by TA2; thus the pairing output can be used as the basis of a shared
key (by applying ext in the usual way). Hence two users with secret keys issued
by different TAs can still compute a shared key non-interactively. It should be
evident how to generalise this simple scheme a) to the standard model, b) to
greater numbers of users and TAs, and c) to the hierarchical setting, all by
working with `-group systems.
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C Proof of Theorem 6

Proof. The proof is very similar to the proof of Theorem 5; we focus on the
necessary adaptations. We construct a (2`L + 1)-power distinguisher from an
IND-SK adversary A. Assume B gets a 2`L-group system MPG2`L and group
elements g, gx ∈ G1 and S ∈ G2`L as input, and is supposed to distinguish the

cases S
grp
= e(gx, . . . , gx)x and random S.

B simulates the IND-SK experiment forA. First,B runs (hk i, td i)← TGen(1k,
gx, . . . , gx, g) and for u ← reRand2(e(gx, . . . , gx︸ ︷︷ ︸

` times

)), it sets mpk := (MPG2`L,

{hk i}i∈[L], u). To answer an Extract query for identity id = (id1, . . . , idd), B
will hope for aid :=

∏
i∈[d] ai,iddi = 0, where (ai,iddi , Bi,iddi) := TEval(td i, iddi).

In that case, we must have ai∗,iddi∗ = 0 for some i∗, and thus B can compute
usk id using

usk id ← reRandd+2(e(Hhk1
(idd1), . . . ,Hhki∗−1

(iddi∗−1), e(Biddi∗ , g
x),

Hhki∗+1
(iddi∗+1), . . . ,Hhkd(iddd)))

grp
= e(Hhk1

(idd1), . . . ,Hhkd(iddd))
msk .

Conversely, B can embed its own challenge S into the challenge key K∗ whenever
the challenge identities id∗1 = (id∗1,1, . . . , id

∗
1,d∗1

) and id∗2 = (id∗2,1, . . . , id
∗
2,d∗2

)
satisfy aid∗1 , aid∗2 6= 0. Namely, in that case, the group element

e(Hhk1
(id∗1,d1), . . . ,Hhkd∗1

(id∗1,dd∗1 ),Hhk1
(id∗2,d1), . . . ,Hhkd∗2

(id∗2,dd∗2 ),

u, . . . , u︸ ︷︷ ︸
2L−d∗1−d∗2 times

)msk , (7)

from which the shared key is computed, contains an e(

2`L times︷ ︸︸ ︷
gx, . . . , gx)x-factor, which

can be replaced by B’s own challenge S; the remaining 2d1+d2 − 1 factors of (7)
can be computed as in (5).

Hence, B’s simulation requires that aid = 0 for all non-challenge queried
identities id, and aid∗1 , aid∗2 6= 0. It will be sufficient to hope for aid∗

j,di
6= 0 for all

prefixes of the challenge identities, and aiddi = 0 for all other involved prefixes.
(Since no prefixes of the challenge identities will need to be extracted, these re-
quirements are not contradictory.) These requirements translate to requirements
on the L individual MPHF instances. Hence, with probability at least (1/p(k))L

(for the polynomial p(k) from (2)), the simulation will not abort.
The remaining analysis (including a necessary artificial abort step) can be

performed as in the proof of Theorem 5. ut
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