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Abstract. This note contains a security reduction to demonstrate that Langley’s composition of Bern-
stein’s ChaCha20 and Poly1305, as proposed for use in IETF protocols, is a secure authenticated encryp-
tion scheme. The reduction assumes that ChaCha20 is a PRF, that Poly1305 is ε-almost-∆-universal,
and that the adversary is nonce respecting.

1 Introduction

There has recently been a proposal to the CFRG to consider a combination of ChaCha20 and Poly1305
for inclusion in future IETF protocols [11]. This proposal has come about, in part, due to concern over the
reliance of existing IETF protocols on AES and the risk that advances in the cryptanalysis of AES could
leave users without a good choice for a symmetric cryptographic primitive. A similar concern lead to the
SHA-3 competition; improvements to attacks against SHA-1 lead NIST to transition to the SHA-2 family
of hash functions and to announce the SHA-3 competition, with the aim of choosing an alternative hash
function to ‘improve the robustness of NISTs overall hash algorithm toolkit’ [12].

ChaCha20 is a stream cipher designed by Bernstein [4], based on the Salsa family of stream ciphers [5];
in both of these ciphers, the keystream is generated using a ‘block function’ in a mode reminiscent of the
counter mode of operation for block ciphers. This note will assume that the ChaCha20 block function is a
PRF with signature CC : {0, 1}256 × {0, 1}128 → {0, 1}512, that is, 32-byte keys, 16-byte input, and 64-byte
output. A few papers have attacked reduced round versions for ChaCha20 (for example, [1,9,14]) however
this analysis has not contradicted the PRF security of ChaCha20. Poly1305 is a universal hash function [7]
based on polynomial evaluation [6,8,16], also designed by Bernstein [3].

This note gives a reduction from the security of the proposed combination of ChaCha20 and Poly1305
to the PRF-security of the ChaCha20 block function. Although both primitives are believed to be secure,
it is possible to combine secure primitives in a way that is insecure (for a discussion and formal treatment
of this issue, see [2]); for this reason, a security analysis of the combined scheme is important. Note that
the generic results of Bellare and Namprempre [2] do not apply in this case as those results assume that
independent keys are used in the component primitives. The analysis presented in this note does not concern
the assumption that ChaCha20 behaves as a PRF. The proof will also make use of the fact that Poly1305
is an ε-almost-∆-universal (ε-A∆U) hash function [15] where ∆ represents addition modulo 2128, which

Bernstein [3] has shown to be the case for ε = 8dL/16e
2106 for messages of length at most L bytes.

Notation For brevity, the ChaCha20 block function will be denoted by CC, Poly1305 by Poly, and the
composition as defined in draft-irtf-cfrg-chacha20-poly1305-00 [11] by CC&Poly. The key will be denoted by
k and the per-message nonce by N . Associated data, plaintext, and ciphertext will be denoted by A, P, and
C respectively. The concatenation of strings x and y will be denoted by x||y and truncn(x) will represent the
truncation of a string x to n bytes. The byte length of a string x will be denoted lenx; in the computation of
Polyr(A,C), lenA,C will represent the 16-byte block consisting of a 8-byte representation of the length of A
in bytes, concatenated with a 8-byte block corresponding to the length of C. The ChaCha20 block function
outputs blocks of keystream that are 64 bytes wide, so the plaintext and ciphertext will be encrypted and



decrypted in blocks of 64 bytes. These blocks of plaintext and ciphertext will be denoted Pi and Ci with
P = P1|| . . . ||Pp and |Pi| = 64 bytes, except perhaps for Pp which may be shorter (similarly for C). When A
and C are zero padded to fill 16-byte blocks, this will be denoted A and C. The notation x ←$ X should be
interpreted as the element x being uniformly sampled from the set X. Addition modulo 2128 will be denoted
by +, with the corresponding subtraction operation denoted by −.

2 Specification

2.1 The Algorithms

ChaCha20 is a stream cipher proposed by Bernstein [4], which is designed following similar principles as
Salsa20 [5] (an eSTREAM finalist). ChaCha20 generates a keystream by applying the ChaCha20 block
function to the key, nonce, and a block counter. Plaintext is then encrypted using this keystream, with block
i of the plaintext xored with the output of the ChaCha20 block function, evaluated using block counter i.
Poly1305 is a polynomial-based universal hash function [6,7,8,16], also designed by Bernstein [3].

The syntax of the ChaCha20 block function and Poly1305 is given below:

CC : {0, 1}256 × {0, 1}32 × {0, 1}96 → {0, 1}512

Poly : {0, 1}128 × {0, 1}? → {0, 1}128

That is, the ChaCha20 block function takes as input a 32-byte key, a 4-byte block number, and a 12-byte
nonce, and outputs 64 pseudo-random bytes; Poly1305 takes as input a 16-byte key (with some specific bits
set to zero) and a message of arbitrary length and outputs a 16-byte digest of the message. The output of
Poly1305 is the truncation (to 16 bytes) of a polynomial evaluated in F2130−5 at the key r (which first has
certain bits ‘clamped’ to zero); the polynomial’s coefficients are determined by the message (each 16-byte
message block is encoded to an integer modulo 2130 − 5). When encrypted with a one-time pad, the digest
output from Poly1305 forms an information-theoretic message authentication code (see [10] and [15]).

The internal details of these algorithms are not relevant to this note and readers are referred to papers
such as [3] and [4] for further details.

2.2 The Composition

The composition defined in Section 2.8 of draft-irtf-cfrg-chacha20-poly1305-00 [11] has three main parts,
informally given below and more precisely described by E0

k and D0
k of Figure 2:

key-derivation A one-time Poly1305 key, r, and pseudo-one-time-pad, s, are derived from k and N using
the ChaCha20 block function and a block counter of 0.

encryption The plaintext is encrypted using ChaCha20, with block i of the plaintext xored with the output
of ChaCha20 block function on input (k, i,N).

tag generation Poly1305 is evaluated using the one time key r, which has certain bits set to zero. The
input to Poly1305 is a message consisting of: associated data (padded with zeros to the next 16-byte
block boundary), ciphertext (padded similarly), and a 16-byte block containing 8-byte representations
of the length (in bytes) of both the associated data and the ciphertext. The pseudo-one-time-pad is then
added (modulo 2128) to the resulting digest.

3 Security Analysis

3.1 Security Model

The objective of this section is to demonstrate that the combination of ChaCha20 and Poly1305 described
above is a secure authenticated encryption scheme. The accepted definition for a secure authenticated en-
cryption scheme is one that provides both Indistinguishably under Chosen Plaintext Attacks (IND-CPA) and
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the Integrity of Ciphertexts (INT-CTXT). These notions were introduced by Bellare and Namprempre [2]
and together these these properties imply IND-CCA security. In fact, the stronger notion of IND$-CPA
security [13] can be shown to be achieved by this composition.

To model these two notions the adversary is given access to an encryption oracle and a decryption oracle
and permitted to make at most q queries to these oracles. The proof proceeds via a series of games and the
encryption and decryption oracles in Game i are denoted Ei and Di respectively. An adversary breaks the
IND$-CPA security of the scheme if they can distinguish (C, T ) generated by E0 from a random bitstring
of the same length (generated by an oracle denoted by $); the adversary’s advantage against the IND$-CPA

security of a scheme is measured by Adv
CC&Poly
ind$−cpa = |Pr[AE0 → 1] − Pr[A$ → 1]|. An adversary breaks

the INT-CTXT security of a scheme if they can forge a ciphertext, i.e. output a tuple (N,A,C, T ) with
Dk(N,A,C, T ) = (N,A, P) 6=⊥ where (N,A,C, T ) is not the output from an encryption query and D
outputs ⊥ to signify that the input was not a valid ciphertext. The advantage of this adversary is measured

by Adv
CC&Poly
int−ctxt = Pr[AE0,D0

forges]. A combined measure of the adversary’s advantage against both IND$-

CPA and INT-CTXT can be defined as AdvCC&Poly
ae = |Pr[AE0,D0 → 1] − Pr[A$,⊥ → 1]|, where ⊥ is an

oracle that simply returns ⊥ (representing an invalid ciphertext) an all inputs.
The adversaries that are considered in this section will be restricted to nonce-respecting adversaries. This

is a standard restriction for nonce-based authenticated encryption schemes and means that an adversary will
never ask encryption queries (N,A, P) and (N,A′, P ′) for (A,P) 6= (A′, P ′). There are no restrictions on the
adversary’s use of nonces for decryption queries, however without loss of generality, it is assumed that an
adversary makes no redundant queries; no query is repeated and the output from an E query is never input
to the D oracle, or vice versa.

3.2 Reduction

It is assumed in this security analysis that no pair (k,N ′) is ever repeated, where N ′ is the 12-byte nonce
that is input to the ChaCha20 block function; this assumption is critical to the security of CC&Poly. The
draft recognises that not all protocols will use 12-byte nonces and ‘it is up to the protocol document to define
how to transform the protocol nonce into a 12-byte nonce’ [11, Sect. 2.8]; one suggestion is that prepending
a constant value could provide a way to expand a shorter nonce to 12 bytes.

If an implementation permits both 12-byte nonces and shorter nonces and an adversary is able to predict
how a short nonce will be expanded to 12 bytes (for example, by guessing the value that will be prepended),
then a nonce collision could be forced by querying the encryption oracle using a short N and a 12-byte N ′

which is the expanded version of N . In what follows, we will assume that all nonces are 12 bytes long and
that no (key,nonce) pair is ever repeated to the encryption oracle; the protocol specification therefore must
prevent nonce collisions of this form.

This section will assume that ChaCha20 is a PRF with signature CC : {0, 1}256 × {0, 1}128 → {0, 1}512,
that is, 32-byte keys, 16-byte input, and 64-byte output. This assumption has not been contradicted by
any of the existing cryptanalysis of ChaCha20 and the analysis presented in this note does not concern this
assumption. The proof will also make use of the fact that Poly1305 is an ε-almost-∆-universal hash function.

The proof proceeds via a series of games, specified in Figures 1 and 2. Game 0 defines a combined IND-
CPA and INT-CTXT game, with oracles that realise CC&Poly. The scheme specified in Game 4 clearly gives
no adversary any advantage in either of the IND$-CPA and INT-CTXT games: the ciphertext and tag are
sampled independently of P and uniformly at random from {0, 1}512 (as they would be if generated by $)
and it is impossible for an adversary to query D4 with anything returning (N,A, P) 6=⊥.

The transitions between these games are justified as follows:

Games 0 and 1 If an adversary is able to distinguish between these two games, then they can distinguish
ChaCha20 from a function chosen uniformly at random from the set of all functions with domain {0, 1}128
and range {0, 1}512. However, we assume that ChaCha20 is a PRF so no adversary gains a significant
advantage through the transition between these games.

Games 1 and 2 These games are identical, on the condition that the inputs to URF in Game 1 never
repeat. The inputs to URF are all of the form (i||N); for each query, N is constant, but i is never reused
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and no two encryption queries use the same value for N , therefore the random variables in Games 1 and
2 are identically distributed.

Games 2 and 3 These games are identical unless an adversary submits (N,A,C, T ) to their decryption
oracle and D1 returns (N,A, P) 6=⊥. However, for each query that an adversary makes, this happens
with probability at most ε (because Poly is ε-A∆U) (see [10] and [15] for a proof of this). By a standard
hybrid argument, the probability that an adversary making at most q queries successfully forges is at
most qε.

Games 3 and 4 The random variables in these games are sampled in different orders, however the joint
distributions are identical and therefore these games are identical.

A standard game-hopping argument allows the probability Pr(AG(i−1) → 1) to be bounded in terms of
Pr(AGi → 1):

Pr(AG0 → 1) ≤ Pr(AG1 → 1) + AdvCC
prf (B)

Pr(AG1 → 1) = Pr(AG2 → 1)

Pr(AG2 → 1) ≤ Pr(AG3 → 1) + qε

Pr(AG3 → 1) = Pr(AG4 → 1) = Pr(A$,⊥ → 1)

Bernstein [3] demonstrates that Poly1305 is ε-almost-∆-universal for ε = 8dL/16e
2106 , where L denotes the

maximum byte length of messages. For this construction L is the largest possible value of 16(d lenA16 e +

d lenC16 e + 1), because the specification of CC&Poly pads A and C to 16-byte blocks and adds an extra 16
bytes of message denoting the length of additional data and ciphertext.

Therefore it can be concluded that for every adversary A there is an adversary B against the PRF security
of the ChaCha20 block function such that:

Adv
CC&Poly
AE (A) =

∣∣∣Pr(AG0 → 1)− Pr(AG4 → 1)
∣∣∣ ≤ AdvCC

prf (B) + q
8(dL/16e)

2106
.

Game i:
k ←$ {0, 1}n

b← AEi
k ,Di

k

return (b = 1)

Fig. 1. Games used to reduce the security of CC&Poly to the PRF security of CC. Oracles Ei and Di are defined in
Figure 2
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E0
k(N,A, P):
r||s← trunc32(CCk(0||N))
for i = 1, . . . , p− 1 do

Zi ← CCk(i||N)
Ci ← Zi ⊕ Pi

Z?
p ← trunclenPp

(CCk(p||N))
Cp ← Z?

p ⊕ Pp

T ← Polyr(A||C||lenA,C) + s
return (N,A,C, T )

D0
k(N,A,C, T ):
r||s← trunc32(CCk(0||N))
T ′ ← Polyr(A||C||lenA,C) + s
if T 6= T ′ return ⊥
for i = 1, . . . , p− 1 do

Zi ← CCk(i||N)
Pi ← Zi ⊕ Ci

Z?
p ← trunclenCp

(CCk(p||N))
Pp ← Z?

p ⊕ Cp

return (N,A, P)

E1
k(N,A, P):
r||s← trunc32(URFk(0||N))
for i = 1, . . . , p do

Zi ← URFk(i||N)
Ci ← Zi ⊕ Pi

Z?
p ← trunclenPp

(URFk(p||N))
Cp ← Z?

p ⊕ Pp

T ← Polyr(A||C||lenA,C) + s
return (N,A,C, T )

D1
k(N,A,C, T ):
r||s← trunc32(URFk(0||N))
T ′ ← Polyr(A||C||lenA,C) + s
if T 6= T ′ return ⊥
for i = 1, . . . , p− 1 do

Zi ← URFk(i||N)
Pi ← Zi ⊕ Ci

Z?
p ← trunclenCp

(URFk(p||N))
Pp ← Z?

p ⊕ Cp

return (N,A, P)

E2
k(N,A, P):
r||s ←$ {0, 1}256
for i = 1, . . . , p do

Zi ←$ {0, 1}512
Ci ← Zi ⊕ Pi

Z?
p ←$ {0, 1}8lenPp

Cp ← Z?
p ⊕ Pp

T ← Polyr(A||C||lenA,C) + s
return (N,A,C, T )

D2
k(N,A,C, T ):
r||s ←$ {0, 1}256
T ′ ← Polyr(A||C||lenA,C) + s
if T 6= T ′ return ⊥
for i = 1, . . . , p− 1 do

Zi ←$ {0, 1}512
Pi ← Zi ⊕ Ci

Z?
p ←$ {0, 1}8lenCp

Pp ← Z?
p ⊕ Cp

return (N,A, P)

E3
k(N,A, P):
r||s ←$ {0, 1}256
for i = 1, . . . , p− 1 do

Zi ←$ {0, 1}512
Ci ← Zi ⊕ Pi

Z?
p ←$ {0, 1}8lenPp

Cp ← Z?
p ⊕ Pp

T ← Polyr(A||C||lenA,C) + s
return (N,A,C, T )

D3
k(N,A,C, T ):
return ⊥

E4
k(N,A, P):
r||T ←$ {0, 1}256
for i = 1, . . . , p− 1 do

Ci ←$ {0, 1}512
Zi ← Ci ⊕ Pi

Cp ←$ {0, 1}8lenPp

Z?
p ← Pp ⊕ Cp

s← T − Polyr(A||C||lenA,C)
return (N,A,C, T )

D4
k(N,A,C, T ):
return ⊥

Fig. 2. Oracles used in the games introduced in Figure 1.
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