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Abstract. This paper proposes KT-ORAM, a new hybrid ORAM-PIR construction, to pro-
tect a client’s access pattern to outsourced data. KT-ORAM organizes the server storage as
a k-ary tree with each node acting as a fully-functional PIR storage, and adopts a novel
delayed eviction technique to optimize the eviction process. KT-ORAM is proved to protect
the data access pattern privacy at a failure probability negligible in N (N is the number of
exported data blocks), when system parameter k = logN . Under the same configuration,
KT-ORAM has an asymptotical communication cost of O( logN

log logN
· B) when the recur-

sion level on meta data is of O(1) depth, which can be achieved if block size B = N ϵ

(0 < ϵ < 1), or O( log2 N
log logN

· B) when the number of recursion levels is O(logN). The
costs of KT-ORAM are compared with those of several state-of-the-art ORAMs. The results
show that, KT-ORAM achieves the best communication, storage and client-side computa-
tional efficiency simultaneously, at the price of requiring O( log2 N

log logN
· B) computational

cost at the storage server for each data query.
Key words: Cloud storage, Access pattern privacy, Oblivious RAM, and PIR.

1 Introduction

Motivations. With attractive cost-effectiveness, cloud storage services such as Amazon S3 and
Dropbox have been popularly utilized by business and individual clients to host their data. Before
exporting sensitive data to the cloud storage, clients can encrypt it if they do not trust the storage
server. However, data encryption itself is not sufficient for data security, because the secrecy of
data can still be exposed if a user’s access pattern to the data is revealed [17].

The private information retrieval (PIR) [4,1,3,9,10,21,2,22,19,18] and the oblivious RAM
(ORAM) [11,12,15,13,14,20,24,31,32,33,25,26,28,29,8,27,6,30] are two well-known security-
provable approaches to protect a client’s access pattern to data stored in remote storage. While
some studies indicate that the PIR schemes may be infeasible for large-scale data sets as they need
to process the whole data set in order to hide just one data request [31], the ORAM approach still
appears to be promising as more and more resource-efficient constructions have been proposed.
Particularly, communication cost is the most important metric to evaluate the feasibility of an
ORAM construction. In the literature, the most communication-efficient ORAM constructions
are Path-ORAM [26] proposed by Stefanov et al. and P-PIR [23] proposed by Mayberry et al.,
both consuming O(B · logN) bandwidth for each data query, when the total number of exported
data blocks is N and each data block is of size B = N ϵ bits for constant 0 < ϵ < 1.

Though Path-ORAM and P-PIR have achieved better communication efficiency than prior
works, further reducing the communication and other costs is still desirable to make the ORAM
construction more feasible to implement in cloud storage systems.

Our Results. In this paper, we propose a new ORAM construction, named KT-ORAM, to further
reduce the costs of data access pattern protection and simultaneously accomplish the following
performance goals:



– communication efficiency - O( logN
log logN · B) communication cost per data query when B =

N ϵ bits for constant 0 < ϵ < 1;
– storage efficiency - O(B) storage space at the client side and O(B ·N) storage space at the

cloud server side; and
– computational efficiency - O( logN

log logN ·B) computational cost at the client side and O( log2 N
log logN ·

B) computational cost at the server side per data query.

To the best of our knowledge, there is no other ORAM constructions can simultaneously
achieve the same or better level of communication, storage and client-side computational ef-
ficiency. Compared to P-PIR [23] and Path-ORAM [26], which are the most communication-
efficient ORAM constructions with and without constant size client-side storage respectively,
KT-ORAM reduces the communication cost by a factor of O(log logN). Regarding other costs,
Path-ORAM requires O(B · logN) storage space at the client side, while KT-ORAM requires
only O(B); P-PIR requires O(B ·N · logN) storage space at the server side, while KT-ORAM
only needs O(B ·N).

Though the server-side computational cost introduced by KT-ORAM is higher than several
state-of-the-art ORAM constructions, the cost is O(log logN) times lower than that required by
P-PIR. As justified by Mayberry et al. [23] in the evaluation of P-PIR, reducing communication
cost at the price of increasing computational cost is favorable to both clients and cloud server in
practice: On one hand, because public cloud providers charge CPU time with much lower rate
than that for communication, the communication/computation tradeoff exploited by KT-ORAM
can reduce the monetary cost for clients. Particularly, the evaluation of P-PIR [23] has shown P-
PIR to be very competitive among related works in terms of monetary cost; since KT-ORAM has
lower communication and computational costs than those for P-PIR, the monetary cost of KT-
ORAM should be even more competitive. On the other hand, just like P-PIR, the computation
required by KT-ORAM can be performed in a highly-parallel, efficient manner by massive nodes
and CPUs of the cloud data center.

Our Methodology. Similar to P-PIR [23], KT-ORAM organizes the cloud storage as a tree with
each node acting as fully-functional PIR, where the PIR-read and PIR-write primitives are im-
plemented based on additive homomorphic (AH) operations (i.e., AH encryption, decryption,
addition and multiplication). By applying PIR primitives, the communication cost, which is af-
fected by both the height of tree and the size of each tree node in Tree ORAM [25], becomes
determined only by the height of tree, because only one data block is transferred from/to each
accessed tree node. Meanwhile, the PIR primitives can be performed efficiently because they
process only a small fraction of the data set stored on the tree.

Different from P-PIR, KT-ORAM uses a k-ary tree instead of a binary tree, in order to re-
duce the height of tree by a factor of O(log k) and thus reduce the communication cost also by
O(log k) times. Note that, Gentry et al. [8] also have used k-ary tree in their designed ORAM
construction which we call G-ORAM hereafter. However, KT-ORAM and G-ORAM use different
eviction algorithms to evict actual data blocks within the tree. Also, they have different require-
ments on the size of each tree node: to achieve the same level of failure probability O(2−k),
G-ORAM requires each tree node to contain O(k2) data blocks while KT-ORAM only needs
O(k) blocks due to its new eviction algorithm. Both differences have contributed to the dif-
ferent levels of communication efficiency that they can accomplish: when security parameter
k = logN , G-ORAM requires to transfer O( log2 N

log logN ) data blocks per query, while KT-ORAM

only requires O( logN
log logN ) blocks.

KT-ORAM should use an eviction algorithm different from the one used in G-ORAM due to
following reasons: The AH operation-based PIR primitives can help to reduce communication
cost only if, in an eviction process, only a small number of the data blocks need to be oblivi-
ously moved out/in from/to a tree node. For example, in P-PIR, at most one out of O(logN) data



blocks is moved out/in from/to each node selected for eviction; the PIR primitives are employed
to obliviously download/upload one block from/to each selected node, without transferring all
blocks from/to these nodes. However, if the G-ORAM eviction algorithm were applied, the num-
ber of blocks moved out/in from/to a node could be as large as O(log2 N), which is the total
number of blocks in a node; hence, to obliviously perform these movements, all the blocks in the
node have to be downloaded and re-uploaded, no matter PIR primitives are used or not.

For KT-ORAM, we design a novel eviction algorithm that moves only one data block out/in
from/to each selected tree node during an eviction process, so as the PIR primitives can be utilized
to further reduce communication cost. Specifically, the algorithm treats the physical k-ary tree
as a logical binary tree, where each k-ary tree node mapped to a logical binary subtree. Over the
logical tree, a binary tree-based eviction algorithm, similar to the one used in Tree ORAM [25]
and P-PIR [23], is logically simulated but not directly executed. Instead, an idea of delayed
eviction is further employed to defer and aggregate as many as possible the logical eviction
operations to ensure that: (i) for each eviction process, only O( logN

log k ) k-ary tree nodes need to
be accessed; (ii) within each of the accessed k-ary tree node, only one data block needs to be
downloaded/uploaded.

Organization of the Paper. In the rest of the paper, Section 2 presents the problem definition.
Section 3 reviews the related works of ORAM and PIR. Section 4 introduces the preliminary
techniques, which is followed by detailed descriptions of the construction in Section 5. Sections 6
and 7 report the security and cost analysis. Finally, Section 8 concludes the paper.

2 Problem Definition

We consider a system as follows. A client exports N equal-size data blocks to a remote storage
server. He/she accesses the exported data every now and then, and wishes to hide the pattern of
the accesses from the server.

Each data request from the client, which should be kept private, is one of the following two
types: (i) read a data block D of unique ID i from the storage, denoted as a 3-tuple (read, i,D); or
(ii) write/modify a data block D of unique ID i to the storage, denoted as a 3-tuple (write, i,D).

To accomplish a private data request, the client needs to access the remote storage multiple
times. Each access to the remote storage, which is observable by the server, can be one of the
following types: (i) retrieve (i.e., read) a data block D from a location l at the remote storage,
denoted as a 3-tuple (read, l,D); or (ii) upload (i.e., write) a data block D to a location l at the
remote storage, denoted as a 3-tuple (write, l,D).

We assume the client is trusted but the remote server is honest but curious; that is, it stores
data and serves the client’s requests according to the protocol that we deploy, but it may attempt
to figure out the client’s access pattern. The network connection between the client and the server
is assumed to be secure; in practice, this can be achieved using well-known techniques such as
SSL [7].

Following the security definition of ORAMs [11,26,29], we specify the security of our pro-
posed ORAM as follows.

Definition 1. Let x⃗ = ⟨ (op1, i1, D1), (op2, i2, D2), · · · ⟩ denote a private sequence of the
client’s intended data requests, where each op is either a read or write operation. Let A(x⃗) =
⟨ (op′1, l1, D′

1), (op
′
2, l2, D

′
2), · · · ⟩ denote the sequence of the client’s accesses to the remote

storage (observed by the server), in order to accomplish the client’s private data requests. An
ORAM system is said to be secure if (i) for any two equal-length private sequences x⃗ and y⃗
of intended data requests, their corresponding observable access sequences A(x⃗) and A(y⃗) are
computationally indistinguishable; and (ii) the probability that the ORAM system fails to operate
is negligible in N .



3 Related Work

Oblivious RAM. According to the data lookup technique adopted, existing ORAMs can be clas-
sified into two categories, namely, hash-based ORAMs and index-based ORAMs. Hash-based
ORAMs [11,12,15,13,14,20,24,31,32,33] require data structures such as buckets or stashes to
deal with hash collisions. Among them, the Balanced ORAM (B-ORAM) [20] proposed by
Kushilevitz et al. achieves the lowest asymptotical communication cost, which is O(B · log2 N

log logN ),
where B is the size of a data block. Index-based ORAMs [25,26,28,29,8,27] use index structure
for data lookup. They require the client to either store the index, or outsource the index to the
server recursively in a way similar to storing data, at the expense of increased communication
cost. The state-of-the-art index-based ORAMs are binary tree ORAM (T-ORAM) [25], Path
ORAM [6], and SCORAM [30]. When B = N ϵ (constant 0 < ϵ < 1) is assumed, the communi-
cation cost for T-ORAM is O(B · log2 N) with failure probability O(N−c) (c > 1), while Path
ORAM and SCORAM incurs O(B · logN) · ω(1) communication cost with O(N−ω(1)) failure
probability and O(B · logN) · ω(1) client-side storage.

Private Information Retrieval (PIR). PIR protocols were proposed mainly to protect the pat-
tern in accessing read-only data at remote storage. There are two flavors: information-theoretic
PIR (iPIR) [4,1,9,10], assuming multiple non-colluding servers each holding one replica of the
shared data; computational PIR (cPIR) [21,2,22,3], where cPIR usually assumes single server in
the system. cPIR is more related to our work, and thus is briefly reviewed in the following. The
first cPIR scheme was proposed by Kushilevitz and Ostrovsky in [21]. Designed based on the
hardness of quadratic residuosity decision problem, the scheme has O(nc) (0 < c < 1) com-
munication cost. Since then, several other single-server cPIRs [2,22] have been proposed based
on different intractability assumptions. Even though cPIRs are impractical when database size is
large, they are acceptable for small databases. Recently, several partial homomorphic encryption-
based cPIRs [19,18] have been proposed to achieve satisfactory performance in practice, when
database size is small. Due to the property of partial homomorphic encryption, [16,23] shows
that these cPIR schemes can also be adapted for data updating.

Hybrid ORAM-PIR Designs Designs based on a hybrid of ORAM and PIR techniques have
emerged recently. Among them, P-PIR [23] has the best-known performance. As our proposed
KT-ORAM design shares some similar ideas with P-PIR, more detailed discussions of P-PIR and
comparisons between KT-ORAM and P-PIR will be given in the following sections.

4 Preliminaries

Our proposed KT-ORAM employs the additively homomorphic encryption [19,18] primitives
and shares some basic ideas with P-PIR [23]. Hence, this section provides an overview of addi-
tively homomorphic encryption primitives and P-PIR.

4.1 Additively Homomorphic Encryption

Additively Homomorphic encryption (AH encryption) [19,18] is a fundamental primitive used
in our proposed design of KT-ORAM. Letting A and B be two data items, and E(∗) denote an
AH encryption (which is also a probabilistic encryption), the following properties hold:

E(A)⊕ E(B) = E(A+B),

E(A)⊙B = E(A ·B).
(1)



Here, + and · are regular addition and multiplication operations between two data items; ⊕
stands for a homomorphic addition between two homomorphically-encrypted data items; the
“homomorphic” multiplication (denoted as ⊙) between a homomorphically-encrypted data item
E(A) and a data item B represents the homomorphic summation of B identical copies of E(A),
i.e., ⊕B

i=1E(A).
Based on an AH encryption, primitives PIR-read and PIR-write have been defined in AH-

based PIR constructions [23]. As they are also used in KT-ORAM, we introduction their defini-
tions below. Suppose a client exports to a storage server w double-encrypted data blocks, denoted
as

−−−−−−→
E(E(D)) = (E(E(D1)), · · · , E(E(Dw))), where E(∗) represents a symmetric encryption

such as AES [5]. Primitives PIR-read and PIR-write are defined as follows.
PIR-read(m) When the client wishes to query data block Dm without exposing Dm’s po-

sition m to the server, it should issue a PIR-read(m) request as follows: (i) The client first con-
structs a query vector −→q of w entries, in which only the mth entry is E(1) while each of the other
entries is E(0). (ii) The vector −→q is then sent to the server.

Upon receiving the request, the server performs the following homomorphic encryption op-
eration for each entry qi of −→q :

ci = qi ⊙ E(E(Di)) =

{
E(0), if i ̸= m;

E(E(E(Di))), otherwise. (2)

Then, the server calculates

c1 ⊕ · · · ⊕ cw = E(E(E(Dm))). (3)

Lastly, this result is returned to the user, who will decrypt it to obtain Dm.
PIR-write(m, ∆D) When the client wishes to replace Dm with D′

m without exposing the
change to the server, it should issue a PIR-write(m, ∆D) request as follows: (i) The client first
computes ∆D = E(D′

m) − E(Dm). (ii) Then, it constructs a writing vector −→q of w entries, in
which only the mth entry is E(1) while each of the other entries is E(0). (iii) Finally, ∆D and −→q
are both sent to the server.

Upon receiving the request, the server conducts the following computations for each i ∈
{1, · · · , w}:

E(∆Di) = qi ⊙∆D =

{
E(0), if i ̸= m;

E(∆D), otherwise. (4)

E(E(Di)) = E(E(Di))⊕ E(∆Di)

=

{
E(E(Di)), if i ̸= m;
E(E(D′

m)), otherwise.
(5)

Note that, the effect of the above operations is to change only the mth block to E(E(D′
m)) while

other blocks remain intact. Also, if m = ⊥, it means the write operation is a dummy write, and
therefore all entries of −→q are set to E(0).

4.2 Overview of P-PIR

The design of P-PIR is summarized in the following from the aspects of storage organization,
data query process, and data eviction process.

Storage Organization Assuming N data blocks are exported by the client to a storage server.
The server-side storage of P-PIR is organized as a binary tree with L = logN + 1 layers, the
same as in T-ORAM [25]. Each node can store logN blocks. As the capacity of the storage is
larger than the N real data blocks, dummy blocks are introduced to fill up the rest of the storage.



A real data block is first encrypted with symmetric encryption and then re-encrypted with
homomorphic encryption before it is stored to a position in the node; that is, each data block Di

is stored as E(E(Di)) in a node. Each node also contains an encrypted index block that records
the ID of the data block stored at each position of the node; as the block is encrypted, the index
information is not known to the server.

Figure 1 shows an example, where N = 32 data blocks are exported and stored in a binary
tree-based storage with 6 layers. Starting from the top layer, i.e., layer 0, each node is denoted as
vl,i, where l is the layer number and i is the node index on the layer.

P-PIR requires the client to maintain an index table with N entries, where each entry i (i ∈
{0, · · · , N − 1}) records the ID of a leaf node on the tree such that data block Di is stored at
some node on the path from the root to this leaf node. As in T-ORAM [25], the index table can
be exported to the server as well; hence, the user-side storage is of constant size and only needs
to store at most two data blocks and some secret information such as encryption keys.

Data Query Process To query a certain data block Dt, the client acts as follows:

– The client checks the index table to find out the leaf node vL−1,f that Dt is mapped to.
Hence, a path −→v from the root to vL−1,f is identified.

– For each node on the path −→v , the client first retrieves the encrypted index block from it, and
checks if Dt is in the node. If Dt is at a certain position m of the node, the process PIR-
read(m) (as defined in Section 4.1) is launched to retrieve Dt; otherwise, the client launched
process PIR-read(x) where x is a randomly-picked position in the node.

– After Dt has been retrieved and accessed, it is re-encrypted and inserted into the root node
v0,0.

An example is given in Figure 1, where the query target Dt is mapped to leaf node v5,10.
Hence, each node on the path v0,0 → v1,0 → v2,1 → v3,2 → v4,5 → v5,10 is retrieved. Finally,
block Dt is found at node v5,10. After being accessed, it is re-encrypted and added to root node
v0,0. Therefore, the client downloads and uploads totally 2 logN index and data blocks for each
query.
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Fig. 1. P-PIR’s server-side storage structure. Circled nodes represent the ones accessed by the client during
a query process when the target data block is mapped to leaf node v5,10.



Data Eviction Process To prevent any node on the tree from overflowing, the following data
eviction process is conducted by the client after every query. Firstly, for each non-bottom layer l,
two nodes are randomly selected. Note that, a single node v0,0 is selected from the top layer as it
only contains a single root node. Then, for each selected node vl,i, there are two cases:

– If node vl,i contains at least one real data block, one such real block is selected and evicted
to the child node which is on the path that the selected block is mapped to; meanwhile, a
dummy eviction to another child of vl,i is performed to hide the actual pattern of eviction.
Primitives PIR-read and PIR-write are employed together for the evictions. Specifically, the
index blocks of vl,i and its two child nodes (denoted as vl+1,j and vl+1,k) are first retrieved;
based on the index information, it can be determined that a certain real block De in vl,i
should be evicted to one child node (say, vl+1,j). Then, De in vl,i, a dummy block D′ in
vl+1,j , and an arbitrary block D′′ in vl+1,k are retrieved with primitive PIR-read. After that,
process PIR-write(m,E(De)−E(D′)) (where m is the location of D′ in vl+1,j) is performed
for vl+1,j to obliviously update D′ to De, and dummy process PIR-write(⊥,x) (where x is
an arbitrary value) is performed for node vl+1,k to pretend an update at the node. Finally,
three index blocks are updated, re-encrypted, and uploaded.

– If node vl,i does not contain any real data block, two dummy evictions are performed to the
two child nodes of vl,i.

Figure 2 shows an example of the eviction process, where circled nodes are selected to evict
data blocks to their child nodes. Let us consider how node v2,2 evicts its data block. The index
block in the node is first retrieved to check if the node contains any real data block. If there is a
real block De in v2,2 and De is mapped to leaf node v5,20, De will be obliviously evicted to v3,5,
which is v2,2’s child and is on path from v2,2 to v5,20, while a dummy eviction is performed to
another child node v3,4. Otherwise, two dummy evictions will be performed to nodes v3,4 and
v3,5.
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Fig. 2. An example of the eviction process in P-PIR.



5 The Proposed KT-ORAM Scheme

This section presents the details of the proposed KT-ORAM design in terms of storage organiza-
tion, system initialization, data query process, and data eviction process.

5.1 Storage Organization
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(a) quaternary tree: physical view of the server storage (b) binary tree: logical view of the server storage

Fig. 3. An example KT-ORAM scheme with a quaternary-tree storage structure. Bold boxes represent the
k-nodes accessed when a client queries a target data block stored at k-node u3,21.

Server-side Storage At the server side, data storage is physically organized as a k-ary tree. For
simplicity, we set the system parameter k to be a power of two. Each node in the tree (called a
k-node) is a PIR storage. As shown in Figure 3, each k-node ul,i has the following components:

– Data Array (DA): a data container that stores c(k − 1) data blocks, where c ≥ 1 is another
system parameter.

– Encrypted Index Table (EI): a table of c(k − 1) entries recording the control information for
each block stored in the DA. Specifically, each entry is a tuple of format (ID, lID, bnID),
which records the following information of each block:
• ID - ID of the block;
• lID - ID of the leaf k-node that the block is mapped to;
• bnID - ID of the b-node (within ul,i) that the block logically belongs to.

In addition, the EI has a ts field which stores a time stamp indicating when this block was
accessed in the last time.

Each k-node can be mapped to a binary subtree of k − 1 binary nodes (called b-nodes). For
example, k-node u0,0 in Figure 3(a) is mapped to the binary subtree with v0,0 as root, and v1,0
and v1,1 as leaves in Figure 3(b). This way, the physical k-ary tree can be treated as a logical
binary tree. Note that, all the b-nodes within the same k-node share the storage space (i.e., DA).



Client-side Storage At the client side, the following storage structures are maintained:

– A client-side index table I: a table of N entries, where each entry i records the ID of the
leaf k-node that data block Di is mapped to (i.e., block Di is stored at some node on the
path from the root to this k-node). In practical implementation of KT-ORAM, the table can
be exported to the server, just as in T-ORAM [25] and P-PIR [23]; to simplify presentation
of the design in this section, however, we assume the table is maintained locally at the client
side. Note that, similar to Path ORAM [6] and SCORAM [30], outsourcing the index table
of O(N logN) bits with a uniform block size of B = N ϵ bits can ensure the metadata
recursion to be of O(1) depth (0 < ϵ < 1).

– A constant-size temporary buffer: a buffer used to temporarily store a constant number of
blocks downloaded from the server-side storage.

– A small permanent storage for secrets: a permanent storage to store the client’s secrets such
as the keys used for the encryption and decryption of data and index tables.

– C: a counter counting the number of queries that the client has issued to the server.

5.2 System Initialization

To initialize the system, the client acts as follows. It first prepares each real data block Di by
encrypting it with a symmetric key and then homomorphically encrypting it to get E(E(Di)),
and then randomly assigns it to a leaf k-node on the k-ary tree maintained at the server-side
storage. The rest of the DA spaces on the tree shall all be filled with dummy blocks.

For each k-node, its EI entries are initialized to record the information of blocks stored in
the node. Specifically, the entry for a real data block should record the block ID to the ID field,
the ID of the assigned leaf k-node to the lID field, and the ID of an arbitrary leaf b-node within
the k-node to the bnID field. In an entry for a dummy data block, the block ID is marked as
“−1” while lID and bnID fields are filled with arbitrary values. The ts field of the EI should be
initialized to 0.

For the client-side storage, the index table I is initialized to record the mapping from real
data blocks to leaf k-nodes, and the keys for data and index table encryption are also recorded to
a permanent storage space. Finally, the client initializes its counter C to 0.

5.3 Data Query

To query a data block Dt with ID t, the client increments the counter C, searches the index table
I to find out the leaf k-node that Dt is mapped to, and then, for each k-node u on the path from
the root k-node to this leaf node, the following operations are performed:

– The encrypted index table (EI) in k-node u is retrieved and decrypted. Then, delayed evic-
tions are first executed, of which the details will be explained in Section 5.4 Phase II.

– According to the decrypted EI, the following operations are executed:

• If block Dt is found at a certain location m of the DA in u, process PIR-read(m) will be
launched by the client to retrieve E(E(Dt)), and then decrypt and access Dt. After the
access, Dt will be temporarily stored locally, and the entry for Dt in the downloaded EI
is updated to mark the block as a dummy.

• On the other hand, if Dt can not be found in u, the client will launch process PIR-
read(x), where x is an arbitrary location at the DA in u, to pretend retrieving a data
block, and the retrieved data block will be discarded without processing.

– Finally, if u is the root k-node, the downloaded EI is temporarily saved locally; else, the
downloaded EI is re-encrypted and uploaded back to u.



After all k-nodes on the path have been processed, the retrieved Dt is re-encrypted to E(E(Dt))
and then inserted to the root k-node u0,0, Note that this encrypted block appears differently from
the one downloaded earlier as the AH encryption E(∗) is probabilistic. Specifically, the insertion
is implemented in the following steps:

– From the downloaded EI of the root k-node u0,0, a location m′ that currently stores a dummy
block is identified. Note that, if such a location cannot be found, the root k-node is said to
overflow, which is a failure of the KT-ORAM system; but as we prove in the Section 6,
the probability for such failure to occur is negligibly small with proper setting of system
parameters.

– The client launches process PIR-read(m′) to obliviously retrieve and decrypt dummy block
D′ from location m′.

– The client launches process PIR-write(m′, E(Dt)−E(D′)) to obliviously replace the dummy
block at location m′ with E(E(Dt)).

– The EI of the root k-node is updated to reflect the change in position m′. In addition, the
lID field in the tuple corresponding to location m′ should be updated to store the ID of a
uniform randomly selected leaf k-node, which now becomes the current leaf k-node that Dt

is mapped to. Then, the EI is re-encrypted and uploaded back to the root k-node.

As shown in Figure 3(a), to query a data block Dt stored at k-node u3,21, the EIs at u0,0, u1,1,
u2,5, and u3,21 should be accessed, as these k-nodes are on the path from the root to the leaf node
that Dt is mapped to. A dummy data block should be retrieved obliviously from u0,0, u1,1, and
u2,5, respectively, while Dt is retrieved obliviously from u3,21 and inserted obliviously into u0,0.

5.4 Data Eviction

To prevent a k-node from overflowing its DA, real data blocks should be gradually evicted from
the root k-node towards leaf k-nodes. Similar to T-ORAM and P-PIR, a data eviction process
should be launched in KT-ORAM immediately after each query.

Overview Logically, data eviction in KT-ORAM is conducted in its logical view similarly as
binary tree ORAM eviction. In a nutshell, two nodes from each layer of the logical binary tree
are randomly selected. In each of the selected nodes, if there is a real data block, the block will
be evicted to one of its child b-node according to the block’s path (i.e., the path from the root
to the leaf k-node whose ID is stored at lID field of the EI entry corresponding to this block);
otherwise, the client performs a dummy eviction. Note that, immediate execution of all of these
binary-tree evictions would require the client to access O(logN) blocks, which incurs the same
eviction cost as P-PIR. To reduce the cost, we delay and aggregate certain evictions, and execute
them later in a more efficient manner. The idea is developed based on the observation that there
are two types of evictions between b-nodes: intra k-node evictions and inter k-node evictions.

Intra k-node Evictions vs. Inter k-node Evictions An eviction is called an intra k-node
eviction if the data block is evicted between b-nodes that belong to the same k-node; else it is
called an inter k-node eviction. For example in Figure 4, the eviction from v2,2 to its child nodes
is an intra k-node eviction, as v2,2 and its child nodes belong to the same k-node u1,2. On the
other hand, the eviction from v3,2 to its child nodes is an inter k-node eviction, as v3,2 and its
two child nodes belong to different k-nodes.

As b-nodes within the same k-node share the same DA space for storing data blocks, an intra
k-node eviction only requires an update of the EI to reflect the change of bnID field for the
evicted block. Therefore, such an eviction does not need PIR-read or PIR-write and could be
performed more efficiently than inter k-node evictions.
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Fig. 4. An example data eviction process in KT-ORAM with a quaternary-tree storage structure. The b-
nodes that are selected to evict data blocks are circled. The k-nodes scheduled with delayed evictions (i.e.,
u2,3 and u2,11) are highlighted with bold boundaries.

Opportunities to Delay Intra k-node Evictions During a data eviction process, a k-node
may not be involved in any inter k-node evictions, i.e., its root b-node is not a child of any evicting
b-node meanwhile its own leaf b-nodes do not evict any data blocks. In Figure 4, u2,3 and u2,11

are two examples of such a k-node. If intra k-node evictions should occur in such a k-node, they
can be delayed to perform (i.e., to update the EI) later when the k-node is next accessed during
a query process or an inter k-node eviction. This is possible because the EI of the k-node is not
accessed until the k-node is next accessed. Moreover, since the client has to download the EI
of the k-node anyway during a query process or an inter k-node eviction, updating of the EI to
complete delayed intra k-node evictions does not cause any additional communication overhead,
thus reducing the eviction cost. For example, as shown in Figure 4, evictions from b-nodes v4,3
and v4,11 can be delayed. Later on, when u2,3 and u2,11 are accessed, the delayed evictions shall
be executed before any other updates.

More specifically, the eviction process is composed of the following three phases.

Phase I: Selecting k-nodes for Eviction At the beginning of an eviction process, the client
uniform randomly picks up two b-nodes from each binary-tree layer l (l ∈ {log k − 1, 2 log k −
1, · · · , (⌈ logN+1

log k ⌉ − 1) · log k − 1}). These layers are the bottom binary subtree layers inside
non-bottom k-nodes, and so evicting data blocks from the b-nodes on these layers to their child b-
nodes are inter k-node evictions that should be executed immediately. The k-nodes that contain
these selected b-nodes or their child b-nodes shall be processed as specified in Phases II and
III. For example, in Figure 4, b-nodes v3,0 and v3,2, which are on the bottom-layer of k-nodes
u1,0 and u1,1 respectively, are selected for binary tree eviction; hence, k-nodes u1,0, u1,1, u2,0,
u2,1, u2,4 and u2,5, which contain either the selected b-nodes or their child b-nodes, should be
processed in the follow-up phases.

Note that, we delay the selection of evicting b-nodes on other layers, as their evictions are
intra k-node evictions that can be delayed.



Phase II: Execution of Delayed Intra k-node Evictions For each b-node selected in Phase I,
the three k-nodes that contain this selected b-node or its child b-nodes shall execute their delayed
intra k-node evictions in this phase. Also, each k-node downloaded during the query process, as
elaborated in Section 5.3, shall also execute its delayed intra k-node evictions as follows.

Specifically, for each of these k-nodes, say, ul,i, the following operations should be con-
ducted. First, the client retrieves and decrypts the EI of this k-node to obtain the ts stored there.
The difference between the client’s current counter C and the value of the ts, i.e., C − ts, is the
number of eviction rounds for which this k-node has delayed intra k-node evictions.

Then, for each of these delayed eviction round, two b-nodes are uniform randomly picked
from each layer l′ (l′ ∈ {l · log k, l · log k + 1, · · · , (l + 1) · log k − 2}) of the whole logical
binary tree that the k-ary tree is mapped to. For each selected b-node vl′,i′ belonging to the binary
subtree that k-node ul,i is mapped to, eviction from this b-node to its child nodes is executed.
Specifically, a real data block d is randomly selected from vl′,i′ if the b-node has a real data
block; then, according to the lID of block d, the block is logically evicted to one of its child
b-nodes, say, vl′+1,j′ , which is done by changing the bnID of block d to the ID of vi′+1,j′ .

After the delayed intra k-node evictions have all been executed, the ts of k-node ul,i is up-
dated to C.

Phase III: Execution of Inter k-node Evictions For each b-node selected in Phase I, after the
k-nodes that contain this b-node or its child b-nodes have executed their delayed intra k-node
evictions in Phase II, the inter k-node eviction from this b-node to its child b-nodes shall be
executed in this phase.

Let vl,x denote the selected evicting b-node inside k-node ul′,x′ , and vl+1,y and vl+1,z denote
the two child b-nodes of vl,x. Also, let ul′+1,y′ and ul′+1,z′ denote the two k-nodes where b-nodes
vl+1,y and vl+1,z reside.

Recall that, to perform intra k-node eviction, the EIs of ul′,x′ , ul′+1,y′ , and ul′+1,z′ have
been downloaded and updated. After the intra k-node evictions, if vl,x stores at least one real
data blocks, one of them is downloaded by using the PIR-read primitive. Let the downloaded
real block be d and without loss of generality, assume k-node ul′+1,y′ is on the path from the
root to the leaf k-node that d records in its lID. Then, one dummy block d′ will be downloaded
from k-node ul′+1,y′ and an arbitrary block will be downloaded from k-node ul′+1,z′ , both using
the PIR-read primitive.

After that, E(E(d)) will be written to k-node ul′+1,y′ to replace dummy block d′ by using the
PIR-write primitive, and block d becomes a data block stored in the root b-node within k-node
ul′+1,y′ . Simultaneously , a dummy PIR-write process is launched to update a block in k-node
ul′+1,z′ as well to hide the fact that this k-node is not actually involved in eviction. Finally, the
EIs of the three k-nodes are updated to reflect the movement of block d from k-node ul′,x′ to
ul′+1,y′ , and then re-encrypted and uploaded back to the server.

If vl,x does not have any real data block, three arbitrary blocks will be retrieved from the
above three k-nodes, respectively, with the PIR-read primitive. Then, two dummy PIR-write
processes will be launched to update two blocks in k-nodes ul′+1,y′ and ul′+1,z′ , respectively.
Finally, the EIs of the three k-nodes will be re-encrypted and uploaded back to the server.

6 Security Analysis

In this section, we first show that KT-ORAM construction fails with a probability of O(2−k)
through proving the DA of each k-node overflows with a probability of O(2−k). When k is
larger enough, for example, k = (logN)c

′
for c′ ≥ 1, the probability is O( 1

Nc′ ) which is



negligible with large N . Then, we show that both the query and eviction processes access k-
nodes independently of the client’s private data request. Based on the above steps, we finally
present the main theorem.

Lemma 1. When 5 ≤ c ≤ k − 2, the probability for the DA of any k-node in the k-ary tree to
overflow is O(2−k).

Lemma 2. Any query process in KT-ORAM accesses k-nodes from each layer of the k-ary tree,
uniformly at random.

Lemma 3. An eviction process in KT-ORAM accesses a sequence of k-nodes independently of
the client’s private data request.

Please refer to Appendices for proofs of the lemmas.

Theorem 1. Assuming PIR-read and PIR-write are both oblivious operations, KT-ORAM is se-
cure under Definition 1.

Proof. Given any two equal-length sequence x⃗ and y⃗ of the client’s private data requests, their
corresponding observable access sequences A(x⃗) and A(y⃗) are computationally indistinguish-
able, because both of the observable sequences are independent of the client’s private data request
sequences. This is due to the following reasons:

– According to the query and eviction algorithms, sequences A(x⃗) and A(y⃗) should have the
same format; that is, they contain the same number of observable accesses, and each pair of
corresponding accesses have the same access type.

– According to Lemma 2, the sequence of locations (i.e., k-nodes) accessed by each query
process are uniformly random and thus independent of the client’s private data request.

– According to Lemma 3, the sequence of locations (i.e., k-nodes) accessed by each eviction
process after a query process is also independent of the client’s private data request.

– Finally, both PIR-read and PIR-write operations are oblivious. Hence, each PIR-read or PIR-
write operation does not expose which data block within a k-node is actually read or written,
or what has been written in the case of write operation.

Also, according to Lemma 1, the KT-ORAM construction fails with a probability of O(2−k),
which is considered negligible when k is large enough. For example, when k = (logN)c

′
for

c′ ≥ 1, the probability is O( 1
Nc′ ) which is negligible with large N .

7 Cost Analysis

We analyze the costs of KT-ORAM, and compares KT-ORAM with state-of-the-art ORAMs. To
simplify the analysis and comparison, we set system parameters k = logN and c = 5. Also,
we assume block size B = Ω(N ϵ) bits for constant 0 < ϵ < 1. Not that, this assumption
ensures that, if the client exports the index structure (metadata) to the server, the recursion level
is O(1) [6]; the assumption is also consistent with practical scenarios [23,29], for example, when
N ≤ 240 and B ≥ 64 K bytes, B ≥ N1/2 bits.

7.1 Costs of KT-ORAM

We analyze the performance of KT-ORAM in terms of communication, storage and computa-
tional costs. The following notations and assumptions are used in the analysis:

– b: size of an additively homomorphic encryption cipher-text, in the unit of bits.



– Hk and Hb: heights of the k-ary and binary trees, respectively. According to the scheme,
Hb = ⌈logN⌉ and Hk = ⌈ Hb

log logN ⌉ = ⌈ logN
log logN ⌉.

– SEI : size of the EI at a node. According to the scheme, SEI = c · (k − 1) · {logN +
log(N/k) + log[c · (k− 1)]}, which is less than 10 log2 N bits due to c = 5 and k = logN .

– We assume the client stores the index table I locally and thus there is no recursion. Note
that, when recursion is considered, the overall communication and computational costs can
be obtained by simply multiplying the costs computed in this subsection with the depth of
recursion.

Communication Cost Per Query During a query process, one k-node is accessed from each
layer of the k-ary tree. The client needs to (i) download the EI of the k-node (which is SEI

bits); (ii) send one PIR-read vector (i.e., 5b · (logN − 1) bits); (iii) upload the EI (i.e., SEI bits).
After all PIR-reads have been executed by the server, the server gets Hk data blocks. The client
does not retrieve these Hk blocks immediately. Instead, another PIR-read is launched on these
blocks to fetch only one of them. This PIR-read requires the client to send one PIR-read vector
(i.e., Hk · b bits) and download the target data block (i.e., B bits). To wrap up a query process,
the target data block is obliviously written back to the root k-node using one PIR read and one
PIR-write Note that, as EI has been retrieved before, these PIR-read and PIR-write only need to
transfer the read and write vectors and two data blocks; hence, the cost is 10b · (logN − 1)+2B
bits. Therefore, the communication cost per query is:

Qu(N) ≤ 3B+Hk · (2SEI +5b · logN − 4b)+ 10b · (logN − 1) = O(B+ log3 N) bits. (6)

According to the assumption of B = Ω(N ϵ) for constant 0 < ϵ < 1,

Qu(N) = O(B). (7)

During an eviction process, up to two k-nodes for each non-bottom layer in the k-ary tree are se-
lected for eviction, each of which requires one PIR-read. The four child k-nodes of these selected
evicting k-nodes are also accessed, each requiring one PIR-read and one PIR-write. The EIs of
these six k-nodes are retrieved and uploaded back after the eviction operations. All these need
transferring 12SEI bits. Optimization techniques can be applied here. Though two child k-nodes
of each selected evicting k-node are accessed, only one of them has a block updated; hence, only
one block needs to be downloaded from each pair of child k-nodes. Therefore, the client uses
PIR-read to retrieve up to four data blocks (two evicting blocks from the two evicting k-nodes
plus two blocks from the four child k-nodes of the evicting k-nodes), which need transferring up
to 4B + 30b · (logN − 1) bits. Similarly, when PIR-write is used to update child k-nodes, only
one data block is written to each pair of child k-nodes; hence, only two data blocks need to be
uploaded. Therefore, the communication cost for each eviction process is

Ev(N) ≤ (Hk − 1) · (12SEI + 30b · logN + 6B) = O(
logN

log logN
· (log2 N +B)) bits. (8)

Due to the assumption of B = Ω(N ϵ) for 0 < ϵ < 1,

Ev(N) = O(B · logN

log logN
). (9)

Therefore, the overall communication cost per query is

Qu(N) + Ev(N) = O(B · logN

log logN
). (10)



Storage Costs According to the design, the client-side storage cost is dominated by the size of
a constant number of data blocks, i.e., O(B). The storage at the server side needs to store 2c ·N
data blocks, hence its size is O(N ·B).

Computational Costs per Query The computational costs at the server and clients are analyzed
in the following.

Server-side Computational Cost. During a query process, a PIR-read operation is conducted
on each accessed k-node. As we analyze previously, the total number of accessed k-node is
Hk. Each k-node has c · (k − 1) = 5(logN − 1) blocks and each block has B bits. Each
block is processed by AH operations in the unit of piece (i.e., b bits). Hence, the server conducts
CompMul = 5(logN − 1) · B/b AH multiplications and CompAdd = [5(logN − 1) − 1] ·
B/b AH additions. Therefore, the computational cost for a query process is Hk · (CompMul +

CompAdd) = O( log2 N
log logN · B

b ) AH operations. During an eviction process, at most one PIR-read
and one PIR-write operations are conducted on each accessed k-node. The number of accessed
k-nodes is bounded by 6Hk and the cost of PIR-write is similar to that of PIR-read except that the
number of AH additions is 2(logN − 1) ·B/b. Therefore, the computational cost for an eviction
process is also O( log2 N

log logN · B
b ) AH operations. In total, the server-side computational cost is

O(
log2 N

log logN
· B
b
) (11)

AH operations per query.

Client-side Computational Cost. During a query process, the client needs to generate one PIR-
vector for each layer on the k-ary tree, where each vector contains c(k−1) = O(logN) elements.
Then, for the retrieved target data block, it needs to decrypt and re-encrypt it with both homo-
morphic and regular encryption and decryption algorithms. Hence, the cost for the query process
is

O([
log2 N

log logN
+

B

b
] · CAH +B · Creg), (12)

which is O(Bb ·CAH) because (i) homomorphic encryption/decryption of a block is more costly
than regular encryption/decyption of it, and (ii) B = Ω(N ϵ) (0 < ϵ < 1) is assumed. During
an eviction process, the client needs to generate one PIR-vector for each accessed k-nodes, and
there are up to six such blocks for each layer. Also, up to two data blocks from each non-bottom
layer are downloaded, decrypted, re-encrypted and uploaded. Hence, the cost for the eviction
process is

O(
logN

log logN
· [logN +

B

b
] · CAH +

logN

log logN
·B · Creg), (13)

which is
O(

logN

log logN
· B
b
· CAH). (14)

This is also the total per-query computational cost at client-side.

7.2 Comparisons with Existing ORAMs

Detailed comparisons between KT-ORAM and several state-of-the-art ORAMs including B-
ORAM [20], T-ORAM [25], G-ORAM [8], Path ORAM [6], SCORAM [30], and P-PIR [23]
are reported in this section.



Communication Costs We compare the communication costs of different ORAM constructions
asymptotically and through numeric simulations.

Table 1. Asymptotical Communication Costs per Query. N is the total number of data blocks and B is the
size of each block in the unit of bit. k = logN and c = 5 for KT-ORAM, and k = logN for G-ORAM.
The column of “Communication Cost∗” assumes the constructions (except for B-ORAM) export recursively
index structures and the recursion depth is O(logN). The column of “Communication Cost∗∗” assumes
the constructions (except for B-ORAM) either not export index structures or export them recursively and
the recursion depth is O(1) due to the assumption of B = Ω(N ϵ) bits for 0 < ϵ < 1.

ORAM Communication Cost∗ Communication Cost∗∗

B-ORAM [20] Ω(log3 N · B) for N ≤ 237;
O( log2 N

log logN
·B) for N > 237

Same as the left column

T-ORAM [25] O(log3 N ·B) O(log2 N ·B)

G-ORAM [8] O( log3 N
log logN

·B) O( log2 N
log logN

·B)

Path ORAM [6], SCORAM [30] O(log2 N ·B) O(logN ·B)

P-PIR O(log2 N ·B) O(logN ·B)

KT-ORAM O( log2 N
log logN

·B) O( logN
log logN

·B)

Asymptotical Comparisons. Table 1 shows that KT-ORAM is the most communication efficient
among the ORAM constructions. Particularly, compared to P-PIR, Path-ORAM and SCORAM,
which are the most communication-efficient state-of-the-art constructions, a factor of log logN
improvement in the efficiency is accomplished by KT-ORAM.
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Fig. 5. Numerical comparison of communication cost in practical scenarios. k = logN and c = 5 for
KT-ORAM. The number of blocks N ranges from 216 to 240 and the block size B ranges from 64 K bytes
to 1 M bytes.

Numeric Comparisons. Figure 5 shows the results of numeric comparisons between KT-ORAM
and P-PIR in practical scenarios [23,29]. As we can see, the cost of KT-ORAM is only 1/3 to
1/5 of that of P-PIR. Note that, we do not numerically compare KT-ORAM with other state-
of-the-art ORAM constructions, as [23] has conducted the comparison and showed P-PIR to be
more efficient than the others.



Table 2. Storage Costs. N is the total number of data blocks and B is the size of each block in the unit of
bit. k = logN and c = 5 for KT-ORAM, and k = logN for G-ORAM.

ORAM Client-side Storage Cost Server-side Storage Cost
B-ORAM [20] O(B) O(N ·B)

T-ORAM [25] O(B) O(N logN ·B)

G-ORAM [8] O(log2 N ·B) O(N ·B)

Path ORAM [6], SCORAM [30] O(logN ·B) O(N ·B)

P-PIR O(B) O(N logN ·B)

KT-ORAM O(B) O(N ·B)

Storage Costs Table 2 compares KT-ORAM with state-of-the-art ORAM constructions in terms
of the client-side and server-side storage costs. As we can see, KT-ORAM does not require more
client-side or storage-side space than any state-of-the-art ORAM construction. Particularly, it
requires only O(B) bits at the client side and O(N ·B) bits at the server side.

Table 3. Computational Costs per Query. N is the total number of data blocks and B is the size of each
block in the unit of bit. k = logN and c = 5 for KT-ORAM. B = Ω(N ϵ) bits for 0 < ϵ < 1. CReg

denotes the cost for a regular (e.g., AES) encryption or decryption. CAH denotes the cost for an additive
homomorphic operation.

ORAM Client-side Computational Cost Server-side Computational Cost
Path ORAM [6] O(logN ·B · CReg) N/A
P-PIR O(logN · B

b
· CAH) O(log2 N · B

b
· CAH)

KT-ORAM O( logN
log logN

· B
b
· CAH) O( log2 N

log logN
· B

b
· CAH)

Computational Costs Table 3 shows that KT-ORAM reduces the computational costs of P-
PIR by a factor of O(log logN). Though KT-ORAM requires higher server-side computational
computational costs than other state-of-the-art ORAM constructions, it achieves higher commu-
nication efficiency. As argued in Section 1 and in [23], the tradeoff is favorable to both client and
user in practice.

8 Conclusion

This paper proposes a new, security-provable hybrid ORAM-PIR construction called KT-ORAM,
which organizes the server storage as a k-ary tree with each node acting as a fully-functional PIR
storage. It also adopts a novel delayed eviction technique to optimize the eviction process. KT-
ORAM is proved to protect the data access pattern privacy at a failure probability negligible in
N (N is the number of exported data blocks), when k = logN . KT-ORAM has an asymptotical
communication cost of O( logN

log logN · B) when the recursion level on meta data is of O(1) depth

with uniform block size B = N ϵ (0 < ϵ < 1), or O( log2 N
log logN ·B) when the number of recursion

levels is O(logN). Compared to state-of-the-art ORAM constructions, KT-ORAM achieves the
best communication, storage and client-side computational efficiency simultaneously, at the price
of requiring O( log2 N

log logN ·B) computational cost at the storage server per data query.
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Appendix I: Proof of Lemma 1.

The proof considers non-leaf and leaf k-nodes separately.

Non-leaf k-nodes. The proof for non-leaf k-node proceeds in the following two steps.
In the first step, we consider the binary tree that a k-ary tree in KT-ORAM is logically mapped

to, and study the number of real data blocks (denoted as a random variable Xv) logically belong-
ing to an arbitrary b-node v on an arbitrary level l of the binary tree.

As the eviction process of KT-ORAM completely simulates the eviction process of T-ORAM
and P-PIR over the logical binary tree, their results [25] of theoretical study on the number of real
data blocks in a binary tree node can still apply. Specifically, Xv can be modeled as a Markov
Chain denoted as Q(αl, βl). In the Chain, the initial one is Xv = 0, The transition from Xv = i
to Xv = i+ 1 occurs with probability αl, and the transition from Xv = i+ 1 to Xv = i occurs
with probability βl, for every non-negative integer i. Here, αl = 1/2l and βl = 2/2l for any
level l. Also, for any l ≥ 2, an unique stationary distribution exists for the Chain; that is,

πl(i) = ρil(1− ρl), (15)

where

ρl =
αl(1− βl)

βl(1− αl)
=

2l − 2

2(2l − 1)
∈
[
1

3
,
1

2

)
. (16)

In the second step, we consider an arbitrary k-node u on the k-ary tree and study the number
of real data blocks stored at the DA of u, which is denoted as a random variable Yu.

The binary subtree that u is logically mapped to contains k − 1 b-nodes, which are denoted
as v1, · · · , vk−1 for simplicity. Then Yu =

∑k−1
i=1 Xvi . Also, as k should be greater than 2 to

make KT-ORAM nontrivial, any of the b-nodes v1, · · · , vk−1 should be on a level greater than
or equal to 2 on the logical binary tree (Those b-nodes on level 0 and 1 never overflow).

Now, we compute the probability

Pr [Yu = t] = Pr [Xv1 + · · ·+Xvk−1
= t]. (17)

Note that, there are
(
t+ k − 2

k − 2

)
different combinations of Xi = ti (i = 1, · · · , k− 1) such that

t1 + · · ·+ tk−1 = t. Hence, we have:

Pr [Yu = t] ≤
(
t+ k − 2

k − 2

) k−1∏
i=1

[(
1

2

)ti (2

3

)]
(18)

≤
(
(t+ k − 2) · e

k − 2

)k−2 (
1

2

)t (
2

3

)k−1

(19)

<

(
(t+ k − 2) · e

k − 2

)k−1 (
1

2

)t (
2

3

)k−1

≤
(
2(t+ k − 2) · e

3(k − 2)

)k−1 (
1

2

)t

.



Here, Equation (18) is due to πl(i) = ρil(1−ρl) ≤ ρil · 23 <
(
1
2

)i · 23 , which is due to Equation (15).

Inequality (19) is due to
(
n
k

)
≤

(
n·e
k

)k
for all 1 ≤ k ≤ n. Hence, we have:

Pr[Yu = t] ≤ [
2

3
· e · (c+ 1 +

c

k − 2
) · (1

2
)c]k−1 (20)

< [2 · (c+ 2) · (1
2
)c]k−1 (21)

< (
1

2
)k−1 = (

1

2
)t/c. (22)

Here, Inequality (20) is due to t = c(k − 1) in the scheme, Inequality (21) is due to c ≤ k − 2,
and Inequality (22) is because c ≥ 5 and therefore 2(c+ 2) < 2c−1.

Then, the following inequalities follows:

Pr [Yu ≥ t] =

∞∑
i=0

Pr [Yu = t+ i]

<
∞∑
i=0

[(
1

2
)1/c]t+i

=
4

1− 2−1/c
· 2−k = O(2−k). (23)

Leaf k-nodes. At any time, all the leaf k-nodes contain at most N real blocks and each of the
blocks is randomly placed into one of the leaf k-nodes. Thus, we can apply standard balls and
bins model to analyze the overflow probability. In this model, N balls (real blocks) are thrown
into N/k bins (i.e., leaf k-nodes) in a uniformly random manner.

We study one arbitrary bin and let X1, · · · , XN be N random variables such that

Xi =

{
1 the ith ball is thrown into this bin,
0 otherwise. (24)

Note that, X1, · · · , XN are independent of each other, and hence for each Xi, Pr [Xi = 1] =
1

N/k = k
N . Let X =

∑N
i=1 Xi. The expectation of X is

E[X] = E

[
N∑
i=1

Xi

]
=

N∑
i=1

E[Xi] = N · k

N
= k. (25)

According to the Chernoff bound, when δ = j/k − 1 ≥ 2e− 1, it holds that

Pr [at least j balls in this bin]

= Pr [X ≥ j] <
(

eδ

(1+δ)(1+δ)

)k

<
(

eδ

(2e)δ

)k

= 2−kδ. (26)

Hence, letting j = c(k − 1), we have

Pr [at least c(k − 1) balls in this bin] < 2−ck+c+k = 2c · 2(c−1)k = O(2−k), (27)

due to c ≥ 5.



Appendix II: Proof of Lemma 2.

(sketch) In KT-ORAM, each real data block is initially mapped to a leaf k-node uniformly at
random; and after a real data block is queried, it is re-mapped to a leaf k-node also uniformly
at random. When a real data block is queried, all k-nodes on the path from the root to the leaf
k-node the real data block currently mapped to are accessed. Due to the uniform randomness of
the mapping from real data blocks to leaf k-nodes, the set of k-nodes accessed during a query
process is also uniformly at random.

Appendix III: Proof of Lemma 3.

(sketch) During an eviction process, the accessed sequence of k-nodes is independent to the
client’s private data request due to: (i) the selection of b-nodes for eviction (i.e. Phase I of the
eviction process) is uniformly random on the fixed set of layers of the logical binary tree and thus
is independent of the client’s private data request; and (ii) the rules determining which evictions
should be executed immediately (and hence the involved k-nodes should be accessed) and which
can be delayed are also independent of the client’s private data requests.


