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Abstract

The traditional setting for concurrent zero knowledge considers a server that proves a statement in
zero-knowledge to multiple clients in multiple concurrent sessions, where the server’s actions in a session
are independent of all other sessions. Persiano and Visconti [ICALP 05] show how keeping a limited
amount of global state across sessions allows the server to significantly reduce the overall complexity
while retaining the ability to interact concurrently with an unbounded number of clients. Specifically,
they show a protocol that has only slightly super-constant number of rounds; however the communication
complexity in each session of their protocol depends on the number of other sessions and has no a-priori
bound. This has the drawback that the client has no way to know in advance the amount of resources
required for completing a session of the protocol up to the moment where the session is completed.

We show a protocol that does not have this drawback. Specifically, in our protocol the client obtains
a bound on the communication complexity of each session at the start of the session. Additionally the
protocol is constant-rounds. Our protocol is fully concurrent, and assumes only collision-resistant hash
functions. The proof requires considerably different techniques than those of Persiano and Visconti. Our
main technical tool is an adaptation of the “committed-simulator” technique of Deng et. al [FOCS 09].

1 Introduction

Concurrent security of a protocol means that security is preserved even when many copies of the protocol
may be executed concurrently with each other and with other, potentially unknown protocols. Concurrent
security is essential for protocols designed for modern networks, such as the Internet. However, it often
imposes a cost on the complexity of the protocol. For example, stand-alone zero-knowledge protocols
can be implemented in a constant number of rounds based on any one way function, while constant-round
concurrent zero-knowledge protocols are not known without relying on non-standard assumptions or trusted
setup.

Concurrent Zero Knowledge. The concurrent zero knowledge task [DNS98] considers a natural and spe-
cial case of concurrent security. Here there is a server that wants to prove theorems in zero-knowledge
[GMR89] to multiple clients (verifiers). For that purpose, the server runs an instance (i.e., a session) of a
protocol with each client. There may be an unbounded (albeit polynomial) number of sessions, and sessions
may execute concurrently with adversarially controlled delay and ordering of messages. Furthermore, the
prover side of each session should execute without knowledge of any other session. This simplifies the
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design for the server and allows the prover side to be executed on separate machines without coordina-
tion. Still, for security we only consider two cases: one where all or some provers are corrupted, and one
where all or some of the verifiers are corrupted. While the concurrent zero-knowledge setting is a substan-
tial restriction of general composition it distills an important aspect of the general challenge of concurrent
security. Indeed, this setting was extensively studied, with special attention to minimizing the number of
rounds [RK99, KP01, PRS02, CKPR02, GS12, CLP13b, PPS13]. Furthermore, techniques developed for
concurrent zero knowledge have been found useful in the study of more general concurrent systems (see
e.g., [CLOS02]).

The state of the art for protocols based on standard assumptions is Ω(log n) rounds, where n is the
security parameter. Furthermore, for protocols with black-box simulation we know that Ω̃(log n) is the best
possible.

Correlated Provers. Persiano and Visconti [PV05] consider a relaxed variant of the classic concurrent zero
knowledge model, where the server is allowed to somewhat correlate its strategies in the different sessions.
Here one has to make sure that the correlation is on the one hand effectively implementable by the server,
and on the other hand preserves the overall efficiency and performance from the point of view of the client.
Specifically, they present a zero-knowledge protocol where the server keeps track of the number of currently
open sessions at any time. It then starts off each session to have a constant number of messages whose length
depends polynomially on the number of currently open sessions. If the number of sessions increases beyond
some threshold before the session is over, the session has to be “re-done” with longer messages. Overall, it
is guaranteed that if nc sessions are executed concurrently to a session, then the protocols of [PV05] requires
O(c) rounds and nO(c) communication for that session.

The global state to be kept by the server in this protocol is indeed minimal and reasonable. Additionally,
the number of rounds in every session grows very slowly with the number of sessions, significantly improv-
ing the best known “pure” concurrent zero-knowledge protocols (as long as the total number of sessions is
polynomial). However, this protocol has the strong disadvantage that a client has no way of knowing, at any
point during the protocol execution, how much communication it will need in order to complete the session.

This work. We present a new concurrent zero-knowledge protocol where, like the [PV05] protocol, the
server keeps track of the number of sessions currently open. Our protocol improves upon the protocol of
[PV05] in two ways:

• Constant rounds. Our protocol takes six messages, regardless of the number of concurrent sessions.

• Guaranteed complexity. In our protocol, the server announces in the beginning of every session the
communication complexity of the session. The server cannot dynamically increase the communica-
tion complexity of a session to accommodate new clients that arrive during the session’s execution.

The importance of guaranteed complexity. The advantage of having guaranteed complexity is best ex-
plained by an analogy: Consider a customer that is placing a call to a call center and is being put on hold.
The customer’s waiting is likely to become more endurable and efficient if the call center commits to (or
estimates) the required waiting time at the beginning of the call. In our setting, the client’s resource is
communication rather than waiting time. Clearly, clients benefit from knowing ahead of time how much
communication is required from them to participate in the protocol. For example, a client with limited com-
munication resources would prefer to learn ahead of time that its resources are insufficient to complete the
protocol, rather than during the session after all its resources have already been spent.

The protocol of [PV05]. The protocol of [PV05] is based on the bounded concurrent protocol of Barak
[Bar01]. Barak’s protocol is secure as long the number of concurrent sessions does not exceed some bound

2



that depends on the communication complexity of the protocol. Very roughly, Persiano and Visconti show
that it is possible to add rounds to the protocol and increase its communication “on-the-fly” as new occurrent
sessions start. However, as a result, the round complexity of their protocol must depend on the number of
sessions, and the server cannot guarantee the complexity of any session ahead of time.

It may seem that bounded concurrency is of no use for designing protocols with guaranteed complexity.
Indeed, when the server commits the communication complexity of, say, the first session, it has no bound
on the number of sessions that will be started concurrently to the first session.

Our protocol. Counter to the above intuition, our protocol does leverage bounded concurrency techniques
of Barak. However, our approach departs from [PV05] in the following manner: we set the communication
complexity of every session only based on the order in which the sessions start. The first n sessions to
start execute a bounded concurrent protocol that is secure for n concurrent session. The following n2 − n
sessions execute a bounded concurrent protocol that is secure for n2 session, and so on. Importantly, the
communication complexity of a session is not affected by sessions that start after it. This in particular means
that the [Bar01, PV05] simulation technique is inadequate in our setting. Indeed, our security proof differs
significantly from that in [Bar01, PV05].

1.1 Our Techniques

We start by recalling Barak’s zero-knowledge protocol and its simulation. Barak’s protocol starts with a
preamble phase where the prover sends a commitment c and the verifier responds with a random challenge
r. Any prover that can commit to a program that predicts r can obtain a “trapdoor” and cheat in the proof
phase. The zero-knowledge simulator will be able to obtain a trapdoor by committing to the code of the
verifier itself. Next we discuss two approaches for extending Barak’s protocol to the concurrent setting.

Bounded concurrency. In the concurrent setting, the simulator cannot simply commit to the code of the
verifier. Indeed, the verifier’s code eventually predicts r, but might only do so after receiving convincing
proofs in other sessions. Furthermore, when the simulator sends the commitment c in some session, it did
not yet compute the proofs in upcoming sessions (in fact, these proofs might depend on c); therefore it
cannot commit to such proof together with the verifier’s code.

The approach in [Bar01] is to change the protocol as follows: to obtain a trapdoor, the simulator must
commit to a program that predicts r given some auxiliary information z (that may be chosen after r is sent).
To maintain soundness, z must be much shorter then r. The simulator can now encode the simulated proofs
in a bounded number of other sessions into z. This results in a bounded concurrent protocol. As argued
above, this technique, on its own, is inadequate for our setting.

Committed simulator. A different approach, that we will refer to as the “committed simulator” approach,
is as follows: even if the number of concurrent sessions is unbounded, the simulated proofs in all these
sessions still have a short description, which is the code of the simulator itself. Concretely, in every session,
the simulator will commit to a version of itself that simulates the interaction with the verifier in all other
sessions until the verifier sends the challenge r in that session.

The problem with this approach is bounding the running time of the simulator. If the simulator commits
to itself in the preamble phase, then in the proof phase the simulator will prove a statement on its own
execution. This execution might contain the proof phase of in some other sessions where the simulator also
proved a statement on its own execution. For some adversarial schedules, such recursive construction of
proof becomes too expensive. Nonetheless, variants of the committed simulator approach were successfully
applied in many different settings [DGS09, CLP13a, GJO+13, PRT13, Goy13, CLP13b].
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Our approach. Our simulation combines these two approaches to obtain a protocol with constant rounds
and guaranteed complexity, assuming only collision resistant hashing. In a nutshell, we leverage the bounded
concurrent simulation technique to “flatten” the recursion tree, avoiding the blowup in the simulator’s run-
ning time. A more detailed description follows.

We start by assigning a level to each session. All sessions that execute a bounded concurrent protocol for
ni sessions, are assigned level i. Our protocol is defined such that for every i, the total number of sessions at
all levels ≤ i is at most ni. It follows that in every session at level i, the verifier’s challenge is long enough
to account for all the messages received by the verifier in sessions at levels at most i.

To deal with the messages sent in sessions at levels larger than i, we turn to the committed simulator
approach. The main idea is that we can avoid the exponential blowup in the running time of the simulator
by committing only to specific parts of the simulator that are in charge of simulating the sessions at levels
larger than i rather than the entire code of the simulator.

The simulator. The simulator Sim is divided into multiple components {Simi} where the i’th component
Simi is in charge of simulating sessions at level i. To simulate a session at level i, Simi will commit to a
program Πi that contains the verifier’s code together with the code of all the simulator’s components Simj

for j > i. We can think of the program Πi as a new verifier that simulates all sessions at levels > i internally
and forwards externally the messages in sessions at level ≤ i. Since sessions at level i execute a bounded
concurrent protocol for ni sessions, and the total number of sessions at levels < i is at most ni, we have that
Simi can encode all the messages sent to Πi as auxiliary input.

Finally, we argue that the running time of the simulator is polynomial. Using the analysis of the bounded
concurrent protocol, we have that the running time of the component Simi is polynomial in the running time
of the program Πi. Since Πi simply emulates all the simulator components Simj for j > i, we have that the
running time of Simi is only polynomially larger than the total running time of all the components Simj for
j > i. Since the total number of concurrent sessions started by an efficient adversary is bounded by some
polynomial nc, we get that the total number of levels is constant and therefore the running time of all the
simulator’s components is bounded by a polynomial.

Avoiding circular use of randomness. We note that by using the above leveled simulation strategy we do
not only avoid the blowup in the simulator’s running time, but also avoid some of the technical complications
that arise when the simulator commits to its own code. For example, in [CLP13a, Goy13, CLP13b], the
simulator needs to commit to its own code together with the randomness that it will use to simulate the rest
of the protocol. The aforementioned works develop additional techniques to deal with this problem. In our
setting, since every component only commits to the randomness used by the higher level component, such
circular use of randomness is avoided, resulting in simpler protocol and analysis.

Taking advantage of terminating sessions. It is natural to require that, as existing sessions terminate and
the load on the server decreases, the complexity of the protocol in new sessions decreases as well. We note
that extending our simulation strategy to satisfy this requirement is not straight-forward. The problem is
that our simulation strategy assumes that for every session at level i, the total number of concurrent sessions
at levels ≤ i is bounded by ni. However, consider the scheduling where all sessions at levels ≤ i terminate
and a new session starts. If we choose to decrease the protocol complexity in the new session, then the
total number of sessions at levels ≤ i may exceed ni. We demonstrate a slightly more complicated server
strategy where the complexity of new sessions does decrease as old sessions terminate (while preserving
overall simulatability).
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1.2 Related Work

Concurrent zero-knowledge in the Plain Model. Improving the round-complexity of concurrent zero-
knowledge proofs in the plain model has been an active area of research. The round complexity of concur-
rent zero-knowledge with black-box simulation was studied in [RK99, KP01, PRS02], resulting in proto-
cols with logarithmic round-complexity (which is essentially optimal [CKPR02]). Constant-round protocols
with non-black-box simulation where constructed based on different non-standard assumption such as in-
teractive knowledge assumptions [GS12], statistically sound P-certificates [CLP13b] and differing input (or
extractable) obfuscation [PPS13].

Optimistic concurrent zero-knowledge. The work of Rosen and Shelat [RS10] also studies the round
complexity of concurrent zero-knowledge proofs with a correlated prover in the client-server setting. Their
focus is on improving the round complexity of concurrent zero-knowledge with respect to “optimistic”
adversarial schedules. That is, the round complexity of their protocol significantly decreases when the
scheduling of messages does not include too many nested sessions. However, for a worst-case adversarial
schedules, [RS10] give no improvement over logarithmic round-complexity of [PRS02] while our protocol
has constant rounds in the worst cast. However, unlike in our protocol, the communication complexity in
[RS10] has a fixed upper bound that is independent of the adversary.

2 The Guaranteed Complexity Model

In this section we formally define a protocol in the guaranteed complexity model. We start by describing
the general syntax and the model of communication. We then consider the specific case of zero-knowledge
proof systems in the guaranteed complexity model and present a security definition for the same.

Let Server be interactive PPT machine that interacts with multiple clients in concurrent sessions and
let {〈S`, C`〉}`∈N be a family of protocols parameterized by a load parameter ` where for every ` ∈ N,
S` and C` are PPT machines. A protocol in the guaranteed complexity model is defined by the tuple Π =
(Server, {〈S`, C`〉}).

(Honest) Protocol Execution. The execution of a protocol Π = (Server, {〈S`, C`〉}) consists of a single
server executing the algorithm Server while interacting with multiple clients concurrently. To initiate a new
session a client sends a special session initiation message to the server. In response to the session initiation
message, the server chooses a load parameter ` for the session and sends it to the client. In the rest of the
session we require that the algorithm Server follows the strategy S` while the client follows the strategy C`.

An execution of the protocol Π with p(n) sessions is defined by the randomness of all the clients and the
schedule of messages across all the sessions. Even though for every fixed load parameter `, the strategies
S`, C` are efficient, the server algorithm may choose ` to be very large, increasing the running time of the
concurrent execution. Therefore we explicitly require the efficiency of a concurrent execution.

Definition 2.1. A protocol (Server, {〈S`, C`〉}) in the guaranteed complexity model is efficient if for every
polynomial p there exists another polynomial q such that the running time of Server in every execution with
p(n) sessions is bounded by q(n).

Zero Knowledge in the Guaranteed Complexity Model. Let Π = (Server, {〈S`, C`〉}) be a protocol in
the guaranteed complexity model and let L be an NP language with witness relation RL. We say that Π is
an interactive proof system for L if for every ` ∈ N, the protocol 〈S`, C`〉 is an interactive proof for L. Next
we define the zero-knowledge property.
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Let Π be an interactive proof for language L in the guaranteed complexity model. Let n be the security
parameter. Consider a concurrent adversary V ∗ that start m(n) concurrent session with the server for some
polynomial m. Let ~x ∈ Lm be the vector of instances used in the different session and let ~w be a vector
of the corresponding witnesses used by the server. We allow V ∗ to control the scheduling of the messages
across all the sessions. Let ViewV ∗(~x, ~w, ~z) be the random variable describing the output of V ∗ in the above
experiment when executed with auxiliary input z.

Definition 2.2 (Concurrent Zero-Knowledge in the Guaranteed Complexity Model). Let Π = (Server, {〈S`, C`〉})
be an interactive proof system for language L in the guaranteed complexity model. We say that Π is zero
knowledge if for every polynomial m, and for every PPT concurrent adversary V ∗ starting m(n) sessions
there exists a PPT algorithm S, such that for every instances vector ~x ∈ Lm(n), every witnesses vector ~w
such that (xi, wi) ∈ RL for all i ∈ [m(n)], and for every auxiliary input z ∈ {0, 1}poly(n) the following
ensembles are computationally indistinguishable,

{ViewV ∗(~x, ~w, z)}n∈N ≈c {S(x, z)}n∈N .

3 Constant-Round Zero-Knowledge in the Guaranteed Complexity Model

In this section we describe a constant-round ZK protocol Πzk = (Server, {〈P`, V`〉}) in the guaranteed
complexity model. We start by defining a family of protocols {〈P`, V`〉}`∈N where, roughly speaking, the
protocol 〈P`, V`〉 is simply Barak’s bounded-concurrent ZK protocol [Bar01] with n` as the a priori bound
on the number of sessions. We then define the server algorithm Server to complete the description of Πzk.

The protocol 〈P`, V`〉. The protocol will make use of the following primitives: a statistically binding
commitment Com, a family H = {Hn}n∈N of collision-resistant hash functions such that h ∈ Hn maps
strings in {0, 1}∗ to strings in {0, 1}n, and a witness-indistinguishable universal argument UA for an
NTIME(T (n))-complete language where T : N → N is a “slightly” super-polynomial function, for ex-
ample T (n) = nlog logn [BG08]. In the description of the protocol, the length of the verifier’s messages will
depend on a parameter m that denotes the total length of the prover’s messages in the protocol.
Remark 3.1. The relation LU presented in Protocol 1 is slightly oversimplified. For this relation, we can
prove the security of Protocol 1 when H is collision-resistant against “slightly” super-polynomial sized
circuits. For simplicity of exposition, in this manuscript, we will work with this assumption. We stress,
however, that as discussed in several prior works (see e.g., [BG08]), this assumption can be removed by
using an appropriate error-correcting code.

The server algorithm Server. We start by describing a simple server algorithm that only assigns monoton-
ically increasing values of the load parameter to new sessions. In Section 3.2, we describe a better server
algorithm that decreases the load parameter when some of the concurrent sessions terminate.

The algorithm Server maintains a variable SessionCount that counts the number of concurrent sessions
started so far. Whenever a client initiates a new session, Server increases the value of SessionCount. When a
new clients sends a session initiation message to the server, Server sets the load parameter ` for that session
such that n`−1 ≤ SessionCount ≤ n`.

In the next section we prove the following theorem:

Theorem 3.1. Assuming h is a hash function ensemble that is collision-resistent against circuits of size
nlogn, Com is a statistically binding commitment, and UA is a witness-indistinguishable universal argu-
ment for NTIME(nlog logn), the protocol Πzk = (Server, {〈P`, V`〉}) is concurrent zero-knowledge in the
guaranteed complexity model.
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Common Input: x ∈ L.

Auxiliary Input to P : A witness w for x ∈ L.

Initiation Stage:

V` samples h← Hn and sends h to P`.

Preamble Stage:

1. P` sends c = Com(h(0n)) to V`.

2. V` samples r ← {0, 1}n`·m+n and sends r to P`.

Proof Stage:

P` and V` execute the protocol UA where P` proves that x ∈ L ∨ (h, c, r) ∈ LU .

The language LU is defines as follows: (h, c, r) ∈ LU iff there exist a program Π ∈ {0, 1}∗, a string y ∈
{0, 1}∗, and randomness s for Com such that:

1. |y| ≤ |r| − n.

2. c = Com(h(Π); s).

3. Π(y) outputs r within T (n) steps.

Figure 1: Protocol Family 〈P`, V`〉 for ZK in the Guaranteed Complexity Model (Protocol 1)

3.1 Proof of Theorem 3.1

The proof that for every ` ∈ N, the protocol 〈P`, V`〉 is complete and sound, follows directly from the
analysis of the bounded-concurrent ZK protocol in [Bar01]. In this section we first show that for every
` ∈ N, Protocol 1 is efficient according to Definition 2.1. We then show that Πzk is ZK in the guaranteed
complexity model.

Protocol 1 is efficient. Let p be a polynomial and let `max be such that for large enough values of n,
p(n) < n`max . By the definition of the server algorithm Server, in an execution with p(n) sessions, the load
parameter of every session is at most `max. Since the running time of P` only grows with `, we have that the
running time of Server in every session is at most the running time of P`max and therefore the total running
time of Server is bounded by a polynomial that depends only on p.

Protocol Πzk is ZK in the guaranteed complexity model. Let V ∗ be a malicious verifier that starts at most
n`max sessions for some constant `max. By the definition of the server algorithm Server, the load parameter
of every session in an honest execution is at most `max. We construct a simulator Sim = (Simload, {Sim`})
consisting of Simload and `max other components {Sim`}`∈[`max]. Roughly speaking, the component Simload

simulates the servers responses to the clients session initiation message in all sessions. The component Sim`

simulates all the executions of 〈P`, V`〉 in sessions with load parameter `. We now give more details.

The component Simload. This component simulates the server’s responses to the clients session initiation
message in all sessions. This simulation involves assigning a load parameter for every session started by
V ∗. Since the honest server Server selects the load parameter in each session based only on the (public)
adversarial scheduling, Simload can use the exact same algorithm as Server, resulting in a perfect simulation
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of these messages.

The component Sim`. This component simulates the interaction of 〈P`, V`〉 in all the sessions with load pa-
rameter `. At a high-level, the simulation will follow the simulation strategy of Barak’s bounded-concurrent
ZK protocol [Bar01]. According to this strategy, the simulator sends a commitment c to the code of the
verifier and then uses this code as a trapdoor witness, proving that c is commitment to a code Π that outputs
the random string r sent by the verifier. All the messages simulated in concurrent sessions are given to Π as
auxiliary input. The main problem is that in order to guarantee that the protocol is sound, the program Π is
only allowed to get an auxiliary input of bounded length; however, the number of concurrent sessions in our
setting are not bounded.

We fix this problem in the following manner. Instead of simply committing to the code of V ∗, Sim`

will commit to a program V ∗` that includes the code of V ∗ as well as the code of the simulation components
Simload and Sim`+1, . . . ,Sim`max . Roughly speaking, the program V ∗` will simulate all the sessions with load
parameter `′ > ` internally, and therefore Sim` will need to provide as auxiliary input only the messages of
concurrent sessions where the load parameter is at most `. It follows from the description of Server that the
number of concurrent sessions where the load parameter is at most ` is bounded by some polynomial (that
depends on `). Therefore, it is possible to include all of these messages as an auxiliary input to V ∗` .

Next we formally describe the simulator component Sim`, starting with the definition of the program
V ∗` .

The program V ∗` . V ∗` is an interactive algorithm that includes the code of V ∗ together with the code
of the simulation components Simload and Sim`+1, . . . , Sim`max . V ∗` uses the same randomness as Sim to
execute V ∗ and all the other simulation components. V ∗` will emulate the execution of V ∗, and will use the
mentioned simulator components to internally simulate the responses to the session initiation messages in all
sessions as well the prover messages of the protocols 〈P`′ , V`′〉 executed in the sessions with load parameter
`′ > `. In the sessions with load parameter `′ ≤ `, V ∗` will forward the messages of the protocol 〈P`′ , V`′〉
externally.

In every session with load parameter `, Sim` will simulate the execution of 〈P`, V`〉 as follows:

1. Sim` receives the description of a hash function h from V ∗.

2. Sim` sends a commitment c to the hash of the code of a program Π that given auxiliary input y =
(m1, . . . ,mt), emulates an execution of V ∗` when receiving the messages m1, . . . ,mt, and outputs
V ∗` ’s next message.

3. Sim` receives the the random string r from V ∗.

4. Sim` sends a UA proof using a trapdoor witness that contains the code of the program Π and an
appropriate auxiliary input string y. The string y is a list of all the prover messages that were simulated
by Sim in all sessions with load parameter at most ` and sent before V ∗ sent the random string r in
the present session.

This completes the description of the simulator. Next, we turn to its analysis.

3.1.1 Analysis of Sim

We start by showing that Sim` constructs a valid witness for the statement (h, c, r) ∈ LU . This amounts to
proving that Π(y) outputs r and that |y| ≤ |r| − n. We also need to show that the running time of Π(y)
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is at most T (n). We will show that the last statement is correct when we analyze the running time of the
simulation. Finally, we will prove the indistinguishability of the adversary’s view in the real and ideal world.

Proof that Π(y) outputs r. The program Π(y) outputs the next message of V ∗` given the external messages
in y. V ∗` emulates V ∗ using the same randomness as Sim. It is left to show that the messages sent to V ∗

emulated by V ∗` and by Sim are identical. Recall that the messages sent to V ∗ in the execution emulated by
V ∗` are as follows: in sessions with load parameter larger than `, the messages are generated by the internal
simulation of V ∗` , and the messages sent in sessions with load parameter at most ` are specified in y. For
sessions with load parameter larger than `, the messages sent to V ∗ in the emulation of V ∗` and of Sim
are identical since they are generated using the same simulation algorithm and using the same randomness
(by the construction of V ∗` ). For sessions with load parameter at most `, the messages sent to V ∗ in the
emulation of V ∗` and of Sim are identical by the way the auxiliary input string y is constructed.

Proof that |y| ≤ |r| − n. The auxiliary input string y constructed by Sim` contains only prover messages
in sessions with load parameter at most `. By the definition of the server algorithm Server there could be
at most n` such sessions, and the total length of all the prover messages in every session is bounded by the
parameter m. Therefore we have |y| ≤ n` ·m. Since V` samples r ∈ {0, 1}n`·m+n we have that |y| ≤ |r|−n.

Proof that the simulation is polynomial time. It is enough to show that all components of Sim are poly-
nomial time. Since Simload just follows the honest server algorithm, the efficiency of Simload follows from
the efficiency of the protocol. For every ` ∈ [`max] we show that the running time of Sim` is bounded by a
polynomial in the security parameter (that depends on ` and on V ∗). Since Sim` constructs the program V ∗` ,
commits to its code, and provides a UA proof of its execution, the running time of Sim` is polynomial in the
size and running time of V ∗` . Additionally, since Sim` reads the entire transcript of the execution and uses it
to construct the auxiliary input y in every session it simulates, the running time of Sim` is polynomial in the
total length of the transcript. Note that the total length of the transcript is always bounded by the running
time of V ∗ which is polynomial in the security parameter.

We start by bounding the running time of Sim`max . The program V ∗`max
only consists of the code of V ∗

and the code of Simload and therefore, the running time of V ∗`max
is a polynomial. It follows that the running

time of Sim`max is also a polynomial. Now, for every ` ∈ [`max], the program V ∗` only consists of the code of
V ∗, the code of Simload, and the code of Sim`′ for every ` ≤ `′ < `max. Since `max is a constant depending
only on V ∗, and assuming that for all ` ≤ `′ < `max the running time of every Sim`′ is polynomial, the
running time of V ∗` and therefore also of Sim` must be polynomial. By induction we have that for every
` ∈ [`max] the running time of Sim` is bounded by a polynomial, and therefore the entire simulation is
polynomial time.

Using the above proof, we complete the proof that Sim` constructs a valid trapdoor witness. Sim`

constructs a program Π and auxiliary input y, and we need to show that the running time of Π(y) is bounded
by some super-polynomial function T (n). The running time analysis above implies that for every ` ∈ [`max],
the running time of V ∗` and the size of the auxiliary input y constructed by Sim` are polynomial. The
simulator component Sim` constructs a program Π that simulates V ∗` sending it messages from y. It follows
that the running time of Π(y) is polynomial and therefore bounded by T (n).

Proof that the simulated view and the real view are indistinguishable. For 0 ≤ ` ≤ `max, let Hi be
the hybrid experiment that is identical to the execution of Sim except that every session executing the the
protocol 〈P`′ , V`′〉 for `′ ≤ ` follow the honest prover strategy using the valid witness wj for the statement
xj ∈ L in that session. of that session. Since Simload simulates the responses to the sessions initiation
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messages perfectly we have that:

H`max = ViewV ∗(~x, ~w, z), H0 = S(~x, z) .

It is therefore sufficient to prove that for every 0 ≤ ` < `max, H` ≈c H`+1. By the definition of the server
algorithm Server, the number of sessions with load parameter ` is at most n`. For 0 ≤ i ≤ n`, let H`,i be
the hybrid experiment that is identical to H` except that the first i sessions executing of the protocol 〈P`, V`〉
follow the honest prover strategy using a the valid witness wj for the statement xj ∈ L in that session. It
follows that:

H`,n` = H`+1, H`,0 = H` .

It is therefore sufficient to prove that for every 0 ≤ i < n`, H`,i ≈c H`,i+1.
Let H ′`,i be the hybrid experiment that is identical to the H`,i except that the execution of the witness-

indistinguishable universal argument UA in the proof stage of the ith execution of the protocol 〈P`, V`〉
uses a valid witness wj for the session’s statement xj ∈ L instead of the trapdoor witness. Note that in
an execution of Sim, the randomness of the component Sim` used for the UA prover executed in the proof
stage of the protocol 〈P`, V`〉 is also used by the components Sim`′ for `′ < ` in the construction of the
program V ∗`′ . However, in the experiment H`,i, all the simulator components Sim`′ for `′ < ` are replaced
by executions of the honest prover. Since the randomness of the component Sim` used for the simulation
of the UA prover in the protocol 〈P`, V`〉 is not used in any other part of the simulation, it follows from the
indistinguishability property of UA that H`,i ≈c H

′
`,i.

Note that the experiment H`,i+1 is identical to the experiment H ′`,i except that in the experiment H`,i+1,
the prover commitment c given in the preamble stage of the i’th execution of the protocol 〈P`, V`〉 is a
commitment to the all zero string, following the honest prover strategy. As before, the randomness of the
component Sim` used for the simulation of c sent in the protocol 〈P`, V`〉 is not used in any other part of the
simulation and therefore it follows from the computational-hiding property of Com that H`,i+1 ≈c H

′
`,i.

Overall we have that for every 0 ≤ ` ≤ `max, 0 ≤ i ≤ n`, H`,i ≈c H`,i+1. Since ` ≤ `max is a
constant, n` is a polynomial and therefore we have that for every 0 ≤ ` ≤ `max, H`+1 ≈c H` and also that
H`max ≈c H0 as required.

3.2 Decreasing the Load Parameter

In this section, we describe a different server algorithm that takes into account the termination of sessions
and decreases the load parameter for new sessions accordingly. We start by describing the new server
algorithm Server′, and then describe the required changes to the simulation.

We identify the technical condition required for the simulation to work, and design a server algorithm
Server′ that always gives new sessions the lowest possible load parameter such that the technical condition
still satisfies. The validity of our simulation relies on the validity of the following technical condition: for
a session with load parameter `i, the number of sessions concurrent to it with load parameters at most `i is
bounded by ni. Before describing the algorithm Server′ let us first introduce some notation. Let t be the
number of open sessions at the moment a new client sends its session initiation message. For i ∈ [t], let `i
be the load parameter for the i’th open session. For i ∈ [t], let ti be the total number of sessions with load
parameters at most i that are concurrent to session i. First note that if we set the load parameter of the new
session to ` then for every session i such that `i ≥ `, the value ti increases by 1. This will contradict the
technical condition only if the value of ti was already at its maximal allowed value n`i .
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Using the above notation, the algorithm Server′ is easy to describe: Server′ will set the load parameter
of a new session to be the minimal value ` such that for every session i with `i ≥ ` we have ti < n`i .
While the behavior of the server algorithm Server′ is not obvious, we can prove that it satisfies some natural
conditions. For example we can show that if no sessions with load parameter ` are currently active, then the
load parameter assigned to the next session to start cannot exceed `.

Modifying the simulator. Next we discuss the necessary changes to the simulator. In the current description
of the simulator, every program V ∗` that Sim commits to, internally emulates V ∗ starting from its initial state.
As a result, we must give V ∗` auxiliary input z that consists of the messages in all concurrent sessions with
load parameter at most ` starting from the beginning of the concurrent execution. The problem is that
the definition of the server algorithm Server′ does not guarantee that such auxiliary input z is sufficiently
short. Instead it only gives a bound on the number sessions with load parameter at most ` that are executed
concurrently to the current session. In particular, Server′ does not guarantee anything about the number of
sessions that terminated before the current session had started. The solution is based on the observation that
providing V ∗` auxiliary input z that contains messages sent before the current session had started is wasteful.
Instead, Sim can commit the a program Ṽ ∗` that already contains these messages hardwired into it.
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