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Abstract

We introduce the concept of universal signature aggregators. In a universal signature aggregator
system, a third party, using a set of common reference parameters, can aggregate a collection of signatures
produced from any set of signing algorithms (subject to a chosen length constraint) into one short
signature whose length is independent of the number of signatures aggregated. In prior aggregation
works, signatures can only be aggregated if all signers use the same signing algorithm (e.g., BLS) and
shared parameters. A universal aggregator can aggregate across schemes even in various algebraic settings
(e.g., BLS, RSA, ECDSA), thus creating novel opportunities for compressing authentication overhead.
It is especially compelling that existing public key infrastructures can be used and that the signers do
not have to alter their behavior to enable aggregation of their signatures.

We provide multiple constructions and proofs of universal signature aggregators based on indistin-
guishability obfuscation and other supporting primitives. We detail our techniques as well as the tradeoffs
in features and security of our solutions.

1 Introduction

An aggregate signature system, as introduced by Boneh, Gentry, Lynn and Shacham [BGLS03], allows a party
to bundle a set of signatures together into a single short cryptographic signature. Aggregate signatures are
motivated by applications where one needs to simultaneously verify several signatures from different users on
different messages in environments with communication or storage resource constraints. For example, Boneh
et al. [BGLS03] proposed applying aggregate signatures to Secure BGP [KLMS00] path authentication; later
this idea was empirically evaluated by Zhao et al. [ZSN05].

Over the past several years many solutions to aggregate signatures [LOS+06, GR06, BGOY07, BNN07,
AGH10] have been proposed that have explored tradeoffs regarding computational cost, security models,
features (e.g. identity-based), limitations (e.g. sequential signing), and cryptographic assumptions. However,
all of these constructions have one thing in common in that they require all signers to adopt a common
signature system and shared parameters.

In practice, the common scheme and parameter requirements can be a large barrier to adoption. Existing
users will already have established signing keys and algorithms which are entrenched in an existing public
key infrastructure. The overhead of changing and re-certifying one’s public keys may very well overwhelm
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the perceived benefit of creating signatures that can be aggregated by a third party. Indeed the original
signer might not even be incentivized to allow aggregation in the first place when the benefits fall to the
aggregating party or verifier of the signatures. Furthermore, even if a user moved from one signature system
to an aggregate signature system, all previously created signatures would be unaggregatable.1

Universal Signature Aggregators We introduce the concept of universal signature aggregators. In
a universal signature aggregator system, a third party, using a set of common reference parameters, can
aggregate a collection of signatures produced from any set of signing algorithms (subject to a chosen length
constraint) into one short signature whose length is independent of the number of signatures aggregated. A
verifier can use the common parameters to verify the aggregate signature. The system will be secure in the
sense that it is hard to produce an aggregate signature on a verification algorithm, verification key, message
tuple, (Verify,VK,m) unless the holder of the corresponding secret key produced a signature on m. We
emphasize that signers in the system need not do anything special to allow aggregation; indeed they could
be unaware of the existence of such a system.

Our central challenge is to create a way to compress many signatures of varying types into one short
object. Prior solutions required all signatures to reside in a common (often bilinear) group, where it was
possible to leverage homomorphic properties of the group structure. Here we are afforded no such luxury as
signatures will reside in different groups or even be based on a scheme with no algebraic structure.

Our approach will be to overcome these limitations by applying the tool of program obfuscation. At the
highest level, a trusted setup routine will produce a pair of a global signature verification key for a universal
signature aggregator and a shared obfuscated program. The job of the obfuscated program will be to take
as input tuples of the form (Verify,VK,m, σ) that respectively represent verification algorithm, verification
key, message and signature 4-tuples. The program will first verify using algorithm Verify and key VK that σ
is a signature on m. If this check passes, it will produce a signature using a master secret key on the message
Msg = (Verify,VK,m) — essentially transforming the arbitrary signature into one of an aggregateable form.

At first glance it might appear that obfuscation provides an open and close solution to our problem.
Indeed, if we heuristically model the obfuscated program as an oracle to the program, the analysis is relatively
straightforward. However, as noted by Hada [Had00] such a definition is impossible to achieve for any
functionality. Our goal is to create probably secure constructions under a realizable definition of obfuscation
— ideally indistingusihability obfuscation.

Achieving provable security under indistingusihability obfuscation (and without knowledge assumptions
2) presents significant challenges. The primary technical challenge is how to design a construction and
corresponding reduction that can extract a forgery on an arbitrary input signature scheme from an attacker
that forges on the aggregate. We emphasize that without an oracle interface or knowledge assumption a
reduction is not afforded the opportunity to simply “look at” the input signatures.

Universally Aggregating Unique Signatures We begin by exploring how to universally aggregate
unique signatures — a unique signature system [GO93] is one where there is at most one signature that will
verify per message. Notably, RSA based full domain hash [BR93, BR96] are unique signatures that form the
basis of the widely deployed PKCS#1 standard [KS98]. As evidence of the wide scale deployment, Heninger
et al. [HDWH12] performed an Internet-wide scan of machines responding on the TLS and SSH ports for
IPv4 space and reported 3.9 million distinct RSA keys compared to only 1.9 thousand DSA keys.

Our construction will be parameterized by four polynomial functions over the security parameter: `ver(λ),
`vk(λ),`msg(λ), `sig(λ). These respectively represent a bound on the size of verification circuits, verification
keys, length of messages signed and size of signatures that are aggregated. While we are interested in
signatures of arbitrary length messages, in practice almost all signature schemes will apply the “hash and

1We note that the concept of integrating “special property” cryptography into existing keys is relatively unexplored, but has
been considered in ring signatures [BKM08] and deniable encryption [SW14].

2A different direction is to attempt to build universal aggregation from succinct arguments of knowledge
(SNARKs)[BCCT13]. We aim to achieve our goals without applying knowledge assumptions.
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sign” paradigm where a longer message is first hashed down to a fixed size hash value (dependent on the
security parameter). The core signature scheme then signs this value.

In our first construction (see Section 4), the UniversalSetup first chooses an RSA modulus N and exponent
e ← Z∗φ(N). Next, it chooses a puncturable PRF [BW13, BGI13, KPTZ13, SW14] key K for a function F

that takes inputs of the form (Verify,VK,m) ∈ {0, 1}`ver × {0, 1}`vk × {0, 1}`msg (i.e., 3-tuples representing a
verification circuit, verification key and message). The puncturable PRF will output into ZN .

Finally, the setup will publish (indistinguishability) obfuscations of two programs. The first is TransformN,K .
This program takes as input a 4-tuple Verify,VK,m, σ. It then computes Verify(VK,m, σ), which verifies
the signature under the algorithm. If the signature verifies, the program outputs F (K,Verify,VK,m) ∈ ZN .
This can be thought of as a “transformed signature” where the obfuscated program maps the original sig-
nature into one over ZN . The second program is called Transform-ImageN,K,e. On input (Verify,VK,m), it
computes F (K,Verify,VK,m)e (mod N).

One can now aggregate a sequence of signatures (Verifyi,VKi,mi, σi) by transforming each one by comput-
ing3 si = TransformN,K(Verifyi,VKi,mi, σi) and then aggregating into one element of ZN as σagg =

∏
i si. To

verify an aggregate signature, σagg, on (Verifyi,VKi,mi) simply compute ti = TransformN,K(Verifyi,VKi,mi, σi)

and test whether σeagg
?
=
∏
i ti.

4 Essentially the Transform program maps an arbitrary signature to an RSA
FullDomain hash type signature on the “message” (Verifyi,VKi,mi).

We prove selective security where the attacker declares before seeing the public parameters a message m∗

that they will forge on.5 Our security argument is centered around an alternative program Transform-Reject
which is programmed to behave the same as Transform except on input y = (Verify∗,VK∗,m∗) on which it
always outputs ⊥ even if it is given a valid signature on m∗. It also uses a PRF key that is punctured at y.

Security follows from two primary arguments about the program. We first establish that if an attack algo-
rithm, Att, is successful when given Transform, it must be almost as successful when given Transform-Reject;
otherwise, the underlying unique signature scheme is broken. Suppose that there is an attacker, Att, with a
non-negligible difference in advantage between these two games, then we can build an reduction algorithm
that extracts the unique signature on m∗ in a bit by bit fashion. The reduction algorithm runs as the chal-
lenger in the aggregate signature game and receives a challenge verification key from the challenger in the
standard signature security game. It runs to the point in the security game where the input public key and
parameters are established and saves the state of the game (including the state of Att). Then for each bit
of the signature it performs the following process multiple times. It runs a third program TransformAlty,j .
This program runs as Transform, but rejects if the j-th bit of the input signature is 1. For each j, it runs the
experiment multiple times with fresh randomness. If the measured advantage of the attacker drops when
using TransformAlty,j then it guesses that the j-th bit of the signature is 1; otherwise it guesses that it is 0.
It complies all of these guesses together to output a forgery. (The amount of rewinding needed depends on
the difference in advantage. In addition, our actual analysis addresses other technical details.)

Since signatures are unique, the program TransformAlty,j is functionally equivalent to Transform if the
j-th bit of the unique signature on m∗ is 0 and thus by indistinguishability obfuscation the attacker’s
advantage should be negligibly close in these two cases. Similarly, TransformAlty,j is functionally equivalent
to Transform-Reject if the j-th signature bit is 1 and again by indistinguishability obfuscation the advantage
should be close to that of Transform-Reject.

After we have established that the advantage when given Transform-Reject is close to that of Transform,we
show that an attacker that can win when given Transform-Reject will either break iO, the punctured PRF or
the RSA assumption and roughly follows [HSW14] using punctured programming [SW14] techniques. The
main proof innovation is combining a rewinding argument with indistinguishability obfuscation to extract a
unique signature.

We also show a variation of this idea in Appendix A that is a universal aggregator of unique signatures,

3We slightly abuse notation in the introduction for ease of exposition by using the names Transform and Transform-Image to
refer both to the obfuscated and unobfuscated forms of the program. In the main body, we are careful about these distinctions.

4We require in verification that no 3-tuples are repeated. I.e., for all i 6= j, (Verifyi,VKi,mi, ) 6= (Verifyj ,VKj ,mj).
5The usual complexity leveraging arguments for adaptive security can be applied here if we are willing to make sub-

exponential hardness assumptions.
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but where we avoid using the RSA assumption. (Indistinguishability obfuscation and punctured PRFs
are still used.) The tradeoff is that there is an a priori bound n on the number of signatures that can be
aggregated. In the construction, the parameters will grow polynomially with n, but the size of the signatures
is independent of n. We also conjecture that in our main construction the RSA-type transformed signature
can be replaced by a BLS [BLS01] type signature (in an analogous way to [HSW14]), but do not formally
show this.

Universal Aggregation of arbitrary signatures using VBB Obfuscation While covering unique
signatures achieves progress, we want to push toward our central goal of aggregating arbitrary signatures.
Our next step is to show that a slight tweak to the previous construction gives us a universal aggregator of
arbitrary signatures under a specific virtual black box (VBB) assumption. This appears in Section 5.

It might first seem that a solution proven under a VBB assumption is not better than the oracle heuristic
outlined earlier. However, achieving a VBB proof provides both a sounder justification and is more technically
challenging than the oracle heuristic. First, modeling an obfuscated program as an oracle is a heuristic — a
piece of code is clearly a different object than an oracle. In contrast, a VBB assumption could be true for
many functionalities even though there exists certain functionalities for which it cannot hold [BGI+01].

Proving our construction secure under a VBB definition presents an interesting technical barrier. A
natural proof methodology is to first say that an obfuscator for a given circuit cannot be more successful
than a simulator with oracle access to the same circuit using VBB. And then making further hybrid security
arguments leveraging the fact that the simulator has oracle access. The primary problem with this strategy
is that while the universal aggregator security game gives the attacker access to a signing oracle, there is no
place to “put” this signing oracle when applying the VBB security game.

We overcome this obstacle by introducing a new technique that we call “oracle assimilation” which we
believe might be of independent interest. In our construction, the Transform-VBB program behaves in almost
the same way as Transform before except an extra mode bit is added to the input. If this mode bit b is set
to 0, it indicates normal input and the Transform-VBB program operates roughly as described above. If the
mode bit is set to 1, it indicates query input and the program outputs a rejecting ⊥ on all inputs of this
type. The query type input is only used in the proof and not in the construction.

Our proof of security proceeds by a sequence of games. In the initial security game, all query inputs
output a rejecting ⊥. The proof (in a couple of steps) then moves to a game where the query inputs
will take a form of (a,m) and output a signature on m under the challenge input secret signing key if
PRG(a) = PRG(α) for some value α chosen by the game, but hidden from the attacker. We can argue
this change is indiscernable to the attacker by iO and pseudorandom generator security. At this point the
security game will use the query interface of the obfuscated program to answer signing queries and we can
say that the signing oracle was “assimilated” into the obfuscated program. Next, we can use VBB security
to argue that there must exist a simulator with oracle access to the program that outputs 1 with close to the
same probability that the attacker wins. Now that the input signing algorithm is accessed by an oracle we
can use its security to argue that the game is indistinguishable from when the circuit refuses to transform
on m∗, the challenge message.6 Finally, we use VBB again to reason about the attack algorithm’s advantage
when given this second circuit that will not transform on m∗. From here, the proof follows as in the unique
signature case.

Stepping back, the main innovation for this proof is to use punctured programming techniques to sublim-
inally assimilate the signing oracle for one scheme into the obfuscated program, then use the VBB interface
to execute the proof. We expect that this technique will be useful in other contexts. One interesting view
is that we could apply either this VBB argument for arbitrary signatures or the previous iO argument for
unique signatures to this single construction. So a user with any signature scheme would get VBB based
security and if a user had a unique signature scheme, she would get the added benefit of iO based security.

6For ease of exposition, the proof in the main body proves selective security; however, we show how a minor transformation
of the construction using admissible hash functions [BB04] gives adaptive security in Appendix B.
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Aggregating arbitrary signatures using indistinguishability obfuscation For our final contribu-
tion, we return to our goal of aggregating arbitrary signatures using indistinguishability obfuscation. Our
primary challenge again is how to extract an input forgery from the attacker in a proof. The previous two
methods used the structure of a unique signature and an oracle interface, neither of which is available to us
now.

We overview the main solution ideas and our proof approach. At a high level, we devise a means for being
able to extract and check the validity of a single signature (from the aggregate) of our choice in the proof
without the adversary being able to know which one we are “looking at”. Thus, we build our confidence in
the validity of all the signatures by being able to check any given one of them. We call this an “enforce all
by one” technique.

To do this, we first use additively (or singly) homomorphic encryption to combine the encryptions of
several signatures together into one object t. Then we will have an obfuscated program generate a PRF-type
signature component s on a message representing ciphertext tag t along with tuples {Verifyi,VKi,mi} if the
input contains valid signatures on each message. The output aggregate signature is σagg = (t, s). Although
the homomorphic ciphertext t will not be large enough to contain all of the input signatures, in the proof
it can be used to remember one of the input signatures and thus provide us with an opportunity to extract
a forgery on the input signature. The difficulty is in using iO to ensure that an attacker can only output a
verifying σagg = (t, s) on a ciphertext “tag” t that contains a proper forgery in the proof.

Diving in a little further in our solution, the setup algorithm will be parameterized by a polynominal n(·)
that gives an a-priori bound on the number of signatures that can be verified. The size of the parameters
will grow polynomially with n, but the signature size will be independent of it. The setup algorithm will
output n ciphertexts {counti ← HE.enc(pk, 0)}i=1,...n each of which is an encryption of 0.

The universal aggregation algorithm takes input {Verifyi,VKi,mi, σi}. It then computes t = Σicounti ·σi.
Next it will input t and the tuples {Verifyi,VKi,mi, σi} to an obfuscated program AggSign which will evaluate
and output a punctured PRF on t and {Verifyi,VKi,mi} if the input signatures verify. (We will return shortly
to where the obfuscated program comes from.)

In proving security we perform a sequence of hybrids, where the first step of the hybrid is to guess an
index j (incurring a 1/n loss) where the forgery occurs. Next, we change countj to be an encryption of 1.
This causes an honestly computed value t to be an encryption of the j-th signature that we will eventually
use for extraction.

The challenge at this point is to come up with a formulation of the program AggSign for which we
can prove security using indistinguishability arguments. We provide two approaches. In the first one (see
Section 6), we allow AggSign to be created by a Universal Sampler (also called a Universal Parameters
Scheme) as defined by Hofheinz et al. [HJK+14]. A Universal Sampler is allowed to adaptively sample
from an arbitrary (efficiently computable) distribution. In this case we sample from an obfuscation of the
AggSignt program that is parameterized to only work with a given tag value t. As noted in [HJK+14],
Universal Samplers are realizable in the random oracle model from indistinguishability obfuscation. So this
solution will exist in the random oracle model as well. An advantage of Universal Samplers is that they can
define the AggSignt program adaptively.

We also propose a second variation of this solution in Section 7 that does not need the random oracle
heuristic. Instead it applies complexity leveraging that requires assuming sub-exponential hardness of some
of the underlying computational assumptions.

1.1 Summary of our results

Our results are summarized in the following table. The first column labels the construction. The remain-
ing columns indicate: type of signatures that can be aggregated, selective or adaptive security, standard
or random oracle model proofs, whether the aggregator is bounded or not, and finally, the cryptographic
assumptions used in the security proof. In our assumptions, we prefix them with “subexp” to indicate if
sub-exponential hardness is required for complexity leveraging. Since PRFs, PRGs, and (selectively-secure)
puncturable PRFs are constructible from one-way functions, we list OWF as the assumption. UPS stands
for a universal parameters scheme [HJK+14] (implied by iO in the random oracle model), HE stands for
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singly homomorphic encryption, iO stands for indistinguishability obfuscation, and VBB stands for virtual
black-box obfuscation, where we assume that VBB holds only for a certain limited family of circuits.

Construction Type Selective/
Adaptive

RO Bounded
Aggregator

Assumptions

Section 4 Unique Selective No No iO, RSA, OWF
Section 5 Arbitrary Selective7 No No iO, VBB, OWF
Section 6 Arbitrary Adaptive Yes Yes iO, UPS, HE, OWF
Section 7 Arbitrary Selective No Yes subexp-iO, HE, subexp-OWF

2 Preliminaries

2.1 Notations

For any set X , x← X denotes a uniformly random element drawn from X . Given integers `ckt, `inp, `out, let
C[`ckt, `inp, `out] denote the set of circuits that can be represented using `ckt bits, take `inp bits as input, and
output `out bits.

2.2 Admissible Hash Functions

We recall the notion of admissible hash functions due to Boneh and Boyen [BB04]. Here we state a simplified
definition from [HSW14].

Definition 2.1. Let l, n and θ be efficiently computable univariate polynomials. Let h : {0, 1}l(λ) →
{0, 1}n(λ) be an efficiently computable function and AdmSample a PPT algorithm that takes as input 1λ

and an integer q, and outputs u ∈ {0, 1,⊥}n(λ). For any u ∈ {0, 1,⊥}n(λ), define Pu : {0, 1}l(λ) → {0, 1} as
follows: Pu(x) = 0 if for all 1 ≤ j ≤ n(λ), h(x)j 6= uj , else Pu(x) = 1 (where uj denotes the jth bit of u).

We say that (h,AdmSample) is θ-admissible if the following condition holds:
For any efficiently computable polynomial Q, for all x1, . . . , xQ(λ), x∗ ∈ {0, 1}l(λ), where x∗ /∈ {xi}i,

Pr[(∀i ≤ Q(λ), Pu(xi) = 1) ∧ Pu(x∗) = 0] ≥ 1

θ(Q(λ))

where the probability is taken over u← AdmSample(1λ, Q(λ)).

Theorem 2.1 (Admissible Hash Function Family [BB04], simplified proof in [FHPS13]). For any effi-
ciently computable polynomial l, there exist efficiently computable polynomials n, θ such that there exist
θ-admissible function families mapping l bits to n bits.

2.3 Signature Schemes

A signature scheme S with message spaceM(λ), signature key space SK(λ) and verification key space VK(λ)
consists of the following algorithms.

• Gen(1λ) The setup algorithm is a randomized algorithm that takes as input security parameter λ and
outputs signing key SK ∈ SK and verification key VK ∈ VK.

• Sign(SK,m) The signing algorithm takes as input the signing key SK ∈ SK and a message m ∈ M
and outputs a signature σ.

• Verify(VK,m, σ) The verification algorithm takes as input a verification key VK ∈ VK, message m ∈M
and signature σ and outputs either 0 or 1.

7In Appendix B, we modify this construction to achieve adaptive security without any additional assumptions.
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Correctness For all λ ∈ N, (SK,VK)← Gen(1λ), messagesm ∈M(λ), we require that Verify(VK,m,Sign(SK,m)) =
1.

Security The security notion for signature schemes, formalized by Goldwasser, Micali and Rivest [GMR88],
is based on the following game between an adversary A and a challenger.

1. Setup Phase Challenger chooses (SK,VK)← Gen(1λ).

2. Signing Phase A sends signature query mi ∈M and receives σi ← Sign(SK,mi).

3. Forgery Phase A finally outputs a message m and signature σ.

A wins if m was not queried during the Signing Phase and Verify(VK,m, σ) = 1. Let AdvA(λ) = Pr[A wins ].

Definition 2.2. A signature scheme S=(Gen,Sign,Verify) is existentially unforgeable under a chosen message
attack if for all PPT adversaries A, AdvA(λ) is negligible in λ.

Goldwasser and Ostrovsky [GO93] introduced the notion of unique signature schemes 8. In a unique
signature scheme, there is a unique valid signature corresponding to any message, verification key pair.

Definition 2.3 (Unique Signatures). A signature scheme S = (Gen,Sign,Verify) is said to be unique if for
all tuples (VK,m, σ1, σ2), either σ1 = σ2 or Verify(VK,m, σ1) = 0 or Verify(VK,m, σ2) = 0.

In this work, we will be considering signature schemes where the messages, signatures and verification keys
have bounded length, and the verification algorithm is deterministic. In practice, most signature schemes
use a collision resistant hash function to compress an arbitrary length message to bounded length. We will
be dealing with these ‘post-hash’ messages.

Definition 2.4 ((`vk, `msg, `sig)-bounded length signature scheme). Let `vk, `msg and `sig be fixed polynomi-
als. A signature scheme S = (Gen,Sign,Verify) is said to be (`vk, `msg, `sig)-bounded length if all verification
keys output by Gen(1λ) have length at most `vk(λ), Sign takes as input messages of length at most `msg(λ)
and outputs signatures of length bounded by `sig(λ).

Since the verification keys, messages and signatures have bounded length, we can view Verify as a cir-
cuit with three inputs- verification key VK, message m and signature σ. We assume every circuit can be
represented as a binary string.

Definition 2.5 ((`ver, `vk, `msg, `sig)-length qualified signature scheme). Let `ver, `vk, `msg, `sig be fixed poly-
nomials. A (`vk, `msg, `sig)-bounded length signature scheme S = (Gen,Sign,Verify) is said to be (`ver, `vk,
`msg, `sig)-length qualified if the verification circuit Verify and signing circuit Sign can be represented as a
binary string of length at most `ver(λ) bits.

Abusing notation, we will say that a tuple (Verify,VK,m, σ) is a (`ver, `vk, `msg, `sig)-length qualified tuple
if Verify is a circuit that can be represented using `ver(λ) bits, and VK,m, σ are of length at most `vk(λ),
`msg(λ) and `sig(λ) respectively. Similarly, a tuple (Verify, VK, m) is (`ver, `vk, `msg)-length qualified if
Verify, VK and m have length at most `ver(λ), `vk(λ) and `vk(λ) respectively.

2.4 Additively Homomorphic Encryption

In this work, we will be using encryption schemes which allow us to perform additive operations on ci-
phertexts. Many encryptions schemes [GM84, Ben87, NS98, OU98, Pai99, DJ03] have the ‘additive homo-
morphism’ property. We will now define the syntax and security definition for an additively homomorphic
encryption scheme.

Let p be a prime9. An additively homomorphic encryption scheme HE with message space Fp and
ciphertext space CHE consists of the following algorithms.

8Also known as invariant signature schemes.
9The prime p is a property of the encryption scheme.

7



• HE.setup(1λ) The setup algorithm takes the security parameter as input and outputs public key pk,
secret key sk.

• HE.enc(pk,m) The encryption algorithm takes as input a public key pk and message m ∈ Fp and
outputs a ciphertext ct ∈ CHE.

• HE.dec(sk, ct) The decryption algorithm takes as input a secret key sk, a ciphertext ct ∈ CHE and either
outputs an element in Fp or ⊥.

• HE.add(pk, ct1, ct2) The addition algorithm takes as input a public key pk and two ciphertexts ct1, ct2 ∈
CHE and outputs a ciphertext ct.

For simplicity of notation, we will represent HE.add(pk, ct1, ct2) as ct1 + ct2.

Correctness We require the following correctness property:

• Let p be any prime and q any polynomial in λ. For any λ ∈ N, (pk, sk) ← HE.setup(1λ), q messages
m1, . . . ,mq ∈ Fp, the following must hold.

HE.dec(sk,HE.enc(m1) + . . .+ HE.enc(mq)) = m1 + . . .+mq.

Note that given an encryption ct of message m ∈ Fp, and a plaintext a ∈ Fp, one can use HE.add to
compute an encryption of m · a efficiently. Let a · ct represent this operation.

Security The security game is the usual IND-CPA security game between a challenger and a PPT adversary
Att.

1. The challenger chooses (pk, sk)← HE.setup(1λ) and sends pk to Att.
2. Att sends messages m0,m1 ∈ Fp to the challenger.
3. The challenger chooses b← {0, 1}, computes ctb ← HE.enc(pk,mb) and sends ctb to Att.
4. Att finally outputs a guess b′.

Att wins if b = b′. Let AdvHEAtt = Pr[Att wins ]− 1/2.

Definition 2.6. An additively homomorphic encryption scheme HE is secure if for all PPT adversaries Att,
AdvHEAtt is negligible in λ.

2.5 Obfuscation

We recall the definition of indistinguishability obfuscation from [GGH+13, SW14].

Definition 2.7. (Indistinguishability Obfuscation) Let C = {Cλ}λ∈N be a family of polynomial-size circuits.
Let iO be a uniform PPT algorithm that takes as input the security parameter λ, a circuit C ∈ Cλ and
outputs a circuit C ′. iO is called an indistinguishability obfuscator for a circuit class {Cλ} if it satisfies the
following conditions:

• (Preserving Functionality) For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have
that C ′(x) = C(x) where C ′ ← iO(1λ, C).

• (Indistinguishability of Obfuscation) For any (not necessarily uniform) PPT distinguisher B = (Samp,D),
there exists a negligible function negl(·) such that the following holds: if for all security parameters
λ ∈ N,Pr[∀x,C0(x) = C1(x) : (C0;C1;σ)← Samp(1λ)] > 1− negl(λ), then

|Pr[D(σ, iO(1λ, C0)) = 1 : (C0;C1;σ)← Samp(1λ)]−
Pr[D(σ, iO(1λ, C1)) = 1 : (C0;C1;σ)← Samp(1λ)]| ≤ negl(λ).
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In a recent work, [GGH+13] showed how indistinguishability obfuscators can be constructed for the cir-
cuit class P/poly. We remark that (Samp,D) are two algorithms that pass state, which can be viewed
equivalently as a single stateful algorithm B. In our proofs we employ the latter approach, although here we
state the definition as it appears in prior work.

A stronger notion of obfuscation, virtual black box obfuscation was proposed by Barak et al. [BGI+12].

Definition 2.8 (Virtual Black-Box Obfuscator). Let C = {Cλ}λ∈N be a family of polynomial-size circuits.
Let O be a PPT algorithm that takes as input the security parameter λ, a circuit C ∈ Cλ and outputs a
circuit C ′. O is called a virtual black-box obfuscator for a circuit class {Cλ}λ∈N if it satisfies the following
conditions:

• (Preserving Functionality) For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have
that C ′(x) = C(x) where C ′ ← O(1λ, C).

• (Virtual Black-Box) For every (non-uniform) PPT algorithm A, there exists a PPT simulator S such
that, for all C ∈ Cλ,

Pr[A(O(1λ, C)) = 1]− Pr[SC(1λ, 1|C|) = 1] ≤ negl(λ)

For simplicity of notation, we will drop the dependence of iO and O on 1λ.

2.6 Puncturable Pseudorandom Functions

The notion of constrained PRFs was introduced in the concurrent works of [BW13, BGI13, KPTZ13].
Punctured PRFs, first termed by [SW14] are a special class of constrained PRFs.

A PRF F : K × X → Y is a puncturable pseudorandom function if there is an additional key space Kp
and three polynomial time algorithms F.setup, F.eval and F.puncture as follows:

• F.setup(1λ) is a randomized algorithm that takes the security parameter λ as input and outputs a
description of the key space K, the punctured key space Kp and the PRF F .

• F.puncture(K,x) is a randomized algorithm that takes as input a PRF key K ∈ K and x ∈ X , and
outputs a key Kx ∈ Kp.

• F.eval(Kx, x
′) is a deterministic algorithm that takes as input a punctured key Kx ∈ Kp and x′ ∈ X .

Let K ∈ K, x ∈ X and Kx ← F.puncture(K,x). For correctness, we need the following property:

F.eval(Kx, x
′) =

{
F (K,x′) if x 6= x′

⊥ otherwise

In this work, we will only need selectively secure puncturable PRFs. The selective security game between
the challenger and the adversary A consists of the following phases.

Challenge Phase A sends a challenge x∗ ∈ X . The challenger chooses uniformly at random a PRF key
K ← K and a bit b ← {0, 1}. It computes K{x∗} ← F.puncture(K,x∗). If b = 0, the challenger sets
y = F (K,x∗), else y ← Y. It sends K{x∗}, y to A.

Guess A outputs a guess b′ of b.

A wins if b = b′. The advantage of A is defined to be AdvFA(λ) = Pr[A wins].

Definition 2.9. The PRF F is a selectively secure puncturable PRF if for all probabilistic polynomial time
adversaries A, AdvFA(λ) is negligible in λ.
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2.7 Universal Parameters

In a recent work, Hofheinz et al. [HJK+14] introduced the notion of universal parameters. A universal
parameters scheme U , parameterized by polynomials `ckt, `inp and `out, consists of algorithms UniversalGen
and InduceGen defined below.

• UniversalGen(1λ) takes as input the security parameter λ and outputs the universal parameters U .

• InduceGen(U, d) takes as input the universal parameters U and a circuit d of size at most `ckt bits. The
circuit d takes as input `inp bits and outputs `out bits.

In this work, we will be using a universal parameter scheme that is adaptively secure in the random
oracle model. In order to define adaptive security for universal parameters, let us first define the notion of
an admissible adversary A.

An admissible adversary A is defined to be an efficient interactive Turing Machine that outputs one bit,
with the following input/output behavior:

• A takes as input security parameter λ and a universal parameter U .
• A can send a random oracle query (RO, x), and receives the output of the random oracle on input x.
• A can send a message of the form (params, d) where d ∈ C[`ckt, `inp, `out]. Upon sending this message,
A is required to honestly compute pd = InduceGen(U, d), making use of any additional random oracle
queries, and A appends (d, pd) to an auxiliary tape.

Let SimUGen and SimRO be PPT algorithms. Consider the following two experiments:

RealA(1λ):

1. The random oracle RO is implemented by assigning random outputs to each unique query made to RO.
2. U ← UniversalGenRO(1λ).
3. A(1λ, U) is executed, where every message of the form (RO, x) receives the response RO(x).
4. Upon termination of A, the output of the experiment is the final output of the execution of A.

IdealASimUGen,SimRO(1λ):

1. A truly random function F that maps `ckt bits to `out bits is implemented by assigning random `out-bit
outputs to each unique query made to F . Throughout this experiment, a Parameters Oracle O is
implemented as follows: On input d, where d ∈ C[`ckt, `inp, `out], O outputs d(F (d)).

2. (U, τ)← SimUGen(1λ). Here, SimUGen can make arbitrary queries to the Parameters Oracle O.
3. A(1λ, U) and SimRO(τ) begin simultaneous execution.

- Whenever A sends a message of the form (RO, x), this is forwarded to SimRO, which produces a
response to be sent back to A.

- SimRO can make any number of queries to the Parameter Oracle O.
- Finally, after A sends any message of the form (params, d), the auxiliary tape of A is examined

until an entry of the form (d, pd) is added to it. At this point, if pd is not equal to d(F (d)), then
experiment aborts, resulting in an Honest Parameter Violation.

4. Upon termination of A, the output of the experiment is the final output of the execution of A.

Definition 2.10. A universal parameters scheme U = (UniversalGen, InduceGen), parameterized by poly-
nomials `ckt, `inp and `out, is said to be adaptively secure in the random oracle model if there exist PPT
algorithms SimUGen and SimRO such that for all PPT adversaries A, the following hold:

Pr[IdealASimUGen,SimRO(1λ) aborts ] = 010

and
|Pr[RealA(1λ) = 1]− Pr[IdealASimUGen,SimRO(1λ) = 1]| ≤ negl(λ)

10The definition in [HJK+14] only requires this probability to be negligible in λ. However, the construction actually achieves
zero probability of Honest Parameter Violation. Hence, for the simplicity of our proof, we will use this definition.
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Hofheinz et al. [HJK+14] construct a universal parameters scheme that is adaptively secure in the random
oracle model, assuming a secure indistinguishability obfuscator, a selectively secure puncturable PRF and
an injective one way function.

2.8 RSA Assumption

Assumption 1 (RSA [RSA78]). Let λ be the security parameter. Let N = pq be the RSA modulus, where
p, q are randomly chosen, distinct, λ-bit primes. Let e be a randomly chosen positive integer less than and
relatively prime to φ(N) = (p−1)(q−1) and y ← ZN . For any PPT algorithm A, Pr[x← A(N, e, y)and xe =
y] ≤ negl(λ).

3 Universal Signature Aggregators

In this section, we define the notion of universal signature aggregators. Let `ver, `vk, `msg, `sig be polyno-
mials. Given any security parameter λ, `ver(λ) represents a bound on the size of verification circuits, `vk(λ)
represents a bound on the size of verification key, `msg(λ) is a bound on the length of messages signed and
`sig(λ) is a bound on the size of signatures. For simplicity of notation, we will drop the dependence on λ
when the context is clear.

A universal signature aggregator (`ver, `vk, `msg, `sig)-UniversalSigAgg consists of three algorithms UniversalSetup,
UniversalAgg and UniversalVerify defined as follows.

• UniversalSetup(1λ) is a randomized algorithm that takes as input security parameter λ and outputs
public parameters PP.

• UniversalAgg(PP, {(Verifyi,VKi,mi, σi)}ti=1) is a deterministic algorithm that takes as input security
parameter λ, public parameters PP and t tuples (Verifyi,VKi,mi, σi) (for some arbitrary t) where each
tuple is (`ver, `vk, `msg, `sig)-length qualified. It outputs an aggregate signature σagg whose length is
polynomial in λ, but independent of t.

• UniversalVerify(PP, {(Verifyi,VKi,mi)}ti=1, σagg) is a deterministic algorithm that takes as input secu-
rity parameter λ, public parameters PP, t tuples (Verifyi,VKi,mi) that are (`ver, `vk, `msg)-length
qualified, and an aggregated signature σagg. It outputs either 0 or 1.

For our constructions, we will assume that all verification circuits have `ver bit representation, all ver-
ification keys have length `vk, all messages signed have length `msg and the corresponding signatures have
length `sig.

Correctness Let {(Verifyi,VKi,mi, σi)}ti=1 be any t distinct tuples that are (`ver, `vk, `msg, `sig)-length
qualified and for all i ≤ t, Verifyi(VKi,mi, σi) = 1. For all λ ∈ N, PP ← UniversalSetup(1λ) and σagg ←
UniversalAgg(1λ, PP, {(Verifyi,VKi,mi, σi)}i), we require that UniversalVerify(PP, {(Verifyi,VKi,mi)}i, σagg) =
1.

3.1 Security of Universal Signature Aggregators

We now proceed to the formal security definition for universal signature aggregators.
Let S = (S.Gen,S.Sign,S.Verify) be a secure (`ver, `vk, `msg, `sig)-length qualified signature scheme.

Consider the following security game between an adversary A and the challenger.

ExpA,S(λ):

• Setup Phase Challenger chooses (SK,VK) ← S.Gen(1λ), computes PP ← UniversalSetup(1λ) and
sends PP,VK to A.
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• Signing Phase A sends signing query xi, and receives σi ← S.Sign(SK, xi).

• Forgery A finally outputs t tuples (Verifyi,VKi,mi) and an aggregated forgery σagg.

A wins if there exists i∗ ∈ [t] such that Verifyi∗ = S.Verify, VKi∗ = VK, message mi∗ was not
queried during the signing phase and UniversalVerify(PP, {(Verifyi,VKi,mi)}, σagg) = 1. Let AdvA,S(λ) =
Pr[A wins ExpA,S(λ)].

Definition 3.1. Let S be a (`ver, `vk, `msg, `sig)- length qualified secure signature scheme. A universal
signature aggregator scheme (`ver, `vk, `msg, `sig)-UniversalSigAgg is secure with respect to scheme S if for all
PPT adversaries A, AdvA,S(λ) is negligible in λ.

We can also define a weaker selective notion where the adversary A chooses the message m correspond-
ing to (S.Verify,VK) before receiving the public parameters PP. More formally, the selective experiment
ExpselA,S(λ) is defined as follows.

ExpselA,S(λ):

• A sends a message m to the challenger.

• Setup Phase Challenger computes (SK,VK) ← S.Gen(1λ), PP ← UniversalSetup(1λ) and sends
PP,VK to A.

• Signing Phase A sends signing query xi 6= m, and receives σi ← S.Sign(SK, xi).

• Forgery A finally outputs t tuples (Verifyi,VKi,mi) and an aggregated forgery σagg.

A wins if there exists an i∗ ∈ [t] such that Verifyi∗ = S.Verify, VKi∗ = VK, mi∗ = m and UniversalVerify(PP,
{(Verifyi,VKi,mi)}, σagg) = 1. Let AdvselA,S(λ) = Pr[A wins ExpselA,S(λ)].

Definition 3.2. Let S be a (`ver, `vk, `msg, `sig)- length qualified secure signature scheme. A universal
signature aggregator scheme (`ver, `vk, `msg, `sig)-UniversalSigAgg is selectively secure with respect to scheme

S if for all PPT adversaries A, AdvselA,S(λ) is negligible in λ.

In certain situations, it may be possible that the number of signatures to be aggregated is known in
advance. In such a scenario, we can use bounded universal signature aggregators (defined below).

Definition 3.3. An n-bounded universal signature aggregator scheme (`ver, `vk, `msg, `sig)-UniversalSigAgg
= (UniversalSetup, UniversalAgg, UniversalVerify) is a universal signature aggregator in which UniversalSetup
takes an additional input 1n. The public parameters output by UniversalSetup have size bounded by some
polynomial in λ and n. However, the aggregated signature has size bounded by a polynomial in λ, but is
independent of n.

4 Universally Aggregating Unique Signatures

We will now describe our universal signature aggregator (`ver, `vk, `msg, `sig)-UniversalSigAgg. Let iO be a
secure indistinguishability obfuscation scheme, F a puncturable PRF with key space K, punctured key space
Kp, domain X = {0, 1}`ver×{0, 1}`vk×{0, 1}`msg and range Y = Z∗N for some randomly chosen RSA modulus
N , and algorithms F.setup, F.puncture, F.eval. Our scheme consists of the three algorithms UniversalSetup,
UniversalAgg and UniversalVerify.
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UniversalSetup(1λ) UniversalSetup first chooses an RSA modulus N and e← Z∗φ(N). Next, it chooses a PRF

keyK ← F.setup(1λ) and computes obfuscations of the programs TransformN,K
11 and Transform-ImageN,K,e

12

defined below. It sets the public parameters to be PP = (iO(TransformN,K), iO(Transform-ImageN,K,e), N, e).

TransformN,K :

Inputs: Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg , σ′ ∈ {0, 1}`sig .
Constants : RSA modulus N ∈ N, K ∈ K.

if Verify′(VK′,m′, σ′) = 0 then
Output ⊥.

else
Output F (K,Verify′||VK′||m′).

end if

Transform-ImageN,K,e :

Inputs: Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg .
Constants : RSA modulus N ∈ N, K ∈ K, e ∈ Zφ(N).

Let w = F (K,Verify′||VK′||m′). Output we (mod N).

UniversalAgg(PP, {(Verifyi,VKi,mi, σi)}ni=1): Let PP = (P1, P2, N, e). UniversalAgg first checks if the n
tuples are distinct. If not, it outputs ⊥. Else, it computes ti = P1(Verifyi,VKi,mi, σi) for each i ≤ n. If
ti =⊥ for some i, then UniversalAgg outputs ⊥, else it outputs σagg =

∏
i ti (mod N).

UniversalVerify(PP, {(Verifyi,VKi,mi)}ni=1, σagg): Let PP = (P1, P2, N, e). UniversalVerify first checks if all
n tuples are distinct. If not, it outputs 0. Else, it computes, for all i ≤ n, si = Transform-Image(Verifyi,VKi,mi).
If (
∏
i si) = σeagg (mod N), it outputs 1, else it outputs 0.

Correctness: Let {(Verifyi,VKi,mi, σi)}ni=1 be n tuples such that they are all distinct and Verifyi(VKi,mi, σi) =
1 for all i ≤ n. Fix any λ ∈ N, PP← UniversalSetup(1λ), (σagg)← UniversalAgg(PP, {(Verifyi,VKi,mi, σi)}).
Then,

σeagg = (
∏

Transform(Verifyi,VKi,mi, σi))
e (mod N)

= (
∏

F (K,Verifyi||VKi||mi))
e (mod N)

= (
∏

F (K,Verifyi||VKi||mi)
e) (mod N)

= (
∏

Transform-ImageN,K,e(Verifyi,VKi,mi)) (mod N)

Also, note that the size of the aggregated signature (σagg ∈ Z∗N ) depends only on the security parameter λ,
but not on the number of signatures aggregated.

4.1 Proof of Security

In this subsection, we will show that our construction from Section 4 is selectively secure with respect to
secure unique signature schemes.

11Padded to be of the same size as TransformAlt and Transform-Reject.
12Padded to be of the same size as Transform-Image-1.
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Theorem 4.1. Assuming iO is a secure indistinguishability obfuscator, F is a selectively secure puncturable
PRF and RSA is secure, for all (`ver, `vk, `msg, `sig)-length qualified secure unique signature schemes S, the
universal signature aggregator (`ver, `vk, `msg, `sig)-UniversalSigAgg is selectively secure with respect to S.

Let S = (S.Gen,S.Sign,S.Verify) be a secure (`ver, `vk, `msg, `sig)-length qualified unique signature
scheme, and Att a PPT adversary. In order to prove this theorem, we will define a sequence of experiments
Game 0, . . ., Game 3, where Game 0 = ExpselAtt,S .

4.1.1 Sequence of Games

Game 0: This game corresponds to ExpselAtt,S . The adversary Att first selectively sends message m, and then
receives the verification key and public parameters for the aggregator. Next, the adversary makes signing
queries, and finally submits the forgery.

1. Att sends message m.
2. Compute (SK,VK) ← S.Gen(1λ). Choose an RSA modulus N , e ← Z∗φ(N), K ← F.setup(1λ) and set

PP = (iO(TransformN,K), iO(Transform-ImageN,K,e), N, e). Send PP, VK to Att.
3. For each signing query xi 6= m, compute σi ← S.Sign(SK, xi) and send σi to Att.
4. Att sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. Att wins if ∃i∗ ∈ [n] such that Verifyi∗ =
S.Verify, VKi∗ = VK and mi∗ = m and UniversalVerify( PP, {(Verifyi, VKi, mi) }, σagg) = 1.

Game 1: This game is exactly similar to the previous one, except that the program Transform is replaced by
Transform-Reject13 which outputs ⊥ if the input tuples is (S.Verify,VK,m, σ) even if S.Verify(VK,m, σ) = 1.
Also, it uses a PRF key punctured at y = S.Verify||VK||m.

1. Att sends message m.
2. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e← Z∗φ(N), K ← F.setup(1λ).

Set y = S.Verify||VK||m, compute K{y} ← F.puncture(K, y) and PP = (iO(Transform-Rejecty,N,K{y}),

iO(Transform-ImageN,K,e), N, e). Send PP, VK to Att.
3. For each signing query xi 6= m, compute σi ← S.Sign(SK, xi) and send σi to Att.
4. Att sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. Att wins if ∃i∗ ∈ [n] such that Verifyi∗ =
S.Verify, VKi∗ = VK and mi∗ = m and UniversalVerify( PP, {(Verifyi, VKi, mi) }, σagg) = 1.

Transform-Rejecty,N,K{y} :

Inputs: Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg , σ′ ∈ {0, 1}`sig .
Constants : y ∈ {0, 1}`ver × {0, 1}`vk × {0, 1}`msg , RSA modulus N ∈ N,
K{y} ∈ Kp.

if Verify′(VK′,m′, σ′) = 0 then
Output ⊥.

else if Verify′||VK′||m′ = y then
Output ⊥.

else
Output F.eval(K{y},Verify′||VK′||m′).

end if

Game 2: This game is similar to the previous one, except that the program Transform-Image is replaced
by Transform-Image-114. It uses a PRF key punctured at y = S.Verify||VK||m. For input y, it outputs a
hardwired constant z. In this game, z is set to be F (K, y)e.

13Padded appropriately to be of the same size as Transform and TransformAlt.
14Padded appropriately to be of the same size as Transform-Image.
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1. Att sends message m.
2. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e← Z∗φ(N) and K ← F.setup(1λ).

Set y = S.Verify||VK||m. Compute K{y} ← F.puncture(K, y), w = F (K, y) and z = we (mod N).
Set PP = (iO(Transform-Rejecty,N,K{y}), iO(Transform-Image-1y,N,K{y},z,e), N , e) and send PP, VK

to Att.
3. For each signing query xi 6= m, compute σi ← S.Sign(SK, xi) and send σi to Att.
4. Att sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. Att wins if ∃i∗ ∈ [n] such that Verifyi∗ =
S.Verify, VKi∗ = VK and mi∗ = m and UniversalVerify( PP, {(Verifyi, VKi, mi) }, σagg) = 1.

Transform-Image-1y,N,K{y},z,e :

Inputs: Verify′ ∈ {0, 1}`ver ,VK′ ∈ {0, 1}`vk ,m′ ∈ {0, 1}`msg .
Constants: y ∈ {0, 1}`ver × {0, 1}`vk × {0, 1}`msg , RSA modulus N ∈ N,
K{y} ∈ Kp, z ∈ Z∗N , e ∈ Z∗φ(N).

if Verifyi||VKi||mi = y then
Output z.

else
Let w = F.eval(K{y},Verify′||VK′||m′).
Output we.

end if

Game 3: In this game, the challenger chooses z at random.

1. Att sends message m.
2. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e← Z∗φ(N) and K ← F.setup(1λ).

Set y = S.Verify||VK||m. Compute K{y} ← F.puncture(K, y) and z ← Z∗N .

Set PP = (iO(Transform-Rejecty,N,K{y}), iO(Transform-Image-1y,N,K{y},z,e), N, e) and send PP, VK to
Att.

3. For each signing query xi 6= m, compute σi ← S.Sign(SK, xi) and send σi to Att.
4. Att sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. Att wins if all the n tuples are distinct and
∃i∗ ∈ [n] such that Verifyi∗ = S.Verify, VKi∗ = VK and mi∗ = m and UniversalVerify( PP, {(Verifyi,
VKi, mi) }, σagg) = 1.

4.1.2 Analysis

Let AdvjAtt denote the advantage of adversary Att in Game j.

Lemma 4.1. Assuming iO is a secure indistinguishability obfuscator and S is a secure (`ver, `vk, `msg, `sig)-
length qualified unique signature scheme, for any PPT adversary Att,

Adv0Att − Adv1Att ≤ negl(λ).

Proof. Suppose, on the contrary, there exists a PPT adversary Att such that Adv0Att − Adv1Att = ε, where ε
is non-negligible in λ. Assuming O is a secure indistinguishability obfuscator, we will use Att to construct
a PPT algorithm B that breaks the security of S. Here, we will crucially use the fact that S is a unique
signature scheme; that is, there is a unique accepting signature σ ∈ {0, 1}`sig corresponding to verification
key VK and message m.

First, let us consider the following altered circuit TransformAltj,b,y,N,K
15 which takes as input a tuple

(Verify′,VK′,m′, σ′) and outputs ⊥ if Verify′ = S.Verify, VK′ = VK and the jth bit of σ′ is b.

15Padded appropriately to be of the same size as Transform and Transform-Reject.
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TransformAltj,b,y,N,K :

Inputs: Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg , σ′ ∈ {0, 1}`sig .
Constants : j ∈ [`sig], b ∈ {0, 1}, y ∈ {0, 1}`ver×{0, 1}`vk×{0, 1}`msg , RSA modulus
N ∈ N,K ∈ K.

if Verify′(VK′,m′, σ′) = 0 then
Output ⊥.

else if Verify′||VK′||m′ = y and σ′[j] = b then
Output ⊥.

else
Output F (K,Verify′||VK′||m′).

end if

We will now state two observations which will be useful for proving our claim. Fix a message m ∈
{0, 1}`msg . Let (SK,VK) ← S.Setup(1λ), σ ← S.Sign(SK,m) and y = S.Verify||VK||m. Let σ[j] denote the
jth bit of σ.

Observation 4.1. For all j ∈ [`sig], the circuits TransformN,K and TransformAltj,1−σ[j],y,N,K are functionally
identical.

Observation 4.2. For all j ∈ [`sig], the circuits Transform-Rejecty,N,K{y} and TransformAltj,σ[j],y,N,K are
functionally identical.

Both these observations follow from the fact that S is a unique signature scheme and the correctness of
punctured key on non-punctured inputs.

Next, we define Game-Alt j, b, which is exactly similar to Game 0 and Game 1, except that the challenger
outputs O(1λ,TransformAltj,b,y,N,K) (instead of O(1λ,TransformN,K) or O(1λ,Transform-Rejecty,N,K{y})) as
part of the public parameters PP. Let Eσj be the event that σ[j] = 1, where σ is the unique signature
corresponding to challenge message m output by Att.

From these observations, it follows that O(1λ,TransformN,K) and O(1λ,TransformAltj,1−σ[j],y,N,K) are

computationally indistinguishable (by the security of O) and similarly, O(1λ,TransformAltj,σ[j],y,N,K) and

O(1λ,Transform-Rejecty,N,K{y}) are computationally indistinguishable. Hence, for all j ≤ `sig, we get the
following equations:∣∣Pr[(Att wins in Game 0) |Eσj ]− Pr[(Att wins in Game-Alt j, 0) |Eσj ]

∣∣ ≤ negl(λ), (1)

∣∣Pr[(Att wins in Game 0) |¬Eσj ]− Pr[(Att wins in Game-Alt j, 1) |¬Eσj ]
∣∣ ≤ negl(λ), (2)

∣∣Pr[(Att wins in Game 1) |Eσj ]− Pr[(Att wins in Game-Alt j, 1) |Eσj ]
∣∣ ≤ negl(λ) (3)

∣∣Pr[(Att wins in Game 1) |¬Eσj ]− Pr[(Att wins in Game-Alt j, 0) |¬Eσj ]
∣∣ ≤ negl(λ) (4)

Continuing with our proof, let us assume Att = (Att1,Att2). Att1 is a randomized algorithm that on
input 1λ, outputs message m ∈ {0, 1}`msg which it sends to the challenger, and state st which is sent to Att2.
Att2 is a randomized algorithm that receives state m, st from Att1 and inputs PP,VK from challenger. It
makes signature queries before outputting the forgery. We will now describe algorithm B that interacts with
a unique signature S challenger. Let τ = 32λ

ε2 .

1. B first runs Att1(1λ) and receives message m and state st. It sends m to S challenger, and receives
VK.

2. For j = 1 to `sig, do
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(a) Set countj,0 = 0. For i = 1 to τ ,

i. Choose RSA modulus N , e ← Z∗φ(N) and K ← F.setup(1λ). Set y = S.Verify||VK||m,

PP =(O(1λ,TransformAltj,0,y,N,K), O(1λ,Transform-ImageN,K,e), N, e) and send PP,VK,m, st
to Att2 as input. Att2 uses fresh randomness for each run.

ii. For each signing query xr, B forwards xr to the challenger, receives σr, which it sends to Att2.

iii. Finally, Att2 outputs σagg and n tuples. If Att wins, B increments countj,0.

(b) Set countj,1 = 0. For i = 1 to τ

i. Choose RSA modulus N , e ← Z∗φ(N) and K ← F.setup(1λ). Set y = S.Verify||VK||m,

PP =(O(1λ,TransformAltj,1,y,N,K), O(1λ,Transform-ImageN,K,e), N, e) and send PP,VK,m, st
to Att2 as input. Att2 uses fresh randomness for each run.

ii. For each signing query xr, B forwards xr to the challenger, receives σr, which it sends to Att2.

iii. Finally, Att2 outputs σagg and n tuples. If Att wins, B increments countj,1.

(c) If countj,0 > countj,1, B sets αj = 1, else it sets αj = 0.

3. Finally, B outputs σ′ = α1 . . . α`sig as forgery to challenger.

We will now analyze the winning probability of B. In order to do this, we will first define a subset of
verification keys which are ‘good’ (i.e. verification keys for which the difference between the advantages of
Att in Game 0 and Game 1 is ‘large’) and then show that a non-negligible fraction of the verification keys are
‘good’. This technique is similar to the heavy row lemma used in [OO98].

For any (m, st)← Att1(1λ), let Goodm,st ⊂ VK be the set of verification keys VK such that the following
holds:

Pr[Att2(PP,VK,m, st) wins in Game 0]− Pr[Att2(PP,VK,m, st) wins in Game 1] ≥ ε/2,

where the probability is taken over the random coins used by Att2 and the random coins used by the challenger
to compute PP and the signatures.

Let E denote the event (m, st) ← Att1(1λ) and (SK,VK) ← S.Gen(1λ) and VK ∈ Goodm,st. We can
also view E as the set of all tuples (m, st,VK) such that (m, st)← Att1(1λ) and (SK,VK)← S.Gen(1λ) and
VK ∈ Goodm,st.

Claim 4.1. Pr[E ] ≥ ε/2, where the probability is over the random coins of Att1 and S.Gen.

Proof.

ε = Pr[Att wins in Game 0]− Pr[Att wins in Game 1]

= Pr[Att wins in Game 0|E ] Pr[E ] + Pr[Att wins in Game 0|¬E ] Pr[¬E ]

− Pr[Att wins in Game 1|E ] Pr[E ]− Pr[Att wins in Game 1|¬E ] Pr[¬E ]

= Pr[E ](Pr[Att wins in Game 0|E ]− Pr[Att wins in Game 1|E ])

+ Pr[¬E ](Pr[Att wins in Game 0|¬E ]− Pr[Att wins in Game 1|¬E ])

≤Pr[E ] + ε/2

This implies Pr[E ] ≥ ε/2.

Let us assume event E . We will now compute the probability that B fails to recover forgery, given E . Let
pj denote the probability that the jth bit of forgery σ′ is incorrect, given E .

Let v = (m, st,VK) ∈ E . Define θvj,b = Pr[Att2(PP,VK,m, st) wins in Game-Alt j, b|v]. Then, the expected
value of countj,b given v, E[countj,b|v] = θvj,b · τ . Note that in each of the runs, the random coins used by
Att2 and the random coins used by the challenger to compute PP and the signatures are chosen afresh. By
Chernoff-Hoeffding bounds,
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Pr
[∣∣countj,0 − θvj,0 · τ ∣∣ > ( ε4) · τ ∣∣∣v] ≤ exp

(
−
(
ε2

32

)
· τ
)

(5)

Pr
[∣∣countj,1 − θvj,1 · τ ∣∣ > ( ε4) · τ ∣∣∣v] ≤ exp

(
−
(
ε2

32

)
· τ
)

(6)

Setting τ = 32λ
ε2 , we get that the above probabilities are bounded by a negligible function in λ.

We will now compute pj .
pj = Pr

[
αj 6= σ[j]

∣∣E] =
∑
v∈E Pr

[
αj 6= σ[j]

∣∣v] ·Pr
[
v
∣∣E]. Let us focus on one such term Pr

[
αj 6= σ[j]

∣∣v]
for some v ∈ E . Pr

[
αj 6= σ[j]

∣∣v] = Pr
[
αj = 0 and σ[j] = 1

∣∣v]+ Pr
[
αj = 1 and σ[j] = 0

∣∣v].
Since S is a unique signature scheme, given v, σ[j] is fixed. If σ[j] = 1, then,

Pr
[
αj 6= σ[j]

∣∣v]
= Pr

[
αj = 0 and σ[j] = 1

∣∣v]
= Pr

[
αj = 0

∣∣v]
= Pr

[
countj,0 ≤ countj,1

∣∣v]
≤ Pr

[
countj,0 ≤ (θvj,0 + θvj,1)τ/2

∣∣v]+ Pr
[
countj,1 ≥ (θvj,0 + θvj,1)τ/2

∣∣v]
= Pr

[
countj,0 ≤ θvj,0τ/2− (θvj,0 − θvj,1)τ/2

∣∣v]+ Pr
[
countj,1 ≥ θvj,1 + (θvj,0 − θvj,1)τ/2

∣∣v] (7)

Now, note that if v ∈ E and σ[j] = 1, then

θvj,0 = Pr[Att2(PP,VK,m, st) wins in Game-Alt j, 0
∣∣v] (8)

≥ Pr[Att2(PP,VK,m, st) wins in Game 0
∣∣v]− negl(λ) (9)

≥ Pr[Att2(PP,VK,m, st) wins in Game 1
∣∣v] + ε/2− negl(λ) (10)

≥ Pr[Att2(PP,VK,m, st) wins in Game-Alt j, 1
∣∣v] + ε/2− negl(λ) (11)

= θvj,1 + ε/2− negl(λ) (12)

The transitions from Equation 8 and 9, and from Equation 10 to 11 follow from Equations 1 and 3 respectively,
while the transition from Equation 9 to 10 uses the fact that v ∈ E . Hence, getting back to Equation 7,

Pr
[
countj,0 ≤ θvj,0τ − (θvj,0 − θvj,1)τ/2

∣∣v]+ Pr
[
countj,1 ≥ θvj,1τ + (θvj,0 − θvj,1)τ/2

∣∣v]
≤ Pr

[
countj,0 ≤ θvj,0τ − ε · τ/4

∣∣v]+ Pr
[
countj,1 ≥ θvj,1τ + ε · τ/4

∣∣v]
Now, we can use Equations 5 and 6 to conclude that Pr

[
αj 6= σ[j]

∣∣v] ≤ negl(λ). A similar argument

follows if v is such that σ[j] = 0. Therefore, Pr
[
αj 6= σ[j]

∣∣E] ≤ negl(λ). Hence, Pr[B fails |E ] ≤ negl(λ).
This implies Pr[B wins] ≥ Pr[B wins |E ] Pr[E ] ≥ ε/2 − negl(λ). Since this violates the unforgeability of the
signature scheme, we have our contradiction.

Claim 4.2. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary Att,

Adv1Att − Adv2Att ≤ negl(λ).

Proof. Suppose there exists a PPT adversary Att such that Adv1Att − Adv2Att = ε. We will construct a PPT
algorithm B that constructs two circuits C0 and C1 with identical functionality, and uses Att to distinguish
between iO(C0) and iO(C1), thereby breaking the security of iO.
B receives m from Att, chooses (SK,VK) ← S.Gen(1λ), RSA modulus N , e ← Z∗φ(N) and K ←

F.setup(1λ). It sets y = S.Verify||VK||m and computesK{y} ← F.puncture(K, y). It sets C0 = Transform-ImageN,K,e
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and C1 = Transform-Image-1y,N,K{y},z,e, and sends C0, C1 to the iO challenger. It receives C = iO(Cb). B
sets PP = (iO(Transform-Rejecty,N,K{y}), C,N, e) and sends PP,VK to Att.

Note that B can respond to the signing queries perfectly, since it has SK. Finally, if Att wins, then B
outputs 0, else it outputs 1. Clearly, if C = iO(C0), then it corresponds to Game 1, else it corresponds to
Game 2.

To conclude, we need to argue that C0 and C1 have identical functionality. This follows from the
correctness property of puncturable PRFs.

Claim 4.3. Assuming F is a selectively secure puncturable PRF, for any PPT adversary Att,

Adv2Att − Adv3Att ≤ negl(λ).

Proof. Suppose there exists a PPT adversary Att such that Adv2Att − Adv3Att = ε. We will construct a PPT
algorithm B that uses Att to break the security of puncturable PRF F with advantage ε.

First, B receives the message m from Att. As in Game 2 and Game 3, it computes (SK,VK)← S.Gen(1λ),
chooses an RSA modulus N and e← Z∗φ(N). Next, it sends y = S.Verify||VK||m as the challenge to the PRF

challenger. B receives a punctured key K{y} and z ∈ Z∗N , where z = F (K, y) or z ← Z∗N . B sets the public
parameters PP=(iO(Transform-Rejecty,N,K{y}),iO(Transform-Image-1y,N,K{y},z,e), N , e). It sends PP,VK
to Att.

The signing phase and forgery phase are exactly similar in Game 2 and Game 3. For each signing query
xi, B sends S.Sign(SK, xi) to Att. Finally, Att outputs the forgery σagg and n tuples {(Verifyi, VKi, mi)}.

Note that if z = F (K, y), then B simulates Game 2 perfectly. If z ← Z∗N , B simulates Game 3 perfectly.
This concludes our proof.

Claim 4.4. Assuming RSA is secure, for any PPT adversary Att, Adv3Att ≤ negl(λ).

Proof. Suppose there exists a PPT adversary Att such that Adv3Att = ε. We will construct a PPT algorithm
B that breaks the RSA assumption with advantage ε.
B receives message m from Att. It receives the RSA tuple (N, e, z) from the RSA challenger. B

chooses (SK,VK) ← S.Gen(1λ), K ← F.setup(1λ). Next, it sets y = Verify||VK||m and computes K{y} ←
F.puncture(K, y). It sets PP = (iO(1λ(Transform-Rejecty,N,K{y}), iO(Transform-Image-1y,N,K{y},z,e), N , e)
and sends PP, VK to Att.

Att sends signature queries, which B can compute by itself, since it has the signing key SK. Fi-
nally, Att outputs forgery σagg along with n tuples {Verifyi,VKi,mi}. If Att wins, then all n tuples are
distinct, and there exists i∗ ∈ [n] such that Verifyi∗ = S.Verify, VKi∗ = VK, mi∗ = m and σeagg =(∏

i 6=i∗ Transform-Image-1y,N,K{y},z,e(Verifyi,VKi,mi)
)
z (mod N). For all i 6= i∗, Transform-Image-1y,N,K{y},z,e

outputs F (K, Verifyi||VKi||mi)
e on input (Verifyi, VKi, mi). Therefore,

(
σagg∏

i6=i∗ F (K,Verifyi||VKi||mi)

)e
= z

(mod N).

Using the above claims, it follows that any PPT adversary has negligible advantage in Game 0, assuming
iO is a secure indistinguishability obfuscator, F is a selectively secure puncturable PRF and the RSA
assumption holds. Therefore, the construction in Section 4 is selectively secure with respect to all secure
unique signature schemes.

5 Universal Aggregation of Arbitrary Signatures Using VBB Ob-
fuscation

In this section, we will describe our construction based on virtual black box obfuscation. The construction
is similar to the one in Section 4, the only difference being in program Transform-VBB, which now takes
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some additional inputs and has additional constants hardwired. The additional inputs/constants are used
for “oracle assimilation” (see Section 1 for a discussion on this technical issue).

We will assume that all signing algorithms (corresponding to schemes whose signatures need to be aggre-
gated) use at most `rnd random bits to compute signatures, for some polynomial `rnd. We use a pseudorandom
generator PRG : {0, 1}` ← {0, 1}2` (where ` is some polynomial in λ), a (standard) PRF F̃ with key space
K̃, domain X̃ and range Ỹ = {0, 1}`rnd and a puncturable PRF F as in Section 4.

Our universal signature aggregator consists of the three algorithms UniversalSetup, UniversalAgg and
UniversalVerify described below.

UniversalSetup(1λ) UniversalSetup first chooses random primes p, q ∈ Θ(2λ), sets the RSA modulus N =
pq. It chooses e ← Z∗φ(N), PRF key K ← F.setup(1λ) as in Section 4. It computes obfuscations of

the programs Transform-VBBN,K
16 and Transform-ImageN,K,e

17, where Transform-VBBN,K is defined be-
low, while Transform-ImageN,K,e is the same as in Section 4. It sets the public parameters to be PP =
(O(Transform-VBBN,K), O(Transform-ImageN,K,e), N , e).

Transform-VBBN,K :

Inputs: b ∈ {0, 1}, a ∈ {0, 1}`,Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg ,
σ′ ∈ {0, 1}`sig .

Constants : RSA modulus N ∈ N, K ∈ K.

if b = 0 then
Output ⊥.

else if Verify′(VK′,m′, σ′) = 0 then
Output ⊥.

else
Output F (K,Verify′||VK′||m′).

end if

UniversalAgg(PP, {(Verifyi,VKi,mi, σi)}ni=1): Let PP = (P1, P2, N, e). UniversalAgg first checks that all the
n tuples are distinct. If not, it outputs ⊥. Else, it computes ti = P1(Verifyi,VKi,mi, σi) for each i ≤ n. If
ti =⊥ for some i, then UniversalAgg outputs ⊥, else it outputs σagg =

∏
i ti (mod N).

UniversalVerify(PP, {(Verifyi,VKi,mi)}ni=1, σagg): Let PP = (P1, P2, N, e). UniversalVerify checks that the n
tuples are distinct. If not, it outputs 0. Else, it computes, for all i ≤ n, si = Transform-Image(Verifyi,VKi,mi).
If (
∏
i si) = σeagg (mod N), it outputs 1, else it outputs 0.

5.1 Proof of Security

We will now prove that the construction in Section 5 is selectively secure with respect to all secure signature
schemes.

Theorem 5.1. Assuming O is a secure virtual black-box obfuscator for a class of circuits C (as defined in
Section 5.1.3), F is a selectively secure puncturable PRF, F̃ is a secure PRF, PRG is a secure pseudorandom
generator and RSA is secure, for all (`ver, `vk, `msg, `sig)-length qualified signature schemes S, the universal
signature aggregator (`ver, `vk, `msg, `sig)-UniversalSigAgg is selectively secure with respect to S.

We will now describe the intermediate hybrid experiments.

16Padded appropriately to be of the same size as Transform-VBB-1, Transform-VBB-2, Transform-VBB-3 defined later in this
section.

17Padded appropriately to be of the same size as Transform-Image-1 as in Section 4.
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5.1.1 Sequence of Games

Game 0: This game corresponds to ExpselAtt,S .

1. Att sends message m.
2. Compute (SK,VK) ← S.Gen(1λ). Choose an RSA modulus N , e ← Z∗φ(N), K ← F.setup(1λ) and set

PP = (O(Transform-VBBN,K),O(Transform-ImageN,K,e), N, e). Send PP, VK to Att.
3. For each signing query xi 6= m, compute σi ← S.Sign(SK, xi) and send σi to Att.
4. Att sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. Att wins if ∃i∗ ∈ [n] such that Verifyi∗ =
S.Verify, VKi∗ = VK and mi∗ = m and UniversalVerify( PP, {(Verifyi, VKi, mi) }, σagg) = 1.

Game 1: In this game, the challenger uses pseudorandomly generated strings as randomness for the signature
queries.

1. Att sends message m.
2. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e← Z∗φ(N), K ← F.setup(1λ).

Choose standard PRF key K̃ ← F̃ .setup(1λ).
Set PP = (O(Transform-VBBN,K),O(Transform-ImageN,K,e), N, e). Send PP, VK to Att.

3. For each signing query xi 6= m, choose ρi ← {0, 1}`sig , compute ri = F̃ (K̃, ρi), σi ← S.Sign(SK, xi; ri)
and send σi to Att.

4. Att sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. Att wins if ∃i∗ ∈ [n] such that Verifyi∗ =
S.Verify, VKi∗ = VK and mi∗ = m and UniversalVerify( PP, {(Verifyi, VKi, mi) }, σagg) = 1.

Game 2: In this game, the challenger uses the program Transform-VBB-1 instead of Transform-VBB. Unlike
Transform-VBB, Transform-VBB-1 uses the input a to check if PRG(a) is equal to the hardwired α. If the
‘mode’ bit is 0 and PRG(a) = α, then the program outputs the verification key VK and a signature on the
desired message.

1. Att sends message m.
2. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e← Z∗φ(N), K ← F.setup(1λ).

Choose PRF key K̃ ← F̃ .setup(1λ), α← {0, 1}2`.
Let Transform-VBB-118 be the circuit defined below.
Set PP =(O(Transform-VBB-1N,K,α,SK,K̃), O(Transform-ImageN,K,e), N, e). Send PP, VK to Att.

3. For each signing query xi 6= m, choose ρi ← {0, 1}`sig , compute ri = F̃ (K̃, ρi), σi ← S.Sign(SK, xi; ri)
and send σi to Att.

4. Att sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. Att wins if ∃i∗ ∈ [n] such that Verifyi∗ =
S.Verify, VKi∗ = VK and mi∗ = m and UniversalVerify( PP, {(Verifyi, VKi, mi) }, σagg) = 1.

18Padded appropriately to be of the same size as Transform-VBB, Transform-VBB-2 and Transform-VBB-3.
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Transform-VBB-1N,K,α,SK,K̃ :

Inputs: b ∈ {0, 1}, a ∈ {0, 1}`,Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg ,
σ′ ∈ {0, 1}`sig .

Constants : RSA modulus N ∈ N, K ∈ K, α ∈ {0, 1}2`, SK ∈ SK, K̃ ∈ K̃.

if b = 0 then
if PRG(a) 6= α then

Output ⊥.
else

Output (VK,S.Sign(SK,m′; F̃ (K̃, σ′))).
end if

else if Verify′(VK′,m′, σ′) = 0 then
Output ⊥.

else
Output F (K,Verify′||VK′||m′).

end if

Game 3: In this experiment, α is a pseudorandom string; i.e. α = PRG(a), where a← {0, 1}`.

1. Att sends message m.
2. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e← Z∗φ(N), K ← F.setup(1λ).

Choose a← {0, 1}` and set α = PRG(a). Choose PRF key K̃ ← F̃ .setup(1λ).
Set PP =(O(Transform-VBB-1N,K,α,SK,K̃), O(Transform-ImageN,K,e), N, e). Send PP, VK to Att.

3. For each signing query xi 6= m, choose ρi ← {0, 1}`sig , compute ri = F̃ (K̃, ρi), σi ← S.Sign(SK, xi; ri)
and send σi to Att.

4. Att sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. Att wins if ∃i∗ ∈ [n] such that Verifyi∗ =
S.Verify, VKi∗ = VK and mi∗ = m and UniversalVerify( PP, {(Verifyi, VKi, mi) }, σagg) = 1.

Game 4: This experiment is similar to the previous one, except that the challenger uses Transform-VBB-2
instead of Transform-VBB-1.

1. Att sends message m.
2. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e← Z∗φ(N), K ← F.setup(1λ).

Choose a← {0, 1}` and set α = PRG(a). Choose K̃ ← F̃ .setup(1λ).
Let Transform-VBB-219 be the circuit defined below.
Set y = S.Verify||VK||m, PP =(O(Transform-VBB-2y,N,K,α,SK,K̃), O(Transform-ImageN,K,e), N, e). Send

PP, VK to Att.
3. For each signing query xi 6= m, choose ρi ← {0, 1}`sig , compute ri = F̃ (K̃, ρi) and send σi =
S.Sign(SK, xi; ri) to Att.

4. Att sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. Att wins if ∃i∗ ∈ [n] such that Verifyi∗ =
S.Verify, VKi∗ = VK and mi∗ = m and UniversalVerify( PP, {(Verifyi, VKi, mi) }, σagg) = 1.

19Padded appropriately to be of the same size as Transform-VBB, Transform-VBB-1 and Transform-VBB-3.
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Transform-VBB-2y,N,K,α,SK,K̃ :

Inputs: b ∈ {0, 1}, a ∈ {0, 1}`,Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg ,
σ′ ∈ {0, 1}`sig .

Constants : y ∈ {0, 1}`ver × {0, 1}`vk × {0, 1}`msg ,RSA modulus N ∈ N, K ∈ K,

α ∈ {0, 1}2`, SK ∈ SK, K̃ ∈ K̃.

if b = 0 then
if PRG(a) 6= α then

Output ⊥.
else

Output (VK,S.Sign(SK,m′; F̃ (K̃, σ′))).
end if

else if Verify′(VK′,m′, σ′) = 0 then
Output ⊥.

else if Verify′||VK′||m′ = y then
Output ⊥.

else
Output F (K,Verify′||VK′||m′).

end if

Game 5: In this experiment, the challenger uses a key punctured at y instead of the master PRF key.

1. Att sends message m.
2. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e← Z∗φ(N), K ← F.setup(1λ).

Choose a← {0, 1}` and set α = PRG(a). Choose K̃ ← F̃ .setup(1λ).
Set y = S.Verify||VK||m, compute K{y} ← F.puncture(K, y) and z = F (K, y)e.

Let Transform-VBB-320 be the circuit defined below, while Transform-Image-121,e) is the same as in
Section 4.1 Set PP =(O(Transform-VBB-3y,N,K{y},α,SK,K̃), O(Transform-Image-1y,N,K{y},z,e).

Send PP, VK to Att.
3. For each signing query xi 6= m, choose ρi ← {0, 1}`sig , compute ri = F̃ (K̃, ρi) and send σi =
S.Sign(SK, xi; ri) to Att.

4. Att sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. Att wins if ∃i∗ ∈ [n] such that Verifyi∗ =
S.Verify, VKi∗ = VK and mi∗ = m and UniversalVerify( PP, {(Verifyi, VKi, mi) }, σagg) = 1.

20Padded appropriately to be of the same size as Transform-VBB, Transform-VBB-1 and Transform-VBB-2.
21Padded appropriately to be of the same size as Transform-Image-1.
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Transform-VBB-3y,N,K{y},α,SK,K̃ :

Inputs: b ∈ {0, 1}, a ∈ {0, 1}`,Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg ,
σ′ ∈ {0, 1}`sig .

Constants : y ∈ {0, 1}`ver×{0, 1}`vk×{0, 1}`msg , RSA modulus N ∈ N, K{y} ∈ Kp,
α ∈ {0, 1}2`, SK ∈ SK, K̃ ∈ K̃.

if b = 0 then
if PRG(a) 6= α then

Output ⊥.
else

Output (VK,S.Sign(SK,m′; F̃ (K̃, σ′))).
end if

else if Verify′(VK′,m′, σ′) = 0 then
Output ⊥.

else if Verify′||VK′||m′ = y then
Output ⊥.

else
Output F.eval(K{y},Verify′||VK′||m′).

end if

Game 6: Here the challenger chooses a uniformly random z ← Z∗N .

1. Att sends message m.
2. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e← Z∗φ(N), K ← F.setup(1λ).

Choose a← {0, 1}` and set α = PRG(a). Choose K̃ ← F̃ .setup(1λ).
Set y = S.Verify||VK||m, compute K{y} ← F.puncture(K, y) and z ← Z∗N .

Set PP =(O(Transform-VBB-3y,N,K{y},α,SK,K̃), O(Transform-Image-1y,N,K{y},z,e),e). Send PP, VK to
Att.

3. For each signing query xi 6= m, compute σi ← S.Sign(SK, xi) and send σi to Att.
4. Att sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. Att wins if ∃i∗ ∈ [n] such that Verifyi∗ =
S.Verify, VKi∗ = VK and mi∗ = m and UniversalVerify( PP, {(Verifyi, VKi, mi) }, σagg) = 1.

5.1.2 Analysis

We will now show that if a PPT adversary has non negligible advantage in Game i, then it has non-negligible
advantage in the next game. Some of the proofs are exactly similar to the corresponding ones in Section 4.1,
and hence we skip them in this section. Except the part involving oracle assimilation, the remaining proofs
are relatively easier. The step involving oracle assimilation is discussed in a separate subsection (Section
5.1.3).

Let AdvjAtt denote the advantage of adversary Att in Game j.

Claim 5.1. Assuming F̃ is a secure PRF, for any PPT adversary Att,

Adv0Att − Adv1Att ≤ negl(λ).

Proof. Suppose there exists an adversary Att such that Adv0Att − Adv1Att = ε. We will construct a PPT
algorithm B that uses Att and breaks the security of F̃ with advantage ε.
B receives message m from Att. It chooses (SK,VK) ← S.Gen(1λ), RSA modulus N , e ← Z∗φ(N) and

K ← F.setup(1λ). It sets PP =(O(Transform-VBBN,K), O(Transform-ImageN,K,e), e) and sends PP,VK to
Att.

24



For each signing query xi, B first chooses ρi ← {0, 1}`sig and sends ρi to the PRF challenger. In response,
it receives ri. B sends σi = S.Sign(SK, xi; ri) to Att.

Finally, Att outputs a forgery. If Att wins, then B outputs 1, indicating that the PRF challenger’s
responses were truly random. Else it outputs 0.

If the PRF challenger’s responses were truly random, then for each query ρi, ri is a truly random string.
Therefore, this corresponds to Game 0. If the PRF challenger’s responses were pseudorandom, then there
exists a PRF key K̃ such that for each query ρi, ri = F̃ (K̃, ρi). This corresponds to Game 1. Therefore,

AdvF̃B = ε.

Claim 5.2. Assuming O is a secure indistinguishability obfuscator, for any PPT adversary Att,

Adv1Att − Adv2Att ≤ negl(λ).

Proof. Suppose there exists a PPT adversary Att such that Adv1Att − Adv1Att = ε. We will construct a PPT
algorithm B that breaks the security of O with advantage ε.
B receives message m from Att. It chooses (SK,VK) ← S.Gen(1λ), RSA modulus N , e ← Z∗φ(N), K ←

F.setup(1λ), K̃ ← F̃ .setup(1λ) and α← {0, 1}2`. It sets C0 = Transform-VBBN,K , C1 = Transform-VBB-1N,K,α,SK,K̃
and sends C0, C1 to the O challenger. It receives an obfuscated circuit C ′ = O(Cb) in response, and sets
PP = (C ′, O(Transform-ImageN,K,e), e) and sends PP,VK to Att.

For each signing query xi, B first chooses ρi ← {0, 1}`sig and computes ri = F̃ (K̃, ρi). B sends σi =
S.Sign(SK, xi; ri) to Att.

Finally, Att outputs a forgery. If Att wins, then B outputs 0, else it outputs 1. Clearly, if b = 0, then this
corresponds to Game 1, else it corresponds to Game 2. Therefore, in order to show that AdvOB = ε, we need
to show that C0 and C1 have identical functionality.

This follows from the observation that with overwhelming probability, there exists no a ∈ {0, 1}` such
that α = PRG(a), since α is chosen uniformly at random. As a result, on input (0, a,Verify′,VK′,m′, σ′),
both circuits output ⊥ for all a,Verify′,VK′,m′, σ′. This concludes our proof.

Claim 5.3. Assuming PRG is a secure pseudorandom generator, for any PPT adversary Att,

Adv2Att − Adv3Att ≤ negl(λ).

Proof. Suppose there exists a PPT adversary Att such that Adv2Att − Adv3Att = ε. We will construct a PPT
algorithm B that breaks the security of PRG with advantage ε.
B receives α from the PRG challenger, where α ← {0, 1}` or α = PRG(a) for some a ← {0, 1}`. Note

that B can simulate either Game 1 or Game 2 perfectly using α. It chooses (SK,VK) ← S.Gen(1λ), RSA
modulus N , e← Z∗φ(N), K ← F.setup(1λ), K̃ ← F̃ .setup(1λ). B sets PP =(O(Transform-VBB-1N,K,α,SK,K̃),

O(Transform-ImageN,K,e), e) and sends PP,VK to Att.

For the signature queries, B uses SK. Finally, if Att wins, B outputs 1 (indicating that α ← {0, 1}2`).
Else it outputs 0. Clearly, AdvB = ε. This concludes our proof.

Lemma 5.1. Assuming O is a secure virtual black box obfuscator for a class of circuits C (defined in Section
5.1.3), F̃ is a secure pseudorandom function, PRG is a secure pseudorandom generator and S is a (`ver, `vk,
`msg, `sig)-length qualified secure signature scheme,

Adv3Att − Adv4Att ≤ negl(λ).

The proof of this lemma consists of multiple intermediate hybrids, and is contained in Section 5.1.3.

Claim 5.4. Assuming O is a secure indistinguishability obfuscator, for any PPT adversary Att,

Adv4Att − Adv5Att ≤ negl(λ).
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Proof. Similar to proof of Claim 4.2.

Claim 5.5. Assuming F is a selectively secure puncturable PRF, for any PPT adversary Att,

Adv5Att − Adv6Att ≤ negl(λ).

Proof. Similar to proof of Claim 4.3.

Claim 5.6. Assuming RSA is secure, for any PPT adversary Att,

Adv6Att ≤ negl(λ).

Proof. Similar to proof of Claim 4.4.

Using the above claims, we can conclude that any PPT adversary has at most negligible advantage in
Game 0, assuming O is a secure virtual black-box obfuscator for circuit family C, F is a selectively secure
puncturable PRF, F̃ is a secure (standard) PRF, PRG is a secure pseudorandom generator, and RSA is
secure. Therefore, the construction described in Section 5 is selectively secure with respect to all secure
length-qualified signature schemes.

5.1.3 Proof of Lemma 5.1

Proof. Let Att be a PPT adversary such that Adv3Att − Adv4Att = ε. As in proof of Lemma 4.1, we will
assume that Att = (Att1,Att2) where Att1 takes as input the security parameter λ and outputs (m, st), where
st denotes some state information. Att2 takes as input m, st,PP,VK, issues signature queries and finally
outputs a forgery.

Let us assume rndRSA = rndRSA(λ) bits are used to choose the RSA modulus N , rndF = rndF(λ) bits are
used by F.setup(1λ) to choose a PRF key K ∈ K and rndAtt = rndAtt(λ) bits are used by Att1 to compute
(m, st). Let Vλ = {(a, rN , rK , rAtt) |a ∈ {0, 1}`, rN ∈ {0, 1}rndRSA , rK ∈ {0, 1}rndF , rAtt ∈ {0, 1}rndAtt}. For
any v = (a, rN , rK , rAtt) ∈ Vλ, let Nv denote the RSA modulus generated by rN , Kv = F.setup(1λ; rK) and
(mv, stv) = Att1(1λ; rAtt). Let C0λ,v denote the family of circuits corresponding to Transform-VBB-1; that is

C0λ,v = {Transform-VBB-1Nv,Kv,α,SK,K̃
: α = PRG(a),SK ∈ SK,VK ∈ VK, K̃ ∈ K̃}.

Similarly, C1λ,v denotes the circuits corresponding to Transform-VBB-2; that is

C1λ,v = {Transform-VBB-2y,Nv,Kv,α,SK,K̃
: y = S.Verify||VK||mv, α = PRG(a),SK ∈ SK,VK ∈ VK, K̃ ∈ K̃}.

When the context is clear, we will drop the dependence of Nv, Kv, mv and stv on v. We will now define
a PPT algorithm Algv that takes as input a circuit C ′ ∈ C0λ,v ∪ C1λ,v, has v hardwired, interacts with Att2
and outputs a bit b′.
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Algv:

Inputs: Circuit C ′ ∈ C0λ,v ∪ C1λ,v
Constants: v = (a, rN , rK , rAtt) ∈ {0, 1}` × {0, 1}rndRSA × {0, 1}rndF × {0, 1}rndAtt

1. Compute p, q using rN , set N = pq and choose e ← Z∗φ(N). Compute K ←
F.setup(1λ; rK).

2. Choose Verify′ ← {0, 1}`ver , VK′ ← {0, 1}`vk , m′ ← {0, 1}`msg , σ′ ← {0, 1}`sig
and compute (VK, ρ) = C ′(0, a,Verify′,VK′,m′, σ′).

3. Compute P2 ← O(Transform-ImageN,K,e). Set PP = (C ′, P2, e) and send
PP,VK,m, st to Att2.

4. For each signing query xi, Av chooses σ′ ← {0, 1}`sig computes
C ′(0, a,S.Verify,VK, xi, σ

′) = σi and sends σi to Att.
5. Att2 sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. If ∃i∗ ∈ [n] such

that Verifyi∗ = S.Verify, VKi∗ = VK and mi∗ = m and UniversalVerify( PP,
{(Verifyi, VKi, mi) }, σagg) = 1, then Av outputs 1. Else it outputs 0.

Consider the following experiment Expbv: Compute RSA modulus N using rN , K = F.setup(1λ; rK),
α = PRG(a) and (m, st) = Att1(1λ; rAtt). Choose (SK,VK) ← S.Gen(1λ) and K̃ ← F̃ .setup(1λ). If
b = 0, set C ′ ← O(Transform-VBB-1N,K,α,SK,K̃), else set C ′ ← O(Transform-VBB-2y,N,K,α,SK,K̃), where
y = S.Verify||VK||m. Output Algv(C

′).
From the definition of Exp0v and Algv, it follows that Pr

[
1← Exp0v

]
= Pr [Att wins in Game 3|v]. Simi-

larly, Pr
[
1← Exp1v

]
= Pr [Att wins in Game 4]. Hence, E

[
Pr
[
1← Exp0v

]
− Pr

[
1← Exp1v

]]
= ε, where the

expectation is over the choice of v ← Vλ. Let v∗ = v∗(λ) = arg maxv∈V{Pr[1 ← Exp0v] − Pr[1 ← Exp1v]}.
Then, it follows that

Pr[1← Exp0v∗ ]− Pr[1← Exp1v∗ ] ≥ ε. (13)

Using Alg, we can now define our non-uniform algorithm A. For each security parameter λ, A(1λ) =
Algv∗(λ).

Now, consider the class of circuits Cλ = C0λ,v∗ ∪ C1λ,v∗ . We will require our obfuscator O to be a virtual
black box obfuscator for circuit class C = {Cλ}λ∈N.

From the security property of VBB obfuscator, it follows that there exists a PPT simulator S corre-
sponding to A such that

Pr [A (O(C)) = 1]− Pr
[
SC
(

1|C|
)

= 1
]
≤ negl(λ) (14)

for all circuits C ∈ Cλ and the probabilities are over the random coins of A and S respectively.
Therefore, from Equations 13 and 14, we get the following observation.

Observation 5.1. Let (SK,VK) ← S.Gen(1λ) and K̃ ← F̃ .setup(1λ). Let v∗ = (a, rN , rK , rAtt), α =
PRG(a). Nv∗ , Kv∗ and (mv∗ , stv∗) computed using rN , rK and rAtt respectively, and y = S.Verify||VK||mv∗ .
Let C0 = Transform-VBB-1Nv∗ ,Kv∗ ,α,SK,K̃

and C1 = Transform-VBB-2y,Nv∗ ,Kv∗ ,α,SK,K̃
. Then∣∣∣Pr

[
SC0

(
1|C0|

)
= 1
]
− Pr

[
SC1

(
1|C1|

)
= 1
]∣∣∣ ≥ ε− negl(λ)

where the probabilities are over the choice of (SK,VK), K̃ and the random coins of S.

We will show that this leads to a contradiction. Consider the algorithm Transform-VBB′-1 which is exactly
similar to the circuit Transform-VBB-1, except that the signature is computed using true randomness instead
of using F̃ .
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Transform-VBB′-1N,K,α,SK :

Inputs: b ∈ {0, 1}, a ∈ {0, 1}`,Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg ,
σ′ ∈ {0, 1}`sig .

Constants : RSA modulus N ∈ N, K ∈ K, α ∈ {0, 1}2`, SK ∈ SK.

if b = 0 then
if PRG(a) 6= α then

Output ⊥.
else

Choose r ∈ {0, 1}`rnd and output (VK,S.Sign(SK,m′; r)).
end if

else if Verify′(VK′,m′, σ′) = 0 then
Output ⊥.

else
Output F (K,Verify′||VK′||m′).

end if

From the security of F̃ , we get the following claim:

Claim 5.7. Let (SK,VK) ← S.Sign(1λ) and K̃ ← F̃ .setup(1λ). Let v∗ = (a, rN , rK , rAtt), α = PRG(a).
Nv∗ , Kv∗ , (mv∗ , stv∗) are computed using rN , rK , rAtt respectively. Let C0 = Transform-VBB-1N,K,α,SK,K̃
and C ′0 = Transform-VBB′-1N,K,α,SK. Assuming F̃ is a secure PRF, for any PPT algorithm S,

Pr
[
SC0

(
1|C0|

)
= 1
]
− Pr

[
SC
′
0

(
1|C
′
0|
)

= 1
]
≤ negl(λ).

Similarly, we define an algorithm Transform-VBB′-2 which is exactly similar to Transform-VBB-2, except
that the signature is computed using true randomness.

Claim 5.8. Let (SK,VK) ← S.Sign(1λ) and K̃ ← F̃ .setup(1λ). Let v∗ = (a, rN , rK , rAtt), α = PRG(a).
Nv∗ , Kv∗ , (mv∗ , stv∗) are computed using rN , rK , rAtt respectively and y = S.Verify||VK||mv∗ . Let C1 =
Transform-VBB-2y,N,K,α,SK,K̃ and C ′1 = Transform-VBB′-2y,N,K,α,SK. Assuming F̃ is a secure PRF, for any
PPT algorithm S, ∣∣∣Pr

[
SC1

(
1|C1|

)
= 1
]
− Pr

[
SC
′
1

(
1|C
′
1|
)

= 1
]∣∣∣ ≤ negl(λ).

Therefore, if we can show that no PPT algorithm can distinguish between C ′0 and C ′1 given only oracle
access, then together with Equation 14 and Claims 5.7, 5.8, this leads to a contradiction. Note that if any
algorithm S has only oracle access to C ′0 and C ′1, then in order to distinguish between the two, S must send
a query (1, a′,S.Verify,VK,m, σ) such that S.Verify(VK,m, σ) = 1. This breaks the security of signature
scheme S.

Claim 5.9. Let (SK,VK) ← S.Sign(1λ) and K̃ ← F̃ .setup(1λ). Let v∗ = (a, rN , rK , rAtt), α = PRG(a).
Nv∗ , Kv∗ , (mv∗ , stv∗) are computed using rN , rK , rAtt respectively and y = S.Verify||VK||mv∗ . Let C ′0 =
Transform-VBB′-1N,K,α,SK and C ′1 = Transform-VBB′-2y,N,K,α,SK. Assuming S is a secure signature scheme,
for any PPT algorithm S,∣∣∣Pr

[
SC
′
0

(
1|C
′
1|
)

= 1
]
− Pr

[
SC
′
1

(
1|C
′
1|
)

= 1
]∣∣∣ ≤ negl(λ).
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6 Universal Aggregation of Arbitrary Signatures from iO in the
Random Oracle Model

In this section, we describe our n-bounded universal signature aggregator (`ver, `vk, `msg, `sig)-UniversalSigAgg.
By n-bounded, we mean that at most n signatures can be aggregated.

We will use a secure (`ckt, `inp, `out) universal parameters scheme U = (UniversalGen, InduceGen) (where
the parameters `ckt, `inp and `out will be specified later), an additively homomorphic encryption scheme
(HE.setup,HE.enc,HE.dec,HE.add) with message space Fp for some prime p > 2`sig and ciphertext space CHE.
We will assume each ct ∈ CHE can be represented using `ct bits. Finally, we will also use a one-way function
f : {0, 1}` → {0, 1}2` and a secure indistinguishability obfuscator iO.

Our construction consists of three algorithms UniversalSetup, UniversalAgg and UniversalVerify described
as follows.

UniversalSetup(1λ, 1n) Let (pk, sk) ← HE.setup(1λ). It computes n ciphertexts cti ← HE.enc(pk, 0) and
U ← UniversalGen(1λ). It sets the public parameters to be PP = (pk, ct1, . . . , ctn, U). Let us assume PP can
be represented using `pp bits.

UniversalAgg(PP = (pk, ct1, . . . , ctn, U), {Verifyi,VKi,mi, σi}ni=1) We will view each signature σi as an in-
teger in [0, 2`sig − 1].

The universal aggregator first checks if all n tuples are distinct. If not, it outputs ⊥. Else, it computes
t = σ1 · ct1 + . . .+ σn · ctn.

Let AggSetup be the (randomized) algorithm (defined below) that takes as input security parameter λ,
and outputs a program Cagg and s̃ ∈ {0, 1}2`. It uses `inp bits of randomness, and its output has length
`out. Let C-AggSetupt,PP,{Verifyi,VKi,mi}i ∈ {0, 1}

`ckt be a string corresponding to canonical description of
AggSetupt,PP,{Verifyi,VKi,mi}i . We will assume that given C-AggSetupt,PP,{Verifyi,VKi,mi}i , one can efficiently
extract the hardwired constants t, PP and the n tuples {Verifyi,VKi,mi}i.

The aggregator algorithm first computes (Cagg, s̃) = InduceGen(C-AggSetupt,PP,{Verifyi,VKi,mi}i). Next, it
computes s = Cagg(σ1, . . . , σn) and outputs σagg = (t, s).
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AggSetupt,PP,{Verifyi,VKi,mi}i :

Inputs: Security parameter 1λ, r ∈ {0, 1}`inp .

Constants: t ∈ CHE, PP = (pk, ct1, . . . , ctn, U) ∈ {0, 1}`pp , {Verifyi,VKi,mi}i ∈
({0, 1}`ver × {0, 1}`vk × {0, 1}`msg)n.

1. Choose s← {0, 1}` using r.
2. Compute Cagg ← iO(AggSigns,t,PP,{Verifyi,VKi,mi}i), where AggSign is the

circuit described below.

AggSigns,t,PP,{Verifyi,VKi,mi}i :

Inputs: σ1, . . . , σn, where σi ∈ {0, 1}`sig .

Constants: s ∈ {0, 1}`, t ∈ CHE, PP = (pk, ct1, . . . , ctn, U),
{Verifyi,VKi,mi}i.

if ∃i such that Verifyi(VKi,mi, σi) = 0 then
Output ⊥.

end if
if t 6= σ1 · ct1 + . . .+ σn · ctn then

Output ⊥.
end if
Output s.

3. Compute s̃ = f(s).
4. Output (Cagg, s̃).

UniversalVerify(PP = (pk, ct1, . . . , ctn, U), {Verifyi,VKi,mi}ni=1, σagg = (t, s′)) The verification algorithm
first checks if all n tuples are distinct. If not, it outputs 0. Else, let C-AggSetup be the canonical descrip-
tion of AggSetup as defined above. It computes (Cagg, s̃) = InduceGen(U, C-AggSetupt,PP,{Verifyi,VKi,mi}i). If
s̃ = f(s′), output 1, else output 0.

Correctness follows directly from the observation that InduceGen is a deterministic algorithm.

6.1 Proof of Security

Theorem 6.1. Assuming iO is a secure indistinguishability obfuscator, (UniversalGen, InduceGen) is a secure
universal parameters scheme in the random oracle model, HE is a secure additively homomorphic encryption
scheme and f is a secure one-way function, for all (`ver, `vk, `msg, `sig)-length qualified secure signature
schemes S, the bounded universal signature aggregator described in Section 6 is adaptively secure in the
random oracle model with respect to S.

We will first describe a sequence of intermediate experiments Game 0, . . . ,Game 5, where Game 0 is the
adaptive security game in random oracle model. From Game 3 onwards, the challenger starts simulating
the universal parameters and the responses to random oracle queries. In order to do so, the challenger
implements a parameter oracle O, and the simulation algorithms are allowed to make random oracle queries
to O. Let us assume the simulator algorithms SimUGen and SimRO makes at most qpar calls to the Parameters
Oracle.
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6.1.1 Sequence of Games

Game 0: In this game, the challenger first sends PP,VK to the adversary Att. Att then makes polynomially
many signature and random oracle queries. Finally, Att outputs forgery σagg and n tuples {Verifyi,VKi,mi}i.

1. Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ) and U ← UniversalGen(1λ).
Compute cti ← HE.enc(pk, 0) for all i ∈ [n] and set PP = (pk, ct1, . . . , ctn, U).
Send PP,VK to Att.

2. For each signature query xi, compute σi = S.Sign(SK, xi) and send σi to Att.
3. For each random oracle query yi, check if yi has already been queried.

If yes, let (yi, αi) be the tuple corresponding to yi. Send αi to Att.
If not, choose αi ← {0, 1}`RO , send αi to Att and add (yi, αi) to table.

4. Finally, Att sends a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i. Att wins if

(a) ∃i∗ such that Verifyi∗ = S.Verify and VKi∗ = VK,
(b) mi∗ was not queried during the signing phase,
(c) f(s∗) = s̃ and InduceGen(U, C-AggSetupt∗,PP,{Verifyi,VKi,mi}i) = (C, s̃).

Game 1: This game is exactly similar to the previous one, except that the challenger guesses a position
i∗ ∈ [n], and the attacker wins only if the forgery verifies, and the i∗th tuple corresponds to S.Verify,VK.

1. Choose i∗ ← [n].

Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ) and U ← UniversalGen(1λ).
Compute cti ← HE.enc(pk, 0) and set PP = (pk, ct1, . . . , ctn, U).
Send PP,VK to Att.

2. For each signature query xi, compute σi = S.Sign(SK, xi) and send σi to Att.
3. For each random oracle query yi, check if yi has already been queried.

If yes, let (yi, αi) be the tuple corresponding to yi. Send αi to Att.
If not, choose αi ← {0, 1}`RO , send αi to Att and add (yi, αi) to table.

4. Finally, Att sends a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i. Att wins if

(a) Verifyi∗ = S.Verify and VKi∗ = VK,
(b) mi∗ was not queried during the signing phase,
(c) f(s∗) = s̃ and InduceGen(U, C-AggSetupt∗,PP,{Verifyi,VKi,mi}i) = (C, s̃).

Game 2: In this game, the challenger modifies the public parameters PP. Instead of outputting n encryp-
tions of 0, the challenger outputs an encryption of 1 at position i∗.

1. Choose i∗ ← [n].
Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ) and U ← UniversalGen(1λ).
Compute cti ← HE.enc(pk, 0) for all i ∈ [n], i 6= i∗. Let cti∗ ← HE.enc(pk, 1).
Set PP = (pk, ct1, . . . , ctn, U).
Send PP,VK to Att.

2. For each signature query xi, compute σi = S.Sign(SK, xi) and send σi to Att.
3. For each random oracle query yi, check if yi has already been queried.

If yes, let (yi, αi) be the tuple corresponding to yi. Send αi to Att.
If not, choose αi ← {0, 1}`RO , send αi to Att and add (yi, αi) to table.

4. Finally, Att sends a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i. Att wins if

(a) Verifyi∗ = S.Verify and VKi∗ = VK,
(b) mi∗ was not queried during the signing phase,
(c) f(s∗) = s̃ and InduceGen(U, C-AggSetupt∗,PP,{Verifyi,VKi,mi}i) = (C, s̃).
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Game 3 In this game, the challenger ‘simulates’ both the universal parameters U and the responses to
random oracle queries. Let SimUGen and SimRO be the simulation algorithms corresponding to the universal
parameters scheme (UniversalGen, InduceGen). The challenger also implements the Parameters Oracle O. O
takes as input a circuit d ∈ C[`ckt, `inp, `out]. If d has already been queried, O returns the same response.
Else, it chooses r ← {0, 1}`inp , outputs d(r), and adds (d, d(r)) to its table T . Though the parameters oracle
O is described in the Setup Phase, it is used in all the later phases as well.

1. Choose i∗ ← [n].
Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ).
Compute U ← SimUGen(1λ).
Compute cti ← HE.enc(pk, 0) for all i ∈ [n], i 6= i∗. Let cti∗ ← HE.enc(pk, 1).
Set PP = (pk, ct1, . . . , ctn, U).
Implement the Parameters Oracle O as follows.

- Maintain a table T . Initially, T is empty.

- For the ith query d ∈ C[`ckt, `inp, `out], check if T contains an entry corresponding to d.

- If T contains an entry of the form (d, δ), output δ.

- Else choose r ← {0, 1}`inp and output d(r). Add (d, d(r)) to T .

Send PP,VK to Att.
2. For each signature query xi, compute σi = S.Sign(SK, xi) and send σi to Att.
3. For each random oracle query yi, output SimRO(yi)

22.
4. Finally, Att sends a forgery σagg and n tuples {Verifyi,VKi,mi}i.

Let O-Queriesi denote the set of first i queries to O. Att wins if

(a) Verifyi∗ = S.Verify and VKi∗ = VK,
(b) mi∗ was not queried during the signing phase,
(c) f(s∗) = s̃ and O(C-AggSetupt∗,PP,{Verifyi,VKi,mi}i) = (C, s̃).

Recall from Section 6 that C-AggSetupt,PP,{Verifyi,VKi,mi} ∈ {0, 1}
`ckt allows efficient extraction of t, PP

and (Verifyi,VKi,mi) for all i ≤ n. Without loss of generality, we can assume that if Att outputs σagg =
(t∗, s∗) as forgery, along with n tuples {Verifyi,VKi,mi}i, then the circuit C-AggSetupt∗,PP,{Verifyi,VKi,mi}i
was sent as query to the Parameters Oracle O. We will now define games Game 4-j-a and Game 4-j-b for
j ≤ qpar. Let us first define some notations. Given a canonical circuit C-AggSetupt,PP,{Verifyi,VKi,mi}i , call it
(i∗, sk)-rejecting if Verifyi∗(VKi∗ ,mi∗ ,HE.dec(sk, t)) = 0. Let Reject-ckt be a circuit of size same as AggSign
that outputs ⊥ for all inputs.

Game 4-j-a

1. Choose i∗ ← [n].
Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ).
Compute U ← SimUGen(1λ).
Compute cti ← HE.enc(pk, 0) for all i ∈ [n], i 6= i∗. Let cti∗ ← HE.enc(pk, 1).
Set PP = (pk, ct1, . . . , ctn, U).
Implement the Parameters Oracle O as follows.

- Maintain a table T . Initially, T is empty.
- For the ith query d ∈ C[`ckt, `inp, `out], check if T contains an entry corresponding to d.
- If T contains an entry of the form (d, δ), output δ.
- Else if i ≤ j and d = C-AggSetupt,PP,{Verifyi,VKi,mi} is (i∗, sk)-rejecting,

output iO(Reject-ckt) and f(s) for s← {0, 1}`.
- Else, choose r ← {0, 1}`inp and output d(r). Add (d, d(r)) to T .

22Note that SimRO can make polynomially many queries to O.
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Send PP,VK to Att.
2. For each signature query xi, compute σi = S.Sign(SK, xi) and send σi to Att.
3. For each random oracle query yi, output SimRO(yi).
4. Finally, Att sends a forgery σagg and n tuples {Verifyi,VKi,mi}i. Let O-Queriesi denote the set of first
i queries to O. Att wins if

(a) Verifyi∗ = S.Verify and VKi∗ = VK,
(b) mi∗ was not queried during the signing phase,
(c) (C-AggSetupt∗,PP,{Verifyi,VKi,mi} is not (i∗, sk)-rejecting) or (C-AggSetupt∗,PP,{Verifyi,VKi,mi} /∈ O-Queriesj−1),
(d) f(s∗) = s̃ and O(C-AggSetupt∗,PP,{Verifyi,VKi,mi}i) = (C, s̃).

Game 4-j-b

1. Choose i∗ ← [n].
Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ).
Compute U ← SimUGen(1λ).
Compute cti ← HE.enc(pk, 0) for all i ∈ [n], i 6= i∗. Let cti∗ ← HE.enc(pk, 1).
Set PP = (pk, ct1, . . . , ctn, U).
Implement the Parameters Oracle O as follows.

- Maintain a table T . Initially, T is empty.
- For the ith query d ∈ C[`ckt, `inp, `out], check if T contains an entry corresponding to d.
- If T contains an entry of the form (d, δ), output δ.
- Else if i ≤ j and d = C-AggSetupt,PP,{Verifyi,VKi,mi} is (i∗, sk)-rejecting,

output iO(Reject-ckt) and f(s) for s← {0, 1}`.
- Else, choose r ← {0, 1}`inp and output d(r). Add (d, d(r)) to T .

Send PP,VK to Att.
2. For each signature query xi, compute σi = S.Sign(SK, xi) and send σi to Att.
3. For each random oracle query yi, output SimRO(yi).
4. Finally, Att sends a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i. Att wins if

(a) Verifyi∗ = S.Verify and VKi∗ = VK,
(b) mi∗ was not queried during the signing phase,
(c) (C-AggSetupt∗,PP,{Verifyi,VKi,mi} is not (i∗, sk)-rejecting) or (C-AggSetupt∗,PP,{Verifyi,VKi,mi} /∈ O-Queriesj),

(d) f(s∗) = s̃ and O(C-AggSetupt∗,PP,{Verifyi,VKi,mi}i) = (C, s̃).

Game 5 This game is exactly similar to Game 4-qpar-b.

1. Choose i∗ ← [n].
Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ).
Compute U ← SimUGen(1λ).
Compute cti ← HE.enc(pk, 0) for all i ∈ [n], i 6= i∗. Let cti∗ ← HE.enc(pk, 1).
Set PP = (pk, ct1, . . . , ctn, U).
Implement the Parameters Oracle O as follows.

- Maintain a table T . Initially, T is empty.
- For the ith query d ∈ C[`ckt, `inp, `out], check if T contains an entry corresponding to d.
- If T contains an entry of the form (d, δ), output δ.
- Else if d = C-AggSetupt,PP,{Verifyi,VKi,mi} is (i∗, sk)-rejecting,

output iO(Reject-ckt) and f(s) for s← {0, 1}`.
- Else, choose r ← {0, 1}`inp and output d(r). Add (d, d(r)) to T .

Send PP,VK to Att.
2. For each signature query xi, compute σi = S.Sign(SK, xi) and send σi to Att.
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3. For each random oracle query yi, output SimRO(yi).
4. Finally, Att sends a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i. Att wins if

(a) Verifyi∗ = S.Verify and VKi∗ = VK,
(b) mi∗ was not queried during the signing phase,
(c) S.Verify(VK,mi∗ ,HE.dec(sk, t

∗)) = 1,
(d) f(s∗) = s̃ and O(C-AggSetupt∗,PP,{Verifyi,VKi,mi}i) = (C, s̃).

6.1.2 Analysis

Let AdvjAtt denote the advantage of Att in Game j.

Claim 6.1. For any adversary Att,
Adv1Att = Adv0Att/n.

Proof. This follows from the definitions of Game 0 and Game 1. The only difference between the two
experiments is the change in winning condition, which now includes the guess i∗. This guess is correct with
probability 1/n.

Claim 6.2. Assuming (HE.setup,HE.enc,HE.dec) is a secure additively homomorphic encryption scheme,
for any PPT adversary Att,

Adv1Att − Adv2Att ≤ negl(λ).

Proof. Suppose there exists an adversary Att such that Adv1Att − Adv2Att = ε. We will construct a PPT
algorithm B that breaks the semantic security of HE scheme using Att.
B receives the public key pk. It sends 0, 1 as challenge messages to the HE challenger, and receives ct in

response. It chooses i∗ ← [n], (SK,VK), computes n − 1 encryptions of 0, that is, cti ← HE.enc(pk, 0) for
i 6= i∗. It sets cti∗ = ct. It computes U ← UniversalGen(1λ) and sends PP = (pk, ct1, . . . , ctn, U) and VK to
Att.

Att then asks for signature/random oracle queries, which B can simulate perfectly. Finally, Att outputs a
forgery σagg and n tuples {Verifyi,VKi,mi}. If Att wins as per the winning conditions (which are the same
in both Game 1 and Game 2), output 0, else output 1.

Clearly, if ct is an encryption of 0, then this corresponds to Game 1, else it corresponds to Game 2. This
completes our proof.

Claim 6.3. Assuming U = (UniversalGen, InduceGen) is a secure (`ckt, `inp, `out) universal parameters scheme,
for any PPT adversary Att,

Adv2Att − Adv3Att ≤ negl(λ).

Proof. Suppose there exists a PPT adversary Att such that Adv2Att − Adv3Att = ε. We will construct a PPT
algorithm A such that Pr[RealA(1λ) = 1]− Pr[IdealASimUGen,SimRO(1λ) = 1] = ε.
A interacts with Att and participates in either the Real or Ideal game. It receives the universal parameters

U . It chooses (SK,VK) ← S.Gen(1λ), (pk, sk) ← HE.setup(1λ), computes ciphertexts ct1, . . . , ctn and sets
PP = (pk, ct1, . . . , ctn, U). It sends PP,VK to Att.

For the signature queries, A computes the signatures using SK. For any random oracle query x, it forwards
x to the challenger in the Real/Ideal game, and receives either RO(x) or SimRO(x). Finally, it receives a
forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i. Note that since there is no Honest Parameter
Violation, InduceGen(U, C-AggSetupt∗,PP,{Verifyi,VKi,mi}i) = O(C-AggSetupt∗,PP,{Verifyi,VKi,mi}i). Therefore,

Game 2 corresponds to RealA(1λ) experiment, while Game 3 corresponds to IdealASimUGen,SimRO(1λ). Hence,

Pr[RealA(1λ) = 1]− Pr[IdealASimUGen,SimRO(1λ) = 1] = Adv2Att − Adv3Att.
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Claim 6.4. Assuming iO is a secure indistinguishability obfuscator, for any j ≤ qpar, for any PPT adversary
Att,

Adv
4-(j−1)-b
Att − Adv4-j-aAtt ≤ negl(λ).

Proof. The only difference between Game 4-(j − 1)-b and Game 4-j-a is with respect to the jth query to
the parameters oracle O. If the jth query is not of the form C-AggSetupt,PP,{Verifyi,VKi,mi}, or if it is not

(i∗, sk)-rejecting, then both games are identical. Therefore, let us consider the case where the jth query to O is
C-AggSetupt,PP,{Verifyi,VKi,mi} for some t, {Verifyi,VKi,mi}, and it is (i∗, sk)-rejecting. In Game 4-(j−1)-b, O
outputs (iO(AggSignt,s,PP,{Verifyi,VKi,mi}), f(s)) while in Game 4-j-a, it outputs (iO(Reject-ckt), f(s)). Hence,
if we can show that C-AggSetupt,PP,{Verifyi,VKi,mi} and Reject-ckt are functionally identical for (i∗, sk)-rejecting
circuit, then we can use the security of iO to prove our claim.

Consider any input σ1, . . . , σn to C-AggSetupt,PP,{Verifyi,VKi,mi}. If ∃i such that Verifyi(VKi,mi, σi) = 0,
then it outputs ⊥. If t 6= σ1 · ct1 + . . . + σn · ctn, then it output ⊥. However, note that if t = σ1 ·
ct1 + . . . + σn · ctn, then t is an encryption of σi∗ . Since C-AggSetupt,PP,{Verifyi,VKi,mi} is (i∗, sk)-rejecting,
Verifyi∗(VKi∗ ,mi∗ ,HE.dec(sk, t)) = 0. Therefore, this circuit outputs ⊥ on all inputs, and is functionally
identical to Reject-ckt.

Claim 6.5. Assuming f is a secure one way function, for any j ≤ qpar, for any PPT adversary Att,

Adv4-j-aAtt − Adv4-j-bAtt ≤ negl(λ).

Proof. Suppose there exists a PPT adversary Att such that Adv4-j-aAtt −Adv4-j-bAtt = ε. We will construct a PPT
algorithm B that inverts the one way function f using Att.

Note that the only way an adversary can distinguish between Game 4-j-a and Game 4-j-b is by sub-
mitting a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi} such that C-AggSetupt,PP,{Verifyi,VKi,mi} is

(i∗, sk)-rejecting and C-AggSetupt∗,PP,{Verifyi,VKi,mi} was sent as jth query to O.

B receives as input s̃. It chooses i∗ ← [n], chooses (SK,VK)← S.Gen(1λ) and sets PP as in Game 4-j-a
and Game 4-j-b. It sends PP,VK to Att. For each signature query xi, it sends σi ← S.Sign(SK, xi) to
Att. For each random oracle query yi, B uses SimRO. SimRO, in turn, makes a number of queries to the
Parameters Oracle O. If the jth query to O is C-AggSetupt,PP,{Verifyi,VKi,mi} and is (i∗, sk)-rejecting, send
(iO(Reject-ckt), s̃) as response. All other oracle queries are computed as before. Finally, if Att wins, then B
can use the forgery σagg = (t∗, s∗) and send s∗ as inverse of s̃.

Claim 6.6. Assuming S is a (`ver, `vk, `msg, `sig)-length qualified secure signature scheme, for any adversary
Att,

Adv5Att ≤ negl(λ).

Proof. Suppose Adv5Att = ε. We will construct a PPT algorithm B that breaks the security of S with
advantage ε.
B receives VK from the challenger. It chooses i∗ ← [n], PP as in Game 5 and sends PP.VK to Att. For

each signature query xi sent by Att, B sends it to the challenger, receives σi, which it forwards to Att. It
simulates the oracle queries using SimRO, as in Game 5. Finally, Att outputs a forgery σagg = (t∗, s∗) and
n tuples {Verifyi,VKi,mi}i. Att wins if Verifyi∗ = S.Verifyi∗ , VKi∗ = VK, mi∗ was not queried during the
signature phase and S.Verify(VK,mi∗ ,HE.dec(sk, t

∗)) = 1. It sends (mi∗ ,HE.dec(sk, t
∗)) as forgery. Note

that B wins the signature game if Att wins Game 5. This concludes our proof.

Using the above claims, it follows that any PPT adversary has negligible advantage in Game 0, assuming
the universal parameters scheme is secure (in the random oracle model), HE is a secure additively homomor-
phic encryption scheme and f is a secure one-way function. Therefore, the universal signature aggregator
described in Section 6 is adaptively secure with respect to all secure signature schemes in the random oracle
model.
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7 Universal Aggregation of Arbitrary Signatures from iO in the
Standard Model

In this section, we will describe a construction for an n-bounded universal signature aggregator that can
be proven selective secure with respect to all secure length-qualified signature schemes using complexity
leveraging. We will use an additively HE scheme HE with message space Fp for some prime p > 2`sig and
ciphertext space CHE, where each ciphertext in CHE can be represented using `ct bits. We will also use an
indistinguishability obfuscator iO, a puncturable pseudorandom function F with key space K, input space
{0, 1}`ver+`vk+`msg+logn+log p and range {0, 1}` for ` > 2`ct and an injective one-way function f : {0, 1}` →
{0, 1}2`. The universal signature aggregator consists of three algorithms UniversalSetup, UniversalAgg and
UniversalVerify described below.

UniversalSetup(1λ, 1n) The setup algorithm takes λ, n as input, and chooses (pk, sk) ← HE.setup(1λ). It
then computes n encryptions of 0, that is, cti ← HE.enc(pk, 0) for i ∈ [n].

Let σi ∈ Fp for i ∈ [n]. Let Cσ1,...,σn be a circuit that takes as input n bits x1, . . . , xn and outputs
∑
σixi

mod p. The setup algorithm computes P1 = iO(AggSignK,pk,ct1,...,ctn) and P2 = iO(AggVerifyK), where the
programs AggSign23 and AggVerify24 are defined below. It outputs PP = (P1, P2).

AggSignK,pk,ct1,...,ctn

Inputs: {Verifyi,VKi,mi, σi}i.

Constants: PRF Key K ∈ K, pk, (ct1, . . . , ctn) ∈ CnHE.

if ∃i such that Verifyi(VKi,mi, σi) = 0 then
Output ⊥.

end if
Compute t = σ1 · ct1 + . . .+ σn · ctn.
Let si = F (K,Verifyi||VKi||mi||i||t).
Output σagg = (t,⊕isi).

AggVerifyK

Inputs: {Verifyi,VKi,mi}i, (t∗, s∗) ∈ CHE × {0, 1}`

Constants: PRF key K

Compute s = ⊕iF (K,Verifyi||VKi||mi||i||t∗).
Output 1 if s = s∗, else output 0.

UniversalAgg(PP = (P1, P2), {Verifyi,VKi,mi, σi}i) The aggregator algorithm receives as input the public
parameters PP and n tuples {Verifyi,VKi,mi, σi}i. Without loss of generality, we will assume the n tuples
are lexicographically ordered. If the n tuples are not distinct, the algorithm outputs ⊥. Else, it outputs
P1({Verifyi,VKi,mi, σi}i).

UniversalVerify(PP = (P1, P2), {Verifyi,VKi,mi}ni=1, σagg = (t∗, s∗)) Assume the n tuples are sorted in
lexicographic order. The verification algorithm checks that the n tuples are distinct. If not, it outputs 0.
Else, it outputs P2({Verifyi,VKi,mi}, (t∗, s∗)).

23Padded to be of same size as AggSign-1.
24Padded to be of same size as AggVerify-1 and AggVerify-2.
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7.1 Proof of Security

Let S be a secure signature scheme. In order to prove the construction in Section 7 selectively secure with
respect to S, we will describe a sequence of intermediate hybrid experiments. Looking ahead, there will be
an exponential number of intermediate hybrid experiments, and hence we will be using stronger security for
the indistinguishability obfuscator iO, the puncturable PRF F and the one way function f .

Theorem 7.1. Let Att be any PPT adversary, and S a (`ver, `vk, `msg, `sig)-length qualified secure signature

scheme. Let AdvselAtt,S denote the advantage of Att in the universal signature aggregator selective security

game with respect to S. Let AdvS ,AdvHE ,AdviO, AdvF and Advf denote the maximum advantage of a PPT
adversary against signature scheme S, HE scheme HE , indistinguishability obfuscator iO, selectively secure
puncturable PRF F and one way function f respectively. Then,

AdvselAtt,S ≤ n(AdvHE + 2`ct(6AdviO + 2AdvF + Advf ) + AdvS)

where `ct is the length of ciphertexts in CHE.

7.1.1 Sequence of Games

Game 0: This corresponds to the selective security game. The challenger receives m∗ from Att, chooses
(SK,VK)← S.Gen(1λ), the public parameters PP and sends PP,VK to the adversary Att. Att then queries
for signatures, which the challenger can compute using SK. Finally, Att outputs forgery σagg and n tuples
{Verifyi,VKi,mi}.

1. Att sends message m∗.
2. Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ) and K ← F.setup(1λ).

Compute cti ← HE.enc(pk, 0) for all i ∈ [n] and P1 ← iO(AggSignK,pk,ct1,...,ctn), P2 ← iO(AggVerifyK).
Set PP = (P1, P2). Send PP,VK to Att.

3. For each signature query xi 6= m∗, compute σi = S.Sign(SK, xi) and send σi to Att.
4. Finally, Att sends a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i. Att wins

(a) ∃i∗ such that Verifyi∗ = S.Verify, VKi∗ = VK, mi∗ = m∗,
(b) AggVerifyK(PP, {Verifyi,VKi,mi}, σagg) = 1.

Game 1: In this experiment, the challenger chooses i∗ ← [n], and the adversary wins if Verifyi∗ = S.Verify,
VKi∗ = VK and mi∗ = m∗.

1. Att sends m∗.
2. Choose i∗ ← [n].

Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ) and K ← F.setup(1λ).
Compute cti ← HE.enc(pk, 0) for all i ∈ [n], P1 ← iO(AggSignK,pk,ct1,...,ctn), P2 ← iO(AggVerifyK).
Set PP = (P1, P2). Send PP,VK to Att.

3. For each signature query xi 6= m∗, compute σi = S.Sign(SK, xi) and send σi to Att.
4. Finally, Att sends a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i. Att wins

(a) Verifyi∗ = S.Verify, VKi∗ = VK, mi∗ = m∗,
(b) AggVerifyK(PP, {Verifyi,VKi,mi}, σagg) = 1.

Game 2: This game is similar to the previous one, except that cti∗ is an encryption of 1, instead of 0.

1. Att sends m∗.
2. Choose i∗ ← [n].

Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ) and K ← F.setup(1λ).
Compute cti ← HE.enc(pk, 0) for all i 6= i∗, cti∗ ← HE.enc(pk, 1), P1 ← iO(AggSignK,pk,ct1,...,ctn), P2 ←
iO(AggVerifyK).
Set PP = (P1, P2). Send PP,VK to Att.
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3. For each signature query xi 6= m∗, compute σi = S.Sign(SK, xi) and send σi to Att.
4. Finally, Att sends a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i. Att wins

(a) Verifyi∗ = S.Verify, VKi∗ = VK, mi∗ = m∗,
(b) AggVerifyK(PP, {Verifyi,VKi,mi}, σagg) = 1.

We will now describe an exponential number of hybrid experiments Game 3, j for j ≤ 2`ct . Before describ-
ing these intermediate hybrids, we will define some notations. Recall AggVerifyK takes as input tuples of the
form ({Verifyi,VKi,mi}, (t∗, s∗)). Call such a tuple (i∗, sk)-rejecting if Verifyi∗(VKi∗ ,mi∗ ,HE.dec(sk, t

∗)) =
0.

Game 3, j: In this game, the adversary does not win if the forgery input ({Verifyi,VKi,mi}, (t∗, s∗)) is
(i∗, sk)-rejecting and t∗ ≤ j.

1. Att sends m∗.
2. Choose i∗ ← [n].

Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ) and K ← F.setup(1λ).
Compute cti ← HE.enc(pk, 0) for all i 6= i∗, cti∗ ← HE.enc(pk, 1), P1 ← iO(AggSignK,pk,ct1,...,ctn),
P2 ← iO(AggVerifyK).
Set PP = (P1, P2). Send PP,VK to Att.

3. For each signature query xi 6= m∗, compute σi = S.Sign(SK, xi) and send σi to Att.
4. Finally, Att sends a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i. Att wins

(a) Verifyi∗ = S.Verify, VKi∗ = VK, mi∗ = m∗,
(b) ({Verifyi,VKi,mi}, (t∗, s∗)) is not (i∗, sk)-rejecting or t∗ > j,
(c) AggVerifyK({Verifyi,VKi,mi}, σagg) = 1.

Game 4: This game is identical to Game 3, 2`ct .

1. Att sends m∗.
2. Choose i∗ ← [n].

Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ) and K ← F.setup(1λ).
Compute cti ← HE.enc(pk, 0) for all i 6= i∗, cti∗ ← HE.enc(pk, 1), P1 ← iO(AggSignK,pk,ct1,...,ctn),
P2 ← iO(AggVerifyK).
Set PP = (P1, P2). Send PP,VK to Att.

3. For each signature query xi, compute σi = S.Sign(SK, xi) and send σi to Att.
4. Finally, Att sends a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i. Att wins

(a) Verifyi∗ = S.Verify, VKi∗ = VK, mi∗ = m∗,
(b) ({Verifyi,VKi,mi}, (t∗, s∗)) is not (i∗, sk)-rejecting,
(c) AggVerifyK({Verifyi,VKi,mi}, σagg) = 1.

7.1.2 Analysis

Let AdvjAtt denote the advantage of Att in Game j.

Claim 7.1. For any adversary Att,
Adv1Att = Adv0Att/n.

Proof. This follows from the definitions of Game 0 and Game 1. The only difference between the two
experiments is the change in winning condition, which now includes the guess i∗. This guess is correct with
probability 1/n.
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Claim 7.2. For any PPT adversary Att,

Adv1Att − Adv2Att ≤ AdvHE(λ).

Proof. Suppose there exists an adversary Att such that Adv1Att − Adv2Att = ε. We will construct a PPT
algorithm B that breaks the semantic security of HE scheme using Att.
B receives the public key pk. It sends 0, 1 as challenge messages to the HE challenger, and receives ct

in response. It chooses i∗ ← [n], (SK,VK), computes n − 1 encryptions of 0, that is, cti ← HE.enc(pk, 0)
for i 6= i∗. It sets cti∗ = ct. It chooses K ← F.setup(1λ), computes P1 ← iO(AggSignK,pk,ct1,...,ctn),
P2 ← iO(AggVerifyK) and sends PP = (P1, P2) and VK to Att.

Att then asks for signature/random oracle queries, which B can simulate perfectly. Finally, Att outputs a
forgery σagg and n tuples {Verifyi,VKi,mi}. If Att wins as per the winning conditions (which are the same
in both Game 1 and Game 2), output 0, else output 1.

Clearly, if ct is an encryption of 0, then this corresponds to Game 1, else it corresponds to Game 2. This
completes our proof.

Observation 7.1. For any PPT adversary Att,

Adv2Att = Adv3,0Att.

Claim 7.3. For any j < 2`ct ,

Adv3,jAtt − Adv3,j+1
Att ≤ 6AdviO + 2AdvF + Advf .

Proof. The proof of this claim involves a sequence of intermediate hybrids described below. Note that the
only difference between the two hybrids is Step 4b. Both games are identical if j + 1 is not (i∗, sk)-rejecting.
Hence, we will consider the case where S.Verify(VK,m∗,HE.dec(sk, j + 1)) = 0.

Game 3, j, a In this game, the challenger uses obfuscations of circuit AggVerify-1 instead of AggVerify.
Instead of checking whether s∗ = ⊕isi, AggVerify-1 uses an injective one way function f to check if f(s ⊕
(⊕i 6=i∗si)) = f(si∗).

1. Att sends m∗.
2. Choose i∗ ← [n].

Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ) and K ← F.setup(1λ).
Compute cti ← HE.enc(pk, 0) for all i 6= i∗, cti∗ ← HE.enc(pk, 1), P1 ← iO(AggSignK,pk,ct1,...,ctn),
P2 ← iO(AggVerify-1K).
Set PP = (P1, P2). Send PP,VK to Att.

3. For each signature query xi 6= m∗, compute σi = S.Sign(SK, xi) and send σi to Att.
4. Finally, Att sends a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i. Att wins

(a) Verifyi∗ = S.Verify, VKi∗ = VK, mi∗ = m∗,
(b) ({Verifyi,VKi,mi}, (t∗, s∗)) is not (i∗, sk)-rejecting or t∗ > j,
(c) AggVerify-1K({Verifyi,VKi,mi}, σagg) = 1.

AggVerify-1K

Inputs: {Verifyi,VKi,mi}i, (t∗, s∗) ∈ CHE × {0, 1}`

Constants: PRF key K

Compute s̃ = (⊕i6=i∗F (K,Verifyi||VKi||mi||i||t))⊕ s∗.
Output 1 if f(F (K,Verifyi∗ ||VKi∗ ||mi∗ ||i∗||t∗) = f(s̃), else output 0.
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Game 3, j, b: In this game, AggSign and AggVerify-1 are replaced by AggSign-1 and AggVerify-2. Both the
replaced programs use a PRF key punctured at y = S.Verify||VK||mi∗ ||i∗||j + 1.

1. Att sends m∗.
2. Choose i∗ ← [n].

Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ) and K ← F.setup(1λ).
Let y = S.Verify||VK||m∗||i∗||j + 1, K{y} ← F.puncture(K, y) and z = f(F (K, y)).
Compute cti ← HE.enc(pk, 0) for all i 6= i∗, cti∗ ← HE.enc(pk, 1), P1 ← iO(AggSign-1K{y},pk,ct1,...,ctn),

P2 ← iO(AggVerify-2y,K{y},z).

Set PP = (P1, P2). Send PP,VK to Att.
3. For each signature query xi 6= m∗, compute σi = S.Sign(SK, xi) and send σi to Att.
4. Finally, Att sends a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i. Att wins

(a) Verifyi∗ = S.Verify, VKi∗ = VK, mi∗ = m∗,
(b) ({Verifyi,VKi,mi}, (t∗, s∗)) is not (i∗, sk)-rejecting or t∗ > j,
(c) AggVerify-2y,K{y},z({Verifyi,VKi,mi}, σagg) = 1.

AggSign-1K{y},pk,ct1,...,ctn

Inputs: {Verifyi,VKi,mi, σi}i.

Constants: PRF Key K{y}, pk, (ct1, . . . , ctn) ∈ CnHE.

if ∃i such that Verifyi(VKi,mi, σi) = 0 then
Output ⊥.

end if
Compute t = σ1 · ct1 + . . .+ σnctn.
Let si = F.eval(K{y},Verifyi||VKi||mi||i||t).
Output σagg = (t,⊕isi).

AggVerify-2y,K{y},z

Inputs: {Verifyi,VKi,mi}i, (t∗, s∗) ∈ CHE × {0, 1}`

Constants: y, PRF key K{y}, z ∈ {0, 1}2`.

Compute s̃ = (⊕i 6=i∗F (K,Verifyi||VKi||mi||i||t))⊕ s∗.
if Verifyi∗ ||VKi∗ ||mi∗ ||i∗||t∗ = y then

Output 1 if z = f(s̃), else output 0.
else

Output 1 if f(F.eval(K,Verifyi∗ ||VKi∗ ||mi∗ ||i∗||t∗) = f(s̃), else output 0.
end if

Game 3, j, c: This game is similar to the previous one, except that z is a uniformly random string.

1. Att sends m∗.
2. Choose i∗ ← [n].

Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ) and K ← F.setup(1λ).
Let y = S.Verify||VK||m∗||i∗||j + 1, K{y} ← F.puncture(K, y) and z′ ← {0, 1}`, z = f(z′).
Compute cti ← HE.enc(pk, 0) for all i 6= i∗, cti∗ ← HE.enc(pk, 1), P1 ← iO(AggSign-1K{y},pk,ct1,...,ctn),
P2 ← iO(AggVerify-2y,K{y},z).
Set PP = (P1, P2). Send PP,VK to Att.
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3. For each signature query xi 6= m∗, compute σi = S.Sign(SK, xi) and send σi to Att.
4. Finally, Att sends a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i. Att wins

(a) Verifyi∗ = S.Verify, VKi∗ = VK, mi∗ = m∗,
(b) ({Verifyi,VKi,mi}, (t∗, s∗)) is not (i∗, sk)-rejecting or t∗ > j,
(c) AggVerify-2y,K{y},z({Verifyi,VKi,mi}, σagg) = 1.

Game 3, j, d : In this game, the challenger modifies the winning condition in Step 4b.

1. Att sends m∗.
2. Choose i∗ ← [n].

Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ) and K ← F.setup(1λ).
Let y = S.Verify||VK||m∗||i∗||j + 1, K{y} ← F.puncture(K, y), z′ ← {0, 1}` and z = f(z′).
Compute cti ← HE.enc(pk, 0) for all i 6= i∗, cti∗ ← HE.enc(pk, 1), P1 ← iO(AggSign-1K{y},pk,ct1,...,ctn),
P2 ← iO(AggVerify-2y,K{y},z).
Set PP = (P1, P2, pk, ct1, . . . , ctn). Send PP,VK to Att.

3. For each signature query xi 6= m∗, compute σi = S.Sign(SK, xi) and send σi to Att.
4. Finally, Att sends a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i. Att wins

(a) Verifyi∗ = S.Verify, VKi∗ = VK, mi∗ = m∗,
(b) ({Verifyi,VKi,mi}, (t∗, s∗)) is not (i∗, sk)-rejecting or t∗ > j + 1,
(c) AggVerify-2y,K{y},z({Verifyi,VKi,mi}, σagg) = 1.

Game 3, j, e : In this game, the challenger sets z = f(F (K, y)) as in Game 3, j, c.

1. Att sends m∗.
2. Choose i∗ ← [n].

Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ) and K ← F.setup(1λ).
Let y = S.Verify||VK||m∗||i∗||j + 1, K{y} ← F.puncture(K, y), and z = f(F (K, y)).
Compute cti ← HE.enc(pk, 0) for all i 6= i∗, cti∗ ← HE.enc(pk, 1), P1 ← iO(AggSign-1K{y},pk,ct1,...,ctn),
P2 ← iO(AggVerify-2y,K{y},z).
Set PP = (P1, P2). Send PP,VK to Att.

3. For each signature query xi 6= m∗, compute σi = S.Sign(SK, xi) and send σi to Att.
4. Finally, Att sends a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i. Att wins

(a) Verifyi∗ = S.Verify, VKi∗ = VK, mi∗ = m∗,
(b) ({Verifyi,VKi,mi}, (t∗, s∗)) is not (i∗, sk)-rejecting or t∗ > j + 1,
(c) AggVerify-2y,K{y},z({Verifyi,VKi,mi}, σagg) = 1.

Game 3, j, f : In this game, the challenger uses PRF key K in both AggSign and AggVerify-1 instead of using
K{y} in AggSign-1 and AggVerify-2.

1. Att sends m∗.
2. Choose i∗ ← [n].

Choose (SK,VK)← S.Gen(1λ), (pk, sk)← HE.setup(1λ) and K ← F.setup(1λ).
Compute cti ← HE.enc(pk, 0) for all i 6= i∗, cti∗ ← HE.enc(pk, 1), P1 ← iO(AggSignK,pk,ct1,...,ctn),

P2 ← iO(AggVerify-1K).
Set PP = (P1, P2). Send PP,VK to Att.

3. For each signature query xi 6= m∗, compute σi = S.Sign(SK, xi) and send σi to Att.
4. Finally, Att sends a forgery σagg = (t∗, s∗) and n tuples {Verifyi,VKi,mi}i. Att wins

(a) Verifyi∗ = S.Verify, VKi∗ = VK, mi∗ = m∗,
(b) ({Verifyi,VKi,mi}, (t∗, s∗)) is not (i∗, sk)-rejecting or t∗ > j + 1,
(c) AggVerify-1K({Verifyi,VKi,mi}, σagg) = 1.
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We will now relate the difference in Att’s advantages in these games to either AdviO, AdvF or Advf .

Claim 7.4. For any PPT adversary Att,

Adv3,jAtt − Adv3,j,aAtt ≤ AdviO.

Proof. To prove this claim, we need to show that the programs AggVerifyK and AggVerify-1K are functionally
identical. This follows from the observation that f is an injective function, and hence, for any t∗, s∗,

s∗ = ⊕iF (K,Verifyi||VKi||mi||i||t∗)
⇐⇒ (⊕i6=i∗F (K,Verifyi||VKi||mi||i||t∗))⊕ s∗ = F (K,Verifyi∗ ||VKi∗ ||mi∗ ||i∗||t∗)
⇐⇒ f((⊕i 6=i∗F (K,Verifyi||VKi||mi||i||t∗))⊕ s∗) = f(F (K,Verifyi∗ ||VKi∗ ||mi∗ ||i∗||t∗))

Claim 7.5. For any PPT adversary Att,

Adv3,j,aAtt − Adv3,j,bAtt ≤ 2AdviO.

Proof. Let K ← F.setup(1λ), y = S.Verify||VK||m∗||i∗||j+ 1, K{y} ← F.puncture(K, y) and z = f(F (K, y)).
As in the previous proof, it suffices to show that AggSignK,pk,ct1,...,ctn and AggSign-1K{y},pk,ct1,...,ctn have
identical functionality, and AggVerify-1K and AggVerify-2y,K{y},z have identical functionality.

Let us first consider AggSignK,pk,ct1,...,ctn and AggSign-1K{y},pk,ct1,...,ctn . Consider input {Verifyi,VKi,mi, σi}i.
Let t = σ1 ·ct1+. . .+σnctn. From the correctness property of puncturable PRFs, it follows that the only case
in which AggSignK,pk,ct1,...,ctn and AggSigny,K{y},pk,ct1,...,ctn can possibly differ is when Verifyi(VKi,mi, σi) =
1 for all i ≤ n, Verifyi∗ = S.Verify, VKi∗ = VK, mi∗ = m∗ and t = j + 1. But this case is not possible, since
S.Verify(VK,m∗,HE.dec(sk, t)) = S.Verify(VK,m∗, σi∗) = 1, while S.Verify(VK,m∗,HE.dec(sk, j + 1)) = 0.

Next, let us consider the programs AggVerify-1K and AggVerifyy,K{y},z. Both programs have identical
functionality, because z = f(F (K, y)) and for all y′ 6= y, F (K, y′) = F.eval(K{y}, y′).

This concludes our proof.

Claim 7.6. For any PPT adversary Att,

Adv3,j,bAtt − Adv3,j,cAtt ≤ AdvF .

Proof. We will construct a PPT algorithm B such that AdvFB = Adv3,j,bAtt − Adv3,j,cAtt . B interacts with Att,
and receives m∗. It chooses i∗ ← [n], chooses (SK,VK) ← S.Gen(1λ), (pk, sk) ← HE.setup(1λ). Next, it
computes cti ← HE.enc(pk, 0) for all i 6= i∗, cti∗ ← HE.enc(pk, 1). It sends y = S.Verify||VK||m∗||i∗||j + 1
to the PRF challenger, and receives K{y}, z′, where either z′ = F (K, y) or z′ ← {0, 1}2`. It computes
z = f(z′), P1 ← iO(AggSign-1K{y},pk,ct1,...,ctn), P2 ← iO(AggVerify-2y,K{y},z) and sets PP = (P1, P2). It
sends PP,VK to Att.

Next, it receives signature queries, and it computes the signature using SK. Finally, it receives σagg =
(t∗, s∗) and n tuples {Verifyi,VKi,mi}i. If Att wins, it outputs 0, indicating z′ = F (K, y). Else, it outputs

1. Since both games have the same winning condition, it follows AdvFB = Adv3,j,bAtt − Adv3,j,cAtt .

Claim 7.7. For any PPT adversary Att,

Adv3,j,cAtt − Adv3,j,dAtt ≤ Advf .

Proof. Suppose Adv3,j,cAtt −Adv
3,j,d
Att = ε. Then, with probability ε, Att receives PP,VK, sends signature queries,

and outputs forgery σagg = (j+1, s∗) and n tuples {Verifyi,VKi,mi}i such that S.Verifyi∗ = Verifyi∗ , VKi∗ =
VK, mi∗ = m∗, the output forgery is (i∗, sk)-rejecting and AggVerify-2y,K{y},z({Verifyi,VKi,mi}, σagg) = 1.
From the definition of AggVerify-2, it follows that f((⊕i 6=i∗F.eval(K{y},Verifyi||VKi||mi||i||j+1))⊕s∗) = z.
Therefore, using Att, we can construct a PPT algorithm B that breaks the security of one way function f
with advantage ε. B receives z from the OWF challenger, and uses it to compute PP as in Game 3, j, c and
Game 3, j, d. It sends PP,VK to Att, responds to signature queries, and finally receives forgery (j + 1, s∗)25.

25If B receives any other forgery, then it simply quits.
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and n tuples. It sends z′ = (⊕i 6=i∗F.eval(K{y},Verifyi||VKi||mi||i||j + 1))⊕ s∗ to the OWF challenger, and
clearly, B wins if Att wins. This completes our proof.

Claim 7.8. For any PPT adversary Att,

Adv3,j,dAtt − Adv3,j,eAtt ≤ AdvF .

Proof. Similar to the proof of Claim 7.6.

Claim 7.9. For any PPT adversary Att,

Adv3,j,eAtt − Adv3,j,fAtt ≤ 2AdviO.

Proof. Similar to the proof of Claim 7.5.

Claim 7.10. For any PPT adversary Att,

Adv3,j,fAtt − Adv3,j+1
Att ≤ AdviO.

Proof. Similar to the proof of Claim 7.4.

Summing it up, from the above claims, it follows that for any PPT adversary Att, Adv3,jAtt − Adv3,j+1
Att ≤

6AdviO + 2AdvF + Advf .

Claim 7.11. For any PPT adversary Att,

Adv4Att ≤ AdvS .

Proof. Suppose there exists a PPT adversary Att such that Adv4Att = ε. We will construct a PPT algorithm
B that breaks the security of S with advantage ε.
B interacts with Att and the challenger for S. First, it receives m∗ from S and VK from the challenger. It

chooses i∗ ← [n], (pk, sk)← HE.setup(1λ), K ← F.setup(1λ). It computes cti ← HE.enc(pk, 0) for all i 6= i∗,
cti∗ ← HE.enc(pk, 1), P1 ← iO(AggSignK,pk,ct1,...,ctn) and P2 ← iO(AggVerifyK). It sends PP = (P1, P2),VK
to Att.

For each signature query xi 6= m∗ sent by Att, it forwards xi to the challenger, and receives σi, which it
sends to Att.

Finally, Att outputs a forgery σagg = (t∗, s∗) along with n tuples {Verifyi,VKi,mi}. If Att wins in Game 4,
then Verifyi∗ = S.Verify, VKi∗ = VK, mi∗ = m∗ and (σagg, {Verifyi,VKi,mi}) must not be (i∗, sk)-rejecting.
In other words, S.Verify(VK,m∗,HE.dec(sk, t∗)) = 1. B sendsm∗,HE.dec(sk, t∗) as a forgery to the challenger.
This completes our proof.

Summing up, it follows that any adversary Att has advantage at most n(AdvHEAtt +2`ct(6AdviOAtt +2AdvFAtt +

AdvfAtt) +AdvSAtt) in Game 0, where AdvHEAtt , AdviOAtt, Adv
F
Att, Adv

f
Att and AdvSAtt denote the advantages of Att in

the security games for HE scheme HE , indistinguishability obfuscator iO, (selectively secure) puncturable

PRF F , one-way function f and signature scheme S respectively. Therefore, if 2`ct(AdviOAtt +AdvFAtt +AdvfAtt)
is negligible in λ, then the aggregator scheme described in Section 7 is adaptively secure with respect to all
signature schemes S. Note that we require sub-exponential hardness assumption for the indistinguishability
obfuscator iO, puncturable PRF F and one-way function f .
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A Universally Aggregating Unique Signatures without the RSA
Assumption

In this section we show a modification of our universal aggregation of unique signatures construction and
proof from Section 4 The primary diffence is that the transformed siganture output will be a bit string as
opposed to an RSA-type group element in ZN . Thus, we are able to prove security without using the RSA
assumption (but keeping indistinguishability obfuscation and punctured PRF security assumptions.) The
primary tradeoff is that the setup must commit to an a-priori bound, n on the number of signatures that
can be aggregated. The signature length is independent of n.

We will now describe our n-bounded universal signature aggregator (`ver, `vk, `msg, `sig)-UniversalSigAgg.
Let ` and `owf be polynomials such that `(λ) ≥ λ. We will use a puncturable PRF F with key space K,
punctured key space Kp, domain X = {0, 1}`ver × {0, 1}`vk × {0, 1}`msg and range Y = {0, 1}`, a one-way
function f : {0, 1}` → {0, 1}`owf and an indistinguishability obfuscator iO. Our scheme consists of the three
algorithms UniversalSetup, UniversalAgg and UniversalVerify.

UniversalSetup(1λ, 1n): UniversalSetup takes as input the security parameter λ and a bound n on the num-
ber of signatures to be aggregated. It chooses a puncturable PRF key K ← F.setup(1λ) and computes
obfuscations of the circuits TransformK and AggVerifyK defined below. It sets the public parameters to be
PP = (iO(TransformK), iO(AggVerifyK)).

TransformK :

Inputs: Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg , σ′ ∈ {0, 1}`sig .
Constants : K ∈ K.

if Verify′(VK′,m′, σ′) = 0 then
Output ⊥.

else
Output F (K,Verify′||VK′||m′).

end if
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AggVerifyK :

Inputs: {(Verifyi,VKi,mi)}ni=1 where (Verifyi,VKi,mi) ∈ {0, 1}`ver × {0, 1}`vk ×
{0, 1}`msg for all i ≤ n, σagg ∈ {0, 1}`.
Constants : K ∈ K.

for all i ≤ n do
Compute si = F (K,Verifyi||VKi||mi).

end for
Output 1 if ⊕ni=1si = σagg, 0 otherwise.

UniversalAgg(PP, {(Verifyi,VKi,mi, σi)}ni=1): Let PP = (P1, P2). UniversalAgg first checks that the n tuples
are distinct. If not, it outputs ⊥. Else, it computes ti = P1(Verifyi,VKi,mi, σi) for each i ≤ n. If ti =⊥ for
some i, then UniversalAgg outputs ⊥, else it outputs σagg = ⊕iti.

UniversalVerify(PP, {(Verifyi,VKi,mi)}ni=1, σagg): Let PP = (P1, P2). UniversalVerify first checks if the n
tuples are distinct. If not, it outputs 0. Else, it outputs P2({(Verifyi, VKi, mi) }ni=1, σagg).

A.1 Proof of security

In this section, we will show that our construction is selectively secure with respect to unique signature
schemes.

Theorem A.1. Assuming iO is a secure indistinguishability obfuscator, (F, F.setup, F.puncture, F.eval)
is a puncturable PRF and f is an injective one way function, for all (`ver, `vk, `msg, `sig)-length qual-
ified secure unique signature schemes S, the n-bounded universal signature aggregator (`ver, `vk, `msg,
`sig)-UniversalSigAgg is selectively secure with respect to S.

Let S = (S.Gen,S.Sign,S.Verify) be a secure (`ver, `vk, `msg, `sig)-length qualified unique signature
scheme, and Att a PPT adversary. Assume Att sends q signing queries during the signing phase. In order to
prove this theorem, we will define a sequence of experiments Game 0, . . ., Game 4, where Game 0 = ExpselAtt,S .

A.1.1 Sequence of Games

Game 0: This game corresponds to ExpselAtt,S . The adversary Att first sends message m, and then receives
the verification key and public parameters for the aggregator. Next, the adversary makes signing queries,
and finally submits the forgery.

1. Att sends message m.
2. Compute (SK,VK)← S.Gen(1λ, 1n). ChooseK ← F.setup(1λ) and set PP = (iO(TransformK), iO(AggVerifyK)).

Send PP, VK to Att.
3. For each signing query xi 6= m, compute σi ← S.Sign(SK, xi) and send σi to Att.
4. Att sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. Att wins if ∃i∗ ∈ [n] such that Verifyi∗ =
S.Verify, VKi∗ = VK and mi∗ = m and UniversalVerify( PP, {(Verifyi, VKi, mi) }, σagg) = 1.

Game 1: This game is exactly similar to the previous one, except that the program TransformK is replaced
by Transform′K which outputs ⊥ if the input tuples is (S.Verify,VK,m, σ) where S.Verify(VK,m, σ) = 1.

1. Att sends message m.
2. Compute (SK,VK)← S.Gen(1λ, 1n). Choose K ← F.setup(1λ).

Set y = S.Verify||VK||m and PP = (iO(Transform′y,K), iO(AggVerifyK)). Send PP, VK to Att.

3. For each signing query xi 6= m, compute σi ← S.Sign(SK, xi) and send σi to Att.
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4. Att sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. Att wins if ∃i∗ ∈ [n] such that Verifyi∗ =
S.Verify, VKi∗ = VK and mi∗ = m and UniversalVerify( PP, {(Verifyi, VKi, mi) }, σagg) = 1.

Transform′y,K :

Inputs: Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg , σ′ ∈ {0, 1}`sig .
Constants : y ∈ {0, 1}`ver × {0, 1}`vk × {0, 1}`msg , K ∈ K.

if Verify′(VK′,m′, σ′) = 0 then
Output ⊥.

else if Verify′||VK′||m′ = y then
Output ⊥.

else
Output F (K,Verify′||VK′||m′).

end if

Game 2: This game is similar to the previous one, except that the programs Transform′ and AggVerify are
replaced by Transform-1 and AggVerify-1 respectively. Each of these programs uses a PRF key punctured at
y = S.Verify||VK||m.

1. Att sends message m.
2. Compute (SK,VK)← S.Gen(1λ, 1n). Choose K ← F.setup(1λ).

Set y = S.Verify||VK||m. Compute K{y} ← F.puncture(K, y) and z = F (K, y).
Set PP = (iO(Transform-1y,K{y}), iO(AggVerify-1y,K{y},z)) and send PP, VK to Att.

3. For each signing query xi 6= m, compute σi ← S.Sign(SK, xi) and send σi to Att.
4. Att sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. Att wins if ∃i∗ ∈ [n] such that Verifyi∗ =
S.Verify, VKi∗ = VK and mi∗ = m and UniversalVerify( PP, {(Verifyi, VKi, mi) }, σagg) = 1.

Transform-1y,K{y} :

Inputs: Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg , σ ∈ {0, 1}`sig .
Constants : y ∈ {0, 1}`ver × {0, 1}`vk × {0, 1}`msg , K{y} ∈ Kp.

if Verify′(VK′,m′, σ′) = 0 then
Output ⊥.

else if Verify′||VK′||m′ = y then
Output ⊥.

else
Output F.eval(K{y},Verify′||VK′||m′).

end if
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AggVerify-1y,K{y},z :

Inputs: {(Verifyi,VKi,mi)}ni=1 where (Verifyi,VKi,mi) ∈ {0, 1}`ver × {0, 1}`vk ×
{0, 1}`msg for all i ≤ n, σagg ∈ {0, 1}`.
Constants : y ∈ {0, 1}`ver × {0, 1}`vk × {0, 1}lmsg, K{y} ∈ Kp, z ∈ {0, 1}`.

for all i ≤ n do
if Verifyi||VKi||mi = y then

si = z
else

Compute si = F.eval(K{y},Verifyi||VKi||mi).
end if

end for
Output 1 if ⊕ni=1si = σagg, 0 otherwise.

Game 3: In this game, the program AggVerify-1 is replaced by AggVerify-2. As before, a punctured key is
used in the program. However, instead of directly checking whether σagg = ⊕si, AggVerify-2 uses a injective
one way function f .

1. Att sends message m.
2. Compute (SK,VK)← S.Gen(1λ, 1n). Choose K ← F.setup(1λ).

Set y = S.Verify||VK||m. Compute K{y} ← F.puncture(K, y) and z = F (K, y).
Compute w = f(z), set PP = (iO(Transform-1y,K{y}), iO(AggVerify-2y,K{y},w)) and send PP, VK to

Att.
3. For each signing query xi 6= m, compute σi ← S.Sign(SK, xi) and send σi to Att.
4. Att sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. Att wins if ∃i∗ ∈ [n] such that Verifyi∗ =
S.Verify, VKi∗ = VK and mi∗ = m and AggVerify-2y,K{y},w({(Verifyi, VKi, mi) }, σagg) = 1.

AggVerify-2y,K{y},w :

Inputs: {(Verifyi,VKi,mi)}ni=1 where (Verifyi,VKi,mi) ∈ {0, 1}`ver × {0, 1}`vk ×
{0, 1}`msg for all i ≤ n, σagg ∈ {0, 1}`.
Constants : y ∈ {0, 1}`ver × {0, 1}`vk × {0, 1}`msg , K{y} ∈ Kp, w ∈ {0, 1}`owf .

Set present = False, pos = 0.
for all i ≤ n do

if Verifyi||VKi||mi = y then
Set present = True, pos = i.

else
Compute si = F.eval(K{y},Verifyi||VKi||mi).

end if
end for
if present = False then

Output 1 if ⊕ni=1si = σagg, 0 otherwise.
else

Output 1 if f(σagg ⊕i 6=pos si) = w, 0 otherwise.
end if

Game 4: This game is exactly similar to the previous one, except that z is chosen at random.

1. Att sends message m.
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2. Compute (SK,VK)← S.Gen(1λ, 1n). Choose K ← F.setup(1λ).
Set y = S.Verify||VK||m. Compute K{y} ← F.puncture(K, y) and z ← {0, 1}`.
Compute w = f(z), set PP = (iO(Transform-1y,K{y}), iO(AggVerify-2y,K{y},w)) and send PP, VK to
Att.

3. For each signing query xi 6= m, compute σi ← S.Sign(SK, xi) and send σi to Att.
4. Att sends forgery σagg and n tuples {(Verifyi, VKi, mi)}. Att wins if ∃i∗ ∈ [n] such that Verifyi∗ =
S.Verify, VKi∗ = VK and mi∗ = m and AggVerify-2y,K{y},w({(Verifyi, VKi, mi)}i, σagg) = 1.

A.1.2 Analysis

Let AdvjAtt denote the advantage of adversary Att in Game j.

Claim A.1. Assuming iO is a secure indistinguishability obfuscator and S is a secure (`ver, `vk, `msg, `sig)-
length qualified unique signature scheme, for any PPT adversary Att,

Adv0Att − Adv1Att ≤ negl(λ).

Proof. The proof of this claim is similar to the one for Lemma 4.1.

Claim A.2. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary Att,

Adv1Att − Adv2Att ≤ negl(λ).

Proof. In order to prove this claim, we will define an intermediate hybrid Game 1.5 which is exactly same
as Game 1 and Game 2, except that the challenger sets PP = (iO(Transform-1y,K{y}), iO(AggVerifyK)). We
will show (a) Game 1 and Game 1.5 are computationally indistinguishable, (b) Game 1.5 and Game 2 are
computationally indistinguishable.

Proof of (a). Suppose there exists a PPT adversary Att such that Adv1Att−Adv1.5Att = ε. We will construct
a PPT algorithm B that constructs two circuits C0 and C1 with identical functionality, and uses Att to
distinguish between iO(C0) and iO(C1), thereby breaking the security of iO.
B receives m from Att, chooses (SK,VK)← S.Gen(1λ) and K ← F.setup(1λ). It sets y = S.Verify||VK||m

and computes K{y} ← F.puncture(K, y). It sets C0 = Transform′y,K and C1 = Transform-1y,K{y}, and sends
C0, C1 to the iO challenger. It receives C = iO(Cb). B sets PP = (C, iO(AggVerifyK)) and sends PP,VK to
Att.

Note that B can respond to the signing queries perfectly, since it has SK. Finally, if Att wins, then B
outputs 0, else it outputs 1. Clearly, if C = iO(C0), then it corresponds to Game 1, else it corresponds to
Game 1.5.

To conclude, we need to argue that C0 and C1 have identical functionality. This follows from the cor-
rectness property of puncturable PRFs. Note that both programs output ⊥ if one of the input tuples is
(S.Verify,VK,m, σ). For all other tuples (Verify′,VK′,m′, σ′), F (K,Verify′||VK′||m′) = F.eval(K{y},Verify′||VK′||m′).
This completes the first step of our proof.

Proof of (b). The second step (showing that Game 1.5 and Game 2 are computationally indistinguishable)
follows along similar lines.

Claim A.3. Assuming iO is a secure indistinguishability obfuscator and f is an injective function, for any
PPT adversary Att,

Adv2Att − Adv3Att ≤ negl(λ).

Proof. Suppose there exists a PPT adversary Att such that Adv2Att−Adv3Att = ε. As in the previous proof, we
will construct a PPT algorithm B that constructs two circuits C0 and C1 with identical functionality, and
uses Att to distinguish between iO(C0) and iO(C1), thereby breaking the security of iO.

The only difference between Game 2 and Game 3 is that in Game 2, circuit AggVerify-1y,K{y}.z is used,
while in Game 3, circuit AggVerify-2y,K{y},w is used. B interacts with Att and receives m. It chooses
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(SK,VK) ← S.Gen(1λ) and K ← F.setup(1λ). Next, it computes a key punctured at y = S.Verify||VK||m,
i.e. K{y} ← F.puncture(K, y) and sets z = F (K, y) and w = f(z). Given y,K{y}, z, w, B can now construct
circuits C0 = AggVerify-1y,K{y},z and C1 = AggVerify-2y,K{y},w. B sends C0 and C1 to the iO challenger,
and receives C = iO(Cb). B sets PP =(iO(Transform-1y,K{y}), C) and sends PP,VK to Att.
B now responds to signing queries using SK. Finally Att sends forgery σagg, along with n tuples {(Verifyi,

VKi, mi)}. If C({Verifyi,VKi,mi}, σagg)= 1, output 0, else output 1. Clearly, if C = iO(C0), then this
corresponds to Game 2, else it corresponds to Game 3. Therefore, all that remains is to prove that C0 and
C1 have identical functionality.

Consider any input ({(Verifyi, VKi, mi)},σagg). If there is no i∗ such that Verifyi∗ ||VKi∗ ||mi∗ =
y, then both circuits check if σagg=⊕iF (K{y},Verifyi||VKi||mi). If there exists an i∗ ∈ [n] such that
Verifyi∗ ||VKi∗ ||mi∗ = y, then C0 accepts iff

(⊕i 6=i∗F (K{y},Verifyi||VKi||mi))⊕ F (K, y) = σagg

⇐⇒ (⊕i 6=i∗F (K{y},Verifyi||VKi||mi))⊕ σagg = F (K, y) = z

⇐⇒ f((⊕i 6=i∗F (K{y},Verifyi||VKi||mi))⊕ σagg) = f(z) = w.

The last equivalence follows from the fact that f is an injective function. However, note that the last
statement is the condition for C1 accepting. This proves that both C0 and C1 have identical functionality,
which proves our claim.

Claim A.4. Assuming F is a puncturable PRF, for any PPT adversary Att,

Adv3Att − Adv4Att ≤ negl(λ).

Proof. Suppose there exists a PPT adversary Att such that Adv3Att − Adv4Att = ε. We will construct a PPT
algorithm B that uses Att to break the security of puncturable PRF (F , F.setup, F.puncture, F.eval) with
advantage ε.

First, B receives the message m from Att. As in Game 3 and Game 4, it computes (SK,VK)← S.Gen(1λ).
Next, it sends y = S.Verify||VK||m as the challenge to the PRF challenger. B receives a punctured key K{y}
and z ∈ {0, 1}`, where z = F (K, y) or z ← {0, 1}`. B computes w = f(z) and sets the public parameters
PP=(iO(Transform-1y,K{y}),iO(AggVerify-2y,K{y},w)). It sends PP,VK to Att.

The signing phase and forgery phase are exactly similar in Game 3 and Game 4. For each signing query
xi, B sends S.Sign(SK, xi) to Att. Finally, Att outputs the forgery σagg and n tuples {(Verifyi, VKi, mi)}.

Note that if z = F (K, y), then B simulates Game 3 perfectly. If z ← {0, 1}`, B simulates Game 4 perfectly.
This concludes our proof.

Claim A.5. Assuming f is a one way function, for any PPT adversary Att,

Adv4Att ≤ negl(λ).

Proof. Suppose there exists a PPT adversary Att such that Adv4Att = ε. We will construct a PPT algorithm
B that, using Att, inverts the one way function f with probability ε.
B receives w from the one way function challenger and m from Att. It chooses (SK,VK) ← S.Gen(1λ),

K ← F.setup(1λ) and computes K{y} ← F.puncture(K, y) (where y = S.Verify||VK||m). It sets the public
parameters PP=(iO(Transform-1y,K{y}), iO(AggVerify-2y,K{y},w)) and sends PP,VK to Att.

For each signing query xi, it computes S.Sign(SK, xi).
Finally, B receives σagg ∈ {0, 1}` and n tuples {(Verifyi,VKi,mi)}. If AggVerify-2y,K{y},w({Verifyi, VKi,

mi},σagg)=1 and ∃i∗ such that Verifyi∗ ||VKi∗ ||mi∗ = y, then B can successfully find an inverse for w. B
computes si = F (K,Verifyi||VKi||mi) for i 6= i∗ and sends σagg ⊕i 6=i∗ si to the one way function challenger.
Clearly, if Att wins in Game 4, then B inverts the one way function.

To conclude, it follows from the above claims that any PPT adversary has at most negligible advantage
in Game 0 (assuming iO, F and f are secure), and therefore the n-bounded aggregator described in A is
selectively secure with respect to secure unique signature schemes.
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B Making our VBB proof Adaptively Secure

We now show how a minor adaptiation of our selectively secure universal aggregator from VBB of Section 5
can be proven adaptively secure. The primary change is to first hash every message with an “admissible hash
function” introduced by Boneh and Boyen [BB04]. From there the additonal RSA-type techniques needed
fall in line with those used by Hohenberger, Sahai and Waters [HSW14].

We now describe our construction and proof. Let O be a virtual black-box obfuscator, F̃ a secure PRF
with key space K̃, domain {0, 1}`sig and range {0, 1}`rnd , PRG a secure pseudorandom generator and h a
θ-admissible hash function mapping `msg bits to d1 bits. Let d2 = d1 + `ver + `vk. Our universal signature
aggregator (`ver, `vk, `msg, `sig)-UniversalSigAgg consists of three algorithms UniversalSetup, UniversalAgg and
UniversalVerify described below.

UniversalSetup(1λ): The setup algorithm first chooses an RSA modulus N , v ∈ Z∗N and e ∈ Z∗φ(N).

Next, it chooses 2d2 constants ci,b ← Zφ(N). Let c = {ci,b}i∈[d2],b∈{0,1}. It sets PP =(O(TransformN,v,c),
O(Transform-ImageN,v,c,e), N , e), where Transform26 and Transform-Image27 are as follows.

TransformN,v,c :

Inputs: b ∈ {0, 1}, a′ ∈ {0, 1}`,Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg ,
σ′ ∈ {0, 1}`sig .

Constants : RSA modulus N ∈ N, v ∈ Z∗N , c = {ci,b} ∈ Z2d2
φ(N).

if b = 0 then
Output ⊥.

else if Verify′(VK′,m′, σ′) = 0 then
Output ⊥.

else
Compute h(m′) = x and let z = x||Verify′||VK′.
Output v

∏
i ci,zi (mod N).

end if

Transform-ImageN,v,c,e :

Inputs: Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg .
Constants : RSA modulus N ∈ N, v ∈ Z∗N , c = {ci,b} ∈ Z2d2

φ(N), e ∈ Z∗φ(N).

Compute h(m′) = x and let z = x||Verify′||VK′.
Output (v

∏
ci,zi )e (mod N).

UniversalAgg(PP, {(Verifyi,VKi,mi, σi)}ni=1): Let PP = (P1, P2, N, e). UniversalAgg first checks if the n
tuples are distinct. If not, it outputs ⊥. Else, it computes ti = P1(Verifyi,VKi,mi, σi) for each i ≤ n. If
ti =⊥ for some i, then UniversalAgg outputs ⊥, else it outputs σagg =

∏
i ti (mod N).

UniversalVerify(PP, {(Verifyi,VKi,mi)}ni=1, σagg): Let PP = (P1, P2, N, e). UniversalVerify first checks if all
n tuples are distinct. If not, it outputs 0. Else, it computes, for all i ≤ n, si = Transform-Image(Verifyi,VKi,mi).
If (
∏
i si) = σeagg (mod N), it outputs 1, else it outputs 0.

26Padded appropriately to be of the same size as Transform-1, Transform-2, Transform-3 and Transform-4.
27Padded appropriately to be of the same size as Transform-Image-1 and Transform-Image-2.
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B.1 Proof of Security

We will now prove that the scheme described in Section B is an adaptively secure universal signature
aggregator with respect to all secure length-qualified signature schemes.

Theorem B.1. Assuming O is a secure virtual black-box obfuscator, F is a secure puncturable PRF, F̃ is a
secure PRF, PRG is a secure pseudorandom generator and RSA is secure, for all (`ver, `vk, `msg, `sig)-length
qualified secure signature schemes S, the universal signature aggregator (`ver, `vk, `msg, `sig)-UniversalSigAgg
is adaptively secure with respect to S.

To prove the above theorem, we will first describe a sequence of hybrid experiments.

B.1.1 Sequence of Games

Game 0 This corresponds to the adaptive security game ExpAtt,S(λ) in which the challenger interacts with
adversary Att.

1. Compute (SK,VK) ← S.Gen(1λ). Choose an RSA modulus N , e ∈ Z∗φ(N), v ∈ Z∗N and ci,b ∈
Zφ(N) for all i ≤ d2, b ∈ {0, 1}. Choose (SK,VK) ← S.Gen(1λ) and set PP = (O(TransformN,v,c),
O(Transform-ImageN,v,c,e), N , e). Send (PP,VK) to Att.

2. For each signature query xi, choose ri ← {0, 1}`rnd and compute σi ← S.Sign(SK, xi). Send σi to Att.
3. Att sends a forgery σagg along with n tuples {Verifyi,VKi,mi}ni=1. Att wins if

(a) ∃i∗ ∈ [n] such that Verifyi∗ = S.Verify, VKi∗ = VK and mi∗ was not queried during the signature
phase

(b) UniversalVerify(PP, {Verifyi,VKi,mi}, σagg) = 1

Game 1 In this game, the challenger computes the signatures using the PRF F̃ .

1. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e ∈ Z∗φ(N), v ∈ Z∗N and ci,b ∈ Zφ(N) for

all i ≤ d2, b ∈ {0, 1}.
Choose K̃ ← F̃ .setup(1λ).
Set PP = (O(TransformN,v,c), O(Transform-ImageN,v,c,e), N , e). Send (PP,VK) to Att.

2. For each signature query xi, choose ρi ← {0, 1}`sig , compute ri ← F̃ (K̃, ρi) and σi = S.Sign(SK, xi; ri).
Send σi to Att.

3. Att sends a forgery σagg along with n tuples {Verifyi,VKi,mi}ni=1. Att wins if

(a) ∃i∗ ∈ [n] such that Verifyi∗ = S.Verify, VKi∗ = VK and mi∗ was not queried during the signature
phase

(b) UniversalVerify(PP, {Verifyi,VKi,mi}, σagg) = 1

Game 2 In this game, the challenger uses program Transform-1 to compute the public parameters PP. This
program is similar to the program Transform. However, it has the additional functionality that it allows user
to receive signatures using secret key SK, provided the user has a ‘trapdoor’ for Transform-1. In this game,
since α← {0, 1}2`, it is unlikely that there exists a ‘trapdoor’.

1. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e ∈ Z∗φ(N), v ∈ Z∗N and ci,b ∈ Zφ(N) for

all i ≤ d2, b ∈ {0, 1}.
Choose K̃ ← F̃ .setup(1λ) and α← {0, 1}2`.
Let Transform-128 be the circuit defined below.
Set PP = (O(Transform-1N,v,c,α,SK,K̃), O(Transform-ImageN,v,c,e), N , e). Send (PP,VK) to Att.

28Padded appropriately to be of the same size as Transform, Transform-2, Transform-3 and Transform-4.
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2. For each signature query xi, choose ρi ← {0, 1}`sig , compute ri ← F̃ (K̃, ρi) and σi = S.Sign(SK, xi; ri).
Send σi to Att.

3. Att sends a forgery σagg along with n tuples {Verifyi,VKi,mi}ni=1. Att wins if

(a) ∃i∗ ∈ [n] such that Verifyi∗ = S.Verify, VKi∗ = VK and mi∗ was not queried during the signature
phase

(b) UniversalVerify(PP, {Verifyi,VKi,mi}, σagg) = 1

Transform-1N,v,c,α,SK,K̃ :

Inputs: b ∈ {0, 1}, a′ ∈ {0, 1}`,Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg ,
σ′ ∈ {0, 1}`sig .

Constants : RSA modulus N ∈ N, v ∈ Z∗N , c = {ci,b} ∈ Z2d2
φ(N),

α ∈ {0, 1}2`, SK ∈ SK, K̃ ∈ K̃.

if b = 0 then
if PRG(a′) 6= α then

Output ⊥.
else

Output (VK,S.Sign(SK,m′; F̃ (K̃, σ′))).
end if

else if Verify′(VK′,m′, σ′) = 0 then
Output ⊥.

else
Compute h(m′) = x and let z = x||Verify′||VK′.
Output v

∏
ci,zi (mod N)

end if

Game 3 This game is exactly similar to the previous experiment, except that the challenger chooses α such
that there exists a trapdoor for program Transform-1. For this, the challenger chooses a ← {0, 1}` and sets
α = PRG(a).

1. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e ∈ Z∗φ(N), v ∈ Z∗N and ci,b ∈ Zφ(N) for

all i ≤ d2, b ∈ {0, 1}.
Choose K̃ ← F̃ .setup(1λ), a← {0, 1}` and set α = PRG(a).
Set PP = (O(Transform-1N,v,c,α,SK,K̃), O(Transform-ImageN,v,c,e), N , e). Send (PP,VK) to Att.

2. For each signature query xi, choose ρi ← {0, 1}`sig , compute ri ← F̃ (K̃, ρi) and σi = S.Sign(SK, xi; ri).
Send σi to Att.

3. Att sends a forgery σagg along with n tuples {Verifyi,VKi,mi}ni=1. Att wins if

(a) ∃i∗ ∈ [n] such that Verifyi∗ = S.Verify, VKi∗ = VK and mi∗ was not queried during the signature
phase

(b) UniversalVerify(PP, {Verifyi,VKi,mi}, σagg) = 1

Game 4 In this experiment, the challenger defines a random challenge subspace of the message space. The
adversary wins if all signature queries lie outside the challenge space and the message mi∗ corresponding to
S.Verify,VK lies in the challenge space.

1. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e ∈ Z∗φ(N), v ∈ Z∗N and ci,b ∈ Zφ(N) for

all i ≤ d2, b ∈ {0, 1}.
Choose K̃ ← F̃ .setup(1λ), a← {0, 1}` and set α = PRG(a). Choose u← AdmSample(1λ, q1 + n).
Set PP = (O(Transform-1N,v,c,α,SK,K̃), O(Transform-ImageN,v,c,e), N , e). Send (PP,VK) to Att.
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2. For each signature query xi,

(a) If Pu(xi) = 0, flip a coin γi ∈ {0, 1} and abort. Att wins if γi = 1.

(b) Else, choose ρi ← {0, 1}`sig , compute ri ← F̃ (K̃, ρi) and σi = S.Sign(SK, xi; ri). Send σi to Att.

3. Att sends a forgery σagg along with n tuples {Verifyi,VKi,mi}ni=1. Att wins if

(a) ∃i∗ ∈ [n] such that Verifyi∗ = S.Verify, VKi∗ = VK and mi∗ was not queried during the signature
phase. Let i∗ be the smallest such index. Then,

(b) (∀i 6= i∗ such that Verifyi = S.Verify,VKi = VK, Pu(mi) = 1) and Pu(mi∗) = 0
(c) UniversalVerify(PP, {Verifyi,VKi,mi}, σagg) = 1

Game 5 In this experiment, the challenger uses program Transform-2 instead of Transform-1. The only differ-
ence between Transform-1 and Transform-2 is that Transform-2 rejects inputs of the form (1, a,S.Verify,VK,m′, σ′)
such that S.Verify(VK,m′, σ′) = 1 and m′ lies in the challenge space.

1. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e ∈ Z∗φ(N), v ∈ Z∗N and ci,b ∈ Zφ(N) for

all i ≤ d2, b ∈ {0, 1}.
Choose K̃ ← F̃ .setup(1λ), a← {0, 1}` and set α = PRG(a). Choose u← AdmSample(1λ, q1 + n).
Let Transform-229 be the circuit defined below.
Set PP = (O(Transform-2u,N,v,c,α,SK,K̃), O(Transform-ImageN,v,c,e), N , e). Send (PP,VK) to Att.

2. For each signature query xi,

(a) If Pu(xi) = 0, flip a coin γi ∈ {0, 1} and abort. Att wins if γi = 1.
(b) Else, choose ρi ← {0, 1}`sig , compute ri ← F̃ (K̃, ρi) and σi = S.Sign(SK, xi; ri). Send σi to Att.

3. Att sends a forgery σagg along with n tuples {Verifyi,VKi,mi}ni=1. Att wins if

(a) ∃i∗ ∈ [n] such that Verifyi∗ = S.Verify, VKi∗ = VK and mi∗ was not queried during the signature
phase. Let i∗ be the smallest such index. Then,

(b) (∀i 6= i∗ such that Verifyi = S.Verify,VKi = VK, Pu(mi) = 1) and Pu(mi∗) = 0
(c) UniversalVerify(PP, {Verifyi,VKi,mi}, σagg) = 1

29Padded appropriately to be of the same size as Transform, Transform-1, Transform-3 and Transform-4.
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Transform-2u,N,v,c,α,SK,K̃ :

Inputs: b ∈ {0, 1}, a′ ∈ {0, 1}`,Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg ,
σ′ ∈ {0, 1}`sig .

Constants : u ∈ {0, 1,⊥}d2 , RSA modulus N ∈ N, v ∈ Z∗N , c = {ci,b} ∈ Z2d2
φ(N),

α ∈ {0, 1}2`, SK ∈ SK, K̃ ∈ K̃.

if b = 0 then
if PRG(a′) 6= α then

Output ⊥.
else

Output (VK,S.Sign(SK,m′; F̃ (K̃, σ′))).
end if

else if Verify′(VK′,m′, σ′) = 0 then
Output ⊥.

else
Compute h(m′) = x and let z = Verify′||VK′||x.
if Verify′ = S.Verify, VK′ = VK and Pu(m′) = 0 then

Output ⊥.
end if
Output v

∏
ci,zi (mod N).

end if

Game 6 This game is similar to the previous one, except for the manner in which the constants c1,b are
chosen.

1. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e← Z∗φ(N), v ∈ Z∗N .

Choose c′i,b ∈ Zφ(N) for all i ≤ d2, b ∈ {0, 1}. Set c1,b = c′1,b · e−1 and ci,b = c′i,b for all i > 1.

Choose K̃ ← F̃ .setup(1λ), a← {0, 1}` and set α = PRG(a). Choose u← AdmSample(1λ, q1 + n).
Set PP = (O(Transform-2u,N,v,c,α,SK,K̃), O(Transform-ImageN,v,c,e), N , e). Send (PP,VK) to Att.

2. For each signature query xi,

(a) If Pu(xi) = 0, flip a coin γi ∈ {0, 1} and abort. Att wins if γi = 1.
(b) Else, choose ρi ← {0, 1}`sig , compute ri ← F̃ (K̃, ρi) and σi = S.Sign(SK, xi; ri). Send σi to Att.

3. Att sends a forgery σagg along with n tuples {Verifyi,VKi,mi}ni=1. Att wins if

(a) ∃i∗ ∈ [n] such that Verifyi∗ = S.Verify, VKi∗ = VK and mi∗ was not queried during the signature
phase. Let i∗ be the smallest such index. Then,

(b) (∀i 6= i∗ such that Verifyi = S.Verify,VKi = VK, Pu(mi) = 1) and Pu(mi∗) = 0
(c) UniversalVerify(PP, {Verifyi,VKi,mi}, σagg) = 1

Game 7 In this game, the challenger uses programs Transform-3 and Transform-Image-1.

1. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e← Z∗φ(N), v ∈ Z∗N .

Choose ci,b ∈ Zφ(N) for all i ≤ d2, b ∈ {0, 1}.
Choose K̃ ← F̃ .setup(1λ), a← {0, 1}` and set α = PRG(a). Choose u← AdmSample(1λ, q1 + n).
Let Transform-330 and Transform-Image-131 be the circuits defined below.

30Padded appropriately to be of the same size as Transform, Transform-1, Transform-2 and Transform-4.
31Padded appropriately to be of the same size as Transform-Image and Transform-Image-2.
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Set PP = (O(Transform-3u,N,v,c,α,SK,K̃,e−1), O(Transform-Image-1N,v,c), N , e) where the circuits Transform-3

and Transform-Image-1 are defined below. Send (PP,VK) to Att.
2. For each signature query xi,

(a) If Pu(xi) = 0, flip a coin γi ∈ {0, 1} and abort. Att wins if γi = 1.
(b) Else, choose ρi ← {0, 1}`sig , compute ri ← F̃ (K̃, ρi) and σi = S.Sign(SK, xi; ri). Send σi to Att.

3. Att sends a forgery σagg along with n tuples {Verifyi,VKi,mi}ni=1. Att wins if

(a) ∃i∗ ∈ [n] such that Verifyi∗ = S.Verify, VKi∗ = VK and mi∗ was not queried during the signature
phase. Let i∗ be the smallest such index. Then,

(b) (∀i 6= i∗ such that Verifyi = S.Verify,VKi = VK, Pu(mi) = 1) and Pu(mi∗) = 0
(c) UniversalVerify(PP, {Verifyi,VKi,mi}, σagg) = 1

Transform-3u,N,v,a,α,SK,K̃,e−1 :

Inputs: b ∈ {0, 1}, a ∈ {0, 1}`,Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg ,
σ′ ∈ {0, 1}`sig .

Constants : u ∈ {0, 1,⊥}d2 , RSA modulus N ∈ N, v ∈ Z∗N , c = {ai,b} ∈ Z2d2
N ,

α ∈ {0, 1}2`, SK ∈ SK, K̃ ∈ K̃, e−1 ∈ Z∗φ(N).

if b = 0 then
if PRG(a) 6= α then

Output ⊥.
else

Output (VK,S.Sign(SK,m′; F̃ (K̃, σ′))).
end if

else if Verify′(VK′,m′, σ′) = 0 then
Output ⊥.

else
Compute h(m′) = x and let z = x||Verify′||VK′.
if Verify′ = S.Verify and VK′ = VK and Pu(m′) = 0 then

Output ⊥.
end if
Output v(

∏
i ci,zi )·e

−1

(mod N).
end if

Transform-Image-1N,v,c :

Inputs: Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg .
Constants : RSA modulus N ∈ N, v ∈ Z∗N , c = {ci,b} ∈ Z2d2

N .

Compute h(m′) = x and let z = x||Verify′||VK′.
Output v

∏
i ci,zi (mod N).

Game 8 In this game, the challenger modifies the manner in which constants ci,b are chosen. Instead of
choosing them uniformly at random from Zφ(N), the challenger now chooses ai,b ← Zφ(N) and sets ci,b
appropriately, depending on u and y = S.Verify||VK.

1. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e← Z∗φ(N), v ∈ Z∗N .

Choose K̃ ← F̃ .setup(1λ), a← {0, 1}` and set α = PRG(a). Choose u← AdmSample(1λ, q1 + n).
Choose ai,b ∈ ZN for all i ≤ d2, b ∈ {0, 1}. Let y = S.Verify||VK.
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For i ≤ d1, set ci,b = e · ai,b mod φ(N) if ui = b, else ci,b = e · ai,b + 1 mod φ(N).

For i > d1, set ci,b = e · ai,b mod φ(N) if yi−d1 6= b, else ci,b = e · ai,b + 1 mod φ(N).

Set PP = (O(Transform-3u,N,v,c,α,SK,K̃,e−1), O(Transform-Image-1N,v,c), N , e). Send (PP,VK) to Att.
2. For each signature query xi,

(a) If Pu(xi) = 0, flip a coin γi ∈ {0, 1} and abort. Att wins if γi = 1.
(b) Else, choose ρi ← {0, 1}`sig , compute ri ← F̃ (K̃, ρi) and σi = S.Sign(SK, xi; ri). Send σi to Att.

3. Att sends a forgery σagg along with n tuples {Verifyi,VKi,mi}ni=1. Att wins if

(a) ∃i∗ ∈ [n] such that Verifyi∗ = S.Verify, VKi∗ = VK and mi∗ was not queried during the signature
phase. Let i∗ be the smallest such index. Then,

(b) (∀i 6= i∗ such that Verifyi = S.Verify,VKi = VK, Pu(mi) = 1) and Pu(mi∗) = 0
(c) UniversalVerify(PP, {Verifyi,VKi,mi}, σagg) = 1

Game 9 This game is similar to the previous one, except that the constants ci,b are computed within the
program Transform-4 (which is used instead of Transform-3). Similarly, program Transform-Image-2 is used
instead of Transform-Image-1.

1. Compute (SK,VK)← S.Gen(1λ). Choose an RSA modulus N , e← Z∗φ(N), v ∈ Z∗N .

Choose K̃ ← F̃ .setup(1λ), a← {0, 1}` and set α = PRG(a). Choose u← AdmSample(1λ, q1 + n).
Choose ai,b ∈ ZN for all i ≤ d2, b ∈ {0, 1}. Let a = {ai,b} and y = S.Verify||VK.
Let Transform-432 and Transform-Image-233 be the circuits defined below.
Set PP = (O(Transform-4u,N,v,a,α,SK,K̃,e,y), O(Transform-Image-2N,v,a,e,y), N , e) where Transform-4

and Transform-Image-2 are defined below. Send (PP,VK) to Att.
2. For each signature query xi,

(a) If Pu(xi) = 0, flip a coin γi ∈ {0, 1} and abort. Att wins if γi = 1.
(b) Else, choose ρi ← {0, 1}`sig , compute ri ← F̃ (K̃, ρi) and σi = S.Sign(SK, xi; ri). Send σi to Att.

3. Att sends a forgery σagg along with n tuples {Verifyi,VKi,mi}ni=1. Att wins if

(a) ∃i∗ ∈ [n] such that Verifyi∗ = S.Verify, VKi∗ = VK and mi∗ was not queried during the signature
phase. Let i∗ be the smallest such index. Then,

(b) (∀i 6= i∗ such that Verifyi = S.Verify,VKi = VK, Pu(mi) = 1) and Pu(mi∗) = 0
(c) UniversalVerify(PP, {Verifyi,VKi,mi}, σagg) = 1

32Padded appropriately to be of the same size as Transform, Transform-1, Transform-2 and Transform-3.
33Padded appropriately to be of the same size as Transform-Image and Transform-Image-1.
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Transform-4u,N,v,a,α,SK,K̃,e :

Inputs: b ∈ {0, 1}, a ∈ {0, 1}`,Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg ,
σ′ ∈ {0, 1}`sig .

Constants : u ∈ {0, 1,⊥}d2 , RSA modulus N ∈ N, v ∈ Z∗N , a = {ai,b} ∈ Z2d2
N ,

α ∈ {0, 1}2`, SK ∈ SK, K̃ ∈ K̃, e ∈ Z∗φ(N), y ∈ {0, 1}
`ver × {0, 1}`vk .

Let y′ = Verify′||VK′.
if b = 0 then

if PRG(a) 6= α then
Output ⊥.

else
Output (VK,S.Sign(SK,m′; F̃ (K̃, σ′))).

end if
else if Verify′(VK′,m′, σ′) = 0 then

Output ⊥.
else

Compute h(m′) = x and let z = x||Verify′||VK′.
if Verify′ = S.Verify and VK′ = VK and Pu(m′) = 0 then

Output ⊥.
end if
if y = y′ then

Let i′ be the first index such that ui′ = xi′ . Set ci′,xi′ = ai′,xi′ .

∀i ≤ d1, i 6= i′, set ci,b = e · ai,b if ui = b, else ci,b = e · ai,b + 1.
∀i > d1, set ci,b = e · ai,b if yi−d1 6= b, else ci,b = e · ai,b + 1.

else
Let i′ be the first index such that yi′ 6= y′i′ . Set cd1+i′,y′i′ = ad1+i′,y′i′ .

∀i ≤ d1, set ci,b = e · ai,b if ui = b, else ci,b = e · ai,b + 1.

∀i > d1, i− d1 6= i′, set ci,b = e · ai,b if yi−d1 6= b, else ci,b = e · ai,b + 1.
end if
Output v

∏
ci,zi (mod N).

end if

Transform-Image-2N,v,a,e :

Inputs: Verify′ ∈ {0, 1}`ver , VK′ ∈ {0, 1}`vk , m′ ∈ {0, 1}`msg .
Constants : RSA modulus N ∈ N, v ∈ Z∗N , a = {ai,b} ∈ Z2d2

N , e ∈ Z∗φ(N),

y ∈ {0, 1}`ver × {0, 1}`vk .

Compute h(m′) = x and set z = x||Verify′||VK′.
∀i ≤ d1, set ci,b = e · ai,b if ui = b, else ci,b = e · ai,b + 1.
∀i > d1, set ci,b = e · ai,b if yi−d1 6= b, else ci,b = e · ai,b + 1.

Output v
∏
ci,xi (mod N).

B.1.2 Adversary’s Advantage in the Games

Let AdvjAtt denote the advantage of adversary Att in Game j.
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Claim B.1. Assuming F̃ is a secure PRF, for any PPT adversary Att,

Adv0Att − Adv1Att ≤ negl(λ).

Proof. Similar to proof of Claim 5.1.

Claim B.2. Assuming O is a secure indistinguishability obfuscator, for any PPT adversary Att,

Adv1Att − Adv2Att ≤ negl(λ).

Proof. Similar to the proof of Claim 5.2.

Claim B.3. Assuming PRG is a secure pseudorandom generator, for any PPT adversary Att,

Adv2Att − Adv3Att ≤ negl(λ).

Proof. Similar to proof of Claim 5.3.

Claim B.4. For any adversary Att,

Adv4Att ≥ Adv3Att/θ(q1 + n).

Proof. This follows from the θ-admissibility of h. Let I = {i′ : Verifyi′ = S.Verify,VKi′ = VK}. Let
yi = h(xi) for all i ≤ q1, and yq1+j = h(mj) for all j ∈ I. Note that mi∗ 6= xi for all i ≤ q1, and mi∗ 6= mj

for all j ∈ I, j 6= i∗. Therefore,

Pr[∀i ≤ q1, Pu(xi) = 1 and ∀j ∈ I, j 6= i∗Pu(mj) = 1 and Pu(mi∗) = 0] ≥ 1/θ(q1 + n)

where the probability is only over the choice of u← AdmSample(1λ, q1 + n).

Claim B.5. Assuming O is a secure virtual black box obfuscator, F̃ is a secure pseudorandom function,
PRG is a secure pseudorandom generator and S is a (`ver, `vk, `msg, `sig)-length qualified secure signature
scheme,

Adv4Att − Adv5Att ≤ negl(λ).

Proof. The proof of this claim is along the lines of the proof of Claim 5.1. Given only oracle access to either
Transform-1N,v,c,α,SK,K̃ or Transform-2u,N,v,c,α,SK,K̃ , the only way in which an adversary S can distinguish

between the two is by sending a query of the form (1, a′,Verify′,VK′,m′, σ′) such that Verify′ = S.Verify,
VK′ = VK, Verify′(VK′,m′, σ′) = 1 and Pu(m′) = 0. Note that m′ was not queried during the signature
phase, since Pu(m′) = 0. This implies (m′, σ′) is a valid forgery, thereby breaking the signature scheme S.

Claim B.6. For any adversary Att,
Adv5Att = Adv6Att.

Proof. The only difference between Game 5 and Game 6 is the choice of c1,b. In Game 5, c1,b ← Zφ(N), while in
Game 6, c′1,b ← Zφ(N) and c1,b = c′1,b · e−1 mod φ(N). However, the distributions D1 = {(c, e)|c ← Zφ(N)}
and D2 = {(c · e−1 mod φ(N), e)|c ← Zφ(N)} are identical, which implies that Game 5 and Game 6 are
identical.

Claim B.7. Assuming O is a secure indistinguishability obfuscator, for any PPT adversary Att,

Adv6Att − Adv7Att ≤ negl(λ).
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Proof. Let (SK,VK)← S.Gen(1λ), K̃ ← F̃ .setup(1λ), a← {0, 1}`, α = PRG(a) and u← AdmSample(1λ, q1+
n). Choose an RSA modulus N , let e ← Z∗φ(N), v ← Z∗N and c′i,b ← Zφ(N). Let c = {ci,b} where

c1,b = c′1,b · e−1 and ci,b = c′i,b for all i > 1. Let c̃ = {c̃i,b} where c̃i,b = c′i,b for all i.
To prove this claim, it suffices to show that Transform-2u,N,v,c,α,SK,K̃ and Transform-3u,N,v,c̃,α,SK,K̃,e−1 are

functionally identical. Let us consider the behavior of the two programs on input (b, a′,Verify′,VK′,m′, σ′).
Let x′ = h(m′). The only case where Transform-2 and Transform-3 can possibly differ is when b = 1,

Verify′(VK′,m′, σ′) = 1, Verify′ = S.Verify, VK′ = VK and Pu(m′) = 1. Transform-2 outputs v
∏
ci,z′

i

(mod N) while Transform-3 outputs v
(
∏
c̃i,z′

i
)·e−1

(mod N). However, note that
∏
i ci,z′i = (

∏
i c̃i,z′i) · e

−1

since c1,b = c′1,b · e−1 = c̃1,b. This concludes our proof.

Claim B.8. For any adversary Att,
Adv7Att − Adv8Att ≤ negl(λ).

Proof. Let us consider the two distributions D1 = {a|a← Zφ(N)} and D2 = {a mod φ(N)|a← ZN}. The
statistical distance between D1 and D2 is (p + q − 1)/N , where N = pq. Since p, q ∈ Θ(2λ), the statistical
distance between D1 and D2 is negligible in λ.

Next, note that the distributions D′1 = {(a, e)|a ← Zφ(N)}, D′2 = {(a · e mod φ(N), e)|a ← Zφ(N)} and
D′3 = {(a · e + 1 mod φ(N), e)|a ← Zφ(N)} are identical. As a result, Game 6 and Game 7 are statistically
indistinguishable.

Claim B.9. Assuming O is a secure indistinguishability obfuscator, for any PPT adversary Att,

Adv8Att − Adv9Att ≤ negl(λ).

Proof. Let N be an RSA modulus, e ← Z∗φ(N), ai,b ← ZN and u ← AdmSample(1λ, q1 + n), a ← {0, 1}`,
α = PRG(a), (SK,VK) ← S.Gen(1λ) and K̃ ← F̃ .setup(1λ). Let ci,b = e · ai,b (mod φ)(N) if ui = b,
else ci,b = e · ai,b + 1 (mod φ)(N). In order to prove this claim, it suffices to prove that the programs
Transform-3u,N,v,c,α,SK,K̃,e−1 and Transform-4u,N,v,a,α,SK,K̃,e are functionally identical, and similarly, the
programs Transform-Image-1N,v,c and Transform-Image-1N,v,a,e are functionally identical. We will use the
following observation.

Observation B.1. Let v ∈ Z∗N , wi ∈ Z for i ≤ n. Let w′ = w mod φ(N) Then v
∏

i wi = v
∏

i w
′
i .

This follows from the fact that vφ(N) = 1.

Let us first consider the circuits Transform-3u,N,v,c,α,SK,K̃,e−1 and Transform-4u,N,v,c,α,SK,K̃,e. On input

(b, a′,Verify′,VK′,m′, σ′), the only case Transform-3 and Transform-4 can possibly differ is when b = 1,
Verify′(VK′,m′, σ′) = 1, and either Verify′||VK′ 6= S.Verify||VK or Pu(m′) = 1. Let y = S.Verify||VK,
y′ = Verify′||VK′ and z′ = h(m′)||Verify′||VK′. Either there exists an index i′ such that ui′ = h(m′)i′ , in
which case set j′ to be the first such index, or there exists an index i′ such that yi′ 6= y′i′ , in which case set
j′ = d1 + i′. Note that cj′,zj′ = e · aj′,z′

j′
.

Transform-3u,N,v,c,α,SK,K̃,e−1(Verify′,VK′,m′, σ′)

=v
(
∏
cj,z′

j
)·e−1

=v
(
∏

j 6=j′ cj,z′j
)·cj′,z′

j′
·e−1

=v
(
∏

j 6=j′ cj,z′j
)·aj′,z′

j′
mod φ(N)

=Transform-4u,N,v,a,α,SK,K̃,e(Verify
′,VK′,m′, σ′)

where the last step follows from Observation B.1.
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Let us now consider Transform-Image-1 and Transform-Image-2. This case follows directly from Observa-
tion B.1, since the only difference between the two programs is that Transform-Image-1N,v,c has c hardwired,
while in Transform-Image-2N,v,a,e, a is hardwired.

Claim B.10. Assuming RSA is secure, for any PPT adversary Att,

Adv9Att ≤ negl(λ).

Proof. Suppose there exists a PPT adversary Att such that Adv9Att = ε. We will construct a PPT algorithm
B that breaks the RSA assumption with advantage ε.
B receives as input N, e, v. It chooses (SK,VK)← S.Gen(1λ). It chooses K̃ ← F̃ .setup(1λ), a← {0, 1}`,

sets α = PRG(a). It chooses u← AdmSample(1λ, q1+n), ai,b ← ZN . It sends PP = (O(Transform-4N,v,a,α,SK,K̃,e),
O(Transform-Image-2N,v,a,e), e) and VK to Att.

For each signing query xi, B checks that Pu(xi) = 1 and sends σi = S.Sign(SK, xi) to Att.
Finally, Att outputs a forgery σagg along with n tuples {Verifyi,VKi,mi}. Let zi = h(mi)||S.Verify||VK,

y = S.Verify||VK, yi = Verify′||VK′ and I = {i|Verifyi = S.Verify,VKi = VK}.
If Att wins, then ∃i∗ ∈ [n] such that Verifyi∗ = S.Verify, VKi∗ = VK, mi∗ was not queried during the signa-

ture phase, Pu(mi∗) = 0 , for all i ∈ I, i 6= i∗ Pu(mi) = 1, and σeagg =
∏
i Transform-Image-2N,v,a,e(Verifyi,VKi,mi).

Let us consider Transform-Image-2N,v,a,e(Verifyi,VKi,mi) for some i 6= i∗. For j ≤ d1, let cj,b = e · aj,b if
uj = b, else cj,b = e · aj,b + 1. For j > d1, let cj,b = e · aj,b if yj−d1 6= b, else cj,b = e · aj,b + 1. If y = y′, let
j′ ∈ [d1] be the first index such that uj′ = zi,j′ . Else, let j′′ be the first index such that yj′′ 6= yi,j′′ and set
j′ = d1 + j′′. Then,

Transform-Image-2N,v,a,e(Verifyi,VKi,mi)

=v
∏
cj,zi,j (mod N)

=v
(
∏

j 6=j′ cj,zi,j )·e·aj′,zi,j′ (mod N)

=ve·τi (mod N) where τi = aj′,zi,j′ · (
∏
j 6=j′

cj,zi,j ).

On the other hand, if we consider the term corresponding to i∗, then

Transform-Image-2N,v,c,e

= v
∏

j cj,zi∗,j (mod N)

= v
∏

j(e·aj,zi∗,j+1)
(mod N)

= v · ve·τi∗ (mod N) for some ti∗ that can be efficiently computed using e, ai,b.

Hence, σeagg = v · (v
∑
τi)e (mod N). B finally outputs x = σagg/(v

∑
τi) (mod N), and wins with advantage

ε.

Therefore, assuming O is a secure VBB obfuscator for class C, F is a selectively secure puncturable
PRF, F̃ is a secure PRF, PRG is a secure pseudorandom generator and the RSA assumption holds, the
construction described in Section B is adaptive secure with respect to all length-qualified signature schemes.
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