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Abstract

Side channel attacks – attacks that exploit implementation-dependent information of a cryptosystem
– have been shown to be highly detrimental, and the cryptographic community has recently focused on
developing techniques for securing implementations against such attacks. An important model called
Only Computation Leaks (OCL) [Micali and Reyzin, TCC ’04] and its stronger variants were proposed
to model a broad class of leakage attacks (a type of side-channel attack). These models allow for
unbounded, arbitrary leakage as long as (1) information in each leakage observation is bounded, and
(2) different parts of the computation leak independently. Various results and techniques have been
developed for these models and we continue this line of research in the current work.

We address the problem of compiling any circuit into a circuit secure against OCL attacks. In order
to leverage the OCL assumption, the resulting circuit will be split into components, where at any point
in time only a single component is active. Optimally, we would like to output a circuit that has only one
component, and no part of the computation needs to be leak-free. However, this task is impossible due
to the result of Barak et al. [JACM ’12]. The current state-of-the-art constructions achieve either two
components with additional leak-free hardware, or many components without leak-free hardware.

In this work, we show how to achieve the best of both worlds: We construct two-component OCL
schemes without relying on leak-free components. Our approach is general and modular – we develop
generic techniques to remove the hardware component from hardware-based constructions, when the
functionality provided by the hardware satisfies some properties. Our techniques use universal deniable
encryption (recently constructed by Sahai and Water [STOC ’14] using indistinguishable obfuscation)
and non-committing encryption in a novel way. Then, we observe that the functionalities of the hardware
used in previous two-component constructions of Juma and Vahlis [Crypto ’10], and Dziembowski and
Faust [TCC ’12] satisfy the required properties.

The techniques developed in this paper have deep connections with adaptively secure and leakage
tolerant multi-party computation (MPC). Our constructions immediately yield adaptively secure and
leakage tolerant MPC protocols for any no-input randomized functionality in the semi-honest model.
The result holds in the CRS model, without pre-processing. Our results also have implications to two-
party leakage tolerant computation for arbitrary functionalities, which we obtain by combining our
constructions with a recent result of Bitansky, Dachman-Soled, and Lin [Crypto ’14].

1 Introduction

Side-channel attacks are attacks that exploit implementation-dependent information of a cryptosystem. Pas-
sive side-channel attacks, or leakage attacks, such as timing attacks, power analysis attacks, acoustic at-
tacks, and more [1,6,24,30,36,37], have proven highly detrimental. Indeed, it has been shown that leakage
attacks can be used to recover the entire secret key in common implementations of the RSA [25], AES [45]
and DES [35] cryptosystems. These attacks are not just theoretical, and can be launched in complex, real-
life settings, e.g. Boneh and Brumley [12] launched a practical network-based timing attack on SSL-enabled
web servers.
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In recent years, the cryptographic community has been devoted to developing adversarial models for
side-channel attacks and constructing provably secure cryptosystems in these models. An important frame-
work of this approach is to construct efficient compilers which take any circuit C (which may have a secret
s hardcoded) and convert it to a new circuit C̃ that is secure against leakage attacks, where the adversarial
model allows the attacker to adaptively choose inputs x and observe outputs y = C̃(x) as well as adap-
tively obtaining leakage functions `(C̃) on the state of the circuit. Unfortunately, achieving security against
adversaries who obtain even a single bit of arbitrary leakage is impossible since it implies virtual black box
obfuscation, which was ruled out by the work of Barak et al. [4, 5]1.

Thus, the community turned to study reasonable ways to restrict the leakage function ` the adversary
may leak on the internal state of the circuit. An important restricted class of leakage attacks was suggested
by Micali and Reyzin [39], called the only computation leaks (OCL) model. In this model, throughout the
computation, devices can have active states and inactive states, and at any point in time, information can
only be leaked on the currently active state. This assumption is meant to capture a large class of attacks
such as timing attacks, power analysis attacks and acoustic attacks, which only leak information on data
this is currently being computed on.

Subsequently, various works have constructed so-called OCL compilers, which take any circuit C as
input and convert it onto a new circuit C̃ such that C̃ is not only functionally equivalent, but also secure
against OCL attacks. The way these compilers work is by splitting the computation into components, where
during any time period only a single component is active. Specifically, consider an n-component circuit
C̃ = {C̃1, . . . , C̃n}. At time period i where some component C̃j is active, the adversary may obtain some
leakage `i(C̃j) for some bounded output length function `i he chose. We say the scheme secure against
continual OCL attacks if the adversary may run the circuit many times and obtain an unbounded total
amount of leakage, as long as its leakage per time period is bounded. As noted previously, due to the
impossibility result of Barak et al. [4], the minimal number of components required is two.

The first OCL compiler constructions were by Juma and Vahlis [34] and Goldwasser and Rothblum [28].
Both of these constructions require a secure hardware component to achieve security against OCL attacks;
the construction of [34] requires only two components, and that of [28] requires many. Subsequently,
Dziembowski and Faust [21] presented an alternative two-component OCL construction which achieves
information-theoretic security, but also requires secure hardware. Although these works had argued that the
hardware functionalities required are simple and independent of the circuit C,2 it is still unsatisfactory if
we need additional trusted assumptions on top of the existing one (the OCL assumption), especially when
they are not necessary.

To date, the only known OCL compiler which does not require secure hardware is the information-
theoretic construction of Goldwasser and Rothblum [29]. However, their OCL scheme requires a large
number of OCL components3. Thus, the state-of-the art previous to this work was to either rely on secure
hardware to achieve OCL with optimal number of components, or to achieve OCL without secure hardware,
but with a large number of components. A major open question left along this line is:

Can we construct two-component OCL compilers without relying on secure hardware?

Beyond the fact that the question of optimal component OCL is of theoretical interest, OCL with minimal
components has implications for the strength of the adversary we can tolerate, the hardware required by the
OCL scheme, and for settings such as leakage-tolerant two-party computation. We discuss some of these
implications below:

1This argument was explicitly stated in the work [29].
2This is to avoid the trivial solution that the hardware does all the computation of C.
3The original result of [29] requires |C| components, where |C| is the size of the original circuit. It was shown by [10] that

the “ciphertext bank” of [29] can be combined with the construction of [21] to achieve an OCL compiler without secure hardware.
The number of components required by this modification is a large constant, approximated by [10] as 20.
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Strength of adversary. Instead of characterizing a result as an OCL result, OCL results can be alterna-
tively described as a class of leakage functions (out of all possible functions) that we provide security
for. It is not hard to see that the fewer OCL components are, the larger the class of leakage functions
we can handle.
Hardware. Although OCL is an attractive assumption, it is not always clear whether the assumption
holds universally under all environments. For example, the cold boot attacks by Halderman et al. [30]
that showed memory can be leaky even if they are not active4. In order to implement an OCL scheme,
we need an underlying hardware design that supports the OCL feature. The more components we need,
the harder the design can be. Moreover, the overhead becomes larger with the number of components,
so a large number of components, even though it is a constant such as twenty in the work [10], may be
prohibitive.
Leakage tolerant computation. As will be discussed in the sequel, two-component OCL without
hardware has implications for leakage tolerant two-party computation. Loosely speaking, this is two-
party secure computation where, in addition to corrupting parties, the adversary may ask for leakage on
honest parties.

Model in this paper. In the literature, there are several strengthening OCL models, such as OCL+ or a
closely related model LDS (leaky distributed system) proposed by Bitansky et al. [7]5. Unlike the OCL
assumption where the adversary can only get leakage of components that follow a particular order (the
order of activation), OCL+ and LDS allow the adversary to leak component of an arbitrary order he likes.
In these models, the adversary cannot leak on joint states of components, which is similar to the concept
of split-state leakage (c.f. see the work of [31, 38] for further discussions). These models capture some
memory attacks (such as some cold boot attacks [30]) beyond the traditional OCL model, as long as the
leakage does not apply on joint states and are bounded per time period. Since the restrictions are weaker,
it is easier to design hardware that achieves the requirements. Thus security guaranteed by these models is
stronger.

It is not hard to see that the scheme JV [34] also achieves the notion of security under these models.
It was observed [10] that the previous schemes GR [29] and DF [21] also achieve these stronger security
notions. We remark that the above motivations for minimizing the number of components also hold for the
OCL+ and LDS settings. Throughout the whole paper, we consider the stronger OCL+ model where the
adversary can leak on any arbitrary order of the component. To avoid unnecessary complications, we will
still call our model OCL, but the reader should keep in mind that the leakage can be obtained on any order
of the components.

1.1 Our Results

In this work, we answer the question above affirmatively. We present two constructions of two-component
OCL compilers from different assumptions. We take a modular approach with the following steps:

• First we establish a technique of how to get rid of hardware used in an OCL scheme – that is, given
any secure hardware-based OCL scheme, suppose there exists a two-party protocol that realizes the
functionality provided by the hardware with some strong property (defined later), then we can replace
the hardware with the two-party protocol, resulting in a secure OCL scheme without hardware. The
result can be summarized (informally) as Theorem 1.1.

• Then we consider how to construct a protocol that meets the requirements above. We show that
under the existence of universal deniable encryption schemes (which can be constructed from indis-

4Some cold boot attacks can be captured by some strengthened OCL models as discussed later; yet we have the same motivation
for reducing the number of components – the less the components, the more plausible the assumption can be.

5Bitansky et al. [7] showed that an LDS scheme is also an OCL+ scheme; on the other hand, one can construct an LDS scheme
from an OCL+ scheme using non-committing encryption. Therefore, the two models are essentially equivalent.
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tinguishable obfuscation by Sahai and Waters [44]) and non-committing encryption schemes [15], for
any simple randomized functionality that takes no inputs, we can construct a protocol that achieves
the goal (the strong property). The result can be summarized (informally) as Theorem 1.2.

• Finally, we look into the two currently known two-component hardware-based schemes with hard-
ware, i.e. the JV scheme [34] and the DF scheme [21]. We observe that in both cases, the functional-
ities of the hardwares in both bases are “simple” in the sense that they can be expressed as no-input
two-party randomized functionalities. Therefore, we can apply the theorems above to achieve two-
component schemes that do not require secure hardware, by simply replacing the hardwares of JV or
DF with the corresponding two-party protocols. We summarize the results as Corollary 1.3.

Our results are general and can be viewed as a design paradigm for OCL schemes: we can first construct
a scheme that uses some simple hardware, which is presumably much easier to construct and to analyze.
Then we can apply the generic tool to get rid of the hardware while preserving security. We state the two
informal theorems below.

Theorem 1.1 (Hardware replacement theorem (Informal)) Let ΛF be some two-component OCL scheme
with secure hardware implementing some two-party functionalityF . Assume there exists a two-party proto-
col ρ that realizes F (with some strong oblivious property), then there exists a two-component OCL scheme
Λ′ without hardware.

Theorem 1.2 (Two-party protocol for simple hardware (Informal)) Assume the existence of universal
deniable encryption schemes and non-committing encryption schemes, then for any no-input two-party
randomized functionality F , there exists a two-party protocol ρ that realizes F with the strong oblivious
property.

By applying the theorems above to the hardware-based constructions of JV [34] and DF [21], we achieve
the following corollary.

Corollary 1.3 Assume the existence of universal deniable encryption schemes and non-committing encryp-
tion schemes. Then we achieve:

(JV + Theorems 1.1, 1.2). If there further exists a fully homomorphic encryption (with cipher refresh-
ing) that is secure against 2O(`(λ)) adversaries, the there exists a two-component OCL scheme that is
O(`) continual leakage resilient, where λ is the security parameter.
(DF + Theorems 1.1, 1.2). There exists a two-component OCL scheme that is ` continual leakage
resilient, for `(λ) = m(λ)/10,m(λ) = ω(log(λ)), where λ is the security parameter.

Furthermore, both constructions do not require secure hardware.

We remark that our results rely on the existence of universal deniable encryption. This can be con-
structed from indistinguishable obfuscation for general circuits by Sahai and Waters [44]. Indistinguishable
obfuscation for general circuits was constructed in the breakthrough result of Garg et al. [23] and followup
work [2, 3, 11, 26, 42]; please refer to [46, 47] for more applications of indistinguishable obfuscation. Our
constructions use universal deniable encryption in a black-box way, so they do not depend on a particular
construction of universal deniable encryption nor indistinguishable obfuscation. Our results can be under-
stood without the context of indistinguishable obfuscation, so we do not further discuss the notion to avoid
digression.
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1.2 Connections with Multi-party Computation

Our results have deep connections with multi-party computation (MPC) constructions that achieve different
levels of security. In particular, we consider MPC for the following two classes of functionalities.

No-input randomized functionalities. The strong oblivions simulation property in Theorem 1.2 actually
implies a stronger notion of adaptive security (against semi-honest corruption), called corruption-oblivious
simulation by Bitansky et al. [8]. As shown in the work [8], such notion also implies leakage tolerance
(against semi-honest corruptions). We will further discuss the strong oblivious property after Definition 2.3.

Thus, as an implication of the theorem, for any two-party no-input randomized functionalities, we
are able to construct a two-party protocol (in the CRS model) that is simultaneously leakage tolerant,
and adaptively secure (against semi-honest corruptions). In Section 5, we show how to generalize the
construction to the setting of N -party no-input randomized functionalities.

Moreover, our protocols can implement randomized functionalities beyond “adaptively well-formed”
ones according to Canetti et al. [17] – the functionalities do not need to leak its internal randomness to the
adversary when all parties are corrupted. Additionally our protocols only need two rounds. To our knowl-
edge, these are the first constructions that achieve adaptive security beyond the well-formed constraints;
they are also the first constant-round protocols that are adaptively secure and leakage tolerant (against
semi-honest corruptions) for this class of functionalities. We further elaborate on this in Remark 3.5.

General two-party functionalities. We observe that both the two-component constructions (JV-based and
DF-based) are in fact of so-called strong OCL compilers (as introduced by Bitansky et al. [10]), where
a strong OCL compiler is an OCL compiler with some enhanced simulation properties. Leveraging a
recent result of Bitanksy et al. [10], which shows an equivalence between two-component strong OCL and
two-party leakage tolerant computation in the input-independent preprocessing model (when no parties are
corrupted), we obtain the following corollary:

Corollary 1.4 (Informal) Assume the existence of universal deniable encryption schemes and non-committing
encryption schemes, Then for every function f , there exists a two-party leakage tolerant protocol which
UC-emulates f in the input-indepdendent preprocessing model when no parties are corrupted.

Very recently, it was shown that based on standard cryptographic assumptions, the equivalence between
two-component strong OCL and two-party leakage tolerant computation in the input-independent prepro-
cessing model can be extended to the case where one or both parties are actively corrupted [9]. Combining
this result with our two-component strong OCL constructions, we then obtain, for every function f , a two-
party leakage tolerant protocol which UC-emulates f in the input-independent preprocessing model under
static, active corruption of parties.

1.3 Techniques

In this section, we highlight some of our techniques to achieve our two main theorems.

Hardware replacement theorem. Let ΛF be some secure hardware-based two-component OCL scheme
where the hardware implements some functionality F . Similar to the spirit of the Universal Composability
framework [13, 14], our goal is to replace the hardware by a two-party protocol ρ while preserving OCL
security.6 Clearly the theorem cannot work with any arbitrary two-party protocol – we argue that the
protocol ρ at least needs to be somewhat leakage resilient to the OCL leakage (independent leakage on each
party), since the replacement theorem should also work for the trivial case where F is a secure hardware
that computes the circuit we want to protect.

6We do not use the term of “composability” to avoid confusion since OCL schemes, through related, are different from protocols
in syntax and many other properties.
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In this work, we identified a strong oblivious simulation property that captures the spirit of the corruption-
oblivious simulation defined by Bitansky et al. [8] in a compact and simple way. Then we show suppose
ρ realizes F with such strong oblivious simulation, then we can replace the hardware by the protocol ρ
while preserving the security. We note that since the syntaxes of OCL compilers and leakage tolerant pro-
tocols are quite different, it is not clear whether the hardware replacement theorem can be implied by the
composition theorem by Bitansky et al. [8].

Informally, the strong oblivious simulation requires that there exist independent simulators (Str,S1,S2)
such that the simulator Str can generate an indistinguishable transcript τ , and for b = {1, 2}, Sb(xb, yb, τ)
can generate an indistinguishable view (or state) of the party Pb, where x1, x2, y1, y2 are the inputs/outputs
to the ideal functionality, i.e. (y1, y2) ← F(x1, x2). This means, any leakage function g on Pb’s state can
be simulated by g(Sb(xb, yb, τ)). Therefore, any leakage attack at the state of party Pb (the real world) can
be translated to a leakage attack at the input/output of the party Pb in the ideal world. Using the idea, we
can further show that any OCL leakage attack at the scheme Λρ (a scheme where we replace the hardware
functionality by ρ) can be translated to an OCL leakage attack at the scheme ΛF . Thus, the security of Λρ

is guaranteed by the security of ΛF .

Constructing protocols for simple functionalities. The next part of our main contribution is to construct
protocols that achieve the strong oblivious simulation property. We note that this property is very strong that
we do not know how to construct protocols for general functionalities. However, for a restricted but still very
useful class of functionalities – no-input randomized functionalities, we show how to construct protocols
that achieve the strong obvious simulation property, using deniable encryptions (recently constructed by
Sahai and Waters [44] with indistinguishable obfuscation). Then we observe that the “simple” hardwares
used in the literature [21, 34] can be captured by such class.

We use a (universal) deniable encryption and a receiver non-committing encryption as our building
blocks. Informally, a deniable encryption allows a sender to come up with a message and randomness
that explain a ciphertext. That is, given any ciphertext c∗ and a message m, the sender can come up
with (indistinguishable) randomness r such that Enc(m; r) = c∗; a receiver non-committing encryption
allows a simulator to first generate a pair of simulated public-key and ciphertext (without knowing what the
underlying message was), and later to come up with consistent random coins that explain the key generation,
and decrypt the ciphertext to an arbitrary message m. By combining the two in a novel way, we show how
to design protocols that achieve the strong oblivious simulation for no-input randomized functionalities.
We give further overviews in Section 3.

1.4 Related Work

In this section, we compare our two-component OCL compilers with previous results from the literature.
OCL compilers which require secure hardware were constructed by [21, 28, 34]. These OCL compilers
all require two components; the compiler of [21] is information theoretic; the compiler of [28] relies
on the DDH assumption and the compiler of [34] requires fully homomorphic encryption with a cipher-
text refreshing property. An OCL compiler which does not require secure hardware was first constructed
by [29]; moreover, theire construction is information theoretic. The compiler of [29] is described as requir-
ing O(|C|) components, where |C| is the size of the underlying circuit. However, it was shown in [10] how
to combine techniques from [29] and [21] to achieve an OCL compiler without secure hardware and a large
constant number of components, approximated by [10] as 20.

In the following table, we present a comparison of the assumptions, number of components and leakage
rates achieved by best known previous work [10, 21, 29, 34], as well our JV-based and DF-based schemes.
Let ` be some parameter. The following table presents parameters for different schemes in order to construct
an OCL compiler that tolerates `-bit leakage per time.

We remark that even though the leakage rate of the previous constant-component constructions depends
on the circuit size |C|, there is a generic way to get rid of the dependency by using FHE. We can first encrypt
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Scheme Hardware Assumption Components Leakage rate
(Asymptotically)

JV Yes 2`-secure FHE 2 `/w|C|
DF Yes None 2 1/`|C|

GR12 No None O(|C|) 1/`O(1)

BDL14 No None 20 1/`O(1) · |C|
Ours (JV-based) No 2`-secure FHE, 2 `/w|C|

Deniable Enc, NCE
Ours (DF-based) No Deniable Enc, NCE 2 1/`|C|

Ours (DF + FHE based) No Deniable Enc, NCE + FHE 2 1/`1+o(1)

Table 1: Comparison of various OCL schemes in the literature.
w corresponds to the length of the FHE ciphertext, |C| corresponds to the size of the underlying circuit.
NCE stands for non-committing encryption. We note that the ciphertext length w must be at least as large
as `; otherwise it is easy to break the FHE scheme in time 2`. The constant of O(1) depends on the best
algorithm of matrix multiplication. Both constants are greater than 1.37 under the best known algorithm by
Williams [48].

the circuit C (keep it public) by the FHE, and then apply the OCL compiler only on the decryption circuit,
which has size λ (can be re-parameterized as the security parameter) and is independent of the circuit C.
This idea is generic and can be applied to all OCL constructions. We only state one example in the last row
of the table, but note that the rates for other constructions can be also improved in this way.

Alternative leakage on computation models and compilers in these models. Ishai et al. [32] suggested
a leakage model which captures wire probing attacks where the adversary may leak the value of individual
wires during the computation. Note that the OCL model subsumes this model. Additional models for
leakage on computation were introduced by [18], and [22] . These models allow unbounded-length “noisy”
leakage (leakage that does not reduce the entropy of the circuit’s secret state by too much) and leakage under
restricted classes of leakage functions (such as AC0 leakage), respectively. Compilers for the wire probing
model were constructed by [32]; compilers for the noisy leakage model were constructed by [20, 22];
compilers for restricted classes of leakage functions were constructed by [22, 40, 41, 43].

2 Two-Component OCL Schemes and Hardware Replacement Theorem

A two-component OCL scheme for a (private) circuit C(·), consists of an efficient compiler Comp and a
two-party protocol Π = (P1, P2). To compute C(·) in a leakage-resilient way, the circuit is compiled ahead
of time by Comp(C(·)) that produces a public parameter pp, and initial states (intl1, intl2) for each party.
This compilation is done “in the dark” without any leakage. Afterwards, the public parameter pp will be
given to the two parties and the adversary (at all time), and then, the parties can compute together y = C(x)
for any input x by running the protocol Π for an arbitrary polynomial number of inputs.

Below we provide the formal definition and security requirements of OCL schemes. Here the ad-
versaries are allowed to continually leak on the internal state during each iteration. As discussed in the
introduction, here we consider a stronger adversary that he can leak on any arbitrary order of the compo-
nents. Additionally, we consider a further stronger security notion where we require the simulator to be
oblivious of the leakage queries from the adversaries.

Definition 2.1 (Two-component OCL schemes) We say that Λ = (Comp,Π = 〈P1, P2〉) is a continual,
two-component OCL scheme if it satisfies the following properties.

7



Initialization: For every security parameter λ ∈ N, polynomial-sized circuit family C = {Cλ}λ∈N, the
compiler Comp(1λ, Cλ) runs in time poly(λ) and outputs a public parameter pp and 2 initial states
intl1, intl2. Note that pp will be kept the same during all evaluations, and given to all parties.

Unbounded-time evaluation: The evaluation procedure invokes the protocol Π between the components
P1(pp, intl1), P2(pp, intl2), which interact in an arbitrary polynomial number of iterations: In the
ith iteration, P1 receives an input xi ∈ {0, 1}|Cλ| and P2 produces an output yi7. At the end of the
evaluation, an update procedure is carried out, producing the new initial states for the next iteration;
then all information other than the new initial states are erased. Note that pp will not be erased and
will be reused in the next iteration.

For each component b ∈ {1, 2}, denote by intli,b the initial states of component b at the onset of the
ith iteration (in the first iteration, intl1,b = intlb), and evli,b the random coins tossed and messages
exchanged by each Pb during the ith iteration, including its state during the update phase.

Correctness with adaptive input selection: For every λ ∈ N, polynomial-sized circuit family C = {Cλ}λ∈N,
auxiliary input z ∈ {0, 1}poly(λ), and PPT adversaryA, in the following real experiment RealA(1λ, Cλ, z)
whereA initiates an arbitrary number of evaluations with adaptively chosen inputs, it holds that with
all but negligible probability, the outputs of all evaluations are correct.

We say that an OCL scheme has perfect correctness if the above holds with probability 1.

2.1 Security Model

We now describe the security experiments of OCL schemes. A scheme Λ is said to be `-leakage-resilient
with oblivious simulation if there is a simulator S, such that, for every λ ∈ N, polynomial-sized family C,
and auxiliary input z ∈ {0, 1}poly(λ), the views of the adversary in the following real and ideal experiments
are indistinguishable. In the real world, the adversary has the power of obtaining leakage independently
from each component in honest OCL evaluations over inputs chosen adaptively by the adversary, whereas
in the ideal world, it obtains leakage from states of the components simulated by an oblivious simulator,
given oracle access to the circuit Cλ(·). More formally,

Experiment RealA(1λ, Cλ, z): The adversary A(1λ, |Cλ|, z) proceeds as follows:

1. The initial states (pp, intl1, intl2)← Comp(1λ, Cλ) are sampled.

2. A gets the public parameter pp and launches `-bounded leakage attacks on an unbounded polynomial
number of evaluations of its choice. In the ith iteration, A works as follows:

(a) A submits an input xi ∈ {0, 1}|Cλ|, which is evaluated on Cλ by resuming the protocol ex-
ecution of Π between the components P1(pp, intli,1), P2(pp, intli,2) with input xi to the first
component P1.

(b) A launches an `-bounded leakage attack on the ith evaluation. It issues leakage queries
(G1,b1 , G2,b2 , . . . , ), where each bk ∈ {1, 2} to the two components (adaptively), and obtain
leakage answers of all queries, i.e., Gk,bk(intli,bk , evli,bk), as long as the total amount of leakage
on each component in this iteration is smaller than `(λ) bits. Denote Li ∈ {0, 1}≤` be the
leakage observed in the ith round.

(c) A obtains the output of the evaluation, which is the output of P2.
7It is without loss of generality that P1 receives inputs and P2 produces an output. We can always achieve this by sending one

more round of message.
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Denote VIEW`
A(1λ, Cλ, z) = (pp, x1, y1, L1, x2, y2, L2, . . . , ) as the view of A in the above experiment.

Experiment IdealS,A(1λ, Cλ, z): In the ideal experiment, the simulator SA(1λ,|Cλ|,z),Cλ(·) gets oracle
access to the adversary A and oracle access to the circuit Cλ(·). His task is to produce an indistinguishable
view of the adversary.

Furthermore, we say the simulator is oblivious, if it uses the following strategy to interact with the
adversary: let the adversary A(1λ, |Cλ|, z) participate in the same experiment as above. The simulator at
the beginning generates a public parameter p̃p and gives it to the adversary A. Then at each round i, the
simulator works as follows.

(a) Let xi be the input A submits in this iteration, and yi = Cλ(xi) be the answer obtained by the oracle
query. S(1λ, i, xi, yi; wi) is invoked, producing simulated states (ĩntli,1, ĩntli,2, ẽvli,1, ẽvli,2), where
wi is the fresh random coins tossed for the simulation in iteration i and wi = w1, · · · , wi is all the
random coins that have been tossed for simulation in the first i iterations.

(b) Let (G1,b1 , G2,b2 , . . . , ) where bk ∈ {1, 2}, be the leakage queries A makes (perhaps in an adaptive
way) in this round. Then S returns Gk,bk(ĩntli,bk , ẽvli,bk) for all these queries, as long as the total
amount of leakage on each component in this iteration is smaller than `(λ) bits.

(c) S sends yi to the adversary.

Denote ṼIEW
`
S,A(1λ, Cλ, z) as the (simulated) view of A in the above experiment.

Definition 2.2 (Continual `-leakage-resilience with oblivious simulation) We say that a continual OCL
scheme OCL is continually `-leakage-resilient with oblivious simulation if there is a PPT simulator S, such
that, for every PPT adversary A, every polynomial-sized circuit family C, the following two ensembles are
indistinguishable.
{VIEW`

A(1λ, Cλ, z)}λ∈N,Cλ∈C,z∈{0,1}poly(λ)
{ṼIEW

`
S,A(1λ, Cλ, z)}λ∈N,Cλ∈C,z∈{0,1}poly(λ)

F-hybrid OCL schemes. A two-component OCL scheme may use subroutines during its execution. Let
F denote a two-party functionality. We say a two-component OCL scheme Λ = (Comp,Π = 〈P1, P2〉) is
an F-hybrid OCL scheme if Λ completes its execution by calling F (probably multiple times). Often we
write it as ΛF = (Comp,ΠF ). If the OCL scheme Λ calls F at a round i, and let (x1, x2) be the values
provided by P1, P2 and (y1, y2) be the values F returns to P1, P2 respectively, then the states evli,1, evli,2
will include (x1, y1) and (x2, y2), respectively. The adversary can obtain leakage of (x1, y1), (x2, y2)
(perhaps adaptively but not jointly) via (adaptive) leakage queries.

Usually, we can think of F as some hardware that generates messages securely, i.e. there is no leakage
on the internal states. We next consider how to replace such F with a two-party protocol. Intuitively,
suppose there is a two-party protocol ρ that “realizes” F , then we have a two-component OCL scheme
where we can replace the calls to F by running the protocol ρ. We denote the scheme as Λ′ = (Comp,Πρ).
We also consider the case where ρ realizesF in a setting that a common reference string (CRS) crs is always
available. In this case, we can combine the CRS generation into the compilation: Comp may generate a
certain pubic parameter pp, and we can simply augment Comp into Comp′ that generates pp′ = pp||crs.
This is denoted as Λ′ = (Comp′,Πρ).

However, standard simulation based security is not sufficient for the argument of the hardware re-
placement as above because the simulation (of ρ ) could be a joint simulation for both participants. This
is inconsistent with the security requirement of OCL scheme where the emulation for one component is
oblivious to the emulation of the other component. In the following, we define a stronger version of re-
alization, and prove that if ρ realizes F in this sense, then we can replace F with ρ and the OCL scheme

9



remains secure. The definition we present is a compact and simplified version that captures the notion of
“security under adaptive corruptions with a corruption-oblivious simulator” defined by [8]. We consider
the semi-honest case only.

Definition 2.3 (Strong oblivious simulation for protocols) Let crs← CRS.Gen(1λ), and let π = (P1, P2)
be a two-party protocol using such common reference string crs. Let F be a two-input (perhaps random-
ized) ideal functionality. We say π realizes the functionality F with strong oblivious simulation, if there
exists a PPT simulator S = (S1,S2,Str) for all (non-uniform) PPT adversary A such that the following
distributions are computationally indistinguishable:

crs← CRS.Gen(1λ); (x1, x2)← A(crs);
(r1, r2)← Uλ × Uλ;

τ = 〈P1(crs, x1; r1), P2(crs, x2; r2)〉
: (crs, x1, r1, τ, x2, r2)

 ≈


crs← CRS.Gen(1λ); (x1, x2)← A(crs);
(y1, y2)← F(x1, x2); τ̃ ← Str(crs);

r̃1 ← S1(crs, x1, y1, τ̃); r̃2 ← S2(crs, x2, y2, τ̃)
: (crs, x1, r̃1, τ̃ , x2, r̃2)

 .

Note that r1, r2 are the random coins of the parties, and τ is the transcript (i.e. message exchanges) by
running the protocol 〈P1(crs, x1; r1), P2(crs, x2; r2)〉.

Remark 2.4 The notion above is related to the notion of security under adaptive corruptions with a
corruption-oblivious simulator defined by Bitansky et al. [8]. We elaborate further below.

Our notion implies adaptive security where the simulator uses a universal strategy that is independent
of the order of corruption, i.e. S1 and S2 simulate independently (with a joint transcript τ̃ that is
independent of the inputs/outputs). In contrast, in the adaptive security case, the simulator is allowed
to see the already corrupted party’s input/output, i.e. if the adversary first corrupts P1 and then P2, then
the simulator can see both (x1, y1) and (x2, y2) when simulating the view of P2. Known constructions
of adaptively secure two party computation for all functionalities, such as [17], do not admit such
simulators.
Following the approach of [8], our notion implies a strong notion of leakage tolerant two-party com-
putation in the semi-honest setting where any t-bit leakage function in the real world can be translated
to a t-bit leakage function in the ideal world. There is no prior bound on t. Moreover, if the leakage
function in the real world does not leak on the joint states, then the ideal leakage function does not,
either.

Theorem 2.5 (OCL hardware replacement theorem) Let F be some two-party functionality, and ΛF =
(Comp,ΠF ) be an F-hybrid two-component OCL scheme that is `-leakage-resilient with oblivious sim-
ulation. Suppose there exists a two-party protocol ρ using a common reference string crs, that realizes
F with strong oblivious simulation as Definition 2.3. Then there exists a two-component OCL scheme
Λ′ = (Comp′,Πρ) that is `-leakage-resilient with oblivious simulation.

The intuition of the proof of Theorem 2.5 is the following: The two-component OCL scheme Λ′ will
simply replace each call to the ideal functionality F with an execution of the two-party protocol ρ, where
each component plays the part of one of the parties in ρ. To obtain an oblivious simulator for the composed
execution Λ′, we must reconstruct the entire state of each component. Note that the state of each component
in Λ′ simply consists of its state in Λ, concatenated with its state in ρ. Thus, a natural approach is to
reconstruct each party’s state by concatenating the output of the simulator Ŝ for Λ and the output of the
simulator S̃ for ρ. Indeed, this approach does in fact work since the only shared information between the
component’s simulated state in Λ and its simulated state in ρ is the input/output of the ideal functionality F .
Therefore, conditioned on the input/output of F , each component’s state in ρ can be reconstructed entirely
independently of its state in Λ. We note that the bound in Λ′ inherits from the underlying scheme Λ. By the
security of the protocol ρ as discussed above, any leakage to the evaluation states of ρ can be translated to
leakage of the input/output of F . For this part we do not need a prior bound. We defer the formal proof to
Section A.2.
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Remark 2.6 Very recently, Bitansky et al. [10] defined a notion of strong two-component OCL schemes.
They showed this notion has implications to two-party leakage tolerant protocols as discussed in the intro-
duction. We note that the previous schemes [21, 34] satisfy this stronger notion, and a similar hardware
replacement theorem can be achieved. Please refer to Appendix A.1 for more details.

3 How to Implement Simple Functionalities

In this section, we construct two-party protocols to realize functionalities that provided by hardware com-
ponents in previous schemes (with strong oblivious simulation). However, the requirement is very strong
as we discussed in the previous section, and it is not clear how to construct protocols for general func-
tionalities. Fortunately, the functionalities used in the previous constructions by Juma and Vahlis, and by
Dziembowski and Faust [21, 34] (and in all the other known constructions) are “simple”. We show how to
construct protocols for certain simple functionalities.

3.1 Ideal Functionality

Here we define a functionality F∆
sampling which samples correlated randomness (according to some distri-

butions) for both parties without taking any inputs. This functionality captures the hardwares used in the
previous schemes of Juma-Vahlis and Dziembowski-Faust.

The ideal functionality F∆
sampling is parametrized by an efficiently samplable distribution ∆ that outputs

correlated random coins (γ1, γ2)← ∆(1λ).

Functionality F∆
sampling

F∆
sampling, parameterized with a distribution ∆, a variable done with initial value 0, running with parties

(P1, P2) and an adversary A, operates as follows:

• Upon receiving request from Pi, if done = 0, then sample (γ1, γ2) ← ∆(1λ), and set done := 1.
Return γi to party Pi, and ignore future request from Pi.

Figure 1: The ideal functionality for sampling correlated randomness

3.2 Building Blocks

In this section, we present two building blocks for our construction – receiver non-committing encryption,
and universal deniable encryption transformation. Basically, a receiver non-committing public key encryp-
tion allows a simulator to first generate a pair of simulated public-key and ciphertext (without knowing
what the underlying message was), and later to come up with consistent random coins that explain the key
generation, and decrypt the ciphertext to an arbitrary message m. This notion is weaker than standard non-
committing public key encryption [15], which can be constructed from trapdoor simulatable public key
encryption [19], which in turn can be instantiated under standard assumptions such as CDH, RSA, DDH,
LWE and factoring Blum integers.

Universal Deniable Encryption is a new notion proposed by Sahai and Waters [44]. Here we paraphrase
the ideas as Definition 3.2: given any encryption scheme E = {Gen,Enc,Dec}, there is a one-time setup
UniGen that takes input the encryption algorithm E.Enc and generates two programs Cencrypt, Cexplain, an
encryption program and an explanation program. The one-time setup is generated by some trusted party.

Basically, the encryption program Cencrypt takes inputs a public key pk and a message m, outputs a
ciphertext. The explanation program Cexplain takes inputs a public key pk, a ciphertext c, and a message
m outputs random coins r to “explain” that c is an encryption of m. That is, running the encryption
program with input pk,m and randomness r, it will output c, i.e. c = Cencrypt(pk,m; r). The security
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requires that (1) the distribution of {Cencrypt(pk,m)} is statistically close to that of {E.Enc(pk,m)}. In
other words, using Cencrypt is essentially the same as using the encryption algorithm. (2) It is computa-
tionally hard to distinguish the real random coins from the explained random coins (by Cexplain). Note that
since Cencrypt, Cexplain can be generated without knowing any secret information, the semantic security of
E preserves even given these two programs.

Actually, the universal deniable encryption in the work of Sahai and Waters [44] is more general: it
allows Cencrypt, Cexplain to take public keys from different encryption schemes. In our application, this
slightly restricted version already suffices. So for clarity of exposition, we present this simpler version.

Definition 3.1 (Receiver non-committing encryption [16, 33]) A one-sided non-committing encryption scheme
(for the receiver) consists of a tuple (NCGen,NCEnc,NCDec,NCSim) such that (NCGen,NCEnc,NCDec)
is an encryption scheme and NCSim = (NCSim1,NCSim2) is a tuple of two simulation algorithms. On
input 1λ, NCSim1(1λ) outputs a simulated public key p̃k and a simulated ciphertext c̃; on inputs a simu-
lated public key, p̃k, a simulated ciphertext c̃, and a message m, NCSim2(p̃k, c̃,m) outputs random coins
σ̃ (for the key generation, NCGen). We say the scheme is secure if for all messages m, the following two
distributions are indistinguishable:

the view of honest decryptor in a normal encryption of m:

{(pk, c, σ) : (pk, sk)← NCGen(σ), c← NCEnc(pk,m)} ,

simulated view of an encryption of m:{
(p̃k, c̃, σ̃) : (p̃k, c̃)← NCSim1(1λ), σ̃ ← NCSim2(p̃k, c̃,m)

}
.

Definition 3.2 (Universal deniable encryption transformation for an encryption scheme) Let E =
{Gen,Enc,Dec} be a (bit) encryption scheme. A universal deniable encryption transformation for E is a
PPT algorithm UniGen that takes input security parameter 1λ, an encryption circuit that implements the
encryption algorithm E.Enc(1λ, ·; ·) and outputs two programs Cencrypt, Cexplain with the following syntax:
let pk be a public key, m be a message, c be a ciphertext.

• Cencrypt takes inputs pk,m, random coins r, and Cencrypt(pk,m; r) outputs a ciphertext c;

• Cexplain takes inputs pk, c,m, random coins v̄, and Cexplain(pk, c,m; v̄) outputs a string r.

We say the transformation is secure if:

(a) For all pk ∈ E.Gen(1λ), messages m ∈ {0, 1}, and any Cencrypt ∈ UniGen(1λ), the following
two distributions are statistically close: {Cencrypt(pk,m)} ≈ {E.Enc(pk,m)}. Note that the circuit
Cencrypt and the encryption algorithm E.Enc might have different spaces for random coins, but the
distributions can still be statistically close.

(b) For any message m ∈ {0, 1}, the following two distributions are computationally indistinguishable:

{(Cencrypt, Cexplain, pk, c, r)} ≈ {(Cencrypt, Cexplain, pk, c, r
′)},

where (Cencrypt, Cexplain) ← UniGen(1λ), pk ← E.Gen(1λ), r ← Upoly(λ), c = Cencrypt(pk,m; r),
r′ ← Cexplain(pk, c,m), and Upoly(λ) denotes the uniform distribution over a polynomial number of
bits.

Theorem 3.3 ( [44]) Assume there exist indistinguishable obfuscation for general circuits and one way
functions. Then there exists a secure universal deniable encryption transformation for any encryption
scheme.

As pointed out in the introduction, our constructions only use universal deniable encryption and non-
committing encryption in a black-box way. We do not explicitly use indistinguishable obfuscation so we
do not present the syntax here.
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3.3 Our Construction

crs = (Cencrypt, Cexplain)
P1(crs) P2(crs)

r1 ← Upoly(λ) r2 ← Upoly(λ)

�
pk

(pk, sk)← E.NCGen(1λ; r2)
(γ1, c2)← Cencrypt(pk, 0; r1)

c2 - γ2 ← E.NCDec(sk, c2)

output: γ1 output: γ2

Figure 2: A protocol for Fsampling.

Now we are ready to describe our protocol. Let E = {NCGen,NCEnc,NCDec,NCSim} be a receiver
non-committing encryption, ∆ be the (efficiently samplable) distribution that the ideal functionality wants
to sample, and UniGen is a secure universal deniable encryption transformation. First we consider a bit
encryption E′ = {Gen,Enc,Dec} that works as follows:

• E′.Gen(1λ): run (pk, sk)← E.NCGen(1λ). Output (pk, sk) as the public and secret keys.

• E′.Enc(1λ, pk, b): sample (γ1, γ2) ← ∆(1λ). Then output c ← (γ1,E.NCEnc(pk, γ2||b)) as the
ciphertext. The random coins of this process consist of the randomness used for sampling ∆, and
that for encryption algorithm E.NCEnc.

• E′.Dec(1λ, sk, c): parse c = (c1, c2). Run γ2||b := E.NCDec(sk, c2), and output b.

The CRS sampling. Let C be a circuit that implements E′.Enc(1λ). The sampling algorithm runs
(Cencrypt, Cexplain)← UniGen(C), and outputs crs = (Cencrypt, Cexplain) as the CRS.

The protocol. The parties upon receiving crs = (Cencrypt, Cexplain) do the following:

• P2 first samples a random string r2 and runs (pk, sk)← E.NCGen(1λ; r2) and sends pk to P1.

• P1 then samples a random string r1, and runs (γ1, c2)← Cencrypt(pk, 0; r1). Then P1 locally outputs
γ1 and then sends c2 to P2.

• P2 runs γ2||0 := E.NCDec(sk, c2) and then outputs γ2.

The transcript of the protocol is (pk, c2).
Here it is important that P1 does not directly use E′.Enc to generate the ciphertext. Suppose he used

E′.Enc directly, then his random coins r1 must contain information about the underlying message of c2 =
E.Enc(pk, γ2||0). We argue that it is impossible to satisfy our security requirement as follows.

Let us recall the security definition (Definition 2.3): to prove security, we need to construct a simulator
S = (Str,S1,S2) such that we require S1 to simulate the view of P1 without knowing γ2, and similarly
S2 to simulate the view of P2 without knowing γ1. Therefore, a secure protocol cannot allow one to derive
γ2 from P1’s random coins r1; otherwise, it is impossible for S1 (who does not know γ2) to simulate such
view of P1.

To tackle such challenge, we use the universal deniable encryption transformation as Definition 3.2: to
generate ciphertext of E′, we use the program Cencrypt. Note that even if the randomness spaces for Cencrypt

and E′.Enc are different, the output distributions are statistically close, so using Cencrypt is essentially the
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same as using E′.Enc. More importantly, by the property of randomness explainability and the security
of E, we can argue that the random coins r1 (of the program Cencrypt) is only linked to the ciphertext
(γ1, c2), but not the message γ2 under c2. More formally, we can argue that (r1, γ1, c2) is indistinguishable
from (r̃1, γ1, c̃2), where c̃2 is a simulated ciphertext that does not contain information about γ2, and r̃1 is
explained randomness by Cexplain.

Using the ideas above, we are able to establish the following theorem:

Theorem 3.4 Assume that E is a secure receiver non-committing encryption, ∆ is an efficiently samplable
distribution, and UniGen is a secure universal deniable transformation for the encryption scheme E′ defined
as above. Then the protocol described above realizes F∆

sampling with strong oblivious simulation, using the
common reference string crs.

Before proving the theorem, we give an interesting remarks about implications of our protocols to
adaptive security in the MPC setting.

Remark 3.5 The protocol above allows us to realize randomized functionalities beyond “adaptively well-
formed” ones as discussed in the introduction. Recall that for an adaptively well-formed randomized
functionality, the adversary gets the random coins of the functionality when all parties are corrupted. We
go beyond this restriction. In our protocol above, the sampling is done in the Cencrypt, and we can simply
use the Cexplain to reconstruct the randomness. Essentially this gives the ideal functionality a way to erase
the internal randomness after generating the outputs!

For further exposition, we take the example from the work [17, Section 3.3]. Consider the randomized
functionality that outputs a value N to both P1 and P2 where N = p · q and p, q are randomly chosen
(large) primes. To handle the case that all parties are corrupted without revealing the random coins of the
functionality (i.e. p, q) to the adversary, essentially we need to be able to sample the domain {N |N = pq}
(or a domain that is computationally indistinguishable from it) without knowing p or q. The work [17]
explicitly pointed out that this task may be possible, though the paper did not know how to do it.

In this paper, we show that this task is exactly what universal deniable encryption can achieve! In our
protocol above, by using Cencrypt and some random coins r, P1 is able to sample N without knowing the
(p, q). Then the simulator in the ideal world, via Cexplain can come up with consistent and indistinguishable
random coins r′ that explains that N is computed based on Cencrypt and r′, even though the simulator is
not able to learn such p, q.

How is this possible? For readers who are familiar with the Sahai-Waters instantiation [44], we further
elaborate on how things work with their concrete scheme: recall that Cencrypt is an obfuscated circuit
that contains some keys of (three) puncturable pseudo-random functions, say one of them is F1(K1, ·)
(consistent with the notation in [44]). When a user inputs some random coins r, if r does not hit some
hidden trigger (the hitting probability is negligible), then the program will use u = F1(K1, r) as the
random coins to sample N . Since the whole process (i.e. the key K1 and the computation of u) is inside
the obfuscation (i.e. Cencrypt), thus the user can only obtain the output N without learning the underlying
coins u (that may contain information about p, q).

Proof: To prove the theorem, we need to construct a simulator S = (Str,S1,S2) such that the distribution
of the real experiment Real = (crs, r1, τ, r2) is indistinguishable from that of the simulation experiment
Ideal = (crs, r̃1, τ̃ , r̃2) according to Definition 2.3.

Now, we describe the simulators. Let (γ1, γ2) be the output of the functionality F∆
sampling, NCSim =

(NCSim1,NCSim2) be the simulator(s) of the non-committing encryption scheme E, crs = (Cencrypt, Cexplain)
be the CRS sampled as described above.
Str(crs) samples (p̃k, c̃2)← NCSim1(1λ) and then outputs τ̃ = (p̃k, c̃2).
S1(crs, τ̃ , γ1) runs r̃1 ← Cexplain(p̃k, (γ1, c̃2), 0). That is, S1 interprets (γ1, c̃2) as a ciphertext of the
scheme E′, and uses Cexplain to explain the randomness (for a ciphertext E′.Enc(pk, 0)).
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S2(crs, τ̃ , γ2) runs r̃2 ← NCSim2(p̃k, c̃2, γ2||0). That is, S2 uses the simulator of the non-committing
encryption to generate random coins that decrypt c̃2 to γ2||0.
Then we will establish the following claim, and the proof of the theorem follows directly from the

claim.

Claim 3.6 The following two distributions are computationally indistinguishable: Real = (crs, r1, τ, r2) ≈
Ideal = (crs, r̃1, τ̃ , r̃2), where the experiments are sampled as the protocol and the simulation described
above. Recall that r2 is P2’s randomness that generates pk, and r1 is P1’s randomness that is used for
Cencrypt(pk, 0).

Proof: To prove the claim, we consider the following hybrids:

The Real experiment. Real = (crs, r1, τ = (pk, c2), r2): recall that in the real experiment, the transcript
τ = (pk, c2) is generated as follows. pk is generated by P2, and c2 is one part of a ciphertext of E′ generated
by P1, i.e. (γ1, c2) = Cencrypt(pk, 0; r1).

Hybrid 1. H1 =
(
crs, r̃1, τ =

(
pk, c2

)
, r2

)
: this experiment is the same as the real experiment except

instead of outputting r1 as the randomness of P1, we use r̃1 ← Cexplain(pk, (γ1, c2), 0). More precisely, H1

first samples (crs, r1, τ, r2) as the experiment Real (then γ1, c2 are defined), and replaces the r1 with r̃1 as
described.

Hybrid 2. H2 =
(
crs, r̃1, τ

′ =
(
pk, c2

)
, r2

)
: this experiment is the same as H1 except it does not

use Cencrypt(pk, 0) to generate the transcript. Instead, it samples E′.Enc(pk, 0) as follows: first it sam-
ples (γ1, γ2) ← ∆(1λ), and then generates c2 ← E.Enc(pk, γ2). Then the experiment generates r̃1 ←
Cexplain(pk, (γ1, c2), 0) as H1. Basically, this experiment runs E′.Enc on its own to replace Cencrypt(pk, 0).

Hybrid 3. H3 =
(
crs, r̃1, τ̃ =

(
p̃k, c̃2

)
, r̃2

)
: this experiment is the same as H2 except it runs (p̃k, c̃2) ←

NCSim1(1λ) to generate the transcript. Finally, it runs r̃2 ← NCSim2(p̃k, c̃2, γ2) to explain the randomness
of P2. Note that this experiment is identical to the simulation experiment Ideal.

Then we prove the adjacent hybrids are computationally indistinguishable by the following claims:

Claim 3.7 Real ≈ H1.

This is by the security of the universal deniable encryption transformation (property (b) of Definition 3.2).
Suppose there exists a PPT distinguisher D that can distinguish Real from H1 (with non-negligible proba-
bility), then we can construct a PPT distinguisher D′ that breaks the property (b) as follows: D′ takes input
(Cencrypt, Cexplain, pk, (γ

∗, c∗), r∗) where Cencrypt, Cexplain are generated as the universal deniable encryp-
tion transformation setup, (i.e. UniGen(E′.Enc(1λ, ·, ·))), (γ∗, c∗) ← Cencrypt(pk, 0), and r∗ is either the
one that generated (γ∗, c∗) or sampled by Cexplain(pk, (γ∗, c∗), 0).

ThenD′ interprets crs = (Cencrypt, Cexplain), samples a random string r2, and runsD(crs, r∗, (pk, c∗), r2)
and outputs whatever D outputs. Suppose r∗ is distributed according to the former, then the input to D is
distributed identical to Real. On the other hand, suppose r∗ is distributed as the latter, then the input to
D is distributed identical to H1. Thus suppose D can distinguish Real from H1, D′ break security of the
property (b).

Then we are going to show:

Claim 3.8 H1 ≈ H2.

This is by the security property (a) of Definition 3.2), which says that {Cencrypt(pk, 0)} is statistically close
to {E′.Enc(pk, 0)}. The only difference between H1 and H2 is the generation of the (γ1, c2). In H1 it was
generated by Cencrypt(pk, 0), and in H2 it was generated by E′.Enc(pk, 0). By the property (a), we know
that the distributions of generating (γ1, c2) in both ways are statistically close. ThusH1 is statistically close
to H2.

Then we are going to show:
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Claim 3.9 H2 ≈ H3.

This is by the security of the non-committing encryption E (as Definition 3.1). That is, suppose there exists
a PPT distinguisher that can distinguish H2 from H3 (with non-negligible probability), then there exists a
PPT distinguisher D′ that breaks the non-committing encryption E as follows:
D′ first samples (γ1, γ2)← ∆(1λ) and sets m = γ2||0.
D′ takes input (pk∗, c∗, σ∗) (from the challenger), which is distributed according to either the honest
view of encryption of m or the simulated view as Definition 3.1.
It samples crs = (Cencrypt, Cexplain)← UniGen(C) where C is an encryption circuit of E′. This step is
independent of the input.
It generates r̃1 ← Cexplain(pk∗, (γ1, c

∗), 0).
It runs D(crs, r̃1, (pk

∗, c∗), σ∗), and outputs whatever D outputs.
It is clear that if the input (pk∗, c∗, σ∗) is distributed as the honest view of encryption of m, then

(crs, r̃1, (pk
∗, c∗), σ∗) is distributed identicalyl to H2. On the other hand, if that is distributed as the simu-

lated view, then (crs, r̃1, (pk
∗, c∗), σ∗) is distributed identically to H3. Thus, suppose D distinguishes H2

from H3 with a non-negligible probability, D′ breaks the receiver non-committing encryption scheme E.
This completes the proof of the claim.

Finally, we observe that the experiment H3 is identical to the experiment Ideal output by the simula-
tor. Thus by Claims 3.7, 3.8, 3.9, we prove Claim 3.6, i.e. Real ≈ Ideal. This completes the proof of
Theorem 3.4.

4 Hardwares in JV and DF Schemes

In this section, we present concretely how to express the hardwares in the previous hardware-based schemes
of Juma and Vahlis [34] and Dziembowski and Faust [21] as the ideal functionality F∆

sampling. Thus, we
can instantiate the hardware of the JV (resp. DF) two-component OCL scheme with the two-party protocol
in Theorem 3.4 and apply Theorem 2.5 to obtain the first two-component OCL schemes without secure
hardware.

4.1 Sampling Distribution for the Juma-Vahlis Compiler

We define the sampling distribution ∆JV for functionality F∆JV

sampling that provided by the trusted hard-
ware of the Juma-Vahlis compiler (a description of the compiler can be found in Appendix B.1). Let
FHE = FHE.{Gen,Enc,Dec,Eval} be a fully homomorphic encryption scheme with the additional cipher
refreshing properties required by the JV construction. The distribution ∆JV(1

λ) is defined as follows:

• Sample (pk, sk)← Gen(1λ); and then sample ct0 ← Encpk(0) and ct′0 ← Encpk(0).

• Output (γ1, γ2), where γ1 = (pk, ct0, ct
′
0), adn γ2 = (pk, sk).

Juma and Vahlis [34] showed that assuming FHE is a fully homomorphic encryption (with cipher re-
freshing) that is secure against 2O(`(λ)) adversaries, then there exists a two-component OCL scheme in the
F∆JV

sampling hybrid world that is O(`)-leakage resilient. We denote the scheme as ΛFJV = (CompJV,Π
F
JV)

where F = F∆JV

sampling. By our Theorem 3.4, we can realize the functionality that provided by the trusted
hardware with a protocol ϕJV with strong oblivious simulation. Leveraging our OCL Hardware Replace-
ment Theorem (Theorem 2.5), we can obtain an OCL scheme Λ′JV = (Comp′JV,Π

ϕJV

JV ) that does not require
any secure hardware. Formally, we obtain the following theorem:

16



Theorem 4.1 Assume there exist a secure receiver non-committing encryption scheme and a secure uni-
versal deniable encryption transformation for any encryption scheme,8 and FHE is a fully homomorphic
encryption (with cipher refreshing) that is secure against 2O(`(λ)) adversaries. Then Λ′JV is O(`)-leakage
resilient, where λ is security parameter.

4.2 Sampling Distribution for the Dziembowski-Faust Compiler

Here we define the distribution ∆DF for functionality F∆DF

sampling that provided by the trusted hardware of the
Dziembowski-Faust compiler. In the initialization stage of the DF compiler, a private circuit C is compiled.
Afterwards, in each evaluation when P1 obtains an input x, the parties then jointly compute the universal
boolean circuit U(·, ·) on the underlying input (C, x), and eventually P2 returns output y = C(x). Please
refer to Appendix B.2 for a description of the DF compiler9. Let F2 be binary field, and each share used in
DF compiler be of lengthm. Note that the lengthm is related to the amount of leakage that can be tolerated
as described in the following theorem statement. Let Onb be the uniform distribution on (L,R) ∈ Fn×n2

conditioned on 〈L,R〉 = b. Without loss of generality, assume the universal boolean circuit U(·, ·) consists
of T number of NAND gates, labeled with a set G = {1, . . . , T}. The distribution ∆DF(1

λ) is defined as
follows:

• For g ∈ G, sample vectors (L′g||L′′g , R′g||R′′g)← O2m2

0 ;
for j ≤ |C|, sample vectors (A′j ||A′′j , B′j ||B′′j )← O2m

0 ,

• Output (γ1, γ2), where γ1 =
(
{L′g||L′′g}g∈G, {A′j ||A′′j }j≤|C|

)
and γ2 =

(
{R′g||R′′g}g∈G, {B′j ||B′′j }j≤|C|

)
.

Dziembowski and Faust [21] showed that (without any cryptographic assumption) there exists a two-
component OCL scheme in the F∆DF

sampling hybrid world, denoted as ΛFDF = (CompDF,Π
F
DF) where F =

F∆DF

sampling. By our Theorem 3.4, we can realize the functionality that provided by the hardware with a
protocol ϕDF with strong oblivious simulation. Leveraging our OCL Hardware Replacement Theorem
(Theorem 2.5), we can obtain an OCL scheme Λ′DF = (Comp′DF,Π

ϕDF

DF ) that does not require any secure
hardware. Formally, we obtain the following theorem:

Theorem 4.2 Assume there exist a secure receiver non-committing encryption scheme and a secure uni-
versal deniable encryption transformation for any encryption scheme. Then Λ′DF is `-leakage resilient for
`(λ) = m(λ)/10,m(λ) = ω(log(λ)), where λ is the security parameter.

5 Extension: Multi-Component OCL Schemes

In this section, we discuss some extensions of our main results. First we note that the hardware replacement
theorem (Theorem 2.5) also holds for any N -component OCL schemes. Even if we have two-component
constructions (in this paper), still potentially, there can be other more-component constructions that are
more efficient or achieve better leakage rate. As we emphasize before, this can be viewed as a general
design paradigm of OCL constructions. The definition of N -component OCL can be found in the work of
Bitansky et al. [10], and the corresponding hybrid schemes can be defined analogously. A natural extension
of strong oblivious simulation (Definition 2.3) for N -party protocols can be defined as follow:

Definition 5.1 (Strong oblivious simulation for N -party protocols) Let crs ← CRS.Gen(1λ), and let
π = (P1, . . . , PN ) be an N -party protocol using such common reference string crs. Let F be an N -
input (perhaps randomized) ideal functionality. We say π realizes the functionality F with strong oblivious

8This can be implied by the existence of indistinguishable obfuscation and one-way functions (Theorem 3.3).
9Our presentation of the DF scheme adapts from the simplified version of the DF scheme presented in the work [9].
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simulation, if there exists a PPT simulator S = (S1, . . . ,SN ,Str) for all (non-uniform) PPT adversary A
such that the following distributions are computationally indistinguishable:

crs← CRS.Gen(1λ); (x1, . . . , xN )← A(crs);
(r1, . . . , rN )← (Uλ)N ;

τ = 〈P1(crs, x1; r1), . . . , PN (crs, xN ; rN )〉
: (crs, {xi, ri}i∈[N ], τ)

 ≈


crs← CRS.Gen(1λ); (x1, x2)← A(crs);
(y1, . . . , yN )← F(x1, . . . , xN ); τ̃ ← Str(crs);

r̃i ← Si(crs, xi, yi, τ̃);
: (crs, {xi, r̃i}i∈[N ], τ̃)

 .

Note that ri’s are the random coins of the parties, and τ is the transcript (i.e. message exchanges) by
running the N -party protocol .

A similar OCL hardware replacement theorem can be obtained for N -component OCL scheme. Since
the proof is essentially the same as that of Theorem 2.5, we only state the theorem but omit the proof.

Theorem 5.2 (N -component OCL hardware replacement theorem) Let F be some N -party function-
ality, and ΛF = (Comp,ΠF ) be a F-hybrid N -component OCL scheme that is `-leakage-resilient with
oblivious simulation. Suppose there exists an N -party protocol ρ using a common reference string crs,
that realizes F with strong oblivious simulation as above. Then there exists an N -component OCL scheme
Λ′ = (Comp′,Πρ) that is `-leakage-resilient with oblivious simulation.

Our construction in Section 3.3 can be extended to any N -output F∆
sampling functionality for any N -

output distribution ∆. Let E = {NCGen,NCEnc,NCDec,NCSim} be a receiver non-committing encryp-
tion, ∆ be an N -output distribution that the ideal functionality wants to sample, and UniGen is a secure
universal deniable encryption transformation. Similarly we consider a bit encryption E′ = {Gen,Enc,Dec}
that works as follows:

• E′.Gen(1λ): run (pk2, sk2, . . . , pkN , skN ) ← E.NCGen(1λ) (running the generation N − 1 times.
Here we deliberately start the index with 2.). Set the public key to be pk = (pk2, . . . , pkN ), and
sk = (sk2, . . . , skN ).

• E′.Enc(1λ, pk, b): sample (γ1, . . . , γN )← ∆(1λ). Then output

c← (γ1,E.NCEnc(pk2, γ2||b), . . . ,E.NCEnc(pkN , γN ||b))

as the ciphertext. The random coins of this process consist of the randomness used for sampling ∆,
and that for encryption algorithm E.NCEnc.

• E′.Dec(1λ, sk, c): parse c = (γ1, c2, . . . , cN ). Run γ2||b := E.NCDec(sk, c2), and output b.

The CRS sampling. Let C be a circuit that implements E′.Enc(1λ). The sampling algorithm runs
(Cencrypt, Cexplain)← UniGen(C), and outputs crs = (Cencrypt, Cexplain) as the CRS.

The protocol. The parties upon receiving crs = (Cencrypt, Cexplain) do the following:

• For i ∈ [N ] \ {1}, Pi first samples a random string ri and runs (pki, ski) ← E.NCGen(1λ; ri) and
sends pki to P1.

• P1 then samples a random string r1, and runs (γ1, c2, . . . , cN )← Cencrypt(pk, 0; r1). Then P1 locally
outputs γ1 and then sends ci to Pi for all i ∈ [N ] \ {1}.

• For i ∈ [N ] \ {1}, Pi runs γi||0 := E.NCDec(ski, ci) and then outputs γi.
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The analysis of the protocol is essentially the same the previous one. For succinctness of presentation,
we only state the theorem below, but omit the details to avoid repetition.

Theorem 5.3 Assume that E is a secure receiver non-committing encryption, ∆ is an efficiently samplable
N -output distribution, and UniGen is a secure universal deniable transformation for the encryption scheme
E′ defined as above. Then the N -party protocol described above realizes F∆

sampling with strong oblivious
simulation, using the common reference string crs.

Similar to the two-party case, the connection between the above protocol and MPC was already dis-
cussed in the introduction and Definition 2.3. We restate the implication: for any N -party randomized
functionality (even beyond the adaptively well-formed ones [17]; the discussions in Remark 3.5 also apply
to the N -party setting), we are able to construct a protocol that is adaptively secure and leakage tolerance,
using the above construction.
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A Supplement for Section 2

A.1 Strong Leakage Resilience

Following Bitansky et al. [10] we define the notion of strong two-component OCL schemes (also referred
to as two-component OCL with strong simulation). Recall that the oblivious simulator S described above
reconstructs the states of the two components in each evaluation i depending only on (xi, yi). Strong
OCL schemes are equipped with an oblivious simulator that satisfies an additional property. Specifically,
a strong two-component OCL scheme has a simulator S = (S1,S2) where S1 takes (xi, yi) as input and
reconstructs the state of the first component and S2 takes yi as input reconstructs the state of the second
component. Thus, in strong OCL, the simulation of the first component depends on both the input and
output, (xi, yi), but the simulation of the second component depends solely on the output, yi. As discussed
previously, it was shown in [10] that strong two-component OCL can be used to obtain constructions of
leakage-tolerant two-party computation.

Definition A.1 (Continual `-leakage-resilience with strong simulation) We say that a continual OCL scheme
OCL is continually `-leakage-resilient with strong oblivious simulation if it satisfies the following property:

Strong `-leakage resilience: OCL admits an oblivious simulator S satisfying Definition 2.2 with the fol-
lowing structure: S consists of two sub-algorithms (S1,S2) and on input (1λ, i, xi, yi ; wi), S in-
vokes these sub-algorithms as follows:

• S1(1λ, i, xi, yi; wi) = (ĩntli,1, ẽvli,1)

• S2(1λ, i, yi; wi) = (ĩntli,2, ẽvli,2)

and outputs (ĩntli,1, ĩntli,2, ẽvli,1, ẽvli,2).

A similar hardware replacement theorem can be achieved: suppose we have a strong OCL in some
F-hybrid world, and a two-party protocol ρ that realizes F with additional properties as Definition 2.3,
then we can construct a strong OCL without hardware. We present the formal statement as the following
Theorem A.2. The only difference between this theorem and Theorem 2.5 is the condition of strong. The
proof of Theorem A.2 is almost identical to that of Theorem 2.5 except we use the stronger underlying
simulator Ŝ = (Ŝ1, Ŝ2) to generate the evaluation states.10 We omit the almost repetitive proof, and refer
curious readers to read the proof of Theorem 2.5 directly in Section A.2.

10Recall that we use Ŝ to denote the underlying simulator of ΛF , and Ŝρ to denote the simulator for the protocol ρ.
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Theorem A.2 (Hardware replacement theorem for strong OCL) Let F be some two-party functional-
ity, and ΛF = (Comp,ΠF ) be a F-hybrid two-component OCL scheme that is `-leakage-resilient with
strong oblivious simulation. Suppose there exists a two-party protocol ρ using a common reference string
crs, that realizes F with strong oblivious simulation as Definition 2.3. Then there exists a two-component
OCL scheme Λ′ = (Comp′,Πρ) that is `-leakage-resilient with strong oblivious simulation.

A.2 Proof for Theorem 2.5

From the premise of the theorem, we have a two-component OCL scheme ΛF = (Comp,ΠF ) that is `-
leakage-resilient with oblivious simulation, and a two-party protocol ρ that realizes F using a common
reference string crs. This means, there exists a simulator S̃ such that for all adversaries A, the view in the
real (F-hybrid) world RealFA is indistinguishable from the view in ideal world IdealS̃,A produced by the

simulator; on the other hand, for the protocol ρ, we have a simulator Ŝρ = (Ŝρ1 , Ŝ
ρ
2 , Ŝ

ρ
tr) such that for all

(poly-sized) adversaries A, the simulator can produce an indistinguishable view as Definition 2.3.
To prove the theorem, first we construct a scheme Λ′ = (Comp′,Πρ) as stated in the paragraph F-

hybrid OCL schemes: Comp′ just samples a crs ← CRS.Gen(1λ), (pp, intl1, intl2) ← Comp(1λ), and
outputs pp′ = (pp||crs). Then the scheme invokes the two party protocol Πρ where the parties get the
public parameter and their initial inputs, and execute the protocol. Recall that the protocol Πρ is the same
as the hybrid scheme ΠF except whenever the parties call F in the hybrid scheme, in Πρ the parties run the
protocol ρ instead.

Then we proceed to prove that this construction (replacement of F) gives an OCL scheme that is `-
leakage-resilient with oblivious simulation. In particular, we need to construct a simulator S so that for all
adversaries A, its view in the real experiment RealA and the simulated view by S in the ideal experiment
IdealS,A are indistinguishable. We construct a universal simulator (for all adversaries) as follows:

The Simulator. Given any adversaryA, any circuitCλ, the simulator SA(1λ,|Cλ|,z),Cλ(·) gets oracle access
to the adversary A and the circuit. Note that the simulator S does not have input Cλ. The simulator needs
to produce an indistinguishable view of the adversary.

Initially, the simulator S runs crs ← CRS.Gen(1λ), runs S̃ to generate a simulated p̃p, and gives
p̃p′ = p̃p||crs to the adversary A. Later, at each round i, the simulator works as follows:

1. Let xi be the input thatA submits in this iteration, and yi = Cλ(xi) be the answer obtained by the ora-
cle query. The simulator S invokes S̃(1λ, i, xi, yi; wi) to obtain simulated states (intli,1, intli,2, evli,1, evli,2),
where wi is the fresh random coins tossed for the simulation in iteration i and wi = w1, · · · , wi is
all the random coins that have been tossed for simulation in the first i iterations.

Assume that ni copies of F are used in this iteration. We note that the (evaluation) states provided by
the simulator S̃ must include ni inputs and outputs to the functionality (in the real F-hybrid scheme,
the inputs/outputs to F are included in the evaluation states, so S̃ must simulate these). Denote them
as αji,1 (input for P1), βji,1 (output for P1), αji,2 (input for P2), and βji,2 (output for P2) for j ∈ [ni].

Observe that the only missing piece here is the evaluation states of the protocols ρ’s. Now the sim-
ulator S proceeds to emulate these states for the two parties that are consistent with the inputs and
outputs. In particular, he invokes Ŝρ,ji = (Ŝρ,ji,tr, Ŝ

ρ,j
i,1 , Ŝ

ρ,j
i,2 ) for all j ∈ [ni], where each Ŝρ,ji is an

independent (and identical) copy of the simulator Ŝρ (indexed by sup j and sub i), and he com-
putes τ ji ← Ŝρ,ji,tr(crs) and rji,1 ← Ŝρ,ji,1 (crs, αji,1, β

j
i,1, τ

j
i ), rji,2 ← Ŝρ,ji,2 (crs, αji,2, β

j
i,2, τ

j
2 ). Note

that for all j ∈ [ni], (αji,b, β
j
i,b) are included in evli,b. For b ∈ {0, 1}, set ĩntli,b := intli,b and

ẽvli,b := evli,b||{rji,b, τ
j
i }j∈[ni].
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2. Let (G1,b1 , G2,b2 , . . . , ) where bk ∈ {1, 2} be the leakage queries A makes (perhaps in an adaptive
way) in this round. Then S returns Gk,bk(ĩntli,bk , ẽvli,bk) for all these queries, as long as the total
amount of leakage on each component in this iteration is smaller than `(λ) bits.

3. S sends yi to the adversary.

Given such simulation strategy, a circuitCλ, adversaryA, and auxiliary z, experiment IdealS,A(1λ, Cλ, z)

is defined, and denote VIEW`
S,A(1λ, Cλ, z) as the (simulated) view of A in the experiment.

Next, we need to show the emulated view by S in the ideal experiment is indistinguishable from the
real world view. To this goal, we start with the real experiment RealA, and then we describe a sequence of
hybrid experiments HybS0,A, {HybSi,j ,A}i∈[m],j∈[ni], and show the views in all consecutive experiments
are indistinguishable. We finally show the view in hybrid experiment HybSm,nm ,A wherem is the maximal
(arbitrary polynomial) number of iterations in the execution, and nm is the maximal number of copies of F
are involved in the mth round, and the view in the ideal experiment described above are indistinguishable.
This means that the scheme Λ′ = (Comp′,Πρ) is ` leakage resilient with oblivious simulation.

Experiment RealA(1λ, Cλ, z): The adversary A(1λ, |Cλ|, z) proceeds as follows:

1. The initial states (pp′, intl′1, intl
′
2) ← Comp′(1λ, Cλ) are sampled, where crs ← CRS.Gen(1λ),

(pp, intl1, intl2)← Comp(1λ, Cλ), and pp′ = pp||crs, intl′b = intlb for b ∈ [2].

2. A launches `-bounded leakage attacks on an unbounded number of evaluations of its choice: In the
ith iteration,

(a) A submits an input xi ∈ {0, 1}|Cλ|, which is evaluated on Cλ by resuming the protocol exe-
cution of Πρ between the components P1(pp′, intl′i,1), P2(pp′, intl′i,2) with input xi to the first
component P1.
Assume there are ni copies of ρ sub-routines in the ith evalution. For b ∈ {1, 2} and j ∈
{1, . . . , ni}, let αji,b be the input that component Pb sends to the jth copy of ρ, and βji,b be the

corresponding output, rji,b be the randomness used, and τ ji be the generated transcript between

the two components. Note that {αji,b, β
j
i,b, r

j
i,b, τ

j
i }j∈[ni], as part of evaluation state, are included

in evl′i,b.

(b) A launches an `-bounded leakage attack on the current iteration. It issues leakage queries
(G1,b1 , G2,b2 , . . . , ), where each bk ∈ {1, 2} to the two components (adaptively), and obtain
leakage answers of all internal state, i.e., Gk,bk(intl′i,bk , evl

′
i,bk

), as long as the total amount of
leakage on each component in this iteration is smaller than `(λ) bits. Denote Li ∈ {0, 1}≤` be
the leakage observed in the ith round.

(c) A obtains the output of the evaluation, which is the output of P2.

Denote VIEW`
A(1λ, Cλ, z) = (pp′, x1, y1, L1, x2, y2, L2, . . . , ) as the view of A in the above experi-

ment.

Experiment HybS0,A(1λ, Cλ, z): In the hybrid experiment, the simulator SA(1λ,|Cλ|,z)
0 (Cλ) gets input

Cλ, and oracle access to the adversary A. Let A(1λ, |Cλ|, z) be the adversary who participates in the
real experiment as described above. The simulator S0 simulates the whole real experiment for A. Denote
VIEW`

S0,A(1λ, Cλ, z) as the (simulated) view of A in the above experiment.
Since hybrid experiment HybS0,A is a reformulation of the real experiment, we immediately have:

Claim A.3 VIEW`
A(1λ, Cλ, z) ≡ VIEW`

S0,A(1λ, Cλ, z).
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Experiment HybSi,j ,A(1λ, Cλ, z): In the hybrid experiment, the simulator SA(1λ,|Cλ|,z)
i,j (Cλ) gets input

Cλ, and oracle access to the adversary A. Let the adversary A(1λ, |Cλ|, z) participate in the same exper-
iment as above. The simulator Si,j is the same as S0 except that it generates the evaluation states slightly
differently:

For all subroutines in the first i − 1 iterations, and the first j subroutines in the ith iteration, instead of
generating {(αı,b, β


ı,b, r


ı,b, τ


ı )}ı∈[i−1],∈[nı],b∈{1,2} and {(αi,b, β


i,b, r


i,b, τ


i )}ı∈[i−1],∈[j],b∈{1,2} by running

the corresponding copies of ρ, the simulator Si,j operates as follows: for each subroutine, the simulator
now provides the input αı,b to the corresponding copy of functionality F , and learns the output βı,b; then

the simulator computes τ ı ← Ŝρ,ı,tr(crs) and rı,b ← Ŝ
ρ,
ı,b (crs, αı,b, β


ı,b, τ


ı ).

For the remaining subroutines in the execution, all {(αı,b, β

ı,b, r


ı,b, τ


ı )} are generated by running the

corresponding copies of ρ.
Note that, in each iteration i for each b ∈ {0, 1}, {αi,b, β


i,b, r


i,b, τ


i }∈[ni], are included in evl′i,b.

Denote VIEW`
Si,j ,A(1λ, Cλ, z) as the (simulated) view of A in the experiment.

Claim A.4 For all i ∈ {1, . . . ,m} and j ∈ {1, . . . , ni}, it holds that

VIEW`
Si,j−1,A(1λ, Cλ, z) ≈ VIEW`

Si,j ,A(1λ, Cλ, z)

wherem is the maximal (arbitrary polynomial) number of iterations in the execution, and ni is the maximal
number of copies of subroutines are involved in the ith iteration.

Proof: Assume the claim does not hold. That means, there exist PPT adversary A with auxiliary input
z, and circuit Cλ, such that the views generated in hybrid experiments HybSi,j−1,A and HybSi,j ,A are
distinguishable with non-negligible probability. We now construct a PPT machine D which has A, z, and
Cλ hardwired, to break the security of the subroutine ρ.

Basically, D simulates the experiment HybSi,j−1,A up to the i-th iteration, and the first j − 1 calls of
the subroutine ρ (right before the j-th call). Now D has the inputs for the two parties, and D can ask the
challenger to obtain the states either by running ρ, or by the subroutine simulator Sρ. Then D finishes the
simulation of the rest of HybSi,j−1,A. The challenge distributions will correspond to either HybSi,j−1,A or
HybSi,j ,A. Since these two distributions are distinguishable, D can break the security of ρ. More formally,
we describe D’s strategy as follows:

First compute crs← CRS.Gen(1λ). D(crs) proceeds as follows:

1. Generate the initial states (pp′, intl′1, intl
′
2)← Comp′(1λ, Cλ) where (pp, intl1, intl2)← Comp(1λ, Cλ),

and pp′ = pp||crs, intl′b = intlb for b ∈ {1, 2}.

2. D simulates the hybrid experiment: A launches `-bounded leakage attacks on an unbounded number
of evaluations of its choice: In the ıth iteration,

(a) A submits an input xı ∈ {0, 1}|Cλ|, which is evaluated on Cλ by resuming the protocol exe-
cution of Πρ between the components P1(pp′, intl′ı,1), P2(pp′, intl′ı,2) with input xı to the first
component P1.

• If ı < i, generate {(αı,b, β

ı,b, r


ı,b, τ


ı )}∈[nı],b∈[2] as follows: for each subroutine in this

iteration, provide the input αı,b to the corresponding copy of functionality F , and learn

the output βı,b; then compute τ ı ← Ŝρ,ı,tr(crs) and rı,b ← Ŝ
ρ,
ı,b (crs, αı,b, β


ı,b, τ


ı ). Finally,

{αı,b, β

ı,b, r


ı,b, τ


ı }∈[nı], as part of evaluation state, are included in evl′ı,b for b ∈ {1, 2}.

• If ı = i, generate {(αı,b, β

ı,b, r


ı,b, τ


ı )}∈[nı],b∈{1,2} as follows:

– For  ∈ {1, . . . , j − 1}:
for b ∈ {1, 2}, provide the input αı,b to the corresponding copy of functionality F , and

learn the output βı,b; then compute τ ı ← Ŝρ,ı,tr(crs) and rı,b ← Ŝ
ρ,
ı,b (crs, αı,b, β


ı,b, τ


ı ).
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– For  = j:
send (αı,1, α


ı,2) to the challenger, and the challenger returns (r∗1, τ

∗, r∗2). Then D sets
rı,1 := r∗1, rı,2 := r∗2, and τ ı := τ∗. Note that (βı,1, β


ı,2) can be easily derived.

– For  ∈ {j + 1, . . . , nı}:
for b ∈ {1, 2}, provide the input αı,b to the corresponding copy of ρ, and learn the out-
put βı,b; here τ ı = 〈P ρ1 (crs, αı,1; rı,1), P ρ2 (crs, αı,2; rı,2)〉, and rı,1, r


ı,2 are the random

coins used by the two players in ρ.
Finally, {αı,b, β


ı,b, r


ı,b, τ


ı }∈[nı], as part of evaluation state, are included in evl′ı,b for b ∈

{1, 2}.
• If ı > i, generate {(αı,b, β


ı,b, r


ı,b, τ


ı )}∈[nı],b∈[2] as follows: for each subroutine in this

iteration, provide the input αı,b to the corresponding copy of ρ, and learn the output βı,b;
here τ ı = 〈P ρ1 (crs, αı,1; rı,1), P ρ2 (crs, αı,2; rı,2)〉, and rı,1, r


ı,2 are the random coins used

by the two players in ρ. Finally, {αı,b, β

ı,b, r


ı,b, τ


ı }∈[nı], as part of evaluation state, are

included in evl′ı,b for b ∈ {1, 2}.
(b) A launches an `-bounded leakage attack on the current iteration. It issues leakage queries

(G1,b1 , G2,b2 , . . . , ), where each bk ∈ {1, 2} to the two components (adaptively), and obtain
leakage answers of all internal state, i.e., Gk,bk(intl′i,bk , evl

′
i,bk

), as long as the total amount of
leakage on each component in this iteration is smaller than `(λ) bits. Denote Li ∈ {0, 1}≤` be
the leakage observed in the ith round.

(c) A obtains the output of the evaluation, which is the output of P2.

Upon receiving (αı,1, α

ı,2), if D’s challenger generates (r∗1, τ

∗, r∗2) by running a copy of ρ, then the
view of A is identical to that in the hybrid experiment HybSi,j−1,A(1λ, Cλ, z). On the other hand, if the

challenges are generated by computing τ∗ ← Ŝρtr(crs) and r∗b ← Ŝ
ρ
b (crs, αı,b, β


ı,b, τ

∗) for b ∈ {1, 2}, then
the view ofA is identical to that in the hybrid experiment HybSi,j ,A(1λ, Cλ, z). SinceA can distinguish the
views generated in two hybrid experiments with non- negligible probability, D can distinguish the internal
state from the simulated internal state of the subroutine with non negligible probability, which break the
security of ρ protocol.

Claim A.5 For all i ∈ {1, . . . ,m}, it holds that

VIEW`
Si+1,1,A(1λ, Cλ, z) ≈ VIEW`

Si,ni ,A
(1λ, Cλ, z)

where m is the maximal (arbitrary polynomial) number of iterations in the execution.

The proof is exactly the same as that for Claim A.4.

Claim A.6 VIEW`
Sm,nm ,A(1λ, Cλ, z) ≈ VIEW`

S,A(1λ, Cλ, z), where m is the maximal number of iterations
in the execution, and nm is the number of subroutines in the mth iteration.

Proof: Given that ΛF = (Comp,ΠF ) is `-leakage-resilient with oblivious simulation, we have a simulator
S̃, for all PPT adversary Ã so that for auxiliary z and circuit Cλ, the simulated view by S̃ in the ideal
experiment IdealS̃,Ã(1λ, Cλ, z) is indistinguishable from the view of adversary Ã in the real experiment

RealÃ(1λ, Cλ, z).

Recall that Sm,nm basically runs the protocol ΠF and uses the protocol simulator Ŝρ to simulate the
internal states for the F subroutine calls; the simulator S in the ideal world uses S̃ to simulate the protocol
ΠF and the protocol simulator Ŝρ to simulate the internal states for the F subroutine calls. By the security
of ΛF , these two experiments are indistinguishable.
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Formally, we argue: suppose there exists an adversary A, circuit Cλ, and z such that the views
VIEW`

Sm,nm ,A(1λ, Cλ, z) and VIEW`
S,A(1λ, Cλ, z) are distinguishable with non-negligible probability. Then

we can construct an adversary Ã such that IdealS̃,Ã(1λ, Cλ, z) is distinguishable from RealÃ(1λ, Cλ, z).

This contradicts the fact that ΛF is a secure OCL scheme.
Given an adversary A, we define Ã as follows:

• Ã samples crs← CRS.Gen(1λ). Then it receives input a public parameter pp from the experiment.

• In each iteration i, Ã runs A
(
with the public parameter pp′ = (crs||pp)

)
and forwards the input xi

from the A.

• Then Ã runs A and obtains leakage queries (G1,b1 , G2,b2 , . . . , ), where each bk ∈ {1, 2}. Ã answers
these queries by querying the experiments with (G̃1,b1 , G̃2,b2 , . . . , ), where G̃k,bk(intli,bk , evli,bk) does
the following:

1. first computes evl′i,bk = evli,bk ||{r
j
i,bk
, τ ji }j∈[ni] by using Ŝρr̃ , Ŝ

ρ
bk

as the simulator S. Note that

the evaluation state of each component evli,b includes {αji,b, β
j
i,b}j∈[ni]; here ni is the number

of copies of F are used in the ith iteration, and αji,b is the input provided by Pb to the jth copy

of F and βji,b is the corresponding output.

2. Then the function outputs Gk,bk(intli,bk , evl
′
i,bk

).

• Ã on input yi sends this input to A.

From the definition of Ã, it is obvious that the view RealÃ(1λ, Cλ, z) is identical to that of
VIEW`

Sm,nm ,A(1λ, Cλ, z) and the view IdealS̃,Ã(1λ, Cλ, z) is identical to that of VIEW`
S,A(1λ, Cλ, z).

Thus, suppose one can distinguish VIEW`
Sm,nm ,A(1λ, Cλ, z) from IdealS̃,Ã(1λ, Cλ, z) with non-negligible

probability, then RealÃ(1λ, Cλ, z) and IdealS̃,Ã(1λ, Cλ, z) are distinguishable. This completes the proof
of the claim.

The proof of the theorem follows directly from Claims A.3, A.4, A.5, A.6.

B Supplement for Section 4: the JV and DF Schemes

In this section, we describe two different implementations of OCL schemes, based on the Juma-Vahlis [34]
and Dziembowski-Faust [21] OCL schemes.

B.1 The JV OCL scheme.

The idea behind the basic JV scheme is simple. The scheme is based on a fully homomorphic encryption
scheme FHE = {Gen,Enc,Dec,Eval}. At the initial compilation phase, the state of the left component P1

is set to be an encryption Encpk(C) of the input circuit C. The state of the right component P2 is set to
be the corresponding decryption key sk. In evaluation, when P1 obtains the input x, it homomorphically
evaluates C on x, and sends the result Encpk(C(x)) to P2 over the secure channel. P2 then decrypts and
obtains the output. To ensure that the scheme yields an OCL, we add an additional cipher refresh step;
concretely, we homomorphically add to Enc(C(x)) an encryption Encpk(0), and add to Encpk(C) another
encryption Encpk(0).

The full scheme is given in Figure 3 below. Fsampling has been described in Section 4.1.
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OCL scheme OCLJV = (Comp, P1, P2)

Initial Compilation by Comp:

• Given input C, compute the following:

– (sk0, pk0)← Gen(1λ), ct0,C ← Encpk0(C),

• Return the following as output:

– intl1 = intl0,1 = (pk0, ct0,C),

– intl2 = intl0,2 = sk0,

– pp = ∅.

i-th Evaluation by (P1, P2):

• On input x (for clarity of prevention, we omit the subscript i of the input),

– P1 obtains γi,1 = (pki, cti,0, ct
′
i,0) from Fsampling.

– P2 obtains γi,2 = (ski, pki) from Fsampling,

• First, P2 does the following:

– compute cti,ski−1
← Encpki(ski−1; ri), where ri is randomly chosen,

– send cti,ski−1 to P1.

• Then P1, based on his input x, does the following:

– compute cti,C(x) ← Evalpki(cti,ski−1
, x, cti−1,C),

– compute c̃ti,C(x) ← cti,C(x) + cti,0, and cti,C ← cti−1,C + ct′i,0,
where “+” means homomorphic addition).

– send c̃ti,C(x) to P2.

– update state to intli,1 = (pki, cti,C).

• Now P2 does the following:

– decrypt c̃ti,C(x) by using ski and output y = C(x).

– update state to intli,2 = ski.

Figure 3: The JV OCL scheme

B.2 The DF OCL scheme.

At high level, the DF scheme follows the classic GMW [27] paradigm for semi-honest two-party computa-
tion. At the onset of the computation, the parties share each bit Ci of the private circuit C; Then, when P1

obtains the input x, it shares each bit of x with P2. The parties then homomorphically compute the boolean
circuit U(·, ·) on the underlying input (C, x). To guarantee leakage-resilience, the DF scheme relies on a
leakage-resilient secret sharing scheme—the inner product two-source extractor.

We adapt the simplified version of the DF scheme presented in the work [9]. The full scheme is given
in Figure 4 below, where U(·, ·) denotes the universal circuit, and is assumed to have T NAND gates
labeled G = {1, . . . , T}, among them n input gates labeled I = {1, . . . , n}, and t output gates labeled
O = {T − t + 1, . . . , T}. We denote by Omb the distribution on vector pairs in Fm2 × Fm2 whose inner
product is b. Fsampling has been described in Section 4.2.
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OCL scheme OCLDF = (Comp, P1, P2)

Initial Compilation by Comp:

• For each bit Cj of the circuit C, sample (LCj
, RCj

)← OmCj
,

The initial state:

• intl1 = intl0,1 = {L0,Cj}j∈[|C|]

• intl2 = intl0,2 = {R0,Cj
}j∈[|C|]

• pp = ∅

i-th Evaluation by (P1, P2):

• On input x (for clarity of prevention, we omit the subscript i of the input),
P1 and P2 obtain γi,1 and γi,2 from Fsampling respectively,
where γi,1 =

(
{L′i,g||L′′i,g}g∈G, {A′i,j ||A′′i,j}j∈|C|

)
and γi,2 =

(
{R′i,g||R′′i,g}g∈G, {B′i,j ||B′′i,j}j∈|C|

)
.

• P1, based on his input x, does the following:
for j ∈ [|x|], computes (Lxj , Rxj )← Omxj

, and sends {Rxj}j∈[|x|] to P2.

• For every gate g ∈ G, with input wires u = u(g), v = v(g) and output wire w = w(g), and input
shares (Lu, Lv, Ru, Rv), each in Fm2 , the parties run a homomorphic NAND procedure (see Figure 6):

(Lw, Rw)← NAND(Lu, Lv, L
′
i,g, L

′′
i,g;Ru, Rv, R

′
i,g, R

′′
i,g) .

• For each output wire g ∈ O, the players P1 and P2 receive the shares Lw(g) and Rw(g) respectively.

• P1 sends {Lw(g)}g∈O to P2, and then P2 outputs {〈Lw(g), Rw(g)〉}g∈O.

• For j ∈ |C|, P1 and P2 run a Refresh procedure (see Figure 5):

(Li,Cj
, Ri,Cj

)← Refresh(Li−1,Cj
, A′i,j , A

′′
i,j ;Ri−1,Cj

, B′i,j , B
′′
i,j)

P1 updates intli,1 := {Li,Cj}j∈[|C|].
P2 updates intli,2 := {Ri,Cj}j∈[|C|].

Figure 4: The DF OCL scheme

Procedure Refresh

Procedure (L?, R?)← Refresh(L,A′, A′′;R,B′, B′′):

• P1 samples a random matrix M ′ ∈ Fm×m2 such that M ′L = A′, and sends it to P2

• P2 sets R? := R + (M ′)TB′.

• P2 samples a random matrix M ′′ ∈ Fm×m2 such that M ′′R? = B′′, and sends it to P1

• P1 sets L? := L + (M ′′)TA′′.

• If any of the above is impossible due to zero shares, the parties abort.

Figure 5: Procedure Refresh that used in the DF scheme in Figure 4.
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Procedure NAND

Procedure (Lw, Rw)← NAND(Lu, Lv, L
′, L′′;Ru, Rv, R

′, R′′):

• Each party locally computes L⊗w := Lu ⊗ Lv ∈ Fm2

2 , R⊗w := Ru ⊗Rv ∈ Fm2

2 .

• The parties then run a Refresh⊗ procedure (see Figure 7):

(L⊗,?w , R⊗,?w )← Refresh⊗(L⊗w , L
′, L′′;R⊗w , R

′, R′′) .

• P2 sends R⊗,?w [m, . . . ,m2] to P1, who then computes b := 〈L⊗,?w [m, . . . ,m2], R⊗,?w [m, . . . ,m2]〉,
and sets

Lw := (1 + b|L⊗,?w [1, . . . ,m− 1]) .

• P2 sets his own share to be
Rw := (1|R⊗,?w [1, . . . ,m− 1]) .

Figure 6: Procedure NAND that used in the DF scheme in Figure 4. Here X[m, . . . ,m2] denotes the last
m2 −m+ 1 entries of X , and X[1, . . . ,m− 1] the first m− 1 entries of X .

Procedure Refresh⊗

Procedure (L⊗,?, R⊗,?)← Refresh⊗(L⊗, L′, L′′;R⊗, R′, R′′):

• P1 samples a random matrix M ′ ∈ Fm
2×m2

2 such that M ′L⊗ = L′, and sends it to P2

• P2 sets R⊗,? := R⊗ + (M ′)TR′.

• P2 samples a random matrix M ′′ ∈ Fm
2×m2

2 such that M ′′R⊗,? = R′′, and sends it to P1

• P1 sets L⊗,? := L⊗ + (M ′′)TL′′.

• If any of the above is impossible due to zero shares, the parties abort.

Figure 7: Procedure Refresh⊗ that used in Figure 6.
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