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Abstract

In this paper, we present Functional Encryption (FE) schemes for finite languages from standard
static assumption, viz., Decisional Linear (DLIN) assumption. These finite languages are described
by deterministic finite automata. Our first scheme is ciphertext-policy functional encryption (CP-FE),
where a key SKw is labeled with a string w over a fixed alphabet Σ and a ciphertext CM is associated
with a deterministic finite automaton (DFA)M over the same alphabet Σ. The key SKw can extract the
message from the ciphertext CM if the DFAM accepts the string w. This CP-FE scheme is constructed
based on attribute-based encryption (ABE) structure of Okamoto-Takashima in Asiacrypt, 2012. To
achieve the adaptive security, we put bounds on number of occurrences of any symbol in a string and in
the set of transition tuples of a DFA. Due to this restriction, the size of key space (where the keys are
indexed with strings) is reduced to finite. Hence, the functional scope of any DFA in our system can
capture only finite language. Similarly, we obtain our second adaptively secure FE scheme in key-policy
flavor from DLIN assumption. Both the schemes are shown to be secure in the standard model.

Keywords: Functional encryption, Attribute-based encryption, DFA, Dual pairing vector spaces.

1 Introduction

Functional Encryption provides a smart way of setting a fine-grained share of a secret among many users in a
distributed system. In this encryption, message (resp. user’s key) is encoded with an expressive parameter Φ (called
policy) and user’s key (resp. message) is encoded with a less expressive parameter Ψ (called attributes). The
decryption will be legitimate if relation R(Φ,Ψ) holds. There are two types of FE, viz, Ciphertext-Policy Functional
Encryption (CP-FE) [BSW07, LOS+10, OT10, Wat11, LW12], where message is associated with a policy and key
is encoded with a set of attributes and Key-Policy Functional Encryption (KP-FE) [GPSW06, OSW07, LOS+10,
OT10, ALdP11], where the role of policy and set of attributes are interchanged.

FEs are partitioned again into two ways: FE with “public index” [LW12, GPSW06, Wat11, OSW07, LOS+10,
OT10, ALdP11], where message is hidden but not the function and the other is FE “without public index”
[KSW08, SW08, OT09, OT11, OT12a], where the ciphertext conceals both the plaintext and policy. Attribute-Based
Encryptions (ABE) form one of the larger class of the former category. In ABE, the policies (access structures) are
represented by access trees, span programs or the sets of minimal sets. Other FEs that exist in the literature are
spatial-encryption [Ham11, BH08], inner-product encryption [OT12a, KSW08, OT12b], hidden-vector encryption
[BW07, IP08], identity-based broadcast encryption [BH08, SF07].

Sahai and Waters [SW05] introduced the concept of ABE, through the construction of Fuzzy IBE, in which an
identity was viewed as a set of attributes. Although, the IBE is a special case of ABE, where policy is equality of
IDs, yet the Fuzzy IBE was the first step (in the sense of non-trivial functionalities) towards exploration of many FE
schemes.
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Later, Boneh et al. [BSW11] formalized the functional encryption to capture all the FEs under the same template:
The functionality f over (K ×X) is defined in [BSW11] as function f : K ×X → {0, 1}∗, where K is the key space
and X is the message space. The message space may be of the form X = (M × I), where M is the payload space
and I is the policy space. Let c = enc(PP, x = (m,Φ)) be the encryption of the (m,Φ), then secret key SKΨ, for
Ψ ∈ K can evaluate f(Ψ, x = (m,Φ)) as dec(PP, c,SKΨ). For all aforementioned FEs (or predicate encryptions),
functionality f : K × X → {0, 1}∗ is defined as f(Ψ, x = (m,Φ)) = m if R(Φ,Ψ) holds and else it is defined as
f(Ψ, x = (m,Φ)) = (len(m),Φ) for “public index” and f(Ψ, x = (m,Φ)) = len(m) for “without public index”.
Therefore, all the aforesaid FEs are sub-class of formalized FE.

Till date, there are very few adaptively secure FE schemes [LW12, OT10, LOS+10, OT12b] without random
oracles, where the policy is more expressive and fine-grained and surprisingly, most of them belong to the ABE
family. However, the existing ABE (FE) systems support only bounded policies, where the policies can give access to
a bounded number of users, i.e., if the formula is defined over fixed n variables, then it supports at most exponential
number of users.

Recently, Waters [Wat12] proposed a Key-policy functional encryption for regular languages over an alphabet.
Since, the size of a regular language may be unbounded, their system can support unbounded access control over the
encrypted messages. The KP-FE scheme of [Wat12] was shown to be selectively secure under a non-static assumption,
the decisional `-Expanded BDHE assumption.

Very recently, S.C.Ramanna [Ram13] proposed an adaptively secure DFA-based FE over an alphabet in the
standard model. To capture the adaptive security, they first obtained the basic FE construction by imposing two
restrictions, viz., the DFA (policy) must contain at most a single transition corresponding to each symbol and the
string must contain at most a single occurrence of each symbol. In their full construction, these restriction are
relaxed to support a large class of regular language but they put bounds on number of occurrences of any symbol
in a string and in the set of transition tuples of a DFA. This emphasizes that their system supports nothing but
the finite languages over a fixed alphabet. However, their system is proven secure under non-standard assumptions,
Decisional SubGroup (DSG) assumptions over composite order bilinear groups.

1.1 Our Contribution

We propose an adaptively secure CP-FE scheme for finite language over an alphabet Σ. The security of the proposed
scheme relies on standard, static assumption, DLIN in the standard model. Our construction follows the ABE
construction of [OT12b] based on Dual Pairing Vector Spaces (DPVS) technique. In this construction, the ciphertext
components are generated by the bases of a DPVS and the keys are obtained by it’s dual. Let M = (Q,Σ, q0, F, δ)
be a deterministic finite automaton for which the ciphertext components will be generated. For each state qx ∈ Q,
random dx is chosen from Fq. There will be two initial components, viz, Cm, the masking of the message m using

a random exponent ξ and ~C0, the encoding of initial state q0 and it is connected with Cm via the random ξ. For
each transition t = (qx, qy, σh), there will be three ciphertext components, i.e., ~Ct,1, ~Ct,2 and ~Ct,3 which encode
respectively the target state qy and transition t, the source state qx and the transition t, and the transition t. The
common symbol σh is embedded in all the above three components. For each final state qz ∈ F , the ciphertext
component ~Cz,4 represents the encoding of qz.

Let SKw denote the secret key of a user for a string w = w1 · · ·w` of length ` over the alphabet Σ. Let r0, r1, . . . , r`
be chosen at random from Fq. The key SKw consists of the following components: One initial key component ~K∗0 ,

the encoding of r0. For each i ∈ {1, . . . , `}, there are three key components, ~K∗i,1, ~K∗i,2 and ~K∗i,3, wherein the values

ri, ri−1 and ri + ri−1 are embedded respectively. All these three components are related via a common ith symbol

wi. There is a final component ~K∗`+1,4 to embed the random r`. For all i ∈ {1, . . . , `}, j ∈ {1, 2, 3}, the components
~K∗i,j are connected chain-wise via the random values r0 . . . , r`.

If the pairing between ~C0 and ~K∗0 is computed, we have A0 = gr0d0+ξ
T , where gT is an element from target group

of the pairing groups and since, Cm = m.gξT , we have to compute gξT from A0 using the others key and ciphertext
components to unmask the message m. If the ith symbol wi of w matches1 with a transition t = (qx, qy, σh), then

we have e(~Ct,j , ~K
∗
i,j) = g

ri(st+dy)
T for j = 1. Similarly, for j = 2 and j = 3, we have respectively g

−ri−1(−st+dx)
T and

1It means the ith symbol wi is equal to the symbol σh that appears in the transition t
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g
(−ri−ri−1)st
T . If we multiply last three terms, we have a coupling value of the form g

ridy−ri−1dx
T . Now, if the DFA

M accepts the string w, then there exist a sequence of ` + 1 states qx0
, qx1

, qx2
, . . . , qx` and transitions t1, . . . , t`,

where x0 = 0 and qx` ∈ F and for i = 1, 2, . . . , `, we have ti = (qxi−1
, qxi , σ) with wi = σ. The first coupling

value through this sequence, is computed as A1 = g
r1dx1−r0d0

T . Iteratively, the ith coupling value is obtained as

Ai = Ai−1.g
ridxi−ri−1dxi−1

T = g
ri−1dxi−1

−r0d0

T .g
ridxi−ri−1dxi−1

T = g
ridxi−r0d0

T . Similarly, the `th coupling value through

this path, is calculated as A` = g
r`dx`−r0d0

T . Then, we compute the final value as A`+1 = A`.e(~Cx`,4,
~K∗`+1,4) =

g
r`dx`−r0d0

T .g
−r`dx`
T = g−r0d0

T . Thus, the message can be extracted from Cm using A0 and A`+1. Our KP-FE scheme
is found in Appendix C.

Limitation: Most of the adaptively secure FE schemes [LW12, OT10, LOS+10, OT12b] supporting wide
functionalities are proven by putting a burden on the functionalities. These restrictions are required to pass through
some crucial arguments to the sequence of hybrid games in dual system proof methodology [Wat09]. For example, in
[OT10, LOS+10, OT12b], an adaptively secure basic scheme is first constructed by imposing a restriction that the
attributes must not repeat in the span programs. Then this basis scheme is lifted to a full adaptively secure scheme
without the above restriction, but it imposes another restriction on degree of the span programs, i.e, maximum
number of times an attribute can repeat in the span programs, are bounded by a pre-fixed threshold value. Similarly,
we first impose some restrictions on the DFAs and the strings to achieve a basic adaptively secure scheme under a
standard static assumption. The imputed restrictions are: for each symbol, there is at most a single transition and
the strings for key can have at most a single occurrence of symbol. Likewise, the above restrictions are relaxed but
an additional burden is put on the DFAs and the strings for keys to obtain full adaptively secure scheme for DFAs
under the same assumption. If tmax and wmax are the bounds on maximum number of times a symbol may repeat
in the transitions of a DFA and string respectively, then the size of the new alphabet Σb will be tmaxwmax times the
size of old alphabet Σ. Indeed, for each symbol σ ∈ Σ, we have a matrix Wσ with order tmax×wmax of new symbols
for Σb. Suppose M and w are respectively the DFA (to be embedded in ciphertext) and `-length string (for key)
over the alphabet Σ without any restrictions on both the symbols and the transitions. Then, this DFAM and string
w are converted to DFA N and a matrix W of order tmax × ` over the new alphabet Σb. If the DFA M accepts w,
there is exactly one string wb, comprising exactly one symbol from each column of the matrix W such that the DFA
N accepts wb. And if DFA M rejects the string w, then, for all possible strings wb, by choosing exactly one symbol
from each column of W , the DFA N rejects the strings wb.

1.2 Related Work

From opening [SW05], many FE schemes [KSW08, SW08, OT09, Wat11, LW12, OT10, LOS+10, OT12b, ALdP11]
have been proposed on focusing several issues. But there are very few schemes [LW12, OT10, LOS+10, OT12b]
supporting wide functionalities and capture adaptive security in the standard model at the same time. The CP-ABE
and KP-ABE schemes in [OT10, LOS+10, OT12b], are proven adaptively secure under static assumption in the
standard model but the policies are restricted by imposing a bound on the degree. In [Ram13], similar kinds of
restrictions are imposed on DFAs and strings to get the adaptive security from static, non-standard assumptions
over composite order bilinear groups. The above bounds diminish the performance of the scheme by increasing either
key size or ciphertext size by a factor or both. In contrast, there is no such imposition in the scheme of [LW12] but
the adaptive security has to rely on non-static assumption and some other assumptions.

2 Preliminaries

Basic notation, definitions and hardness assumptions are provided in this section. For definition and security model
of CP-FE for DFAs, refer to Appendix A.

Deterministic Finite Automaton A deterministic finite automaton (DFA)M is a quintuple (Q,Σ, q0, F, δ),
where Q is a finite set of states, Σ is a set of symbols, called alphabet, q0 ∈ Q is called the start state, F ⊆ Q is
called the set of final states and the function σ : Q× Σ→ Q is called transition function.
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Notation Let T denote the set of all transitions t = (qx, qy, σ) of a DFAM = (Q,Σ, q0, F, δ), where t = (qx, qy, σ)
carries meaning of δ(qx, σ) = qy. L(M) stands for the language recognized by the DFA M. The notation [`] stands

for the set {i ∈ N : 1 ≤ i ≤ `}. For a set X, x
R←− X denotes that x is randomly picked from X according to

the distribution, R. Likewise, x
U←− X indicates x is uniformly selected from X. For a basis B := (~b1, . . . ,~bN ),

(x1, . . . , xN )B represents
∑N
i=1 xi

~bi. The vector ~e1 and ~e2 stand for (1, 0) and (0, 1) respectively. Let F×q stand for
Fq \ {0}

2.1 Dual Pairing Vector Spaces

A prime order bilinear pairing groups are a tuple (q,G,GT , e), where q is prime, G and GT are cyclic groups of prime
order q and e : G×G→ GT is a efficiently computable map such that

1. (Bilinear) ∀P1, P2 ∈ G, a, b ∈ Fq, e(aP1, bP2) = e(P1, P2)ab,

2. (Non-degenerate) ∃P ∈ G such that e(P, P ) has order q in GT .

Let Gbpg denote an algorithm that takes κ as input parameter and generates a description of a prime order bilinear
pairing paramG := (q,G,GT , P, e).

Definition 2.1 ([OT12b]). Dual Pairing Vector Spaces (DPVS)(q,V,GT ,A, e) is defined as a direct product over
symmetric prime-order pairing groups (q,G,GT , P, e), where

– V :=

N︷ ︸︸ ︷
G× . . .×G is a N -dimensional vector space over Fq

– GT is a cyclic group of order q (as in the pairing)

– A := (~a1, . . . ,~aN ) is the canonical basis of V with ~ai = (

i−1︷ ︸︸ ︷
0, . . . , 0, P,

N−i︷ ︸︸ ︷
0, . . . , 0)

– e : V × V → GT is a bilinear map defined by e(~x, ~y) =
∏N
i=1 e(xi, yi), where ~x := (x1, . . . , xN ) ∈ V and ~y :=

(y1, . . . , yN ) ∈ V

Let Gdpvs denote an algorithm that takes κ, a dimension N and paramG as input and outputs a description of a dual
pairing vector spaces paramV := (q,V,GT ,A, e).

To construct our encryption system based on DPVS, we need dual orthogonal bases for a DPVS. Let Gob denote
the dual orthogonal basis generator.

Gob(κ,N0, N1, N2, N3, N4):

paramG := (q,G,GT , P, e)←− Gbpg(κ), ψ
U←− F×q ,

For t = 0, . . . , 4, paramVt := (q,Vt,GT ,At, e)← Gdpvs(κ,Nt, paramG),

Xt := (Xt,i,j)i,j=1,...,Nt
U←− GL(Nt,Fq), X∗t := (Yt,i,j)i,j=1,...,Nt := ψ(XT

t )−1 U←− GL(Nt,Fq),
where ~Xt,i and ~Yt,i respectively denote the ith vector of Xt and X∗t for i = 1, . . . , Nt
~bt,i := ( ~Xt,i)At =

∑Nt
j=1Xt,i,jat,j for i = 1, . . . , Nt, Bt = (~bt,1, . . . ,~bt,Nt)

~b∗t,i := ( ~X∗t,i)At =
∑Nt
j=1 Yt,i,jat,j for i = 1, . . . , Nt, B∗t = (~b∗t,1, . . . ,

~b∗t,Nt)

gT = e(P, P )ψ, param:=({paramVt}t=0,1,...,4, ψP, gT ), return (param, {Bt, B∗t }t=0,1,...,4)

2.2 Hardness Assumptions

We describe here two Decisional SubSpace (DSS) assumptions, DSS1 and DSS2 in dual pairing vector spaces over
prime order groups. We show that both the assumptions hold if DLIN assumption holds in the source groups. The
assumption DSS1 (resp. DSS2) is obtained by taking two parallel copies of 5 dimensional vector and three parallel
copies of a 14 dimensional vector from assumption 1-ABE (resp. 2-ABE) of [OT12b]. (Here, 1-ABE (resp. 2-ABE)
is an assumption weaker than assumption DSS1 (resp. DSS2)). But some of the scalars of interest are same for each
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copy and some are independent for different copies. Due to this independence, we are unable to reduce DSS1 (resp.
DSS2) from 1-ABE (resp. 2-ABE). Although the approach for obtaining reductions of 1-ABE and 2-ABE from DLIN
is adapted from [OT12b], we modify some of the intermediate “basic problems” to “modified” basic problems. A
brief reduction of DSS1 and DSS2 from DLIN is given in Appendix B.

Assumption Decisional Linear (DLIN)
Define the following distribution :

paramG := (q,G,GT , P, e)←− Gbpg(κ), ξ, λ, δ, σ
U←− Fq

D := (paramG, ξP, λP, δξP, σλP ), T0 = (δ + σ)P, T1
U←− G

Now, the advantage of an algorithm A in breaking Assumption DLIN is defined by

AdvDLIN
A (κ) = |Pr[A (D,T0) = 1]− Pr[A (D,T1) = 1]|

We say that the DLIN assumption holds if for every PPT algorithm A , the advantage AdvDLIN
A (κ) is a negligible

function in the security parameter κ.

Assumption DSS1

Choose φ0, φ4, ω
U←− Fq and τ

U←− F×q . Also choose Z1
h, Z

2
h, Z

3
h

U←− GL(2,Fq) for h = 1, . . . , d.

(param, (B0,B∗0), (B1,B∗1), (B2,B∗2), (B3,B∗3), (B4,B∗4))←− Gob(κ, 5, 14, 14, 14, 5)

B̂j := (~bj,1, ~bj,3, ~bj,5), B̂∗j := (~b∗j,1,
~b∗j,3,

~b∗j,4) for j = 0, 4

B̂j := (~bj,1, . . . ,~bj,4, ~bj,13, ~bj,14), B̂∗j := (~b∗j,1, . . . ,
~b∗j,4,

~b∗j,11,
~b∗j,12) for j = 1, 2, 3

~ej0 := (ω, 0, 0, 0, φj)Bj , ~ej1 := (ω, τ, 0, 0, φj)Bj for j = 0, 4

For h = 1, ..., d, i = 1, 2, j = 1, 2, 3, choose δjh,i, φ
j
h,i,1, φ

j
h,i,2

U←− Fq

~ej0,h,i := (

4︷ ︸︸ ︷
δjh,i(1, h), ω~ei,

6︷︸︸︷
06 ,

2︷︸︸︷
02 ,

2︷ ︸︸ ︷
φjh,i,1, φ

j
h,i,2 )Bj

~ej1,h,i := (

4︷ ︸︸ ︷
δjh,i(1, h), ω~ei,

6︷ ︸︸ ︷
τ ~ei, 0

2, τ ~eiZ
j
h,

2︷︸︸︷
02 ,

2︷ ︸︸ ︷
φjh,i,1, φ

j
h,i,2 )Bj

D := (param, {B̂j , B̂∗j}j=0,1,...,4) For β = 0, 1,define Tβ := ({~ejβ}j=0,4, {~ejβ,h,i}h=1,...,d; i=1,2; j=1,2,3)

Now, the advantage of an algorithm A in breaking Assumption DSS1 is defined by

AdvDSS1
A (κ) = |Pr[A (D,T0) = 1]− Pr[A (D,T1) = 1]|

We say that the DSS1 assumption holds if for every PPT algorithm A , the advantage AdvDSS1
A (κ) is a negligible

function in the security parameter κ.

Lemma 2.1. If the decisional linear (DLIN) assumption holds for a bilinear pairing group generator G, then the
decisional subspace assumption, DSS1 also holds for G

Proof. Proof of the lemma 2.1 is found in Appendix B.1 (lemma B.3).
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Assumption DSS2

Choose φ0, φ4, η0, η4, ζ, ω
U←− Fq and τ, ρ

U←− F×q . Also choose Z1
h, Z

2
h, Z

3
h

U←− GL(2,Fq) and set U jh = ((Zjh)−1)T for
h = 1, ..., d, j = 1, 2, 3.

(param, (B0,B∗0), (B1,B∗1), (B2,B∗2), (B3,B∗3), (B4,B∗4))←− Gob(κ, 5, 14, 14, 14, 5)

B̂j := (~bj,1, ~bj,3, ~bj,5), B̂∗j := (~b∗j,1, . . . ,
~b∗j,4) for j = 0, 4

B̂j := (~bj,1, . . . ,~bj,4, ~bj,13, ~bj,14), B̂∗j := (~b∗j,1, . . . ,
~b∗j,4,

~b∗j,11,
~b∗j,12) for j = 1, 2, 3

~Υj := (ω, τ, 0, 0, φj)Bj , ~Υj∗
0 := (ζ, 0, 0, ηj , 0)B∗j , ~Υ

j∗
1 := (ζ, ρ, 0, ηj , 0)B∗j for j = 0, 4

For h = 1, . . . , d, i = 1, 2, j = 1, 2, 3, choose µjh,i, δ
j
h,i, η

j
h,i,1, η

j
h,i,2, φ

j
h,i,1, φ

j
h,i,2

U←− Fq

~Υj∗
0,h,i := (

4︷ ︸︸ ︷
µjh,i(h,−1), ζ ~ei,

6︷︸︸︷
06 ,

2︷︸︸︷
02 ,

2︷ ︸︸ ︷
ηjh,i,1, η

j
h,i,2 )B∗j

~Υj∗
1,h,i := (

4︷ ︸︸ ︷
µjh,i(h,−1), ζ ~ei,

6︷ ︸︸ ︷
04, ρ~eiU

j
h,

2︷︸︸︷
02 ,

2︷ ︸︸ ︷
ηjh,i,1, η

j
h,i,2 )B∗j

~ejh,i := (

4︷ ︸︸ ︷
δjh,i(1, h), ω~ei,

6︷ ︸︸ ︷
τ ~ei, 0

2, τ ~eiZ
j
h,

2︷︸︸︷
02 ,

2︷ ︸︸ ︷
φjh,i,1, φ

j
h,i,2 )Bj

D := (param, {B̂j , B̂∗j}j=0,1,...,4, {~Υj}j=0,4, {~ejh,i}h=1,...,d; i=1,2; j=1,2,3)

For β = 0, 1,define Tβ := ({~Υj∗
β }j=0,4, {~Υj∗

β,h,i}h=1,...,d; i=1,2; j=1,2,3)

Now, the advantage of an algorithm A in breaking Assumption DSS2 is defined by

AdvDSS2
A (κ) = |Pr[A (D,T0) = 1]− Pr[A (D,T1) = 1]|

We say that the DSS2 assumption holds if for every PPT algorithm A , the advantage AdvDSS2
A (κ) is a negligible

function in the security parameter κ.

Lemma 2.2. If the decisional linear (DLIN) assumption holds for a bilinear pairing group generator G, then the
decisional subspace assumption, DSS2 also holds for G

Proof. Proof of the lemma 2.2 is found in Appendix B.2 (lemma B.18).

3 Basic CP-FE Construction

In this section, we describe a basic Ciphertext-Policy Functional Encryption scheme for DFAs in the prime order
bilinear pairing groups. This scheme is based on the structure of ABE construction of [OT12b], where encryption
is done using the bases of a dual pairing vector spaces and the keys are generated by it’s dual. In their basic
construction([OT12b]), they restricted the access structures by putting a limitation that the attributes must not
repeat in the access structures. This type of restrictions is required to guarantee the adaptive security of the basic
construction. Similarly, our basic construction involved here has the following restrictions (the similar restrictions
are found in [Ram13]).

– There is at most a single transition corresponding to each symbol in the DFAs (policies)

– The strings for keys can have at most a single occurrence of each symbol (keys)

We illustrate how to relax the above restrictions in section 5.

Setup(κ): (param, (B0,B∗0), (B1,B∗1), (B2,B∗2), (B3,B∗3), (B4,B∗4))←− Gob(1λ, 5, 14, 14, 14, 5)

B̂j := ( ~bj,1, ~bj,3, ~bj,5), B̂∗j := ( ~b∗j,1, ~b∗j,3, ~b∗j,4 ) for j=0,4

B̂j := ( ~bj,1 . . . ,~bj,4, ~bj,11, ~bj,12 ), B̂∗j := ( ~b∗j,1, . . . ,
~b∗j,4, ~b∗j,13, ~b∗j,14 ) for j=1,2,3
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Choose a set, alphabet of symbols Σ = {σ1, . . . , σd} ⊆ Fq, where d = poly(κ). The public parameters and master
secret are given by

PP := (Σ, param, {B̂j}j=0,1,2,3,4),

MSK:= ({B̂∗j}j=0,1,2,3,4).

Encrypt(PP,M = (Q,Σ, q0, F, δ),m): For each qx ∈ Q, pick dx
U←− Fq. For each qz ∈ F , choose φz

U←− Fq. Pick

random ξ ∈ Fq. For each transition t = (qx, qy, σh) ∈ T , choose st, δt,1, δt,2, δt,3
U←− Fq; ~φt,1, ~φt,2, ~φt,3

U←− F2
q. Now,

compute

~C0 := ( d0, 0, ξ, 0, φ0)B0 Cm := m.gξT

For each transition t = (qx, qy, σh) ∈ T , compute the ciphertext components

~Ct,1 := (

2︷ ︸︸ ︷
δt,1(1, h),

2︷ ︸︸ ︷
(st + dy)(1, σh),

6︷︸︸︷
06 ,

2︷︸︸︷
02 ,

2︷︸︸︷
~φt,1 ) B1

~Ct,2 := (

2︷ ︸︸ ︷
δt,2(1, h),

2︷ ︸︸ ︷
(−st + dx)(1, σh),

6︷︸︸︷
06 ,

2︷︸︸︷
02

2︷︸︸︷
~φt,2 ) B2

~Ct,3 := (

2︷ ︸︸ ︷
δt,3(1, h),

2︷ ︸︸ ︷
st(1, σh),

6︷︸︸︷
06 ,

2︷︸︸︷
02 ,

2︷︸︸︷
~φt,3 ) B3

For each qz ∈ F , compute the ciphertext component
~Cz,4 := ( dz, 0, 0, 0, φz)B4

CM := ( M, Cm, ~C0, {~Ct,1, ~Ct,2, ~Ct,3}t=(qx,qy,σh)∈T , {~Cz,4}qz∈F )

KeyGen(MSK, w = w1 · · ·w`): For each i ∈ [`], choose µi,1, µi,2, µi,3, θi, ri
U←− Fq; ~ηi,1, ~ηi,2, ~ηi,3

U←− F2
q. Pick

r0, η0, η`+1
U←− Fq. Now compute

~K∗0 := ( r0, 0, 1, η0, 0)B∗0

For each i ∈ [`], (let wi = σh, for some index h) continue to compute

~K∗i,1 := (

2︷ ︸︸ ︷
µi,1(h,−1),

2︷ ︸︸ ︷
ri + θiσh, −θi,

6︷︸︸︷
06 ,

2︷︸︸︷
~ηi,1 ,

2︷︸︸︷
02 ) B∗1

~K∗i,2 := (

2︷ ︸︸ ︷
µi,2(h,−1),

2︷ ︸︸ ︷
−ri−1 + θiσh, −θi,

6︷︸︸︷
06 ,

2︷︸︸︷
~ηi,2 ,

2︷︸︸︷
02 ) B∗2

~K∗i,3 := (

2︷ ︸︸ ︷
µi,3(h,−1),

2︷ ︸︸ ︷
−ri − ri−1 + θiσh,−θi,

6︷︸︸︷
06 ,

2︷︸︸︷
~ηi,3 ,

2︷︸︸︷
02 ) B∗3

~K∗`+1,4 := ( r`, 0, 0, η`+1, 0)B∗4
The secret key for the string w is given by

SKw :=
(
w, ~K∗0 , { ~K∗i,1, ~K∗i,2, ~K∗i,3}i∈[`], ~K

∗
`+1,4

)
Decrypt(CM, SKw): Suppose the DFA M accepts the string w = w1 · · ·w`, then there exist a sequence of ` + 1
states qx0

, qx1
, qx2

, . . . , qx` and transitions t1, . . . , t`, where x0 = 0 and qx` ∈ F and for i = 1, 2, . . . , `, we have
ti = (qxi−1

, qxi , σ) ∈ T with wi = σ. First, compute the initial value

A0 = e(~C0, ~K
∗
0 ) = gr0d0+ξ

T

Then, compute the first value A1 of intermediate values as

A1 = e(~Ct1,1,
~K∗1,1).e(~Ct1,2,

~K∗1,2).e(~Ct1,3,
~K∗1,3) = g

r1dx1
−r0d0

T

Next, compute the intermediate values Ai (for i = 2, . . . , `) as follows:

Ai = Ai−1.e(~Cti,1,
~K∗i,1).e(~Cti,2,

~K∗i,2).e(~Cti,3,
~K∗i,3) = g

ri−1dxi−1
−r0d0

T g
ridxi−ri−1dxi−1

T = g
ridxi−r0d0

T
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Similarly, the `th intermediate value is obtained in the form A` = g
r`dx`−r0d0

T

The final value A`+1 is computed as

A`+1 = A`.e(~Cx`,4,
~K∗`+1,4) = g

r`dx`−r0d0

T g
−r`dx`
T = g−r0d0

T

Using A0, A`+1 and Cm, the message is extracted as m = Cm/(A0 A`+1).

4 Security Proof

We prove the adaptive security of our basic CP-FE construction by adopting the proof technique of Okamoto–
Takashima [OT12b] and the dual system methodology of Brent Waters [Wat09]. This methodology requires to define
semi-functional ciphertexts and keys. Here, we define two types of semi-functional ciphertexts, viz., type 1 and type
2. Three forms of semi-functional keys are considered here – type 1, type 2 and type 3. In the sequence of games,
challenge ciphertext is first changed from normal to semi-functional type 1. Then each queried key is changed from
normal to semi-functional type 1, then semi-functional type 1 to type 2 and lastly from semi-functional type 2 to
type 3. In the final game, the semi-functional type 1 ciphertext is changed to semi-functional type 2 ciphertext,
where the message is masked by an independently and uniformly chosen value.

In the following material, the part framed by a box indicates that either it will be changed in next description
or it has been changed from previous description. Also, we use the abbreviation ‘sf’ for ‘semi-functional’.

Semi-functional Type 1 Ciphertext. For each qx ∈ Q, pick d̂x
U←− Fq. For each transition t = (qx, qy, σh) ∈

T , choose ŝt
U←− Fq; Z1

h, Z
2
h, Z

3
h

U←− GL(2,Fq). The sf-type 1 ciphertext is obtained by modifying normal ciphertext

CM = (M, Cm, ~C0, {~Ct,1, ~Ct,2, ~Ct,3}t=(qx,qy,σh)∈T , {~Cz,4}qz∈F ) as given below:

~C0 := ( d0, d̂0 , ξ, 0, φ0)B0 Cm := m.gξT

~Ct,1 := (

2︷ ︸︸ ︷
δt,1(1, h),

2︷ ︸︸ ︷
(st + dy)(1, σh),

6︷ ︸︸ ︷
(ŝt + d̂y)(1, σh) , 02, (ŝt + d̂y)(1, σh)Z1

h ,

2︷︸︸︷
02 ,

2︷︸︸︷
~φt,1 ) B1

~Ct,2 := (

2︷ ︸︸ ︷
δt,2(1, h),

2︷ ︸︸ ︷
(−st + dx)(1, σh),

6︷ ︸︸ ︷
(−̂st + d̂x)(1, σh) , 02, (−̂st + d̂x)(1, σh)Z2

h ,

2︷︸︸︷
02

2︷︸︸︷
~φt,2 ) B2

~Ct,3 := (

2︷ ︸︸ ︷
δt,3(1, h),

2︷ ︸︸ ︷
st(1, σh),

6︷ ︸︸ ︷
ŝt(1, σh) , 02, ŝt(1, σh)Z3

h ,

2︷︸︸︷
02 ,

2︷︸︸︷
~φt,3 ) B3

~Cz,4 := ( dz, d̂z , 0, 0, φz)B4

Semi-functional Type 2 Ciphertext. This is same as sf-type 1 ciphertext except the following

~C0 := ( d0, d̂0, ξ′ , 0, φ0)B0 Cm := m.gξT where ξ′
U←− Fq (independent of ξ

U←− Fq)

Semi-functional Type 1 Key. For each i ∈ [`], choose r̂i, θ̂i
U←− Fq. Also choose r̂0

U←− Fq. For i ∈ [`],

let wi = σh for some index h, choose Zjh
U←− GL(2,Fq) for j = 1, 2, 3 and set U jh = ((Zjh)−1)T . The sf-type 1 key

generation algorithm first creates a normal key SKw =
(
w, ~K∗0 , { ~K∗i,1, ~K∗i,2,

~K∗i,3}i∈[`], ~K
∗
`+1,4

)
and then modifies

its components as shown below.

~K∗0 := ( r0, r̂0 , 1, η0, 0)B∗0

~K∗i,1 := (

2︷ ︸︸ ︷
µi,1(h,−1),

2︷ ︸︸ ︷
ri + θiσh, −θi,

6︷ ︸︸ ︷
04, (r̂i + θ̂iσh, −θ̂i)U1

h ,

2︷︸︸︷
~ηi,1 ,

2︷︸︸︷
02 ) B∗1

~K∗i,2 := (

2︷ ︸︸ ︷
µi,2(h,−1),

2︷ ︸︸ ︷
−ri−1 + θiσh, −θi,

6︷ ︸︸ ︷
04, (−r̂i−1 + θ̂iσh, −θ̂i)U2

h ,

2︷︸︸︷
~ηi,2 ,

2︷︸︸︷
02 ) B∗2
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~K∗i,3 := (

2︷ ︸︸ ︷
µi,3(h,−1),

2︷ ︸︸ ︷
−ri − ri−1 + θiσh,−θi,

6︷ ︸︸ ︷
04, (−r̂i − r̂i−1 + θ̂iσh,−θ̂i)U3

h ,

2︷︸︸︷
~ηi,3 ,

2︷︸︸︷
02 ) B∗3

~K∗`+1,4 := ( r`, r̂` , 0, η`+1, 0)B∗4

Semi-functional Type 2 Key. This is same as sf-type 1 key except ~K∗0

~K∗0 := ( r0, r , 1, η0, 0)B∗0, where r
U←− Fq (independent of r̂0

U←− Fq)

Note that r̂0 appears in ~K∗1,2 and ~K∗1,3

Semi-functional Type 3 Key. This is same as normal key except ~K∗0

~K∗0 := ( r0, r , 1, η0, 0)B∗0, where r
U←− Fq

A legitimate normal key (resp. sf-type 1 key, sf-type 2 key, sf-type 3 key) SKw can extract the message from an sf-
type 1 ciphertext (resp. normal ciphertext) CM. Similarly, a legitimate sf-type 1 key SKw can succeed in decrypting
an sf-type 1 ciphertext CM, because the mimicked parts get canceled just like the normal components. But, if a
legitimate sf-type 2 key or sf-type 2 key SKw runs decryption on an sf-type 1 ciphertext CM, it will get an extra

term grd̂0

T hampering the message extraction.

Theorem 4.1. The proposed Basic CP-FE scheme is adaptively secure under the DLIN assumption.

Proof Sketch of Theorem 4.1
The proof technique of the above theorem is adopted from that of ABE of Okamoto–Takashima [OT12b]. By applying
hybrid arguments over the sequence of games GameReal,Game0, {Gamek,1,Gamek,2,Gamek,3}k∈[ν] and GameFinal,
the game GameReal is changed to GameFinal.

In Game0, the challenge ciphertext is changed from normal to sf-type 1. If there are at most ν secret key queries
made by an adversary A , there are 3ν game changes from Game0 (Game0,3), Game1,1, Game1,2, Game1,3 through
Gameν,2 and Gameν,3. In Gamek,1 (for 1 ≤ k ≤ ν), the challenge ciphertext is sf-type 1, the first (k − 1) keys are
sf-type 3, kth key is sf-type 1 and the rest are normal. Gamek,2 (for 1 ≤ k ≤ ν) is same as Gamek,1 except that kth

key is sf-type 2. Gamek,3 (for 1 ≤ k ≤ ν) is same as Gamek,2 except that kth key is sf-type 3. GameFinal is similar
to Gameν,3 except that the challenge ciphertext is a sf-type 2 ciphertext, i.e., in GameFinal, the challenge message is
masked with an uniformly and independently chosen value implying that A has no advantage in breaking the final
game. We prove that the gap advantage between any two consecutive games are at most negligible.

In lemma 4.2, we show that the advantage gap between GameReal and Game0 is equivalent to that of DSS1:
we establish a PPT simulator B for GameReal and Game0 against a PPT adversary A . The simulator B takes an

instance of DSS1 (with β
U←− {0, 1}) and simulates either GameReal or Game0 for adversary A . We show that the

distribution of secret keys and challenge ciphertext replied by B is equivalent to GameReal (resp. Game0) if β = 0
(resp. β = 1).

In lemma 2.1, we prove that assumption DSS1 holds for a bilinear pairing groups if DLIN assumption holds for
the same pairing groups. Therefore, GameReal and Game0 are indistinguishable under DLIN assumption. Seemingly,
this shows that the normal ciphertext and sf-type 1 ciphertext are indistinguishable under DLIN assumption.

Similarly, in lemma 4.3, we show that the advantage gap between Game(k−1),3 and Gamek,1 is bounded by the
advantage of DSS2. Likewise, in lemma 2.2, we prove that assumption DSS2 holds for a bilinear pairing groups if
DLIN assumption holds for the same pairing groups. Thus, Game(k−1),3 and Gamek,1 are indistinguishable if DLIN

assumption holds. In other words, it shows that the kth normal key and kth sf-type 1 key are indistinguishable if
DLIN assumption holds.

Then, we show that gap advantage between Gamek,1 and Gamek,2 is zero (without any assumption) (lemma 4.4)
as: the distribution of (PP, {SKwι}ι=1,...,ν , CM∗) in Gamek,1 and that in Gamek,2 are exactly same except at kth

key, where wι is ιth query string. So, we have to show that the joint distribution of kth key SKwk and the challenge
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ciphertext in both the games are equivalent. In lemma 4.4, we basically show that the scalar r̂0 in ~K∗0 of kth key
SKwk (described in definition of sf-type 1 key) is uniformly and independently distributed from the other variables
in the joint distribution of A ’s view. This shows that distribution of kth sf-type 1 key and kth sf-type 2 key are
indistinguishable by any polynomial time adversary.

In a similar manner, we show that the advantage gap between Gamek,2 and Gamek,3 is bounded by the advantage
of DSS2 adversary (lemma 4.5). This implies that kth sf-type 2 key and kth sf-type 3 key are indistinguishable under
DSS2.

Finally, we show that Gameν,3 and GameFinal are indistinguishable (without any assumption) (lemma 4.6). In
lemma 4.6, we first apply a suitable transformation to form new bases (D0,D∗0) from original bases (B0,B∗0). Then,
we show that the distribution of keys and ciphertext over (B0,B∗0) (resp. (D0,D∗0)) is identical with Gameν,3 (resp.
GameFinal),

Proof. The security proof consists of hybrid argument over a sequence of 3ν+3 games. The games are defined below:

• Game0 (Game0,3) is just like GameReal except that the challenge ciphertext is sf-type 1 ciphertext.

• In Gamek,1 (for 1 ≤ k ≤ ν)2, challenge ciphertext is sf-type 1, the first k − 1 keys returned to the adversary
are sf-type 3, kth key is sf-type 1 and the rest are normal.

• In Gamek,2 (for 1 ≤ k ≤ ν), challenge ciphertext is sf-type 1, the first k− 1 keys returned to the adversary are
sf-type 3, kth key is sf-type 2 and the rest are normal.

• In Gamek,3 (for 1 ≤ k ≤ ν), challenge ciphertext is sf-type 1, the first k keys returned to the adversary are
sf-type 3 and the rest are normal.

• GameFinal is similar to Gameν,3 except that now the challenge ciphertext is a sf-type 2 ciphertext.

Let AdvReal
A (κ), Adv0

A (κ), Advk,1A (κ), Advk,2A (κ), Advk,3A (κ) and AdvFinal
A (κ) denote the advantages of an adversary

A in GameReal, Game0, Gamek,1, Gamek,2, Gamek,3 and GameFinal for 1 ≤ k ≤ ν respectively. In GameFinal, the

value of b is independent from the adversary’s view implying that AdvFinal
A (κ) = 0.

Using lemmas 4.2, 4.3, 4.4, 4.5 and 4.6, we have the following inequalities

AdvCP−FE
A (κ) = AdvReal

A (κ)

≤ |AdvReal
A (κ)− Adv0

A (κ)|+
ν∑
k=1

(|Advk−1,3
A (κ)− Advk,1A (κ)|+ |Advk,1A (κ)− Advk,2A (κ)|

+ |Advk,2A (κ)− Advk,3A (κ)|) + |Advν,3A (κ)− AdvFinal
A (κ)|

≤ AdvDSS1
A (κ) + ν(AdvDSS2

A (κ) + 2/q + AdvDSS2
A (κ) + 2/q) + 1/q

≤ AdvDSS1
A (κ) + 2νAdvDSS2

A (κ) + (4ν + 1)/q

Final conclusion follows from lemmas 2.1 and 2.2.

Lemma 4.2. GameReal and Game0 are indistinguishable under the DSS1 assumption. That is, |AdvReal
A (κ) −

Adv0
A (κ)| ≤ AdvDSS1

A (κ).

Proof is in Appendix A.3.

Lemma 4.3. Game(k−1),3 and Gamek,1 are indistinguishable under the DSS2 assumption. That is, |Advk−1,3
A (κ)−

Advk,1A (κ)| ≤ AdvDSS2
A (κ) + 2/q for 1 ≤ k ≤ ν.

Proof can be found in Appendix A.4.

Lemma 4.4. Gamek,1 and Gamek,2 are indistinguishable. That is, Advk,1A (κ) = Advk,2A (κ) for 1 ≤ k ≤ ν.

2In both the games, Gamek,1 and Gamek,2 (for 1 ≤ k ≤ ν), the matrices Zjh in sf-type 1 ciphertext and the matrices U jh in
sf-type 1 key(resp. sf-type 2) of Gamek,1(resp. Gamek,2) are related by U jh = ((Zjh)−1)T for j = 1, 2, 3
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Refer to Appendix A.5 for proof.

Lemma 4.5. Gamek,2 and Gamek,3 are indistinguishable under the DSS2 assumption. That is, |Advk,3A (κ) −
Advk,2A (κ)| ≤ AdvDSS2

A (κ) + 2/q for 1 ≤ k ≤ ν.

For proof, see Appendix A.6.

Lemma 4.6. Gameν,3 and GameFinal are indistinguishable. That is, |AdvFinal
A (κ)− Advν,3A (κ)| ≤ 1/q

Proof is described in Appendix A.7.

5 Full CP-FE Construction

In this section, we illustrate our full CP-FE construction for finite languages over an alphabet Σ accepted by a DFA.
The size of the language accepted by a DFA may be infinite (unbounded). But our system supports only bounded
number of users by restricting the size of strings. Let wmax be a bound on maximum number of times a symbol may
repeat in a string. So this bound automatically restricts the size of strings. Let Transσ = {(qx, qy, σh) ∈ T : σh = σ}
for σ ∈ Σ. We also assume that for each symbol σ ∈ Σ, |Transσ| is bounded by tmax, i.e., each symbol may
repeat in the transitions of a DFA M at most tmax times. These bounds are fixed during setup. Suppose, we are
interested in full CP-FE construction for DFAs over a fixed alphabet Σ. Then, this full construction is obtained
from the basic construction over a new alphabet Σb, where Σb = {σις = Λ(σ, ς, ι) : σ ∈ Σ, ς ∈ [tmax], ι ∈ [wmax]},
Λ : Σ× [tmax]× [wmax]→ Fq is an injective function i.e., Σb can be thought of as a collection of tmaxwmax copies of
each symbol σ in Σ. Therefore, for each symbol σ in Σ, we have a matrix Wσ of order tmax×wmax, with (ς, ι)-entry
Wσ[ς][ι] = σις = Λ(σ, ς, ι).

A string w = w1 · · ·w` over Σ is converted to a matrix3 W with order tmax × ` of symbols from Σb by the
following rule

• for the ith occurrence wi = σ, the ith column ~Wi of the matrix W is obtained as (σi1 = Λ(σ, 1, i), . . . ,
σitmax = Λ(σ, tmax, i))

T . Note that all the entries in W are distinct.

A set of transitions, T of a DFA M over Σ is converted to a set of transitions, Tb for DFA N (satisfying the
restrictions of basic construction as stated in Section 3) over Σb by the following rules:

• for each σ ∈ Σ, first transfer the set Transσ to an another set TransEσ by enumerating the symbol σ in each
transition of Transσ. (Seemingly, in TransEσ , all the transitions of Transσ are enumerated)

• Then for each transition4 t = (qx, qy, σς) ∈ TransEσ , add the transitions tΛ(σ,ς,ι) = (qx, qy, σ
ι
ς) to Tb for each

ι ∈ [wmax]. (Tb is initially empty)

In other words, the above rules convert a DFA M = (Q,Σ, q0, F, δ) to a restricted DFA N = (Q,Σb, q0, F, δb). Note
that if a string w is in L(M) over Σ, then there is exactly one string wb, comprising exactly one symbol from each
column of the matrix W , is legitimate in L(N ) over Σb and else, for all strings wb (by picking exactly one symbol
from each column of W ), wb 6∈ L(N ).

Setup(κ): (param, (B0,B∗0), (B1,B∗1), (B2,B∗2), (B3,B∗3), (B4,B∗4))←− Gob(1λ, 5, 14, 14, 14, 5)

B̂j := ( ~bj,1, ~bj,3, ~bj,5), B̂∗j := ( ~b∗j,1, ~b∗j,3, ~b∗j,4 ) for j=0,4

B̂j := ( ~bj,1 . . . ,~bj,4, ~bj,11, ~bj,12 ), B̂∗j := ( ~b∗j,1, . . . ,
~b∗j,4, ~b∗j,13, ~b∗j,14 ) for j=1,2,3

Choose a set, alphabet of symbols Σ = {σ1, . . . , σd} ⊆ Fq, where d = poly(κ). The public parameters and master
secret are given by

PP := (Σ, param, {B̂j}j=0,1,2,3,4),

MSK:= ({B̂∗j}j=0,1,2,3,4).

3For each occurrence of symbol wi = σ in w, we have tmax copies of that symbol σ in ith column of the matrix W .
4Note that all the transitions have a common symbol σ in Transσ, but in TransEσ , σ is enumerated as σς to make all

copies of σ distinct.
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Remark : Σb is not given in PP, since it can be computed using the public function Λ : Σ × [tmax] × [wmax] → Fq.
The variable h appearing in key and ciphertext, indicates the index of the symbol Λ(σ, ς, ι) in Σb.

Encrypt(PP,M = (Q,Σ, q0, F, δ),m): First, obtain the restricted DFA N = (Q,Σb, q0, F, δb) from given DFA

M by applying the above rules. Let Tb be the set of transition for δb. For each qx ∈ Q, pick dx
U←− Fq.

For each qz ∈ F , choose φz
U←− Fq. For each transition tΛ(σ,ς,ι) = (qx, qy, σ

ι
ς = Λ(σ, ς, ι)) ∈ Tb, choose

stΛ(σ,ς,ι)
, δtΛ(σ,ς,ι),1, δtΛ(σ,ς,ι),2, δtΛ(σ,ς,ι),3

U←− Fq, ~φtΛ(σ,ς,ι),1,
~φtΛ(σ,ς,ι),2,

~φtΛ(σ,ς,ι),3
U←− F2

q. Pick random ξ ∈ Fq. Now,
compute

~C0 := ( d0, 0, ξ, 0, φ0)B0 Cm := m.gξT

For each transition tΛ(σ,ς,ι) = (qx, qy, σ
ι
ς = Λ(σ, ς, ι)) ∈ Tb, compute

~CtΛ(σ,ς,ι),1 := (

2︷ ︸︸ ︷
δtΛ(σ,ς,ι),1(1, h),

2︷ ︸︸ ︷
(stΛ(σ,ς,ι)

+ dy)(1, σις = Λ(σ, ς, ι)),

6︷︸︸︷
06 ,

2︷︸︸︷
02 ,

2︷ ︸︸ ︷
~φtΛ(σ,ς,ι),1 ) B1

~CtΛ(σ,ς,ι),2 := (

2︷ ︸︸ ︷
δtΛ(σ,ς,ι),2(1, h),

2︷ ︸︸ ︷
(−stΛ(σ,ς,ι)

+ dx)(1, σις = Λ(σ, ς, ι)),

6︷︸︸︷
06 ,

2︷︸︸︷
02

2︷ ︸︸ ︷
~φtΛ(σ,ς,ι),2 ) B2

~CtΛ(σ,ς,ι),3 := (

2︷ ︸︸ ︷
δtΛ(σ,ς,ι),3(1, h),

2︷ ︸︸ ︷
stΛ(σ,ς,ι)

(1, σις = Λ(σ, ς, ι)),

6︷︸︸︷
06 ,

2︷︸︸︷
02 ,

2︷ ︸︸ ︷
~φtΛ(σ,ς,ι),3 ) B3

For each qz ∈ F , compute the ciphertext component
~Cz,4 := ( dz, 0, 0, 0, φz)B4

CM := ( M, Cm, ~C0, {~CtΛ(σ,ς,ι),1,
~CtΛ(σ,ς,ι),2,

~CtΛ(σ,ς,ι),3}tΛ(σ,ς,ι)=(qx,qy,σις=Λ(σ,ς,ι))∈Tb , {~Cz,4}qz∈F )

KeyGen(MSK, w = w1 · · ·w`): Convert this string w to the matrix W of order tmax × ` by aforesaid law, i.e.,
if wi = σ is the ith occurrence in the string w, the ith column of the matrix W is (σi1 = Λ(σ, 1, i), . . . , σitmax =

Λ(σ, tmax, i))
T . For each symbol Λ(σ, ς, i) of W , choose µΛ(σ,ς,i),1, µΛ(σ,ς,i),2, µΛ(σ,ς,i),3, θΛ(σ,ς,i)

U←− Fq,
~ηΛ(σ,ς,i),1, ~ηΛ(σ,ς,i),2, ~ηΛ(σ,ς,i),3

U←− F2
q. For each i ∈ [`] ∪ {0}, pick ri

U←− Fq. Also choose η0, η`+1
U←− Fq. Now

compute

~K∗0 := ( r0, 0, 1, η0, 0)B∗0

For each symbol σiς = Λ(σ, ς, i) of the matrix W , compute

~K∗Λ(σ,ς,i),1 := (

2︷ ︸︸ ︷
µΛ(σ,ς,i),1(h,−1),

2︷ ︸︸ ︷
ri + θΛ(σ,ς,i)σ

i
ς , −θΛ(σ,ς,i),

6︷︸︸︷
06 ,

2︷ ︸︸ ︷
~ηΛ(σ,ς,i),1,

2︷︸︸︷
02 ) B∗1

~K∗Λ(σ,ς,i),2 := (

2︷ ︸︸ ︷
µΛ(σ,ς,i),2(h,−1),

2︷ ︸︸ ︷
−ri−1 + θΛ(σ,ς,i)σ

i
ς , −θΛ(σ,ς,i),

6︷︸︸︷
06 ,

2︷ ︸︸ ︷
~ηΛ(σ,ς,i),2,

2︷︸︸︷
02 ) B∗2

~K∗Λ(σ,ς,i),3 := (

2︷ ︸︸ ︷
µΛ(σ,ς,i),3(h,−1),

2︷ ︸︸ ︷
−ri − ri−1 + θΛ(σ,ς,i)σ

i
ς , −θΛ(σ,ς,i),

6︷︸︸︷
06 ,

2︷ ︸︸ ︷
~ηΛ(σ,ς,i),3,

2︷︸︸︷
02 ) B∗3

~K∗`+1,4 := ( r`, 0, 0, η`+1, 0)B∗4
The secret key for the string w is given by

SKw :=
(
w, ~K∗0 , { ~K∗Λ(σ,ς,i),1,

~K∗Λ(σ,ς,i),2,
~K∗Λ(σ,ς,i),3}i∈[`], ς∈[tmax], ~K

∗
`+1,4

)
Decrypt(CM, SKw): Suppose the DFA M accepts the string w = w1 · · ·w`, then there exist a sequence of ` + 1
states qx0 , qx1 , qx2 , . . . , qx` and transitions t1, . . . , t`, where x0 = 0 and qx` ∈ F and for i = 1, 2, . . . , `, we have
ti = (qxi−1

, qxi , σ) ∈ T with wi = σ. First, compute the initial value

A0 = e(~C0, ~K
∗
0 ) = gr0d0+ξ

T

For each transition5 ti = (qxi−1 , qxi , σ = σς) ∈ T , there are wmax many transitions tΛ(σ,ς,ι) = (qxi−1 , qxi , σ
ι
ς =

5Here, ς indicates that ti is the ςth transition in TransEσ . If i is changed then ς will change accordingly. In computation of
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Λ(σ, ς, ι)) in Tb for ι ∈ [wmax]. Also, for each occurrence wi = σ in w, there are tmax many symbols represented as

the column vector ~Wi = (σi1 = Λ(σ, 1, i), . . . , σitmax = Λ(σ, tmax, i))
T .

To get the success in decryption, we have to choose an unique ` length sequence of transitions from Tb and an
unique ` length string wb from the matrix W . The ith candidate of above is the pair < ith transition, ith bit of wb >,
obtained by choosing a transition tΛ(σ,ς,ι) from {tΛ(σ,ς,ι) = (qxi−1 , qxi , σ

ι
ς = Λ(σ, ς, ι)) : ι ∈ [wmax]} and a symbol

Λ(σ, , i) from ~Wi = (σi1 = Λ(σ, 1, i), . . . , σitmax = Λ(σ, tmax, i))
T such that ith symbol of wb is equal to the symbol of

ith candidate transition, i.e., we have < tΛ(σ,ς,i), wb,i = Λ(σ, ς, i) >. Therefore, to compute Ai for i ∈ [`], we use the
ciphertext and key components corresponding to the transition tΛ(σ,ς,i) and symbol Λ(σ, ς, i) respectively. Compute
the first value A1 of intermediate values as

A1 = e(~CtΛ(σ,ς,1),1,
~K∗Λ(σ,ς,1),1).e(~CtΛ(σ,ς,1),2,

~K∗Λ(σ,ς,1),2).e(~CtΛ(σ,ς,1),3,
~K∗Λ(σ,ς,1),3) = g

r1dx1
−r0d0

T

Next, compute the intermediate values Ai (for i = 2, . . . , `) as follows:

Ai = Ai−1.e(~CtΛ(σ,ς,i),1,
~K∗Λ(σ,ς,i),1).e(~CtΛ(σ,ς,i),2,

~K∗Λ(σ,ς,i),2).e(~CtΛ(σ,ς,i),3,
~K∗Λ(σ,ς,i),3)

= g
ri−1dxi−1

−r0d0

T g
ridxi−ri−1dxi−1

T = g
ridxi−r0d0

T

Similarly, the `th intermediate value has of the form: A` = g
r`dx`−r0d0

T

The final value A`+1 is computed as

A`+1 = A`.e(~Cx`,4,
~K∗`+1,4) = g

r`dx`−r0d0

T g
−r`dx`
T = g−r0d0

T

Using A0, A`+1 and Cm, the message is unmasked as m = Cm/(A0 A`+1).

Theorem 5.1. The proposed Full CP-FE scheme is adaptively secure under the DLIN assumption.

Proof. Since each entry of W is distinct and there is at most a single transition of Tb corresponding to each symbol
in Σb, proof of this theorem is follows from theorem 4.1.
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A Ciphertext-Policy Functional Encryption for DFAs

A.1 Definition

A ciphertext-policy functional encryption (CP-FE) scheme for DFAs consists of four PPT algorithms - Setup, KeyGen,
Encrypt and Decrypt.

• Setup: It takes a security parameter κ, an alphabet Σ as input, outputs the public parameters PP which
explicitly contains Σ and the master secret MSK.

• KeyGen: It takes as input a string w = w1w2 · · ·w` over Σ and master secret MSK and outputs a secret key
SKw corresponding to w.

• Encrypt: takes a message m, the description of a DFA M and public parameters PP and returns a ciphertext
CM which implicitly contains M.

• Decrypt: It receives a ciphertext CM and secret key SKw as input. If the DFA M accepts w, the algorithm
returns m.

A.2 Security definition of CP-FE for DFAs

The adaptive security model is defined as an indistinguishability game, GameReal between a challenger C and an
adversary A , where the adversary has to distinguish the ciphertexts under a chosen plaintext attack (CPA). The
game, GameReal consists of the following phases:

Setup: The challenger C runs the Setup algorithm to produce the master secret keyMSK and the public parameter
PP. Then, C gives PP to the adversary A and keeps MSK to itself.

Phase 1: The adversary A queries for the secret keys corresponding to the strings w1, . . . , wl. The challenger C
returns the secret keys skwi by running the KeyGen algorithm on wi, for i = 1, . . . , l.

Challenge: The adversary provides two equal length messages m0,m1 and a challenge DFAM∗ = (Q∗,Σ, q∗0 , F
∗, δ∗)

with the condition that the DFA M∗ does not accept any queried string wi for i = 1, . . . , l. The challenger chooses

β
U←− {0, 1} and encrypts the message mβ using the challenge DFA M∗ and gives the challenge ciphertext CM∗ to

the adversary A

Phase 2: A again queries for the secret keys corresponding to the strings wl+1, . . . , wν with the restriction that no
wi is accepted by the challenge DFA M∗. C answers to the adversary A in similar manner as in Phase 1.

Guess: The challenger A outputs a bit β′.

The advantage of A in above game is defined by

AdvCP−FE
A (κ) =

∣∣∣∣Pr[β = β′]− 1

2

∣∣∣∣ .
The CP-FE scheme is said to be adaptively secure if all PPT adversary A , the advantage AdvCP−FE

A (κ) is at most
a negligible function in security parameter κ.

Lemma A.1 ([OT10]). For p ∈ Fq, let Cp = {(~x,~v)|~x.~v = p} ⊂ V× V∗, where V is n-dimensional vector spaces Fnq
and V∗ its dual. For all (~x,~v) ∈ Cp, for all (~Ψ, ~Φ) ∈ Cp, Pr[~xU = ~Ψ ∧ ~vZ = ~Φ] = Pr[~xZ = ~Ψ ∧ ~vU = ~Φ] = 1/|Cp|,
where Z

U←− GL(2,Fq), U = (Z−1)T .

A.3 Proof of Lemma 4.2

We establish a PPT algorithm B (Simulator) who receives an instance of DSS1,

(param, {B̂j , B̂∗j}j=0,1,...,4, {~ejβ}j=0,4, {~ejβ,h,ς}h=1,...,d; ς=1,2; j=1,2,3) and depending on the distribution of β, B
either simulates GameReal or Game0.
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Setup: B fixes an alphabet of symbols Σ = {σ1, . . . , σd} ⊆ Fq, where d = poly(κ). It provides PP =

(Σ, param, {B̂j}j=0,1,2,3,4) to A and keeps MSK to itself.

Key Query Answering: B can handle the key queries of A , since the MSK is known to him.

Challenge: A provides two equal length messages m0,m1 and challenge restricted DFA M∗ = (Q∗,Σ, q∗0 , F
∗, δ∗).

B chooses b
U←− {0, 1}; d̃0, ϑ0, ξ

U←− Fq. For each state qx ∈ Q∗, B picks d̃x, ϑx
U←− Fq. For each transition

t = (qx, qy, σh) ∈ T ∗, it chooses s̃t, ft
U←− Fq and encrypts mb to M∗ as follows.

~C0 := d̃0~e
0
β + ϑ0

~b0,1 + ξ~b0,3, Cm := mb.g
ξ
T

For each transition t = (qx, qy, σh) ∈ T ∗, it computes
~Ct,1 := (~e1

β,h,1 + σh~e
1
β,h,2)(d̃y + s̃t) + (ϑy + ft)(1, σh)(~b1,3,~b1,4)

~Ct,2 := (~e2
β,h,1 + σh~e

2
β,h,2)(d̃x − s̃t) + (ϑx − ft)(1, σh)(~b2,3,~b2,4)

~Ct,3 := (~e3
β,h,1 + σh~e

3
β,h,2)s̃t + ft(1, σh)(~b3,3,~b3,4)

For each qz ∈ F , it computes
~Cz,4 := d̃z~e

4
β + ϑz~b4,1

B returns CM∗ = (M∗, Cm, ~C0, {~Ct,1, ~Ct,2, ~Ct,3}t=(qx,qy,σh)∈T ∗ , {~Cz,4}qz∈F∗) to A .

Guess: A sends a guess b′ to B. If b = b′ then B returns 1; otherwise it returns 0.

The simulator B implicitly sets st = ωs̃t + ft, dy = ωd̃y + ϑy, ŝt = τ s̃t and d̂y = τ d̃y. Since s̃t, d̃y, ft and ϑy are

uniformly and independently6 distributed over Fq, so are st, dy, ŝt and d̂y.

It is obvious to show that if β = 1, then CM∗ is properly distributed sf-type 1 ciphertext (Game0), else it is
properly distributed normal ciphertext (GameReal).

A.4 Proof of Lemma 4.3

We establish a PPT algorithm B to whom an instance

(param, {B̂j , B̂∗j}j=0,1,...,4, {~Υj}j=0,4, {~ejh,ς}h=1,...,d; ς=1,2; j=1,2,3,

for β = 0, 1, Tβ = ({~Υj∗
β }j=0,4, {~Υj∗

β,h,ς}h=1,...,d; ς=1,2; j=1,2,3))

of DSS2 is given and it simulates either Gamek−1,3 or Gamek,1 depending on the distribution of β.

Setup: B fixes an alphabet of symbols Σ = {σ1, . . . , σd} ⊆ Fq, where d = poly(κ). It provides PP =

(Σ, param, {B̂j}j=0,1,2,3,4) to A and keeps MSK to itself.

Key Query Answering: For both the games, the first (k − 1) keys are sf-type 3 and last (ν − k) are normal keys.
For Gamek−1,3, the kth key is normal and it is sf-type 1 for Gamek,1. Let w1, . . . , wν be the query strings issued by
A . The simulator B answers the key SKwι for the string wι depending on ι as follows.

• If ι > k, then B runs the KeyGen algorithm and gives the normal key to A .

• If ι < k, then it is sf-type 3 key. First note that the distribution of sf-type 3 key and normal key are almost
the same except ~K∗0 . B first generates SKwι ←− KeyGen(MSK, wι) and then modifies the component ~K∗0 as
shown below to obtain type 3 component ~K∗0

~K∗0 ←− ~K∗0 + r~b∗0,2, where r
U←− Fq

• If ι = k then it is either normal or sf-type 1 key. B generates SKwk using the challenge Tβ as bait from the

instance of DSS2. Let wk = wk1 · · ·wk` . For each i ∈ [`] ∪ {0}, B picks %i, θ̃i, r̃i, πi
U←− Fq

6First, note that ~Ct,j (resp. ~K∗
i,j) is represented as the linear combination of 14 dimensional basis vectors Bj =

(~bj,1, . . . ,~bj,14) (resp. B∗
j = (~b∗j,1, . . . ,~b

∗
j,14). In lemmas 4.2, 4.3 and 4.5, we only show that the scalars of 3rd, 4th, 5th,

6th, 9th and 10th basis vectors either in the ciphertext part or in the key part or in both are properly distributed, since the
rest of the scalars are either defined to be zero or can be properly randomized by the supplied vectors from the problem.
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For i = 1, . . . , `; ς = 1, 2; j = 1, 2, 3, let wki = σh for some index h. Then B defines the following
~∆∗jβ,i,ς := πi~Υ

∗j
β,h,ς + θ̃i~b

∗
j,2+ς

~Π∗jβ,i,ς := %i~Υ
∗j
β,h,1 + r̃i~b

∗
j,3

The simulator B computes the kth key SKwk as described below
~K∗0 := %0

~Υ∗0β + r̃0
~b∗0,1 +~b∗0,3

For each i ∈ [`], it computes key components
~K∗i,1 := σh~∆

∗1
β,i,1 − ~∆∗1β,i,2 + ~Π∗1β,i,1

~K∗i,2 := σh~∆
∗2
β,i,1 − ~∆∗2β,i,2 − ~Π∗2β,(i−1),1

~K∗i,3 := σh~∆
∗3
β,i,1 − ~∆∗3β,i,2 − ~Π∗3β,i,1 − ~Π∗3β,(i−1),1

~K∗`+1 := %̃`~Υ
∗4
β + r̃`~b

∗
4,1

For each i ∈ [`] ∪ {0}, B implicitly sets θi = πiζ + θ̃i, ri = %iζ + r̃i, θ̂i = πiρ and r̂i = %iρ. Since θ̃i, r̃i, πi and

%i are uniformly and independently distributed over Fq, so are θi, ri, θ̂i and r̂i. Now, it can be easily verified
that if β = 0, then SKwk is properly distributed normal key (in Game(k−1),3) except that ζ defined in DSS2
is zero, i.e., except with probability 1/q. Similarly if β = 1, it is properly distributed sf-type 1 key (Gamek,1)
except with probability 1/q.

Challenge: B receives two equal length messages m0,m1 and challenge restricted DFA M∗ = (Q∗,Σ, q∗0 , F
∗, δ∗)

from A . B chooses b
U←− {0, 1}; d̃0, ϑ0, ξ

U←− Fq. For each state qx ∈ Q∗, B picks d̃x, ϑx
U←− Fq. For each transition

t = (qx, qy, σh) ∈ T , it chooses s̃t, ft
U←− Fq and encrypts mb to M∗ as follows.

~C0 := d̃0
~Υ0 + ϑ0

~b0,1 + ξ~b0,3, Cm := mb.g
ξ
T

For each transition t = (qx, qy, σh) ∈ T ∗, it computes
~Ct,1 := (~e1

h,1 + σh~e
1
h,2)(d̃y + s̃t) + (ϑy + ft)(1, σh)(~b1,3,~b1,4)

~Ct,2 := (~e2
h,1 + σh~e

2
h,2)(d̃x − s̃t) + (ϑx − ft)(1, σh)(~b2,3,~b2,4)

~Ct,3 := (~e3
h,1 + σh~e

3
h,2)s̃t + ft(1, σh)(~b3,3,~b3,4)

For each qz ∈ F , it computes
~Cz,4 := d̃z~Υ

4 + ϑz~b4,1

B returns CM∗ = (M∗, Cm, ~C0, {~Ct,1, ~Ct,2, ~Ct,3}t=(qx,qy,σh)∈T ∗ , {~Cz,4}qz∈F∗) to A .

In ciphertext simulation, B implicitly sets st = ωs̃t + ft, dy = ωd̃y + ϑy, ŝt = τ s̃t and d̂y = τ d̃y. Since s̃t, d̃y, ft
and ϑy are uniformly and independently distributed over Fq, so are st, dy, ŝt and d̂y. Therefore, CM∗ is a properly
distributed semi-functional ciphertext.

Guess: A returns its guess b′. If b = b′ then B returns 1; otherwise it returns 0.

Thus, the distribution of the keys and the challenge ciphertext is the same as that of Gamek−1,3 (resp. Gamek,1)
except with probability 1/q if β = 0 (resp. β = 1).

A.5 Proof of Lemma 4.4

The distribution of (PP, {SKwι}ι=1,...,ν , CM∗) in Gamek,1 and that in Gamek,2 are exactly same except at kth key.
We show that the joint distribution of kth key SKwk and the challenge ciphertext in both the games are equivalent.
It is sufficient to show that the scalar r̂0 in ~K∗0 of kth key SKwk(described in definition of sf-type 1 key) is uniformly
and independently distributed from the other variables in the joint distribution of A ’s view. Since r̂0 is related
to {~Φi,1, ~Φi,2,Φi,3}i∈[`] and U jh = ((Zjh)−1)T (for j = 1, 2, 3) holds, so, r̂0 is only related to joint distribution of

{~Φi,1, ~Φi,2, ~Φi,3}i∈[`] and {~Ψh,1, ~Ψh,2, ~Ψh,3}h∈{a :σa=wki for i∈[`]}, where

~Φi,1 := (r̂i + θ̂iσh,−θ̂i)U1
h

~Ψh,1 := (ŝt + d̂y)(1, σh)Z1
h

~Φi,2 := (−r̂i−1 + θ̂iσh,−θ̂i)U2
h

~Ψh,2 := (−ŝt + d̂x)(1, σh)Z2
h

~Φi,3 := (−r̂i − r̂i−1 + θ̂iσh,−θ̂i)U3
h

~Ψh,3 := ŝt(1, σh)Z3
h
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For i ∈ [`], j = 1, 2, 3, (Zjh, U
j
h) with wki = σh is independent from the other variables, since each symbol wki in the

string wk is distinct and no two transitions have a common symbol. For each i ∈ [`], there are two cases

Case Matching : For ith symbol wki in the string wk, there exist a transition t = (qx, qy, σh) such that wki = σh

1. By Lemma A.1, the joint distribution of (~Ψh,1, ~Φi,1) is uniformly and independently distributed on

Cr̂i(ŝt+d̂y) := {(~Ψ, ~Φ)|~Ψ.~Φ = r̂i(ŝt + d̂y)} (over the choice of Z1
h

U←− GL(2,Fq))

2. By Lemma A.1, the joint distribution of (~Ψh,2, ~Φi,2) is uniformly and independently distributed on

C−r̂i−1(−ŝt+d̂x) := {(~Ψ, ~Φ)|~Ψ.~Φ = −r̂i−1(−ŝt + d̂x)} (over the choice of Z2
h

U←− GL(2,Fq))

3. By Lemma A.1, the joint distribution of (~Ψh,3, ~Φi,3) is uniformly and independently distributed on

C(−r̂i−r̂i−1)ŝt := {(~Ψ, ~Φ)|~Ψ.~Φ = (−r̂i − r̂i−1)ŝt} (over the choice of Z3
h

U←− GL(2,Fq))

Therefore, in the matching case, the adversary A could get the legitimate value r̂id̂y − r̂i−1d̂x by taking the
sum of values in above three cases.

Case Non-Matching : For ith symbol wki , for every transition t = (qx, qy, σh) we have wki 6= σh. Then, for

j = 1, 2, 3, the distribution of ~Φi,j is uniformly and independently distributed on F 2
q .

The vectors appearing in non-matching case are obviously independent of r̂0. Since A is allowed the key query
for the string w with the restriction w 6∈ L(M∗), we can infer that r̂0 is independent from the joint distribution of d̂0

and {r̂id̂y − r̂i−1d̂x| ith symbol wki matches with the unique transition t = (qx, qy, σh = wki )} (this is found in Case
Matching). Therefore, r̂0 is uniformly and independently distributed from the other variables in the joint distribution
of A ’s view.

A.6 Proof of Lemma 4.5

We establish a PPT algorithm B to whom an instance

(param, {B̂j , B̂∗j}j=0,1,...,4, {~Υj}j=0,4, {~ejh,ς}h=1,...,d; ς=1,2; j=1,2,3,

for β = 0, 1, Tβ = ({~Υj∗
β }j=0,4, {~Υj∗

β,h,ς}h=1,...,d; ς=1,2; j=1,2,3))

of DSS2 is given and it simulates either Gamek,2 or Gamek,3 depending on the distribution of β.

Now B proceeds the same way as in Lemma 4.4 except the ~K∗0 component in kth key SKwk

~K∗0 := %̃0
~Υ∗0β + r̃0

~b∗0,1 +~b∗0,3 + r′0
~b∗0,2 , where r′0

U←− Fq

So, the coefficient of ~b∗0,2 in ~K∗0 is uniformly and independently distributed over Fq. Thus if β = 1, then SKwk is
properly distributed sf-type 2 key (Gamek,2) except with probability 1/q, else it is properly distributed sf-type 3 key
(Gamek,3) except with probability 1/q.

A.7 Proof of Lemma 4.6

The proof is similar to that of lemma 29 in [OT12b]. Indeed, we show that the distribution of
(param, {B̂j}j=0,1,...,4, {SKwι}ι=1,...,ν , CM∗) in Gameν,3 and that in GameFinal are equivalent except with proba-

bility 1/q. We define new bases D0 of V0 and D∗0 of V∗0 as follows: Choose θ
U←− Fq and set

~d0,2 := ~b0,2 − θ~b0,3 ~d∗0,3 := ~b∗0,3 − θ~b∗0,2
D0 := (~b0,1, ~d0,2 ,~b0,3,~b0,4,~b0,5) D∗0 := (~b∗0,1,

~b∗0,2,
~d∗0,3 ,

~b∗0,4,
~b∗0,5)

It is easily verified that (D0,D∗0) are dual orthonormal bases and are distributed the same as the original bases,
(B0,B∗0). For ι = 1, . . . , ν, ~Kι∗

0 component of the key SKwι and ~C0 component of the challenge ciphertext CM∗ are
expressed over B0 and B∗0 as
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~Kι∗
0 := (r0, r, 1, η0, 0)B∗0 ~C0 := (d0, d̂0, ξ, 0, φ0)B0

Then we can express these over the bases (D0,D∗0) as shown below

~Kι∗
0 := (r0, r − θ , 1, η0, 0)D∗0 ~C0 := (d0, d̂0, ξ + θd̂0 , 0, φ0)D0

~Kι∗
0 := (r0, r

′, 1, η0, 0)D∗0 ~C0 := (d0, d̂0, ξ
′, 0, φ0)D0

Since θ is uniformly distributed over Fq, so r′ = r − θ and ξ′ = ξ + θd̂0 are uniformly and independently distributed
over Fq.

Therefore, the distribution of the keys and ciphertext, ({SKwι}ι=1,...,ν , CM∗) is the same as that of Gameν,3
(resp. GameFinal) over the bases (B0,B∗0) (resp. (D0,D∗0)). Thus two games Gameν,3 and GameFinal are equivalent

from A ’s view if d̂0 6= 0, i.e., except with probability 1/q.

B Reduction of DSS1 and DSS2 from DLIN

The assumption, 1-ABE in [OT12b], consists of the vectors computed over a dual bases (B0,B∗0) of dimension 5 and
another dual bases (B1,B∗1) of dimension 14. There are (1+2d) many vectors in 1-ABE, of which, one is 5-dimensional
vector, ~eβ,0, computed by the basis B0 and others are 14-dimensional vectors {~eβ,t,i}t=1,...,d; i=1,2, constructed using
the basis B1. These (1+2d) many vectors either belong to a class β = 0 or belong to another class β = 1. So, the task
of an adversary A is to classify these (1+2d) many vectors, i.e., to guess β ∈ {0, 1}. All these vectors are connected
via a common variable ω (and τ if β = 1). If β = 1, then, for t = 1, . . . , d; i = 1, 2, the 9th and 10th scalars in the

vector ~et,i (while expressing over the basis B1) are randomized by Zt, where Zt
U←− GL(2,Fq).

But, in DSS1, we consider two 5-dimensional dual bases (Bj ,B∗j ) for j = 0, 4 and three 14-dimensional dual bases

(Bj ,B∗j ) for j = 1, 2, 3. The assumption, DSS1 consists of two 5-dimensional vectors ~ejβ for j = 0, 4 and 6d many

14-dimensional vectors ~ejβ,t,i, i.e., for each t = 1, . . . , d; i = 1, 2, there are three vectors ~ejβ,t,i for j = 1, 2, 3. As

usual, all these vectors {~ejβ}j=0,4 and {~ejβ,t,i}t=1,...,d; j=1,2,3; i=1,2 are connected via a common variable ω (and τ if

β = 1). If β = 1, then, for t = 1, . . . , d; j = 1, 2, 3, the 9th and 10th scalars in the vector ~ejβ,t,i (when expressed as a

combination of basis vectors in Bj) are randomized by Zjt , where Zjt
U←− GL(2,Fq). So, it is obvious that 1-ABE is

weaker assumption than DSS1 assumption. Note that Zjt ’s are independent for j = 1, 2, 3. Due to this independence,
we could not deduce DSS1 from 1-ABE by employing the usual transformations Wj and ((Wj)

−1)T respectively over

the bases Bj and B∗j for j = 0, . . . , 4, where Wj
U←− GL(5,Fq) for j = 0, 4 and Wj

U←− GL(14,Fq) for j = 1, 2, 3.

The assumption, 2-ABE in [OT12b], consists of (1+2d) many vectors ~e1,0, {~e1,t,i}t=1,...,d; i=1,2 (i.e., β = 1 instance

of 1-ABE) expressed over the bases B0,B1 and (1+2d) many vectors ~h∗β,0, {~h∗β,t,i}t=1,...,d; i=1,2 over the bases B∗0,B∗1.

The task of the adversary is to guess β ∈ {0, 1}. The later (1+2d) many vectors, ~h∗β,0 and ~h∗β,t,i’s are connected via

a common variable ζ (and ρ if β = 1). Likewise, if β = 1, then, for t = 1, . . . , d; i = 1, 2, the 9th and 10th scalars in

the vector ~et,i (while expressing over the basis B∗1) are randomized by Ut, where Zt
U←− GL(2,Fq) and Ut = (Z−1

t )T .

Similarly, DSS2 consists of the vectors expressed over the 5-dimensional dual bases (Bj ,B∗j ) for j = 0, 4

and 14-dimensional dual bases (Bj ,B∗j ) for j = 1, 2, 3. There are (4+12d) many vectors {~ej ,~hj∗β }j=0,4 and

{~ejt,i,~h
j∗
β,t,i}t=1,...,d; i=1,2; j=1,2,3 and the task of A is to guess β ∈ {0, 1}. For t = 1, . . . , d; j = 1, 2, 3, let

Zjt
U←− GL(2,Fq) and set U jt := ((Zjt )−1)T . Then, the 9th and 10th scalars in the vector ~ejt,i (when it is ex-

pressed over the basis Bj) are randomized by the matrix Zjt and those in ~hj∗β,t,i (over the basis B∗j ) are randomized by

U jt , where for t = 1, . . . , d; j = 1, 2, 3, Zjt
U←− GL(2,Fq) and U jt := ((Zjt )−1)T . Similarly, as discussed above, 2-ABE

assumption is weaker than DSS2 assumption and we are unable to deduce DSS2 from 2-ABE.

In [OT12b], 1-ABE (2-ABE) was shown to be intractable under DLIN assumption by defining 1-ABE (2-ABE)
as a hybrid of some experiments, where first (resp. final) experiment was defined to be the β = 0 (resp. β = 1)
case of 1-ABE (2-ABE). The first experiment (Exp 0) and final experiment (Exp 2-d-2-2 if 1-ABE and Exp 2-d-8
if 2-ABE) were shown to be indistinguishable under some intermediate basic problems. Our approach for proving
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intractability of DSS1 and DSS2 under DLIN assumption follows the same proof technique of above but we change
the intermediate basic problems to “modified” basic problems and then apply these modified basic problems (MBP)
to show that the neighboring experiments are equivalent from A ’s point of view.

Some intermediate basic problems of [OT12b] described here, may not be using in the reduction of DSS1 and
DSS2 but, are still given to differentiate these intermediate basic problems from the modified basic problems.

B.1 Reduction of DSS1 from DLIN

Definition B.1. For (t1, i1), (t2, i2) ∈ N2, we define

(t1, i1) < (t2, i2)⇐⇒ (t1 < t2) or (t1 = t2 and i1 < i2)

(t1, i1) > (t2, i2)⇐⇒ (t2, i2) < (t1, i1)

Definition B.2 (Basic Problem 1 in [OT12b]). Choose φ0, ω
U←− Fq and τ

U←− F×q .

(param, (B0,B∗0), (B,B∗))←− Gob(κ, 5, 14)

B̂∗0 := (~b∗0,1,
~b∗0,3, . . . ,

~b∗0,5) B̂∗ := (~b∗1, . . . ,
~b∗4,

~b∗7, . . . ,
~b∗14)

~e0
0 := (ω, 0, 0, 0, φ0)B0, ~e

0
1 := (ω, τ, 0, 0, φ0)B0

For i = 1, 2, choose φi,1, φi,2
U←− Fq

~e0,i := (

4︷ ︸︸ ︷
02, ω~ei,

6︷︸︸︷
06 ,

2︷︸︸︷
02 ,

2︷ ︸︸ ︷
φi,1, φi,2 )B

~e1,i := (

4︷ ︸︸ ︷
02, ω~ei,

6︷ ︸︸ ︷
τ ~ei, 0

4,

2︷︸︸︷
02 ,

2︷ ︸︸ ︷
φi,1, φi,2 )B

D := (param,B0, B̂∗0,B, B̂∗) For β = 0, 1,define Tβ := (~e0
β , {~eβ,i}i=1,2)

Now, the advantage of an algorithm A in breaking this Basic Problem 1 (BP1) is defined by

AdvBP1
A (κ) = |Pr[A (D,T0) = 1]− Pr[A (D,T1) = 1]|

The BP1 assumption holds if for all PPT adversary A , the advantage AdvBP1
A (κ) is a negligible function in security

parameter κ.

Lemma B.1 (lemma 34 in [OT12b]). For any adversary A , there exist a PPT algorithm B, such that AdvBP1
A (κ) ≤

AdvDLIN
B (κ) + 5/q, for all κ.

Definition B.3 (Modified Basic Problem 1). Choose φ0
0, φ

4
0, ω

U←− Fq and τ
U←− F×q .

(param, (B0,B∗0), (B1,B∗1), (B2,B∗2), (B3,B∗3), (B4,B∗4))←− Gob(κ, 5, 14, 14, 14, 5)

B̂∗ι := (~b∗ι,1,
~b∗ι,3, . . . ,

~b∗ι,5) for ι = 0, 4; B̂∗j := (~b∗j,1, . . . ,
~b∗j,4,

~b∗j,7, . . . ,
~b∗j,14) for j = 1, 2, 3

~eι0 := (ω, 0, 0, 0, φι0)Bι, ~eι1 := (ω, τ, 0, 0, φι0)Bι for ι = 0, 4

For i = 1, 2, j = 1, 2, 3, choose φji,1, φ
j
i,2

U←− Fq

~ej0,i := (

4︷ ︸︸ ︷
02, ω~ei,

6︷︸︸︷
06 ,

2︷︸︸︷
02 ,

2︷ ︸︸ ︷
φji,1, φ

j
i,2 )Bj

~ej1,i := (

4︷ ︸︸ ︷
02, ω~ei,

6︷ ︸︸ ︷
τ ~ei, 0

4,

2︷︸︸︷
02 ,

2︷ ︸︸ ︷
φji,1, φ

j
i,2 )Bj

20



D := (param, {Bj , B̂∗j}j=0,1,...,4) For β = 0, 1,define Tβ := ({~ejβ}j=0,4, {~ejβ,i}i=1,2; j=1,2,3)

Now, the advantage of an algorithm A in breaking this Modified Basic Problem 1 (MBP1) is defined by

AdvMBP1
A (κ) = |Pr[A (D,T0) = 1]− Pr[A (D,T1) = 1]|

The MBP1 assumption is said to hold if for all PPT adversary A , the advantage AdvMBP1
A (κ) is a negligible function

in security parameter κ.

Lemma B.2. For any adversary A , there exist a PPT algorithm B1, such that AdvMBP1
A (κ) ≤ AdvBP1

B1
(κ), for all

κ.

Proof. B1 is given the instance (param,B0, B̂∗0,B, B̂∗, ~eβ , {~eβ,i}i=1,2) of Basic Problem 1, where B̂∗0 :=

(~b∗0,1,
~b∗0,3, . . . ,

~b∗0,5), B̂∗ := (~b∗1, . . . ,
~b∗4,

~b∗7 . . . ,
~b∗14). B chooses W0,W4

U←− GL(5,Fq), W1,W2,W3
U←− GL(14,Fq).

Now, B1 defines new bases (Dj ,D∗j ) for j = 0, . . . , 4 by setting the following

~dj,ι := ~bj,ιWj , ~d∗j,ι := ~b∗j,ι(W
−1
j )T , for j = 0, 4, ι = 1, . . . , 5

~dj,ι := ~bj,ιWj , ~d∗j,ι := ~b∗j,ι(W
−1
j )T , for j = 1, 2, 3, ι = 1, . . . , 14

~ejβ := ~eβWj for j = 0, 4

~ejβ,i := ~eβ,iWj for j = 1, 2, 3, i = 1, 2

Dt := (~dt,1, . . . , ~dt,5) D∗t := (~d∗t,1, . . . ,
~d∗t,5), D̂∗t := (~d∗t,1,

~d∗t,3, . . . ,
~d∗t,5) for t = 0, 4

Dt := (~dt,1, . . . , ~dt,14) D∗t := (~d∗t,1, . . . ,
~d∗t,14), D̂∗t := (~d∗t,1, . . . ,

~d∗t,4,
~d∗t,7 . . . ,

~d∗t,14) for t = 1, 2, 3

It is verified that (Dt,D∗t ) for t = 0, . . . , 4 are dual orthonormal bases. Then, B1 returns G :=

(param, {Dj , D̂∗j}j=0,1,...,4, {~ejβ}j=0,4, {~ejβ,i}i=1,2; j=1,2,3) to the adversary A . It is straightforward that G is an in-
stance of MBP1 for β. This concludes the lemma.

Lemma B.3. If DLIN assumption holds for a bilinear pairing group generator G, then the DSS1 assumption also
holds for G. That is for any adversary A , there exist PPT algorithms F1,F2, such that for any κ, AdvDSS1

A (κ) ≤
AdvDLIN

F1
(κ) +

∑d
p=1

∑2
i=1 Adv

DLIN
F2−p−i

(κ) +O(d)/q, where F2−p−i(.) = F2(p, i, .)

Proof. The proof technique of lemma B.3 is adapted from that of lemma 23 in [OT12b], i.e., DSS1 is organized as
hybrid of the experiments Exp 0, Exp 1,. . ., Exp 2-d-2-2. Thus, the advantage of A in DSS1 is the advantage gap
between Exp 0 and Exp 2-d-2-2, i.e., we have AdvDSS1

A (κ) = |Pr[Exp0
A (κ) = 1] − Pr[Exp2-d-2-2

A (κ) = 1]|. Therefore,
from the lemmas B.1, B.2, B.4, B.5 and B.6, we have
AdvDSS1

A (κ) = |Pr[Exp0
A (κ) = 1]− Pr[Exp2-d-2-2

A (κ) = 1]|
≤ |Pr[Exp0

A (κ) = 1] − Pr[Exp1
A (κ) = 1]| +

∑d
p=1

(
|Pr[Exp2-(p-1)-2-2

A (κ) = 1] − Pr[Exp2-p-1-1
A (κ) =

1]| + |Pr[Exp2-p-1-1
A (κ) = 1] − Pr[Exp2-p-1-2

A (κ) = 1]| + |Pr[Exp2-p-1-2
A (κ) = 1] − Pr[Exp2-p-2-1

A (κ) =

1]|+ |Pr[Exp2-p-1-2
A (κ) = 1]− Pr[Exp2-p-2-1

A (κ) = 1]|
)

= |Pr[Exp0
A (κ) = 1] − Pr[Exp1

A (κ) = 1]| +
∑d
p=1

(
|Pr[Exp2-(p-1)-2-2

A (κ) = 1] − Pr[Exp2-p-1-1
A (κ) =

1]|+ |Pr[Exp2-p-1-2
A (κ) = 1]− Pr[Exp2-p-2-1

A (κ) = 1]|
)

≤ AdvMBP1
B1

(κ) +
∑d
p=1

∑2
i=1 Adv

MBP1
B2−p−i

(κ)

≤ AdvDLIN
F1

(κ) +
∑d
p=1

∑2
i=1 Adv

DLIN
F2−p−i

(κ) +O(d)/q
This concludes the lemma B.3.

Experiments
One can define the sequence of experiments almost the same as in lemma 23 of [OT12b], except that one considers
here, two 5-dimensional dual bases and three 14-dimensional dual bases. In the following sketch, we show how to
change Exp 0 to Exp 2-d-2-2 under MBP1.

Exp 0
MBP1
≈ Exp 1 = Exp 2-0-2-2

MBP1
≈ Exp 2-1-1-1 ≈ Exp 2-1-1-2

Exp 2-1-1-2
MBP1
≈ Exp 2-1-2-1 · · · Exp 2-d-1-2

MBP1
≈ Exp 2-d-2-1 ≈ Exp 2-d-2-2
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Exp 0 : This is defined to be the β = 0 case of DSS1, i.e.,

~ej0 := (ω, 0 , 0, 0, φj0)Bj for j = 0, 4

for h = 1, . . . , d; j = 1, 2, 3; i = 1, 2

~ejh,i := (

4︷ ︸︸ ︷
δjh,i(1, h), ω~ei,

6︷ ︸︸ ︷
02 , 02, 02 ,

2︷︸︸︷
02 ,

2︷ ︸︸ ︷
φji,1, φ

j
i,2 )Bj

Rest of the variables are defined as in DSS1.

Exp 1 : This is Same as Exp 0 except the following

~ej0 := (ω, τ , 0, 0, φj0)Bj for j = 0, 4

for h = 1, . . . , d; j = 1, 2, 3; i = 1, 2

~ejh,i := (

4︷ ︸︸ ︷
δjh,i(1, h), ω~ei,

6︷ ︸︸ ︷
τ~ei , 02, 02,

2︷︸︸︷
02 ,

2︷ ︸︸ ︷
φji,1, φ

j
i,2 )Bj , where τ

U←− Fq

Exp 2-p-i-1 (for p = 1, . . . , d; i = 1, 2) : This is same as Exp 2-(p-1)-2-2 if i = 1 and Exp 2-p-1-2 if i = 2 except the
following: for j = 1, 2, 3; i = 1, 2

~ejp,i := (

4︷ ︸︸ ︷
δjp,i(1, p), ω~ei,

6︷ ︸︸ ︷
τ~ei, 02, σ̃p,i(1, p) ,

2︷︸︸︷
02 ,

2︷ ︸︸ ︷
φji,1, φ

j
i,2 )Bj , where σ̃p,i

U←− Fq

This shows that Exp 2-0-2-2 is Exp 1.

Exp 2-p-i-2 (for p = 1, . . . , d; i = 1, 2) : This is same as Exp 2-p-i-1 except: for j = 1, 2, 3; i = 1, 2

~ejp,i := (

4︷ ︸︸ ︷
δjp,i(1, p), ω~ei,

6︷ ︸︸ ︷
τ~ei, 02, τ(zjp,i,1, z

j
p,i,2) ,

2︷︸︸︷
02 ,

2︷ ︸︸ ︷
φji,1, φ

j
i,2 )Bj

where zjp,i,1, z
j
p,i,2

U←− Fq

So, the distribution of ~ejh,i in Exp 2-d-2-2 can be written as: for h = 1, . . . , d; i = 1, 2; j = 1, 2, 3,

~ejh,i := (

4︷ ︸︸ ︷
δjh,i(1, h), ω~ei,

6︷ ︸︸ ︷
τ~ei, 02, τ~eiZ

j
h,

2︷︸︸︷
02 ,

2︷ ︸︸ ︷
φji,1, φ

j
i,2 )Bj

where Zjh
U←− F2×2

q (Implicitly, the (ι, ς)-entry of the matrix Zjh is set as Zjh,ι,ς). Therefore, Exp 2-d-2-2 is identical

to the β = 1 case of DSS1, except for the case, det(Zjh) = 0 for some h, i.e., except probability 3d/q

Lemma B.4. For any adversary A , there exist a PPT algorithm B1, such that |Pr[Exp0
A (κ) = 1]−Pr[Exp1

A (κ) =
1]| ≤ AdvMBP1

B1
(κ), for all κ.

Proof. The proof of the lemma B.4 is almost the same as that of lemma 45 in [OT12b]. In lemma 45 in [OT12b],
Exp 0 and Exp 1 were shown to be indistinguishable under BP1. But, in this lemma, rather we use MBP1.

B1 receives an instance of MBP1, (param, {Bj , B̂∗j}j=0,1,...,4, {~ejβ}j=0,4, {~ejβ,i}i=1,2; j=1,2,3) and its task is to decide
whether β = 0 or β = 1. For h = 1, . . . , d; i = 1, 2; j = 1, 2, 3, B computes

~ejβ,h,i := δjh,i(
~bj,1 + h~bj,2) + ~ejβ,i + φjh,i,1

~bj,13 + φjh,i,2
~bj,14

where δjh,i, φ
j
h,i,1, φ

j
h,i,2

U←− Fq.
Now, B1 sets
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B̂ι := (~bι,1,~bι,3,~bι,5), B̂′
∗
ι := (~b∗ι,1,

~b∗ι,3,
~b∗ι,4), for ι = 0, 4

B̂j := (~bj,1, . . . ,~bj,4,~bj,13,~bj,14), B̂′
∗
j := (~b∗j,1, . . . ,

~b∗j,4,
~b∗j,11,

~b∗j,12), for j = 1, 2, 3

B1 gives the parameters G = (param, {B̂j , B̂′
∗
j}j=0,1,...,4, {~ejβ}j=0,4, {~ejβ,h,i}h=1,...,d; i=1,2; j=1,2,3) to A and outputs a

bit b ∈ {0, 1} if the adversary A outputs b. It is straightforward that if β = 0 (resp. β = 1), the distribution of G is
exactly same as that of Exp 0 (resp. Exp 1).

Lemma B.5. For any adversary A , there exist a PPT algorithm B2, such that for any κ, |Pr[Exp2-(p-1)-2-2A (κ) = 1]−
Pr[Exp2-p-1-1A (κ) = 1]| ≤ AdvMBP1

B2−p−i
(κ), if i = 1, and |Pr[Exp2-p-1-2A (κ) = 1]−Pr[Exp2-p-2-1A (κ) = 1]| ≤ AdvMBP1

B2−p−i
(κ),

if i = 2, where B2−p−i(.) = B2(p, j, .).

Proof. The proof of the lemma B.5 is almost the same as that of lemma 46 in [OT12b]. In lemma 46
in [OT12b], Exp 2-(p-1)-2-2 and Exp 2-p-1-1 (also Exp 2-p-1-2 and Exp 2-p-2-1) were shown to be indis-
tinguishable under BP1. But, in this lemma, we rather use MBP1. B2 receives an instance of MBP1,
(param, {Bj , B̂∗j}j=0,1,...,4, {~ejβ}j=0,4, {~ejβ,i}i=1,2; j=1,2,3) and its task is to decide whether β = 0 or β = 1. For
j = 1, 2, 3, B2 defines new dual bases (Dj ,D∗j ) as follows

Dj = (~dj,1, . . . , ~dj,14) = (~bj,3,~bj,4,~bj,1,~bj,2,~bj,9,~bj,10,~bj,7,~bj,8,~bj,5,~bj,6,~bj,11, . . . ,~bj,14)

D∗j = (~d∗j,1, . . . ,
~d∗j,14) = (~b∗j,3,

~b∗j,4,
~b∗j,1,

~b∗j,2,
~b∗j,9,

~b∗j,10,
~b∗j,7,

~b∗j,8,
~b∗j,5,

~b∗j,6,
~b∗j,11, . . . ,

~b∗j,14)

Now B2 sets

B̂ι := (~bι,1,~bι,3,~bι,5), B̂′
∗
ι := (~b∗ι,1,

~b∗ι,3,
~b∗ι,4), for ι = 0, 4

D̂j := (~dj,1, . . . , ~dj,4, ~dj,13, ~dj,14), D̂′
∗
j := (~d∗j,1, . . . ,

~d∗j,4,
~d∗j,11,

~d∗j,12), for j = 1, 2, 3

B2 can handle ~ejh,ι for (h, ι) < (p, i) as in Exp 2-p-i-2 and the same for (h, ι) > (p, i) as in Exp 1 using Dj and

ω̃, τ̃ , zjh,ι,1, z
j
h,ι,1, φ

j
h,ι,1, φ

j
h,ι,2

U←− Fq. Now, for i = 1, 2; j = 1, 2, 3, B2 computes ~ejp,i as shown below

~e0
1 = (ω̃, τ̃ , 0, 0, φ0) ~e4

1 = (ω̃, τ̃ , 0, 0, φ4)

~ejp,i = ~ejβ,1 + p~ejβ,2 + ω̃ ~dj,2+i + ω̃ ~dj,4+i

where φ0, φ4
U←− Fq.

B2 gives the parameters G = (param, {Bj , B̂∗j}j=0,4, {Dj , D̂∗j}j=1,2,3, {~ej1}j=0,4, {~ejh,i}h=1,...,d; i=1,2; j=1,2,3) to A and
outputs a bit b ∈ {0, 1} if the adversary A outputs b. It is straightforward that if i = 1 and β = 0 (resp. β = 1), the
distribution of G is exactly same as that of Exp 2-(p-1)-2-2 (resp. Exp 2-p-1-1). Similarly, if i = 2 and β = 0 (resp.
β = 1), the distribution of G is exactly same as that of Exp 2-p-1-2 (resp. Exp 2-p-2-1).

Lemma B.6. For any adversary A , and for any κ, we have Pr[Exp2-p-i-1A (κ) = 1] = Pr[Exp2-p-i-2A (κ) = 1].

Proof. The proof technique of this lemma is adapted form that of lemma 47 in [OT12b]. For j = 1, 2, 3, pick

Zj
U←− GL(2,Fq) and set U j = ((Zj)−1)T . Now, we define new bases (Dj ,D∗j ) for j = 1, 2, 3, by setting the following(

~dj,9
~dj,10

)
:= (U j)T

(
~bj,9
~bj,10

) (
~d∗j,9
~d∗j,10

)
:= (Zj)T

(
~b∗j,9
~b∗j,10

)

Dj = (~bj,1, . . . ,~bj,8, ~dj,9, ~dj,10 ,~bj,11, . . . ,~bj,14) D∗j = (~b∗j,1, . . . ,
~b∗j,8,

~d∗j,9,
~d∗j,10 ,

~b∗j,11, . . . ,
~b∗j,14)

It is easily verified that (Dj ,D∗j ) are dual pairing orthonormal basis and are distributed the same as the original
bases, (Bj ,B∗j ).
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For (h, ι) < (p, i), we express ~ejh,ι using the bases (Bj ,B∗j ) and (Dj ,D∗j ) as:

~ejh,ι := (

4︷ ︸︸ ︷
δjh,ι(1, h), ω~eι,

6︷ ︸︸ ︷
τ~eι, 02, τ~zjh,ι,

2︷︸︸︷
02 ,

2︷ ︸︸ ︷
φjh,ι,1, φ

j
h,ι,2 ) Bj

:= (

4︷ ︸︸ ︷
δjh,ι(1, h), ω~eι,

6︷ ︸︸ ︷
τ~eι, 02, τ ~z′

j

h,ι,

2︷︸︸︷
02 ,

2︷ ︸︸ ︷
φjh,ι,1, φ

j
h,ι,2 ) Dj

For (h, ι) = (p, i), we express ~ejp,i using the bases (Bj ,B∗j ) and (Dj ,D∗j ) as:

~ejp,i := (

4︷ ︸︸ ︷
δjp,i(1, p), ω~ei,

6︷ ︸︸ ︷
τ~ei, 02, σ̃p,i(1, p),

2︷︸︸︷
02 ,

2︷ ︸︸ ︷
φjp,i,1, φ

j
p,i,2 ) Bj

:= (

4︷ ︸︸ ︷
δjp,i(1, p), ω~ei,

6︷ ︸︸ ︷
τ~ei, 02, τ~zjp,i,

2︷︸︸︷
02 ,

2︷ ︸︸ ︷
φjp,i,1, φ

j
p,i,2 ) Dj

For (h, ι) > (p, i), we express ~ejh,ι using the bases (Bj ,B∗j ) and (Dj ,D∗j ) as:

~ejh,ι := (

4︷ ︸︸ ︷
δjh,ι(1, h), ω~eι,

6︷ ︸︸ ︷
τ~eι, 02, 02,

2︷︸︸︷
02 ,

2︷ ︸︸ ︷
φjh,ι,1, φ

j
h,ι,2 ) Bj

:= (

4︷ ︸︸ ︷
δjh,ι(1, h), ω~eι,

6︷ ︸︸ ︷
τ~eι, 02, 02,

2︷︸︸︷
02 ,

2︷ ︸︸ ︷
φjh,ι,1, φ

j
h,ι,2 ) Dj

where ~zjp,i = τ−1.σ̃p,i(1, p).Z
j and ~zjh,ι = (zjh,ι,1, z

j
h,ι,2), ~z′

j

h,ι = ~zjh,ι.Z
j for (h, ι) < (p, i). Thus, for j = 1, 2, 3 and for

(h, ι) < (p, i), ~zjp,i and ~z′
j

h,ι are uniformly and independently distributed. Therefore, for h = 1, . . . , d; j = 1, 2, 3; ι =

1, 2, the distribution of ~ejh,ι is identical to that of Exp 2-p-i-1 (resp. Exp 2-p-i-2) expressed over the bases (Bj ,B∗j )
(resp. (Dj ,D∗j )). This concludes the lemma.

B.2 Reduction of DSS2 from DLIN

The Sketch of reduction of intermediate modified basic problems :

DLIN
Lemma B.8

=⇒ BP2
Lemma B.9

=⇒ MBP2

DLIN
Lemma B.11

=⇒ BP4− p Lemma B.12
=⇒ BP3− p Lemma B.10

=⇒ MBP3− p

DLIN
Lemma B.11

=⇒ BP4− p Lemma B.13
=⇒ MBP4− p

DLIN
Lemma B.7

=⇒ BP0
Lemma B.14

=⇒ MBP6
Lemma B.16

=⇒ MBP5− p

Definition B.4 (Basic Problem 0 in [OT12b]). Choose µ1, µ2, φ1, φ2, χ1, χ2, ρ, σ
U←− Fq.

(paramBP0, (B,B∗), λP, ξP )←− Gob(κ, 5) B̂∗ := (~b∗1,
~b∗4,

~b∗5)

h∗1 = (µ1, ρ, 0, 0, 0)B∗, h∗2 = (µ2, 0, ρ, 0, 0)B∗

~e0 := (σ, 0, 0, φ1, φ2)B, ~e1 := (σ, χ1, χ2, φ1, φ2)B

D := (paramBP0,B, B̂∗, {~h∗i }i=1,2, λP, ξP, ρξP ) for β = 0, 1, define Tβ := ~eβ

Now, the advantage of an algorithm A in breaking this Basic Problem 0 (BP0) is defined by

AdvBP0
A (κ) = |Pr[A (D,T0) = 1]− Pr[A (D,T1) = 1]|

We say that the BP0 assumption holds if for all PPT adversary A , the advantage AdvBP0
A (κ) is a negligible function

in security parameter κ.
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Lemma B.7 (lemma 32 in [OT12b]). For any adversary A , there exist a PPT algorithm B, such that AdvBP0
A (κ) ≤

AdvDLIN
B (κ) + 5/q, for all κ.

Definition B.5 (Basic Problem 2 in [OT12b]). Choose ζ, ω, η0
U←− Fq. For i = 1, 2, pick ηi,1, ηi,2

U←− Fq and

ρ, τ
U←− F×q .

(param, (B0,B∗0), (B,B∗))←− Gob(κ, 5, 14)

B̂0 := (~b0,1, ~b0,3, . . . ,~b0,5), B̂ := (~b1, . . . ,~b4, ~b9, . . . ,~b14)

~h∗0,0 := (ζ, 0, 0, η0, 0)B∗0, ~h∗1,0 := (ζ, ρ, 0, η0, 0)B∗0 ~ε0 := (ω, τ, 0, 0, 0)B0

For i = 1, 2, define

~h∗0,i := (

4︷ ︸︸ ︷
02, ζ~ei,

6︷︸︸︷
06 ,

2︷ ︸︸ ︷
ηi,1, ηi,2,

2︷︸︸︷
02 )B∗

~h∗1,i := (

4︷ ︸︸ ︷
02, ζ~ei,

6︷ ︸︸ ︷
ρ~ei, 0

4,

2︷ ︸︸ ︷
ηi,1, ηi,2,

2︷︸︸︷
02 )B∗

~Υi := (

4︷ ︸︸ ︷
02, ω~ei,

6︷ ︸︸ ︷
τ~ei, 0

4,

2︷︸︸︷
02 ,

2︷︸︸︷
02 )B

D := (param, B̂0,B∗0, B̂,B∗, ~ε0, {~Υi}i=1,2) For β = 0, 1,define Tβ := (~h∗β,0, {~h∗β,i}i=1,2)

Now, the advantage of an algorithm A in breaking this Basic Problem 2 (BP2) is defined by

AdvBP2
A (κ) = |Pr[A (D,T0) = 1]− Pr[A (D,T1) = 1]|

The BP2 assumption is said to hold if for all PPT adversary A , the advantage AdvBP2
A (κ) is a negligible function in

security parameter κ.

Lemma B.8 (lemma 35 in [OT12b]). For any adversary A , there exist a PPT algorithm B, such that AdvBP2
A (κ) ≤

AdvDLIN
B (κ) + 5/q, for all κ.

Definition B.6 (Modified Basic Problem 2). Choose ζ, ω, η0, η4
U←− Fq. For j = 1, 2, 3, i = 1, 2, pick ηji,1, η

j
i,2

U←−
Fq and ρ, τ

U←− F×q .

(param, (B0,B∗0), (B1,B∗1), (B2,B∗2), (B3,B∗3), (B4,B∗4))←− Gob(κ, 5, 14, 14, 14, 5)

For j = 0, 4, define B̂j := (~bj,1, ~bj,3, . . . ,~bj,5) For j = 1, 2, 3, define B̂j := (~bj,1, . . . ,~bj,4, ~bj,9, . . . ,~bj,14)

For j = 0, 4, define

~hj∗0 := (ζ, 0, 0, ηj , 0)B∗j , ~hj∗1 := (ζ, ρ, 0, ηj , 0)B∗j ~εj := (ω, τ, 0, 0, 0)Bj

For j = 1, 2, 3, i = 1, 2, define

~hj∗0,i := (

4︷ ︸︸ ︷
02, ζ~ei,

6︷︸︸︷
06 ,

2︷ ︸︸ ︷
ηji,1, η

j
i,2,

2︷︸︸︷
02 )B∗j

~hj∗1,i := (

4︷ ︸︸ ︷
02, ζ~ei,

6︷ ︸︸ ︷
ρ~ei, 0

4,

2︷ ︸︸ ︷
ηji,1, η

j
i,2,

2︷︸︸︷
02 )B∗j

~Υj
i := (

4︷ ︸︸ ︷
02, ω~ei,

6︷ ︸︸ ︷
τ~ei, 0

4,

2︷︸︸︷
02 ,

2︷︸︸︷
02 )Bj

D := (param, {B̂ι,B∗ι }ι=0,4, {B̂j ,B∗j}j=1,2,3, {~εj}j=0,4, {~Υj
i}j=1,2,3; i=1,2). For β = 0, 1, define the challenge Tβ :=

({~hj∗β }j=0,4, {~hj∗β,i}j=1,2,3; i=1,2).
Now, the advantage of an algorithm A in breaking this Modified Basic Problem 2 (MBP2) is defined by

AdvMBP2
A (κ) = |Pr[A (D,T0) = 1]− Pr[A (D,T1) = 1]|

The MBP2 assumption is said to hold if for all PPT adversary A , the advantage AdvMBP2
A (κ) is a negligible function

in security parameter κ.
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Lemma B.9. For any adversary A , there exist a PPT algorithm B, such that AdvMBP2
A (κ) ≤ AdvBP2

B (κ), for all κ.

Proof. This is proven in the same manner as lemma B.2.

Definition B.7 (Basic Problem 3-p in [OT12b] for p = 1, . . . , d). For i = 1, 2, choose µp,i, θp,i, ηp,i,1, ηp,i,2
U←− Fq

and τ
U←− F×q .

(param, (B0,B∗0), (B,B∗))←− Gob(κ, 5, 14)

B̂ := (~b1, . . . ,~b4, ~b9, . . . ,~b14), ~ε0 := (0, τ, 0, 0, 0)B0

For i = 1, 2, define

~h∗0,p,i := (

4︷ ︸︸ ︷
µp,i(p,−1), 02,

6︷︸︸︷
06 ,

2︷ ︸︸ ︷
ηp,i,1, ηp,i,2,

2︷︸︸︷
02 )B∗

~h∗1,p,i := (

4︷ ︸︸ ︷
µp,i(p,−1), 02,

6︷ ︸︸ ︷
−θp,i~ei, θp,i~ei, 02,

2︷ ︸︸ ︷
ηp,i,1, ηp,i,2,

2︷︸︸︷
02 )B∗

~Υi := (

4︷︸︸︷
04 ,

6︷ ︸︸ ︷
τ~ei, τ~ei, 0

2,

2︷︸︸︷
02 ,

2︷︸︸︷
02 )B

~gi := (

4︷︸︸︷
04 ,

6︷ ︸︸ ︷
04, τ~ei,

2︷︸︸︷
02 ,

2︷︸︸︷
02 )B

D := (param,B0,B∗0, B̂,B∗, ~ε0, {~Υi, ~gi}i=1,2) For β = 0, 1,define Tβ := ({~hβ,p,i}i=1,2)

Now, the advantage of an algorithm A in breaking this Basic Problem 3-p (BP3-p) is defined by

AdvBP3−p
A (κ) = |Pr[A (D,T0) = 1]− Pr[A (D,T1) = 1]|

The BP3-p assumption is said to hold if for all PPT adversary A , the advantage AdvBP3−p
A (κ) is a negligible function

in security parameter κ.

Definition B.8 (Modified Basic Problem 3-p for p = 1, . . . , d). For i = 1, 2, pick θp,i
U←− Fq. For j = 1, 2, 3,

i = 1, 2, choose µjp,i, η
j
p,i,1, η

j
p,i,2

U←− Fq and τ
U←− F×q .

(param, (B0,B∗0), (B1,B∗1), (B2,B∗2), (B3,B∗3), (B4,B∗4))←− Gob(κ, 5, 14, 14, 14, 5)

For j = 1, 2, 3, define B̂j := (~bj,1, . . . ,~bj,4, ~bj,9, . . . ,~bj,14)

For ι = 0, 4, ~ει := (0, τ, 0, 0, 0)Bι
For j = 1, 2, 3, i = 1, 2, define

~hj∗0,p,i := (

4︷ ︸︸ ︷
µjp,i(p,−1), 02,

6︷︸︸︷
06 ,

2︷ ︸︸ ︷
ηjp,i,1, η

j
p,i,2,

2︷︸︸︷
02 )B∗j

~hj∗1,p,i := (

4︷ ︸︸ ︷
µjp,i(p,−1), 02,

6︷ ︸︸ ︷
−θp,i~ei, θp,i~ei, 02,

2︷ ︸︸ ︷
ηjp,i,1, η

j
p,i,2,

2︷︸︸︷
02 )B∗j

~eji := (

4︷︸︸︷
04 ,

6︷ ︸︸ ︷
τ~ei, τ~ei, 0

2,

2︷︸︸︷
02 ,

2︷︸︸︷
02 )Bj

~gji := (

4︷︸︸︷
04 ,

6︷ ︸︸ ︷
04, τ~ei,

2︷︸︸︷
02 ,

2︷︸︸︷
02 )Bj

D := (param, {Bι,B∗ι }ι=0,4, {B̂j ,B∗j}j=1,2,3, {~ει}ι=0,4, {~eji , ~g
j
i }j=1,2,3; i=1,2). For β = 0, 1, define Tβ :=

({~hjβ,p,i}j=1,2,3; i=1,2).
Now, the advantage of an algorithm A in breaking this Modified Basic Problem 3-p (MBP3-p) is defined by

AdvMBP3−p
A (κ) = |Pr[A (D,T0) = 1]− Pr[A (D,T1) = 1]|

The MBP3-p assumption is said to hold if for all PPT algorithm A , the advantage AdvMBP3−p
A (κ) is a negligible

function in security parameter κ.

26



Lemma B.10. For any adversary A , there exist a PPT algorithm B, such that AdvMBP3−p
A (κ) ≤ AdvBP3−p

B (κ), for
all κ.

Proof. Similar to the proof of lemma B.2.

Definition B.9 (Basic Problem 4-p in [OT12b] for p = 1, . . . , d). For i = 1, 2, choose µp,i, θp,i, ηp,i,1, ηp,i,2
U←− Fq.

(param, (B0,B∗0), (B,B∗))←− Gob(κ, 5, 14)

B̂ := (~b1, . . . ,~b6, ~b9, . . . ,~b14)

For i = 1, 2 define

~h∗0,p,i := (

4︷ ︸︸ ︷
µp,i(p,−1), 02,

6︷︸︸︷
06 ,

2︷ ︸︸ ︷
ηp,i,1, ηp,i,2,

2︷︸︸︷
02 )B∗

~h∗1,p,i := (

4︷ ︸︸ ︷
µp,i(p,−1), 02,

6︷ ︸︸ ︷
02, θp,i~ei, 0

2,

2︷ ︸︸ ︷
ηp,i,1, ηp,i,2,

2︷︸︸︷
02 )B∗

D := (param,B0,B∗0, B̂,B∗) For β = 0, 1,define Tβ := ({~hβ,p,i}i=1,2)

Now, the advantage of an algorithm A in breaking this Basic Problem 4-p (BP4-p) is defined by

AdvBP4−p
A (κ) = |Pr[A (D,T0) = 1]− Pr[A (D,T1) = 1]|

The BP4-p assumption is said to hold if for all PPT algorithm A , the advantage AdvBP4−p
A (κ) is a negligible function

in security parameter κ.

Lemma B.11 (lemma 38 in [OT12b]). For any adversary A , there exist a PPT algorithm B, such that for all κ,

AdvBP4−p
Ap

(κ) ≤
∑2
i=1 Adv

DLIN
Bp,i

(κ) + 10/q, where Ap(.) = A (p, .) and Bp,i(.) = B(p, i, .)

Lemma B.12 (lemma 37 in [OT12b]). For any adversary A , there exist a PPT algorithm B, such that for all κ,

AdvBP3−p
Ap

(κ) ≤
∑2
i=1 Adv

BP4−p
Bp,i

(κ), where Ap(.) = A (p, .) and Bp(.) = B(p, .)

Definition B.10 (Modified Basic Problem 4-p for p = 1, . . . , d). For i = 1, 2, pick θp,i
U←− Fq. For j = 1, 2, 3,

i = 1, 2, choose µjp,i, η
j
p,i,1, η

j
p,i,2

U←− Fq.

(param, (B0,B∗0), (B1,B∗1), (B2,B∗2), (B3,B∗3), (B4,B∗4))←− Gob(κ, 5, 14, 14, 14, 5)

For j = 1, 2, 3, define B̂j := (~bj,1, . . . ,~bj,6, ~bj,9, . . . ,~bj,14)

For j = 1, 2, 3, i = 1, 2 define

~hj∗0,p,i := (

4︷ ︸︸ ︷
µjp,i(p,−1), 02,

6︷︸︸︷
06 ,

2︷ ︸︸ ︷
ηjp,i,1, η

j
p,i,2,

2︷︸︸︷
02 )B∗j

~hj∗1,p,i := (

4︷ ︸︸ ︷
µjp,i(p,−1), 02,

6︷ ︸︸ ︷
02, θp,i~ei, 0

2,

2︷ ︸︸ ︷
ηjp,i,1, η

j
p,i,2,

2︷︸︸︷
02 )B∗j

D := (param, {Bι,B∗ι }ι=0,4, {B̂j ,B∗j}j=1,2,3) For β = 0, 1,define Tβ := ({~hjβ,p,i}j=1,2,3; i=1,2)

Now, the advantage of an algorithm A in breaking this Modified Basic Problem 4-p (MBP4-p) is defined by

AdvMBP4−p
A (κ) = |Pr[A (D,T0) = 1]− Pr[A (D,T1) = 1]|

The MBP4-p assumption is said to hold if for all PPT algorithm A , the advantage AdvMBP4−p
A (κ) is a negligible

function in security parameter κ.

Lemma B.13. For any adversary A , there exist a PPT algorithm B, such that AdvMBP4−p
A (κ) ≤ AdvBP4−p

B (κ), for
all κ.
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Proof. This proof is similar to that of lemma B.2.

Definition B.11 (Basic Problem 6 in [OT12b]). For i = 1, 2, choose µi, σi, ρ
U←− Fq; ~χi, ~φi

U←− F2
q.

(param, (B0,B∗0), (B,B∗))←− Gob(κ, 5, 14)

B̂∗ := (~b∗1, . . . ,
~b∗6,

~b∗9, . . . ,
~b∗14), ~h∗0 := ρ~b∗0,2,

~̃
h∗ι := ρ~b∗ι for ι = 5, 6, 9, 10

For i = 1, 2, define

~h∗i := (

4︷ ︸︸ ︷
µi, 0

3,

6︷ ︸︸ ︷
02, ρ~ei, 0

2,

2︷︸︸︷
02 ,

2︷︸︸︷
02 )B∗

~e0,i := (

4︷ ︸︸ ︷
σi, 0

3,

6︷︸︸︷
06 ,

2︷︸︸︷
02 ,

2︷︸︸︷
~φi )B

~e1,i := (

4︷ ︸︸ ︷
σi, 0

3,

6︷ ︸︸ ︷
02, ~χi, 0

2,

2︷︸︸︷
02 ,

2︷︸︸︷
~φi )B

D := (param,B0,B∗0,B, B̂∗,~h∗0, {
~̃
h∗ι }ι=5,6,9,10, {~h∗i }i=1,2) For β = 0, 1,define Tβ := ({~eβ,i}i=1,2)

Now, the advantage of an algorithm A in breaking this Basic Problem 6 (BP6) is defined by

AdvBP6
A (κ) = |Pr[A (D,T0) = 1]− Pr[A (D,T1) = 1]|

The BP6 assumption is said to hold if for all PPT algorithm A , AdvBP6
A (κ) is a negligible function in security

parameter κ.

Definition B.12 (Modified Basic Problem 6). For j = 1, 2, 3, i = 1, 2, choose µji , σ
j
i , ρ

U←− Fq; ~χji , ~φ
j
i

U←− F2
q.

(param, (B0,B∗0), (B1,B∗1), (B2,B∗2), (B3,B∗3), (B4,B∗4))←− Gob(κ, 5, 14, 14, 14, 5)

For j = 1, 2, 3, B̂∗j := (~b∗j,1, . . . ,
~b∗j,6,

~b∗j,9, . . . ,
~b∗j,14),

~̃
h∗j,ι := ρ~b∗j,ι for ι = 5, 6, 9, 10; ~h∗0 := ρ~b∗0,2,

~h∗4 := ρ~b∗4,2

For j = 1, 2, 3, i = 1, 2, define

~hj∗i := (

4︷ ︸︸ ︷
µji , 0

3,

6︷ ︸︸ ︷
02, ρ~ei, 0

2,

2︷︸︸︷
02 ,

2︷︸︸︷
02 )B∗j

~ej0,i := (

4︷ ︸︸ ︷
σji , 0

3,

6︷︸︸︷
06 ,

2︷︸︸︷
02 ,

2︷︸︸︷
~φji )Bj

~ej1,i := (

4︷ ︸︸ ︷
σji , 0

3,

6︷ ︸︸ ︷
02, ~χji , 0

2,

2︷︸︸︷
02 ,

2︷︸︸︷
~φji )Bj

D := (param, {Bι,B∗ι }ι=0,4, {Bj , B̂∗j}j=1,2,3,~h
∗
0,
~h∗4, {

~̃
h∗j,ι}j=1,2,3; ι=5,6,9,10, {~hj∗i }j=1,2,3; i=1,2). For β = 0, 1, define

Tβ := ({~ejβ,i}j=1,2,3; i=1,2).
Now, the advantage of an algorithm A in breaking this Modified Basic Problem 6 (MBP6) is defined by

AdvMBP6
A (κ) = |Pr[A (D,T0) = 1]− Pr[A (D,T1) = 1]|

The MBP6 assumption is said to hold if for all PPT algorithm A , the advantage AdvMBP6
A (κ) is a negligible function

in security parameter κ.

Lemma B.14. For any adversary A , there exist a PPT algorithm B1, such that for all κ, AdvMBP6
A (κ) ≤∑3

j=1

∑2
i=1 Adv

BP0
B1−j−i

(κ), where B1−j−i(.) = B1(j, i, .)

Proof. The proof technique of lemma B.14 is adapted from that of lemma 43 in [OT12b], i.e., MBP6 is organized as
hybrid of the experiments Exp 0, Exp 1-1-1, Exp 1-1-2, Exp 1-2-1, . . .,Exp 1-3-2. Thus, the advantage of A in MBP6 is
the advantage gap between Exp 0 and Exp 1-3-2, i.e., we have AdvMBP6

A (κ) = |Pr[Exp0
A (κ) = 1]−Pr[Exp1-3-2

A (κ) = 1]|.
Therefore, from lemma B.15, we conclude the lemma B.14.
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Experiments
Below, we define the sequence of experiments almost the same as in lemma 43 in [OT12b], except we consider here,
two 5-dimensional dual bases and three 14-dimensional dual bases. In the following sketch, we show how to change
Exp 0 to Exp 1-3-2 under BP0.

Exp 0 = Exp 1-0-2
BP0
≈ Exp 1-1-1

BP0
≈ Exp 1-1-2

BP0
≈ Exp 1-2-1 · · · Exp 1-3-1

BP0
≈ Exp 1-3-2

Exp 0 : It is defined to be the β = 0 case of MBP6 as shown below

for j = 1, 2, 3,
~̃
h∗j,ι := ρ~b∗j,ι for ι = 5, 6, 9, 10; ~h∗0 := ρ~b∗0,2,

~h∗4 := ρ~b∗4,2
for j = 1, 2, 3; i = 1, 2

~hj∗i := (

4︷ ︸︸ ︷
µji , 0

3,

6︷ ︸︸ ︷
02, ρ~ei, 0

2,

2︷︸︸︷
02 ,

2︷︸︸︷
02 )B∗j

~eji := (

4︷ ︸︸ ︷
σji , 0

3,

6︷ ︸︸ ︷
02, 02 , 02,

2︷︸︸︷
02 ,

2︷︸︸︷
~φji )Bj

Rest of the variables are defined as in MBP6.

Exp 1-j-i (for j = 1, 2, 3, i = 1, 2): This is Same as Exp 1-j-(i-1) if i = 2, or this is Same as Exp 1-(j-1)-(i+1) if i = 1
except the following

~eji := (

4︷ ︸︸ ︷
σji , 0

3,

6︷ ︸︸ ︷
02, ~χji , 0

2,

2︷︸︸︷
02 ,

2︷︸︸︷
~φji )Bj , where ~χji

U←− F2
q

Thus, Exp 1-0-2 is Exp 0.

Lemma B.15. For any adversary A , there exist a PPT algorithm B1, such that for all κ, j = 1, 2, 3, we have

|Pr[Exp1-j-iA (κ) = 1]−Pr[Exp1-j-(i-1)A (κ) = 1]| ≤ AdvBP0
B1−j−i

(κ), if i = 2, |Pr[Exp1-j-iA (κ) = 1]−Pr[Exp1-(j-1)-(i+1)
A (κ) =

1]| ≤ AdvBP0
B1−j−i

(κ), if i = 1, where B1−j−i(.) = B1(j, i, .).

Proof. We only prove the case i = 2. Similarly, lemma B.15 for the case i = 1 can be proven. The
proof of the lemma B.15 is almost the same as that of lemma 44 in [OT12b]. B1 is given the instance
(paramBP0,B, B̂∗, {~h∗i }i=1,2, ~eβ , λP, ξP, ρξP ) of Basic Problem 0. Now, using paramG := (q,G,GT , P, e) of
paramBP0, B1 computes paramVt := (q,Vt,GT ,At, e) ← Gdpvs(κ,Nt, paramG) for t = 0, . . . , 4, where Nt = 5
for t = 0, 4 and Nt = 14 for t = 1, 2, 3. Then, B1 sets param := ({paramVt}t=0,...,4, gT ), where gT = e(λP, ξP )

belongs to paramBP0. B1 chooses W0,W4
U←− GL(5,Fq), W1,W2,W3

U←− GL(14,Fq). Now, B1 defines new bases
(Dj ,D∗j ) for j = 0, . . . , 4 by setting the following

~dt,ι := (0ι−1, λP, 05−ι)Wt
~d∗t,ι := (0ι−1, ξP, 05−ι)(W−1

t )T for t = 0, 4, ι = 1, . . . , 5
~dt,1 := (~b1, 0

9)Wt
~d∗t,1 := (~b∗1, 0

9)(W−1
t )T for t = 1, 2, 3

~dt,7 := (~b2, 0
9)Wt

~d∗t,7 := (~b∗2, 0
9)(W−1

t )T , ~dt,8 := (~b3, 0
9)Wt

~d∗t,8 := (~b∗3, 0
9)(W−1

t )T for t = 1, 2, 3
~dt,13 := (~b4, 0

9)Wt
~d∗t,13 := (~b∗4, 0

9)(W−1
t )T , ~dt,14 := (~b5, 0

9)Wt
~d∗t,14 := (~b∗5, 0

9)(W−1
t )T for t = 1, 2, 3

~dt,ι := (05, 0ι−2, λP, 010−ι)Wt
~d∗t,ι := (05, 0ι−2, ξP, 010−ι)(W−1

t )T for t = 1, 2, 3, ι = 2, . . . , 6
~dt,ι := (0ι+1, λP, 012−ι)Wt

~d∗t,ι := (0ι+1, ξP, 012−ι)(W−1
t )T for t = 1, 2, 3, ι = 6, . . . , 12

~ejβ,2 := (~eβ , 0
9)Wj ~ejβ,1 := (σj1, 0

11, ~φj1)Wj , σ
j
1

U←− Fq, ~φj1
~etβ,ι := (σtι , 0

11, ~φtι)Wt for t = 1, 2, 3, t 6= j, ι = 1, 2 σtι
U←− Fq, ~φtι

U←− F2
q

~p∗t := (0, ρξP, 03)(W−1
t )T for t = 0, 4 ~̃pt∗ι := (0ι−1, ρξP, 014−ι)(W−1

t )T for t = 1, 2, 3, ι = 5, 6, 9, 10

~pt∗ι := (~h∗ι , 0
9)(W−1

t )T + δtι
~d∗t,1 for t = 1, 2, 3, ι = 1, 2, δtι

U←− Fq

Dt := (~dt,1, . . . , ~dt,5) D∗t := (~d∗t,1, . . . ,
~d∗t,5) for t = 0, 4

Dt := (~dt,1, . . . , ~dt,14) D∗t := (~d∗t,1, . . . ,
~d∗t,14) for t = 1, 2, 3

It is verified that (Dt,D∗t ) for t = 0, . . . , 4 are dual orthonormal bases. Note, that B1 can com-

pute almost all the vectors in (Dt,D∗t ) for t = 0, . . . , 4 from B, B̂∗ := (~b∗1,
~b∗4,

~b∗5), λP and ξP except
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~dt,7, ~dt,8 for t = 1, 2, 3. B1 sets B̂∗t := (~d∗t,1, . . . ,
~d∗t,6,

~d∗t,9, . . . ,
~d∗t,14) for t = 1, 2, 3. Then B1 returns G

:= (param, {Dt,D∗t }t=0,4, {Dt, D̂∗t }t=1,2,3, {~p∗t }t=0,4, {~̃pt∗ι }t=1,2,3; ι=5,6,9,10, {~pt∗ι }t=1,2,3; ι=1,2, {~etβ,ι}t=1,2,3; ι=1,2) to A .
Finally, B1 outputs a bit b ∈ {0, 1} if the adversary A returns b. Therefore, it shows that if β = 0 (resp. β = 1),
the distribution of G is exactly the same as that of Exp 1-j-(i-1) (resp. Exp 1-j- i) for i = 2; j = 1, 2, 3.

Definition B.13 (Basic Problem 5-p in [OT12b] for p = 1, . . . , d).

(param, (B0,B∗0), (B,B∗))←− Gob(κ, 5, 14), choose ρ
U←− Fq

B̂∗ := (~b∗1, . . . ,
~b∗6,

~b∗9, . . . ,
~b∗14), ~h∗0 := ρ~b∗0,2,

~̃
h∗ι := ρ~b∗ι for ι = 5, 6, 9, 10

For ` = 1, . . . , p− 1, p+ 1, . . . , d, i = 1, 2, choose ~ηp,i, ~χ`,i, ~φ`,i
U←− F2

q; µp,i, σ`,i
U←− Fq

~h∗p,i := (

4︷ ︸︸ ︷
µp,i(p,−1), 02,

6︷ ︸︸ ︷
02, ρ~ei, 0

2,

2︷︸︸︷
~ηp,i ,

2︷︸︸︷
02 )B∗

~e0,`,i := (

4︷ ︸︸ ︷
σ`,i(1, `), 0

2,

6︷︸︸︷
06 ,

2︷︸︸︷
02 ,

2︷︸︸︷
~φ`,i )B

~e1,`,i := (

4︷ ︸︸ ︷
σ`,i(1, `), 0

2,

6︷ ︸︸ ︷
02, ~χ`,i, 0

2,

2︷︸︸︷
02 ,

2︷︸︸︷
~φ`,i )B

D := (param,B0,B∗0,B, B̂∗,~h∗0, {
~̃
h∗ι }ι=5,6,9,10, {~h∗p,i}i=1,2) For β = 0, 1,define Tβ := ({~eβ,`,i}`=1,...,p−1,p+1,...,d; i=1,2)

Now, the advantage of an algorithm A in breaking this Basic Problem 5-p (BP5-p) is defined by

AdvBP5−p
A (κ) = |Pr[A (D,T0) = 1]− Pr[A (D,T1) = 1]|

The BP5-p assumption is said to hold if for all PPT adversary A , the advantage AdvBP5−p
A (κ) is a negligible function

in security parameter κ.

Definition B.14 (Modified Basic Problem 5-p for p = 1, . . . , d). Choose ρ
U←− Fq.

(param, (B0,B∗0), (B1,B∗1), (B2,B∗2), (B3,B∗3), (B4,B∗4))←− Gob(κ, 5, 14, 14, 14, 5)

For j = 1, 2, 3, B̂∗j := (~b∗j,1, . . . ,
~b∗j,6,

~b∗j,9, . . . ,
~b∗j,14)

~h∗j := ρ~b∗j,2, for j = 0, 4,
~̃
hj∗ι := ρ~b∗j,ι for j = 1, 2, 3; ι = 5, 6, 9, 10

For ` = 1, . . . , p− 1, p+ 1, . . . , d; j = 1, 2, 3; i = 1, 2, choose ~ηjp,i, ~χ
j
`,i,

~φj`,i
U←− F2

q; µ
j
p,i, σ

j
`,i

U←− Fq

~hj∗p,i := (

4︷ ︸︸ ︷
µjp,i(p,−1), 02,

6︷ ︸︸ ︷
02, ρ~ei, 0

2,

2︷︸︸︷
~ηjp,i ,

2︷︸︸︷
02 )B∗j

~ej0,`,i := (

4︷ ︸︸ ︷
σj`,i(1, `), 0

2,

6︷︸︸︷
06 ,

2︷︸︸︷
02 ,

2︷︸︸︷
~φj`,i )Bj

~ej1,`,i := (

4︷ ︸︸ ︷
σj`,i(1, `), 0

2,

6︷ ︸︸ ︷
02, ~χj`,i, 0

2,

2︷︸︸︷
02 ,

2︷︸︸︷
~φj`,i )Bj

D := (param, {Bι,B∗ι }ι=0,4, {Bj , B̂∗j}j=1,2,3, {~h∗j}j=0,4, {~̃hj∗ι }j=1,2,3; ι=5,6,9,10, {~hj∗p,i}j=1,2,3; i=1,2). For β = 0, 1, define

Tβ := ({~ejβ,`,i}`=1,...,p−1,p+1,...,d; j=1,2,3; i=1,2).
Now, the advantage of an algorithm A in breaking this Modified Basic Problem 5-p (MBP5-p) is defined by

AdvMBP5−p
A (κ) = |Pr[A (D,T0) = 1]− Pr[A (D,T1) = 1]|

The MBP5-p assumption is said to hold if for all PPT adversary A , AdvMBP5−p
A (κ) is a negligible function in security

parameter κ.
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Lemma B.16. For any adversary A , there exist a PPT algorithm B, such that AdvMBP5−p
Ap

(κ) ≤∑
`=1,...,p−1,p+1,...,d Adv

MBP6
Bp,`

(κ), for all κ, where Ap(.) = A (p, .) and Bp,`(.) = B(p, `, .).

Proof. The proof technique of lemma B.16 adapts the same of lemma 40 in [OT12b], i.e, MBP5-p is organized as
hybrid of the experiments Exp 0, Exp 1,. . .,Exp p-1, Exp p+1,. . .,Exp d. Thus, the advantage of A in MBP5-p is the
advantage gap between Exp 0 and Exp d i.e., AdvMBP5−p

Ap
(κ) = |Pr[Exp0

Ap
(κ) = 1] − Pr[ExpdAp

(κ) = 1]|. Therefore,
from lemma B.17, we conclude lemma B.16.

Experiments
Below, we define the sequence of experiments almost the same as in lemma 40 in [OT12b], except we consider here,
two 5-dimensional dual bases and three 14-dimensional dual bases. In the following sketch, we show how to change
Exp 0 to Exp d under MBP6.

Exp 0
MBP6
≈ Exp 1 · · · Exp (p-1)

MBP6
≈ Exp (p+1) · · · Exp d-1

MBP6
≈ Exp d

Exp 0 : It is defined to be the β = 0 case of MBP5-p as shown below
for ` = 1, . . . , p− 1, p+ 1, . . . , d, j = 1, 2, 3, i = 1, 2

~ej`,i := (

4︷ ︸︸ ︷
σj`,i(1, `), 0

2,

6︷ ︸︸ ︷
02, 02 , 02,

2︷︸︸︷
02 ,

2︷︸︸︷
~φj`,i )Bj

Rest of the variables are defined as in MBP5-p.

Exp ` (for ` = 1, . . . , p− 1, p+ 1, . . . , d) : This is same as Exp `− 1 if ` 6= p+ 1 and Exp p− 1 if ` = p+ 1 except for
j = 1, 2, 3, i = 1, 2

~ej`,i := (

4︷ ︸︸ ︷
σj`,i(1, `), 0

2,

6︷ ︸︸ ︷
02,

~
χj`,i , 0

2,

2︷︸︸︷
02 ,

2︷︸︸︷
~φj`,i )Bj , where ~χj`,i

U←− F2
q

Lemma B.17. For any adversary A , there exist a PPT algorithm B, such that for all κ, |Pr[Exp`Ap,`
(κ) = 1] −

Pr[Exp`−1
Ap,`

(κ) = 1]| ≤ AdvMBP6
Bp,`

(κ), if ` 6= p + 1, |Pr[Expp+1
Ap,p+1

(κ) = 1] − Pr[Expp−1
Ap,p+1

(κ) = 1]| ≤ AdvMBP6
Bp,p+1

(κ), if

` = p+ 1, where Bp,`(.) = B(p, `, .), Ap,`(.) = A (p, `, .).

Proof. We only prove the case ` 6= p + 1. Similarly, the lemma B.17 for the case ` = p + 1 can be proven.
The proof of the lemma B.17 is almost the same as that of lemma 41 in [OT12b]. B is given the in-

stance (param, {Bι,B∗ι }ι=0,4, {Bj , B̂∗j}j=1,2,3,~h
∗
0,
~h∗4, {

~̃
h∗j,ι}j=1,2,3; ι=5,6,9,10, {~hj∗i , ~e

j
β,i}j=1,2,3; i=1,2) of Modified Ba-

sic Problem 6 and integers p, `. For j = 1, 2, 3, B computes the following(
~dj,1
~dj,2

)
:= Z

(
~bj,1
~bj,2

)
:=

(
p `
−1 −1

)(
~bj,1
~bj,2

)
, where Z :=

(
p `
−1 −1

)
(

~d∗j,1
~d∗j,2

)
:= U

(
~b∗j,1
~b∗j,2

)
:= (`− p)−1

(
−1 1
−` p

)( ~b∗j,1
~b∗j,2

)
, where U := (Z−1)T

Dj := (~dj,1, ~dj,2,~bj,3, . . . ,~bj,14), D∗j := (~d∗j,1,
~d∗j,2,

~b∗j,3, . . . ,
~b∗j,14)

D̂∗j := (~d∗j,1,
~d∗j,2,

~b∗j,3, . . . ,
~b∗j,6,

~b∗j,9, . . . ,
~b∗j,14)

~hj∗p,i := ~hj∗i , ~ejβ,`,i := ~ejβ,i

B can compute {~ejβ,t,i}t=1,...,d,t6=p,`; j=1,2,3 using the dual bases Bj ,B∗j and ~δjt,i,
~φjt,i

U←− F2
q as

defined in Exp `. Now, B returns (param, {Bι,B∗ι }ι=0,4, {Dj , D̂∗j}j=1,2,3,~h
∗
0,
~h∗4, {

~̃
h∗j,ι}j=1,2,3; ι=5,6,9,10,

{~hj∗p,i, ~e
j
β,t,i}t=1,...,p−1,p+1,...,d; j=1,2,3; i=1,2) to A . Finally, B outputs a bit b ∈ {0, 1} if the adversary A returns

b. If β = 0 (resp. β = 1), the distribution of G can be shown to be exactly same as that of Exp ` − 1 (resp. Exp `)
by using the similar kinds of arguments of claim 6 of lemma 41 in [OT12b].
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Lemma B.18. If DLIN assumption holds for a bilinear pairing group generator G, then the DSS2 assump-
tion also holds for G. That is, for any adversary A , there exist PPT algorithms F1,F2 such that for any κ,
AdvDSS2

A (κ) ≤ AdvDLIN
F1

(κ)+
∑d
p=1

∑2
i=1

(
AdvDLIN

F2−1−p−i
(κ)+AdvDLIN

F2−2−p−i
(κ)+

∑
`=1,...,p−1,p+1,...,d

(
AdvDLIN

F2−3−p−i−`
(κ)+

AdvDLIN
F2−4−p−i−`

(κ)
)

+ AdvDLIN
F2−5−p−i

(κ)
)

+ O(d)/q, where F2−1−p−i(.) = F2(1, p, i, .), F2−2−p−i(.) = F2(2, p, i, .),

F2−3−p−i−`(.) = F2(3, p, i, `, .), F2−4−p−i−`(.) = F2(4, p, i, `, .), F2−5−p−i(.) = F2(5, p, i, .)

Proof. The proof technique of lemma B.18 is adapted from that of lemma 24 in [OT12b], i.e., DSS2 is organized
as hybrid of the experiments Exp 0, Exp 1,. . .,Exp 2-d-8. Thus, the advantage of A in DSS2 is the advantage gap
between Exp 0 and Exp 2-d-8, i.e., AdvDSS2

A (κ) = |Pr[Exp0
A (κ) = 1]− Pr[Exp2-d-8

A (κ) = 1]|. Therefore, from lemmas
B.7,. . .,B.17 and B.19,. . .,B.27, we have
AdvDSS2

A (κ) = |Pr[Exp0
A (κ) = 1]− Pr[Exp2−d−8

A (κ) = 1]|
≤ |Pr[Exp0

A (κ) = 1] − Pr[Exp1
A (κ) = 1]| +

∑d
p=1

(
|Pr[Exp2-p-1

A (κ) = 1] − Pr[Exp2-p-2
A (κ) = 1]| + |Pr[Exp2-p-3

A (κ) =

1] − Pr[Exp2-p-4
A (κ) = 1]| + |Pr[Exp2-p-4

A (κ) = 1] − Pr[Exp2-p-5
A (κ) = 1]| + |Pr[Exp2-p-6

A (κ) = 1] − Pr[Exp2-p-7
A (κ) =

1]|+ |Pr[Exp2-p-7
A (κ) = 1]− Pr[Exp2-p-8

A (κ) = 1]|
)

≤ AdvMBP2
B1

(κ) +
∑d
p=1

(
AdvMBP3−p

B2−1−p
(κ) + AdvMBP3−p

B2−2−p
(κ) + AdvMBP5−p

B2−3−p
(κ) + AdvMBP5−p

B2−4−p
(κ) + AdvMBP4−p

B2−5−p
(κ)
)

≤ AdvDLIN
F1

(κ) +
∑d
p=1

∑2
i=1

(
AdvDLIN

F2−1−p−i
(κ) + AdvDLIN

F2−2−p−i
(κ) +

∑
`=1,...,p−1,p+1,...,d

(
AdvDLIN

F2−3−p−i−`
(κ) +

AdvDLIN
F2−4−p−i−`

(κ)
)

+ AdvDLIN
F2−5−p−i

(κ)
)

+O(d)/q.
This concludes the lemma B.18.

Experiments
Below, we define the sequence of experiments almost the same as in lemma 24 in [OT12b], except we consider here,
two 5-dimensional dual bases and three 14-dimensional dual bases. In the following sketch, we show how to change
Exp 0 to Exp 2-d-8 under MBP2, {MBP3− p,MBP4− p,MBP5− p}p=1,...,d.

Exp 0
MBP2
≈ Exp 1 = Exp 2-0-8 ≈ Exp 2-1-1 · · · Exp 2-(p-1)-8

Exp 2-(p-1)-8 ≈ Exp 2-p-1
MBP3−p
≈ Exp 2-p-2 ≈ Exp 2-p-3

MBP3−p
≈ Exp 2-p-4

Exp 2-p-4
MBP5−p
≈ Exp 2-p-5 ≈ Exp 2-p-6

MBP5−p
≈ Exp 2-p-7

MBP4−p
≈ Exp 2-p-8

Exp 2-p-8 ≈ Exp 2-(p+1)-1 · · · Exp 2-d-8

Exp 0 : It is defined to be the case of DSS2 as shown below

~hj∗0 := (ζ, 0 , 0, ηj0, 0)B∗j , for j = 0, 4

~ej := (ω, τ, 0, 0, φj0)Bj , for j = 0, 4

For t = 1, . . . , d; j = 1, 2, 3; i = 1, 2

~hj∗t,i := (

4︷ ︸︸ ︷
µjt,i(t,−1), ζ~ei,

6︷︸︸︷
06 ,

2︷︸︸︷
~ηjt,i ,

2︷︸︸︷
02 )B∗j

~ejt,i := (

4︷ ︸︸ ︷
σjt,i(1, t), ω~ei,

6︷ ︸︸ ︷
τ~ei, 02 , τ~eiZt,

2︷︸︸︷
02 ,

2︷︸︸︷
~φjt,i )Bj

Rest of the variables are defined as in DSS2.

Exp 1 : This is same as Exp 0 except the following

~hj∗0 := (ζ, ρ , 0, ηj0, 0)B∗j , for j = 0, 4

For t = 1, . . . , d; j = 1, 2, 3; i = 1, 2

~hj∗t,i := (

4︷ ︸︸ ︷
µjt,i(t,−1), ζ~ei,

6︷ ︸︸ ︷
ρ~ei , 0

4,

2︷︸︸︷
~ηjt,i ,

2︷︸︸︷
02 )B∗j , where ρ

U←− Fq
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Exp 2-p-1 (for p = 1, . . . , d) : This is same as Exp 2-(p-1)-8 except the following
For t = 1, . . . , d; j = 1, 2, 3; i = 1, 2

~ejt,i := (

4︷ ︸︸ ︷
σjt,i(1, t), ω~ei,

6︷ ︸︸ ︷
τ~ei, τ~ei , τ~eiZt,

2︷︸︸︷
02 ,

2︷︸︸︷
~φjt,i )Bj

Thus, Exp 1 is Exp 2-0-8.

Exp 2-p-2 (for p = 1, . . . , d): This is same as Exp 2-p-1 except the following
For j = 1, 2, 3; i = 1, 2

~hj∗p,i := (

4︷ ︸︸ ︷
µjp,i(p,−1), ζ~ei,

6︷ ︸︸ ︷
(ρ− θp,i)~ei, θp,i~ei , 02,

2︷︸︸︷
~ηjp,i ,

2︷︸︸︷
02 )B∗j , where θp,i

U←− Fq

Remark : for j = 1, 2, 3, we use the same θp,i.

Exp 2-p-3 (for p = 1, . . . , d) : This is same as Exp 2-p-2 except the following
For j = 1, 2, 3; i = 1, 2

~hj∗p,i := (

4︷ ︸︸ ︷
µjp,i(p,−1), ζ~ei,

6︷ ︸︸ ︷
θp,i~ei, (ρ− θp,i)~ei , 02,

2︷︸︸︷
~ηjp,i ,

2︷︸︸︷
02 )B∗j

Remark : for j = 1, 2, 3, we use the same θp,i.

Exp 2-p-4 (for p = 1, . . . , d): This is same as Exp 2-p-3 except the following
For j = 1, 2, 3; i = 1, 2

~hj∗p,i := (

4︷ ︸︸ ︷
µjp,i(p,−1), ζ~ei,

6︷ ︸︸ ︷
02, ρ~ei , 0

2,

2︷︸︸︷
~ηjp,i ,

2︷︸︸︷
02 )B∗j

Exp 2-p-5 (for p = 1, . . . , d): This is same as Exp 2-p-4 except the following
For ` = 1, . . . , p− 1, p+ 1, . . . , d; j = 1, 2, 3; i = 1, 2

~ej`,i := (

4︷ ︸︸ ︷
σj`,i(1, `), ω~ei,

6︷ ︸︸ ︷
τ~ei, ~χ

j
`,i , τ~eiZ`,

2︷︸︸︷
02 ,

2︷︸︸︷
~φj`,i )Bj , where ~χj`,i

U←− F2
q

Remark : for a fixed ` and i, ~χj`,i are independent for j = 1, 2, 3.

Exp 2-p-6 (for p = 1, . . . , d): This is same as Exp 2-p-5 except the following
For j = 1, 2, 3; i = 1, 2

~hj∗p,i := (

4︷ ︸︸ ︷
µjp,i(p,−1), ζ~ei,

6︷ ︸︸ ︷
02, ξ~ei, ρ~eiUp ,

2︷︸︸︷
~ηjp,i ,

2︷︸︸︷
02 )B∗j

~ejp,i := (

4︷ ︸︸ ︷
σjp,i(1, p), ω~ei,

6︷ ︸︸ ︷
τ~ei, 02 , τ~eiZp,

2︷︸︸︷
02 ,

2︷︸︸︷
~φjp,i )Bj

where ξ
U←− F2

q, Zp
U←− GL(2Fq), Up := (Z−1

p )T

Exp 2-p-7 (for p = 1, . . . , d): This is same as Exp 2-p-6 except the following
For ` = 1, . . . , p− 1, p+ 1, . . . , d; j = 1, 2, 3; i = 1, 2

~ej`,i := (

4︷ ︸︸ ︷
σj`,i(1, `), ω~ei,

6︷ ︸︸ ︷
τ~ei, 02 , τ~eiZ`,

2︷︸︸︷
02 ,

2︷︸︸︷
~φj`,i )Bj
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Exp 2-p-8 (for p = 1, . . . , d): This is same as Exp 2-p-7 except the following
For j = 1, 2, 3; i = 1, 2

~hj∗p,i := (

4︷ ︸︸ ︷
µjp,i(p,−1), ζ~ei,

6︷ ︸︸ ︷
02, 02 , ρ~eiUp,

2︷︸︸︷
~ηjp,i ,

2︷︸︸︷
02 )B∗j

Lemma B.19. For any adversary A , there exist a PPT algorithm B1, such that for all κ, |Pr[Exp0
A (κ) = 1] −

Pr[Exp1
A (κ) = 1]| ≤ AdvMBP2

B1
(κ).

Proof. The lemma B.19 is proven almost the same way as lemma 48 in [OT12b]. B1 is given the instance
(param, {B̂ι,B∗ι }ι=0,4, {B̂j ,B∗j}j=1,2,3, {~εj}j=0,4, {~gji }j=1,2,3; i=1,2, {~hj∗β }j=0,4, {~hj∗β,i}j=1,2,3; i=1,2) of Modified Basic
Problem 2. B1 computes

For t = 1, . . . , d, j = 1, 2, 3, i = 1, 2
~hj∗t,i := µjt,i(t

~b∗j,1 −~b∗j,2) + ~hj∗β,i + ~ηjt,i(
~b∗j,11,

~b∗j,12), where µjt,i
U←− Fq, ~ηjt,i

U←− F2
q

~ejt,i := ~gji + τ
∑2
ι=1 z

j
t,i,ι
~bjj,8+ι +

∑2
ι=1 φ

j
t,i,ι
~bjj,12+ι, where φjt,i,ι

U←− Fq, (zjt,i,ι)i,ι=1,2 := Zjt
U←− GL(2,Fq)

~eι := ~ει + φι~bι,5, where φι
U←− Fq, for ι = 0, 4

B̂′ι := (~bι,1,~bι,3,~bι,5), B̂∗ι := (~b∗ι,1, . . . ,
~b∗ι,4), for ι = 0, 4

B̂′ι := (~bι,1, . . . ,~bι,4,~bι,13,~bι,14), B̂∗ι := (~b∗ι,1, . . . ,
~b∗ι,4,

~b∗ι,11,
~b∗ι,12), for ι = 1, 2, 3

Then, B1 returns G := (param, {B̂′ι, B̂∗ι }ι=0,4, {B̂′j , B̂∗j}j=1,2,3, {~hι∗β , ~eι}ι=0,4, {~ejt,i,~h
j∗
t,i}t=1,...,d; j=1,2,3; i=1,2) to A .

Finally, simu1 outputs a bit b ∈ {0, 1} if the adversary A returns b. It is to check that β = 0 (resp. β = 1), the
distribution of G is exactly the same as that of Exp 0 (resp. Exp 1).

Lemma B.20. For any adversary A , for any κ, Pr[Exp
2-(p-1)-8
A (κ) = 1] = Pr[Exp2-p-1A (κ) = 1].

Proof. Lemma B.20 is proven almost the same way as the lemma 49 in [OT12b]. Set ~dj,7+ι := ~bj,7+ι −~bj,9+ι, ~d
∗
j,9+ι

:= ~b∗j,9+ι +~b∗j,7+ι, for ι = 0, 1. Then set

Dj := (~bj,1, . . . ,~bj,6, ~dj,7, ~dj,8 ,~bj,9, . . . ,~bj,14), D∗j := (~b∗j,1, . . . ,
~b∗j,8,

~d∗j,9,
~d∗j,10 ,

~b∗j,11, . . . ,
~b∗ι,14), for ι = 1, 2, 3

Then (Dj , D∗j ) for j = 1, 2, 3 are dual orthonormal bases and consistent with (Bj , B∗j ). The rest of the proof of the
lemma B.20 follow from lemma 49 in [OT12b].

Lemma B.21. For any adversary A , there exist a PPT algorithm B2−1, such that for all κ, |Pr[Exp2-p-1A (κ) =

1]− Pr[Exp2-p-2A (κ) = 1]| ≤ AdvMBP3−p
B2-1-p

(κ), where B2−1−p(.) = B2−1(p, .).

Proof. The proof is similar to lemma 50 in [OT12b]. B2−1 is given an integer p and the instance
(param, {Bι,B∗ι }ι=0,4, {B̂j ,B∗j}j=1,2,3, {~ει}ι=0,4, {~eji , ~g

j
i }j=1,2,3; i=1,2, {~hj∗β,p,i}j=1,2,3; i=1,2) of Modified Basic Prob-

lem 3-p. For t = 1, . . . , d, j = 1, 2, 3, B2−1 chooses (zjt,iι)i,ι=1,2 := Zjt
U←− GL(2,Fq), U jt := ((Zjt )−1)T and

can compute ~h∗0,
~h∗4, ~hj∗t,i for (t < p) as defined in Exp 2-p-8 and ~hj∗t,i for (t > p) as defined in Exp 1 by using

ρ, ζ, µjt,i, η
j
t,i,1, η

j
t,i,1

U←− Fq and (Zjt , U
j
t ) for t 6= p. B2−1 computes

~gι := ~ει + ω~bι,1 + φι~bι,5, ω, φι
U←− Fq for ι = 0, 4

~gjt,i := σjt,i(
~bj,1 + t~bj,2) + ω~bj,2+i + ~eji +

∑2
ι=1 z

j
t,i,ι~g

j
ι +

∑2
ι=1 φ

j
t,i,ι
~bj,12+ι, where σjt,i, φ

j
t,i,1, φ

j
t,i,2

U←− Fq
for t = 1, . . . , d, j = 1, 2, 3, i = 1, 2,

~pj∗p,i := ~hj∗β,p,i + ζ~b∗j,2+i + ρ~b∗j,6+i

B̂ι := (~bι,1,~bι,3,~bι,5), B̂∗ι := (~b∗ι,1, . . . ,
~b∗ι,4), for ι = 0, 4

B̂′ι := (~bι,1, . . . ,~bι,4,~bι,13,~bι,14), B̂∗ι := (~b∗ι,1, . . . ,
~b∗ι,4,

~b∗ι,11,
~b∗ι,12), for ι = 1, 2, 3

Then, B2−1 returns G := (param, {B̂ι, B̂∗ι }ι=0,4, {B̂′j , B̂∗j}j=1,2,3, {~h∗ι , ~gι}j=0,4, {~gjt,i}t=1,...,d; j=1,2,3; i=1,2,

{~hj∗t,i, ~p
j∗
p,i}t=1,...,p−1,p+1,...,d; j=1,2,3; i=1,2) to A . Finally, B2−1 outputs a bit b ∈ {0, 1} if the adversary A
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returns b. It is easily verified that β = 0 (resp. β = 1), the distribution of G is exactly the same as that of Exp 2-p-1
(resp. Exp 2-p-2).

Lemma B.22. For any adversary A , for any κ, Pr[Exp2-p-2A (κ) = 1] = Pr[Exp2-p-3A (κ) = 1].

Proof. This follows from lemma 51 in [OT12b].

Lemma B.23. For any adversary A , there exist a PPT algorithm B2−2, such that for any κ, |Pr[Exp2-p-3A (κ) =

1]− Pr[Exp2-p-4A (κ) = 1]| ≤ AdvMBP3−p
B2-p-2

(κ), where B2−p−2(.) = B2−2(p, .).

Proof. Similar to that of lemma B.21.

Lemma B.24. For any adversary A , there exist a PPT algorithm B2−3, such that for any κ, |Pr[Exp2-p-4A (κ) =

1]− Pr[Exp2-p-5A (κ) = 1]| ≤ AdvMBP5−p
B2-3-p

(κ), where B2−3−p(.) = B2−3(p, .).

Proof. The lemma B.19 is proven almost the same way as lemma 53 in [OT12b]. B2−3 is given an in-

teger p and the instance (param, {Bι,B∗ι }ι=0,4, {Bj , B̂∗j}j=1,2,3, {~h∗j}j=0,4, {~̃hj∗ι }j=1,2,3; ι=5,6,9,10, {~hj∗p,i}j=1,2,3; i=1,2,

{~ejβ,`,i}`=1,...,p−1,p+1,...,d; j=1,2,3; i=1,2) of Modified Basic Problem 5-p. B2−3 can compute ~gι := (ω, τ, 0, 0, φι)Bι
using Bι and ω, τ, φι

U←− Fq, for ι = 0, 4. Now, it computes

For t = 1, . . . , d; j = 1, 2, 3; i = 1, 2; ζ, µjt,i, σ
j
p,i

U←− Fq, ~ηjt,i, ~φ
j
p,i

U←− F2
q

U jt := (ujt,i,ι)i,ι=1,2
U←− GL(2,Fq), (zjt,i,ι)i,ι=1,2 := ((U jt )−1)T

~p∗ι := ~h∗ι + (ζ, 0, 0, ηι, 0)B∗ι , where ηι
U←− Fq for ι = 0, 4

~pj∗t,i :=
∑2
ι=1 u

j
t,i,ι

~̃
hj∗8+ι + (µjt,i(t,−1), ζ~ei, 06, ~ηjt,i, 02 )B∗j if t < p

~pj∗p,i :=
∑2
ι=1 u

j
p,i,ι

~̃
hj∗p,ι + (02, ζ~ei, 010 )B∗j if t = p

~pj∗t,i :=
∑2
ι=1 u

j
t,i,ι

~̃
hj∗4+ι + (µjt,i(t,−1), ζ~ei, 06, ~ηjt,i, 02 )B∗j if t > p

~gjt,i := ~ejβ,t,i + (02, ω~ei, τ~ei, τ~ei, τ~eiZ
j
t , 04 )Bj , if t 6= p

~gjp,i := (σjp,i(1, p), ω~ei, τ~ei, τ~ei, τ~eiZ
j
p, 02 ~φjp,i)Bj , if t = p

B̂ι := (~bι,1,~bι,3,~bι,5), B̂∗ι := (~b∗ι,1, . . . ,
~b∗ι,4), for ι = 0, 4

B̂ι := (~bι,1, . . . ,~bι,4,~bι,13,~bι,14), B̂′
∗
ι := (~b∗ι,1, . . . ,

~b∗ι,4,
~b∗ι,11,

~b∗ι,12), for ι = 1, 2, 3

Then, B2−1 returns G := (param, {B̂ι, B̂∗ι }ι=0,4, {B̂j , B̂′
∗
j}j=1,2,3, {~p∗ι , ~gι}j=0,4, {~gjt,i, ~p

j∗
t,i}t=1,...,d; j=1,2,3; i=1,2) to A .

Finally, B2−1 outputs a bit b ∈ {0, 1} if the adversary A returns b. It is easy to see that β = 0 (resp. β = 1), the
distribution of G is exactly same as that of Exp 2-p-4 (resp. Exp 2-p-5).

Lemma B.25. For any adversary A , for any κ, Pr[Exp2-p-5A (κ) = 1] = Pr[Exp2-p-6A (κ) = 1].

Proof. One suitably adapts the proof of lemma 54 in [OT12b]. Choose ξ̃
U←− Fq. For j = 1, 2, 3, pick Zjp

U←− GL(2,Fq)
and set U jp = ((Zjp)−1)T . Let I2 and O2 respectively denote the 2 × 2 identity matrix and null matrix. Now, we
define new bases (Dj ,D∗j ) for j = 1, 2, 3, by setting the following

~dj,7
~dj,8
~dj,9
~dj,10

 :=

(
ξ̃I2 O2

(Zjp)−1 I2

)
~bj,7
~bj,8
~bj,9
~bj,10




~d∗j,7
~d∗j,8
~d∗j,9
~d∗j,10

 :=

(
ξ̃−1I2 −ξ̃−1U jp
O2 I2

)
~b∗j,7
~b∗j,8
~b∗j,9
~b∗j,10


Dj := (~bj,1, . . . ,~bj,6, ~dj,7, . . . , ~dj,10 ,~bj,11, . . . ,~bj,14) D∗j := (~b∗j,1, . . . ,

~b∗j,6,
~d∗j,7, . . . ,

~d∗j,10 ,
~b∗j,11, . . . ,

~b∗j,14)

It is easily verified that (Dj ,D∗j ) are dual pairing orthonormal basis and are distributed the same as the original
bases, (Bj ,B∗j ).
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For t = 1, . . . , p− 1, p+ 1, . . . , d; j = 1, 2, 3; i = 1, 2, we express ~ejt,i using the bases Bj and Dj as:

~ejt,i := (

4︷ ︸︸ ︷
δjt,i(1, t), ω~ei,

6︷ ︸︸ ︷
τ~ei, ~χ

j
t,i, τ~eiZ

j
t ,

2︷︸︸︷
02 ,

2︷ ︸︸ ︷
φjt,i,1, φ

j
t,i,2 ) Bj

:= (

4︷ ︸︸ ︷
δjt,i(1, t), ω~ei,

6︷ ︸︸ ︷
τ~ei, ~̃χ

j
t,i, τ~eiZ

j
t ,

2︷︸︸︷
02 ,

2︷ ︸︸ ︷
φjt,i,1, φ

j
t,i,2 ) Dj

where ~̃χjt,i := ξ̃−1(~χjt,i − τ~ei.Z
j
t .(Z

j
p)−1)

For t = p; j = 1, 2, 3; i = 1, 2, we express ~ejp,i using the bases Bj and Dj as:

~ejp,i := (

4︷ ︸︸ ︷
δjp,i(1, p), ω~ei,

6︷ ︸︸ ︷
τ~ei, τ~ei, τ~eiZ

j
p,

2︷︸︸︷
02 ,

2︷ ︸︸ ︷
φjp,i,1, φ

j
p,i,2 ) Bj

:= (

4︷ ︸︸ ︷
δjp,i(1, p), ω~ei,

6︷ ︸︸ ︷
τ~ei, 02, τ~eiZ

j
p,

2︷︸︸︷
02 ,

2︷ ︸︸ ︷
φjp,i,1, φ

j
p,i,2 ) Dj

For t = 1, . . . , p− 1; j = 1, 2, 3; i = 1, 2, we express ~hj∗t,i using the bases B∗j and D∗j as:

~hj∗t,i := (

4︷ ︸︸ ︷
µjt,i(t,−1), δ~ei,

6︷ ︸︸ ︷
04, ρ~eiU

j
t ,

2︷ ︸︸ ︷
ηjt,i,1, η

j
t,i,2,

2︷︸︸︷
02 ) B∗j

:= (

4︷ ︸︸ ︷
µjt,i(t,−1), δ~ei,

6︷ ︸︸ ︷
04, ρ~eiU

j
t ,

2︷ ︸︸ ︷
ηjt,i,1, η

j
t,i,2,

2︷︸︸︷
02 ) D∗j

For t = p; j = 1, 2, 3; i = 1, 2, we express ~hj∗t,i using the bases B∗j and D∗j as:

~hj∗p,i := (

4︷ ︸︸ ︷
µjt,i(t,−1), δ~ei,

6︷ ︸︸ ︷
02, ρ~ei, 02,

2︷ ︸︸ ︷
ηjt,i,1, η

j
t,i,2,

2︷︸︸︷
02 ) B∗j

:= (

4︷ ︸︸ ︷
µjt,i(t,−1), δ~ei,

6︷ ︸︸ ︷
02, ξ~ei, ρ~eiU

j
p ,

2︷ ︸︸ ︷
ηjt,i,1, η

j
t,i,2,

2︷︸︸︷
02 ) D∗j , where ξ := ξ̃ρ

For t = p+ 1, . . . , d; j = 1, 2, 3; i = 1, 2, we express ~hj∗t,i using the bases B∗j and D∗j as:

~hj∗t,i := (

4︷ ︸︸ ︷
µjt,i(t,−1), δ~ei,

6︷ ︸︸ ︷
ρ~ei, 04,

2︷ ︸︸ ︷
ηjt,i,1, η

j
t,i,2,

2︷︸︸︷
02 ) B∗j

:= (

4︷ ︸︸ ︷
µjt,i(t,−1), δ~ei,

6︷ ︸︸ ︷
ρ~ei, 04,

2︷ ︸︸ ︷
ηjt,i,1, η

j
t,i,2,

2︷︸︸︷
02 ) D∗j

For t = 1, . . . , d; j = 1, 2, 3; i = 1, 2, since ~χjt,i’s are uniformly and independently distributed over F2
q, so are ~̃χjt,i’s.

Therefore, from A ’s view, the distribution of PP, {~ejt,i,~h
j∗
t,i}t=1,...,d; j=1,2,3; i=1,2 is identical to that of Exp 2-p-5

(resp. Exp 2-p-6) over the bases (Bj ,B∗j ) (resp. (Dj ,D∗j )).

Lemma B.26. For any adversary A , there exist a PPT algorithm B2−4, such that for any κ, |Pr[Exp2-p-6A (κ) =

1]− Pr[Exp2-p-7A (κ) = 1]| ≤ AdvMBP5−p
B2-4-p

(κ), where B2−4−p(.) = B2−4(p, .).

Proof. Similar to lemma B.24.

Lemma B.27. For any adversary A , there exist a PPT algorithm B2−5, such that for any κ, |Pr[Exp2-p-7A (κ) =

1]− Pr[Exp2-p-8A (κ) = 1]| ≤ AdvMBP4−p
B2-5-p

(κ), where B2−5−p(.) = B2−5(p, .).

Proof. The proof can be obtained as in lemma B.24.
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C Key-Policy Functional Encryption for DFAs

C.1 Definition

A key-policy functional encryption (KP-FE) scheme for DFAs consists of four PPT algorithms - Setup, KeyGen,
Encrypt and Decrypt.

• Setup: It takes a security parameter κ, an alphabet Σ as input, outputs the public parameters PP which
explicitly contains Σ and the master secret MSK.

• KeyGen: It takes as input the description of a DFAM and master secretMSK and outputs a secret key SKM
corresponding to M.

• Encrypt: takes a message m, a string w = w1w2 · · ·w` over Σ and public parameters PP and returns a
ciphertext Cw which implicitly contains w.

• Decrypt: It receives a ciphertext Cw and secret key SKM as input. If the DFA M accepts w, the algorithm
returns m.

C.2 Security definition of KP-FE for DFAs

The adaptive security model is defined as an indistinguishability game, GameReal between a challenger C and an
adversary A , where the adversary has to distinguish the ciphertexts under a chosen plaintext attack (CPA). The
game, GameReal consists of the following phases:

Setup: The challenger C runs the Setup algorithm to produce the master secret keyMSK and the public parameter
PP. Then, C gives PP to the adversary A and keeps MSK to itself.

Phase 1: The adversary A queries for the secret keys corresponding to the DFAs M1, . . . ,Ml. The challenger C
returns the secret keys skMi

by running the KeyGen algorithm on Mi, for i = 1, . . . , l.

Challenge: The adversary provides two equal length messages m0,m1 and a challenge string w∗ with the condition

that no queried DFA Mi can accept the challenge string w∗. The challenger chooses β
U←− {0, 1} and encrypts the

message mβ using the challenge string w∗ and gives the challenge ciphertext Cw∗ to the adversary A

Phase 2: A again queries for the secret keys corresponding to the DFAsMl+1, . . . ,Mν with the restriction that no
queried DFA Mi can accept the challenge string w∗. C answers to the adversary A in similar manner as in Phase
1.

Guess: The challenger A outputs a bit β′.

The advantage of A in above game is defined by

AdvKP−FE
A (κ) =

∣∣∣∣Pr[β = β′]− 1

2

∣∣∣∣ .
The KP-FE scheme is said to be adaptively secure if all PPT adversary A , the advantage AdvKP−FE

A (κ) is at most
a negligible function in security parameter κ.

C.3 Basic KP-FE Construction

In this section, we illustrate a basic Key-Policy Functional Encryption scheme for DFAs in the prime order bilinear
pairing groups. This scheme is based on the structure of ABE construction of [OT12b], where encryption is done
using some basis vectors of dual pairing vector spaces. The keys are generated using some basis vectors of it’s dual.
Similar to section 3, this basic construction has the following restrictions.

– The strings for ciphertexts can have at most a single occurrence of each symbol (policies)

– There is at most a single transition corresponding to each symbol in the DFAs (keys)
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Similar to section 5, one can extend the basic KP-FE scheme to a full KP-FE scheme without the attributed
restrictions and the scheme entertains the similar type of security.

Setup(κ): (param, (B0,B∗0), (B1,B∗1), (B2,B∗2), (B3,B∗3), (B4,B∗4))←− Gob(1λ, 5, 14, 14, 14, 5)

B̂j := ( ~bj,1, ~bj,3, ~bj,5), B̂∗j := ( ~b∗j,1, ~b∗j,3, ~b∗j,4 ) for j=0,4

B̂j := ( ~bj,1 . . . ,~bj,4, ~bj,11, ~bj,12 ), B̂∗j := ( ~b∗j,1, . . . ,
~b∗j,4, ~b∗j,13, ~b∗j,14 ) for j=1,2,3

Choose a set, alphabet of symbols Σ = {σ1, . . . , σd} ⊆ Fq, where d = poly(κ). The public parameters and master
secret are given by

PP := (Σ, param, {B̂j}j=0,1,2,3,4),

MSK:= ({B̂∗j}j=0,1,2,3,4).

Encrypt(PP, w = w1 · · ·w`,m): For each i ∈ [`], choose µi,1, µi,2, µi,3, θi, ri
U←− Fq; ~ηi,1, ~ηi,2, ~ηi,3

U←− F2
q. Pick

ξ, r0, η0, η`+1
U←− Fq. Compute the ciphertext components

~C0 := ( r0, 0, ξ, 0, η0)B0 Cm := m.gξT

For each i ∈ [`], (let wi = σh, for some index h) continue to compute

~Ci,1 := (

2︷ ︸︸ ︷
µi,1(h,−1),

2︷ ︸︸ ︷
ri + θiσh, −θi,

6︷︸︸︷
06 ,

2︷︸︸︷
02 ,

2︷︸︸︷
~ηi,1 ) B1

~Ci,2 := (

2︷ ︸︸ ︷
µi,2(h,−1),

2︷ ︸︸ ︷
−ri−1 + θiσh, −θi,

6︷︸︸︷
06 ,

2︷︸︸︷
02

2︷︸︸︷
~ηi,2 ) B2

~Ci,3 := (

2︷ ︸︸ ︷
µi,3(h,−1),

2︷ ︸︸ ︷
−ri − ri−1 + θiσh,−θi,

6︷︸︸︷
06 ,

2︷︸︸︷
02 ,

2︷︸︸︷
~ηi,3 ) B3

~C`+1,4 := ( r`, 0, 0, 0, η`+1)B4

The ciphertext is given by Cw := ( w, Cm, ~C0, {~Ci,1, ~Ci,2, ~Ci,3}i∈[`], ~C`+1,4)

KeyGen(MSK,M = (Q,Σ, q0, F, δ)): For each qx ∈ Q, pick dx
U←− Fq. For each qz ∈ F , choose φz

U←− Fq. Pick

random ξ ∈ Fq. For each transition t = (qx, qy, σh) ∈ T , choose st, δt,1, δt,2, δt,3
U←− Fq; ~φt,1, ~φt,2, ~φt,3

U←− F2
q. Now

compute

~K∗0 := ( d0, 0, 1, φ0, 0)B∗0

For each transition t = (qx, qy, σh) ∈ T , compute the ciphertext components

~K∗t,1 := (

2︷ ︸︸ ︷
δt,1(1, h),

2︷ ︸︸ ︷
(st + dy)(1, σh),

6︷︸︸︷
06 ,

2︷︸︸︷
~φt,1 ,

2︷︸︸︷
02 ) B∗1

~K∗t,2 := (

2︷ ︸︸ ︷
δt,2(1, h),

2︷ ︸︸ ︷
(−st + dx)(1, σh),

6︷︸︸︷
06 ,

2︷︸︸︷
~φt,2 ,

2︷︸︸︷
02 ) B∗2

~K∗t,3 := (

2︷ ︸︸ ︷
δt,3(1, h),

2︷ ︸︸ ︷
st(1, σh),

6︷︸︸︷
06 ,

2︷︸︸︷
~φt,3 ,

2︷︸︸︷
02 ) B∗3

For each qz ∈ F , compute the ciphertext component
~K∗z,4 := ( dz, 0, 0, φz, 0)B∗4

The secret key for the string w is given by

SKM :=
(
M, ~K∗0 , { ~K∗t,1, ~K∗t,2, ~K∗t,3}t=(qx,qy,σh)∈T , { ~K∗z,4}qz∈F

)
Decrypt(Cw,SKM): Suppose the DFA M accepts the string w = w1 · · ·w`, then there exist a sequence of ` + 1
states qx0

, qx1
, qx2

, . . . , qx` and transitions t1, . . . , t`, where x0 = 0 and qx` ∈ F and for i = 1, 2, . . . , `, we have
ti = (qxi−1 , qxi , σ) ∈ T with wi = σ. First compute the initial value

A0 = e(~C0, ~K
∗
0 ) = gr0d0+ξ

T
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Then, compute the first value A1 of intermediate values as

A1 = e(~C1,1, ~K
∗
t1,1).e(~C1,2, ~K

∗
t1,2).e(~C1,3, ~K

∗
t1,3) = g

r1dx1−r0d0

T

Then compute intermediate values Ai (for i = 2, . . . , `) as follows:

Ai = Ai−1.e(~Ci,1, ~K
∗
ti,1).e(~Ci,2, ~K

∗
ti,2).e(~Ci,3, ~K

∗
ti,3) = g

ri−1dxi−1
−r0d0

T g
ridxi−ri−1dxi−1

T = g
ridxi−r0d0

T

So, the last intermediate value has of the form

A` = g
r`dx`−r0d0

T

The final value A`+1 is computed as

A`+1 = A`.e(~C`+1,4, ~K
∗
x`,4

) = g
r`dx`−r0d0

T g
−r`dx`
T = g−r0d0

T

Using A0, A`+1 and Cm, the message is unmasked as m = Cm/(A0 A`+1).

C.4 Security Proof

The proof technique is similar to section 4. For this, we define two types of semi-functional ciphertexts, viz., type 1
and type 2 and three types of semi-functional keys, viz., type 1, type 2 and type 3.

Semi-functional Type 1 Ciphertext. For each i ∈ [`], choose r̂i, θ̂i
U←− Fq. Also choose r̂0

U←− Fq. For

i ∈ [`], let wi = σh for some index h, choose Z1
h, Z

2
h, Z

3
h

U←− GL(2,Fq). The sf-type 1 ciphertext is obtained by

modifying normally generated ciphertext Cw := (w, Cm, ~C0, {~Ci,1, ~Ci,2, ~Ci,3}i∈[`], ~C`+1,4 ) as:

~C0 := ( r0, r̂0 , ξ, 0, η0)B0 Cm := m.gξT

~Ci,1 := (

2︷ ︸︸ ︷
µi,1(h,−1),

2︷ ︸︸ ︷
ri + θiσh, −θi,

6︷ ︸︸ ︷
r̂i + θ̂iσh, −θ̂i , 02, (r̂i + θ̂iσh, −θ̂i)Z1

h ,
2︷︸︸︷
02 ,

2︷︸︸︷
~ηi,1 ) B1

~Ci,2 := (

2︷ ︸︸ ︷
µi,2(h,−1),

2︷ ︸︸ ︷
−ri−1 + θiσh, −θi,

6︷ ︸︸ ︷
−r̂i−1 + θ̂iσh, −θ̂i , 02, (−r̂i−1 + θ̂iσh, −θ̂i)Z2

h ,
2︷︸︸︷
02 ,

2︷︸︸︷
~ηi,2 ) B2

~Ci,3 := (

2︷ ︸︸ ︷
µi,3(h,−1),

2︷ ︸︸ ︷
−ri − ri−1 + θiσh,−θi,

6︷ ︸︸ ︷
−r̂i − r̂i−1 + θ̂iσh,−θ̂i , 02, (−r̂i − r̂i−1 + θ̂iσh,−θ̂i)Z3

h ,
2︷︸︸︷
02 ,

2︷︸︸︷
~ηi,3 ) B3

~C`+1,4 := ( r`, r̂` , 0, 0, η`+1 ) B4

Semi-functional Type 2 Ciphertext. This is same as sf-type 1 ciphertext except the following

~C0 := ( r0, r̂0, ξ′ , 0, η0)B0 Cm := m.gξT where ξ′
U←− Fq (independent of ξ

U←− Fq)

Semi-functional Type 1 Key. For each qx ∈ Q, pick d̂x
U←− Fq. For each transition t = (qx, qy, σh) ∈ T ,

choose ŝt
U←− Fq; Zjh

U←− GL(2,Fq) and set U jh = ((Zjh)−1)T for j = 1, 2, 3. The sf-type 1 key generation algorithm
first creates a normal key

SKM :=
(
M, ~K∗0 , { ~K∗t,1, ~K∗t,2, ~K∗t,3}t=(qx,qy,σh)∈T , { ~K∗z,4}qz∈F

)
and then modifies its components as shown below.
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~K∗0 := ( d0, d̂0, 1, φ0, 0)B∗0

~K∗t,1 := (

2︷ ︸︸ ︷
δt,1(1, h),

2︷ ︸︸ ︷
(st + dy)(1, σh),

6︷ ︸︸ ︷
04, (ŝt + d̂y)(1, σh)U1

h ,

2︷︸︸︷
~φt,1 ,

2︷︸︸︷
02 ) B∗1

~K∗t,2 := (

2︷ ︸︸ ︷
δt,2(1, h),

2︷ ︸︸ ︷
(−st + dx)(1, σh),

6︷ ︸︸ ︷
04, (−ŝt + d̂x)(1, σh)U2

h ,

2︷︸︸︷
~φt,2 ,

2︷︸︸︷
02 ) B∗2

~K∗t,3 := (

2︷ ︸︸ ︷
δt,3(1, h),

2︷ ︸︸ ︷
st(1, σh),

6︷ ︸︸ ︷
04, ŝt(1, σh)U3

h ,

2︷︸︸︷
~φt,3 ,

2︷︸︸︷
02 ) B∗3

~K∗z,4 := ( dz, d̂z, 0, φz, 0)B∗4

Semi-functional Type 2 Key. This is same as sf-type 1 key except ~K∗0

~K∗0 := ( d0, drand , 1, φ0, 0)B∗0, where drand
U←− Fq (independent of d̂0

U←− Fq)

Semi-functional Type 3 Key. This is same as normal key except ~K∗0

~K∗0 := ( d0, drand , 1, φ0, 0)B∗0, where drand
U←− Fq

A legitimate normal key (resp. sf-type 1 key, sf-type 2 key, sf-type 3 key) SKM can extract the message from
an sf-type 1 ciphertext (resp. normal ciphertext) Cw. Similarly, a legitimate sf-type 1 key SKM can succeed in
decrypting an sf-type 1 ciphertext Cw, because the mimicked parts get canceled just like the normal components.
But, if a legitimate sf-type 2 key or sf-type 2 key SKM runs decryption on an sf-type 1 ciphertext Cw, it will get an
extra factor gr̂0drandT masking the message.

Theorem C.1. The proposed basic KP-FE scheme is adaptively secure under the DLIN assumption.

Proof. The theorem C.1 is proven in a similar manner to theorem 4.1 in section 5.
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