
What Information is Leaked under Concurrent
Composition?∗

Vipul Goyal
Microsoft Research India and

vipul@microsoft.com

Divya Gupta†

University of California, Los Angeles
divyag@cs.ucla.edu

Abhishek Jain‡

Massachusetts Institute of Technology
and Boston University,

abhishek@csail.mit.edu

Abstract

Achieving security under concurrent composition is notoriously hard. Indeed, in the plain
model, far reaching impossibility results for concurrently secure computation are known. On the
other hand, some positive results have also been obtained according to various weaker notions
of security (such as by using a super-polynomial time simulator). This suggest that somehow,
“not all is lost in the concurrent setting.”

In this work, we ask what and exactly how much private information can the adversary learn
by launching a concurrent attack? “Can he learn all the private inputs in all the sessions? Or,
can we preserve the security of some (or even most) of the sessions fully while compromising
(a small fraction of) other sessions? Or is it the case that the security of all (or most) sessions
is (at least partially) compromised? If so, can we restrict him to learn an arbitrarily small
fraction of input in each session?” We believe the above questions to be fundamental to the
understanding of concurrent composition. Indeed, despite a large body of work on the study of
concurrent composition, in our opinion, the understanding of what exactly is it that goes wrong
in the concurrent setting and to what extent is currently quite unsatisfactory.

Towards that end, we adopt the knowledge-complexity based approach of Goldreich and
Petrank [STOC’91] to quantify information leakage in concurrently secure computation. We
consider a model where the ideal world adversary (a.k.a simulator) is allowed to query the
trusted party for some “leakage” on the honest party inputs. We obtain both positive and
negative results, depending upon the nature of the leakage queries available to the simulator.
Informally speaking, our results imply the following: in the concurrent setting, “significant loss”
of security (translating to high leakage in the ideal world) in some of the sessions is unavoidable
if one wishes to obtain a general result. However on the brighter side, one can make the fraction
of such sessions to be an arbitrarily small polynomial (while fully preserving the security in all
other sessions). Our results also have an implication on secure computation in the bounded
concurrent setting [Barak-FOCS’01]: we show there exist protocols which are secure as per
the standard ideal/real world notion in the bounded concurrent setting. However if the actual
number of sessions happen to exceed the bound, there is a graceful degradation of security as
the number of sessions increase. (In contrast, prior results do not provide any security once the
bound is exceeded.)

In order to obtain our positive result, we model concurrent extraction as the classical set-
covering problem and develop, as our main technical contribution, a new sparse rewinding strat-
egy. Specifically, unlike previous rewinding strategies which are very “dense”, we rewind “small

∗This paper is the full version of [GGJ13] that appeared at Crypto 2013.
†Work done in part while visiting Microsoft Research India.
‡Work done in part while visiting Microsoft Research India.

1

intervals” of the execution transcript and still guarantee extraction. This yields other applica-
tions as well, including improved constructions of precise concurrent zero-knowledge [Pandey et
al.-Eurocrypt’08] and concurrently secure computation in the multiple ideal query model [Goyal
et al.-Crypto’10].

In order to obtain our negative results, interestingly, we employ techniques from the regime
of leakage-resilient cryptography [Dziembowski-Pietrzak-FOCS’08].

Keywords: Secure Computation, Concurrent Composition

1 Introduction

Concurrently Secure Computation. Traditional security notions for cryptographic protocols
such as secure computation [Yao86, GMW87] were defined for a stand-alone setting, where security
holds only if a single protocol session is executed in isolation. Today’s world, however, is driven
by networks – the most important example being the Internet. In a networked environment,
several protocol instances may be executed concurrently, and an adversary may be able to perform
coordinated attacks across sessions by corrupting parties in various sessions. As such, a protocol
that is secure in the classical standalone setting may become completely insecure in the network
setting.

Towards that end, over the last decade, a tremendous amount of effort has been made to ob-
tain protocols with strong composability guarantees under concurrent execution. Unfortunately, a
sequence of works have demonstrated far reaching impossibility results for designing secure pro-
tocols in the concurrent setting [CF01, CKL03, Lin03b, Lin03a, Lin04, BPS06, Goy12, AGJ+12,
GKOV12]. In particular, these works have ruled out secure realization of essentially all non-trivial
functionalities even in very restricted settings such as where inputs of honest parties are fixed in
advance (rather than being chosen adaptively in each session), and where the adversary is restricted
to corrupting parties with specific roles.

What Information is Getting Leaked to the Adversary? Many of these impossibility results
work by designing an explicit “chosen protocol attack”. Such an attack shows that there exists some
information the concurrent adversary can learn in the real world which is impossible to obtain for the
ideal adversary (a.k.a the simulator). Nevertheless, subsequent to these impossibility results, several
prior works have in fact obtained positive results for concurrently secure computation according
to various relaxed notions of security such as super-polynomial simulation [Pas03, PS04, BS05,
CLP10, GGJS12, LP12], input indistinguishable computation [MPR06, GGJS12], multiple-ideal
query model [GJO10], etc.1 These results suggest that somehow, “not all is lost in the concurrent
setting” (in the plain model).

Given the above, the following natural questions arise:
What and exactly how much private information can the adversary learn by launching a concur-

rent attack? Can he learn all the private inputs in all sessions? Or, can we preserve the security of
some (or even most) of the sessions fully while compromising (a small fraction of) other sessions?
Or is it the case that the security of all (or most) sessions is (at least partially) compromised? If
so, can we restrict him to learn an arbitrarily small fraction of input in each session?

We believe the above questions are very natural to ask and fundamental to the understanding
of concurrent composition. Indeed, despite a large body of research on the study of concurrent
composition, in our opinion, the understanding of “what exactly is it that goes wrong in the con-
current setting, and, to what extent” is currently unsatisfactory. The current paper represents an
attempt towards improving our understanding of this question.

1There has also been a rich line of works on designing secure computation with some type of “setup” where, e.g.,
a trusted party publishes a randomly chosen string [CLOS02, BCNP04, Kat07, CGS08]. However the focus of the
current work is the plain model.

2

A Knowledge-complexity based Approach. We adopt the knowledge-complexity based ap-
proach of Goldreich and Petrank [GP91] to quantify the information leakage to the adversary in
concurrently secure computation. Specifically, generalizing the approach of [GP91], we consider a
modification of the standard real/ideal paradigm where in the ideal world experiment, the simu-
lator is allowed to query the trusted party for some “leakage” on the honest party inputs. The
underlying intuition (as in [GP91]) is that the amount of leakage observed by the simulator in or-
der to simulate the view of an adversary represents an upper bound on the amount of information
potentially leaked to the real adversary during the concurrent protocol executions.

More concretely, we consider two notions of “leaky ideal world” in this work, described as
follows.

Ideal world with individual leakage. Let there be m concurrent sessions with the honest party input
in the ith session denoted by xi. In the individual leakage model, in every session i, as usual the
simulator is allowed to query the trusted party once and get an output on the input of its choice.
In addition, (in session i), the simulator can query with an efficiently computable leakage function
Li and get Li(xi) in return. The constraint is that in every session i, the length of Li(xi) is at
most ε|xi|. If this is the case, we say that the protocol is secure with an ε-individual ideal leakage
simulator. Intuitively, if such a security guarantee is satisfied, then it means that the security of all
the sessions is only partially compromised; in particular, every session still has a non-trivial level
of security guarantee.

As we discuss below, in this model, our main result is a negative one. This brings us to our
next model.

Ideal world with joint leakage. In the joint leakage model, first, the honest party sends its input
for every session to the trusted party. Next, in every session, the simulator is allowed to do the
following exactly once at any point: query with an input and get the resulting output (as usual),
and additionally query with an efficiently computable leakage function Li and get Li(~x) in return
(where ~x = (x1, . . . , xm)). The constraint is that throughout the simulation, the total number of
bits leaked

∑
Li(~x) is at most ε|~x|. If this is the case, we say that the protocol is secure with an

ε-joint ideal leakage simulator. In this model, our main result is a positive one, as we discuss below.

On the Relation to Leakage-resilient Interactive Protocols. We remark that our ideal
model resembles those considered in the line of works concerned with constructing leakage-resilient
secure computation protocols [GJS11, BCH12, BGJ+12]. However we stress that in our setting,
there is no physical leakage in the real world and instead there are just an (unbounded) polynomial
number of concurrent sessions. Indeed, as in classical security definitions, the adversary in our
security model is only given black-box access to the system, and as such, achieving security against
physical (non-black-box) attacks is outside the scope of this work. Nevertheless, comparing our
work to [GJS11, BCH12, BGJ+12], we find it interesting that there is a parallel between the ideal
world guarantees considered in two unrelated settings: leaky real world, and, concurrent real world.

1.1 Our Results

We consider the setting of unbounded concurrent composition in the plain model. As with several
previous works [BPS06, GJO10, Goy12], we consider static corruptions with fixed inputs (i.e., where
the inputs of honest parties are fixed in advance rather than being chosen adaptively). Below, we
describe our results in each of the two leaky ideal world models (as discussed above), along with
additional applications.

I. Positive Result in the Joint Leakage Model. We obtain the following main result in the
joint leakage model:

3

Theorem 1 (Informally stated.) Assuming 1-out-of-2 (semi-honest) oblivious transfer, for every
polynomial poly(n), there exists a protocol which is secure with an ε = 1

poly(n) joint leakage simulator.

The round complexity of our protocol is log6 n
ε . We show that this is almost optimal w.r.t. a black-

box simulator: we rule out protocols with round complexity O(logn)
ε proven secure using a black-box

simulator.

Fully preserving the security of most sessions. We note that the simulator for our positive
result, in fact, satisfies the following additional property: rather than leaking a small fraction of
the input in each session, it leaks the entire input of a small (i.e., ε) fraction of sessions while fully
preserving the security of the remaining sessions. Hence, we get the following interesting corollary:

Theorem 2 (Informally stated.) Assuming 1-out-of-2 (semi-honest) oblivious transfer, for every
polynomial poly(n), there exists a protocol s.t. under unbounded concurrent self-composition, the
security of at most a 1

poly(n) fraction of the sessions may be compromised. For the remaining

sessions, the standard ideal/real world security notion can be satisfied.

In fact, our negative result in the independent leakage model (discussed below) indicates that for
a general positive result, the above security guarantee is essentially optimal.

Bounded concurrent secure computation with graceful security degradation. Go-
ing further, observe that by choosing ε < 1

m|x| , we get a construction where the simulator is allowed

no leakage at all if the number of sessions is up to m. This is because the maximum number of bits
simulator is allowed to leak will be εm|x| which is less than 1. Hence, positive results for bounded
concurrent secure computation [Lin03a, PR03, Pas04] follow as a special case of our result. However
if the actual number of sessions just slightly exceed m, the simulator is allowed some small leakage
on the input vector (i.e., total of only 1 bit up to 2m sessions, 2 bits up to 3m sessions, and so on).
Thus, the leakage allowed grows slowly as the number of sessions grow. This phenomenon can be
interpreted as graceful degradation of security in the concurrent setting.

Theorem 3 (Informally stated.) Assuming 1-out-of-2 (semi-honest) oblivious transfer, there exist
protocols which are secure as per the standard ideal/real world notion in the bounded concurrent
setting. However if the actual number of sessions happen to exceed this bound, there is graceful
degradation of security as the number of sessions increase.

A set-cover approach to concurrent extraction and a new rewinding strategy. In
order to obtain our positive result, we take a generic “cost-centric” approach to rewinding in the
concurrent setting. For example, in our context, the amount of leakage required by the simulator
to simulate the protocol messages during the rewindings can be viewed as the “cost” of extraction.
Thus, the goal is to perform concurrent extraction with minimal cost. With this view, we model
concurrent extraction as the classical set-covering problem [CLRS09] and develop, as our main
technical contribution, a new sparse rewinding strategy. Very briefly, unlike known concurrent
rewinding techniques [RK99b, KP01, PRS02, PPS+08] that are very “dense”, we rewind “small
intervals” of the execution transcript, while still guaranteeing extraction in all of the sessions. As
we explain in Section 1.2, which intervals of the execution transcript are rewound (and how many
times), has a direct consequence on the cost of extraction. In particular, rewinding small intervals
(only a few times) is crucial to minimizing the cost and obtaining our positive result.

Our sparse rewinding strategy also yields other interesting applications that we discuss below.
Thus, we believe it to be of independent interest.

II. Negative Result in the Individual Leakage Model. In the individual leakage model,
our main result is negative, ruling out even non-black-box simulation. Specifically, we give an

4

impossibility result for the oblivious transfer (OT) functionality where the ideal leakage allowed is
(1/2−δ) fraction of the input length (for every positive constant δ). Note that this is the maximum
possible leakage bound such that the ideal adversary still does not learn the entire input of the
honest parties (which would otherwise result in a trivial positive result): indeed, if the fraction of
leakage allowed is 1/2, the ideal adversary can learn one of the sender inputs by making use of
leakage, and, the other by making use of the “official” trusted party call.

Leakage-resilient One-Time Programs. Of independent interest, the techniques used in our
negative result also yield a new construction of one-time programs [GKR08] where the adversary
can query the given hardware tokens once (as usual), and additionally leak on the secrets stored
in each token in any arbitrary adaptively chosen manner (e.g., the leakage function for the next
token may even depend upon the leakage and the “official” outputs seen so far, and so on). Our
key technical tool in constructing such a gadget is the intrusion-resilient secret sharing protocol of
Dziembowski and Pietrzak [DP07].

Put together, results (I) and (II) show that in the concurrent setting, “significant loss” of
security in some of the sessions is unavoidable if one wishes to obtain a general positive result.
However on the brighter side, one can make the fraction of such sessions to be an arbitrarily small
polynomial (while fully preserving the security in all other sessions).

III. Other Applications. As alluded to above, along the way to developing our main positive
result, we develop a new sparse rewinding strategy that leads to interesting applications in the
context of precise zero-knowledge [MP06, PPS+08] and concurrently secure computation in the
multiple ideal query model [GJO10]. We discuss them below.

Improved precise concurrent zero knowledge. In the traditional notion of zero-knowledge,
the simulator may run in time which is any polynomial factor of the (worst-case) running time of
the adversarial verifier. This means that any information learned by the adversary in the protocol
could also be computed directly in polynomial time. The notion of precise zero-knowledge [MP06]
deals with studying how low this polynomial can be. In particular, can one design protocols where
the running time of the simulator is only slightly higher than the actual running time of the adver-
sary? Besides being a fundamental question on its own, the notion of precise zero-knowledge has
found applications in unrelated settings such as designing leakage-resilient zero-knowledge [GJS11],
designing concurrently secure protocols in the multiple ideal query model [GJO10], etc.

Pandey et al. [PPS+08] study the problem of precise concurrent zero-knowledge and give a
protocol with the following parameters. Let t be the actual running time of the verifier. Then, the
protocol of [PPS+08] has round complexity nδ (for any constant δ ≤ 1) and knowledge precision
c · t where c is a large constant depending upon the adversary. That is, the running time of the
simulator is linear in the running time of the adversary.2

Our sparse rewinding strategy directly leads to a new construction of precise concurrent zero-
knowledge, improving upon [PPS+08] both in terms of round complexity as well as knowledge
precision.

Theorem 4 (Informally stated.) Assuming one way functions, there exists a concurrent zero-
knowledge protocol with poly-logarithmic (O(log6 n), to be precise) round-complexity and almost
optimal knowledge precision of (1 + δ)t (for any constant δ).

Improved concurrently secure computation in the MIQ model. In the quest for positive
results for concurrently secure computation, Goyal, Jain and Ostrovsky proposed the multiple ideal
query (MIQ) model, where for every session in the real world, the simulator is allowed to query

2[PPS+08] also give a construction requiring only ω(logn) rounds, however, the knowledge precision achieved in
this case is super-linear.

5

the ideal functionality for the output multiple times (as opposed to only once, as in the standard
definition of secure computation). They construct a protocol in this model whose security is proven
w.r.t. a simulator that makes a total of c ·m number of ideal queries in total (and c queries per
session, on an average), where c is a large constant that depends on the adversary and m is the
number of sessions.

We note that our security model is intimately connected to the multiple ideal query (MIQ) model
of Goyal, Jain and Ostrovsky [GJO10, GJ13] for concurrently secure computation. To observe this
connection, note that the additional output queries in the MIQ model can be viewed as leakage
observed by the simulator in our model. One can make a more accurate comparison between the
models based on the output length of functionality (that we wish to compute securely):

1. For general functionalities whose output length is at least a constant fraction of the input
length, the result of [GJO10] does not yield any non-trivial result in our model. This is because
the average leakage required per session would be c|y| (where y is the function output) which
is as much as leaking the entire input.

2. For functionalities whose output is much shorter than the input (e.g. boolean functions), the
result of [GJO10] does yield a non-trivial result in our model. For example, in the case of
boolean functions (or functions with constant bit outputs), [GJO10] yields a positive result

in our model with a leakage fraction of ε = O(1)
|x| . However, by a direct study of our model,

we obtain a much better leakage bound with ε = 1
poly(n) (for any polynomial poly(n)).

Looking at the other direction, the techniques for obtaining our main result also yield a new positive
result in the MIQ result with only (1 + 1

poly(n)) number of ideal queries per session (on an average),

thus improving upon the result of [GJO10]. We stress, however, that even this improved result in
the MIQ model does not directly translate to a general result in our model with the leakage bounds
that we achieve by a direct study. Again, this is because for functionalities whose output is much
larger than the input, even one extra query per session would translate to very high leakage on the
input. On the other hand, for functionalities whose output length is similar to the input length,
the security guarantees in the two models are indeed similar.

Indeed, one way of interpreting our positive results is a new technique to obtain better results
in the MIQ model.

Theorem 5 (Informally stated.) Assuming 1-out-of-2 (semi-honest) oblivious transfer, there exists
a concurrently secure protocol in the MIQ model with (1+ 1

poly(n)) number of ideal queries per session

(on an average).

Open Problem. We note that while our positive result in the leaky ideal world model is essen-
tially tight for general functionalities (in keeping with our negative result), the MIQ model provides
a hint that it is not tight if one is interested in achieving positive results for specific functionalities.
In particular, in the MIQ model, even if the simulator requires multiple queries for some sessions,
some meaningful security for those sessions may still be plausible (depending on the specification
of the functionality). In light of this, one can consider the following more general question: is it
possible to construct protocols such that under unbounded concurrent self-composition, security of
most sessions is fully preserved (as per the standard real/ideal paradigm) while in the remaining
sessions, some meaningful security guarantee is still provided, e.g., w.r.t. a game based security
notion. We leave this as an exciting open question for future work.

1.2 Our Techniques

Here we give an overview of the underlying techniques used in our positive result. Due to lack of
space, we defer discussion on our negative results to the technical sections.

6

A Starting Approach. A well established approach to constructing secure computation proto-
cols against malicious adversaries in the standalone setting is to use the GMW compiler [GMW87]:
take a semi-honest secure computation protocol and “compile” it with zero-knowledge arguments.
Then, a natural starting point to construct a concurrently secure computation protocol is to follow
the same principles in the concurrent setting: somehow compile a semi-honest secure computation
protocol with a concurrent zero-knowledge protocol (for security in more demanding settings, com-
pilation with concurrent non-malleable zero-knowledge [BPS06] may be required). Does such an
approach (or minor variants) already give us protocols secure according to the standard ideal/real
world definition in the plain model?

The fundamental problem with this approach is the following. Note that known concurrent zero-
knowledge simulators (in the fully concurrent setting) work by rewinding the adversarial parties.
In the concurrent setting, the adversary is allowed to control the scheduling of the messages of
different sessions. Then the following scenario might occur:

• Between two messages of a session s1, there might exist another entire session s2.

• When the simulator rewinds the session s1, it may rewind past the beginning of session s2.
Hence throughout the simulation, the session s2 may be executed multiple times from the
beginning.

• Every time the session s2 is executed, the adversary may choose a different input (e.g., the
adversary may choose his input in session s2 based on the entire transcript of interaction so
far). In such a case, the simulator is required to leak additional information about the input
of the honest party (e.g., in the form of an extra output as in [GJO10]).

Indeed, some such problem is rather inherent as indicated by various impossibility results [Lin04,
BPS06, Goy12, AGJ+12, GKOV12].3 As stated above, our basic idea will be to use leakage on the
inputs of the honest parties in order to continue in the rewindings (or look-ahead threads). Our
simulator would simply request the ideal functionality for the entire input of the honest party in
such a session. Subsequent to this, such a session can appear on any number of look-ahead threads:
we can simply use the leaked input and use that to proceed honestly.

Main Technical Problem. The key technical problem we face is the following. All previous
rewinding strategies are too “dense” for our purposes. These strategies do not lead to any non-trivial
results in our model: the simulator will simply be required the leak the honest party input in each
session. For example, in the oblivious rewinding strategies used in [KP01, PRS02, PPS+08, GJO10],
the “main” thread of protocol execution is divided into various blocks (2 blocks in [KP01, PRS02]
and n blocks in [PPS+08, GJO10]). Each given block is rewound that results in a “look-ahead
thread”. Each session on the main thread will also appear on these look-ahead threads (in fact,
on multiple look-ahead threads). Hence, it can be shown that our strategy of leaking inputs of
sessions appearing in look-ahead threads will result in leakage of inputs in all sessions. For the case
of adaptive rewinding strategies [RK99a, PV08, DGS09], the problem is even more pronounced.
Any given block (or an interval) of the transcript may be rewound any polynomial number of times
(each time to solve a different session).

Thus, the known rewinding strategies do not yield any non-trivial results in our model (let alone
allow leakage of any arbitrarily small polynomial fraction of inputs).

Main Idea: Sparse Rewinding Strategies. In order to address the above problem, we develop
a new “cost-based” rewinding strategy. In particular, our main technical contribution is the devel-
opment of what we call sparse rewinding strategies in the concurrent setting. In a sparse rewinding
strategy, the main idea is to choose various small intervals of the transcript and rewind only those
intervals. The main technical challenge is to show that despite rewinding only only few locations

3We stress that these results rule out non-black-box simulation as well.

7

of the transcript, extraction is still guaranteed for every session (regardless of where it lies on the
transcript).

In more detail, our rewinding strategy bears similarities with the oblivious recursive rewinding
strategies used in [KP01, PRS02]. Our main contribution lies in showing that a “significantly
stripped down” version of their strategy is still sufficient to guarantee extraction in all sessions.
More specifically, recall that the recursive rewinding strategies in [KP01, PRS02] have various
threads of executions (also called blocks) which are at different “levels” and have different sizes.
We carefully select only a small subset of these blocks and carry them out as part of our rewinding
schedule (while discarding the rest). The leakage parameter ε and the resulting round complexity
(which we show to be almost optimal w.r.t. a black-box simulator) determines what fraction of
blocks (and at what levels) are picked to be carried out in the rewinding schedule. Given such a
strategy, we reduce the problem of covering all sessions to a set cover problem: pick sufficiently
many blocks (each block representing a set of sessions which are “solved” when that block is
carried out as part of the rewinding schedule) such that every session is covered (i.e., extraction is
guaranteed) while still keeping the overall leakage (more generally, the “cost”) to be low. Indeed,
this cost-centric view is what also allows us to improve upon the precision guarantees in [PPS+08].

Additional Challenges. To convert the above basic idea into an actual construction, we en-
counter several difficulties. The main challenge is to argue extraction in all sessions. Recall that
the swapping arguments in prior works [KP01, PRS02, PTV12, PPS+08] crucially rely on “sym-
metry” between the main thread of execution and the look-ahead threads (i.e., execution threads
created view rewinding). In particular, to argue extraction, [PRS02, PTV12] define swap and undo
procedures w.r.t. execution threads that allow to transform a “bad” random tape of the simulator
(that leads to extraction failure) into a “good” random tape (where extraction succeeds) and back.
The idea being to show that every bad random tape, there exist super-polynomially many good
random tapes; as such, with overwhelming probability, the simulator must choose a good random
tape.

In our setting, using such swapping arguments becomes non-trivial. First off, note that we
cannot directly employ the standard greedy strategy for set-cover problem to choose which blocks
must be rewound. Very briefly, this is because once one swaps two blocks (one on the main thread,
and the corresponding one on a look-ahead thread), the choice of set of blocks which should be
chosen might completely change (this is because the associated “costs” of blocks may change after
swapping). Indeed, any such “biased” strategy seems to be doomed for failure against adversaries
that choose the schedule adaptively. Towards this end, we use a randomized strategy for choosing
which blocks to rewind, with the goal of still keeping the extraction cost minimal. Nevertheless,
despite the randomized approach, the sparse nature of our block choosing strategy still results in
significant “asymmetry” across the entire rewinding schedule. This leads to difficulties in carrying
out the swap and undo procedures as in [PRS02, PTV12]. We resolve these difficulties by using a
careful “localized” swapping argument (see technical sections for details).

Our final protocol is based on compilation with concurrent non-malleable zero-knowledge [BPS06].
We recall that there are several problems that arise with such a compilation. First, the security of
the [BPS06] construction is analyzed only for the setting where all the statements being proven by
honest parties are fixed in advance. Secondly, the extractor of [BPS06] is unsuitable for extracting
inputs of the adversary since it works after the entire execution is complete on a session-by-session
basis. Fortunately, these challenges were tackled in the work of Goyal et al. [GJO10]. Indeed,
Goyal et. al. presented an approach which can be viewed as a technique to correctly compile a
semi-honest secure protocol with [BPS06]. We adopt their approach to construct our final protocol.

Due to lack of space, the above discussion is significantly oversimplified. We refer the reader to
the technical sections for details.

8

Organization. The paper is organized as follows: We begin by describing our security models,
namely Joint Leaky Ideal World model and Individual Leaky Ideal World model, in Section 2. Next
we describe our concurrently extractable commitment scheme and our cost based sparse rewinding
strategy in Section 3. For a formal proof of extraction and cost analysis of our rewinding strategy
refer to Appendix B. Finally, we give our main theorem statements in Section 4. In Appendix A, we
describe all the primitives required for our protocol as well the negative results. Detailed description
of the concurrently secure MPC protocol in joint leaky ideal world model is given in Appendix C.
We give our improvement in concurrent precise zero-knowledge in Appendix D. Next, we give the
impossibility result for individual leaky ideal world model in Appendix E. Finally, we give the
round complexity black box lower bound for joint leaky ideal world model in Appendix F.

2 Our Model

In this section, we present our security model. Throughout this paper, we denote the security
parameter by κ.

We define our security model by extending the standard real/ideal paradigm for secure compu-
tation. Roughly speaking, we consider a relaxed notion of concurrently secure computation where
the ideal world adversary, aka, the simulator) is allowed to leak on the inputs of the honest parties.
Intuitively, the amount of leakage obtained by the simulator in order to simulate the view of a
concurrent adversary corresponds to the “information leakage” under concurrent composition.

We define two models of security:

• In the first model, the simulator is allowed to obtain joint leakage on the inputs of the honest
parties across all the sessions. Our main result in this model is a positive one.

• In the second model, the simulator is only allowed to leak on the honest party’s input in each
session individually. In Appendix E, we essentially rule out achieving security in this model.

We now describe each of these two models separately. We first state some points that are common
to both of these models.

In this work, we consider a malicious, static adversary. The scheduling of the messages across
the concurrent executions is controlled by the adversary. We do not require fairness and hence in
the ideal model, we allow a corrupt party to receive its output in a session and then optionally block
the output from being delivered to the honest party, in that session. We consider a static adversary
that chooses whom to corrupt before execution of the protocol. Finally, we consider computational
security only and therefore restrict our attention to adversaries running in probabilistic polynomial

time. We denote computational indistinguishability by
c≡.

Concurrently Secure Computation in the Joint Leaky Ideal World Model. We first
describe the “joint” leakage model. To model joint leakage across the ideal world executions, we
allow the simulator to make queries of the form L to the trusted party, where L is the circuit
representation of an efficiently computable function. On receiving such a query, the trusted party
(who controls all the ideal world sessions) computes L over the honest parties’ inputs in all the
sessions and returns the response to the adversary.

We now proceed to describe the ideal and real world experiments and then give our security
definition.

Ideal model. We first define the ideal world experiment, where there is a trusted party for
computing the desired two-party functionality F . Let there be two parties P1 and P2 that are
involved in multiple sessions, say m = m(κ). An adversary may corrupt either of the two parties.
As in the standard ideal world experiment for concurrently secure computation, the parties send
their inputs to the trusted party and receive the output of f evaluated on their inputs. The main

9

difference from the standard ideal world experiment is that the ideal adversary is allowed to make
leakage queries to the trusted party on the honest parties’ inputs in all the sessions at any time
during the experiment. In more detail, the ideal world execution proceeds as follows.

I. Inputs: P1 and P2 obtain a vector of m inputs, denoted ~x and ~y respectively. The adversary
is given auxiliary input z, and chooses a party to corrupt. Without loss of generality, we
assume that the adversary corrupts P2 (when the adversary controls P1, the roles are simply
reversed). The adversary receives the input vector ~y of the corrupted party.

II. Initiation: The adversary initiates all the sessions by sending a start-session message to the
trusted party. Upon receiving this message, the trusted party sends start-session to the honest
party P1.

III. Honest parties send inputs to trusted party: Upon receiving start-session from the trusted
party, honest party P1 sends the input vector ~x to the trusted party.

IV. Adversary sends input to trusted party and receives output: Whenever the adversary
wishes, it may send a message (i, y′i) to the trusted party for any y′i of its choice. Upon sending
this pair, it receives back (i,F(xi, y

′
i)) where xi is the input of P1 for session i.

V. Adversary instructs trusted party to answer honest party: When the adversary sends
a message of the type (output, i) to the trusted party, the trusted party sends (i,F(xi, y

′
i)) to

P1, where xi and y′i denote the respective inputs sent by P1 and adversary for session i.

VI. Adversary asks Leakage Queries: At any time during the ideal world experiment, adver-
sary may send leakage queries of the form L to the trusted party. On receiving such a query,
the trusted party computes L(~x) and returns it to the adversary.

VII. Outputs: The honest party P1 always outputs the values F(xi, y
′
i) that it obtained from

the trusted party. The adversary may output an arbitrary (probabilistic polynomial-time
computable) function of its auxiliary input z, input vector ~y and the function outputs obtained
from the trusted party.

The ideal execution of a function F with security parameter κ, input vectors ~x, ~y and auxiliary
input z to S, denoted idealF ,S(κ, ~x, ~y, z), is defined as the output pair of the honest party and S
from the above ideal execution.

Definition 1 (ε-Joint-Ideal-Leakage Simulator) Let S be a non-uniform probabilistic (expected)
ppt ideal-model adversary. We say that S is a ε-joint-ideal-leakage simulator if it leaks at most ε
fraction of the input vector of the honest party.

Real model. We now consider the real model in which a real two-party protocol is executed
(and there exists no trusted third party). Let F be as above and let Π be a two-party protocol for
computing F . Let A denote a non-uniform probabilistic polynomial-time adversary that controls
either P1 or P2. The parties run concurrent executions of the protocol Π, where the honest party
follows the instructions of Π in all executions. The honest party initiates a new session i with input
xi whenever it receives a start-session message from A. The scheduling of all messages throughout
the executions is controlled by the adversary. That is, the execution proceeds as follows: the
adversary sends a message of the form (i,msg) to the honest party. The honest party then adds
msg to its view of session i and replies according to the instructions of Π and this view. At the
conclusion of the protocol, an honest party computes its output as prescribed by the protocol.
Without loss of generality, we assume the adversary outputs exactly its entire view of the execution
of the protocol.

10

The real concurrent execution of Π with security parameter κ, input vectors ~x, ~y and auxiliary
input z to A, denoted realΠ,A(κ, ~x, ~y, z), is defined as the output pair of the honest party and A,
resulting from the above real-world process.

Security Definition. Having defined the ideal and real models, we now give our security defini-
tions.

Definition 2 (Concurrently Secure Computation in the Joint Leaky Ideal World Model)
A protocol Π evaluating a functionality F is said to be ε-secure in the joint leaky ideal world model
if for every real model non-uniform ppt adversary A, there exists a non-uniform (expected) ppt
ε-joint-ideal-leakage simulator S such that for every polynomial m = m(κ), every pair of input
vectors ~x ∈ Xm, ~y ∈ Y m, every z ∈ {0, 1}∗s,

{idealF ,S(κ, ~x, ~y, z)}κ∈N
c≡ {realΠ,A(κ, ~x, ~y, z)}κ∈N

Concurrently Secure Computation in the Individual Leaky Ideal World Model. We
now describe the “individual” leakage model. In this model, the ideal and real world experiments
are defined in the same as in the joint leaky ideal world model. The only difference is how the
leakage queries are handled in the ideal world experiment. Specifically, in the individual leaky
ideal world model, at any point during the ideal world experiment, the ideal adversary may send a
leakage query of the form (i, L) to the trusted party. On receiving such a query, the trusted party
first checks whether a leakage query of the form (i, ·) was earlier made by the adversary. If this is
the case, then the trusted party ignores the leakage query. Otherwise, it computes L(xi) (where xi
is the input of the honest party in session i) and returns the response to the adversary.

Definition 3 (ε-Individual-Ideal-Leakage Simulator) Let S be a non-uniform probabilistic
(expected) ppt ideal-model adversary. We say that S is a ε-individual-ideal-leakage simulator if
it leaks at most ε fraction of the the honest party input in each session.

Definition 4 (Concurrently Secure Computation in the Individual Leaky Ideal World Model)
A protocol Π evaluating a functionality F is said to be `-secure in the leaky ideal world model against
joint leakage if for every real model non-uniform ppt adversary A, there exists a non-uniform (ex-
pected) ppt ε-individual-ideal-leakage simulator S such that for every polynomial m = m(κ), every
pair of input vectors ~x ∈ Xm, ~y ∈ Y m, every z ∈ {0, 1}∗s,

{idealF ,S(κ, ~x, ~y, z)}κ∈N
c≡ {realΠ,A(κ, ~x, ~y, z)}κ∈N

3 Framework for Cost-based rewinding

3.1 Setting

Consider two players P1 and P2 running concurrent execution of a two party protocol Π. Π may
consists of multiple executions of the extractable commitment scheme 〈C,R〉 (Section 3.2) and
some other protocol messages. These other protocol messages will depend upon our underlying ap-
plications. In particular we will consider two main applications. In our application of concurrently
secure computation in joint leaky ideal world model, protocol Π is simply the secure computation
protocol. In precise concurrent zero-knowledge protocol, Π will be a zero-knowledge protocol.

Moreover, each message in the protocol will have an associated fixed non-zero cost based on the
application. In case of concurrent execution of the secure computation protocol, any message from
the adversary which causes our simulator to make an output query to the trusted functionality in
the ideal world is considered a “heavy” message. All other messages are almost “free”. In case of

11

concurrent precise zero-knowledge, cost of a message is the time taken by the adversary to generate
that message. All messages of the honest prover are unit cost.

We consider the scenario when exactly one of the parties is corrupted. We begin by describing
the extractable commitment scheme 〈C,R〉.

3.2 Extractable Commitment Protocol 〈C,R〉
Let com(·) denote the commitment function of a non-interactive perfectly binding string commit-
ment scheme (as described in Section A). Let κ denote the security parameter. Let ` = ω(log κ).
Let N = N(κ) which is fixed based on the application. The commitment scheme 〈C,R〉, where the
committer commits to a value σ (referred to as the preamble secret), is described as follows.

Commit Phase:
Stage Init: To commit to a κ-bit string σ, C chooses (` ·N) independent random pairs of κ-bit

strings {α0
i,j , α

1
i,j}

`,N
i,j=1 such that α0

i,j ⊕ α1
i,j = σ for all i ∈ [`], j ∈ [N]. C commits to all these

strings using com, with fresh randomness each time. Let B ← com(σ), and A0
i,j ← com(α0

i,j),

A1
i,j ← com(α1

i,j) for every i ∈ [`], j ∈ [N].
We say that the protocol has reached Start if message in Stage Init is exchanged.

Challenge-Response Stage:
For every j ∈ [N], do the following:

• Challenge : R sends a random `-bit challenge string vj = v1,j , . . . , v`,j .

• Response : ∀i ∈ [`], if vi,j = 0, C opens A0
i,j , else it opens A1

i,j by sending the decommitment
information.

A slotj of the commitment scheme consists of the receiver’s Challenge and the corresponding com-
mitter’s Response message. Thus, in this protocol, there are N slots.
We say that the protocol has reached End when Challenge-Response Stage is completed and
is accepted by R.

Open Phase: C opens all the commitments by sending the decommitment information for each
one of them. R verifies the consistency of the revealed values.

This completes the description of 〈C,R〉 which is an O(N) round protocol. The commit phase
is said to the valid iff there exists an opening of commitments such that the open phase is accepted
by an honest receiver.

Having defined the commitment protocol, we will describe a simulator S for the protocol Π
that uses a rewinding schedule to “simulate” the view of the adversary. For this, we would like to
prove an extraction lemma similar to [PRS02, PPS+08] for the protocol Π, i.e., in every execution
whenever a valid commit phase ends such that the adversary is playing the role of the committer,
our simulator (using rewinding) would be able to extract the preamble secret with all but negligible
probability. Moreover, we would like to guarantee that if the honest execution has total cost4 C,
then the cost incurred by our simulator is only C(1 + ε(N,κ)), where is ε is a small fraction.

3.3 Description of the simulator

We describe a new “cost-based” recursive rewinding strategy. We begin by giving some preliminary
definitions that will be used in the rest of the paper.

4Cost of an execution is the total cost of all the messages sent and received.

12

A thread of execution (consisting of the views of all the parties) is a perfect simulation of a
prefix of an actual execution. In particular, the main thread, is a perfect simulation of a complete
execution, and this is the execution thread that is output by the simulator. In addition, our
simulator will also make other threads by rewinding the adversary to a previous state and continuing
the execution from that state. Such a thread shares a (possibly empty) prefix with the previous
thread. We call the execution on this thread which is not shared with any of the previous threads
as a look-ahead thread.

We now first give an overview of the main ideas underlying our simulation technique and then
proceed to give a more formal description.

Overview. Consider the main thread of execution. At a high level, we divide this thread into
multiple parts referred to as “sets” consisting of possibly many protocol messages. The way we
define our sets is similar to previous rewinding strategies [PRS02, PPS+08]. Essentially if the entire
execution has cost c, then we divide the entire main thread into two sets of cost c/2 each, where cost
of a set is the total cost of the messages contained in that set. Next, we divide each of these sets
into two subsets, each of cost c/4. We continue this process recursively till we have c sets, each of
unit cost5. Note that if each message is of unit cost, then this dividing strategy is exactly identical
to [PRS02].6 The novel idea underlying our rewinding technique is that unlike [PRS02, PPS+08],
our simulator only rewinds a small subset of these sets while still guaranteeing extraction. In other
words, unlike [PRS02, PPS+08], ours is a “sparse” rewinding strategy.

We now describe our rewinding strategy by using an analogy to the set covering problem [CLRS09].
Recall that in set covering problem, there is a universe of elements and sets. Each set contains some
elements and has a fixed cost. The goal is to choose a minimum cost collection of these sets which
covers all the elements in the universe. In our setting, we think of each session as an element in
the universe. If there are m concurrent sessions {1, 2, . . . ,m}, we have m elements in our universe.
Now consider the sets defined above in our setting. A set is said to cover an element i if it contains
a complete slot of session i. Recall that the cost of a set is the sum of the cost of messages in this
set. We want to consider a minimum cost collection C of these sets which together covers all the
elements in the universe (i.e. all the sessions). Intuitively, we wish to rewind only the sets in C. At
a high level, this is the strategy adopted by our simulator. Due to reasons as discussed in Section
1.2, we adopt a slightly modified strategy in which the collection C is picked via a randomized
strategy. Recall that for all i there 2i sets with cost c/2i. Very briefly, for each collection of sets
which have same cost, we pick a fixed small fraction of these sets. We will prove that using this
strategy we will cover each session ω(log κ) times in order to guarantee extraction. As we will see
later on, with this strategy, we are able to guarantee that the simulator performs extraction with
all but negligible probability while incurring a small overhead.

Formal description of the simulator We begin by introducing some notation and terminology.
Let C be the total cost of main execution7. Without loss of generality, let C = 2x for some x ∈ N.
Let p(κ) = ω(log κ), and q(κ) = ω(1). Recall that N is the number of challenge-response slots in
〈C,R〉.

Thread at recursion level RL. We say that the main thread belongs to recursion level 0. The
look-ahead threads which fork off the main thread are said to be at recursion level 1. Recursively,
we say that look-ahead threads forking off a thread at recursion level RL belong to recursion level
(RL + 1).

5Note that due to this dividing strategy, we allow a message to be “divided” across multiple sets.
6If cost of a message is the time taken by the adversary to generate that message, then this dividing strategy is

exactly identical to [PPS+08].
7This cost C is always bounded by some polynomial in κ, i.e., C ≤ κα for some constant α.

13

Sets and set levels. Let T be the main thread or a look-ahead thread with cost c at recursion
level RL. We define the sets and the set levels of T as follows: The entire thread T is defined as
one set at recursion level RL and set level 0 with cost c. We denote it as set0RL. Now divide set0RL
into two sets at recursion level RL and set level 1 of cost c/2 each. We denote the first set as set1,1RL

and the second set as set1,2RL . Let seti,1RL, set
i,2
RL, . . . , set

i,2i

RL be 2i sets at set level i, each of cost c/2i,

where seti,jRL is the jth set at set level i. Divide each set seti,jRL into two sets at set level (i+ 1) each
of cost c/2i+1. We continue this recursively till we reach set level log c where each set has cost 1.
This way we have L = log c+ 1 set levels (0, 1, . . . , log c) with total sets 2c− 1.

For ease of notation, we will denote each set seti,jRL as a tuple (s-point, e-point) where s-point

denotes the cost of the thread T from the start of T till the start of seti,jRL and e-point to denote

the cost of thread from the start of T till the end of seti,jRL. Thus by definition cost of a set seti,jRL is
e-point− s-point. This will help us in describing our simulation strategy.

Simulator S. We now proceed to describe our simulation strategy which consists of procedures
Simulate, PickSet and SimMsg. More specifically, S simply runs Simulate(C, st0, φ, 0, rm, rs)
to simulate the main thread at recursion level 0 with cost C when st0 is the initial state of A. S
starts with empty history of messages, i.e. hist = ∅. Also, S uses two separate random tapes rm
and rs to generate messages and choose sets respectively. Finally, S returns its output as the view
of the adversary. We begin by describing these procedures in detail.

The Simulate(c, st, hist,RL, rm, rs) Procedure.

1. Compute psets = {(s-pointj , e-pointj)} ← PickSet(c, r), where r is randomness of appropriate size
from rs. Update rs = rs\r. Let J = |psets|.

2. Create a list ˜psets from psets as follows: For each entry (s-pointj , e-pointj) ∈ psets, initialize stj = ⊥
and histj = ⊥. Insert (s-pointj , e-pointj , stj , histj) into ˜psets. We order the list by increasing order of
e-point.

3. If c = 1, (st′, hist′, r′m, ˜psets)← SimMsg(0, 1, st, hist, rm, ˜psets). Output: (st′, hist′, r′m, rs).

4. Otherwise (i.e., c > 1),
• Initialize ctr = 0.

• While (j < J)

• (st′, hist′, r′m, ˜psets)← SimMsg(ctr, e-pointj − ctr, st, hist, rm, ˜psets).

• Set ctr = e-pointj , r
0
m = r′m, r0s = rs.

• Let there exist ` entries {(s-pointji , e-pointji , stji , histji)}i∈[`] in ˜psets such that e-pointji =
e-pointj .

• For each i ∈ [`],

(st′ji , hist
′
ji , r

i
m, r

i
s)← Simulate((e-pointji − s-pointji), stji , histji ,RL + 1, ri−1m , ri−1s).

• Set hist = hist′ ∪ (
⋃

i hist
′
ji), st = st′, rm = r`m, rs = r`s and j = j + `.

• If (ctr < c)

• (st′, hist′, r′m, ˜psets)← SimMsg(ctr, c− ctr, st, hist, rm, ˜psets).

• Update hist = hist′, st = st′, rm = r′m.

• Output: (st, hist, rm, rs).

Figure 1: The cost-based content oblivious simulator Simulate

14

Procedure Simulate. The procedure is used to simulate any thread T at recursion level RL
of cost c. It takes the following set of inputs. (a) The cost c of thread T . (b) The state st of
the adversary at the beginning of T . (c) The history hist of messages seen so far in simulation.
(d) Recursion level RL of T . (e) The random tape rm which is used to generate messages of the
honest party. (f) The random tape rs used by PickSet to choose sets.

At a high level, Simulate procedure when invoked on a set of inputs (c, st, hist,RL, rm, rs) does
the following:

1. It invokes PickSet procedure to choose a list of sets on T , say psets, which it will rewind.
Here each set will be denotes by the corresponding tuple (s-point, e-point).

2. Next, Simulate augments each entry of psets with two additional entries to create a new
list ˜psets where each entry consists of (s-point, e-point, st, hist), where st is the state of the
adversary and hist is the history of simulation at s-point. State st and history hist at s-point
are populated by the procedure SimMsg (described below) when simulation reaches s-point.

3. Simulate generates messages for the thread iteratively till the end of the thread is reached
as follows:

1. It invokes the SimMsg procedure to generate the messages from current point of simu-
lation to the next e-point of some set in ˜psets.

2. For each of the sets which end at this point, it calls Simulate procedure recursively to
create new look-ahead threads at recursion level RL + 1.

3. Finally, it merges the current history of messages with messages seen on the look-ahead
threads.

4. It returns (st′, hist′, r′m, r
′
s), where st′ is the state of the adversary at the end of the thread,

hist′ is the updated collection of messages, r′m and r′s are the unused parts of the random
tapes rm and rs respectively.

The figure 1 gives a formal description of Simulate procedure.

Algorithm PickSet. At a high level, given the main thread or a look-ahead thread T at recursion
level RL with cost c, it chooses a fixed fraction of sets across all set levels of T where our simulator
would rewind. More formally, on input (c, r), where c is the cost of T and r is some randomness,

PickSet(c, r) returns a list of sets psets= {(s-pointj , e-pointj)} consisting of
⌊
p(κ)·q(κ)·log3 κ

N · 2i
⌋

sets at random at set level i for every i ∈ [log c].
Note that the sets picked by PickSet depend only on the cost c of the thread T and randomness

r and not on the protocol messages of T .

Procedure SimMsg. This procedure generates the messages by running the adversary step by
step8, i.e. incurring unit cost at a time. It takes the following set of inputs. (a) The partial cost ctr
of the current thread simulated so far. (b) The additional cost c for which the current thread has
to be simulated. (c) The current state st of the adversary. (d) The history hist of messages seen so
far in simulation. (e) The random tape rm to be used to generate messages. (f) The list ˜psets of
the sets chosen by PickSet for thread T .

SimMsg generates messages on thread T one step at a time for c steps as follows:

1. If the next scheduled message is the challenge message in an instance of 〈C,R〉, it chooses a
challenge uniformly at random. Also, if the next scheduled message is some other protocol
message from honest party, it uses the honest party algorithm to generate the same.

8We will assume that it is possible to run the adversary one step at a time. We elaborate on this in our applications.

15

2. If the next scheduled message is from A, SimMsg runs A for one step and updates st and
hist. Note that it is possible that A may not generate a message in one step.

3. If the current point on the thread corresponds to the s-point of some sets in ˜psets, it updates
the corresponding entries with current state st of A and history hist of messages.

Finally it outputs the final state st of the adversary, updated history hist of messages, unused
part r′m of random tape rm and updated list ˜psets. Procedure SimMsg is described formally in
Figure 2.

The SimMsg(ctr, c, st, hist, rm, ˜psets) Procedure.

For i = 1 to c do the following:

• Next scheduled message if from honest party to A: If the next scheduled message is a challenge
message of 〈C,R〉, choose a random challenge message using randomness from rm. Else, if the next
message is some other message from honest party, send this message according to honest party algorithm
using randomness from rm. Feed this message to A.

Next scheduled message is from A: If the next scheduled message is from A, run A from its current
state st for exactly 1 step. If an output, β, is received and if β is a response message in 〈C,R〉, store β
in hist as a response to the corresponding challenge message. Update st to the current state of A. If it is
some other message of the protocol, store it in hist.

• If there exists k entries {(s-pointjy , e-pointjy , stjy , histjy)}y∈[k] in ˜psets such that s-pointjy = ctr + i. For

each y ∈ [k] update stjy = st and histjy = hist.

Let r′m be the unused part of rm. Output: (st, hist, r′m, ˜psets).

Figure 2: The SimMsg Procedure

In Appendix B we prove the following two lemmas:

Lemma 1 (Extraction lemma) Consider two parties P1 and P2 running polynomially many (in
the security parameter) sessions of a protocol Π consisting of possibly multiple executions of the
commitment scheme 〈C,R〉. Also, let one the parties, say P2, be corrupted. Then there exists a
simulator S such that except with negligible probability, in every thread of execution simulated by S,
if honest P1 accepts a commit phase of 〈C,R〉 as valid, then at the point when that commit phase
is concluded, S would have already extracted the preamble secret committed by the corrupted P2.

Lemma 2 Let C be the cost of the main thread. Then the cost incurred by our simulator is bounded
by

C · (1 + (log∗ κ)2 logC log4 κ
N) when 〈C,R〉 has N ≥ log6 κ slots.

4 Our Results

We now state the main results in this paper. Due to lack of space, here we only state the theorem
statements, and refer the reader to different sections of the appendix for all the details.

Positive Results. As the main result of this paper, we construct an O(N) round protocol Π that
ε-securely realizes any (efficiently computable) functionality F in the joint leaky ideal world model
for any ε > 0. More formally, we show the following:

16

Theorem 6 Assume the existence of 1-out-of-2 oblivious transfer protocol secure against honest
but curious adversaries. Then for every polynomial poly(κ) such that ε = 1/poly(κ), for any func-
tionality F , there exists an O(N) round protocol Π that ε-securely realizes F in the joint leaky ideal

world model, where N = (log6 κ)
ε .

More generally, assume the existence of 1-out-of-2 oblivious transfer protocol secure against
honest but curious adversaries and collision resistent hash functions. Then for any ε > 0, for any
functionality F , there exists an O(N) round protocol Π that ε-securely realizes F in the joint leaky

ideal world model, where N = (log6 κ)
ε .

Protocol Π is essentially the protocol of [GJO10] instantiated withN -round concurrently-extractable
commitment scheme described earlier in the paper. The security analysis of the protocol is done
using the simulation technique described earlier.

Negative Results. We also present strong impossibility results for achieving security in both the
individual and joint leaky ideal world model. First, we prove the following result:

Theorem 7 There exists a functionality f such that no protocol Π ε-securely realizes f in the
individual leaky ideal world model for ε = 1

2 − δ, where δ is any constant fraction.

Additionally, we prove a lower bound on the round-complexity of protocols for achieving ε-
security in the joint leaky ideal world model, with respect to black-box simulation. Specifically, we
prove the following result:

Theorem 8 Let ε be any inverse polynomial. Assuming dense cryptosystems, there exists a func-
tionality f that cannot be ε-securely realized with respect to black-box simulation in the joint leaky

ideal world model by any log(κ)
ε round protocol.

References

[AGJ+12] Shweta Agrawal, Vipul Goyal, Abhishek Jain, Manoj Prabhakaran, and Amit Sahai.
New impossibility results on concurrently secure computation and a non-interactive
completeness theorem for secure computation. In CRYPTO, 2012.

[BCH12] Nir Bitansky, Ran Canetti, and Shai Halevi. Leakage-tolerant interactive protocols. In
TCC, pages 266–284, 2012.

[BCNP04] B. Barak, R. Canetti, J.B. Nielsen, and R. Pass. Universally composable protocols with
relaxed set-up assumptions. In FOCS, pages 186–195, 2004.

[BGJ+12] Elette Boyle, Sanjam Garg, Abhishek Jain, Yael Tauman Kalai, and Amit Sahai. Secure
computation against adaptive auxiliary information. In Manuscript, 2012.

[Blu87a] Manual Blum. How to prove a theorem so no one else can claim it. In International
Congress of Mathematicians, pages 1444–1451, 1987.

[Blu87b] Manuel Blum. How to prove a theorem so no one else can claim it. In Proceedings of
the International Congress of Mathematicians, pages 1444–1451, 1987.

[BPS06] Boaz Barak, Manoj Prabhakaran, and Amit Sahai. Concurrent non-malleable zero
knowledge. In FOCS, pages 345–354, 2006.

[BS05] Boaz Barak and Amit Sahai. How to play almost any mental game over the net -
concurrent composition using super-polynomial simulation. In Proc. 46th FOCS, 2005.

17

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In CRYPTO,
pages 19–40, 2001.

[CGS08] Nishanth Chandran, Vipul Goyal, and Amit Sahai. New constructions for uc secure
computation using tamper-proof hardware. EUROCRYPT, 2008.

[CKL03] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally
composable two-party computation without set-up assumptions. In Eurocrypt ’03, 2003.

[CLOS02] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-party
and multi-party secure computation. pages 494–503, 2002.

[CLP10] Ran Canetti, Huijia Lin, and Rafael Pass. Adaptive hardness and composable security
in the plain model from standard assumptions. In FOCS, pages 541–550, 2010. Full
version: http://www.cs.cornell.edu/~rafael/papers/ccacommit.pdf.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms (3. ed.). MIT Press, 2009.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM J.
Comput., 30(2):391–437, 2000.

[DGS09] Yi Deng, Vipul Goyal, and Amit Sahai. Resolving the simultaneous resettability con-
jecture and a new non-black-box simulation strategy. In FOCS, 2009.

[DP07] Stefan Dziembowski and Krzysztof Pietrzak. Intrusion-resilient secret sharing. In FOCS,
pages 227–237, 2007.

[GGJ13] Vipul Goyal, Divya Gupta, and Abhishek Jain. What information is leaked under
concurrent composition? In CRYPTO, pages 220–238, 2013.

[GGJS12] Sanjam Garg, Vipul Goyal, Abhishek Jain, and Amit Sahai. Concurrently secure com-
putation in constant rounds. In EUROCRYPT, pages 99–116, 2012.

[GIS+10] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay Wadia.
Founding cryptography on tamper-proof hardware tokens. In TCC, pages 308–326,
2010.

[GJ13] Vipul Goyal and Abhishek Jain. On concurrently secure computation in the multiple
ideal query model. In EUROCRYPT, 2013.

[GJO10] Vipul Goyal, Abhishek Jain, and Rafail Ostrovsky. Password-authenticated session-key
generation on the internet in the plain model. In CRYPTO, pages 277–294, 2010.

[GJS11] Sanjam Garg, Abhishek Jain, and Amit Sahai. Leakage-resilient zero knowledge. In
CRYPTO, pages 297–315, 2011.

[GKOV12] Sanjam Garg, Abishek Kumarasubramanian, Rafail Ostrovsky, and Ivan Visconti. Im-
possibility results for static input secure computation. In CRYPTO, 2012.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time programs. In
CRYPTO, pages 39–56, 2008.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In STOC
’87: Proceedings of the 19th annual ACM conference on Theory of computing, pages
218–229, New York, NY, USA, 1987. ACM Press.

18

[Goy12] Vipul Goyal. Positive results for concurrently secure computation in the plain model.
In FOCS, 2012.

[GP91] Oded Goldreich and Erez Petrank. Quantifying knowledge complexity. In FOCS, pages
59–68, 1991.

[HHK+05] Iftach Haitner, Omer Horvitz, Jonathan Katz, Chiu-Yuen Koo, Ruggero Morselli, and
Ronen Shaltiel. Reducing complexity assumptions for statistically-hiding commitment.
In EUROCRYPT, pages 58–77, 2005.

[Kat07] J. Katz. Universally composable multi-party computation using tamper-proof hard-
ware. In Advances in Cryptology — Eurocrypt 2007, volume 4515 of Lecture Notes in
Computer Science, pages 115–128. Springer, 2007.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In STOC, pages 20–31, 1988.

[KP01] Joe Kilian and Erez Petrank. Concurrent and resettable zero-knowledge in poly-
loalgorithm rounds. In STOC, pages 560–569, 2001.

[KV09] Jonathan Katz and Vinod Vaikuntanathan. Signature schemes with bounded leakage
resilience. In ASIACRYPT, pages 703–720, 2009.

[Lin03a] Yehuda Lindell. Bounded-concurrent secure two-party computation without setup as-
sumptions. In Proc. 35th STOC, pages 683–692, 2003.

[Lin03b] Yehuda Lindell. General composition and universal composability in secure multi-party
computation. In FOCS, pages 394–403, 2003.

[Lin04] Yehuda Lindell. Lower bounds for concurrent self composition. In Theory of Cryptog-
raphy Conference (TCC), volume 1, pages 203–222, 2004.

[LP12] Huijia Lin and Rafael Pass. Black-box constructions of composable protocols without
set-up. In CRYPTO, pages 461–478, 2012.

[MP06] Silvio Micali and Rafael Pass. Local zero knowledge. In STOC, pages 306–315, 2006.

[MPR06] Silvio Micali, Rafael Pass, and Alon Rosen. Input-indistinguishable computation. In
FOCS, pages 367–378, 2006.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. J. Cryptology, 4(2):151–158,
1991.

[NOVY98] Moni Naor, Rafail Ostrovsky, Ramarathnam Venkatesan, and Moti Yung. Perfect zero-
knowledge arguments for NP using any one-way permutation. J. Cryptology, 11(2):87–
108, 1998.

[Pas03] Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol com-
position. In Eurocrypt, 2003.

[Pas04] Rafael Pass. Bounded-concurrent secure multi-party computation with a dishonest
majority. In STOC, pages 232–241, 2004.

[PPS+08] Omkant Pandey, Rafael Pass, Amit Sahai, Wei-Lung Dustin Tseng, and Muthuramakr-
ishnan Venkitasubramaniam. Precise concurrent zero knowledge. In EUROCRYPT,
pages 397–414, 2008.

19

[PR03] Rafael Pass and Alon Rosen. Bounded-concurrent secure two-party computation in a
constant number of rounds. In FOCS, 2003.

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowledge with
logarithmic round-complexity. In FOCS, 2002.

[PS04] Manoj Prabhakaran and Amit Sahai. New notions of security: achieving universal
composability without trusted setup. In STOC, pages 242–251, 2004.

[PTV12] Rafael Pass, Wei-Lung Dustin Tseng, and Muthuramakrishnan Venkitasubramaniam.
Concurrent zero knowledge, revisited. In Manuscript, 2012.

[PV08] Rafael Pass and Muthuramakrishnan Venkitasubramaniam. On constant-round con-
current zero-knowledge. In Ran Canetti, editor, TCC, volume 4948 of Lecture Notes in
Computer Science, pages 553–570. Springer, 2008.

[RK99a] R. Richardson and J. Kilian. On the concurrent composition of zero-knowledge proofs.
In Eurocrypt ’99, pages 415–432, 1999.

[RK99b] Ransom Richardson and Joe Kilian. On the concurrent composition of zero-knowledge
proofs. In EUROCRYPT, pages 415–431, 1999.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets. In Proc. 27th FOCS,
pages 162–167, 1986.

A Building Blocks

We now briefly mention some of the main cryptographic primitives that we use in our construction.

A.1 Statistically Binding String Commitments

In our protocol, we will use a (2-round) statistically binding string commitment scheme, e.g.,
a parallel version of Naor’s bit commitment scheme [Nao91] based on one-way functions. For
simplicity of exposition, in the presentation of our results, we will actually use a non-interactive
perfectly binding string commitment.9 Such a scheme can be easily constructed based on a 1-to-1
one way function. Let com(·) denote the commitment function of the string commitment scheme.
For simplicity of exposition, in the sequel, we will assume that random coins are an implicit input
to the commitment function.

A.2 Statistically Witness Indistinguishable Arguments

In our construction, we shall use a statistically witness indistinguishable (SWI) argument 〈Pswi, Vswi〉
for proving membership in any NP language with perfect completeness and negligible soundness
error. Such a scheme can be constructed by using ω(log k) copies of Blum’s Hamiltonicity proto-
col [Blu87a] in parallel, with the modification that the prover’s commitments in the Hamiltonicity
protocol are made using a statistically hiding commitment scheme [NOVY98, HHK+05].

9It is easy to see that the construction given in Section C.1 does not necessarily require the commitment scheme
to be non-interactive, and that a standard 2-round scheme works as well. As noted above, we choose to work with
non-interactive schemes only for simplicity of exposition.

20

A.3 Semi-Honest Two Party Computation

We will also use a semi-honest two party computation protocol 〈P sh
1 , P sh

2 〉 that emulates the func-
tionality F (as described in section 2) in the stand-alone setting. The existence of such a protocol
〈P sh

1 , P sh
2 〉 follows from [Yao86, GMW87, Kil88].

A.4 Concurrent Non-Malleable Zero Knowledge Argument

Concurrent non-malleable zero knowledge (CNMZK) considers the setting where a man-in-the-
middle adversary is interacting with several honest provers and honest verifiers in a concurrent
fashion: in the “left” interactions, the adversary acts as verifier while interacting with honest
provers; in the “right” interactions, the adversary tries to prove some statements to honest verifiers.
The goal is to ensure that such an adversary cannot take “help” from the left interactions in order
to succeed in the right interactions. This intuition can be formalized by requring the existence of a
machine called the simulator-extractor that generates the view of the man-in-the-middle adversary
and additionally also outputs a witness from the adversary for each “valid” proof given to the
verifiers in the right sessions.

Recently, Barak, Prabhakaran and Sahai [BPS06] gave the first construction of a concurrent non-
malleable zero knowledge (CNMZK) argument for every language in NP with perfect completeness
and negligible soundness error.

In our main construction, we will use a specific CNMZK protocol, denoted 〈P, V 〉, based on
the CNMZK protocol of Barak et al. [BPS06] to guarantee non-malleability. Specifically, we will
make the following two changes to Barak et al’s protocol: (a) Instead of using an ω(log κ)-round
extractable commitment scheme [PRS02], we will use the N -round extractable commitment scheme
〈C,R〉 (described in Section 3.2). (b) Further, we require that the non-malleable commitment
scheme being used in the protocol be public-coin w.r.t. receiver10. We now describe the protocol
〈P, V 〉.

Protocol 〈P, V 〉. Let P and V denote the prover and the verifier respectively. Let L be an NP
language with a witness relation R. The common input to P and V is a statement x ∈ L. P
additionally has a private input w (witness for x). Protocol 〈P, V 〉 consists of two main phases:
(a) the preamble phase, where the verifier commits to a random secret (say) σ via an execution of
〈C,R〉 with the prover, and (b) the post-preamble phase, where the prover proves an NP statement.
In more detail, protocol 〈P, V 〉 proceeds as follows.

Preamble Phase.

1. P and V engage in execution of 〈C,R〉 (Section 3.2) where V commits to a random string σ.

Post-preamble Phase.

2. P commits to 0 using a statistically-hiding commitment scheme. Let c be the commitment
string. Additionally, P proves the knowledge of a valid decommitment to c using a statistical
zero-knowledge argument of knowledge (SZKAOK).

3. V now reveals σ and sends the decommitment information relevant to 〈C,R〉 that was exe-
cuted in step 1.

4. P commits to the witness w using a public-coin non-malleable commitment scheme.

10The original NMZK construction only required a public-coin extraction phase inside the non-malleable com-
mitment scheme. We, however, require that the entire commitment protocol be public-coin. We note that the
non-malleable commitment protocol of [DDN00] only consists of standard perfectly binding commitments and zero
knowledge proof of knowledge. Therefore, we can easily instantiate the DDN construction with public-coin versions
of these primitives such that the resultant protocol is public-coin.

21

5. P now proves the following statement to V using SZKAOK:

(a) either the value committed to in step 4 is a valid witness to x (i.e., R(x,w) = 1, where
w is the committed value), or

(b) the value committed to in step 2 is the trapdoor secret σ.

P uses the witness corresponding to the first part of the statement.

Straight-line Simulation of 〈P, V 〉. A nice property of protocol 〈P, V 〉 is that it allows straight-
line simulation of the prover if the trapdoor secret σ is available to the simulator S. (Note that
S can run the simulator S during the execution of 〈C,R〉 in order to extract σ from V .) Below
we describe the straight-line simulation strategy for the post-preamble phase (assuming that the
simulator S already knows the trapdoor secret σ).

1. S creates a statistically hiding commitment to σ (instead of a string of all zeros) and follows
it with an honest execution of SZKAOK to prove knowledge of the decommitment value.

2. On receiving the decommitment information corresponding to the preamble phase, S first
verifies its correctness (in the same manner as an honest prover). If the verification fails, S
stops the simulation.

3. S commits to an all zeros string (instead of a valid witness to x) using the non-malleable
commitment scheme.

4. S engages in the execution of SZKAOK with the adversarial verifier, where it uses the (trap-
door) witness corresponding to the second part of the statement. (Note that the trapdoor
witness is available to S since it committed to σ in step 2 of the protocol.)

A.5 Intrusion Resilient Secret Sharing Schemes

Our impossibility result in the independent leaky ideal world model makes use of the Intrusion-
Resilient Secret Sharing (IRSS) scheme of [DP07]. Here, we give a short description of its syntax and
the adversarial model, and the security properties that we will use. For simplicity of exposition, the
description below is not as general as in [DP07], and is instead tailored to our specific application.

We start by giving the functional definition of IRSS.

Definition 1 An intrusion-resilient secret sharing (IRSS) scheme IRSSn,` is a protocol between a
dealer and a set of players P = {P0, · · · , Pn−1}). It consists of the following two algorithms:

• Sharen,` is a randomized algorithm that takes as input a secret value X and returns a set of
shares {X1, · · · , Xn} (where each Xi is of some fixed length κ), as well as a “reconstruction”
sequence R = (r1, · · · , r`) (where each ri ∈ {1, . . . , n}. The algorithm is executed by the dealer
that later sends Xi to player Pi.

• Recn,` is a deterministic algorithm that takes as input the shares {X1, · · · , Xn} and the se-
quence R = (r1, · · · , r`) (produced by the Share algorithm) and returns the secret X. The
algorithm Recn,` consists of `− 1 rounds, where in the i-th round (for i = 1, · · · , `− 1) player
Pri sends a message to player Pri+1. The output is computed by Pr`.

Definition 2 Let || denote concatenation. Let X = (x1, . . . , xn) be a sequence. We say that X
is a subsequence of sequence Y , if there exist (possibly empty) sequences Y1, . . . , Yk+1 such that
Y = Y1||x1|| . . . ||Yk||xn||Yk+1. We also say that Y contains X.

We now give the adversarial model for an IRSS from [DP07]. For convenience, we will abuse
notation and drop parameters from notation when they are fixed.

22

Adversarial Model. Let IRSSn,` = (Sharen,`,Recn,`) be an IRSS scheme as above. Consider
an adversary A that plays the following game against an oracle Ω. The oracle runs Share(X)
to obtain the shares X1, · · ·Xn. Now, the adversary can issue an (adaptively chosen) sequence
leak1, · · · , leakw of leakage requests. Each request leakj is a pair (cj , Lj), where cj ∈ {1, . . . , n}, and
Lj : {0, 1}n → {0, 1}sj is an arbitrary function (represented as a circuit). Note that this circuit can
have the history of the adversary hardwired into it as input. On input leakj = (cj , Lj), Ω replies
with Lj(Xcj). We will say that the adversary chose a leakage sequence C = (c1, · · · , cw).

An adversary A is a valid adversary if the sequence R (that was output by the share algorithm)
is not a subsequence of C. Finally A outputs a guess Y . We say that valid adversary A breaks the
scheme with advantage γ if Pr[Y = X] = ε. When we consider adversaries in the IRSS scheme, we
only consider valid adversaries. We now define a βn bounded adversary.

Definition 3 An adversary A is βn-bounded, if the corruption sequence C = (c1, · · · , cw) chosen
by A satisfies the following:

∑w
j=1 sj ≤ βn, where sj is the output length of Lj.

We define the security of an IRSS scheme.

Definition 4 An IRSS scheme IRSSn,` is (γ, βn)-secure if every βn bounded valid adversary A
breaks IRSSa with advantage at most γ.

Parameters for Impossibility Result in Section E. For our impossibility result, we will
work with parameters n = 3, ` = 5. Moreover, for convenience, we simply fix the “reconstruction”
sequence R to be (1, 2, 3, 1, 2). We now claim the following simple lemma:

Lemma 3 Let X1, X2, X3 denote the secret shares of a random secret X output by the Share algo-
rithm. Let A be an adversary who makes (at most) three leakage queries leak1, leak2, leak3, where at
most one query leaki = (ci, Li) is such that Li(Xci) = Xci (i.e., Li is the identity function), while
the other queries leakj = (cj , Lj) leak at most a constant (< 1) fraction of the share Xcj . Then, A
is a valid adversary for IRSS3,5.

The above lemma follows immediately from the description of A. Specifically, since at most one
leakage query leaki = (ci, Li) reveals a secret share entirely, the “residual” reconstruction sequence
(obtained after deleting each occurrence of ci from R) is still of length at least 3. Now, since A
only makes at most 2 more leakage queries, we have that R cannot be a subsequence of A’s leakage
sequence. Therefore A is valid.

In the rest of this paper, we will simply refer to the IRSS scheme as IRSS, with the parameters
n = 3, ` = 5 fixed, and omitted from the subscript.

A.6 One Time Programs

A one-time program (OTP) [GKR08, GIS+10] for a function f allows a party to evaluate f on
a single input x chosen by the party dynamically. Thus, a one-time program guarantees that no
efficient adversary, after evaluating the one-time program on some input x, can learn anything
beyond (x, f(x)). In particular he gains no information about f(y) for any y 6= x outside of the
information provided by f(x). OTPs are non interactive; an OTP corresponding to some function
f , OTP-msgf given to a user by some environment (or user) U allows the user to evaluate f once

on some input of its choice, with no further interaction with U . It is shown in [GKR08, GIS+10]
that OTPs cannot be implemented by software alone. Thus, an OTP is typically implemented as
a software plus hardware package, where the hardware is assumed to be secure (that is, can only
be accessed in a black box way via its interface), and the software can be read and tampered with.
The secure hardware devices that are used are called one time memory devices (OTM).

23

An OTM is a memory device initialized by two keys key0, key1 which takes as input a single bit
b, outputs keyb and then “self destructs”. OTMs were inspired by the oblivious transfer protocol,
and indeed, for our purposes, we will find it necessary to use oblivious transfer in place of one time
memory tokens. This approach is not new and has been used in previous works as well [GIS+10].
Thus, for our setting, we will define one-time programs in the FOT-hybrid model directly for ease
of use. We state this definition in terms of an asynchronous, non-interactive protocol (as defined
above) for an asymmetric “one-time program functionality” FOTP, which accepts a circuit f from
the party P1 and an input x from the party P2, and returns f(x) to P2 (and notifies P1) (see Figure
3). The protocol is required to be secure only against corruption of P2. Note that the requirement
of being non-interactive makes this non-trivial (i.e., P2 cannot send its input to P1 and have it
evaluated).

Ideal Functionality of One Time Program
In Figure 3, we describe the ideal functionality of a One Time Program.

Functionality FOTP

Create Upon receiving (sid, create, P1, P2, f) from P1 (with a fresh session ID sid), where
f is a circuit for a function, do:

1. Send (sid, create, P1, P2, size(f)) to P2, where the size outputs the size of the circuit
and the number of input wires it has.

2. Store (sid, P2, f).

Execute Upon receiving (sid, run, x) from P2, find the stored tuple (sid, P2, f) (if no such
tuple exists, do nothing). Send (sid, value, f(x)) to P2 and delete tuple (sid, P2, f). (If x is
not of the right size, define f(x) = ⊥.) Send (sid, evaluated) to P1.

Figure 3: Ideal functionality for One-time Program.

Definition 5 (One-Time Program) (Adapted from [GKR08, GIS+10]) A one-time program
(OTP) scheme is an asynchronous two-party non-interactive protocol ΠFOT (in the FOT-hybrid
model) that UC-securely realizes FOTP (as defined in Figure 3) when the adversary is allowed to
corrupt only P2.

In other words, if ΠFOT is a one-time program scheme, then for every probabilistic polynomial
time adversary A corrupting P2, and adaptively scheduling the FOT sessions in the real-model execu-
tion of Π, there exists a probabilistic polynomial time ideal-world adversary SimOTP (the simulator),

such that for every environment Z, it holds that IdealfSimOTP,Z
c≡ RealΠA,Z , where IdealfSimOTP,Z and

RealΠA,Z denote the outputs produced by SimOTP and A respectively.
We shall refer to an execution of an OTP scheme with input f for P1 as an OTP for f .

We note that OTPs exist if a (standalone secure) Oblivious Transfer protocol exists [GIS+10],
which in turn exists if a concurrent secure OT protocol exists. Thus, for proving the impossibility
of concurrent secure OT protocols, we can assume the existence of OTPs “for free.”

Intuitively, this means that for every probabilistic polynomial time algorithm A given access
to a one-time program (or non interactive protocol Π) for some function f , there exists another

24

probabilistic polynomial time algorithm SimOTP which is given one time black box access to f ,
i.e. it can request to see the value f(x) for any x of its choice, such that (for any f) the output

distributions of SimOTP (denoted by IdealfSimOTP
) and A (denoted by RealΠA) are computationally

indistinguishable, even to a machine that knows f .

OTP simulator : In the real world, the output of the adversary A consists of a one time program
OTP-msgReal for a function f of circuit size ` (say), as well as one input to OTP-msgReal, denoted
by keysReal = {(keyReal1 , . . . keyRealk } (for k input wires). Thus, RealΠA,Z = {OTP-msgReal, keysReal}.

We describe how our OTP simulator (denoted by SimOTP) interacts with some environment (or
user), say U .

1. U gives SimOTP a circuit size `, SimOTP returns a one time program OTP-msgIdeal for circuit
size `.

2. Let us assume that OTP-msgIdeal has k input wires, and denote these inputs by keyIdeal1 , . . . , keyIdealk .
U may query SimOTP for the inputs to be provided to OTP-msgIdeal. Then, SimOTP returns
inputs {keyIdeal1 , . . . , keyIdealt } for the first t bits, for some t < k (we refer to the inputs as keys
since they are similar to the keys that are input to garbled circuits).

3. After returning t inputs, SimOTP produces a value, say x, and queries U for f(x), i.e. the
desired output of OTP-msgIdeal on x.

4. U provides the output, at which point SimOTP returns the values for the remaining input
wires {keyIdealt+1 , . . . , key

Ideal
k }. We will denote keysIdeal = {keyIdeal1 , . . . , keyIdealk }.

5. Output IdealfSimOTP
= {OTP-msgIdeal, keysIdeal} c≡ {OTP-msgReal, keysReal} = RealΠA,Z .

A.7 Leakage-Resilient Signatures

Our definition of leakage resilient signatures is essentially the standard notion of existentially un-
forgeability under adaptive chosen message attacks, except that we allow the adversary to specify
an arbitrary function L(·) (whose output length is bounded by the leakage parameter), and obtain
the value of L applied to the signing key. Let κ be the security parameter, and (Gen, Sign,Verify)
denote a signature scheme. Let ` denote the leakage parameter. In order to define leakage resilient
signatures, we consider the following experiment.

1. Compute (sk, vk)← Gen(1safe, `) and give vk to the adversary.

2. Run the adversary A(1safe, vk, `). The adversary may make adaptive queries to the signing
oracle Signsk(·) and the leakage oracle Leaksk(·), defined as follows:

• On receiving the ith query si, Signsk(si) computes σi ← Signsk(si) and outputs σi.

• On receiving an input L (where L is a polynomial-time computable function, described
as a circuit), Leaksk(L) outputs L(vk) to A. The adversary is allowed only a single
query to the leakage oracle. It can choose any function L(·) whose output length is
bounded by {0, 1}`·|sk|.

3. At some point, A stops and outputs (s∗, σ∗).

We say that A succeeds if (a) Verifyvk(s
∗, σ∗) = 1, and (b) s∗ was never queried to Signsk(·).

Definition 6 A signature scheme (Gen,Sign,Verify) is said to be `-leakage resilient if all polynomial-
time adversaries A can succeed with only negligible probability in the above experiment.

Theorem 9 ([KV09]) Assuming dense public-key cryptosystems, there exists a (1−o(1)-leakage-
resilient signature scheme.

25

B Proof of Extraction of Trapdoor

In this section, we will prove that if the commit phase of 〈C,R〉 of any session concludes on any
thread of execution such that it is valid, then our simulator would have extracted the preamble
secret committed by the adversary in that session with all but negligible probability. In particular,
we prove the following lemma.

Lemma 4 (Extraction lemma) Consider two parties P1 and P2 running polynomially many (in
the security parameter) sessions of a protocol Π consisting of possibly multiple executions of the
commitment scheme 〈C,R〉. Also, let one the parties, say P2, be corrupted. Then there exists a
simulator S such that except with negligible probability, in every thread of execution simulated by S,
if honest P1 accepts a commit phase of 〈C,R〉 as valid, then at the point when that commit phase
is concluded, S would have already extracted the preamble secret committed by the corrupted P2.

For simplicity of exposition, we will prove the above lemma assuming that the protocol Π has
only one execution of 〈C,R〉. However, we stress that our analysis is robust to having multiple
executions of 〈C,R〉 in Π. Similar to the analysis in [PRS02], in order to prove the above lemma for
any thread and any session, we will prove the claim for a fixed thread of execution T ∗ of cost c∗ and
for a fixed session s∗ occurring on T ∗, which we will henceforth call target thread and target session
respectively, and call all other threads and sessions “auxiliary”. Since there are only polynomially
many threads and polynomially many sessions (since C is polynomial in κ), Lemma 4 follows by
taking a union bound of failure probabilities over all threads of execution and sessions. Also note
that if the cost of the main thread is C, then c∗ ≤ C.

We now give an outline of remainder of the proof. The proof has two parts as described below:

1. Analysis of PickSet. Recall the analogy of our problem to set covering problem described
earlier. In this part, at a high level, we will prove that among the sets chosen by PickSet for
the target thread T ∗ there are ω(log κ) sets of equal cost which “cover” the target session s∗.
In this direction, first note that any thread of execution T can have parts at various recursion
levels. We will first prove that there is a “part” of the target thread T ∗ at recursion level RL,
say T ∗RL, containing sufficiently many slots of the target session s∗. Next, we will show that
there are many sets in T ∗RL which contain a slot of the target session s∗. Moreover, we will
show that a large number of these sets will infact belong to the same set level, say j∗, and
hence have equal cost. Finally, we will prove that since PickSet chooses sets at random, it
will pick at least p(κ) sets at set level j∗ which “cover” the target session s∗.

2. Swapping Argument. In this part we will show that by rewinding each of the sets picked
by PickSet, the simulator will be able to extract the preamble secret committed by A in
session s∗ with all but negligible probability. We will first fix a “part” T ∗RL of T ∗ and a set
level j∗ and argue successful extraction for session s∗ on T ∗ which has many sets in T ∗RL
on set level j∗. As shown in first part, in this case, PickSet will choose at least p(κ) sets
at set level j∗ which “cover” the target session s∗. Now, we will use swapping argument
similar to [PRS02, PTV12] to show that the simulator is able to extract the preamble secret
with all but negligible probability. In particular, we show that for any bad random tape (on
which the extraction fails) there are super polynomial number of good tapes (on which the
extraction succeeds) and the good tapes corresponding to any two bad tapes are disjoint. In
this argument, we crucially use the fact the sets we consider (which cover s∗) lie on the same
set level. Finally, by taking a union bound over different parts of T ∗ and different set levels,
we argue successful extraction of preamble secret for the target session s∗ on the target thread
T ∗.

26

B.1 Analysis of PickSet

We begin by introducing some terminology and proving certain properties about the target session
s∗ on the target thread T ∗. We define a section of thread T ∗ as follows:

Definition 5 Let thread T ∗ consists of a sequence of parts T ∗0 , T
∗
1 , . . . , T

∗
D such that each T ∗i is a

prefix of a look-ahead thread at recursion level i and D is the maximum depth of recursion for the
target thread. Then we call each T ∗i , a section of T ∗.

Note that the slots of the target session can be spread across all of these sections and some slots
can even be spread across multiple sections. More precisely, there can be slots, say slotj = (chj , rspj),
such that chj appears on T ∗` and rspj appears on T ∗`′ , where ` 6= `′. By counting argument and the
fact that all slots of a session are disjoint, there can be at most D slots which span across multiple
sections.

Claim 1 ∃ recursion level RL such that there are n ≥ (N −D)/D slots of target session in T ∗RL.

Proof. It follows trivially from pigeon hole principle.

Note that T ∗RL might not be the complete look-ahead thread at recursion level RL. Let T̃ ∗RL be
the complete look-ahead thread at recursion level RL of which T ∗RL is a prefix. Recall that for any
thread at recursion level RL with cost c, there are (log c) set levels, such that at set level j, there

are 2j sets setj,1RL, . . . , set
j,2j

RL with cost c/2j . We now define the following:

Definition 7 (covering the session s∗) Consider the thread T̃ ∗RL and the target session s∗. We say

that a set setj,kRL of T̃ ∗RL covers the target session s∗ if it contains a slot of s∗.

Lemma 5 If a session s has γ slots in a set setj,kRL of T̃ ∗RL, then s is covered by at least γ sets of

T̃ ∗RL. Moreover these sets are subsets of setj,kRL.

Proof. We will prove this lemma by induction on γ. If γ = 1, then s is covered by set setj,kRL. Let
us assume that the lemma 5 holds for all γ ≤ γ′. Now let γ = γ′+ 1. Now since there is more than

one slot in setj,kRL, its cost is more than unity. Hence, there exists subsets setleft and setright of setj,kRL
at set level j + 1 of T̃ ∗RL. Let setleft contain γ1 slots and setright contain γ2 slots of s. By induction

hypothesis, s is covered by γ1 subsets of setleft and γ2 subsets of setright from sets of T̃ ∗RL. Moreover,

subsets of setleft and setright are disjoint and both are subsets of setj,kRL. Also, γ1 +γ2 ≥ γ−1 because

while dividing setj,kRL into two subsets we can destroy at most one slot. Also, note that s is covered

by setj,kRL. Hence, s is covered by γ1 + γ2 + 1 ≥ γ sets of T̃ ∗RL which are subsets of setj,kRL.

Corollary 1 The target session s∗ is covered by n sets of T̃ ∗RL.

Consider any set setj,kRL = (s-point, e-point) of T̃ ∗RL. We say that setj,kRL is contained in T ∗RL if both
s-point and e-point are in T ∗RL. Now we define the term special cover and prove the following lemma
which relates the number of slots of session s∗ to the number of sets which special cover the session
s∗.

Definition 8 (special covering the session s∗) Consider thread T̃ ∗RL and session s∗. We say that a

set setj,kRL of T̃ ∗RL special covers the session s∗ if it contains a slot of s∗ but does not contain Start or

End of s∗ and setj,kRL is contained in T ∗RL.

27

Lemma 6 If the target session session s∗ has γ slots in T ∗RL, then there are γ′ ≥ γ − 2 logC sets

of T̃ ∗RL which special cover session s∗, where C is the cost of the main thread.

Proof. If a session s∗ has γ slots in T ∗RL, then s has γ slots in T̃ ∗RL. By lemma 5, there exist γ sets

of T̃ ∗RL which cover s∗. Since the cost of any thread is at most C, there are at most logC set levels

of T̃ ∗RL. Among the γ sets of T̃ ∗RL which cover s∗, at any set level there can be at most two sets
satisfying either of the following conditions: (a) The set contains Start or End of s∗. (b) The set is

not contained in T ∗RL. Summing over all set levels, there are at least γ − 2 logC sets of T̃ ∗RL which
special cover s∗.

Corollary 2 The target session s∗ is special covered by n′ = n− 2 logC sets of T̃ ∗RL.

Lemma 7 For the target session s∗, ∃ set level j∗ among set levels of T̃ ∗RL such that s∗ is special covered

by n′′ ≥ N
2 log2 C

sets at set level j∗ of T̃ ∗RL.

Proof. For any thread, there are at most logC set levels. By pigeon hole principle and Corollary 2,

there exists a set level j∗ of T̃ ∗RL such that s∗ is special covered by n′′ ≥ n′/ logC sets at set level j∗

of T̃ ∗RL. Now substituting values for n′, n in terms of N and using the fact that D < logC, we get,

n′′ ≥
N−D
D − 2 logC

logC
≥ N − logC − 2 log2C

log2C
≥ N

2 log2C

The last is meaningful if N > log3 κ for sufficiently large value of κ.
Now recall from the description of the algorithm PickSet that there are some lower set levels

(with less number of sets) where PickSet does not pick any set. But we argue in Lemma 8 that
for the target session s∗ and set level j∗, PickSet will choose at least p(κ) sets from set level j∗.
Using this, we will prove in Lemma 9 and Corollary 3 that PickSet will choose at least p(κ) sets
on set level j∗ which special cover s∗ with all but negligible probability.

Lemma 8 For the target session s∗, let j∗ be as defined in Lemma 7, then PickSet will choose

at least p(κ) sets at set level j∗ of T̃ ∗RL.

Proof. PickSet chooses
⌊

log3 κ·p(κ)·q(κ)
N · 2j∗

⌋
sets at set level j∗ of T̃ ∗RL. Also, by Lemma 7, there

are n′′ sets at set level j∗ which special cover s∗. Assume for contradiction that PickSet chooses

less than p(κ) sets at set level j∗, then N
log3 κ·p(κ)·q(κ)

> 2j
∗

2·p(κ) . Also, since we have 2j
∗

sets at set

level j∗, 2j
∗ ≥ n′′. Combining the two inequaties we have,

N
log3 κ·p(κ)·q(κ)

> N
4·p(κ) log2 C

⇒ 4 log2C > q(κ) · log3 κ⇒ C > κ
√

log κ

But this is a contradiction since C is bounded by some polynomial in κ.
Now we divide the sets at set level j∗ which special cover the target session into p(κ) partitions

as follows:

Definition 9 (Partition) Given a sequence of n′′ sets at set level j∗ (defined in Lemma 7) which
special cover the target session s∗, we divide them into p(κ) parts P1,P2, . . . ,Pp(κ) such that each
P` contains n′′/p(κ) consecutive sets among n′′ sets. We call each P` a partition.

Next, if we show in lemma 9 that PickSet will pick at least one set from each partition P` with
overwhelming probability, then we have that PickSet will choose p(κ) sets which special cover the
target session s∗ with overwhelming probability. Also, note that since these sets belong to the
same set level they will be disjoint. This would be used crucially in the swapping argument in next
section.

28

Lemma 9 For the target session s∗, let j∗ be as defined in Lemma 7, then for any partition P`,
PickSet will choose at least one set in P` with overwhelming probability.

Proof. By Lemma 7, there is a set level j∗ such that there are n′′ sets at set level j∗ which
special cover the target session s∗. We have defined partitions for these n′′ sets. Hence, all sets of

partition P` belong to set level j∗. PickSet chooses
⌊

log3 κ·p(κ)·q(κ)
N · 2j∗

⌋
sets at random at set level

j∗ of T̃ ∗RL. Also, by Lemma 8,
⌊

log3 κ·p(κ)·q(κ)
N · 2j∗

⌋
> p(κ). Let fail denote the event that PickSet

does not choose any set in P`. Then,

Pr[fail] ≤
(

1− n′′/p(κ)

2j∗

)⌊ log3 κ·p(κ)·q(κ)
N

·2j∗
⌋
≤
(

1− N

2 · p(κ) log2C · 2j∗
)(log3 κ·p(κ)·q(κ)

N
·2j∗

)
−1

≤ exp

(
− N

2 · p(κ) log2C · 2j∗
log3 κ · p(κ) · q(κ) · 2j∗

N

1

2

)
≤ exp

(
− log3 κ · q(κ)

4 log2C

)
≤ 1

κq/4α2 is negligible.

where C = κα for some constant α and q/4α2 is ω(1).

Definition 10 Let psetsRL,j∗ be the sets at set level j∗ contained in T ∗RL which are chosen by

PickSet when it is invoked for T̃ ∗RL.

Corollary 3 There will be at least p(κ) sets in psetsRL,j∗ which special cover session s∗ with all
but negligible probability.

This follows from Lemma 9 that one set from each partition is picked with overwhelming probability
and there are p(κ) = ω(log κ) partitions.

In this section we have concluded that if the target session s∗ reaches End on the target thread
T ∗, then there exists a section of this thread T ∗RL and a set level j∗ such that there are n′′ ≥
N/2 log2C sets which special cover session s∗. Now, if the simulator fails to extract the preamble
secret for s∗ on T ∗ with noticeable probability then since there are only logC sections on any
thread and logC set levels, there exists a section T ∗RL of target thread T ∗ and a set level j∗ (where
the target session has n′′ sets which special cover it) such that the simulator fails to extract the
preamble secret in target session s∗ with noticeable probability. In the following section, we will
prove that for any section T ∗RL and set level j∗ simulator can fail only with negligible probability.
By taking union bound over sections and set levels, we get that the simulator can fail to extract for
this target session s∗ on target thread T ∗ only with negligible probability. Since number sessions
and threads is only a polynomial, Lemma 4 follows by taking a union bound over all sessions and
threads.

B.2 Swapping Argument

In this section, we will fix a target thread T ∗, a section T ∗RL of this thread, a set level j∗ of T̃ ∗RL (as
defined in previous section) and a target session s∗. We will argue that simulator will succeed in
extracting the preamble secret for session s∗ if there are has n′′ ≥ N/2 log2C sets at set level j∗ of

T̃ ∗RL which special cover the session s∗. Recall that we argued that for such a session s∗, there will
be p(κ) sets in psetsRL,j∗ which will special cover session s∗. In other words, among these n′′ sets
which special cover the session s∗, PickSet would have chosen p(κ) sets to rewind. In this section

29

we will argue that using only the look-ahead threads made for these sets, simulator would be able
to extract the preamble secret committed by A with all but negligible probability.

More formally, after we have fixed the target thread as T ∗, target section as T ∗RL, target set level
as j∗, target session as s∗, we want to guarantee extraction for the target session s∗ in the following
setting:

1. Target session reaches End on the target thread T ∗.

2. The commit phase of s∗ is “valid”.

3. Let T̃ ∗RL be the look-ahead thread at recursion level RL of which T ∗RL is a prefix. Then there

are n′′ ≥ N
2·log2 C

sets at set level j∗ of T̃ ∗RL which special cover session s∗.

To extract the preamble secret in such a target session s∗, S will use the messages seen on the
auxiliary threads which complete before the simulation reaches the End of s∗. In order to extract,
there should be at least one convincing slot of s∗ on an auxiliary thread. Recall that our simulator
had two random tapes rm and rs. Different parts of rm were used to generate messages on different
threads. Here we will assume that our simulator always uses same amount of randomness to generate
any two sequence of messages of same cost. This will be used crucially to argue extraction. Also,
rs was used by PickSet to choose sets on all the threads. Throughout the following discussion
we will keep the random tape rs fixed and talk about different random tapes for rm. Since, A can
be assumed to be a deterministic machine, the contents of any thread are fully determined by the
state of A and the history of messages at the start of the thread and randomness used to generate
messages by the simulator (in particular SimMsg). The forking of various look-ahead threads off
any thread T and the messages seen on these look-ahead threads, does not affect the messages seen
on T .

In our case, we say that the simulator S fails in extracting the preamble secret of the target

session if with respect to T̃ ∗RL corresponding to target section T ∗RL there are n′′ ≥ N/2 log2C sets at
target set level j∗ which special cover session s∗ but none of the look-ahead threads made for sets
in psetsRL,j∗ contain a convincing slot of s∗. The random tape rm which leads to this scenario is
called a bad random tape. All other tapes are called good random tapes. We will show (just like
in PRS) that for each bad random tape there exist super-polynomially many good random tapes.
Also, good tapes corresponding to any two bad tapes are disjoint. This will help us conclude that
the probability of using a bad random tape is negligible.

Intuitively, to generate a good tape from a bad tape, we just need to “swap” a convincing slot
from a set in target section into into an auxiliary thread. After the swapping, should the simulation
reach the End of the target session on the target thread, the convincing slot on the auxiliary thread,
together with the corresponding convincing slot on the target thread, will allow S to extract the
preamble secret. To actually “swap” convincing slots, we modify the random tape rm of S used

to generate the messages on a set setj
∗,k
RL ∈ psetsRL,j∗ which special covers s∗ with the randomness

used for the look-ahead thread of setj
∗,k
RL , say, setj

∗,k,la
RL . Since, setj

∗,k
RL and setj

∗,k,la
RL start from the

same state st and history hist, swapping the randomness used to generate the messages on these
sets swaps the contents of these sets exactly. After swap, the convincing slot starts appearing on
an auxiliary thread. Note that we do not change the randomness used to generate messages on

look-ahead threads of setj
∗,k,la
RL .

Just to emphasize again rs is fixed for all the discussion in this section. When we talk about a
random tape, we mean rm which is the randomness used to generate messages. Now we give some
definitions similar to [PRS02, PTV12]. Some of the text in the following definitions and proofs
have been taken verbatim from [PTV12].

Definition 6 A set setj
∗,k
RL is called a block if setj

∗,k
RL ∈ psetsRL,j∗.

30

Definition 7 A block B and the corresponding look-ahead thread B′ are called siblings.

Since all the blocks lie on the same recursion level RL and set level j∗, any two blocks are
disjoint. Using this fact we define an order on blocks as follows:

Definition 8 Given two blocks A and B, we say A > B if A occurs before B.

Now we define composable blocks whose randomness we will swap with their siblings to get good
tapes.

Definition 9 A block B is composable if the following two conditions are satisfied:

Main Block Condition. B special covers the target session s∗, i.e., contains a convincing slot of s∗

and does not contain Start or End of the target session s∗ and is contained in target section
T ∗RL.

Sibling Condition. Look-ahead thread of B does not contain End of the target session s∗.

Claim 2 Let τ be a random tape (not necessarily bad). Let B be a composable block with sibling B′

when S is executed with random tape τ , and let s be the common start state of B and B′. Further,
let τ ′ be the random tape obtained after swapping the randomness of blocks B and B′. Then:

1. Goodness: τ ′ is a good random tape.

2. Composability: Any composable block A on τ such that A > B is still composable on τ ′.

Proof. Recall that the simulation, i.e., the sequence of messages, on blocks B and B′ are exchanged
exactly after the swapping of randomness used to generate messages on B and B′.

Goodness: When simulation is done using τ ′, B′ will be on the target section T ∗RL of the target
thread. Since, B′ has same cost as B, it will be a set at the same location as B among the sets of

T̃ ∗RL. Also, since we have fixed rs, PickSet will choose B′ as one the sets in psetsRL,j∗ . Since B′

does not contain End, the look-ahead thread starting from s will be executed before the simulation
reaches the End of the target session. Thus, the convincing slot in B (which is now on the look-
ahead thread) and corresponding convincing slot on main thread together form a matching pair of
convincing slots which occur before the End of the target session. Hence, τ ′ is a good random tape.

Composability: Given a composable block A, such that A > B we have that A occurs before B
because any two composable blocks are disjoint. Since, swapping the randomness of block B and B′

doesn’t change anything which occurs prior to B, the contents of the main thread are unchanged
from the start of session till start of B under τ ′. Also, the contents of the look-ahead thread
corresponding to A are unchanged. Since, rs has not changed, PickSet on τ ′ will still pick A, i.e.,
A ∈ psetsRL,j∗ when messages are generated using τ ′. Hence, A is still a composable block.

Swap Procedure. Let τ be a bad random tape. Assume that we are given a set of composable
blocks B1 > B2 > . . . > Bq. Then we generate a tape τ ′ by swapping the randomness of the
composable blocks with their siblings in the order of i = q, q − 1, . . . , 1. Recall that when we swap
the randomness of a block Bi with its sibling B′i we only swap the randomness used to generate
messages on Bi and the look-ahead thread of Bi, i.e. B′i. All other parts of the randomness are
left unchanged. By the composability condition, after swapping Bq, Bq−1, . . . , B2, block B1 is still
composable. Hence, by goodness property of B1, τ ′ is a good random tape. We denote this by

31

Swap(τ,B1, . . . , Bq) = τ ′.

Note that throughout this section, we have fixed the target section as T ∗RL and target set level
as j∗. Hence, all the procedures in this section are aware of all these parameters. Next define Undo
procedure, which given a good tape τ ′ obtained from a bad tape τ as input returns the unique bad
tape τ . This procedure will crucially use the fact that all the blocks which were swapped belong

to the set level j∗ of T̃ ∗RL.

Undo Procedure. Let τ ′ be a good random tape obtained as an output of the Swap procedure on
a bad tape τ and a sequence of composable blocks B1 > B2 > . . . > Bq as described above. Let B′i
be the sibling of Bi. Note that after all the swaps, B′1 lies on the target thread and B1 lies on the
look-ahead thread and contains a convincing slot of the target session s∗. Now we want to define
a procedure Undo which on input τ ′ is able to identify these blocks such that we get a unique bad
tape τ by swapping back these blocks in reverse order. If we can show that there is a deterministic
procedure Find of identifying B1 from τ ′ (a good tape) then we can swap back B1 and keep doing
this recursively till we get τ (a bad tape) and we can no longer apply this procedure. We do the
following:

Find(τ ′). Call a block A on τ ′ special if look-ahead of A contains a convincing slot of the target
session and A does not contain End of the target session. Pick a special block A∗ such that for any
other special block X, it holds that A∗ > X.

Claim 3 A∗ = B′1.

Proof. Let τ ′′ be the tape obtained from τ after swapping Bq, Bq−1, . . . , B2. B1 is composable
on τ ′′. Hence, B′1 is special on τ ′ because B1 now lies on the look-ahead thread and contains a
convincing slot of the target session and by sibling condition for B1, B′1 does not contain the End of
the target session. Now we need to show that there is no other special block X such that X > B′1.

If X > B′1 then X occurs before B′1 on τ ′. Since τ ′ has been obtained from the bad tape τ ,
even after swapping B1 > B2 > . . . > Bq, there can be no convincing slot of the target session on
a look-ahead thread which starts and ends before B1. Hence, there cannot be a convincing slot on
the look-ahead thread of X. Hence, X is not a special block.

Thus, Find(τ ′) = B′1. Now we will swap back B′1 and B1 and get back τ ′′. Doing this recursively,
given the good tape τ ′, we will identify the same blocks B1, B2, . . . , Bq, which were swapped on bad
tape τ to get τ ′. We will denote this by Undo(τ ′) = (τ,B1, . . . , Bq), where τ is a bad random tape.
Note that this Undo procedure is deterministic.

The next claim counts the number of good tapes which can be obtained from a bad tape having
γ composable blocks.

Claim 4 Let τ be a bad random tape, B = {B1, . . . , Bγ} be a set of composable blocks for τ . Then,
we can generate a set of good random tapes, G(τ,B), by swapping the various composable blocks in
B, so that the following holds:

1. |G(B, τ)| ≥ 2γ − 1.

2. For any bad tape τ 6= τ ′ and any set of composable blocks B′ for τ ′, G(B, τ) ∩G(B′, τ ′) = φ.

Proof: Without loss of generality, let B1 > B2 . . . > Bγ . Consider any non-empty subsequence of
1, . . . , γ, say u1, . . . , uq. There are 2γ − 1 such sequences. Let τu1,...,uq be the random tape obtained
by Swap(τ,Bu1 , . . . , Buq). From the description of Swap, it follows that τu1,...,uq is a good random

32

tape. We further note that given τu1,...,uq , we can recover the blocks Bu1 , . . . , Buq by Undo(τu1,...,uq).
The resulting bad tape will always be τ . Since Undo is deterministic, we must have τ~u 6= τ~v whenever
~u 6= ~v in order for Undo to recover a different set of blocks on input τ~u and τ~v. Thus, we obtain
2γ − 1 distinct good random tapes.

Similarly, take any α ∈ G(τ,B) and β ∈ G(τ ′,B′). Applying Undo on α will result in bad tape
τ , while applying the same procedure on β will give τ ′. Again, since Undo is deterministic, we have
α 6= β

Number of composable blocks: Given a bad random tape for generation of messages, we know

that the target session is special covered by n′′ ≥ N/2 log2C sets at target set level j∗ w.r.t. T̃ ∗RL. By
Corollary 3, there are at least p(κ) sets from these n′′ sets which are in psetsRL,j∗ . Lets call the sets

picked among n′′ sets as X . Each of the sets setj
∗,k
RL ∈ X satisfies the Main Block condition. Since,

this is a bad tape, each setj
∗,k
RL ∈ X special covers session s∗ but none of their look-aheads contain a

convincing slot of s∗. Since, setj
∗,k
RL does not contain End of s∗, the corresponding look-ahead thread

cannot contain the End of s∗. Hence, setj
∗,k
RL satisfies the Sibling condition. Since |X | > p(κ), there

are at least p(κ) composable blocks.

Claim 5 For any fixed rs, for any thread T ∗, any session s∗, any section T ∗RL of T ∗ and any set

level j∗ of T̃ ∗RL (defined w.r.t. T ∗RL) such that there are n′′ ≥ N/2 log2C sets at set level j∗ of T ∗RL
which special cover s∗, for each bad random tape, there are at least O(κω(1)) good random tapes.

Claim 6 For any fixed rs, for any thread T ∗, any session s∗, for each bad random tape, there are
at least O(κω(1)) good random tapes.

This follows from the previous claim by taking a union bound of bad tapes for all the sections and
set levels since there are only at most logC sections and at most logC set levels for each section.

Finally, lemma 4 follows from the previous claim by taking a union bound over all sessions and
threads since there are at most polynomial number of sessions and threads.

B.3 Cost of Rewinding

In this section, we will bound the total cost of rewinding incurred by our simulation strategy.

Lemma 10 Let C be the cost of the main thread. Then the cost incurred by our simulator is
bounded by

C · (1 + (log∗ κ)2 logC log4 κ
N) when 〈C,R〉 has N ≥ log6 κ slots.

Proof. Let C be the total cost of the output thread. The overhead incurred by our simulator
corresponds to the cost of the look-ahead threads created. Hence, we will bound the cost of the
sets picked across all recursion levels and across all set levels. We begin by bounding the cost of
the look-ahead threads of a thread T of cost c at some recursion level RL.

Any set at set level j of T has cost c/2j . At set level j, we pick
⌊

log3 κ·p(κ)·q(κ)
N · 2j

⌋
sets. Cost of

all the sets picked at set level j is
⌊

log3 κ·p(κ)·q(κ)
N · 2j

⌋
·
(
c
2j

)
≤ c log3 κ·p(κ)·q(κ)

N . Since there are log c

set levels, summing the cost across all set levels, we get total cost of all look-ahead threads of T is

at most c log c log3 κ·p(κ)·q(κ)
N .

Using the above bound for output thread of cost C, we get that total cost of look-ahead threads

at recursion level 1 is C1 ≤ C logC log3 κ·p(κ)·q(κ)
N .

33

Consider a thread at recursion level 1 with cost c`. Invoking the above bound for this thread,

we get that total cost of look-ahead threads for this thread is at most c` log c` log3 κ·p(κ)·q(κ)
N . Summing

over all threads at recursion level 1 we get that total cost of all sets at recursion level 2 is

C2 ≤
∑
`

c` log c` log3 κ · p(κ) · q(κ)

N
≤
∑
`

c`p(κ)q(κ) logC log3 κ

N
≤ C ·

(
p(κ)q(κ) logC log3 κ

N

)2

, where ` indexes over all threads at recursion level 1.
By a similar analysis, we will get that total cost of all the threads at recursion level i is

Ci ≤ C ·
(
p(κ)q(κ) logC log3 κ

N

)i
.

Summing across all recursion levels, we will get that cost of all look-ahead threads across all re-

cursion levels, i.e., total cost of rewinding, is at most
(

2Cp(κ)q(κ) logC log3 κ
N

)
ifN > 2p(κ)q(κ) logC log3 κ.

Finally, the lemma holds by putting p(κ) = log κ log∗ κ, q(κ) = log∗ κ and C is polynomial in κ.

B.4 Modified Commitment Scheme 〈C ′, R′〉.
Due to technical reasons, in our concurrent MPC protocol, we will also use a minor variant, denoted
〈C ′, R′〉, of the above commitment scheme. Protocol 〈C ′, R′〉 is the same as 〈C,R〉, except that
for a given receiver challenge string, the committer does not “open” the commitments, but instead
simply reveals the appropriate committed values (without revealing the randomness used to create
the corresponding commitments). More specifically, in protocol 〈C ′, R′〉, on receiving a challenge
string vj = v1,j , . . . , v`,j from the receiver, the committer uses the following strategy: for every
i ∈ [`], if vi,j = 0, C ′ sends α0

i,j , otherwise it sends α1
i,j to R′. Note that C ′ does not reveal the

decommitment values associated with the revealed shares.
When we use 〈C ′, R′〉 in our main construction, we will require the committer C ′ to prove the

“correctness” of the values (i.e., the secret shares) it reveals in the last step of the commitment
protocol. In fact, due to technical reasons, we will also require the the committer to prove that the
commitments that it sent in the first step are “well-formed”. Looking ahead, these proofs will be
done via an execution of 〈Pswi, Vswi〉 (Section A.2). Below we formalize both these properties in the
form of a validity condition for the commit phase.

Proving Validity of the Commit Phase. We say that commit phase between C ′ and R′ is

valid with respect to a value σ̂ if there exist values {α̂0
i,j , α̂

1
i,j}

`,N
i,j=1 such that:

1. For all i ∈ [`], j ∈ [N], α̂0
i,j ⊕ α̂1

i,j = σ̂, and

2. Commitments B, {A0
i,j , A

1
i,j}

`,N
i,j=1 can be decommitted to σ̂, {α̂0

i,j , α̂
1
i,j}

`,N
i,j=1 respectively.

3. For any challenge vj = v1,j , . . . , v`,j , let ᾱ
v1,j
1,j , . . . , ᾱ

v`,j
`,j denote the secret shares revealed by C

in the commit phase. Then, for all i ∈ [`], ᾱ
vi,j
i,j = α̂

vi,j
i,j .

Precise Concurrent Extraction In the previous section, we had proved the lemma 4 for the
concurrent execution of commitment scheme 〈C,R〉. We would like to have a similar extraction
lemma for the modified commitment scheme 〈C ′, R′〉. But, we note that in our main construction,
commitments sent in the commit phase of an execution of 〈C ′, R′〉 are never later opened via the
opening phase. However, the above lemma is still applicable to 〈C ′, R′〉 as well as long as the proofs
of validity given along with 〈C ′, R′〉 are sound. In our construction, the proofs of validity will be
given via executions of 〈Pswi, Vswi〉. We note that for each of these executions, the statement for

34

〈Pswi, Vswi〉 will have a “trapdoor condition” that will allow our simulator to cheat; however, in
our security proof, we will ensure that that the trapdoor condition is false for each instance of
〈Pswi, Vswi〉 where the adversary plays the role of the prover. Therefore, by relying on the soundness
of 〈Pswi, Vswi〉, we will still be able to use lemma 4.

Moreover, the cost of the rewinding will same as the bound given in Lemma 10. Combining
both the commitment scheme we have the following lemma:

Lemma 11 (Extraction lemma) Consider two parties P1 and P2 running polynomially many (in
the security parameter) sessions of a protocol Π consisting of possibly multiple executions of the
commitment schemes 〈C,R〉 and 〈C ′, R′〉. Also, let one the parties, say P2, be corrupted. Then
except with negligible probability, in every thread of execution output by S, if honest P1 accepts a
commit phase of 〈C,R〉 or 〈C ′, R′〉 as valid, then at the point when that commit phase is concluded,
S would have already extracted the preamble secret committed by the adversarial P2.

Moreover, if the total cost of the output thread is C, then simulation by S incurs a cost of at

most C ·
(

1 + ω(1) logC log4 κ
N

)
.

C Concurrently Secure Computation in the Joint Leaky Ideal
World Model

In this section, we will prove the following theorem:

Theorem 10 Assume the existence of 1-out-of-2 oblivious transfer protocol secure against honest
but curious adversaries. Then for every polynomial poly(κ) such that ε = 1/poly(κ), for any func-
tionality F , there exists an O(N) round protocol Π that ε-securely realizes F in the joint leaky ideal

world model, where N = (log6 κ)
ε .

As one can note, when ε is 1
poly(κ) for some polynomial poly(κ), then our protocol will have polyno-

mial number of rounds. We handle the cases when we want lower round complexity at the cost of
fraction of sessions leaked as follows: We assume the existence of collision resistant hash functions
to get constant round statistically witness indistinguishable arguments and prove the following
theorem in the same way as the previous theorem.

Theorem 11 Assume the existence of 1-out-of-2 oblivious transfer protocol secure against honest
but curious adversaries and collision resistent hash functions. Then for any ε > 0, for any func-
tionality F , there exists an O(N) round protocol Π that ε-securely realizes F in the joint leaky ideal

world model, where N = (log6 κ)
ε .

In section C.1 we describe such a protocol Π. Then in section C.2 we describe the simulator
S. In section C.3, we prove that our simulator is a ε-Joint-Ideal-Leakage simulator for any ε > 0
followed by proof of security in section C.4.

C.1 Our Construction

In this section, we describe our concurrently secure computation protocol Π in joint leaky ideal
world model for a general functionality F .

In order to describe our construction, we first recall the notation associated with the primitives
that we use in our protocol. Let com(·) denote the commitment function of a non-interactive
perfectly binding commitment scheme. Let 〈C,R〉 denote the N -round extractable commitment
scheme and 〈C ′, R′〉 be its modified version as described in Section B.4. Let 〈P, V 〉 denote the
modified version of the CNMZK argument of Barak et al. [BPS06] as described in Section A.4.

35

Further, let 〈Pswi, Vswi〉 denote a SWI argument (Section A.2) and let 〈P sh
1 , P sh

2 〉 denote a semi-
honest two party computation protocol 〈P sh

1 , P sh
2 〉 that securely computes F in the stand-alone

setting as per the standard definition of secure computation (Section A.3).
Let P1 and P2 be two parties with inputs x1 and x2. Let κ be the security parameter. Protocol

Π = 〈P1, P2〉 proceeds as follows.

I. Trapdoor Creation Phase.

1. P1 ⇒ P2 : P1 creates a commitment com1 = com(0) to bit 0 and sends com1 to P2. P1 and
P2 now engage in the execution of 〈P, V 〉 where P1 proves that com1 is a commitment to 0.

2. P2 ⇒ P1 : P2 now acts symmetrically. That is, it creates a commitment com2 = com(0) to
bit 0 and sends com2 to P1. P2 and P1 now engage in the execution of 〈P, V 〉 where P2 proves
that com2 is a commitment to 0.

Informally speaking, the purpose of this phase is to aid the simulator in obtaining a “trapdoor”
to be used during the simulation of the protocol.

II. Input Commitment Phase. In this phase, the parties commit to their inputs and random
coins (to be used in the next phase) via the commitment protocol 〈C ′, R′〉.

1. P1 ⇒ P2 : P1 first samples a random string r1 (of appropriate length, to be used as P1’s
randomness in the execution of 〈P sh

1 , P sh
2 〉 in Phase III) and engages in an execution of 〈C ′, R′〉

(denoted as 〈C ′, R′〉1→2) with P2, where P1 commits to x1‖r1. Next, P1 and P2 engage in
an execution of 〈Pswi, Vswi〉 where P1 proves the following statement to P2: (a) either there
exist values x̂1, r̂1 such that the commitment protocol 〈C ′, R′〉1→2 is valid with respect to the
value x̂1‖r̂1, or (b) com1 is a commitment to bit 1.

2. P2 ⇒ P1 : P2 now acts symmetrically. Let r2 (analogous to r1 chosen by P1) be the random
string chosen by P2 (to be used in the next phase).

Informally speaking, the purpose of this phase is aid the simulator in extracting the adversary’s
input and randomness.

III. Secure Computation Phase. In this phase, P1 and P2 engage in an execution of 〈P sh
1 , P sh

2 〉
where P1 plays the role of P sh

1 , while P2 plays the role of P sh
2 . Since 〈P sh

1 , P sh
2 〉 is secure only against

semi-honest adversaries, we first enforce that the coins of each party are truly random, and then
execute 〈P sh

1 , P sh
2 〉, where with every protocol message, a party gives a proof using 〈Pswi, Vswi〉 of its

honest behavior “so far” in the protocol. We now describe the steps in this phase.

1. P1 ↔ P2 : P1 samples a random string r′2 (of appropriate length) and sends it to P2. Similarly,
P2 samples a random string r′1 and sends it to P1. Let r′′1 = r1 ⊕ r′1 and r′′2 = r2 ⊕ r′2. Now,
r′′1 and r′′2 are the random coins that P1 and P2 will use during the execution of 〈P sh

1 , P sh
2 〉.

2. Let t be the number of rounds in 〈P sh
1 , P sh

2 〉, where one round consists of a message from P sh
1

followed by a reply from P sh
2 . Let transcript T1,j (resp., T2,j) be defined to contain all the

messages exchanged between P sh
1 and P sh

2 before the point P sh
1 (resp., P sh

2) is supposed to
send a message in round j. For j = 1, . . . , t:

(a) P1 ⇒ P2 : Compute β1,j = P sh
1 (T1,j , x1, r

′′
1) and send it to P2. P1 and P2 now engage in

an execution of 〈Pswi, Vswi〉, where P1 proves the following statement:

i. either there exist values x̂1, r̂1 such that (a) the commitment protocol 〈C ′, R′〉1→2

is valid with respect to the value x̂1‖r̂1, and (b) β1,j = P sh
1 (T1,j , x̂1, r̂1 ⊕ r′1)

36

ii. or, com1 is a commitment to bit 1.

(b) P2 ⇒ P1 : P2 now acts symmetrically.

This completes the description of the protocol Π = 〈P1, P2〉. Note that Π consists of several
instances of SWI, such that the proof statement for each SWI instance consists of two parts.
Specifically, the second part of the statement states that prover committed to bit 1 in the trapdoor
creation phase. In the sequel, we will refer to the second part of the proof statement as the trapdoor
condition. Further, we will call the witness corresponding to the first part of the statement as real
witness and that corresponding to the second part of the statement as the trapdoor witness.

We now claim the following:

Theorem 12 The proposed O(N) round protocol Π ε-securely realizes the functionality F in joint

leaky ideal world model with ε = (log∗ κ)3·log5 κ
N , as per the Definition 2.

We will prove Theorem 12 in the following manner. First, in Section C.2, we will construct
a simulator S for protocol Π that will simulate the view of A in the ideal world. We will show
that S makes at most ε (defined in Theorem 12) leakage queries while simulating the view of A.
Looking ahead, in any query to the leakage oracle, S will leak the inputs of the honest party in
some session. Finally, in Section C.4, we will argue that the output distributions of the real and
ideal world executions are computationally indistinguishable.

Theorem 10 can be proved as a corollary of theorem 12 by setting N = (log6 κ)/ε.

C.2 Proof of theorem 12

Let there be k parties in the system where different pairs of parties are involved in one or more
sessions of Π, such that the total number of sessions m is polynomial in the security parameter κ.
Let A be an adversary who controls an arbitrary number of parties.. For simplicity of exposition,
we will assume that exactly one party is corrupted in each session. We note that if the real and
ideal distributions are indistinguishable for this case, then by using standard techniques we can
easily remove this assumption. Now we first fix some notation.

Notation. In the sequel, for any session i ∈ [m], we will use the notation H to denote the honest
party and A to denote the corrupted party. Let 〈P, V 〉H→A denote an instance of 〈P, V 〉 where
H plays the role of the prover and A plays the verifier. Similarly, let 〈Pswi, Vswi〉H→A denote each
instance of 〈Pswi, Vswi〉 where H and A plays the roles of prover P and verifier V respectively.
Now, recall that H plays the role of committer C in one instance of 〈C,R〉 inside execution of
〈P, V 〉, where it commits to a preamble secret (denoted σH), and in one instance of 〈C ′, R′〉, where
it commits to its input xH and randomness rH (to be used in the secure computation phase).
We will reserve the notation 〈C,R〉H→A for the former case, and we will refer to the latter case by
〈C ′, R′〉H→A. Further, we define 〈P, V 〉A→H , 〈Pswi, Vswi〉A→H , 〈C,R〉A→H , 〈C ′, R′〉A→H in the same
manner as above, except that the roles of H and A are interchanged. Also, let xA and rA denote
the input and random coins, respectively, of A (to be used in the secure computation phase).

Consider any session i ∈ [m] betweenH andA. Consider the last message fromA beforeH sends
a message toA during the secure computation phase in session i. Note that this message could either
be the first message of the secure computation phase or the last message of the input commitment
phase, depending upon whether A or H sends the first message in the secure computation phase.
In the sequel, we will refer to this message from A as the special message. Intuitively, this message
is important because our simulator will need to leak the honest party’s inputs for this session
whenever it receives such a message from A on a look-ahead thread. Looking ahead, in order to
bound the number of leakage queries made by our simulator, we will be counting the number of
special messages sent by A on look-ahead threads during the simulation. This is possible because

37

for an adversary to successfully use different inputs in different executions of the same session, it
has to change some of its messages from the start of the session to special message. Otherwise,
the input used by the adversary is fixed due to perfect binding property of com and soundness of
〈Pswi, Vswi〉.

C.2.1 Simulator S

The simulator S = (Smain, Sext) consists of two parts, namely, Smain and Sext. Informally speaking,
the goal of Sext is to extract the committed value in each execution of the extractable commitment
schemes 〈C,R〉 and 〈C ′, R′〉 where A acts as the committer. These extracted values are passed on
to Smain, who uses them crucially to simulate the view of A. We now give more details.

Description of Sext. We first describe the strategy of Sext. Roughly speaking, Sext essentially
handles all communication with A; however, in each session i ∈ [m], Sext by itself only answers A’s
messages during the execution of the commitment schemes 〈C,R〉 and 〈C ′, R′〉 where A plays the
role of the committer; Sext in turn communicates with the main simulator Smain (described below)
to answer all other messages from A. We now give more details.

Let Scec denote the simulator for the commitment schemes 〈C,R〉 and 〈C ′, R′〉 as described in
Section 3.2. The machine Sext is essentially the same as the simulator Scec that interacts with A in
order to extract the committed value in each instance of 〈C,R〉H→A and 〈C ′, R′〉H→A. Specifically,
in order to perform these extractions, Sext employs the cost-based rewinding strategy of Scec for an
“imaginary” adversary, described below. During the simulation, whenever Sext receives a message
from A in an execution of 〈C,R〉H→A or 〈C ′, R′〉H→A, then it answers it on its own in the same
manner as Scec does (i.e., by sending a random challenge string). However, on receiving any other
message, it simply passes it to the main simulator Smain (described below), and transfers its response
to A. Whenever Sext extracts a committed value from an execution of 〈C,R〉H→A or 〈C ′, R′〉H→A
at any point during the simulation, it immediately passes it to Smain. Whenever Sext fails to extract
any of the committed values from 〈C,R〉H→A or 〈C ′, R′〉H→A, then it aborts with the special symbol
⊥.

Message generation timings of A. We note that in order to employ the cost-based rewinding
strategy of Scec, Sext needs to know the cost of each of the message that A generates in the protocol
(see Section 3.2). Our goal is to minimize the number of leakage queries made by S. To this end,
We consider an imaginary experiment in which we will assign disproportionately large cost to the
messages of A which force S to make a leakage query. In particular, we will assign large cost to the
special message in each session. Then the rewinding strategy of Sext is determined by running Scec
using the next message generation costs of such an (imaginary) adversary, explained as follows.

Consider all the messages sent by A during a protocol execution. Assign θ units to the special
message, where θ is the round complexity (linear in number of slots N) of our protocol; any other
message is simply assigned one unit. Intuitively, by assigning more weight to the special message,
we ensure that if the cost incurred by our simulator on the look-ahead threads is bounded by ε,
then the number of special messages sent by A on the look-ahead threads during the simulation
must be a bounded by ε as well. Looking ahead, this in turn will allow us to prove that the number
of sessions for which our simulator leaks the honest party’s inputs are bounded by ε.

Description of Smain. We now describe the strategy of Smain in each phase of the protocol, for
each session i ∈ [m]. We stress that Smain uses the same strategy in the main-thread as well as all
look-ahead threads (unless mentioned otherwise). For the sake of simplicity, below we describe the
case in which the honest party sends the first message in the protocol. The other case, in which
the adversary sends the first message, can be handled in an analogous manner and is omitted.

38

Trapdoor Creation Phase. In the first step, instead of committing to bit 0, Smain sends com1

as a commitment to bit 1. Now, recall that Sext interacts with A during the preamble phase in
〈P, V 〉H→A and extracts the preamble secret σA from A at the conclusion of the “valid” preamble
with all but negligible probability. Then, on receiving σA from Sext, Smain simulates the post-
preamble phase of 〈P, V 〉H→A in a straight-line manner (by using σA); in the same manner as
explained in Section A.4. In the case when the preamble phase is not valid but Sext extracts some
value, then Smain uses this value to simulate the post-preamble phase. On the other hand, if Sext
returns ⊥, then Smain executes the post-preamble phase of 〈P, V 〉H→A by following the honest party
strategy. In the second step of this phase, Smain simply uses the honest party strategy to interact
with A.

As we have shown in section 3.2, except with negligible probability, Sext always succeeds in
extracting the preamble secret σA in as long as the commitment protocol 〈C,R〉A→H is “valid”. In
other words, Sext outputs ⊥ or a value different from σ⊥ only if the commitment protocol 〈C,R〉A→H
is not “valid”. In this case, A would fail with probability 1 in successfully decommitting to the
preamble secret during the post-preamble phase of 〈P, V 〉H→A. As a consequence, Smain will abort
the session.

Input Commitment Phase. In this phase, Smain first commits to a (sufficiently large) random
string (unlike the honest party that commits to its input xH and randomness rH) in the execution
of the commitment protocol 〈C ′, R′〉H→A. Smain then engages in an execution of 〈Pswi, Vswi〉H→A
with A, where (unlike the honest party that uses the real witness) Smain uses the trapdoor witness.
Note that the trapdoor witness is available to Smain since it committed to bit 1 in the trapdoor
commitment phase.

Smain does not do anything in the second step of this phase. Instead, as mentioned above, Sext
interacts with A and extracts the input and randomness pair (xA, rA) of A from 〈C ′, R′〉A→H . The
pair (xA, rA) is given to Smain.

Secure Computation Phase. Let Ssh denote the simulator for the semi-honest two-party pro-
tocol 〈P sh

1 , P sh
2 〉 used in our construction. Smain internally runs the simulator Ssh on adversary’s

input xA. Ssh starts executing, and, at some point, it makes a call to the trusted party in the ideal
world with some input (say) xA. Smain uses the following strategy to manage queries to the trusted
party.

First note that a call to the trusted party is defined by the corresponding special message. If
the transcript from the start of the session to the special message is same for two different trusted
party calls, then these calls and their outputs are identical. Now, when Ssh makes a call to the
trusted party, Smain does the following: Smain finds the corresponding special message msg and
checks the following: If a trusted party call has been made corresponding to msg, it uses the output
received from the trusted party on the query. Note that in this case the input xA and hence output
from trusted party would be the same as before due to perfectly binding property of com and
soundness of 〈Pswi, Vswi〉. Otherwise, it checks if a leakage query has been made corresponding to
msg, it uses the output of the leakage query to compute the output. If none of the above holds
then Smain computes the output as follows: If msg lies on the main thread, Smain makes a trusted
party call for the session i with input xA. Also, it records that a trusted party query has been
made corresponding to msg and stores the output for possible future use. Otherwise, msg lies on
some look-ahead thread. In this case, Smain sends a leakage query Li to the trusted party such that
Li takes honest parties’ inputs across all sessions as input and outputs the honest party’s input for
session i. Now Smain can compute the output itself by using the honest party’s input and xA. Smain

makes a record of this leakage query. If the query corresponds to the main thread, Smain sends
the message (output, s) to the trusted party, indicating it to send the output to the honest party
in session. 11 The output is passed on to Ssh.

11Note that s = ` in this case. We stress that by setting s = ` for a query on the main thread, Smain ensures that

39

Having received the output from Smain, Ssh runs further, and finally halts and outputs a tran-
script βH,1, βA,1, . . . , βH,t, βA,t of the execution of 〈P sh

1 , P sh
2 〉, and an associated random string r̂A.

Sext now performs the following steps.

1. Smain first computes a random string r̃A such that r̃A = rA ⊕ r̂A and sends it to A.

2. Now, in each round j ∈ [t], Smain sends βH,j . It then engages in an execution of 〈Pswi, Vswi〉H→A
with A where it uses the trapdoor witness (deviating from honest party strategy that used
the real witness). Next, on receiving A’s next message βA,j in the protocol 〈P sh

1 , P sh
2 〉, Smain

engages in an execution of 〈Pswi, Vswi〉A→H with A where it uses the honest verifier strat-
egy. Finally at any stage, if the jth message of the adversary is not βA,j and the proof
〈Pswi, Vswi〉A→H given immediately after this messages is accepted, then the simulator aborts
all communication and outputs ⊥. (Later, we establish in the proof of Lemma 13 that Sext
outputs ⊥ with only negligible probability.)

This completes the description of our simulator S = {Sext, Smain}. In the next subsection, we bound
the total number of queries made by S.

C.3 Fraction of honest parties’ inputs leaked by S
In this section we will prove that S is a ε-joint-ideal-leakage simulator for ε defined below.

Lemma 12 Simulator S is ε-Joint-Ideal-Leakage Simulator for ε ≤ (log∗ κ)3 log5(κ)
N .

Proof. Let m be the total number of sessions of Π = (P1, P2) being executed concurrently. Let
C be the total cost of the output thread in the real execution, as per the cost assignment strategy
described in section C.2.1. Let q be the round complexity of Π. Then, as per the cost assignment
strategy given in section C.2.1, C = (θ − 1 + θ) · m (recall that the special message is assigned
a cost of θ units, while each of the remaining θ − 1 messages is assigned one unit cost). Now by
section B.3 cost-based rewinding strategy Scec has following cost for all the look-ahead threads

created:
(
C·(log∗ κ)2 logC log4 κ

N

)
= m·θ·(log∗ κ)2(logm+logN) log4 κ

N , where θ is O(N).

Also, cost of a special message is θ. Hence, maximum number of special messages which can

be present on look-aheads is bounded by Γ ≤ m·(log∗ κ)2(logm+logN) log4 κ
N . Recall that we make at

most one leakage query corresponding to each distinct special message. Hence S makes at most Γ
leakage queries.

Each leakage query leaks the honest party’s input for a single session. Hence, we leak honest
parties’ inputs for at most Γ sessions. Lemma follows by using the fact that both m and N are
bounded by some polynomials in κ.

C.4 Indistinguishability of the Views

We consider two experiments H0 and H1, where H0 corresponds to the real execution of Σ while
H1 corresponds to the ideal computation of F , as described below.

Experiment H0: The simulator S is given the inputs of all the honest parties. By running honest
programs for the honest parties, it generates their outputs along with A’s view. This corresponds
to the real execution of the protocol. The output of the hybrid corresponds to the outputs of the
honest parties and the view of the adversary A.

the honest party in session ` receives the correct output. (Note that an honest party does not receive any output for
an output query on a look-ahead thread.)

40

Experiment H1: S simulates all the sessions without the inputs of the honest parties (in the
same manner as explained in the description of S) and outputs the view of A. Each honest party
outputs the response it receives from the trusted party. Again the output of the hybrid corresponds
to the outputs of the honest parties and the view of the adversary A.

Let v i be a random variable that represents the output of Hi. We now claim that the output
distributions of H0 and H1 are indistinguishable, as stated below:

Lemma 13 v0 c≡ v1

We will prove this lemma using a carefully designed series of intermediate hybrid experiments.
More details are given below.

C.4.1 Getting Started

We will prove Lemma 13 by contradiction. Suppose that the hybrids H0 and H1 are distinguishable
in polynomial time, i.e., there exists a ppt distinguisher D that can distinguish between the two
hybrids with a non-negligible probability. We will now consider a series of hybrid experiments Hi:j ,
where i ∈ [1, 2m], and j ∈ [1, 6]. We define two additionally hybrids – first, a dummy hybrid H0:6

that represents the real world execution (i.e., H0, as defined above), and second, an additional
hybrid H2m+1:1 that corresponds to the simulated execution in the ideal world (i.e., H1, as defined
above). For each intermediate hybrid Hi:j , we define a random variable νi:j that represents the
output (including the view of the adversary and the outputs of the honest parties) of Hi:j .

Below, we will establish (via the intermediate hybrid arguments) that no polynomial time
distinguisher can distinguish between ν0:6 and ν2m+1:1 with a non-negligible probability, which is
a contradiction. Before we jump into description of our hybrids, we first establish some notation
and terminology.

In the sequel, we will make use of the notation described in Section C.2. In particular, whenever
necessary, we will augment our notation with a super-script that denotes the session number. We
now describe some additional notation that will be used in the proof.

First Message Notation. For any session ` ∈ [m], consider the first message that H sends to A
during the post-preamble phase inside 〈P, V 〉H→A. We will refer to this message as an LM of type
I. Further, in that session, consider the first message that H sends to A during the execution of
〈P sh

1 , P sh
2 〉 in the secure computation phase. We will refer to this message as an LM of type II.

Consider an ordered numbering of all the occurrences of LM (irrespective of its type) across
the m sessions. Note that there may be up to 2m LM’s in total on any execution thread. In
particular, there will be exactly 2m LM’s on the main thread. For any execution thread, let LMi

denote the ith LM. Let s(i) be the index of the protocol session that contains LMi. In the sequel,
our discussion will mainly involve the LM’s on the main thread. Therefore, we omit the reference
to the main thread and unless otherwise stated, it will be implicit that the LM’s in our discussion
correspond to the main thread.

Soundness Condition. Looking ahead, while proving the indistinguishability of the outputs of
our hybrid experiments, we will need to argue that in each session ` ∈ [m], the soundness property
holds for 〈P, V 〉A→H and that the trapdoor condition is false for each instance of 〈Pswi, Vswi〉A→H .
In the sequel, we will refer to this as the soundness condition.

Consider the CNMZK instance 〈P, V 〉`A→H in session `. Let π`A denote the proof statement for
〈P, V 〉`A→H , where, informally speaking, π`A states thatA committed to bit 0 (earlier in the trapdoor
creation phase). Note that the soundness condition “holds” if we prove that in each session ` ∈ [m],
A commits to a valid witness to the statement π` in the non-malleable commitment (NMCOM)

41

inside 〈P, V 〉`A→H . To this end, we define m random variables, {ρ`i:j}m`=1, where ρ`i:j is the value

committed in the NMCOM inside 〈P, V 〉`A→H as per νi:j .
Now, before we proceed to the description of our hybrids, we first claim that the soundness

condition holds in the real execution. We will later argue that the soundness condition still holds
as we move from one hybrid to another.

Lemma 14 Let 〈P, V 〉`A→H and π`A be as described above corresponding to the real execution. Then,
for each session ` ∈ [m], if the honest party does not abort the session (before the first message of
the Secure Computation Phase is sent) in the view ν0:6, then ρ`0:6 is a valid witness to the statement
π`A, except with negligible probability.

Intuitively, the above lemma immediately follows due the knowledge soundness of the statistical
zero knowledge argument of knowledge used in 〈P, V 〉. We refer the reader to [Claim 2.5, [BPS06]]
for a detailed proof.

Public-coin property of NMCOM. We now describe a strategy that we will repeatedly use
in our proofs in order to argue that for every session ` ∈ [m], the value contained in NMCOM
inside 〈P, V 〉`A→H remains indistinguishable as we change our simulation strategy from one hybrid
experiment to another. Intuitively, we will reduce our indistinguishability argument to a specific
cryptographic property (that will be clear from context) that holds in a stand-alone setting. Specif-
ically, we will consider a stand-alone machine M∗ that runs S and A internally. Here we explain
how for any session `, M∗ can “expose” the NMCOM inside 〈P, V 〉`A→H to an external party R
(i.e., M∗ will send the commitment messages from A to R and vice-versa, instead of handling
them internally). Note that S may be rewinding A during the simulation. However, since R is a
stand-alone receiver; M∗ can use its responses only on a single thread of execution.

In order to deal with this problem, we will use the following strategy. When A creates the
NMCOM inside 〈P, V 〉`A→H , any message in this NMCOM from A on the main-thread is forwarded
externally to R; the responses from R are forwarded internally to A on the main-thread. On the
other hand, any message in this NMCOM from A on a look-ahead thread is handled internally; M∗

creates a response on its own and sends it internally to A on that look-ahead thread. We stress
that this possible because NMCOM is a public-coin protocol.

In the sequel, whenever we use the above strategy, we will omit the details of the interaction
between M∗ and R.

C.4.2 Description of the Hybrids

For i ∈ [1, 2m], the hybrid experiments are described as follows.

Experiment Hi:1: Same as Hi−1:6, except that S performs rewindings upto LMi (as described
in Section C.2). Specifically, the rewindings are performed with the following restrictions:

• No new-look ahead threads are created beyond LMi on the main thread (i.e., the execution
is straight-line beyond LMi).

• Consider any look-ahead thread that is created before the execution reaches LMi on the main-
thread. Then, any such look-ahead thread is terminated as soon as the execution reaches the
ith LM on that thread12.

12Note that the LMi’s on different executions threads may not be identical, and in particular, may correspond to
different sessions

42

Additionally, S extracts and records the committed value in each execution of 〈C,R〉A→H and
〈C ′, R′〉A→H that concludes before LMi. S outputs the abort symbol⊥ if it “gets stuck”. Otherwise,
it outputs the view of the adversary in the main thread of this simulation as νi:1.

We now claim that,

νi−1:6
c≡ νi:1 (1)

∀` ρ`i−1:6
c≡ ρ`i:1 (2)

Hybrid Hi−1:6:1. In order to prove our claim, we will first consider an intermediate hybrid exper-
iment Hi−1:6:1 where S employs the same strategy as described above, except that whenever it
fails to extract the committed values from 〈C,R〉A→H and 〈C ′, R′〉A→H , it does not abort, but
instead continues the simulation and outputs the main thread. Now, since the main thread in this
experiment remains unchanged from Hi−1:6, it follows that:

νi−1:6
s≡ νi−1:6:1 (3)

where
s≡ denotes statistical indistinguishability. We further claim that:

∀` ρ`i−1:6
c≡ ρ`i−1:6:1 (4)

Let us assume that equation 4 is false. That is, ∃` ∈ [m] such that ρ`i−1:6 and ρ`i−1:6:1 are distin-
guishable by a probabilistic polynomial time (PPT) distinguisher. In this case, we can create an
unbounded adversary that extracts the value contained in the non-malleable commitment inside
〈P, V 〉`A→H and is then able to distinguish between the main threads in Hi−1:6 and Hi−1:6:1, which
is a contradiction.

We now argue that in hybrid Hi−1:6:1, S is able to extract (except with negligible probability)
the committed value in each execution of 〈C,R〉A→H and 〈C ′, R′〉A→H that concludes before LMi.
Towards this, we first note that by construction, simulator’s strategy in this experiment is identical
for each thread, irrespective of whether it is the main-thread or a look-ahead thread. Now consider
an imaginary adversary who aborts once the execution reaches LMi on any thread. Note that lemma
4 holds for such an adversary (i.e. the probability that the simulator fails to extract the committed
value of a “concluded” commitment 〈C,R〉 or 〈C ′, R′〉 is negligible). Then, if the adversary does
not abort (as is the case with A), the probability that the simulation successfully extracts the
committed values must be only higher. Hence our claim follows for case 1.

For case 2, we note that lemma 4 is applicable if we can argue that the soundness condition holds
(specifically, we require that the trapdoor condition is false for each instance of SWI in 〈C,R〉`A→H
if 〈C,R〉`A→H concludes before LMi). Note that this is already implied by equation 4. Hence, our
claim follows for case 2 as well.

Proving Equations 1 and 2. Note that the only difference between Hi−1:6:1 and Hi:1 is that S
outputs the abort symbol ⊥ if Scec “gets stuck”. We have shown that this event happens only with
negligible probability. Hence our claim follows.

Experiment Hi:2: Same as Hi:1, except that if LMi is of type I, then S simulates the post-

preamble phase of 〈P, V 〉s(i)H→A in a straight-line manner, as explained in Section A.4. For com-
pleteness, we recall it below. Recall that no look-ahead threads are started once the execution
reaches LMi on the main thread. Thus, all the changes in the main thread, as explained below, are
performed after LMi.

1. In the post-preamble phase of 〈P, V 〉s(i)H→A, S first commits to σ
s(i)
A (instead of a string of all

zeros) using the statistically hiding commitment scheme SCOM and follows it up with an
honest execution of SZKAOK to prove knowledge of the decommitment.

43

2. Next, after receiving the decommitment to the preamble phase of 〈P, V 〉s(i)H→A, S commits to

an all zeros string (instead of a valid witness to π
s(i)
H) using the the non-malleable commitment

scheme NMCOM.

3. Finally, S proves the following statement using SZKAOK: (a) either the value committed to

in SCOM earlier is a valid witness to π
s(i)
H , or (b) the value committed to in SCOM earlier is

σ
s(i)
A . Here it uses the witness corresponding to the second part of the statement. Note that

this witness is available to S since it already performed step 1 above. Below, we will refer to
this witness as the trapdoor witness, while the witness corresponding to the first part of the
statement will be referred to as the real witness.

Now we prove that,

νi:1
c≡ νi:2 (5)

∀` ρ`i:1
c≡ ρ`i:2 (6)

In order to prove the above equations, we will create three intermediate hybrids Hi:1:1, Hi:1:2,
and Hi:1:3. Hybrid Hi:1:1 is identical to Hi:1, except that it changes its strategy to perform step
1 (as described above). Hybrid Hi:1:2 is identical to Hi:1:1, except that it changes its strategy to
perform step 3. Finally, hybrid Hi:1:3 is identical to Hi:1:2, except that it changes its strategy to
perform step 2. Note that Hi:1:3 is identical to Hi:2.

We now claim the following:

νi:1
c≡ νi:1:1 (7)

∀` ρ`i:1
c≡ ρ`i:1:1 (8)

νi:1:1
c≡ νi:1:2 (9)

∀` ρ`i:1:1
c≡ ρ`i:1:2 (10)

νi:1:2
c≡ νi:1:3 (11)

∀` ρ`i:1:2
c≡ ρ`i:1:3 (12)

Note that equation 5 follows by combining the results of equations 7, 9, and 11. Similarly, equation
6 follows by combining the results of equations 8, 10, and 12. We now prove the above set of
equations.

Let π
s(i)
H denote the proof statement in 〈P, V 〉s(i)H→A. Let σ

s(i)
A denote the preamble secret com-

mitted by the A in the preamble phase of 〈P, V 〉s(i)H→A that S has already extracted.

Proving Equations 7 and 8. We first note that SCOM and SZKAOK can together be viewed as a
statistically hiding commitment scheme. Let SCOM denote this new commitment scheme. Then,
equation 7 simply follows from the hiding property of SCOM.

In order to prove equation 8, let us first assume that the claim is false, i.e., ∃` ∈ [m] such that
ρ`i:1 and ρ`i:1:1 are distinguishable by a PPT distinguisher D. We will create a standalone machine
M∗ that is identical to Hi:1, except that instead of simply committing to a string of all zeros using

SCOM in 〈P, V 〉s(i)H→A, M∗ takes this commitment from an external sender C and “forwards” it

internally to A. Additionally, M∗ “exposes” the NMCOM in 〈P, V 〉`A→H to an external receiver
R by relying on the public-coin property of NMCOM, as described earlier. Let us describe the
interaction between M∗ and C in more detail. M∗ first sends the preamble secret σmbps

A s(i) to C.

Now, when C starts the execution of SCOM in 〈P, V 〉s(i)H→A, M∗ forwards the messages from C to A;
the responses from A are forwarded externally to C. Note that if C commits to a string of all zeros

44

in the SCOM execution, then the (C,M∗, R) system is identical to Hi:1:1. On the other hand, if C
commits to the preamble secret σmbps

A s(i), then the (C,M∗, R) system is equivalent to Hi:1:2. We
will now construct a computationally unbounded distinguisher D′ that distinguishes between these
two executions, thus contradicting the statistically hiding property of SCOM. D′ simply extracts
the value inside the NMCOM received by R and runs D on this input. D′ outputs whatever D
outputs. By our assumption, D’s output must be different in these two experiments; this implies
that D′ output is different as well, which is a contradiction.

Proving Equations 9 and 10. Equation 9 simply follows due to the witness indistinguishability
property of SZKAOK. Equation 10 follows from the fact that SZKAOK is statistically witness
indistinguishable. The proof details are almost identical to the proof of equation 8 and therefore
omitted.

Proving Equations 11 and 12. Equation 11 simply follows from the hiding property of NMCOM.
To see this, we can construct a standalone machine M that internally runs S and A and outputs

the view generated by S. M is identical to Hi:1:2 except that in phase IV of 〈P, V 〉s(i)H→A, instead of

simply committing (using NMCOM) to a valid witness (to the proof statement ys(i)), it takes this
commitment from an external sender C and “forwards” it internally to A.

In order to prove equation 12, we will use the non-malleability property of NMCOM. Let us
assume that equation 12 is false, i.e., ∃` ∈ [m] such that ρ`i:1:2 and ρ`i:1:3 are distinguishable by a
PPT machine. We will construct a standalone machine M∗ that is identical to the machine M
described above, except that it will “expose” the non-malleable commitment inside 〈P, V 〉`A→H to
an external receiver R by relying on the public-coin property of NMCOM, as described earlier.
Now, if E commits to the witness to y`, then the (C,M∗, R) system is identical to Hi:1:2, whereas
if E commits to a random string, then the (C,M∗, R) system is identical to Hi:1:3. From the
non-malleability property of NMCOM, we establish that the value committed by M∗ to R must be
computationally indistinguishable in both cases.

Experiment Hi:3: Same as Hi:2, except that if LMi is of type I, then the simulator commits to

bit 1 instead of 0 in phase I of session s(i). Let Π
s(i)
com,H→A denote this commitment.

We now claim that,

νi:2
c≡ νi:3 (13)

∀` ρ`i:2
c≡ ρ`i:3 (14)

Proving Equations 13 and 14. Equation 13 simply follows from the (computationally) hiding prop-
erty of the commitment scheme com.

In order to prove equation 14, we will leverage the hiding property of com and the extractability
property of the non-malleable commitment scheme in 〈P, V 〉. Let us first assume that equation
14 is false, i.e., ∃` ∈ [m] such that ρ`i:2 and ρ`i:3 are distinguishable by a PPT distinguisher. Note
that it cannot be the case that the NMCOM inside 〈P, V 〉`A→H concludes before S sends the non-

interactive commitment Π
s(i)
com,H→A in session s(i), since in this case, the execution of NMCOM is

independent of Π
s(i)
com,H→A. Now consider the case when the NMCOM inside 〈P, V 〉`A→H concludes

after S sends Π
s(i)
com,H→A.

We will create a standalone machine M∗ that is identical to Hi:2, except that instead of com-

mitting to bit 0 in Π
s(i)
com,H→A, it takes this commitment from an external sender C and forwards it

internally to A. Additionally, it “exposes” the NMCOM inside 〈P, V 〉`A→H to an external receiver
R by relying on the public-coin property of NMCOM, as described earlier. Note that if C commits
to bit 0 then the (C,M∗, R) system is identical to Hi:2, otherwise it is identical to Hi:3. Now,
recall that NMCOM is an extractable commitment scheme. Therefore, we now run the extractor

45

(say) E of NMCOM on (C,M∗) system. Note that E will rewind M∗, which in turn may rewind
the interaction between C and M∗. However, since com is a non-interactive commitment scheme,
M∗ simply re-sends the commitment string received from C to A internally. Now, if the extracted
values are different when C commits to bit 0 as compared to when it commits to bit 1, then we
can break the (computationally) hiding property of com, which is a contradiction.

Experiment Hi:4: Same asHi:3, except that if LMi is of type I, then S uses the following modified
strategy. In session s(i), S uses the trapdoor witness (instead of the real witness) in each instance
of SWI where the honest party plays the role of the prover. Note that the trapdoor witness for
each of these SWI must be available to the simulator at this point since it earlier committed to bit
1 in phase I of session s(i).

We now claim that,

νi:3
c≡ νi:4 (15)

∀` ρ`i:3
c≡ ρ`i:4 (16)

Proving Equations 15 and 16. Equation 15 simply follows from the witness indistinguishability of
SWI by a standard hybrid argument.

In order to prove equation 16, let us first consider the simpler case where S uses the trapdoor
witness only in the first instance (in the order of execution) of SWI in session s(i) where the honest
party plays the role of the prover. In this case, we can leverage the “statistical” nature of the
witness indistinguishability property of SWI in a similar manner as in the proof of equation 10.
Then, by a standard hybrid argument, we can extend this proof for multiple SWI.

Experiment Hi:5: Same asHi:4, except that if LMi is of type I, then S uses the following strategy
in the execution of 〈C ′, R′〉H→As(i) in session s(i). Recall that 〈C ′, R′〉H→Ax denotes the instance
of 〈C ′, R′〉 in session s(i) where the honest party commits to its input xH and randomness rH (to
be used in the secure computation phase).

1. Instead of honest commitments to xH‖rH and its secret shares, S sends commitments to
random strings as the first message.

2. On receiving any challenge string from A, instead of honestly revealing the values committed
to in the commit phase (as per the challenge string), S sends random strings to A.

We now claim that,

νi:4
c≡ νi:5 (17)

∀` ρ`i:4
c≡ ρ`i:5 (18)

In order to prove these equations, we will define two intermediate hybrids Hi:4:1 and Hi:4:2. Experi-
ment Hi:4:1 is the same as Hi:4, except that S also performs steps 1 as described above. Experiment
Hi:4:2 is the same as Hi:4:1, except that S also performs step 2 as described above. Therefore, by
definition, Hi:4:2 is identical to Hi:5.

We now claim the following:

νi:4
c≡ νi:4:1 (19)

∀` ρ`i:4
c≡ ρ`i:4:1 (20)

νi:4:1
c≡ νi:4:2 (21)

∀` ρ`i:4:1
c≡ ρ`i:4:2 (22)

46

Note that equation 17 follows by combining the results of equations 19 and 21. Similarly, equation
eq:b45 follows by combining the results of equations 20 and 22. We now prove the above set of
equations.

Proving Equations 19 and 20. Equation 19 simply follows from the (computational) hiding property
of the commitment scheme com.

In order to prove equation 20, let us first consider the simpler case where S only modifies the first

commitment in the commit phase in 〈C,R〉s(i)H→A. In this case, we can leverage the hiding property
of com and the extractability property of the non-malleable commitment scheme in 〈P, V 〉 in a
similar manner as in the proof of equation 14. Then, by a standard hybrid argument, we can extend

this proof to the case where S modifies all the commitments in the commit phase in 〈C,R〉s(i)H→A.

Proving Equations 21 and 22. Note that the main-thread is identical in hybrids Hi:4:1 and Hi:4:2

since we are only changing some random strings to other random strings; furthermore, the strings
being changed are not used elsewhere in the protocol. Equations 21 and 22 follow as a consequence.

Experiment Hi:6: Same as Hi:5, except that if LMi is of type II, S “simulates” the execution of
〈P sh

1 , P sh
2 〉 in session s(i), in the following manner. Let Ssh be the simulator for the semi-honest two

party protocol 〈P sh
1 , P sh

2 〉 used in our construction. S internally runs the simulator Ssh for the semi-
honest two party protocol 〈P sh

1 , P sh
2 〉 on A’s input in session s(i) that was extracted earlier. When

Ssh makes a query to the trusted party with some input, S selects a session index s′ and forwards
the query to the trusted party in the same manner as explained earlier in Section C.2.1. The
response from the trusted party is passed on to Ssh. Further, S decides whether the output must
be sent to the honest party in the same manner as explained earlier. Ssh finally halts and outputs
a transcript of the execution of 〈P sh

1 , P sh
2 〉, and an associated random string for the adversary.

Now, S forces this transcript and randomness on A in the same manner as described in section
C.2.1. We claim that during the execution of 〈P sh

1 , P sh
2 〉, each reply of A must be consistent with

this transcript, except with negligible probability. Note that we have already established from the
previous hybrids that the soundness condition holds (except with negligible probability) at this

point. This means that the trapdoor condition is false for each instance of 〈Pswi, Vswi〉
s(i)
A→H . Then

our claim follows from the soundness property of SWI used in our construction.
We now claim that:

νi:5
c≡ νi:6 (23)

∀` ρ`i:5
c≡ ρ`i:6 (24)

Proving Equation 23. Informally speaking, equation 23 follows from the semi-honest security of the
two-party computation protocol 〈P sh

1 , P sh
2 〉 used in our construction. We now give more details.

We will construct a standalone machine M that is identical to Hi:5, except that instead of
engaging in an honest execution of 〈P sh

1 , P sh
2 〉 with A in session s(i), it obtains a protocol transcript

from an external sender C and forces it on A in the following manner. M first queries the ideal
world trusted party on the extracted input of A for session s(i) in the same manner as explained

above for S. Let x
s(i)
A denote the extracted input of A. Let x

s(i)
H denote the input of the honest

party in session s(i). Let O be the output that M receives from the trusted party. Now M sends

x
s(i)
H along with x

s(i)
A and O to C and receives from C a transcript for 〈P sh

1 , P sh
2 〉 and an associated

random string. M forces this transcript and randomness on A in the same manner as S does. Now,
the following two cases are possible:

1. C computed the transcript and randomness by using both the inputs - x
s(i)
H and x

s(i)
A - along

with the output O. In this case, the transcript output by C is a real transcript of an honest
execution of 〈P sh

1 , P sh
2 〉.

47

2. C computed the transcript and randomness by using only adversary’s input x
s(i)
A , and the

output O. In this case C simply ran the simulator Ssh on input x
s(i)
A and answered its query

with O. The transcript output by C in this case is a simulated transcript for 〈P sh
1 , P sh

2 〉.

In the first case, the (C,M) system is identical to Hi:5, while in the second case, the (C,M) system
is identical to Hi:6. By the (semi-honest) security of 〈P sh

1 , P sh
2 〉, we establish that the output of

M must be indistinguishable in both the cases, except with negligible probability. This proves
equation 23.

Proving Equation 24. We will leverage the semi-honest security of the two-party computation
protocol 〈P sh

1 , P sh
2 〉 and the extractability property of the non-malleable commitment scheme in

〈P, V 〉 to prove equation 24.
Specifically, we will construct a standalone machine M∗ that is identical to M as described

above, except that it “exposes” the NMCOM in 〈P, V 〉`A→H to an external receiver R by relying
on the public-coin property of NMCOM, as described earlier. Note that if C produces a transcript
〈P sh

1 , P sh
2 〉 according to case 1 (as described above), then the (C,M∗, R) system is identical to Hi:5.

On the other hand, if C produces a transcript for 〈P sh
1 , P sh

2 〉 according to case 2, then the (C,M∗, R)
system is identical to Hi:6. We can now run the extractor E of NMCOM on (C,M∗) system. Note
that E will rewind M∗, which in turn may rewind the interaction between C and M∗. However,
since this interaction consists of a single message from C, M∗ simply re-uses (if necessary) the
transcript received from C in order to interact with A internally. Now, if the extracted values are
different in case 1 and case 2, then we can break the semi-honest security of 〈P sh

1 , P sh
2 〉, which is a

contradiction.

D Precise Concurrent Zero-Knowledge

Precise zero knowledge introduced by Micali and Pass (STOC’06) guarantees that the view of any
verifier V can be simulated in time closely related to the actual (as opposed to worst-case) time
spent by V in the generated view. [PPS+08] gave the first constructions of precise concurrent
zero-knowledge protocols. In this section we improve upon there results both in terms of round
complexity and precision of simulation by using our cost-based rewinding strategy described in
section 3.2.

Many parts of this section have been taken verbatim from [PPS+08].
Notation. Let L denote an NP-language and RL the corresponding NP-relation. Let (P,V)

denote an interactive proof(argument) system where P and V are the prover and verifier algorithms
respectively. By V∗(x, z, •) we denote a non-uniform concurrent adversary verifier with common
input x and auxiliary input (or advice) z whose random coins are fixed to a sufficiently long string
chosen uniformly at random; P(x,w, •) is defined analogously where w ∈ RL(x).

Note that V∗ is a concurrent adversary verifier. Formally, it means the following. Adversary
V∗, given an input x ∈ L, interacts with an unbounded number of independent copies of P (all on
common input x)13. An execution of a protocol between a copy of P and V∗ is called a session.
Adversary V∗ can interact with all the copies at the same time (i.e., concurrently), interleaving
messages from various sessions in any order it wants. That is, V∗ has control over the scheduling of
messages from various sessions. In order to implement a scheduling, V∗ concatenates each message
with the session number to which the next scheduled message belongs. The convention is that
the prover copy corresponding to the session number specified in the last message, sends the next
message (as per the specifications of the protocol). The view of concurrent adversary V∗ in a

13We remark that instead of a single fixed theorem x, V∗ can be allowed to adaptively choose provers with different
theorems x′. For ease of notation, we choose a single theorem x for all copies of P. This is not actually a restriction
and our results hold even when V∗ adaptively chooses different theorems.

48

concurrent execution is: the common input x, followed by the sequence of prover and verifier
messages exchanged during the interaction, followed by the contents of the random tape of V∗.

Let viewV∗(x,z,•) be the random variable denoting the view of V∗(x, z, •) in a concurrent inter-
action with the copies of P(x,w, •). Let viewSV∗ (x,z,•) denote the view output by the simulator.
When simulator’s random tape is fixed to r, its output is instead denoted by viewSV∗ (x,z,r). Finally,
let TSV∗ (x,z,r) denote the steps taken by the simulator and let TV∗(viewSV∗ (x,z,r)) denote the steps
taken by V∗ in the view viewSV∗ (x,z,r).

Definition 10 (Precise Concurrent Zero Knowledge) Let p : N×N → N be a monotonically
increasing function. We say that (P,V) is concurrent zero knowledge proof (argument) system with
precision p, if for every non-uniform probabilistic polynomial time V∗, the following conditions
hold:

1. For all x ∈ L, z ∈ {0, 1}∗, the following distributions are computationally indistinguishable
over L:{

viewV∗(x,z,•)
}

and
{
viewSV∗ (x,z,•)

}
2. For all x ∈ L, z ∈ {0, 1}∗, and every sufficiently long r ∈ {0, 1}∗, it holds that:

TSV∗ (x,z,r) ≤ p(|x|, TV∗(viewSV∗ (x,z,r))).

D.1 Protocol Description

We describe the protocol in Figure 4. This protocol is same as that of [PPS+08] with the modifi-
cation of using 〈C,R〉 extractable commitment scheme with N rounds.

PCZK(N): A Protocol for Precise Concurrent Zero Knowledge Arguments.

(Stage 1)
P and V engage in execution of 〈C,R〉 with N challenge-response rounds (Section 3.2) where V commits

to a random string σ.
(Stage 2)

p: Run κ parallel and independent copies of BH-prover (Figure 5) and send the κ prover messages
p̂ to the verifier.

v: Reveal the challenge σ and send decommitment information for all commitments which are un-
opened so far. Each bit of σ can be thought of as verifier’s challenge in Step v̂ of BH-protocol.

p: Prover verifies that all the decommitments are proper and that σ = σ0
i,j ⊕ σ1

i,j . If yes, execute the
step p̂ for each of the κ parallel copies of the BH-protocol.

v: Verify each of the κ parallel proofs as described in v̂. If all κ v̂ steps are accepting, accept the
proof, otherwise reject the proof.

Figure 4: Our Precise Concurrent Zero Knowledge Protocol.

D.2 Simulator description

The simulator SV∗ would be same as Scec described in Section C.2. There we have described how
to handle the messages of Stage 1. For handling the Stage 2 messages we describe the prove
procedure in Figure 6.

49

The Blum-Hamiltonicity(BH) Protocol [Blu87b].

p̂: Choose a random permutation π of vertices V . Commit to the adjacency matrix of the permuted
graph, denoted π(G), and the permutation π, using a perfectly binding commitment scheme. Notice
that the adjacency matrix of the permuted graph contains a 1 in position (π(i), π(j)) if (i, j) ∈ E.
Send both the commitments to the verifier.

v̂: Select a bit σ ∈ {0, 1}, called the challenge, uniformly at random and send it to the prover.

p̂: If σ = 0, send π along with the decommitment information of all commitments. If σ = 1 (or
anything else), decommit all entries (π(i), π(j)) with (i, j) ∈ C by sending the decommitment
information for the corresponding commitments.

v̂: If σ = 0, verify that the revealed graph is identical to the graph π(G) obtained by applying the
revealed permutation π to the common input G. If σ = 1, verify that all the revealed values are 1
and that they form a cycle of length n. In both cases, verify that all the revealed commitments are
correct using the decommitment information received. If the corresponding conditions are satisfied,
accept the proof, otherwise reject the proof.

Figure 5: The Blum-Hamiltonicity protocol used in PCZK

Lemma 15 (Concurrent Zero Knowledge) The ensembles
{
viewSV∗ (x, z)

}
x∈L,z∈{0,1}∗ and

{viewV∗(x, z)}x∈L,z∈{0,1}∗ are computationally indistinguishable over L.

This follows from the Lemma 4 and proof of indistinguishibility in [PPS+08] (Lemma 5).

D.3 Precision of simulation

The main theorem of [PPS+08] is the following:

Theorem 13 Assuming the existence of one-way functions, for every ε > 0, there exists an
O(nε)-round concurrent zero knowledge argument for all languages in NP with precision p(t) =

O(t2
2
ε

logn t).

In our case, by using cost-based rewinding strategy for the extractable commitment scheme
〈C,R〉 we obtain the following precision guarantee:

Theorem 14 (Precision) The protocol in Figure 4 is an O(N) round concurrent zero-knowledge

argument for all languages in NP with precision p(t) = t ·
(

1 + (log∗ κ)3 log t log4 κ
N

)
.

Using total time of execution t as cost C in lemma 10 we get p(t) = t ·
(

1 + (log∗ κ)2 log t log4 κ
N

)
.

Lemma 16 There exists an O(log6 κ) round concurrent zero-knowledge argument for all languages
in NP with precision p(t) = t · (1 + ε), for any constant ε.

It can be proved as a consequence of the above theorem by observing that t is polynomial in κ.

E Impossibility Result for Individual Leaky Ideal World Model

In this section, we prove an impossibility result for concurrently secure computation in the individ-
ual leaky ideal world model. We start by formally stating the main result in this section:

50

The prove Procedure.

Let s ∈ [m] be the session for which the prove procedure is invoked. The procedure outputs either p or
p, whichever is required by SV∗ . Let hist denote the set of messages exchanged between SV∗ and V∗ in
the current thread. The prove procedure works as follows.

1. If the verifier has aborted in any of the N first stage messages of session s (i.e., hist contains
Vj=Abort for j ∈ [N] of session s), abort session s.

2. Otherwise, search the tableH to find values σ0
i,j , σ

1
i,j belonging to session s, for some i ∈ [`], j ∈ [N].

If no such pairs are found, output ⊥ (indicating failure of the simulation). Otherwise, extract the
challenge σ = σ1σ2 . . . σn as σ0

i,j ⊕ σ1
i,j , and proceed as follows.

(a) If the next scheduled message is p, then for each h ∈ [n] act as follows. If σh = 0, act
according to Step p̂ of BH-protocol. Otherwise (i.e., if σh = 1), commit to the entries of
the adjacency matrix of the complete graph Kn and to a random permutation π.

(b) Otherwise (i.e., the next scheduled message is p), check (in hist) that the verifier has properly
decommitted to all relevant values (and that the hth bit of σ0

j ⊕ σ1
j equals σh for all j ∈ [N])

and abort otherwise.

For each h ∈ [κ] act as follows. If σh = 0, decommit to all the commitments (i.e., π and the
adjacency matrix). Otherwise (i.e., if σh = 1), decommit only to the entries (π(i), π(j)) with
(i, j) ∈ C where C is an arbitrary Hamiltonian cycle in Kn.

Figure 6: The prove Procedure used by Simulate for Stage 2 messages

Theorem 15 There exists a functionality f such that no protocol Π ε-securely realizes f in the
individual leaky ideal world model for ε = 1

2 − δ, where δ is any constant fraction.

We will prove the above theorem for the oblivious transfer (OT) functionality. Recall that for
a two-party protocol Π to ε-securely realize a functionality f in the individual leaky ideal world
model, it must hold that for every pair of input vectors for f and every auxiliary input to the
adversary, a real world concurrent attack that is successful with non-negligible probability (say) ε
implies an ideal world attack that succeeds with probability at least ε−negl. Now, suppose towards
contradiction, we are given a protocol Π that ε(= 1

2 − δ)-securely realizes the OT functionality in
the individual leaky ideal world model. We will exhibit a set of inputs for the honest sender and
an auxiliary input for the adversarial receiver and show that the adversarial receiver can perform
a concurrent attack to learn a secret value, called secret with probability 1. We will then prove
that no adversarial receiver in the ideal world can learn secret with high enough probability, thus
arriving at a contradiction.

Our proof builds upon the works of [AGJ+12, GKOV12] who prove the impossibility of concur-
rently secure OT in the plain model w.r.t. the standard definition of secure computation. Below,
we recall the high-level proof outline of [AGJ+12] and then discuss the crucial differences with our
setting:

1. Let Π be a protocol that implements the OT functionality. The first step is to construct
an instance of the so called chosen protocol attack for Π. That is, given Π, we construct a
protocol Π̂ such that protocol Π is insecure when executed concurrently with Π̂. There are
three parties in the system: Alice and Eve running Π (as sender and receiver respectively);

Eve and David running the “chosen protocol” Π̂ (as sender and receiver respectively). Then,
by choosing appropriate inputs for Alice and David, we show that in this scenario, the man-
in-the-middle Eve can learn a secret value secret with probability 1 (violating the security of
Π).

51

2. The next step is to use one time programs (OTPs) [GKR08, GIS+10] to eliminate David. In
more detail, Eve simply gets (as auxiliary input) a set of one-time programs implementing
the next message function of David. To execute these one-time programs, Eve is required
to carry out a number of Π invocations. In these invocations, Alice is given the required
keys and acts as the sender. Thus, now there are only Alice and Eve running a number of
concurrent executions of Π. One can argue that Eve can still learn the secret value secret.
This gives us a real world concurrent attack against Π.

3. The final goal is then to show the infeasibility of an adversarial receiver in the ideal world to
learn secret with probability 1 − negl. Very roughly, this is done by relying on the security
guarantee of the OTPs and the stand-alone security of Π against a cheating sender.

Now, note that in our individual leaky ideal world model, the ideal world adversary is allowed to
obtain (bounded) leakage on the input of the honest party in each session. In the case of OT, this
means that in each session, an adversarial receiver can legitimately receive one of the input strings
of the honest sender in each session and additionally learn the other string “partially”. Then, in
the above approach, it is not immediately clear how to argue the infeasibility of a successful ideal
world adversary. For example, we cannot directly rely on the security of OTP due to leakage on
the secret keys.

We resolve the above problem by making use of the intrusion-resilient secret sharing (IRSS)
scheme of [DP07] (see Section A.5). Very roughly, we secret-share each OTP wire key into three
shares using the scheme of [DP07]. Then, for every OTP wire key pair (key0, key1), the honest
receiver is now required to engage in 3 executions of Π (instead of only one), where the input of the
honest sender in each execution corresponds to one of the three secret shares of (key0, key1). We
then rely on the security of the IRSS scheme to argue that despite bounded leakage in ideal world
session, an ideal world adversary cannot recover one of the keys in each key pair, and therefore
must fail to output secret with non-negligible probability. We now give more details.

E.1 Chosen Protocol Attack

Let Π be a protocol that ε-securely realizes the OT functionality in the individual leaky ideal world
model. Let s0 and s1 be two random strings (of appropriate length).

Consider the following scenario involving three parties, namely, Alice, Eve and David. Alice
holds input values (s0, s1), while David holds (b, sb) (where b is a random bit), as well as a random
string secret. On the “left”, Alice and Eve are involved in an execution of Π where Alice plays the
role of the sender with inputs (s0, s1) and Eve plays the role of the receiver (with any input of its

choice). On the “right”, Eve and David are involved in an execution of the “chosen” protocol Π̂,

described as follows. Π̂ consists of an execution of Π, where Eve plays the role of the sender with
any inputs of its choice while David plays the role of the receiver with input bit b. At the end of
the execution of Π, David checks whether his output s′ = sb. If this is the case, then David sends
secret to Eve.

Now, it is easy to see that a malicious Eve can launch a “man-in-the-middle” attack, playing
simultaneously with Alice and David. Specifically, by merely forwarding Alice’s messages to David
and David’s back to Alice, she can learn the value secret with probability 1. However, if the “left”
execution of Π between Alice and Eve is replaced with leaky ideal world for the OT functionality,
then the attack does not carry through. (To avoid repetition, we skip proof details here and instead
present them later more formally).

52

E.2 From General to Self-Composition

Note that the above attack is valid in the setting of concurrent general composition. However,
we are interested in the setting of concurrent self composition, where only the OT protocol Π is
executed concurrently. Towards this end, in this section, we describe how to eliminate David from
the above scenario. In other words, we describe how the “right” interaction interaction between
Eve and David can be replaced with multiple executions of Π between Alice and Eve.

Eliminating David. Let FDavid denote the (reactive) next message functionality of David in

the protocol Π̂. The functionality FDavid is described as follows: FDavid has the pair (b, sb) and
a random string secret hardwired. On receiving as input a message ai from the sender, FDavid

outputs David’s ith message di in Π̂. Alternatively, let n be the round complexity of protocol Π.
Let N = n + 1 be the number of messages sent by David in protocol Π̂. Then, note that we can
think of N next-message functions FDavid

1 , . . . ,FDavid
N , where each FDavid

i emulates FDavid for the

ith outgoing message of David in Π̂.
Prepare one time programs OTP-msg1, . . . ,OTP-msgN where OTP-msgi computes FDavid

i . Let

{key0
i,k, key

1
i,k}Kk=1 denote the set of secret keys for OTP-msgi. Now, for every key key`i,k, run the

secret sharing algorithm Share of the intrusion-resilient secret sharing scheme IRSS = (Share,Rec) to

compute shares (key`i,k[1], key`i,k[2], key`i,k[3])← Share(1κ). Let ~key
`

i,k = (key`i,k[1], key`i,k[2], key`i,k[3]).

Inputs for Alice and Eve. Eve is given as auxiliary input, the one-time programs OTP-msg1, . . . ,OTP-msgn,

as described above. Alice is given as input the values (s0, s1), and (~key
0

i,k,
~key

1

i,k), where i ∈ [N],
k ∈ [K].

We now consider two kinds of executions of Π being carried out between Alice and Eve :
one “main” OT execution where Alice uses (s0, s1) as her input, and 3k(N − 1) “auxiliary” OT
executions that allow Eve to obtain one set of secret keys to evaluate the one time programs. For
clarity of exposition, we will refer to the “main” executions as Πmain and each of the auxiliary ones
as ΠDavid.

E.3 Attack in the Real World

We now describe a real world concurrent attack on protocol Π. We describe the algorithms for the
honest sender Alice and an adversarial receiver Evereal.

Alice’s program: Alice receives the values (s0, s1) as input for Πmain session, and the values

(~key
0

i,k,
~key

1

i,k) as inputs for ΠDavid sessions. Here i ∈ [N], and k ∈ [K].

Alice plays the role of the honest sender (with appropriate inputs) in each execution of Π
initiated by Evereal.

Evereal’s program: Evereal is given as auxiliary input the one time programs {OTP-msgi}Ni=1. For

i = 1, . . . , N , do:

1. Upon receiving the ith message from Alice in the execution of Πmain, say ai, suspend (tem-
porarily) the ongoing Πmain session. Parse ai = ai,1, . . . , ai,K .

2. For k = 1, . . . ,K, do:

(a) Start three new ΠDavid sessions ΠDavid[1],ΠDavid[2],ΠDavid[3], in parallel, with Alice. In
each session ΠDavid[`], Evereal plays the honest receiver with bit ai,k as input, while Alice

plays the honest sender with input strings (key0
i,k[`], key

1
i,k[`]).

(b) When the three sessions are completed, compute key
ai,k
i,k = Rec(key

ai,k
i,k [1], . . . , key

ai,k
i,k [3]).

53

3. Run OTP-msgi with keys (key
ai,1
i,1 , . . . , key

ai,K
i,K) and obtain output di as David’s response to

message ai.

4. If i · j ≤ N − 1, resume the suspended Πmain protocol and send di back to Alice as response.
Otherwise, output the value secret received from OTP-msgN .

Lemma 17 Evereal outputs secret with probability 1.

The above lemma follows from the description of Evereal.

E.4 Infeasibility of Ideal World Attack

We now consider the experiment where all the executions of the OT protocol Π between Alice and
Eve are replaced with the corresponding ideal world executions for the OT functionality in the
independent leaky ideal world model. We claim the following:

Lemma 18 There exists no ideal world adversary Eve with auxiliary input {OTP-msgi}Ni=1, that
outputs secret with probability 1− negl.

Towards a contradiction, let us assume that there exists an ideal world attacker Eveideal that success-
fully outputs secret with probability 1−negl. Eveideal has oracle access to the ideal OT functionality
FOT in the independent leaky ideal world model, which for notational clarity we will (as before)
divide into two kinds of OTs – FMain

OT and FDavid
OT . Then, we have two possible cases:

Case 1: With probability at least 1
2 + non-negl, Eveideal queries FMain

OT for the same bit b that is

hardwired in {OTP-msgi}Ni=1. In this case, we construct a stand-alone cheating sender Ŝ that

executes OT protocol Π with an honest receiver R, and uses Eveideal to learn R’s secret input
bit b with probability at least 1

2 + non-negl. This will imply that Π is standalone insecure, a
contradiction.

Case 2: With probability at most 1
2 + negl, Eveideal queries the same bit as in the OTPs. That

is, with probability 1
2 − negl, Eveideal queries different bit. In this case, we will show via

an information theoretic argument, that with probability at least 1
4 − negl, Eveideal cannot

output secret. Since by assumption Eveideal succeeds with probability at least 1− negl, this is
a contradiction.

These cases are analyzed below.

Case 1: We first consider the case where Eveideal queries the same bit as in the OTPs with
probability at least 1

2 + non-negl. In this case, we will construct a stand-alone cheating sender Ŝ
that can learn an honest receiver R’s secret bit with probability at least 1

2 + non-negl.

The cheating sender Ŝ works as follows:

Adversary Ŝ:

1. Run the OTP simulator SimOTP to generate simulated programs OTP-msg1, . . . ,OTP-msgn,
where OTP-msgi corresponds to the ith next message function of David as described before.
Run Eveideal with auxiliary input OTP-msg1, . . . ,OTP-msgN .

2. Eveideal may make leakage and output queries to each instance of FDavid
OT . Without loss of

generality, consider the queries made by Eveideal for OTP-msgi for some i ∈ [N]. For every
k ∈ [K]:

54

• Let FDavid
OT [1],FDavid

OT [2],FDavid
OT [3] denote the three ideal functionalities corresponding to

the k-th key pair of OTP-msgi. Sample random strings (k̂ey
0

i,k[1], . . . , k̂ey
0

i,k[3]), and

(k̂ey
1

i,k[1], . . . , k̂ey
1

i,k[3]). Let q1, . . . , q6 denote the queries made by Eveideal to the func-

tionalities FDavid
OT [1],FDavid

OT [2],FDavid
OT [3], where exactly three queries correspond to output

queries (one each to FDavid
OT [`]) and the remaining three correspond to leakage queries

(one each to FDavid
OT [`]). Ŝ does the following:

(a) On receiving an output query qj = (`, a) such that exactly one previous output query
qj′ is of the form qj′ = (`′, a), query (i, k, a) to SimOTP and receive a key keyai,k for
the k-th wire of OTP-msgi. Now, compute secret shares (keyai,k[1], . . . , keyai,k[3]) ←
Share(keyai,k) such that the share values are “consistent” with the values learnt by

Eveideal so far (either via output or leakage queries). Update (k̂ey
a

i,k[1], . . . , k̂ey
a

i,k[3])

with (keyai,k[1], . . . , keyai,k[3). Return k̂ey
a

i,k[`] to Eveideal.

(b) Answer any other output query or leakage query qj using the values (k̂ey
0

i,k[1], . . . , k̂ey
0

i,k[3])

and (k̂ey
1

i,k[1], . . . , k̂ey
1

i,k[3]).

• At some point, after returning t keys (for some t < K) for OTP-msgi, SimOTP makes its
one-time input query with some value x and requests the value FDavid

i (x).

• Parse this query as a message msgŜi and send it to R.

• In response, R sends some message msgRi back to Ŝ. Upon receiving msgRi , Ŝ provides

msgRi as a response to SimOTP. Now, continue responding to FDavid
OT queries of Eveideal in

the same manner as above. Let us denote all the keys returned by SimOTP for OTP-msgi
as keysi. Then, we have that OTP-msgi(keysi) = msgRi .

3. If Eveideal makes a query to FMain
OT with input bit b, Ŝ outputs this bit b and halts.

Claim 7 Ŝ outputs R’s secret bit with probability at least 1
2 + non− negl.

Proof (Sketch). It follows from the above description and the security of the IRSS scheme

IRSS = (Share,Rec) that Ŝ successfully mirrors its interaction with R by the interaction between
Eveideal and {OTP-msg}Ni=1. In particular, note that since Eveideal is only allowed one output query
and one leakage query to each of the functionalities FDavid

OT [1],FDavid
OT [2],FDavid

OT [3] (as described

above), we have that for every i ∈ [N], k ∈ [K], there exists bit a such that Eveideal makes at
most one output query q of the form (`, a). Then, from Lemma 3, it follows that Eveideal is a valid
adversary for IRSS. Thus, we have that the wire secret key keyāi,k is indistinguishable from random

to Eveideal.
Summing up, we have that the secret bit b in the simulated OTPs correspond to the input bit

b of the receiver R. Then, since (by our assumption) Eveideal queries the same bit b as in the OTPs
with probability at least 1

2 + non-negl, Claim 7 follows.

Case 2: Now consider the case where Eveideal queries the same bit as in the OTP with probability
at most ≤ 1

2 + negl. This implies that with probability at least 1
2 − negl, Eveideal queries a different

bit. In this case, we simply run Eveideal with simulated OTPs OTP-msg1, . . . ,OTP-msgN . If at any
point, Eveideal makes a leakage query L to FMain

OT , then we simply answer it with a random string.

Now, in this case, despite (1
2 − ε) fraction of leakage learnt by Eveideal, we have that the string sb is

still information-theoretically hidden from Eveideal. Thus Eveideal must fail to guess sb correctly with
probability at least 1

4−negl and hence cannot output secret with probability at least 1
4−negl. Since

we assume that Eveideal succeeds with probability at least 1− negl, this is a contradiction.

55

F Round Complexity Lower Bound for Joint Leaky Ideal World
Model

In this section, we prove a lower bound on the round-complexity of protocols for achieving ε-security
in the joint leaky ideal world model, with respect to black-box simulation. Specifically, we prove
the following result:

Theorem 16 Let ε be any inverse polynomial. Assuming dense cryptosystems, there exists a func-
tionality f that cannot be ε-securely realized with respect to black-box simulation in the joint leaky

ideal world model by any log(κ)
ε round protocol.

We prove the above theorem in the rest of this section. We start by giving an outline of our proof:

I. We first define a specific functionality fsig for which our negative result will hold. Looking ahead,
fsig is the blind (leakage-resilient) signature functionality.

II. Now, assume for contradiction that there exists a log(κ)
ε -round protocol that ε-securely realizes

fsig with respect to black-box simulation in the joint leaky ideal world model. We will con-
struct a specific real-model adversary A who corrupts party P2 and interacts with honest P1

in a fixed polynomial number of concurrent sessions of Π with a specific static schedule of
messages. In particular, we will prove some specific properties of the adversarial schedule.

III. Finally, we show that every black-box ε-joint-ideal-leakage simulator must fail to simulate the
view of A.

We now proceed to give details. We first fix some notation that will be used in the proof. Let
ε = 1

p(λ) . Let q(λ) = log(λ)p(λ) be the round-complexity of Π.

Part I. The blind (leakage-resilient) signature functionality. Let (Gen, Sign,Verify) denote
a (1 − o(1))-leakage resilient signature scheme, as defined in Section A.7. Recall from Theorem 9
that such a signature scheme exists assuming dense cryptosystems. The blind (leakage-resilient)
signature functionality fsig is defined as follows:

Inputs: Party P1 gets a signing key sk as input, while P2 gets the corresponding verification key
vk and a randomly chosen message s ∈ {0, 1}κ as input.

Outputs: P1 gets no output, while P2 gets σ ← Signsk(s).

Thus, the functionality fsig is essentially fsig(sk, s) = (⊥, Signsk(s)).

Part II. Adversary A. Adversary A is provided as auxiliary input a random string z ∈ {0, 1}κ,
as well as verification keys vk1, . . . , vkm as defined above. A schedules the protocol messages of
m = m(κ) sessions of Π in the following manner.

Adversarial Schedule. Recall that q(λ) is the round complexity of protocol Π. That is, Π
consists of q slots, where a slot is defined as a message from P1 followed by a message from P2.
The adversarial schedule consists of N = q3 “outer” sessions Πout

1 , . . . ,Πout
N , and K = q3 “inner”

sessions Πin
1 , . . . ,Π

in
K , defined as follows.

Outer Sessions. The outer sessions Πout
1 , . . . ,Πout

N are scheduled in the following manner: Define q2

sets set1, . . . , setq2 , where each set seti consists of multiple slots of outer sessions being executed in

parallel. Specifically, for every outer session Πout
i , choose q (out of q2) sets uniformly at random.

Let seti1 , . . . , setiq denote the chosen sets, in their order of execution. Then, slot j of session Πout
i

is executed in set setij (in parallel with the slots of other sessions for which set setij is chosen).

56

Inner Sessions. Let K = k · q2, i.e., k = q. The “inner” sessions Πin
1 , . . . ,Π

in
K are scheduled

in the following manner: In every set seti, A places sequential executions of k complete sessions
Πin
i·k+1, . . . ,Π

in
(i+1)·k between the slots of the outer sessions being executed in parallel.

Thus, in total, we have exactly m = N +K = 2q3 = poly(κ) number of sessions.

Adversary’s Strategy. We now describe the strategy of A for the outer and inner sessions.

Outer Sessions. In every outer session Πout
i , A behaves honestly (running the code of honest P2)

with a random message souti as its input.

Inner Sessions. At the start of any inner session Πin
i , A collects the partial transcript Ti of the

protocol messages (across all sessions) generated so far and computes a message sini ← FK(Ti) by
applying a pseudo-random function (PRF) F with a random key K to the transcript.14 A then
behaves honestly (running the code of honest P2) with message sini as its input in protocol Πin

i .
Let Π1, . . . ,Πm denote the m sessions, in the order of execution. When any session Πi is

completed, A checks whether the output σi is such that Verifyvki(si, σi) = 1, where si is A’s input
in session Πi, computed in the manner as described above (depending upon whether Πi is an inner
or outer session). If it is not the case, then A sends ⊥, outputs all the output values received from
the protocol sessions completed so far, and aborts. On the other hand, if A receives valid outputs
in all the m sessions, then it outputs accept, along with all its inputs and output values from all
the sessions.

This completes the description of adversary A. We make the following two claims about the
adversary A:

Claim 8 A outputs accept with probability 1 in a real-world concurrent execution with honest P1.

The above claim follows immediately from the description of A. We now prove an important claim
about the adversarial scheduling.

Claim 9 Consider the sets set1, . . . , setq2 as defined above. We say that a set seti covers an outer
session Πout

j (where j ∈ [N]) if seti contains a slot of Πout
j . Then, there exists a way of scheduling

outer sessions (putting each session into q sets) such that there does not exist any collection of
(q log q/4) sets that covers more than (0.1/

√
q) fraction of outer sessions

Proof. We will prove the claim by probabilistic methods. To start with, consider any collection C
consisting of q log q/4 out of these q2 sets. Below, we will denote an outer session souti as an element
e. We will say that an element e is put in a set if a slot of session souti is allocated to that set. Now,
take any element and put it randomly in exactly q out of these q2 sets.

Claim 9.1 Probability that element e is not covered by sets in C is at least 1/
√
q.

Proof.

Pr[e not covered by C] =

(
1− q log q/4

q2

)
. . .

(
1− q log q/4

q2 − q + 1

)
≥
(

1− q log q

4(q2 − q + 1)

)q
≥
(

1− q log q

2q2

)q

=

((
1− log q

2q

) 2q
log q

) log q
2

>
1
√
q

14The key K for the PRF must be included in the auxiliary input of A. We omit it from the description for
simplicity of exposition.

57

The last inequality follows from the fact that for any δ > 0, there exists a N0 such that for all
n > N0 |(1− 1

n)n| < δ.

Claim 9.2 Probability that more than (0.1/
√
q) fraction of outer sessions are covered by C is

at most eq
2.5/50

.
Proof: Since the sets for the slots of each session/element are selected independently and indenti-
cally, we can apply the following chernoff bounds:

Pr[X < (1− δ)µ] < e−
δ2µ
2

In our case, µ = N/
√
q = q2.5 and setting δ = 0.1, we get the above claim.

Completing the proof: Taking the union bound over all collections of size (q log q/4), we get the
following:

Pr[More than (0.1N/
√
q) outer sessions are covered] ≤ C(q2, q log q/4) · eq2.5/50

Now using the following inequality

C(n, k) ≤
(en
k

)k
to get the following:

Pr[More than (0.1N/
√
q) outer sessions are covered] ≤

(
eq2

q log q/4

)q log q/4

·eq2.5/50 ≤ e2q log2 q·eq2.5/50 < 1

The last inequality holds if q >??.
Hence, we get that there exists a way of putting these N elements into q2 sets (putting each

element into q sets) such that no choice of the collection C having q log q/4 sets covers more than
0.1N/

√
q outer sessions.

Part III. Ruling out Black-Box Simulation for A. We will now argue that any black-box
simulator cannot successfully simulate the view of A with only ε-fraction of leakage on honest party
P1’s inputs across the m sessions.

Lemma 19 Except with negligible probability, there does not exist a ε-joint-ideal-leakage black-box
simulator such that A outputs accept.

Proof (Sketch). Recall that a simulator S works by extracting the input x of the adversary A
in each session and then querying the ideal functionality with x to receive the correct output; this
output is then used to complete the simulation of A’s view. Now, further recall that the only
advantage that a black-box simulator has over the real adversary is the ability to rewind. In other
words, a black-box simulator extracts the inputs of A by rewinding. Also note that for sessions in
which the simulator does not succeed in extracting the input of the adversary, the only way the
simulator can complete the simulation is via using the additional leakage available in certain way.

Now, to extract the input of A in any outer session Πout
i , S must rewind at least one slot of

Πout
i at at least once. Then, it follows from Claim 9 that if S rewinds at most q log q/4 sets, then

it will fail to extract in at least 0.9N/
√
q number of outer sessions. Simulator will need to use the

leakage queries available in order to complete the simulation of uncovered outer sessions.
Also note that whenever a set setj is rewound, all the k inner sessions Πin

j1
, . . . ,Πin

jk
contained in

setj are executed again. Again S will have to use the leakage queries available in order complete
the simulation in the rewound executions.

58

Below we will prove that the leakage available to the simulator is not even sufficient to complete
the execution in even either one of the above described cases. More formally, we have the following
claims.

Claim 10 The simulator cannot successfully complete the execution of 0.9N/
√
q number of outer

sessions in a straighline manner using ε ·m leakage bits.

Proof. S must generate signatures for 0.9N/
√
q messages (each w.r.t., different verification key)

with only ε fraction of leakage on the m = N + K signing keys. Plugging in the values, we have
that S must generate 0.9q2.5 different signatures (each w.r.t. different verification key), with only
log(λ)
q fraction of leakage on 2q3 signing keys. Thus, it follows that there exists an inner session

where S can only leak at most a constant fraction of the signing key. Then, if S still succeeds in
generating all the signatures, we can construct a forger for the leakage-resilient signature scheme,
which is a contradiction.

Claim 11 The simulator cannot successfully complete the execution of all inner sessions and re-
wound executions when q log q/4 sets are rewound and ε ·m is the allowed leakage.

Proof. As noted above, whenever a set setj is rewound, all the k inner sessions Πin
j1
, . . . ,Πin

jk

contained in setj are executed again. Let Π̃in
j1
, . . . , Π̃in

jk
denote the new executions. Then, it follows

from the collision-resistance property of the pseudo-random function family F that for every j`,
the input messages sinj` , s̃

in
j`

of A in Πin
j`
, Π̃in

j`
respectively, are different (i.e., sinj` 6= s̃inj`). Since there

are q log q/4 rewound executions, we have that in order to make A output accept, S must generate
signatures for 2k ·q log q/4 different messages, while only having access to k ·q log q/4 output queries
to fsig, and ε fraction of leakage on the m = N+K signing keys. Removing the output queries (and
subtracting k · q log q signatures), we have that S must generate signatures for k · q log q messages
(each w.r.t., different verification key) with only ε fraction of leakage on the m = N + K signing
keys. Plugging in the values, we have that S must generate q2 log q different signatures (each w.r.t.

different verification key), with only log(λ)
q fraction of leakage on 2q3 signing keys. Thus, it follows

that there exists an inner session where S can only leak at most a constant fraction of the signing
key. Then, if S still succeeds in generating all the signatures, we can construct a forger for the
leakage-resilient signature scheme, which is a contradiction.

59

