
Universal Computational Extractors and the
Superfluous Padding Assumption for Indistinguishability

Obfuscation

Christina Brzuska1 Arno Mittelbach2

1 Microsoft Research Cambridge, UK
2 Cryptoplexity, Technische Universität Darmstadt, Germany
christina.brzuska@gmail.com, mail@arno-mittelbach.de

Abstract. Universal Computational Extractors (UCEs), introduced by Bellare, Hoang and Keelveedhi
(CRYPTO 2013), are a framework of assumptions on hash functions that allow to instantiate random
oracles in a large variety of settings. Brzuska, Farshim and Mittelbach (CRYPTO 2014) showed that
a large class of UCE assumptions with computationally unpredictable sources cannot be achieved,
if indistinguishability obfuscation exists. In the process of circumventing obfuscation-based attacks,
new UCE notions emerged, most notably UCEs with respect to statistically unpredictable sources
that suffice for a large class of applications. However, the only standard model constructions of UCEs
are for a small subclass considering only q-query sources which are strongly statistically unpredictable
(Brzuska, Mittelbach; Asiacrypt 2014).
The contributions of this paper are threefold:

1. We show a surprising equivalence for the notions of strong unpredictability and (plain) unpre-
dictability thereby lifting the construction from Brzuska and Mittelbach to achieve q-query
UCEs for statistically unpredictable sources. This yields standard model instantiations for
various (q-query) primitives including, deterministic public-key encryption, message-locked
encryption, multi-bit point obfuscation, CCA-secure encryption, and more. For some of these,
our construction yields the first standard model candidate.

2. We study the blow-up that occurs in indistinguishability obfuscation proof techniques due to
puncturing and state the Superfluous Padding Assumption for indistinguishability obfuscation
which allows us to lift the q-query restriction of our construction. We validate the assumption
by showing that it holds for virtual black-box obfuscation.

3. Brzuska and Mittelbach require a strong form of point obfuscation secure in the presence of
auxiliary input for their construction of UCEs. We show that this assumption is indeed necessary
for the construction of injective UCEs.

Keywords. Universal computational extractors, standard model, superfluous padding assumption,
indistinguishability obfuscation, point obfuscation

1

Contents
1 Introduction 3

2 Preliminaries 8
2.1 Obfuscation . 8

2.1.1 General Purpose Obfuscation . 8
2.1.2 Point Obfuscation . 9

2.2 Puncturable PRFs . 11

3 Universal Computational Extractors (UCE) 12
3.1 The Status Quo . 12
3.2 UCE Constructions . 14
3.3 Bitwise UCEs . 14

4 From Strong Unpredictability to (Plain) Unpredictability 15

5 Constructing q-Query UCE[Ssup] Secure Functions 17
5.1 The BM Construction . 17
5.2 Extending the BM Construction . 18

6 Multi-key UCEs 19

7 The Superfluous Padding Assumption (SuPA) 20
7.1 The Superfluous Padding Assumption . 21
7.2 Applying the SuP Assumption . 22
7.3 On the Validity of the Superfluous Padding Assumption 23

8 Point Obfuscation from UCEs 24

A Gamehop Analysis for Theorem 5.1 31

2

S Hash

D(hk) b′

L

x
y

1λ

Figure 1: The schematic of the UCE game.

Main UCES,D
H (λ)

b←$ {0, 1}

hk←$ H.KGen(1λ)

L←$ SHash(1λ)

b′ ←$ D(1λ, hk, L)

return (b = b′)

Hash(x)
if T [x] = ⊥ then

if b = 1 then

T [x]← H.Eval(hk, x)

else T [x]←$ {0, 1}H.ol(λ)

return T [x]

Figure 2: The pseudocode of the UCE game.

1 Introduction
Universal Computational Extractors (UCEs) are a definitional framework by Bellare, Hoang and
Keelveedhi (BHK) [BHK13a] to model properties of random oracles. The reason why plain pseudo-
random functions (PRFs) cannot be used to instantiate random oracles is that the key of a PRF is
typically secret, while a hash-function needs to be publicly evaluatable and hence, the key needs to be
public. A naïve model for a “standard model random oracle” is to extend the PRF definition and ask
that an adversary can still not distinguish when it additionally gets the evaluation key. This definition
is, of course, trivially not achievable since, using the key, an adversary can simply recompute the
pseudorandom function locally for some value x and check whether the oracle’s answer is consistent with
this value.

BHK give an elegant definition and split up the PRF adversary into two parts: a source S that
gets oracle access (to either a random function or a keyed hash-function with a uniformly random key)
and which provides some leakage L as well as a distinguisher D that gets leakage L and key hk of the
hash-function (which is either the correct key in case the oracle implemented the hash function, or a
random key). The task of the distinguisher is to distinguish between the case where the source has
access to a random oracle and the case where the source has access to the (keyed) hash-function. We
present the schematic and pseudocode of the UCE notion in Figures 1 and 2.

Splitting up the adversary alone does not prevent trivial attacks since a source can simply query its
oracle on a random x to receive y and leak the pair (x, y) which can then be used by the distinguisher
for a consistency check as it also has access to the hash key. To prevent trivial re-computation attacks,
additional restrictions must be placed on the leakage. The main restriction that we consider in this
paper and that was suggested by BHK is to require that the leakage should not “contain” any value x
that the source queried to its oracle. In other words, the queries of the source need to be unpredictable
from the leakage.

In their original work, BHK show that UCEs secure against computationally unpredictable sources
suffice to instantiate random oracles in a large class of applications [BHK13a]. Brzuska, Farshim and
Mittelbach [BFM14, BFM15] show that this UCE notion as well as some of the original applications
cannot be instantiated, if indistinguishability obfuscation (iO) exists. A remedy against obfuscation-
based attacks are UCEs secure against statistically unpredictable sources, as suggested in both [BFM14]
and [BHK13b] independently and denoted UCE[Ssup] (where sup is short for Statistically UnPredictable).
Here it is required that leakage L hides all of the sources queries information-theoretically instead
of just computationally. UCE[Ssup] recovers many of the original applications and found further
applications [BH15, DGG+15, MH14b] since. Not only does UCE[Ssup] have strong applications, but
also it seems unlikely that iO-based attacks extend to UCE[Ssup] as statistically secure iO would imply
that the polynomial hierarchy collapses [GR07].

In this work, we provide further evidence for the robustness of UCE[Ssup] against iO-based attacks.
One can interpret our work as showing that if strong point function obfuscation exists then iO cannot

3

be used to break UCE[Ssup] (because we construct UCE[Ssup] functions from iO and point obfuscation).

Standard-Model Constructions. The current constructions for (general) UCE secure hash functions
have only been validated in the random oracle model [BHK13a] and other idealized models [Mit14,
BHK14]. Furthermore, the constructions in the ideal model also achieve UCE notions that are mutually
exclusive with iO, which makes it hard to interpret the results, if we believe in indistinguishability
obfuscation.

In turn, the only standard-model construction for UCEs—interestingly based on iO [BM14b]—only
achieves security against q-query strongly statistically unpredictable sources.1 That is, the notion puts
two additional restrictions on the source on top of the standard UCE[Ssup] restrictions, namely, the
source is only allowed to make an a priori bounded polynomial number of q queries and needs to be
strongly statistically unpredictable. Strong (statistical) unpredictability was introduced by Brzuska
and Mittelbach [BM14b] and means that not only should the leakage L hide the source’s queries x
information-theoretically, but also, x should be information-theoretically hidden, even when given the
oracle’s answer y. That means, in particular, that the source cannot leak x⊕ y, because, given y, one can
recover x. However, ⊕ is used in many constructions (for example, MLE, KDM, RKA, PFOB, DPKE
and more, also see Table 1), and thus, replacing (plain) unpredictability with strong unpredictability
substantially reduces the applicability of the notion.

As an example, consider message-locked encryption (MLE). MLE is a security notion for a sym-
metric encryption scheme where the encryption key is derived from the message to allow for dedu-
plication [BKR13], for example, in cloud storage scenarios. A prominent scheme in the random
oracle model derives the key for a message m as k ← RO(m) to then encrypt the message as
c ← m ⊕ RO(k) [DAB+02, BKR13]. When proving that a UCE secure function can replace the
random oracle a source thus needs to leak m⊕Hash(k). A predictor in the strong unpredictability game
which gets additionally k = Hash(m) and Hash(k) can easily recover both oracle queries and hence
the source is not strongly unpredictable. As it turns out the source is, however, (plain) statistically
unpredictable [BHK13b].

To summarize, the class of strongly unpredictable sources is smaller than the class of sources that
satisfy (plain) unpredictability and hence the corresponding UCE-notion is weaker. The xor-based
examples show that the UCE notion for sources that satisfy (plain) unpredictability have substantially
more applications.

Transformation from strong unpredictability to (plain) unpredictability. Our first result is
a surprising (and simple) transformation from strong to (plain) unpredictability. Namely, we start from a
simple observation: when x is a long string (that is without loss of generality, because else, queries have
low entropy due to their length and are easily predictable) and y is a single bit, then revealing y does
not harm the predictability of x. Now, when we have several queries x1, ..., xn and one is given the set of
answers {y1, ..., yn}, then this is still true, because the set of answers is either empty, {0}, {1} or {0, 1}.
Hence, for UCEs with a 1-bit output, strong unpredictability and (plain) unpredictability are actually
equivalent. Using ouput length expansion for UCEs [BHK13b], one can then move to UCEs with multiple
outputs. In short, we move from strongly unpredictable 1-output bit UCEs to unpredictable 1-output-bit
UCEs and then to multi-output-bit UCEs. Together with the original construction by Brzuska and
Mittelbach [BM14b], we yield q-query UCE[Ssup].2 The construction by Brzuska and Mittelbach assumes

1The BM construction also achieves UCEs secure with respect to single-query strongly computationally unpredictable
sources. For this work, however, we focus more on the statistical case.

2Note that, strictly speaking, the proof by BM of this construction implicitly assumes that the UCE function has long
output and that output shortening in a black-box way is not easy for strong unpredictability. Therefore, we also provide a
direct proof for the 1-output-bit version of the BM construction later in this paper.

4

indistinguishability obfuscation, puncturable PRFs and composable point obfuscation secure in the
presence of statistically hard-to-invert auxiliary input. We refer to their papers [BM14b, BM14a] for an
overview over the various notions of point obfuscations and here introduce only the relevant definitions
for this paper (Section 2). Interestingly, although composable point obfuscation in the presence of
statistically hard-to-invert auxiliary input may seem a strong assumption (alongside indistinguishability
obfuscation) we observe in Section 8 that it is indeed a necessary assumption for constructing injective
UCEs for (strongly) statistically unpredictable sources. The same holds for the computational case, that
is, UCEs secure for single query (strongly) computationally unpredictable sources imply the existence
of point obfuscation secure in the presence of computationally hard-to-invert auxiliary input.3 This
observation was independently made by Bellare, Stepanovs and Tessaro [BST15].

UCEs with multiple keys. We discuss the various applications of UCEs in Table 1, some of which
require multiple keys. BHK conjecture that moving from single key to multi-key UCEs in a black-box
way is a difficult endeavour. It turns out the construction by Brzuska and Mittelbach together with
our transformation is already multi-key secure, i.e., q-query mUCE[Ssup]; we provide a direct proof for
this statement under the same assumptions as Brzuska and Mittelbach, that is, indistinguishability
obfuscation, puncturable PRFs and point obfuscation secure in the presence of statistically hard-to-invert
auxiliary input.

Superfluous Padding Assumption and removing the q-query restriction. Finally, we set out
to remove the q-query restriction of our construction based on a novel, non-standard assumption for
indistinguishability obfuscation that we propose in this paper. Firstly, let us discuss how the q-query
restriction emerges within our proof technique for the construction. In the construction, the hash-key
consists of an obfuscated circuit C. To prove the construction secure, we move via several game-hops
from some leakage L which is generated from a source that has a hash-function as oracle to leakage L′
that is generated by the same source when the oracle is a random oracle. For UCE-security, the two
leakages need to be (computationally) indistinguishable in the presence of the hash-key, that is, the
obfuscated circuit C. In a nutshell, we need to prove that

(L,Obf(C)) ≈c (L′,Obf(C)). (1)

However, our proof only works, if we “pad” the circuit C before obfuscating it, that is, we add
some redundant gates into the circuit to blow-up the size. The reason why blowing up the size of the
circuit helps in the proof is that in the intermediate game hops we will encode q random strings into the
circuit. Encoding q random strings, however, information-theoretically requires space that depends on
the number of queries q which is why the construction at the time of key generation needs to get q as
input.

Intuitively a good obfuscation should have the property that if Obf(PAD(C)) hides something then
so should Obf(C). That is, an obfuscation of a padded circuit should not be better than the obfuscation
of the unpadded circuit. One reason is that Obf itself could always first perform a padding operation and
it seems counterintuitive that this results in a better obfuscator. The Superfluous Padding Assumption
(SuPA) captures the above intuition and states that padding a circuit does not contribute to security.
Under the SuP assumption we can, thus, move from a q-query UCE[Ssup] (or mUCE[Ssup]) secure

3We note that UCEs with multiple keys (and long output) suffice for implying composable point obfuscation with
(computationally/statistically) hard-to-invert auxiliary information. Composable point obfuscation with computationally
hard-to-invert auxiliary information is mutually exclusive with indistinguishability obfuscation [BM14a]. However, we only
construct UCEs with multiple keys and long output against statistically unpredictable sources and thus do not contradict
any known results.

5

UCEs for strongly computationally unpredictable sources (UCE[Ss-cup])
HC UCEs are hardcore for any one-way function. [BHK13b, BM14b]
BR93 UCEs are sufficient to instantiate the BR93 PKE

scheme [BR93].
[BHK13b, BM14b]

UCEs for strongly statistically unpredictable sources (UCE[Ss-sup])
CIH UCEs are correlated input secure hash functions. [BHK13b, BM14b]
IMMU UCEs can be used to construct secure immunizers as

countermeasure for backdoored PRGs.
[DGG+15]

UCEs for statistically unpredictable sources (UCE[Ssup])
MLE UCEs can instantiate message-locked encryption schemes. [BHK13b]
DPKE UCEs can instantiate deterministic PKE schemes. [BH15]
CCA UCEs can be used to build CCA secure PKE schemes. [MH14b]
Multi-key UCEs for statistically unpredictable sources (mUCE[Ssup])

KDM UCEs can instantiate the BRS scheme [BRS03] to obtain
a standard-model symmetric encryption scheme which
offers security against key-dependent messages.

[BHK13b]

RKA The same instantiation as for KDM can be shown to be
also secure against related-key attacks.

[BHK13b]

PFOB UCEs can be used to instantiate the RO point function
obfuscation scheme due to Lynn et al. [LPS04].

[BHK13b]

UCEs for statistically reset-secure sources (UCE[Ssrs])
GB UCEs can be used to obtain an adaptive garbling scheme. [BHK13b]
HPKE UCEs can be used to instantiate a PKE scheme which

hedges against bad randomness.
[BH15]

St
an

da
rd

m
od

el
co
ns
tr
uc

tio
ns

fo
r
co
ns
ta
nt
-q
ue

ry
U

C
E

[S
s-

cu
p
]a

nd
q-
qu

er
y

U
C

E
[S

s-
su

p
]i
n
[B
M
14

b]
.

St
an

da
rd

m
od

el
co
ns
tr
uc

tio
n
in

th
is

pa
pe

r.

im
pl
ie
s

im
pl
ie
s

Table 1: A list of UCE notions and corresponding applications. The first block covers UCE functions that were constructed
by Brzuska and Mittelbach in [BM14b]. Note that BM only constructed q-query variants for strong statistical and constant
query variants for strong computational sources. In this paper we lift their construction to also cover the UCE notions of
the second block, i.e., (plain) statistically unpredictable sources. Assuming the Superfluous Padding Assumption we further
lift the bound on q. Finally, for the last block no standard model constructions are known. The applications HC, KDM,
RKA and PFOB only needs UCEs which are secure with respect to sources making a single query.

function to a fully UCE[Ssup] (or mUCE[Ssup]) secure function. In Section 7, we validate the SuP
assumption by showing that it holds for virtual-black-box obfuscation. The intuition is that virtual
black-box obfuscation assures that all attacks that can be run on the obfuscated circuit can also be run
by the simulator. However, the simulator only needs black-box access to the circuit and hence, whether
we consider a padded circuit or a non-padded circuit does not matter. We will then discuss why it might
be reasonable to also assume SuPA for indistinguishability obfuscation.

On the Plausibility of various UCE notions in the presence of iO. If indistinguishability
obfuscation exists, then a subclass of UCE notions cannot be achieved. The focus of this paragraph is
on the technical aspects of various UCE notions and how these technical aspects affect whether a notion
is succeptible to iO-based attacks or not.

BFM [BFM14] show that, if iO exists, then UCEs secure against sources that satisfy (plain) com-
putational unpredictability do not exist. Towards this goal, they construct a source that produces
some leakage L which consists of an obfuscated circuit that has a query-answer pair of the source
hardcoded into it. Because of this query-answer pair, the leakage only hides the query computationally,

6

but not statistically—unless statistically secure iO exist, which seems unlikely, because it would cause
the polynomial hierarchy to collapse [GR07, GR14]. Therefore, BFM and BHK both independently
suggest to consider UCEs secure against statistically unpredictable sources. This intuition has not been
countered so far, and indeed, if iO were able to break UCEs secure again statistically unpredictable
sources, then this would imply that iO is mutually exclusive with point obfuscation with statistically
hard-to-invert leakage, and we currently do not believe that this statement is true. Actually, just as
Bellare et al. [BST15], we do not even believe that iO is mutually exclusive with point obfuscation with
computationally hard-to-invert leakage.

UCEs secure against statistical unpredictability recover all of the original UCE applications, except
for a universal instantiation for the Encrypt-with-Hash transform and a universal hardcore function.
In order to counter iO-based attacks and to recover all original applications, BHK thus also proposed
several further notions with respect to computational versions of unpredictability, e.g., bounded parallel
sources as a universal instantiation for the Encrypt-with-Hash transform. It was shown [BFM14] that
bounded parallel sources are mutually exclusive with iO, but as it turns out, actually, finding a universal
instantiation for the Encrypt-with-Hash transform is mutually exclusive with iO [BFM15, BH15]. The
second computational unpredictability notion that BHK proposed were so-called split sources where the
sources have a special form. This notion suffices to construct a universal hardcore function. In their
work, Brzuska and Mittelbach [BM14b] suggest and construct UCEs secure against computationally
strongly unpredictable sources, assuming iO and point obfuscation with computationally hard-to-invert
leakage. They show, that this notion implies UCEs secure against split sources and thus they obtain a
universal hardcore function. We note that the proof by BM only achieves constant-query security and
that only single-query security is needed for the universal hardcore function application. What looks
like a limitation of their proof is, indeed, an inherent obstacle. As implied by our result, UCEs secure
against computationally strongly unpredictable sources with a polynomial number of queries is mutually
exclusive with iO. When considering only constantly-many queries the impossibility is not known to
hold. Although split sources are not known to have any application beyond universal hardcore functions,
one might ask whether split sources with polynomial many queries can exist, if iO exists. Interestingly,
Bellare et al. [BST15] concurrently and independently show an iO-based attack on split sources with
polynomial-many queries. Note that their result is a stronger negative result and subsumes ours, because
split sources are a smaller source class than computationally strongly unpredictable sources. Our work
and [BST15] show that all current definitional propositions for computational variants of unpredictability
can have at most constantly (or logarithmically) many queries, if iO exist.

As far as we know this query-limitation does not apply to statistical unpredictability, and for UCEs
secure against statistically unpredictable sources, regardless of the number of queries, iO-based attacks
seem unlikely, as discussed above. However, we still need an additional assumption (the superfluous
padding assumption) to move from a positive result for a bounded polynomial to a positive result for an
unbounded polynomial number of queries. In conclusion, bounds on the queries affect both, feasibility
and infeasibility results. We thus suggest that, whenever one proposes an application for UCEs, to
carefully investigate the dependency of the application w.r.t. the number of queries, most importantly,
when one is concerned with variants of computational unpredictability which we feel we understand less
well.

Outline. We present preliminaries on different notions of obfuscation as well as puncturable PRFs in
Section 2. In Section 3, we present the current state-of-the-art in UCEs. In Section 4, we present our
transformation from strong unpredictability to (plain) unpredictability and give a proof of a q-query
UCE[Ssup]-secure function—part of the proof is delegated to Appendix A. In Section 6, we discuss and
construct multi-key UCEs. In Section 7 we introduce and discuss the SuP assumption and finally we

7

discuss the relationship between strong point obfuscators secure in the presence of auxiliary information
and UCEs in Section 8.

2 Preliminaries
Notation. By λ ∈ N, we denote the security parameter that we give to all algorithms implicitly in
unary representation 1λ. By {0, 1}` we denote the set of all bit-strings of length `, and by {0, 1}∗ the set
of all bit-strings of finite length. If x, y ∈ {0, 1}∗ are two bit strings of the same length, then we denote
their inner product over GF(2) by 〈x, y〉. The length of x is denoted by |x|. For a finite set X, we denote
the action of sampling x uniformly at random from X by x←$X, and denote the cardinality of X by
|X|. We denote by [i] the set {1, . . . , i}. Algorithms are assumed to be randomized, unless otherwise
stated. We call an algorithm efficient or PPT if it runs in time polynomial in the security parameter.
We say a function negl(λ) is negligible if negl(λ) ∈ λ−ω(1). We say a function poly(λ) is polynomial if
poly(λ) ∈ λO(1).

2.1 Obfuscation

2.1.1 General Purpose Obfuscation

We begin with recalling the notions of indistinguishability obfuscation and differing-inputs obfuscation
originally proposed by Barak et al. [BGI+01, BGI+12]. While indistinguishability obfuscation intuitively
captures that the obfuscation of two functionally equivalent circuits cannot be distinguished, differing-
inputs obfuscation says that if an efficient distinguisher for two obfuscated circuits exists then one can
efficiently find an input on which the two circuits differ. We here give a game-based definition, following
the definitional framework of [BST14] which captures indistinguishability obfuscation based notions via
the IO security game and a class of samplers Sam.

Definition 2.1 A PPT algorithm Obf is called an obfuscation scheme if, on input the security parameter
1λ and a description of a circuit C, it returns (a description of) a circuit C ′ such that ∀x : C(x) = C ′(x).
We call a PPT algorithm Sam a circuit sampler if on input the security parameter 1λ sampler Sam
outputs (C0, C1, aux) where C0 and C1 are descriptions of circuits and aux is a string. If Sam is a circuit
sampler and Obf is an obfuscation scheme we define the advantage Advio

Obf,Sam,D(·) for a distinguisher D
relative to game IO:

Advio
Obf,Sam,D(λ) := 2 · Pr

[
IOD

Obf,Sam(λ)
]
− 1

IOObf
D,Sam(λ)

b←$ {0, 1}
(C0, C1, aux)←$ Sam(1λ)
C ←$ Obf(1λ, Cb)
b′←$ D(1λ, C, aux)
return (b = b′)

If S is a class of circuit samplers, then we call Obf S-secure if for all Sam ∈ S and all efficient
distinguishers D advantage Advio

Obf,Sam,D(λ) is negligible in λ.

Indistinguishability obfuscation. We can now capture the notions of indistinguishability obfusca-
tion as well as differing-inputs obfuscation via restricting the class of samplers to equality samplers and
differing-inputs samplers, respectively.

8

Definition 2.2 (Equality circuit sampler) We call a non-uniform algorithm Sam an equality circuit
sampler if for all security parameters λ ∈ N it outputs a triple (C0, C1, aux) consisting of two circuit
descriptions and a string such that with overwhelming probability over the coins of Sam we have that the
circuits C0 and C1 have the same size, number of inputs and number of outputs and are functionally
equivalent, that is

Pr(C0,C1,aux)←$ Sam(1λ) [|C0| = |C1| ∧ ∀x : C0(x) = C1(x)] ≥ 1− negl(λ) .

Let Seq be the class of all equality circuit samplers (including non-efficient samplers). Then we
capture the notion of indistinguishability obfuscation by Barak et al. [BGI+01] (which is used in the
candidate construction by Garg et al. [GGH+13]) by an obfuscation scheme Obf secure for Seq. For this
note, that a sequence of pairs of functionally equivalent circuits can be described by a deterministic
non-uniform sampler. The converse direction follows via an averaging argument.

Differing-inputs obfuscation. Next we consider the class of differing-inputs circuit samplers that
allows us to capture the notion of differing-inputs obfuscation.

Definition 2.3 (Differing-inputs circuit sampler) We call a non-uniform algorithm Sam a differing-
inputs circuit sampler if for all security parameters λ ∈ N it outputs a triple (C0, C1, aux) consisting of
two circuit descriptions and a string such that advantage Advdiff

Sam,Ext(·) is negligible for all PPT algorithms
Ext and where the advantage is defined as (relative to game Diff on the right):

Advdiff
Sam,Ext(λ) := Pr

[
DiffExt

Sam(λ)
] DiffExt

Sam(λ)

(C0, C1, aux)←$ Sam(1λ)
x←$ Ext(1λ, C0, C1, aux)
return (C0(x) 6= C1(x))

We capture differing-inputs obfuscation by considering obfuscators Obf secure for the class of all
(not necessarily efficient) differing-inputs samplers Sdiff .

The notion of differing-inputs obfuscation recently also gained much attention [ABG+13, BCP14,
BP13]. In particular, we will build on the work by Boyle, Chung and Pass [BCP14] who show that any
general indistinguishability obfuscator also yields a mild version of a differing-inputs obfuscator. That is,
any indistinguishability obfuscator for all circuits in P/poly is a also a differing-inputs obfuscator for
circuits that differ on at most polynomially many inputs.

Theorem 2.4 ([BCP14]) Let iO be an indistinguishability obfuscator for P/poly. Let Sam be a
differing-inputs circuit sampler for which there exists a polynomial d : N→ N, such that

Pr
[
|{x : C0(x) 6= C1(x)}| ≤ d(λ)

∣∣∣ (C0, C1, aux)←$ Sam(1λ)
]
≥ 1− negl(λ) .

Then iO is a differing-inputs obfuscator for Sam, i.e., obfuscator iO is {Sam}-secure.

2.1.2 Point Obfuscation

Besides the general purpose obfuscation notions of indistinguishability obfuscation and differing-inputs
obfuscation we employ special purpose obfuscators for point functions px which for a value x ∈ {0, 1}∗
are defined as

px(s) :=
{

1 if s = x

⊥ o/w

9

We consider a variant of point function obfuscators under auxiliary input which were first formalized by
Canetti [Can97]. We here give the definition from [BP12] presented in a game based formulation. The
first definition formalizes unpredictable distributions which are in turn used to define obfuscators for
point functions.
Definition 2.5 (Unpredictable distribution) An algorithm B that on input the security parameter
1λ outputs two strings (x, aux) is called computationally unpredictable (resp. statistically unpredictable)
if no PPT algorithm (resp. unbounded algorithm) can predict x from aux. That is, for every PPT
(resp. unbounded) algorithm P and for all large enough λ:

Pr(aux,x)←$Dλ

[
P(1λ, aux) = x

]
≤ negl(λ)

We let Dcup denote all efficient computationally distributions and denote by Dsup all efficient statistically
unpredictable distributions.

In the following we define point obfuscators secure in the presence of auxiliary inputs relative to a
class of distributions D. We write AIPO[D] to capture the class of obfuscators that are secure against all
distributions in D.

Definition 2.6 (Auxiliary input point obfuscation (AIPO)) A PPT algorithm AIPO is a point
obfuscator if on input a string x it outputs a polynomial-size circuit that returns 1 on x and 0 everywhere
else. It is called secure under auxiliary input for distribution class D if it satisfies the following secrecy
property: for any distribution B1 ∈ D it holds for any PPT algorithm B2 that the probability that the
following experiment outputs true for (B1,B2) is negligibly close to 1

2 :

Advpo
AIPO,B1,B2

(λ) = 2 ·Pr
[
POB1,B2

AIPO (λ)
]
−1 ≤ negl(λ)

POB1,B2
AIPO (λ)

b←$ {0, 1}
(x0, aux)←$B1(1λ)
x1←$ {0, 1}|x0|

p←$ AIPO(xb)
b′←$B2(1λ, p, aux)
return b = b′

The probability is over the coins of adversary (B1,B2), the coins of AIPO and the choices of x1 and b.
We’ll denote by AIPO[D] the class of all PPT point obfuscators secure against distributions in D.

Composable AIPOs. We can define a composable variant of the above definition by considering distri-
butions that output a vector x rather than a point x. Computational (resp. statistical) unpredictability
then requires that for all PPT (resp. unbounded) algorithms P and for all large enough λ:

Pr(aux,x)←$Dλ

[
x[i] = x : x, i←$ P(1λ, aux)

]
≤ negl(λ)

Hence the AIPO security game would change accordingly to

b←$ {0, 1}
(x, aux)←$B1(1λ)
for i = 1, . . . , |x| do

if b = 1 then
x[i]←$ {0, 1}|x[i]|

p[i]←$ AIPO(x[i])
b′←$B2(1λ,p, aux)
return b = b′

10

Brzuska and Mittelbach have recently shown that in the computational setting (where predictor P is
restricted to be PPT) such composable point obfuscators do not exist if indistinguishability obfuscation
exists [BM14a]. In the statistical setting where auxiliary input aux must hide the points in X statistically
we have a candidate construction of such a composable point obfuscator by Canetti [Can97]. Bitansky
and Canetti [BC10] show that the point obfuscation scheme of Canetti [Can97] is a so-called t-composable
VGB point obfuscator under the (non standard) t-Strong Vector Decision Diffie–Hellman assumption.
Matsuda and Hanaoka [MH14a] show that such composable VGB point obfuscators imply the existence
of composable AIPO with respect to statistically unpredictable distributions. Jumping ahead, in this
paper we show that (injective) UCEs with respect to statistically unpredictable sources imply composable
AIPO with respect to statistically unpredictable distributions.

2.2 Puncturable PRFs

Besides point function obfuscation schemes, our main ingredient in the upcoming proofs are so-called
puncturable pseudorandom functions (PRF) [SW14]. We consider families of functions F consisting
of algorithms F.KGen, F.kl, F.Eval, F.il and F.ol. Algorithm F.KGen is a PPT algorithm taking the
security parameter 1λ and outputting a key k ∈ {0, 1}F.kl(λ) where F.kl : N→ N denotes the key length.
Functions F.il : N → N and F.ol : N → N denote the input and output length functions associated to
F and for any x ∈ {0, 1}F.il(λ) and k←$F.KGen(1λ) we have that F.Eval(k, x) ∈ {0, 1}F.ol(λ), where the
PPT algorithm F.Eval denotes the “evaluation” function associated to F .

A family of puncturable PRFs G :=(G.KGen, G.Puncture, G.kl, G.Eval, G.il, G.ol) consists of functions
that specify input length, output length and key length as well as a key generation algorithm and a
deterministic evaluation algorithm. Additionally, there is a PPT puncturing algorithm G.Puncture which
on input a polynomial-size set S ⊆ {0, 1}G.il(λ), outputs a special key kS . We here give a game based
variant of selectively secure puncturable PRFs where the adversary may adaptively request challenge
points (via oracle challenge) while it is only allowed to see a single punctured key [BW13]. Via a standard
hybrid argument it can be shown that this formulation is equivalent to allowing only a single challenge
query.

Definition 2.7 A family of functions G :=(G.KGen, G.Puncture, G.kl, G.Eval, G.il, G.ol) is called
puncturable PRF if the following properties are observed
• Functionality preserved under puncturing. For every PPT adversary A such that A(1λ)
outputs a polynomial-size set S ⊆ {0, 1}G.il(λ), it holds for all x ∈ {0, 1}G.il(λ) where x /∈ S that:

Pr
[
G.Eval(k, x) = G.Eval(kS , x) : k←$G.KGen(1λ), kS←$G.Puncture(k, S)

]
= 1

• Pseudorandom at punctured points. For every PPT adversary (A1,A2) the advantage
Advpprf

A1,A2
(·) is negligible:

Advpprf
A (λ) = 2 · Pr

[
PPRFGA1,A2(λ)

]
− 1

where game PPRF is defined as
PPRFGA1,A2(λ)
S ← {}; b←$ {0, 1}

k←$G.KGen(1λ)

state←$Achallenge
1 (1λ)

k∗ ←$G.Puncture(k, S)

b′ ←$A2(1λ, state, k∗)
return (b = b′)

challenge(x)
if x ∈ S then return ⊥

S ← S ∪{x}

if b = 0 then

y ← G.Eval(k, x)

else y ←$ {0, 1}G.ol(λ)

return y

11

UCES,D
H (λ)

b←$ {0, 1}
hk←$ H.KGen(1λ)
L←$ SHash(1λ)
b′ ←$ D(1λ, hk, L)
return (b = b′)

Hash(x)
if T [x] = ⊥ then

if b = 1 then

T [x]← H.Eval(hk, x)

else T [x]←$ {0, 1}H.ol(λ)

return T [x]

PredP
S(λ)

done← false; Q← {}
L←$ SHash(1λ)
done← true

Q′ ←$ PHash(1λ, L)
return (Q ∩Q′ 6= {})

Hash(x)
if done = false then

Q← Q ∪ {x}
if T [x] = ⊥ then

T [x]←$ {0, 1}H.ol(λ)

return T [x]

Figure 3: The UCE security game together with the unpredictability game (on the right). In the UCE game source S has
access to Hash, which returns real or ideal hash values, and leaks L to a distinguisher D. The latter additionally gets the
hash key and outputs a bit b′. On the right we give the unpredictability game.

As observed by [BW13, BGI14, KPTZ13] puncturable PRFs can, for example, be constructed from
pseudorandom generators via the GGM tree-based construction [GGM84]. We note that, as AIPO
implies one-way functions AIPO, thus, also implies the existence of puncturable PRFs [BM14b].

3 Universal Computational Extractors (UCE)
The UCE Framework by Bellare, Hoang, and Keelveedhi (BHK; [BHK13a]) provides a standardized
method to define security properties for keyed hash functions that model extractor capabilities of random
oracles. Loosely speaking, UCEs are PRF-like assumptions that split a distinguisher (which should
differentiate whether it operates relative to a UCE function or relative to a random oracle) into two parts:
a first adversary S that gets access to a keyed hash function or a random oracle (and which is called the
source), and a second adversary D that gets the hash key hk (and which is called the distinguisher). The
two algorithms together try to guess whether the source was given access to a keyed hash function or to
a random oracle.

Concretely, the UCE notions are defined via a two-stage UCE game (we present the pseudocode in
Figure 3 on the left). First, the source S is run with oracle access to Hash to output some leakage L.
Subsequently, distinguisher D is run on the leakage L and hash key hk but without access to oracle
Hash. Distinguisher D outputs a single bit b indicating whether oracle Hash implements a random
oracle or hash function H with key hk.

Formal UCE definition. We denote hash function (families) by H. Let H = (H.KGen,H.Eval,H.kl,
H.il,H.ol) be a hash-function family and let (S,D) be a pair of PPT algorithms. We define the UCE
advantage of a pair (S,D) against H through

Advuce
H,S,D(λ) := 2 · Pr

[
UCES,D

H (λ)
]
− 1,

where game UCES,D
H (λ) is shown in Figure 3 on the left.

3.1 The Status Quo

Without any restrictions the UCE game models that a concrete function is indistinguishable from a
random oracle and hence it is not surprising that the pair (S,D) can easily win the UCE game. For
example, say, source S makes a random query x to receive y ← Hash(x) and outputs (x, y) as leakage.
As distinguisher D knows the hash key hk as well as the leakage (x, y), it can recompute the hash value
and check whether y = H(hk, x). In order to get a concrete UCE notion it is thus necessary to define
a restriction on sources and distinguishers. Given this flexibility a key issue is to come up with good
UCE notions that are not too strong (that is, in particular, they should be instantiable in the standard

12

model) and, on the other hand, are not too weak in order to be useful in applications. We say a hash
function H is UCE secure for sources S ∈ S denoted by UCE[S], if for all PPT sources S ∈ S and all
PPT distinguishers D the advantage Advuce

H,S,D(λ) is negligible.
BHK present several possible restrictions giving rise to various UCE notions and show that these

allow to instantiate random oracles in a wide range of interesting applications. The first two UCE notions
to be defined were called UCEs for (computationally) unpredictable sources (denoted by UCE[Scup])
and UCEs for reset-secure sources (denoted by UCE[Scrs]) [BHK13a].4 The two notions allowed to
instantiate random oracles in a wide range of interesting applications: deterministic public-key encryption
(DPKE), message-locked encryption (MLE), universal hardcore functions (HC), point function obfuscation
(MBPO), key dependent message security (KDM), related key security (RKA), correlation input secure
hash functions (CIH) and more. In particular the (weaker) notion of UCE[Scup] was fascinating as it
allowed to instantiate the random oracle in all previously mentioned applications. (Reset-security, UCE2
aka. UCE[Scrs], was only used in a single application and could hence be regarded as a special purpose
assumption.) Formally, we denote by Scup the class of all computationally unpredictable sources and
call a source S computationally unpredictable if the advantage of any PPT predictor P, defined by

Advpred
S,P (λ) := Pr

[
PredP

S(λ)
]
,

is negligible, where game PredP
S(λ) is shown in Figure 3 on the right. For a formal definition of

reset-security we refer to [BHK13b].
Somewhat regrettably, shortly after the UCE framework was published, Brzuska, Farshim and

Mittelbach (BFM) showed that the notion UCE[Scup] is mutually exclusive with the existence of
indistinguishability obfuscators [BFM14]. As candidate constructions for indistinguishability obfuscation
are known while no candidate constructions for UCE[Scup]-secure hash functions are known the BFM
result is usually interpreted in favor of indistinguishability obfuscation and thus raising the question
as to the existence of UCE-secure functions. Subsequent to the BFM result several new (and weaker)
notions of UCE security have been proposed to work around the BFM impossibility result. Most notably
are the notions

UCEs for statistical unpredictable sources. The notion denoted by UCE[Ssup] is defined analo-
gously to UCE[Scup] with the exception that sources need to be statistically unpredictable, that is,
the predictor P in game Pred is allowed to run in unbounded time. The notion was proposed by
BFM [BFM14] and independently by BHK [BHK13b] and turns out to be almost as universal as
UCE1 back when UCEs were introduced.

UCEs for strongly unpredictable sources. Strong unpredictability is a strengthening of the unpre-
dictability notion requiring that the source’s queries remain unpredictable even if the predictor
gets to see a set containing all of the Hash oracle’s answers. Strong unpredictability was defined
by Brzuska and Mittelbach [BM14b] who also show that strong unpredictability is a strictly larger
class than the class defined via split sources (a structural requirement on sources defined in a later
version by BHK [BHK13b]).
Formally, the restriction on sources captured by strong unpredictability is defined via the security
game stPred:

4In the original formulation the UCE notions were called UCE1 (for computationally unpredictable sources) and UCE2
(for computationally reset-secure sources).

13

stPredP
S(λ)

X∗, Y ∗ ← {}
L←$ SHash(1λ)
x′ ←$ PHash(1λ, L, Y ∗)
return (x′ ∈ X∗)

Hash(x)
X∗ ← X∗ ∪ {x}

y ←$ {0, 1}H.ol(λ)

Y ∗ ← Y ∗ ∪ {y}
return y

Similarly to plain unpredictability one can further differentiate between PPT predictors and
unbounded predictors which gives rise to the UCE notions UCE[Ss-cup] (UCEs for computationally
strong-unpredictable sources) and its statistical counter-part UCE[Ss-sup] (UCEs for statistically
strong-unpredictable sources).

UCEs for statistical reset-secure sources. Similarly to unpredictability, reset-security can be fur-
ther split into computationally and statistically secure sources as proposed by both BFM [BFM14]
and BHK [BHK13b]. Reset-security is a strictly stronger notion than unpredictability [BHK13a]
which allows sources to make predictable queries to some extend. For a detailed description we
refer to [BHK13b].

In Table 1 we present the most prominent applications for UCEs and list the corresponding UCE
notions.

3.2 UCE Constructions

BHK showed that the simple random oracle construction HRO(hk, x) := RO(hk‖x) is UCE[Scup] secure
and suggested that also HMAC is UCE[Scup] when treating the compression function as a fixed-input
length random oracle. The latter was later shown by Mittelbach to be the case [Mit14].

Standard model constructions for UCEs were first presented by Brzuska and Mittelbach [BM14b]
who constructed a UCE[S1-query ∩ Ss-cup] secure function from indistinguishability obfuscation and point
obfuscation secure in the presence of auxiliary inputs as well as a UCE[Sq-query ∩ Ss-sup] secure function
from indistinguishability obfuscation and a weaker variant of point obfuscation where the auxiliary
information is required to hide the obfuscated point statistically. That is, in the computational strong
unpredictability setting BM showed how to obtain a UCE function which is secure against sources that
make a constant number of queries yielding a standard model construction of a universal hardcore
function for any one-way function. In the statistical strong unpredictability setting BM constructed a
UCE secure function coping with sources making q-many queries for an arbitrary polynomial q.

3.3 Bitwise UCEs

In this paper we make a UCE notion explicit which was implicitly already considered by BHK in their
original formulation of UCEs [BHK13a], namely, UCEs that output only a single bit, i.e., for which
ol(λ) = 1. As the output length of UCEs will play a crucial factor in this paper we extend the UCE
notation to denote the output length as subscript: we write UCE1 to denote functions that have a single
bit output and simply UCE for functions which have arbitrary (polynomial) output length.

BHK show that for unpredictable UCEs (both for computational unpredictability and statistical
unpredictability) we can extend the output length of the function by running it in counter mode. That
is, given a function H with output length H.ol we can construct a function H with output length ` as

14

H(hk, x)

for i = 1, . . . , d`/H.ol(λ)e do
yi ← 〈i〉log d`/H.ol(λ)e ‖x

hi ← H.Eval(hk, yi)
h← h1‖ · · · ‖hl
return h[1, `]

Theorem 3.1 (Theorem 4.6 [BHK13b]) For any function H ∈ UCEH.ol[Scup] we can construct
H ∈ UCE`[Scup] for an arbitrary function ` that is upper bounded by a polynomial. The same holds for
statistical unpredictability, i.e., UCE[Ssup].

When we consider query-restricted sources such as S1-query or Sq-query then one needs to be careful
with the above theorem. In case we consider sources making q-queries then we get that

H ∈ UCEH.ol[Scup ∩ Sq-query] =⇒ H ∈ UCE`[Scup ∩ Sp-query]

where p depends on q and the extension factor, i.e.,

p(λ) =
⌊

q(λ)
`/H.ol(λ)

⌋
.

In particular this means, that when we want to move from a constant output length to a polynomial
output length this is not possible if we consider sources which are restricted to making a constant
number of queries. By the above theorem we cannot argue that H ∈ UCE1[Scup ∩ S1-query] implies that
H ∈ UCE[Scup ∩ S1-query] and, indeed, it seems unlikely that this implication holds.

4 From Strong Unpredictability to (Plain) Unpredictability
In the following section we present the first main result of this paper which, although simple to prove,
has intriguing consequences. We show that for bit-wise UCEs, i.e., UCE1 the strong unpredictability
and (plain) unpredictability restrictions are equivalent. This holds both for the statistical case and for
the computational case.

Theorem 4.1 For any function H with H.ol(λ) = 1 it holds that

1. H is UCE secure against computationally unpredictable sources Scup if and only if it is UCE secure
against computatioanlly strong unpredictable sources Ss-cup:

H ∈ UCE1[Scup] ⇐⇒ H ∈ UCE1[Ss-cup]

2. H is UCE secure against statistically unpredictable sources Ssup if and only if it is UCE secure
against statistically strong unpredictable sources Ss-sup:

H ∈ UCE1[Ssup] ⇐⇒ H ∈ UCE1[Ss-sup]

The two statements above hold also in the case the number of queries a source can make is restricted to
some number q, that is

H ∈ UCE1[Scup ∩ Sq-query] ⇐⇒ H ∈ UCE1[Ss-cup ∩ Sq-query]
H ∈ UCE1[Ssup ∩ Sq-query] ⇐⇒ H ∈ UCE1[Ss-sup ∩ Sq-query]

15

Proof. In order to prove the above theorem recall that the difference between unpredictability and
strong unpredictability resides solely in the information the predictor is given. The following description
captures both forms of unpredictability, the boxed statements showing the additional information given
to the predictor in the strong unpredictability game:

PredP
S(λ) stPredP∗

S (λ)

X∗ ← {}; Y ∗ ← {}

L←$ SHash(1λ)

x′←$ PHash
∗ (1λ, L , Y ∗)

return (x′ ∈ X∗)

Hash(x)

X∗ ← X∗ ∪ {x}
y←$ {0, 1}H.ol(λ)

Y ∗ ← Y ∗ ∪ {y}
return y

In the strong unpredictability game predictor P∗ gets a set containing the answers from the Hash oracle.
It is important to emphasize that this is indeed a set and not a list. Hence when we consider bit-UCEs
Y ∗ can only take one of 4 forms:

Y ∗ ∈
{
{},{0} ,{1} ,{0, 1}

}
As the correct Y ∗ can be guessed with probability 1

4 we hence get that from any predictor P∗ in game
stPred we can construct a predictor P in game Pred such that

Advstpred
S,P∗ (λ) = 1

4 · Advpred
S,P (λ).

Similarly, any good predictor P in game Pred immediately yields a good predictor in game stPred which
concludes the proof of Theorem 4.1. �

Combining Theorems 3.1 and Theorem 4.1 we obtain several interesting corollaries. Given that we
can extend the length of a UCE function by sacrificing on the number of queries that a source can make
we get

Corollary 4.2 It holds that

UCE1[Ss-cup ∩ Sq-query] =⇒ UCE[Scup ∩ Sp-query]
UCE1[Ss-sup ∩ Sq-query] =⇒ UCE[Ssup ∩ Sp-query]

The implications are to be read as: if there exists H that is UCE1[X] secure, then there exists H that is
UCE[Y] secure.

Brzuska, Farshim and Mittelbach [BFM14] show that indistinguishability obfuscation and UCE[Scup∩
S1-query] are mutually exclusive. Combining this with Corollary 4.2 yields that also UCE1[Ss-cup∩Sq-query]
and in particular UCE[Ss-cup ∩ Sq-query] are mutually exclusive with indistinguishability obfuscation.

Corollary 4.3 If indistinguishability obfuscation exists, then UCE1[Ss-cup∩Sq-query] (and UCE[Ss-cup∩
Sq-query]) security cannot be achieved in the standard model.

Brzuska and Mittelbach [BM14b] construct a UCE[Ss-cup ∩ S1-query] secure function from indistin-
guishability obfuscation and strong variants of point obfuscation. Note that the above negative results
only apply to UCEs secure against strongly computationally unpredictable sources as soon as there is a
superlogarithmic number of queries, because then, the transformation via UCE1 yields UCEs secure
against computationally unpredictable sources, where the UCE function has a superpolynomial number

16

of output bits which is crucial for the iO-based attack to work (because it applies a PRG to the output).
Hence, the BM construction for computationally strongly unpredictable sources, that make only a
constant number of queries is, in some sense, optimal. There is a small gap that might allow for an
additional positive result for computationally strongly unpredictable sources that make a logarithmic
number of queries. However, it is not known that a logarithmic number of queries would allow for more
applications.

5 Constructing q-Query UCE[Ssup] Secure Functions
Having established how bit-wise UCEs for strongly unpredictable sources relate to normal UCEs for
unpredictable sources it remains to construct a UCE1[Ss-sup ∩ Sq-query] in order to obtain a q-query
UCE[Ssup] secure function, that is, a UCE[Ssup ∩ Sq-query] secure function. q-query UCE[Ssup] suffices
to build variants of key-dependent message secure encryption schemes, related-key secure encryption
schemes, CCA-secure public key encryption, PRG immunizers and multi-bit output point-function
obfuscation as well as q-query variants of correlated input-secure functions, message-locked encryption
and deterministic public-key encryption [BHK13b, MH14b, BH15]. Noteworthy is the relation between
UCE[Ssup] and point function obfuscation, which we will discuss in detail in Section 8.

Brzuska and Mittelbach (BM) construct a UCE[Ss-sup ∩Sq-query] secure function from indistinguisha-
bility obfuscation and a variant of point function obfuscation, namely, composable AIPO for statistically
unpredictable distributions. It is, however, not clear whether we can simply truncate their construction
to obtain a UCE1[Ss-sup ∩ Sq-query] and hence a q-query UCE1[Ssup] secure function. At least, such
a transformation is not obvious if one wants to use a black-box proof of security. Note that when
the hash functions have large outputs (which is the case considered by BM) then it is equivalent to
consider whether the predictor is given the set of oracle answers (which is as in the definition of strong
unpredictability) or the multi-set (that is, for each answer it is also conveyed how often it appeared).
When considering hash functions with long outputs the question of set vs. multi-set does not come up
since collisions on oracle answers occur only with negligible probability. However, for shorter output
lengths where collisions may appear the proof strategy by BM only works when considering multi-sets.

Interestingly, when considering hash functions with a single bit, we can simulate the multi-set view by
guessing the number of ones and the number of zeroes in the multi-set, which allows us to prove that the
BM construction, indeed yields a q-query UCE1[Ssup] secure function. Subsequently in Section 6 we show
how to extend the proof in order to obtain also a multi-key UCE version, i.e., mUCE1[Ssup ∩ Sq-query].

5.1 The BM Construction

Let us recall the construction of a UCE[Ss-sup ∩ Sq-query] presented by Brzuska and Mittelbach [BM14b].
Key generation of their construction crucially depends on a polynomial q which describes the number of
queries a source is allowed to make.

Construction 1 Let q : N→ N and s : N→ N be polynomials. Let G be a puncturable PRF and let iO
be an indistinguishability obfuscator for all circuits in P/poly. We define our hash function family H as

H.KGen(1λ)

k←$G.KGen(1λ)
C ←$ iO(PAD(s(λ), G.Eval(k, ·)))
hk← C

return hk

H.Eval(hk, x)

C ← hk
return C(x)

17

where PAD : N × {0, 1}∗ −→ {0, 1}∗ denotes a deterministic padding algorithm that takes as input an
integer and a description of a circuit C and outputs a functionally equivalent circuit padded to length
|C|+s(λ). Function s needs to be chosen in accordance with the puncturable PRF and a point obfuscation
scheme AIPO to allow for puncturing G on q points and embedding q many point obfuscations within
circuit C.

5.2 Extending the BM Construction

In the following we show that the BM construction when implemented with a puncturable PRF that has
a single output bit also yields a secure q-query UCE1[Ssup] function. The security proof is similar to the
proof in [BM14b] with some simplifications and some modifications especially in the last game hop.
Construction 2 The construction is identical to Construction 1 with the exception that PRF G has an
output length of G.ol(λ) = 1.

Theorem 5.1 If indistinguishability obfuscation exists and if composable AIPO for statistically unpre-
dictable distributions (composable AIPO[Dsup]) exist then Construction 2 is q-query UCE1[Ssup] (i.e.,
UCE1[Ssup ∩ Sq-query]) secure.

We prove the theorem via a sequence of 5 games (depicted in Figure 4) where game Game1 denotes
the original UCE1[Ssup ∩ Sq-query] game with hidden bit b fixed to 1. We first present the games and
subsequently the analysis of the individual game hops. Let S ∈ Ssup∩Sq-query. Without loss of generality
we assume that source S does not repeat queries to its oracle Hash.

Game1: The first game is the original UCE1[Ssup ∩ Sq-query]-game with hidden bit b set to 1. Here,
the hash key hk is an obfuscation of the circuit C1[k](x) := G.Eval(k, x) where k is a key for the
puncturable PRF.

Game2: Let X∗0 denote the queries by source S to its Hash oracle that were answered with 0 and let
X∗1 denote the queries answered with 1. Game2 is identical to Game1 with the exception that
circuit C2[k∗, P0, P1] is obfuscated instead of circuit C1[k]. Here k∗ is the punctured key for set
X∗0 ∪X∗1 (i.e., punctured on all of the queries made by S. Sets Pd contain point obfuscations for
the queries in Xd. Finally, circuit C2[k∗, P0, P1] is functionally equivalent to C1[k]. On input x it
first checks whether any point obfuscation in Pd outputs 1 on x (note this can be at most one). If
so it outputs d. Otherwise it uses the punctured key to output G.Eval(k∗, x). Note that in this
case x /∈ X∗0 ∪X∗1 and hence G.Eval(k∗, x) = G.Eval(k, x).

Game3: The game is equivalent to Game2 except that oracle Hash now samples y uniformly at random
instead of invoking G.Eval(k, .).

Game4: The game is equivalent to the previous game except that we now use an obfuscation of circuit
C3[k, P0, P1]. The circuit is functionally equivalent to C2[k∗, P0, P1] as the puncturable PRF is only
called on values that were not punctured out.

Game5: The game is equivalent to the previous game except that now an obfuscation of circuit C4[k].
Circuit C4[k] is our original circuit again, that is, C4[k](·) := G.Eval(k, ·). Game5 is our intended
target. It is the UCE-security game for our construction in the random oracle world (that is, oracle
Hash implements a random oracle).

In Game5 we have reached the target setting, i.e., the UCE-game with the hidden bit set to 0. It
remains to show that the individual games are negligibly close. In Figure 4 we present the reduction
target for each of the game hops above the pseudocode for each game. We present a formal analysis of
the the individual game hops in Appendix A.

18

Game1(λ)

1 :
2 : k←$G.KGen(1λ)
3 : L←$ SHash(1λ)
4 :
5 :
6 :
7 :
8 : C ←$ iO(C1[k])
9 : hk← C

10 : b′ ←$ D(1λ, hk, L)
11 : return (1 = b′)

Hash(x)
1 : y ← G.Eval(k, x)
2 :
3 : return y

Game2(λ)Game3(λ)

X∗0 , X
∗
1 , P0, P1 ← {}

k←$G.KGen(1λ)
L←$ SHash(1λ)
for d ∈ {0, 1}, x ∈ X∗d do
p←$ AIPO(x)
Pd ← Pd ∪{p}

k∗ ←$G.Puncture(k, X0 ∪X1)
C ←$ iO(C2[k∗, P0, P1])
hk← C

b′ ←$ D(1λ, hk, L)
return (1 = b′)

Hash(x)
y ← G.Eval(k, x); y ←$ {0, 1}

X∗y ← X∗y ∪{x}
return y

Game4(λ)

X∗0 , X
∗
1 , P0, P1 ← {}

k←$G.KGen(1λ)
L←$ SHash(1λ)
for d ∈ {0, 1}, x ∈ X∗d do
p←$ AIPO(x)
Pd ← Pd ∪{p}

C ←$ iO(C3[k, P0, P1])
hk← C

b′ ←$ D(1λ, hk, L)
return (1 = b′)

Hash(x)
y ←$ {0, 1}
X∗y ← X∗y ∪{x}
return y

Game5(λ)

k←$G.KGen(1λ)
L←$ SHash(1λ)

C ←$ iO(C4[k])
hk← C

b′ ←$ D(1λ, hk, L)
return (1 = b′)

Hash(x)
y ←$ {0, 1}

return y

iO PRF iO AIPO[Dsup] + iO+ [BCP14]

Circuit C1[k](x)
1 :
2 :
3 :
4 : return G.Eval(k, x)

Circuit C2[k∗, P0, P1](x)
for d ∈ {0, 1}, p ∈ Pd do

if p(x) = 1 then
return d

return G.Eval(k∗, x)

Circuit C3[k, P0, P1](x)
for d ∈ {0, 1}, p ∈ Pd do

if p(x) = 1 then
return d

return G.Eval(k, x)

Circuit C4[k](x)

return G.Eval(k, x)

Figure 4: A pseudo code description of the game steps in Theorem 5.1. The boxed Game3 is to be understood with the
boxed statement included. Furthermore the highlighted lines are emphasize the difference to the previous game.

6 Multi-key UCEs
Besides UCEs with a single hash key hk, BHK also define a multi-key version called mUCE which works
analogously as plain UCEs with the exception that source S can decide with how many keys it wants
to work and oracle Hash takes as input an index specifying the key [BHK13a]. Also similarly to plain
UCEs the source needs to be restricted and we can consider similar restrictions, namely unpredictable
and strongly unpredictable sources both their statistical and their computational variants. In Figure 5
we give the pseudocode of the mUCE game and the accompanying unpredictability game mPred.

The relationship between UCEs and multi-key UCEs is still an open research question. While it is
easy to see that mUCE[Scup] (and its statistical variant) imply the corresponding single key variants the
other direction is not known to hold. On the other hand, we are not aware of any separating example
and believe that such an example would be interesting. The construction in this paper as well as the
UCE constructions in idealized models [BHK13a, Mit14] both also achieve multi-key security.

Theorem 6.1 If indistinguishability obfuscation exists and if composable AIPO for statistically un-
predictable distributions (composable AIPO[Dsup]) exist then Construction 2 is mUCE1[Ssup ∩ Sq-query]
secure.

Note that we do not need to take care of the number of keys in the construction since for each key
we allow at most q-many queries and each key corresponds to a new circuit.

19

mUCES,D
H (λ)

(1n, state)←$ S(1λ, ε)
b←$ {0, 1}
for i = 1, . . . , n, do

hk[i]←$ H.KGen(1λ)
L←$ SHash(1n, state)
b′ ←$ D(1λ, hk, L)
return (b = b′)

Hash(x, i)
if T [x, i] = ⊥ then

if b = 1 then

T [x, i]← H.Eval(hk[i], x)

else T [x, i]←$ {0, 1}H.ol(λ)

return T [x, i]

mPredP
S(λ)

(1n, state)←$ S(1λ, ε)
done← false; Q← {}
L←$ SHash(1n, state)
done← true

Q′ ←$ PHash(1λ, 1n, L)
return (Q ∩Q′ 6= {})

Hash(x, i)
if done = false then

Q← Q ∪ {x}
if T [x, i] = ⊥ then

T [x, i]←$ {0, 1}H.ol(λ)

return T [x, i]

Figure 5: The multi-key UCE game (mUCE) on the left and the corresponding unpredictability game on the right. Similarly
to the plain UCE game we consider two variants of unpredictability: computationally unpredictable sources where predictor
P is restricted to be PPT and statistically unpredictable sources where predictor P is unbounded.

The proof is analogous to the proof for the single-keyed version. Instead of a single key, now t keys
need to be handled and constructed. The number t of keys in the system can, for example, be upper
bounded by the runtime of the source S allowing us to keep it fixed (the source may use only a fraction
of the keys, if it so chooses). In the game steps, the sets X∗0 , X∗1 , P0, P1 are multiplied by the number of
keys in the system. The first game hop works analogously while the second game hop can be done one
key at a time. The third game hop again is analogously as in the single-key version and the final game
hop can again be done one key at a time. We have depicted the final game hop in Figure 6. Game Gamej4
is an intermediate game with Game1

4 = Game4 and Gamet+1
4 = Game5. In Gamej4 the first j − 1 keys

are already transformed to be generated as an obfuscation of the correct circuit C4[k]. The difference
between Gamej4 and Gamej+1

4 is hence that key hk[j] is either generated as

iO(C3[k[i], P i0, P i1])

or as
iO(C4[k[i]])

which is almost an identical situation as in the single-key game. Hence we have that∣∣∣Pr
[
Gamej4(λ)

]
− Pr

[
Gamej+1

4 (λ)
]∣∣∣ ≤ Advio

iO,Sam,Dist(λ) + [BCP14] ≤ negl(λ)

7 The Superfluous Padding Assumption (SuPA)
In the following section we explore the role of padding for the security of Construction 2 and propose
the Superfluous Padding Assumption (SuPA). Consider a circuit C and the same circuit padded to
size |C|+ s, which we denote by PAD(s, C). Intuitively, if for some obfuscation scheme Obf(PAD(s, C))
hides some information about an auxiliary value aux then so should an obfuscation of the unpadded
circuit. In other words, if we consider pairs two pairs (aux, C) and (aux′, C ′) and we can prove that if
we first pad the circuit to some length |C|+ s and then apply obfuscation that then the two resulting
distributions are indistinguishable then also the distributions where we omit the padding step should be
indistinguishable. More formally, we would like to argue that

(aux,Obf(PAD(s, C))) ≈c (aux′,Obf(PAD(s, C ′))) =⇒ (aux,Obf(C)) ≈c (aux′,Obf(C ′)) (2)

Coming back to our construction of UCEs it is easy to see that if the implication in (2) holds, then
this allows us to argue that padding in Construction 2 is superfluous and the construction is, indeed,
secure without any bound q. In the following we make the above intuition formal.

20

Game4(λ)

for i = 1, . . . , t do
Xi

0, X
i
1, P

i
0, P

i
1 ← {}

k[i]←$G.KGen(1λ)
L←$ SHash(1λ, 1t)
for i = 1, . . . , t do

for d ∈ {0, 1}, x ∈ Xi
d do

p←$ AIPO(x)
P id ← P id ∪{p}

for i = 1, . . . , t do

C ←$ iO(C3[k[i], P i0, P i1])

hk[i]← C

b′ ←$ D(1λ, hk, L)
return (1 = b′)

Hash(x, i)
y ←$ {0, 1}
Xi
y ← Xi

y ∪{x}
return y

Gamej4
for i = 1, . . . , t do
Xi

0, X
i
1, P

i
0, P

i
1 ← {}

k[i]←$G.KGen(1λ)
L←$ SHash(1λ, 1t)
for i = j, . . . , t do

for d ∈ {0, 1}, x ∈ Xi
d do

p←$ AIPO(x)
P id ← P id ∪{p}

for i = 1, . . . , t do
if i ≥ j then

C ←$ iO(C3[k[i], P i0, P i1])

else C ←$ iO(C4[k[i]])

hk[i]← C

b′ ←$ D(1λ, hk, L)
return (1 = b′)

Hash(x, i)
y ←$ {0, 1}
Xi
y ← Xi

y ∪{x}
return y

Game5

for i = 1, . . . , t do

k[i]←$G.KGen(1λ)
L←$ SHash(1λ, 1t)

for i = 1, . . . , t do

C ←$ iO(C4[k[i]])

hk[i]← C

b′ ←$ D(1λ, hk, L)
return (1 = b′)

Hash(x, i)
y ←$ {0, 1}

return y

AIPO[Dsup] + iO+ [BCP14] AIPO[Dsup] + iO+ [BCP14]

Circuit C3[k, P0, P1](x)
for d ∈ {0, 1}, p ∈ Pd do

if p(x) = 1 then
return d

return G.Eval(k, x)

Circuit C4[k](x)

return G.Eval(k, x)

Figure 6: Relevant game steps for proof of Theorem 6.1.

7.1 The Superfluous Padding Assumption

In the following we explore the above intuition and present a novel and non-standard assumption called
the Superfluous Padding Assumption (SuPA) which captures the above intuition: if an obfuscation for a
padded circuit is good then so is the obfuscation of the unpadded circuit. As the naming suggest we are
not able to prove the assumption (yet) for indistinguishability obfuscation, the case required in order to
lift the q-bound from Construction 2. We do, however, make a first step in showing that the assumption
holds in the stronger virtual black-box setting. The assumption itself can be stated for any obfuscator
and is parameterized by a class of efficient samplers.

We state our assumption in two steps. In the first step we define admissible samplers, where an
efficient sampler outputs some auxiliary information aux and a circuit C. We call two samplers admissible
if their auxiliary informations are computationally indistinguishable relative to an obfuscation of the
padded circuit for some polynomial padding.

Definition 7.1 Let Obf be an obfuscation scheme and let PAD : N×{0, 1}∗ → {0, 1}∗ be a deterministic
padding algorithm that takes as input an integer s and a description of a circuit C and outputs a

21

SuP[s]DObf,Sam0,Sam1
(λ)

b←$ {0, 1}
(aux, C)←$ Samb(1λ)
if s(λ) > 0 then
C ←$ Obf(PAD(s(λ), C))

else C ←$ Obf(C)
b′←$ D(1λ, s, aux, C, |C|)
return b = b′

Figure 7: The SuP game is parameterized by a polynomial s. It runs one of two samplers which output auxiliary information
aux and a circuit C. Then according to s the circuit is padded (if s = 0 then the original circuit is used) before it is
obfuscated and given to distinguisher D which additionally gets as input auxiliary input aux as well as s and the size of the
original circuit |C|. The task of distinguisher D is to guess from which sampler auxiliary input aux and circuit C came from.

functionally equivalent circuit of size s + |C|. We say that a pair of PPT samplers (Sam0,Sam1) is
SuP-admissible for obfuscator Obf, if there exists a polynomial s such that for any PPT distinguisher D
its advantage in the SuP[s] game (formalized in Figure 7) is negligible:

Advsup[s]
Obf,Sam0,Sam1,D(λ) = 2 · Pr

[
SuP[s]DObf,Sam0,Sam1(λ)

]
− 1 ≤ negl(λ)

SuP-admissibility does not place restrictions on samplers beyond indistinguishability, but potentially,
one can put various reasonable additional restrictions on the samplers. One could, for example, require
that the marginal distribution on the circuits is identical, or that aux is generated only with oracle access
to the functionality provided by circuit C and thus cannot depend on the description of C, but only on
the functionality of C. In the following we state the Superfluous Padding Assumption (SuP assumption)
in its most general form, without requiring that samplers are from some specific subclass of admissible
samplers.

Assumption 7.2 Let Obf be an obfuscation scheme and let Sam0 and Sam1 be two SuP-admissible
samplers. Then, the Superfluous Padding Assumption states that no efficient distinguisher D has a
non-negligible advantage in the SuP[0] game without padding:

Advsup[0]
Obf,Sam0,Sam1,D(λ) = 2 · Pr

[
SuP[0]DObf,Sam0,Sam1(λ)

]
− 1 ≤ negl(λ) .

7.2 Applying the SuP Assumption

Intuitively the SuP assumption states that if two distributions are indistinguishable relative to an
obfuscated circuit C which was padded before obfuscation, then the two distributions are also indistin-
guishable relative to the obfuscated circuit C without padding. Or in other words, if an obfuscation of a
padded circuit hides something, then so does an obfuscation of the unpadded circuit. Before we further
analyze the assumption let us establish how it lifts Construction 2 from achieving UCE1[Ssup ∩ Sq-query]
to achieving UCE1[Ssup].

In the proof of Theorem 5.1 we show that for any source S, there exists a polynomial s such that for
no adversary can distinguish the following two distributions(

L1, iO(PAD(s(λ), G.Eval(k, ·))
)
≈c
(
L5, iO(PAD(s(λ), G.Eval(k, ·))

)
where L1 is generated as in Game1 by running source S relative to the actual construction and L5 is
generated as in Game5 by running source S relative to a random oracle. Applying the SuP assumption

22

for indistinguishability obfuscation and identifying Sam0 with the sampler that runs Game1 until, and
including, line 9 and outputting (L, hk) (see Figure 4) and, similarly, Sam1 with the sampler that runs
Game5 until line 9 we get that also(

L1, iO(G.Eval(k, ·)
)
≈c
(
L5, iO(G.Eval(k, ·)

)
are computationally indistinguishable. Hence we get that:

Theorem 7.3 If indistinguishability obfuscation exists and if composable AIPO for statistically unpre-
dictable distributions (composable AIPO[Dsup]) exist, if the superfluous padding assumption holds for a
secure indistinguishability obfuscation scheme, then Construction 2 is UCE1[Ssup] secure.

Note that, in particular, it might be that indistinguishability obfuscation generically implies SuPA just
as VBB obfuscation generically implies SuPA, as we will see soon.

Remark. Let us note that the full SuP assumption as stated above is not necessary for our UCE
use-case as there we only consider a single pair of samplers (S1,S5) (where S1 is the source in Game1
and S5 is the source defined in Game5 in the proof of Theorem 5.1) where auxiliary information L is
generated only with oracle access to the functionality of the circuits without using the description of the
circuits. Furthermore, for the UCE case the circuit distribution is identical, that is, both samplers Sam0
and Sam1 generate circuit C as G.Eval(k, ·) for uniformly random key. Finally, for Construction 2 we
can fix the padding operation and thus need the SuP assumption also only to hold for this fixed choice
of padding.

7.3 On the Validity of the Superfluous Padding Assumption

The SuP assumption is a highly non-standard assumption, and we need to study it further to deepen our
understanding and, hopefully, gain confidence in it. In this subsection, we validate the assumption in an
idealized model, namely, we show that it holds for virtual black-box obfuscation. For indistinguishability
obfuscation, different techniques are needed and we will discuss how and why we believe that SuPA
might be reasonable to assume also for indistinguishability obfuscation.

Theorem 7.4 The Superfluous Padding Assumption holds for virtual black-box obfuscators.

Proof. The idea of the proof is to exploit that the simulator of the virtual black-box obfuscator only has
black-box access to the obfuscated circuit (and its size) and does not get the circuit itself. Hence, given
an obfuscated version of the circuit, one can simulate the oracle for the simulator regardless of how the
obfuscation looks like and whether the circuit was padded before being obfuscated or not.

Let Obf be a virtual black-box obfuscator and let Sam0 and Sam1 be a pair of SuP-admissible
samplers. Let D be an efficient distinguisher. We need to prove that∣∣∣∣∣∣Pr

 (aux0, C0)←$ Sam0(1λ)

C0 ←$ Obf(C0)
return D(1λ, aux0, C0, |C0|)

 = 1

− Pr

 (aux1, C1)←$ Sam1(1λ)

C1 ←$ Obf(C1)
return D(1λ, aux1, C1, |C1|)

 = 1

∣∣∣∣∣∣ (3)

is negligible. We start with the first distribution and transform it into the second via several game-hops.
Let Sim be the virtual black-box simulator for D. Note that Sim depends on D, but that Sim does not
depend on the circuit. By the security of virtual black-box obfuscation, we have that∣∣∣∣∣∣Pr

 (aux0, C0)←$ Sam0(1λ)

C0 ←$ Obf(C0)
return D(1λ, aux0, C0, |C0|)

 = 1

− Pr
[(

(aux0, C0)←$ Sam0(1λ)

return SimC0 (1λ, aux0, |C0|)

)
= 1

]∣∣∣∣∣∣ (4)

23

is negligible. Now, if we can prove that

ε :=
∣∣∣∣Pr

[(
(aux0, C0)←$ Sam0(1λ)

return SimC0 (1λ, aux0, |C0|)

)
= 1

]
− Pr

[(
(aux1, C1)←$ Sam1(1λ)

return SimC1 (1λ, aux1, |C1|)

)
= 1

]∣∣∣∣ (5)

is negligible, then we can use that (4) is negligible in the “backward” direction, i.e., we can replace the
subscript 0 of aux0, C0 and Sam0 in (4) by 1, because the simulator Sim works for all circuits C and
only depends on D. Thereby, we then yield the left distribution in (3). Thus, it remains to show that
ε is negligible. Assume not, then we show that Sam0 and Sam1 are not SuP-admissible. Towards this
goal, we construct a distinguisher D∗ as follows. Distinguisher D∗ receives as inputs (1λ, s, aux, C, |C|).
It then runs SimC(1λ, aux, |C|) to receive a bit b′ and outputs b′.

As the simulator only has black-box access to the circuit, SimCb(1λ, auxb, |Cb|) has exactly the same
behaviour as SimObf(PAD(s(λ),Cb))(1λ, auxb, |Cb|), and thus, the advantage SuP[s]D∗Obf,Sam0,Sam1

(λ) is equal
to ε. �

On SuPA for indistinguishability obfuscation. Besides being able to validate SuPA for VBB
obfuscators there is (at least) one curiosity pointing towards that SuPA holds. Consider the case that
it does not hold and that indistinguishability obfuscators exist. Let us assume an obfuscator always
outputs circuits which are at least twice the size of the input circuit. Then we have constructions (such
as the UCE construction from this paper) which might be insecure when instantiated with the above
obfuscator but which become secure when the obfuscator is run repeatedly, for example, if we instantiate
the construction with iO(iO(C)). Such a “security amplification” (from an inverse polynomial advantage
to negligible advantage for any efficient adversary), however, seems unreasonable for any good obfuscator
and indeed seems rare for a security notion based on a distinguishing game.

One hope to prove SuPA for indistinguishability obfuscation is the characterization by Goldwasser
and Rothblum [GR07] as best-possible obfuscation. The definition of best-possible obfuscation is learning-
based and states that everything that can be learned from an iO-obfuscated circuit iO(C) can also be
learned from any functionally equivalent circuit C ′ of the same size, i.e., |C| = |C ′|. Intuitively, using
best-possible obfuscation might be one way to prove SuPA. However, it is not clear how to remove the
size-restriction by Goldwasser and Rothblum. Of course, proving (or even understanding) SuPA is one
of the main questions that are left open by our work.

8 Point Obfuscation from UCEs
For our construction of a UCE[Ssup ∩ Sq-query] secure function (Section 5) we used indistinguishability
obfuscation and composable AIPOs (for statistically unpredictable distributions). In this section we show
that the latter is indeed a necessary condition for the existence of injective UCE[Ssup ∩ Sq-query] secure
functions. In the original UCE paper, Bellare, Hoang and Keelveedhi [BHK13a] show how to build a
variant of point obfuscation from UCEs secure against computationally unpredictable sources. Brzuska
et al. [BFM14] and Bellare et al. [BHK13b] independently suggested UCEs relative to statistically
unpredictable sources and showed that the original point obfuscation scheme can be lifted to this form
of UCEs.

BHK show that the random oracle in the obfuscation scheme by Lynn, Prabhakaran, and Sa-
hai [LPS04] can be instantiated with a UCE secure function. LPS consider multi-bit output point
obfuscation for point functions pα,β defined as

pα,β(x) =
{
β if x = α

0 otherwise

24

Note that these are different from the “simple” point functions that we considered for AIPO obfuscation
which were simply defined as

pα(x) =
{

1 if x = α

0 otherwise

Multi-bit output point obfuscation is closely related to composable point obfuscation [CD08]. For an
overview of point obfuscation and their relation to indistinguishability obfuscation we refer to [BM14a].

Let us recall the LPS obfuscation scheme can be instantiated with a UCE[Ssup ∩ S2-query] secure
function. To obfuscate a point (α, β) one computes

hk←$ H.KGen(1λ)
α← H.Eval(hk, 0‖α)
β ← H.Eval(hk, 1‖α)⊕ β
return (hk, α, β)

BHK show that this indeed yields a secure (self-)composable point obfuscation scheme when employing
a UCE[Ssup ∩ S2-query] secure function, and show that it is composable when employing its multi-key
variant mUCE[Ssup ∩ S2-query] that is a function supporting multi-keys against sources that use each
key at most once. Note that for this application we explicitly require UCEs with long outputs and
correctness of the obfuscation requires that the UCE function is injective.

In the following we show that an injective mUCE[Ssup ∩ S1-query] in fact also suffices to construct
a composable AIPO for statistically unpredictable auxiliary input—note that BHK consider a notion
of point obfuscation without auxiliary information. We can actually give the stronger statement, that
already mUCE[Ss-sup ∩ S1-query], that is, strong statistical unpredictability is sufficient to imply AIPO.

Lemma 8.1 The existence of secure composable AIPO[Dsup] (for statistically unpredictable distributions)
is a necessary condition for the existence of secure mUCE[Ss-sup ∩ S1-query] functions that are injective.

We note that the above Lemma similarly holds for the computational case. That is, mUCE[Ss-cup ∩
S1-query] implies the existence of secure composable AIPO[Dcup] and UCE[Ss-cup ∩ S1-query] implies the
existence of (not necessarily composable) AIPO[Dcup]. Since we know that indistinguishability obfuscation
and composable AIPO[Dcup] are mutually exclusive [BM14a] this yields a natural separation between
UCE[Ss-sup ∩ S1-query] and its multi-key variant UCE[Ss-sup ∩ S1-query].

Proof (Lemma 8.1). We will give a reduction from an adversary (B1,B2) against the AIPO scheme
to an adversary against a mUCE[Ss-sup] secure function. Instead of proving the muti-bit LPS scheme
secure, we will use a simple plain AIPO scheme which obfuscates a point x simply as

hk←$ H.KGen(1λ)
α← H.Eval(hk, x)
p← (hk, α)
return p

Suppose there exists an adversary (B1,B2) against the above obfuscation scheme. We will prove the
claim via three game hops visualized in Figure 8. The first game Game1 is the original AIPO game with
hidden bit b set to 0, that is, the point functions are generated for the points output by B1. From there
we gradually move to Game4 which is the AIPO game with hidden bit b set to 1. In the following we
first describe the games and then show that the steps reduce to mUCE[Ss-sup] security:

25

Game1(λ)

1 : (x, aux)←$B1(1λ)

2 : for i = 1, . . . , |x| do

3 : hk←$ H.KGen(1λ)

4 :

5 : α← H.Eval(hk,x[i])

6 :

7 :

8 : p[i]← (hk, α)

9 : b′ ←$B2(1λ,p, aux)

10 : return 1 = b′

Game2(λ)

(x, aux)←$B1(1λ)

for i = 1, . . . , |x| do

hk←$ H.KGen(1λ)

α←$ {0, 1}|H.Eval(hk,x[i])|

p[i]← (hk, α)

b′ ←$B2(1λ,p, aux)

return 1 = b′

Game3(λ)

(x, aux)←$B1(1λ)

for i = 1, . . . , |x| do

hk←$ H.KGen(1λ)

α←$ {0, 1}|H.Eval(hk,x[i])|

if α /∈ H.Eval−1(hk, ·) then

goto line 5

p[i]← (hk, α)

b′ ←$B2(1λ,p, aux)

return 1 = b′

Game4(λ)

(x, aux)←$B1(1λ)

for i = 1, . . . , |x| do

hk←$ H.KGen(1λ)

x←$ {0, 1}|x[i]|

α← H.Eval(hk, x)

p[i]← (hk, α)

b′ ←$B2(1λ,p, aux)

return 1 = b′

UCE UCE UCE

Figure 8: Game hops for proof of Lemma 8.1.

Game1 The original AIPO game with hidden bit b set to 0, that is, the point functions are generated for
the points output by B1.

Game2 The game is as before but in line 5 value α is generated as a uniformly random bit string of the
same length |H.Eval(hk,x[i])| (for the i-th value).

Game3 The game is as before but it is ensured that α has a (unique) preimage under H.Eval(hk, ·).

Game4 The original AIPO game with hidden bit b set to 1, that is, the point functions are generated for
uniformly random points.

We can write the advantage of adversary B1,B2 as

Advpo
B1,B2,H(λ) = Pr

[
POB1,B2

H (λ)
∣∣∣ b = 0

]
+ Pr

[
POB1,B2

H (λ)
∣∣∣ b = 1

]
− 1

= Pr
[
GameB1,B2

1 (λ)
]
− Pr

[
GameB1,B2

5 (λ)
]

≤
3∑
i=1

∣∣∣Pr
[
GameB1,B2

i (λ)
]
− Pr

[
GameB1,B2

i+1 (λ)
]∣∣∣

In the following we show that the distance between any two games is negligible.

Game1 to Game2. We construct a UCE adversary (S,D). Without loss of generality we assume that B1
outputs t many points (where t is some polynomial in λ) and can hence consider a source that always
works on t many keys. We consider (S,D) as

SHash(1λ)

(x, aux)←$B1(1λ)
for i = 1, . . . , t do

α[i]← Hash(x[i], i)
L← (α, aux)
return L

D(1λ,hk, L)

(α, aux)← L

for i = 1, . . . , t do
p[i]← (hk[i],α[i])

b′←$B2(p, aux)
return b′

In case Hash implements the actual hash function, then (S,D) simulate Game1 and in case Hash
implements a random function they simulate Game2. Thus, we have that

|Pr[Game1(λ)]− Pr[Game2(λ)]| ≤ Advuce
H,S,D(λ)

26

Game2 to Game3 to Game4. Before we consider the distance between games Game2 and Game3 we
will argue that games Game3 and Game4 are negligibly close. For this, note that the distributions on α
is identical in games Game3 and Game4 as for an injective function it is irrelevant of we sample from the
preimage space or from the image space. Thus we have that

Pr[Game3(λ)] = Pr[Game2(λ)] .

We can now bound the distance between games Game2 and Game3 again down to UCE. For this we
consider (S,D), where D is as before, but S now asks random queries (as in Game4).

SHash(1λ)

(x, aux)←$B1(1λ)
for i = 1, . . . , t do
x←$ {0, 1}|x[i]|

α[i]← Hash(, i)
L← (α, aux)
return L

D(1λ,hk, L)

(α, aux)← L

for i = 1, . . . , t do
p[i]← (hk[i],α[i])

b′←$B2(p, aux)
return b′

Now, the view given by (S,D) when Hash is implemented as a random function is exactly as in Game2
and in case it is implemented by the actual hash function Hash it is as in Game4 (which is thus an
identical view towards B2 as given in Game3.

This concludes the proof. �

Acknowledgments
We thank Victoria Fehr, Marc Fischlin, Peter Gaži, Felix Günther and Markulf Kohlweiss for helpful
comments on the presentation. Arno Mittelbach was supported by CASED (www.cased.de) and the
German Research Foundation (DFG) SPP 1736.

References
[ABG+13] Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark Zhandry. Differing-

inputs obfuscation and applications. Cryptology ePrint Archive, Report 2013/689, 2013.
http://eprint.iacr.org/2013/689. (Cited on page 9.)

[BC10] Nir Bitansky and Ran Canetti. On strong simulation and composable point obfuscation. In
Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in
Computer Science, pages 520–537, Santa Barbara, CA, USA, August 15–19, 2010. Springer,
Berlin, Germany. (Cited on page 11.)

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In Yehuda
Lindell, editor, TCC 2014: 11th Theory of Cryptography Conference, volume 8349 of Lecture
Notes in Computer Science, pages 52–73, San Diego, CA, USA, February 24–26, 2014.
Springer, Berlin, Germany. (Cited on pages 9, 19, 20, 21, and 32.)

[BFM14] Christina Brzuska, Pooya Farshim, and Arno Mittelbach. Indistinguishability obfuscation
and UCEs: The case of computationally unpredictable sources. In Juan A. Garay and Rosario
Gennaro, editors, Advances in Cryptology – CRYPTO 2014, Part I, volume 8616 of Lecture
Notes in Computer Science, pages 188–205, Santa Barbara, CA, USA, August 17–21, 2014.
Springer, Berlin, Germany. (Cited on pages 3, 6, 7, 13, 14, 16, and 24.)

27

www.cased.de
http://eprint.iacr.org/2013/689

[BFM15] Christina Brzuska, Pooya Farshim, and Arno Mittelbach. Random-oracle uninstantiability
from indistinguishability obfuscation. In Yevgeniy Dodis and Jesper Buus Nielsen, editors,
TCC 2015: 12th Theory of Cryptography Conference, Part II, volume 9015 of Lecture Notes
in Computer Science, pages 428–455, Warsaw, Poland, March 23–25, 2015. Springer, Berlin,
Germany. (Cited on pages 3 and 7.)

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian, editor,
Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science,
pages 1–18, Santa Barbara, CA, USA, August 19–23, 2001. Springer, Berlin, Germany. (Cited
on pages 8 and 9.)

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM, 59(2):6:1–6:48, May
2012. (Cited on page 8.)

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom
functions. In Hugo Krawczyk, editor, PKC 2014: 17th International Conference on Theory
and Practice of Public Key Cryptography, volume 8383 of Lecture Notes in Computer Science,
pages 501–519, Buenos Aires, Argentina, March 26–28, 2014. Springer, Berlin, Germany.
(Cited on page 12.)

[BH15] Mihir Bellare and Viet Tung Hoang. Resisting randomness subversion: Fast deterministic and
hedged public-key encryption in the standard model. In Elisabeth Oswald and Marc Fischlin,
editors, Advances in Cryptology – EUROCRYPT 2015, Part II, volume 9057 of Lecture Notes
in Computer Science, pages 627–656, Sofia, Bulgaria, April 26–30, 2015. Springer, Berlin,
Germany. (Cited on pages 3, 6, 7, and 17.)

[BHK13a] Mihir Bellare, Viet Tung Hoang, and Sriram Keelveedhi. Instantiating random oracles via
UCEs. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013,
Part II, volume 8043 of Lecture Notes in Computer Science, pages 398–415, Santa Barbara,
CA, USA, August 18–22, 2013. Springer, Berlin, Germany. (Cited on pages 3, 4, 12, 13, 14, 19,
and 24.)

[BHK13b] Mihir Bellare, Viet Tung Hoang, and Sriram Keelveedhi. Instantiating random oracles via
UCEs. Cryptology ePrint Archive, Report 2013/424, 2013. http://eprint.iacr.org/2013/
424. (Cited on pages 3, 4, 6, 13, 14, 15, 17, and 24.)

[BHK14] Mihir Bellare, Viet Tung Hoang, and Sriram Keelveedhi. Cryptography from compression
functions: The UCE bridge to the ROM. In Juan A. Garay and Rosario Gennaro, editors,
Advances in Cryptology – CRYPTO 2014, Part I, volume 8616 of Lecture Notes in Computer
Science, pages 169–187, Santa Barbara, CA, USA, August 17–21, 2014. Springer, Berlin,
Germany. (Cited on page 4.)

[BKR13] Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. Message-locked encryption and
secure deduplication. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in
Cryptology – EUROCRYPT 2013, volume 7881 of Lecture Notes in Computer Science, pages
296–312, Athens, Greece, May 26–30, 2013. Springer, Berlin, Germany. (Cited on page 4.)

[BM14a] Christina Brzuska and Arno Mittelbach. Indistinguishability obfuscation versus multi-bit
point obfuscation with auxiliary input. In Palash Sarkar and Tetsu Iwata, editors, Advances

28

http://eprint.iacr.org/2013/424
http://eprint.iacr.org/2013/424

in Cryptology – ASIACRYPT 2014, Part II, volume 8874 of Lecture Notes in Computer
Science, pages 142–161, Kaoshiung, Taiwan, R.O.C., December 7–11, 2014. Springer, Berlin,
Germany. (Cited on pages 5, 11, and 25.)

[BM14b] Christina Brzuska and Arno Mittelbach. Using indistinguishability obfuscation via UCEs. In
Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology – ASIACRYPT 2014, Part
II, volume 8874 of Lecture Notes in Computer Science, pages 122–141, Kaoshiung, Taiwan,
R.O.C., December 7–11, 2014. Springer, Berlin, Germany. (Cited on pages 4, 5, 6, 7, 12, 13, 14, 16,
17, 18, and 33.)

[BP12] Nir Bitansky and Omer Paneth. Point obfuscation and 3-round zero-knowledge. In Ronald
Cramer, editor, TCC 2012: 9th Theory of Cryptography Conference, volume 7194 of Lecture
Notes in Computer Science, pages 190–208, Taormina, Sicily, Italy, March 19–21, 2012.
Springer, Berlin, Germany. (Cited on page 10.)

[BP13] Elette Boyle and Rafael Pass. Limits of extractability assumptions with distributional
auxiliary input. Cryptology ePrint Archive, Report 2013/703, 2013. http://eprint.iacr.
org/2013/703. (Cited on page 9.)

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In V. Ashby, editor, ACM CCS 93: 1st Conference on Computer and
Communications Security, pages 62–73, Fairfax, Virginia, USA, November 3–5, 1993. ACM
Press. (Cited on page 6.)

[BRS03] John Black, Phillip Rogaway, and Thomas Shrimpton. Encryption-scheme security in the
presence of key-dependent messages. In Kaisa Nyberg and Howard M. Heys, editors, SAC
2002: 9th Annual International Workshop on Selected Areas in Cryptography, volume 2595
of Lecture Notes in Computer Science, pages 62–75, St. John’s, Newfoundland, Canada,
August 15–16, 2003. Springer, Berlin, Germany. (Cited on page 6.)

[BST14] Mihir Bellare, Igors Stepanovs, and Stefano Tessaro. Poly-many hardcore bits for any one-way
function and a framework for differing-inputs obfuscation. In Palash Sarkar and Tetsu Iwata,
editors, Advances in Cryptology – ASIACRYPT 2014, Part II, volume 8874 of Lecture Notes
in Computer Science, pages 102–121, Kaoshiung, Taiwan, R.O.C., December 7–11, 2014.
Springer, Berlin, Germany. (Cited on page 8.)

[BST15] Mihir Bellare, Igors Stepanovs, and Stefano Tessaro. Contention in cryptoland: Obfuscation,
leakage and UCE. Cryptology ePrint Archive, Report 2015/487, 2015. http://eprint.iacr.
org/. (Cited on pages 5 and 7.)

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications.
In Kazue Sako and Palash Sarkar, editors, Advances in Cryptology – ASIACRYPT 2013,
Part II, volume 8270 of Lecture Notes in Computer Science, pages 280–300, Bengalore, India,
December 1–5, 2013. Springer, Berlin, Germany. (Cited on pages 11 and 12.)

[Can97] Ran Canetti. Towards realizing random oracles: Hash functions that hide all partial
information. In Burton S. Kaliski Jr., editor, Advances in Cryptology – CRYPTO’97, volume
1294 of Lecture Notes in Computer Science, pages 455–469, Santa Barbara, CA, USA,
August 17–21, 1997. Springer, Berlin, Germany. (Cited on pages 10 and 11.)

29

http://eprint.iacr.org/2013/703
http://eprint.iacr.org/2013/703
http://eprint.iacr.org/
http://eprint.iacr.org/

[CD08] Ran Canetti and Ronny Ramzi Dakdouk. Obfuscating point functions with multibit output.
In Nigel P. Smart, editor, Advances in Cryptology – EUROCRYPT 2008, volume 4965 of
Lecture Notes in Computer Science, pages 489–508, Istanbul, Turkey, April 13–17, 2008.
Springer, Berlin, Germany. (Cited on page 25.)

[DAB+02] John R. Douceur, Atul Adya, William J. Bolosky, Dan Simon, and Marvin Theimer. Re-
claiming space from duplicate files in a serverless distributed file system. In ICDCS, pages
617–624, 2002. (Cited on page 4.)

[DGG+15] Yevgeniy Dodis, Chaya Ganesh, Alexander Golovnev, Ari Juels, and Thomas Ristenpart.
A formal treatment of backdoored pseudorandom generators. In Elisabeth Oswald and
Marc Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015, Part I, volume 9056
of Lecture Notes in Computer Science, pages 101–126, Sofia, Bulgaria, April 26–30, 2015.
Springer, Berlin, Germany. (Cited on pages 3 and 6.)

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In 54th
Annual Symposium on Foundations of Computer Science, pages 40–49, Berkeley, CA, USA,
October 26–29, 2013. IEEE Computer Society Press. (Cited on page 9.)

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions
(extended abstract). In 25th Annual Symposium on Foundations of Computer Science, pages
464–479, Singer Island, Florida, October 24–26, 1984. IEEE Computer Society Press. (Cited
on page 12.)

[GR07] Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. In Salil P. Vadhan,
editor, TCC 2007: 4th Theory of Cryptography Conference, volume 4392 of Lecture Notes
in Computer Science, pages 194–213, Amsterdam, The Netherlands, February 21–24, 2007.
Springer, Berlin, Germany. (Cited on pages 3, 7, and 24.)

[GR14] Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. Journal of Cryptology,
27(3):480–505, July 2014. (Cited on page 7.)

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Dele-
gatable pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Virgil D. Gligor,
and Moti Yung, editors, ACM CCS 13: 20th Conference on Computer and Communications
Security, pages 669–684, Berlin, Germany, November 4–8, 2013. ACM Press. (Cited on page 12.)

[LPS04] Ben Lynn, Manoj Prabhakaran, and Amit Sahai. Positive results and techniques for
obfuscation. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology
– EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 20–39,
Interlaken, Switzerland, May 2–6, 2004. Springer, Berlin, Germany. (Cited on pages 6 and 24.)

[MH14a] Takahiro Matsuda and Goichiro Hanaoka. Chosen ciphertext security via point obfuscation.
In Yehuda Lindell, editor, TCC 2014: 11th Theory of Cryptography Conference, volume 8349
of Lecture Notes in Computer Science, pages 95–120, San Diego, CA, USA, February 24–26,
2014. Springer, Berlin, Germany. (Cited on page 11.)

[MH14b] Takahiro Matsuda and Goichiro Hanaoka. Chosen ciphertext security via UCE. In Hugo
Krawczyk, editor, PKC 2014: 17th International Conference on Theory and Practice of
Public Key Cryptography, volume 8383 of Lecture Notes in Computer Science, pages 56–76,

30

Buenos Aires, Argentina, March 26–28, 2014. Springer, Berlin, Germany. (Cited on pages 3, 6,
and 17.)

[Mit14] Arno Mittelbach. Salvaging indifferentiability in a multi-stage setting. In Phong Q. Nguyen
and Elisabeth Oswald, editors, Advances in Cryptology – EUROCRYPT 2014, volume 8441
of Lecture Notes in Computer Science, pages 603–621, Copenhagen, Denmark, May 11–15,
2014. Springer, Berlin, Germany. (Cited on pages 4, 14, and 19.)

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, 46th Annual ACM Symposium on Theory
of Computing, pages 475–484, New York, NY, USA, May 31 – June 3, 2014. ACM Press.
(Cited on page 11.)

A Gamehop Analysis for Theorem 5.1
In this Section we present a detailed analysis of the individual game hops within the proof of Theorem 5.1.

Analysis of game hops. In Game5 we have reached the target setting, i.e., the UCE-game with the
hidden bit set to 0 while Game1 denotes the real UCE-game with the hidden bit set to 1. That is, the
Hash oracle answers with randomly chosen values independent of the hash key. Further note, that C4
and C1 are identical, that is they are as in the construction. Thus, we can write the advantage of an
adversary (S,D) in the UCE-security game as

Advuce
S,D,H(λ) = Pr

[
UCES,D

H (λ)
∣∣∣ b = 1

]
+ Pr

[
UCES,D

H (λ)
∣∣∣ b = 0

]
− 1

= Pr
[
GameS,D

1 (λ)
]
− Pr

[
GameS,D

5 (λ)
]

≤
4∑
i=1

∣∣∣Pr
[
GameS,D

i (λ)
]
− Pr

[
GameS,D

i+1(λ)
]∣∣∣

In the following we show that the individual games are negligibly close. In Figure 4 we present the
reduction target for each of the game hops above the pseudocode for each game.

Game1(λ) to Game2(λ). In order to reduce to the security of the indistinguishability obfuscator iO, we
show that, by construction, the circuits C1[k] and C2[k∗, P0, P1] compute the same function. If p(x) = ⊥,
then C2[k∗, P0, P1] returns G.Eval(k∗, x). If p(x) = 1 for some p ∈ Pd then d is returned. Note that
in this case p was placed in Pd only if G.Eval(k, x) = d. Hence, on all inputs x, C2[k∗, P0, P1] returns
G.Eval(k, x) and so does C1[k]. Having established the functional equivalence between the two circuit we
can bound the difference between games Game1 and Game2 by the distinguishing advantage against the
indistinguishability obfuscator iO. We now formalize this intuition.

We consider a circuit sampler Sam which runs the steps of Game2 up to and including line 7. Sampler
Sam then outputs (the functionally equivalent) circuits C1[k] and C2[k∗, P0, P1] and auxiliary information
aux ← L. Obfuscation distinguisher Dist gets as input aux and an obfuscated circuit C which is either
an obfuscation of C1[k] or of C2[k∗, P0, P1]. It sets hk← C, L← aux and runs D(1λ, hk, L). It outputs
whatever D outputs.

If C = C1[k] then adversaries (Sam,Dist) perfectly simulate game Game1(λ) and if C = C2[k∗, P0, P1]
then the adversaries simulate Game2(λ). Thus, we can rewrite the difference between the two games’
distributions

|Pr[Game1(λ)]− Pr[Game2(λ)]| ≤ Advio
iO,Sam,Dist(λ)

31

Game2(λ) to Game3(λ). We reduce the difference between Game2 and Game3 to the security of the
puncturable PRF G. We define an adversary (A1,A2) against the puncturable PRF as follows. Adversary
A1 runs source S(1λ) on the security parameter answering its queries to Hash with its own oracle
challenge. It records the queries of S in sets X∗0 and X∗1 (as in procedure Hash) storing queries that were
answered with a 0 in X∗0 and queries that were answered with 1 in X∗1 . When S stops it records leakage
L. It then executes lines 4 to (but not including) line 7. It then stops and outputs state← (L,P0, P1).
Adversary A2 is then run on input state and the punctured key k∗. It parses (L,P0, P1) ← state
and constructs circuit C2[k∗, P0, P1]. It sets hk←$ iO(C2[k∗, P0, P1]) and runs distinguisher D on input
(1λ, hk, L). It outputs whatever D outputs.

If the challenge oracle answers honestly using the puncturable PRF G then adversary (A1,A2)
perfectly simulates Game2 and otherwise it perfectly simulates Game3. Thus, we have that

Pr[Game2(λ)]− Pr[Game3(λ)] ≤ Advpprf
G,A1,A2

(λ)

which by the security of the puncturable PRF G is negligible.

Game3(λ) to Game4(λ). As circuits C2[k∗, P0, P1] and C3[k, P0, P1] use key k (resp. k∗) only on values
x /∈ X∗0 ∪X∗1 the two circuits are functionally equivalent. An analogous analysis as from Game1 to Game2
hence yields that

|Pr[Game3(λ)]− Pr[Game4(λ)]| ≤ Advio
iO,Sam,Dist(λ)

Game4(λ) to Game5(λ). By construction, the circuits C3[k, P0, P1] and C4[k] only differ on points
x ∈ X∗0 ∪X∗1 . We will bound the difference between games Game4 and Game5 by the differing-inputs
security of the indistinguishability obfuscator iO. For this, we build on a result by Boyle, Chung and
Pass (given as Theorem 2.4) who show that any indistinguishability obfuscator is also a differing-inputs
obfuscator for differing-inputs circuits which differ on at most polynomially many points [BCP14]. As
explained above, our circuits can differ only on points x ∈ X∗0 ∪X∗1 with |X∗0 ∪X∗1 | ∈ poly and hence we
can apply their theorem.

In order to argue with the security property of differing-inputs obfuscation, we need to present
a differing-inputs circuit sampler Sam generating circuits (C3[k, P0, P1], C4[k]). For this we consider
Sam that runs the same steps as game Game4 up-to line 7 and which sets aux ← L and outputs
(C3[k, P0, P1], C4[k], aux).

Claim 1 If AIPO is a secure composable AIPO[Dsup] obfuscator (see Definition 2.6), then Sam is a
differing-inputs circuit sampler which outputs circuits that differ on at most q many points.

Before proving Claim 1, we show how to use it to prove that the difference between Game4(λ) and
Game5(λ) is small. Theorem 2.4 by Boyle et al. [BCP14] says that, if a family is differing-inputs
and only differs on at most polynomially many points, then their indistinguishability obfuscations
are indistinguishable. Claim 1 establishes that the family Sam is a differing-inputs sampler, and we
already observed that circuits C3[k, P0, P1] and C4[k] only differ on polynomially many points. Hence,
Theorem 2.4 allows us to do an analysis similar to the one from the first game hop and we get that

|Pr[Game4(λ)]− Pr[Game5(λ)]| ≤ Advio
iO,Sam,Dist(λ) + [BCP14] ≤ negl(λ)

We now proceed to proving Claim 1. Assume there exists an adversary (i.e., an extractor) Ext against
the differing-inputs sample Sam. Then, intuitively, if Ext succeeds to find some target value τ this should

32

help in breaking the obfuscation scheme AIPO since there must be one obfuscation p ∈ P0 ∪P1 such that
p(τ) = 1. Let us now make this intuition formal.

We construct adversary (B1,B2) where B1 describes a statistically unpredictable distribution. On
input the security parameter, B1 runs the steps of Game4 up-to line 4. It constructs a sequence of points
X which first contains all points from X∗0 and then all the points from X∗1 . It sets j ← |X0|, that is,
j is set to the number of points that were answered with 0. Adversary B2 chooses an index `←$ [|X|]
at random, samples a uniformly random value r←$ {0, 1}H.il(λ) and sets b := 〈r,X[`]〉. It then sets
aux ← (`, j, r, b, L) and outputs (X, aux).

Adversary B2 gets as input the security parameter, auxiliary input (`, j, r, b, L)← aux and a list of
obfuscations p which either contains point obfuscations for points in X or for randomly generated points.
Adversary B2 then constructs sets P0 and P1 as

P0, P1 ← {}
for i = 1, . . . , |p| do

if i ≤ j then
P0 ← P0 ∪{p[i]}

else P1 ← P1 ∪{p[i]}

Adversary B2 then samples a random key k←$G.KGen(λ) and constructs circuits C3[k, P0, P1] and C4[k].
Adversary B2 then calls Ext on input (C3[k, P0, P1], C4[k], L) to receive a value τ . If Ext outputs τ = ⊥,

then B2 flips a bit and returns the outcome of the bitflip. Else, if τ is such that C3[k, P0, P1](τ) 6= C4[k](τ)
but p[`](τ) 6= 1 then B2 also flips a bit and returns the outcome of the bitflip. Finally, if p[`](τ) = 1
then B2 outputs 1 if 〈r, τ〉 equals b and 0 otherwise.

If p is an obfuscation of the points in X and Ext outputs τ such that p[`](τ) = 1 then B2 will output
1 with probability 1. If, on the other hand, p is a sequence of obfuscations of random points and Ext
outputs τ such that p[`](τ) = 1 then B will only output 1 with probability 1

2 (since Pr[〈u, r〉 = b] = 1
2

for a random point u). A formal analysis is analogous to the analysis conducted in [BM14b] with an
additional loss of factor 1

q for guessing the right index `.
To finish the proof of Claim 1, we need to argue that B1 implements a statistically unpredictable

distribution. By assumption, the source S is statistically unpredictable (i.e., S ∈ Ssup) and hence leakage
L hides X. Thus, to see that B1 defines an unpredictable distribution, we need to argue that X remains
unpredictable if additionally given (`, j, r, b). But a single bit b and two indexes `, j ∈ [q] can be guessed
with probability 1

2q2 and r is a uniformly random value. Hence, (B1,B2) breaks the security of the AIPO
obfuscation, which concludes the proof of Claim 1 and the proof of Theorem 5.1.

33

	Introduction
	Preliminaries
	Obfuscation
	General Purpose Obfuscation
	Point Obfuscation

	Puncturable PRFs

	Universal Computational Extractors (UCE)
	The Status Quo
	UCE Constructions
	Bitwise UCEs

	From Strong Unpredictability to (Plain) Unpredictability
	Constructing q-Query UCE[Ssup] Secure Functions
	The BM Construction
	Extending the BM Construction

	Multi-key UCEs
	The Superfluous Padding Assumption (SuPA)
	The Superfluous Padding Assumption
	Applying the SuP Assumption
	On the Validity of the Superfluous Padding Assumption

	Point Obfuscation from UCEs
	Gamehop Analysis for Theorem 5.1

