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Abstract. This paper proposes a compact and efficient GF (28) inver-
sion circuit design based on a combination of non-redundant and redun-
dant Galois Field (GF) arithmetic. The proposed design utilizes redun-
dant GF representations, called Polynomial Ring Representation (PRR)
and Redundantly Represented Basis (RRB), to implement GF (28) in-
version using a tower field GF ((24)2). In addition to the redundant rep-
resentations, we introduce a specific normal basis that makes it pos-
sible to map the former components for the 16th and 17th powers of
input onto logic gates in an efficient manner. The latter components
for GF (24) inversion and GF (24) multiplication are then implemented
by PRR and RRB, respectively. The flexibility of the redundant rep-
resentations provides efficient mappings from/to the GF (28). This pa-
per also evaluates the efficacy of the proposed circuit by means of gate
counts and logic synthesis with a 65 nm CMOS standard cell library and
comparisons with conventional circuits, including those with tower fields
GF (((22)2)2). Consequently, we show that the proposed circuit achieves
approximately 40% higher efficiency in terms of area-time product than
the conventional best GF (((22)2)2) circuit excluding isomorphic map-
pings. We also demonstrate that the proposed circuit achieves the best
efficiency (i.e., area-time product) for an AES encryption S-Box circuit
including isomorphic mappings.

Keywords: Compact hardware implementation, GF (28) inversion, S-
Box, AES.

1 Introduction

The substitution function, sometimes defined as arithmetic functions overGF (2m),
is one of the most important parts of the Substitution Permutation Network
(SPN) and Feistel structures. Inversion functions, in particular, play an es-
sential role in modern ciphers. Many ISO/IEC standard ciphers, such as AES
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and Camellia, employ an inversion function over GF (28) in substitution func-
tions [1,9]. For example, SubBytes of AES consists of an inversion over GF (28)
(i.e., S-Box) and an affine transformation over GF (2). The hardware perfor-
mance of such ciphers heavily depends on the inversion circuits used. As a result
of the explosive increase in resource-constrained devices in the context of In-
ternet of Things (IoT) applications, there is currently substantial demand for
lightweight implementation of inversion functions.

Many approaches to reducing the hardware cost of GF (28) inversion circuits
have been proposed. Among them, the tower field approach, which calculates a−1

(= a254) (a ∈ GF (28)) using the equivalent tower field, is a promising approach
for achieving the compact implementation. This technique converts the original
field GF (28) into a tower field, such as GF (((22)2)2) and GF ((24)2), in the
middle of the inversion. Researchers have previously shown that the tower field
approach is efficient because the subfields GF ((22)2) and GF (24) operations are
designed more compactly than the original field operations. Satoh and Morioka
[14] were the first to present a compact implementation of the AES S-Box by
the tower field GF (((22)2)2) represented by Polynomial Bases (PB). Canright
[3] further reduced the gate count of the AES S-Box by using Normal Bases
(NB) and optimizing the isomorphic mappings. Canright’s implementation was
the smallest for a long time. Nogami et al. [11] recently mixed polynomial and
normal bases to achieve the most efficient implementation. They showed that
the product of gate count and critical delay for the inversion circuit could be
reduced by the Mixed Bases (MB). Some implementations using GF ((24)2) have
also been proposed by researchers such as Rudra et al. [13] and Jeon et al.
[8], who presented PB-based GF ((24)2) inversion circuit designs. These results
suggest that such field representations have a significant impact on hardware
performance.

The above bases (i.e., PB, NB, and MB) represent each element of GF (2m)
using m bits in a non-redundant manner. However, there are two redundant rep-
resentations, namely, Polynomial Ring Representation (PRR) and Redundantly
Represented Basis (RRB), which use n (> m) bits to represent each element of
GF (2m). The modular polynomial of these redundant representations is given
by an n-degree reducible polynomial, whereas that of non-redundant representa-
tions is given by an m-degree irreducible polynomial. This means that redundant
representations provide a wider variety of polynomials that can be selected as
a modular polynomial than non-redundant representations. Drolet [5] showed
that the use of PRR makes it possible to select a binomial xn + 1 as a modular
polynomial, which can lead to the design of small-complexity arithmetic circuits.
Wu et al. [16] and Nekado et al. [10] showed that RRB-based designs were useful
for designing efficient inversion circuits.

This paper presents a technique in which non-redundant and redundant GF
arithmetic are combined to achieve a compact and efficient GF (28) inversion
circuit design. The key idea underlying the proposed circuit is calculation of the
inversion of the tower field GF ((24)2) by the NB, PRR, and RRB combination.
The former part for the 16th and 17th powers of the input is calculated by an
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NB with a symmetric property. This is followed by calculation of the latter parts
for GF (24) inversion and GF (24) multiplication by PRR and RRB, respectively.
The mapping from NB to PRR/RRB is efficiently implemented by the symmetric
property of the NB. The efficacy of the proposed circuit is evaluated by means
of gate counts and logic synthesis results using a TSMC 65 nm CMOS stan-
dard cell library. The proposed circuit is approximately 19% higher efficiency
(i.e., area-time product) excluding isomorphic mappings than any other conven-
tional circuits, including those with the tower field GF (((22)2)2). In addition,
the flexibility of redundant representations in the proposed circuit enables it to
have the best efficiency even including isomorphic mappings from/to GF (28).
To the best of our knowledge, the proposed circuit is the most efficient tower
field arithmetic-based implementation for the AES encryption S-Box.

The remainder of this paper is organized as follows. Section 2 introduces
preliminary and related work associated with the design of GF (28) inversion
circuits. The redundant GF representations introduced in the proposed circuit
are also described. Section 3 presents the proposed GF (28) inversion circuit.
Section 4 evaluates the proposed circuit by comparing the results of gate count
and logic synthesis with those from conventional circuits. Section 5 presents
the AES S-Box design that incorporates the proposed inversion circuit and its
isomorphic mappings. Finally, Section 6 presents concluding remarks.

2 Preliminaries and related works

2.1 Inversion circuits by tower fields

This section briefly describes previous work on the design of GF (28) inversion
circuits based on tower field arithmetic. The inverse element of a non zero
a ∈ GF (28) is given by a−1 = a254 because any non zero element of GF (28)
satisfies a = a256. (The inverse element of zero is usually defined to be zero.)
The basic idea underlying the tower field approach is reduction of hardware cost
by exploiting smaller arithmetic operations over subfield GF ((22)2) or GF (24)
instead of GF (28). There is a one-to-one mapping (i.e., an isomorphism) between
the elements of GF (28) and those of the tower field. This GF inversion over a
tower field is efficiently implemented in the Itoh-Tsujii Algorithm (ITA) [7].

Figure 1 illustrates a GF (28) inversion circuit presented in [3], where the
datapath is divided into upper and lower 4 bits and each component denotes
an arithmetic circuit over subfield GF ((22)2). Let a ∈ GF (((22)2)2) be the
input given by hα16 + lα in an NB {α16, α}, where h and l (∈ GF ((22)2))
are respectively the upper and lower 4 bits of a, and α is a root of a second
degree irreducible polynomial over GF ((22)2) (i.e., a modular polynomial for
extending GF ((22)2) to GF (((22)2)2)). The inversion of a is calculated in the
following three stages: (1) Calculation of the 16th and 17th powers, (2) Subfield
inversion, and (3) Final multiplication. Note that the above GF ((22)2) operators
are replaced with the GF (24) operators in the case of the tower field GF ((24)2).

The performance of this inversion circuit depends on the tower field and its
basis representation. Three of the best known circuit structures are based on
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Fig. 1. Inversion circuit over GF (((22)2)2) in [3].

the tower field of GF (((22)2)2). Satoh and Morioka first designed this kind of
GF (((22)2)2) inversion circuit using PB [14]. Canright then designed a more
compact circuit based on NB [3]. The hardware cost of inversion and expo-
nentiation operations can be reduced by NB because the squaring operation is
performed solely by wiring. Nogami et al. presented the possibility of MB, which
employs both polynomial and normal bases for the input and output data, re-
spectively [11]. Their method exhibited improved performance in the product of
gate count and critical delay for the GF (((22)2)2) inversion circuit and the AES
S-Box, including isomorphic mappings. In addition to GF (((22)2)2), it is possi-
ble to design efficient inversion circuits using another tower field of GF ((24)2).
Rudra et al. [13] and Jeon et al. [8] designed GF ((24)2) inversion circuits based
on PB with smaller critical delay than those of GF (((22)2)2) inversion circuits.

2.2 Redundant representations for Galois fields

Polynomial Ring Representation (PRR) is a redundant representation of
GF [5] An extension field GF (2m) based on a PB has a set of elements (i.e.,
polynomials) whose degrees are at most m−1 (i.e., m bits). Elements of an NB-
based GF (2m) are also represented by m bits. On the other hand, an extension
field GF (2m) based on PRR has a set of polynomials whose degrees are up to
n − 1 (i.e., n bits), where n > m [5]. In other words, whereas a PB- or an
NB-based GF (2m) is defined as an m-dimensional linear space over GF (2), a
PRR-basedGF (2m) is defined as anm-dimensional subspace of an n-dimensional
linear space. PRR is also equivalent to Cyclic Redundancy Code (CRC), a kind
of error-correction code.

Let x and H(x) be an indeterminate element and an irreducible polynomial
over GF (2), respectively. Let G(x) be a polynomial of degree n−m, which is rel-
atively prime to H(x), and is satisfied with G(0) �= 0. Let P (x) be a polynomial
(of degree n) given by the product of G(x) and H(x). A set of polynomials of
degrees less than or equal to n− 1, where each polynomial is divisible by G(x),
together with modulo P (x) arithmetic is isomorphic to GF (2m). Note here that
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Table 1. Example of correspondence between PB- and PRR-based GF (24).

PB where β4 + β3 + β2 + β + 1 = 0 PRR where P (x) = x5 + 1

Polynomial Binary vector form Polynomial Binary vector form

0 0000 0 00000

1 0001 x4 + x3 + x2 + x 11110

β2 + β 0110 x2 + x 00110

β3 + β + 1 1011 x4 + x2 10100

β2 0100 x4 + x3 + x+ 1 11011

β2 + β + 1 0111 x4 + x3 11000

β3 + β2 + 1 1101 x4 + x 10010

β3 + β2 + β + 1 1111 x3 + x2 + x+ 1 01111

β + 1 0011 x+ 1 00011

β3 + β 1010 x3 + x 01010

β 0010 x4 + x3 + x2 + 1 11101

β3 + β2 1100 x3 + x2 01100

β3 + 1 1001 x3 + 1 01001

β3 1000 x4 + x2 + x+ 1 10111

β3 + β2 + β 1110 x4 + 1 10001

β2 + 1 0101 x2 + 1 00101

n = m + degG(x). The representation of GF (2m) using such a residue ring
is called PRR. A PRR can be constructed from any PB-based GF (2m). (See
Appendix for a construction method and corresponding example.)

Table 1 shows an example of elements for a PB-based GF (24) and a con-
structed PRR-based GF (24), where β and x are the indeterminate elements
of PB and PRR, respectively. Note that whereas the PB-based GF (24) repre-
sents elements by at most third degree polynomials (i.e., 4 bits), the PRR-based
GF (24) represents elements by up to the fourth degree polynomial (i.e., 5 bits).
It is known that the performance of the GF circuit generally improves as the
number of terms in the modular polynomial decreases [17]. Here, a binomial
xn + 1 is available for the modular polynomial of PPR-based GF (2m), whereas
it is unavailable for GFs based on non-redundant representations. This is be-
cause the modular polynomial P (x) is given by a reducible polynomial (i.e.,
G(x)×H(x)). Thus, the performance of PRR-based GF arithmetic circuits can
be better than those of PB- and NB-based arithmetic circuits. For example, we
can use xm+1 + 1 for P (x) if the m-th degree All One Polynomial (AOP) is
irreducible according to the following formula over GF (2):

xm+1 + 1 = (x + 1)(xm + xm−1 + · · ·+ 1), (1)

where the polynomial xm + xm−1 + · · ·+ 1 is called the m-th degree AOP.

The major advantages of using the binomial are as follows: (i) Parallel mul-
tiplication can be given as the discrete time Wiener-Hopf equation, and (ii)
Squaring and a part of constant multiplication are performed only by bitwise
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permutation (i.e., wiring). This suggests that the PRR-based design can be more
efficient than conventional designs.

Redundantly Represented Basis (RRB) is another redundant represen-
tation of GF [10]. Each element is represented by a root of an m-th degree
irreducible polynomial, similarly to PB and NB.

RRB is available when the m-th degree AOP is irreducible. Let β be a root of
the AOP. The m elements (i.e., bases) βm−1, βm−2, . . . , and β0 are linearly inde-
pendent and then compose a PB. In contrast, RRB employs a binomial βm+1−1
as the modular polynomial, which is satisfied with the following equation:

βm+1 − 1 = (β + 1)(βm + βm−1 + · · ·+ 1) = 0. (2)

The set {βm, βm−1, . . . , β0} is called RRB. Because the degree of the binomial
is m + 1, each element is represented by a linear combination of βm, βm−1, . . .
and β0. Note that the elements of such an RRB-based GF (2m) are represented
in a non-unique manner because βm, βm−1, . . . and β0 are linearly dependent3.

RRB-based GF (2m) squaring can be performed by bitwise permutation, as is
the case with NB. This is because RRB is equivalent to an extended (Type-I) Op-
timal Normal Basis (ONB). We can derive RRB by adding a base {1} (= {β0})
to ONB. This means that an efficient multiplication method for ONB, called the
Cyclic Vector Multiplication Algorithm (CVMA) [12], is also available for RRB.
Thus, we can design more compact and efficient multipliers by combining RRB
and CVMA. As an example, let us consider a GF (24) multiplier based on RRB.
Let s and t (∈ GF (24)) be the inputs and u (∈ GF (24)) be the output. Let β be
a root of the fourth degree AOP. In RRB, s is given by s4β

4 + s3β
3 + · · ·+ s0,

where s0, s1, . . . , and s4 ∈ GF (2). (t and u are also given in the same manner.)
The multiplication is represented by

u = s× t = u4β
4 + u3β

3 + u2β
2 + u1β + u0, (3)

where

u0 = (s1 + s4)(t1 + t4) + (s2 + s3)(t2 + t3), (4)

u1 = (s0 + s1)(t0 + t1) + (s2 + s4)(t2 + t4), (5)

u2 = (s0 + s2)(t0 + t2) + (s3 + s4)(t3 + t4), (6)

u3 = (s0 + s3)(t0 + t3) + (s1 + s2)(t1 + t2), (7)

u4 = (s0 + s4)(t0 + t4) + (s1 + s3)(t1 + t3). (8)

The critical delay of such an RRB-based multiplier is TA+2TX, while those of
multipliers based on non-redundant representations are TA+3TX [10]. The gate
count of the RRB-based multiplier requires only 10 AND and 25 XOR gates [10],
whereas that of a PRR-based multiplier requires 25 AND and 20 XOR gates [5].
Nekado et al. [10] designed a more efficient GF ((24)2) inversion circuit based on
RRB by utilizing the above advantage.
3 The elements of PRR-based GF (2m) is represented uniquely—a typical difference
between PRR and RRB.
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Fig. 2. Proposed inversion circuit.

3 Proposed GF (28) inversion circuit

This section presents our proposed GF (28) inversion circuit that takes full ad-
vantage of the above redundant GF arithmetic. The important ideas are to em-
ploy the tower field GF ((24)2) inside the circuit and perform the subfield (i.e.,
GF (24)) operations using redundant GF arithmetic. We introduce PRR for the
GF (24) inversion because we can exploit a modular polynomial, P (x) = x5 + 1,
thanks to the irreducible fourth degree AOP. We also introduce RRB for the
GF (24) multiplication. In addition, we employ an NB for the input in order to
exploit the Frobenius mapping feature, which performs the 16th power of input
solely by wiring.

In accordance with ITA, our inversion circuit consists of three stages, as
shown in Fig. 1. Here, we represent the inputs of Stages 1, 2, and 3 by NB, PRR,
and RRB, respectively. In particular, we employ an NB that has a symmetric
property, which makes it possible to convert the elements from NB to PRR
without increasing the circuit delay.

Figure 2 shows a block diagram of our proposed circuit, where components
H,L, and F respectively calculateHi,j , Li,j , and Fi′,j′ described in the following.
When input a is represented by hα16+ lα, components NBtoRRB convert h and
l from NB to RRB solely by wiring. Note that H and L are shared with Stages
1 and 3. The stages in the proposed circuit are designed as follows:

1. Calculation of the 16th and 17th powers.

Stage 1 performs the 16th and 17th powers of input, where input a is given
by NB, and outputs a16 and a17 are given by RRB and PRR, respectively. Let α
be a root of a second degree irreducible polynomial over GF (24). The irreducible
polynomial is given by α2 +μα+ ν, where μ and ν are the constants of GF (24).
When input a is represented by a = hα16 + lα in an NB {α16, α}, a16 and a17

are respectively given by

a16 = lα16 + hα, (9)

a17 = hlμ2 + (h+ l)2ν. (10)
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Eq. (9) indicates that a16 is performed by twisting wires.
The isomorphic mapping from NB to RRB does not require any additional

gates because the NB (e.g., {β4, β3, β2, β1}) can be considered as a reduced ver-
sion of RRB (e.g., {β4, β3, β2, β1, β0}) with the same root of the 4th degree AOP.
Conversely, the isomorphic mapping from NB to PRR requires some gates. How-
ever, the symmetric property of the NB used in our circuit provides a mapping
that does not increase the circuit delay.

Let us now look at the isomorphic mapping from NB to PRR. Here, an
isomorphic mapping is represented by z′ = Γ (z), where an element z in one GF
representation is converted into an element z′ in another GF representation. In
the binary vector form, the output z′ is obtained from the product of a conversion
matrix γ and the transposed input (i.e., z′ = γzT ) when the conversion matrix γ
represents the isomorphism Γ . The PRR-basedGF (24) is given with the modular
polynomial P (x) = x5 + 1 (G(x) = x+1 and H(x) = x4 + x3 + x2 + x+ 1) and
the conversion matrix from NB to PRR is as follows:

φ =

⎛
⎜⎜⎜⎜⎝

1 1 1 1
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞
⎟⎟⎟⎟⎠

, (11)

where the least significant bits are in the upper left corner. (See Appendix for an
explanation of how to obtain the matrix.) Let d (= d4x

4+d3x
3+ · · ·+d0) be the

output of Stage 1 (i.e., the 17th power of input in PRR), where d0, d1, . . . , and d4
are the elements of GF (2). The output is provided by applying the isomorphism
Φ from NB to PRR to a17 (i.e., the product of the conversion matrix φ and the
transposed vector form of a17). However, the multiplication of φ and the output
of Eq. (10) requires an additional circuit with 2TX delay if the multiplication is
performed explicitly. To avoid such additional circuit, we derive another output
equation from Eq. (10) as follows:

d = Φ(hlμ2 + (h+ l)2ν)

= Φ(μ2(hl)) + Φ(ν((h+ l)2))

= Φ′(hl) + Φ′′((h+ l)2), (12)

where Φ′ and Φ′′ are the linear functions obtained by merging Φ with the constant
multiplications of μ2 and ν, respectively. Note that constant multiplications over
GF can also be given as linear functions represented by conversion matrices.
When μ = β4 + β and ν = β, the resulting matrices φ′ and φ′′ representing
respectively Φ′ and Φ′′ are given as

φ′ =

⎛
⎜⎜⎜⎜⎝

0 1 1 0
0 0 1 1
0 0 0 1
1 0 0 0
1 1 0 0

⎞
⎟⎟⎟⎟⎠

, φ′′ =

⎛
⎜⎜⎜⎜⎝

1 1 1 0
1 1 1 1
0 1 1 1
1 0 1 1
1 1 0 1

⎞
⎟⎟⎟⎟⎠

, (13)
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where the least significant bits are in the upper left corners. The resulting ele-
ments of PRR are shown in Tab. 1.

To design the circuit defined by Eq. (12), we exploit an NB with the sym-
metric property that h and l are given by h = h4β

4 + h3β
3 + h2β

2 + h1β and
l = l4β

4+ l3β
3+ l2β

2+ l1β with a common NB {β4, β3, β2, β1}, where h1, . . . , h4

and l1, . . . , l4 are the elements of GF (2) 4. As a result, the outputs d0, d1, . . . ,
and d4 are given by

d0 = (h1l2 + h2l1 + h3l4 + h4l3 + h1l1 + h4l4)

+(h1 + l1 + h3 + l3 + h4 + l4), (14)

d1 = (h1l2 + h2l1 + h1l3 + h3l1 + h2l2 + h4l4)

+(h1 + l1 + h2 + l2 + h3 + l3 + h4 + l4), (15)

d2 = (h1l3 + h3l1 + h1l4 + h4l1 + h2l3 + h3l2 + h2l2)

+(h1 + l1 + h2 + l2 + h4 + l4), (16)

d3 = (h1l4 + h4l1 + h2l3 + h3l2 + h2l4 + h4l2 + h3l3)

+(h2 + l2 + h3 + l3 + h4 + l4), (17)

d4 = (h2l4 + h4l2 + h3l4 + h4l3 + h1l1 + h3l3)

+(h1 + l1 + h2 + l2 + h3 + l3), (18)

respectively. Here, the symmetric property enable us to factor Eqs (14)–(18) as
follows:

d0 = H1,2 ∨ L1,2 +H3,4 ∨ L3,4 + h2 ∨ l2 + h3l3, (19)

d1 = H1,2 ∨ L1,2 +H1,3L1,3 + h3 ∨ l3 + h4 ∨ l4, (20)

d2 = H1,3 ∨ L1,3 +H1,4L1,4 +H2,3 ∨ L2,3 + h4 ∨ l4, (21)

d3 = H1,4 ∨ L1,4 +H2,3 ∨ L2,3 +H2,4L2,4 + h1 ∨ l1, (22)

d4 = H2,4 ∨ L2,4 +H3,4 ∨ L3,4 + h1 ∨ l1 + h2l2, (23)

where Hi,j = hi + hj , Li,j = li + lj (1 ≤ i < j ≤ 4), and ∨ denotes the OR
operator (i.e., a ∨ b = a + b + ab). The component denoted by Stage 1 in Fig.
2 performs the computations corresponding to Eqs. (19)–(23). Therefore, the
proposed Stage 1 is performed with only TA+3TX (or TO+3TX) delay, whereas
conventionalGF (((22)2)2) inversion implementations are performed with at least
6TX delay, where TA, TO, and TX denote the delays of the AND, OR, and XOR
gates, respectively.

2. Subfield Inversion.

Stage 2 performs the inversion over the subfield GF (24), where the input
and output are given by PRR and RRB, respectively. We first describe the

4 The notation of bases in the NB is frequently given by (β23 , β22 , β21 , β20 ) =
(β3, β4, β2, β1). In this paper, we employ the notation (β4, β3, β2, β1) to simplify
the correspondence between the NB and PRR/RRB.



10 R. Ueno et al.

architecture of the PRR-based GF (24) inversion, and then show the isomorphic
mapping from PRR to RRB below.

The inversion over GF (24) is performed by the 14th power of the input. The
input (i.e., the output of Stage 1) d (= d4x

4 + d3x
3 + · · · + d0) is given as an

element of the PRR-based GF (24). The input is satisfied with the condition
(called the linear recurrence relation) d0 + d1 + d2 + d3 + d4 = 0 5 because it
is equivalent to the codeword of a CRC generated by G(x) (= x + 1), which
makes it possible to perform the exponentiation by bitwise operations over the
PRR-based GF (24) in an efficient manner.

Let e (= e4x
4 + e3x

3 + · · ·+ e0) be the inverse element of d in PRR, where
e0, e1, . . . , and e4 are the elements of GF (2). Using the linear recurrence relation,
we can derive e0, e1, . . . , and e4 as follows:

e0 = (d1 ∨ d4)(d2 ∨ d3), (24)

e1 = ((d4 + 1)(d1 + d2)) ∨ (d0d4(d2 ∨ d3)), (25)

e2 = ((d3 + 1)(d2 + d4)) ∨ (d0d3(d1 ∨ d4)), (26)

e3 = ((d2 + 1)(d1 + d3)) ∨ (d0d2(d1 ∨ d4)), (27)

e4 = ((d1 + 1)(d3 + d4)) ∨ (d0d1(d2 ∨ d3)). (28)

According to Eqs. (24)–(28), the proposed Stage 2 requires TA+TO +TX delay,
whereas the conventional structures [3, 10, 11, 14] require at least TA + 3TX .
Note that when the multiplicative unit element E(x) (= x4 + x3 + x2 + x) is
given as the input, the output becomes not E(x) but 1. However, the output is
acceptable in Stage 3 (i.e., GF (24) multiplication) because both E(x) and 1 are
the idempotent elements in the residue ring modulo P (x).

Let us now look at the PRR-to-RRB mapping. To provide it uniquely, we
focus on the definition of PRR in [5], in which the mapping Ψ from PRR defined
by x to another representation defined by β is isomorphism. Let f (= f4β

4 +
f3β

3 + · · ·+ f0) be the output of Stage 2 in RRB, where f0, f1, . . . , and f4 are
the elements of GF (2). The output can be given by

f = Ψ(e) = e4β
4 + e3β

3 + e2β
2 + e1β + e0. (29)

This means that the PRR-to-RRB mapping is performed without any additional
circuit, assuming that f0 = e0, . . . , and f4 = e4. As a result, the PRR-based
design provides inversion and isomorphic mapping with fewer logic gates.

3. Final multiplication.

Stage 3 generates the final output using two GF (24) multiplication opera-
tions, where both the inputs and output are given by RRB. As stated above, the
RRB-based GF (24) multiplier is known to be one of the most efficient multipli-
ers [10].

5 The linear recurrence relation is used for error detection in CRC. A polynomial is a
codeword of a CRC iff the relation is satisfied.
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Let h′ (= h′
4β

4 + h′
3β

3 + · · ·+ h′
0) be the upper 5 bits of the final output a−1

in RRB, where h′
0, h

′
1, . . . , and h′

4 are the elements of GF (2). Multiplying f and
l, we can calculate elements h′

0, h
′
1, . . . , and h′

4 as follows:

h′
0 = L1,4F1,4 + L2,3F2,3, (30)

h′
1 = l1F0,1 + L2,4F2,4, (31)

h′
2 = l2F0,2 + L3,4F3,4, (32)

h′
3 = l3F0,3 + L1,2F1,2, (33)

h′
4 = l4F0,4 + L1,3F1,3, (34)

where Fi′,j′ denotes fi′+fj′ (0 ≤ i′ < j′ ≤ 4). The lower five bits of a−1 (denoted
by l′) are also obtained in the same manner as in Eqs. (30)–(34). The component
denoted by Stage 3 in Fig. 2 performs the computations corresponding to Eqs.
(30)–(34). Note here that the calculations for Fi′,j′ can be shared within Stage
3. As a result, the number of circuit components for the two multipliers in Stage
3 is reduced.

4 Performance evaluation

Table 2 shows the circuit delay and gate count of the proposed inversion circuit,
where (g0, g1, g2, g3, g4, g5, g6) in the Gate count column respectively indicate
the number of AND, OR, XOR, XNOR, NOT, NAND and NOR gates, and
Rep. indicates the GF representation(s) used in the circuit. For comparison, the
table also shows those of the conventional inversion circuits. The critical delay
paths of all the conventional ones were given by reference to [10]. On the other
hand, the gate counts of the conventional ones were individually given because
there was no single reference data covering all the conventional ones. The gate
count of [3] was given from the original paper [3], that of [14] was given from a
public source code by the authors [15], and those of [8], [10], and [13] were given
by reference to [10]. The gate count of [11] was given from a straightforward
structure designed by us according to [11] because there was no public data and
source code.

The critical paths of Stages 1, 2, and 3 in the proposed circuit require TA +
3TX , TA + TO + TX , and TA + 2TX delay, respectively. As a result, the total
delay of our inversion circuit is 3TA + TO + 6TX , which compared with the
other inversion circuits, is the smallest. The gate count in this work is smaller or
comparable to the conventional ones. In total, our circuit is more efficient than
any other circuits because fewer XOR and XNOR gates are required compared
to the other implementations.

To conduct a detailed evaluation, some of the above GF (28) inversion cir-
cuits were synthesized using Synopsys Design Compiler with a TSMC 65 nm
CMOS standard cell library. Table 3 shows the synthesis results, where Area
indicates the circuit area estimated based on a two-way NAND equivalent gate
size (i.e., gate equivalents (GE)), Time indicates the circuit delay under the
worst-case conditions, and Area-Time product indicate the product of Area and
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Table 2. Critical delay and gate count of inversion circuits over tower fields.

Field Rep.
Gate count Critical

(g0, g1, g2, g3, g4, g5, g6) delay path

Satoh et al. [14] GF (((22)2)2) PB (30, 0, 96, 0, 0, 6, 0) 4TA + 17TX

Canright [3] GF (((22)2)2) NB (0, 0, 56, 0, 0, 34, 6) 4TA + 15TX

Nogami et al. [11] GF (((22)2)2) MB (36, 0, 95, 0, 0, 0, 0) 4TA + 14TX

Rudra et al. [13] GF ((24)2) PB (60, 0, 72, 0, 0, 0, 0) 4TA + 10TX

Jeon et al. [8] GF ((24)2) PB (58, 2, 67, 0, 0, 0, 0) 4TA + 10TX

Nekado et al. [10] GF ((24)2) NB, RRB (42, 0, 68, 2, 0, 0, 0) 4TA + 7TX

This work GF ((24)2)
NB, PRR,

(38, 16, 51, 0, 4, 0, 0)
3TA + TO

RRB +6TX

Table 3. Performance evaluation of inversion circuits over tower fields.

Area [GE] Time [ns] Power [uW]
Area-Time
product

Satoh et al. [14] 280.67 3.02 95.27 847.62

Canright [3] 237.33 2.92 80.76 693.00

Nogami et al. [11] 388.67 3.67 148.88 1,426.42

Nekado et al. [10] 272.67 1.89 99.63 515.35

This work 229.67 1.81 74.14 415.70

Time. For the best performance comparison, an area optimization option (which
maximizes the effort of minimizing the number of gates without flattening the
description) was applied. Note that the results were consistent even when the
following speed optimization (which searches for the minimum timing without
increasing the area obtained from the prior area optimization) options was ap-
plied. The conventional inversion circuits were also synthesized using the same
option. The source codes of [3] and [14] were obtained from authors’ websites [4]
and [15], respectively. (Like them, we also applied gate-reduction techniques to
our inversion circuit.) The source codes of [10] and [11] were described by us ac-
cording to the structures given in the papers. Consequently, we confirmed that
the proposed circuit achieves the smallest area of 229.67 GE and the smallest
circuit delay of 1.81 ns. The area-time product of the proposed circuit is 19.3%
smaller than that of the conventional best circuit.

5 Application to AES S-Box

The proposed inversion circuit was efficiently applied to the AES S-Box design.
The AES S-Box consists of a GF (28) inversion and an affine transformation over
GF (2). Here, the GF (28) is represented in a PB and the GF (28) inversion is
performed with an irreducible polynomial x8 + x4 + x3 + x + 1. Therefore, an
isomorphic mapping between GF (28) and GF ((24)2) is required if the inversion
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Fig. 3. Overview of AES S-Box based on tower field arithmetic.

over GF ((24)2) is applied. Figure 3 shows an overview of the AES S-Box with
tower field arithmetic. The input (in the PB-based GF (28)) is initially mapped
to the tower field by applying an isomorphic mapping Δf . After the inversion
operation over the tower field, the inverse mapping and affine transformation
are finally performed in series. Here, we can merge the inverse mapping into
the affine transformation because both of them are represented in the form of
constant matrices over GF (2). The merged mapping is denoted by Δl. This
merging reduces the delay and gate counts.

The matrices for the mappingsΔf andΔl have an impact on the performance
of S-Box. When tower field GF ((24)2) is used, the matrices are defined by the
bases of GF (24) and the modular polynomials for the extension of GF (24) to
GF ((24)2). The efficiency of the two matrices for mappings Δf and Δl is de-
termined by the largest Hamming weight in the columns. For example, if the
largest Hamming weight in the columns is four, the critical path becomes 2TX

delay. If it is five, the critical path becomes 3TX delay. Therefore, the matrices
should be selected with a view to minimizing the largest Hamming weight in the
columns.

In our design, we found efficient conversion matrices δf and δl respectively
for Δf and Δl when the GF (24) elements of Stage 1 are represented in an
NB {β4, β3, β2, β1} and the modular polynomial for the extension is given by
α2 + (β4 + β)α+ β. As an example, the matrices δf and δl are given by

δf =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 1 1 0 0
1 0 1 0 0 0 1 1
1 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0
0 1 1 0 1 1 0 0
1 0 1 0 1 0 0 0
1 1 1 0 0 0 0 1
0 0 1 1 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, δl =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 1 0 0 1 0
0 0 1 1 0 1 1 1 0 1
1 1 1 1 0 0 1 0 1 0
1 0 0 0 1 1 1 1 0 1
1 1 0 1 1 1 0 0 0 1
1 0 0 0 1 1 0 1 1 1
0 0 1 0 1 0 0 1 0 1
1 0 1 0 0 1 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (35)

where the least significant bits are in the upper left corners. Here, the largest
Hamming weight in the columns of δf is at most four while that of δl is at most
six. This means that the former and latter mappings are implemented with
delays of 2TX and 3TX , respectively. Note that the matrix δl does not include
the constant addition of affine transformation in S-Box. The addition does not
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Table 4. Performance comparison of AES S-Boxes based on tower field arithmetic.

Critical delay Area Time Power Area-Time
Δf Inversion Δl [GE] [ns] [uW] product

Satoh et al. [14] 3TX 4TA + 17TX 3TX 378.00 4.41 151.61 1,666.98

Canright [3] 3TX 4TA + 15TX 3TX 315.67 4.30 126.55 1,357.38

Nogami et al. [11] 2TX 4TA + 14TX 2TX 522.67 4.78 221.79 2,498.36

Rudra et al. [13] 3TX 4TA + 10TX 3TX – – – –

Jeon et al. [8] 3TX 4TA + 10TX 3TX – – – –

Nekado et al. [10] 2TX 4TA + 7TX 3TX 386.00 3.29 151.01 1,269.94

This work 2TX 3TA + TO + 6TX 3TX 332.00 3.17 132.58 1,052.44

lead to the increase of delay for our S-Box since the largest Hamming weight of
in the columns is at most six.

Table 4 shows the critical delay of the proposed AES S-Box compared with
the conventional implementations. Our circuit achieves 3TA + TO + 11TX delay,
which is smaller than the conventional S-Boxes with tower field arithmetic. The
table also shows the synthesis results (area, delay time, and power) obtained
from the same tool and synthesis options as the above6. The source codes were
given from the same methods as Tab. 3. Note here that Canright’s design in [3]
supports both encryption and decryption, and we have slightly changed it to
support only encryption to allow a fair comparison to our design. As a result, the
area-time product of our AES S-Box is more than 22.5% better than Canright’s
S-Box, which had been the most efficient for a long time, and more than 17.1%
better than Nekado’s latest S-Box.

A further evaluation with full AES implementations is being left for the
future study. For example, our current design does not directly lead to the
most efficient one if we should support both encryption and decryption. For
such evaluation, another optimization (e.g. considering the overall architecture
and conversion matrices specified for both encryption and decryption) should
be discussed. On the other hand, the practical impact of the proposed method
would be even more visible in that case.

Another discussion point when applying the proposed method to crypto-
graphic cores is the well-known side channel issue. In particular, the resource
sharing of Stages 1 and 3 would cause glitches during the computation. To ap-
ply our method to pipelining-based countermeasures for reducing glitch prob-
lems, we need to decompose shared resources, which results in the increase of 12
XOR gates in total. Note however that such increase would also happen in other
works (e.g., [3] and [10]) using the similar optimization. In contrast, our method
is more suitable for multiplexing-based countermeasures, such as WDDL, due

6 According to [2], a logic minimization method can further reduce the total gates
of [3]. However, the same minimization can also be applied to other circuits including
ours. Therefore, we did not apply the minimization in this paper.
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to the high efficiency. A further and comprehensive study on the side-channel
security is definitely one of the important future topics for our method.

6 Conclusion

This paper proposed a new GF (28) inversion circuit that utilizes a combination
of non-redundant and redundant GF arithmetic. The proposed circuit, which is
based on tower field arithmetic, was designed by utilizing PRR and RRB for the
subfield inversion and multiplication, respectively. The flexibility of such redun-
dant representations can provide efficient isomorphic mappings from/to GF (28).
The efficiency of our proposed inversion circuit and its AES encryption S-Box
was evaluated by gate count and logic synthesis results with a 65 nm CMOS
standard cell library. As a result, we confirmed that the proposed inversion cir-
cuit is approximately 38% faster than the conventional best GF (((22)2)2) circuit
without any area overhead. Further, even including isomorphic mappings to AES
GF, the proposed circuit exhibited the best efficiency compared with existing
inversion circuits based on tower field arithmetic.

Redundant GF representations, such as PRR and RRB, provide high flex-
ibility for GF arithmetic circuit design. It is definitely possible to obtain ef-
ficient circuit structures using them because the search space of isomorphic
mappings increases as a result of their flexibility. In addition, a combination
of non-redundant and redundant GF representations has the potential to fur-
ther improve GF circuits, as shown in this paper. On the other hand, our AES
S-Box design is optimized only for the encryption. If an AES design should
support both encryption and decryption, our current design does not directly
lead to the most efficient one. In that case, another specific optimization for the
overall architecture and conversion matrices for both encryption and decryption
should be considered. An isomorphic mapping optimization method for other
applications still remains as future work. Further research is being conducted
to expand the application of our design methodology. Other block ciphers and
error-correction circuits, including GF inversion circuits, are possible applica-
tions. It is also worth considering efficient implementation of countermeasures
against side-channel attacks by redundant GF arithmetic.
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Appendix: Construction method of PRR and its example

Construction of an isomorphic mapping from a PB-based GF (2m) to a PRR-
based GF (2m) is accomplished as follows [6]. We first define the multiplicative
unit element of PRR for the construction. Let U(x) and V (x) be polynomials
that satisfy

U(x)G(x) + V (x)H(x) = 1. (36)

H(x) is an irreducible polynomial of the PB-based GF (2m) and G(x) is a poly-
nomial of degree n−m, which is relatively prime to H(x). Such U(x) and V (x)
are always found since G(x) and H(x) are relatively prime. We can easily derive
them using the extended Euclidean algorithm. The multiplicative unit element
E(x), which is an idempotent of the PRR-based GF (2m), is given by U(x)G(x).
This is explained by multiplying Eq. (36) and U(x)G(x) as follows:

{U(x)G(x)}2 + U(x)G(x)V (x)H(x) = U(x)G(x). (37)

Therefore,
{E(x)}2 ≡ E(x) mod P (x), (38)

where P (x) = G(x)H(x). Note that V (x)H(x) is not included in the PRR-based
GF (2m) because V (x)H(x) is indivisible by G(x).

With the above relations, we obtain the relational expression between the
indeterminate elements of PB and PRR. Let β be a root ofH(x) (i.e., H(β) = 0).
The multiplication of Eq. (36) and x is given as follows:

xU(x)G(x) + xV (x)H(x) = x. (39)

Assuming that we substitute β for x in Eq. (39), both LHS and RHS become β.
This means that β is mapped to/from x×E(x). We also obtain the corresponding
relational expressions between βi and xi × E(x) for an integer i (0 ≤ i ≤ m −
1). As a result, we can construct the isomorphic mapping using the relational
expressions. Let Ci(x) be an element of the PRR-based GF (2m) corresponding
to βi. Ci(x) is then given by

Ci(x) ≡ xi × E(x) mod P (x). (40)

Note that C0(x), C1(x), . . . , and Cm−1(x) are linearly independent in the polyno-
mial ring over GF (2) because {βm−1, βm−2, . . . , β0} composes a PB of GF (2m).
Therefore, the conversion matrix φPB→PRR for the isomorphic mapping from
PB- to PRR-based GF (2m) is given by

φPB→PRR =
(
cT0 cT1 . . . cTm−1

)
, (41)

where cTi denotes the transposed binary vector form of Ci(x). The least signifi-
cant bits are in the upper left corner.

As an example of PRR, we present the construction of a PRR-based GF (24).
Here, the modular polynomial P (x) is given by x5 + 1 and its factors G(x) and
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H(x) are given by

G(x) = x+ 1, (42)

H(x) = x4 + x3 + x2 + x+ 1. (43)

We first compute the multiplicative unit element E(x), which is derived from
G(x) and H(x) by using the extended Euclidean algorithm as follows:

(x3 + x)×G(x) + 1×H(x) = 1. (44)

Therefore, E(x) = (x3 + x)×G(x) = x4 + x3 + x2 + x. C0(x), C1(x), C2(x) and
C3(x) are then obtained as follows:

C0(x) = x4 + x3 + x2 + x, (45)

C1(x) = x4 + x3 + x2 + 1, (46)

C2(x) = x4 + x3 + x+ 1, (47)

C3(x) = x4 + x2 + x+ 1, (48)

which correspond to β0, β1, β2 and β3, respectively. Thus, a conversion matrix
φPB→PRR from the PB-based GF (24) with H(β) to a PRR-based GF (24) with
P (x) is given by

φPB→PRR =

⎛
⎜⎜⎜⎜⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0
1 1 1 1

⎞
⎟⎟⎟⎟⎠

, (49)

where the least significant bits are in the upper left corner. The conversion matrix
φNB from the NB-based GF (24) with H(β) to the PRR-based GF (24) is also
constructed by using the NB {β4, β3, β2, β1}. φNB→PRR is given by

φNB→PRR =

⎛
⎜⎜⎜⎜⎝

1 1 1 1
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞
⎟⎟⎟⎟⎠

, (50)

where the least significant bits are in the upper left corner.


