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Abstract. The purpose of this paper is to compare side-by-side the NTRU and
BGYV schemes in their non-scale invariant (messages in the lower bits), and their
scale invariant (message in the upper bits) forms. The scale invariant versions
are often called the YASHE and FV schemes. As an additional optimization, we
also investigate the ffect of modulus reduction on the scale-invariant schemes. We
compare the schemes using the “average case” noise analysis presented by Gentry
et al. In addition we unify notation and techniques so as to show commonalities
between the schemes. We find that the BGV scheme appears to be more efficient
for large plaintext moduli, whilst YASHE seems more efficient for small plaintext
moduli (although the benefit is not as great as one would have expected).

1 Introduction

Some of the more spectacular advances in implementation improvements for Somewhat
Homomorphic Encryption (SHE) schemes have come in the context of the ring based
schemes such as BGV [3]. The main improvements here have come through the use
of SIMD techniques (first introduced in the context of Gentry’s original scheme [7]
by Smart and Vercauteren [17], but then extended to the Ring-LWE based schemes
by Gentry et al [3]). SIMD techniques in the ring setting allow for a small overall
asymptotic overhead in using SHE schemes [8] by exploiting the Galois group to move
data between slots. The Galois group can also be used to perform cheap exponentiation
via the Frobenius endomorphism [9]. Other improvements in the ring based setting
have come from the use of modulus switching to a larger modulus, so as to perform key
switching [9], the use of scale invariant versions [6, 1], and the use of NTRU to enable
key homomorphic schemes [14].

The scale invariant schemes, originally introduced in [2], are particularly interest-
ing, they place the message space in the “upper bits” of the decryption equation, as
opposed to the lower bits. This enables a more effective noise control mechanism to be
employed which does not on the face of it require modulus switching to keep the noise
within bounds. However, the downside is that they require a more complex rounding
operation to be performed in the multiplication procedure.

However each paper which analyses the schemes uses a different methodology for
deriving parameters, and examining the noise growth. In addition not all papers uti-
lize all optimizations and improvements available. For example papers on the NTRU



scheme [5, 14], and its scale invariant version YASHE [1], rarely, if at all, make men-
tion of the use of SIMD techniques. Papers working on scale invariant systems [6, 1]
usually focus on plaintext moduli of two, and discount larger moduli. But many appli-
cations, e.g. usage in the SPDZ [4] MPC system, require the use of large moduli.

We have therefore conducted a systematic study of the main ring-based SHE schemes
with a view to producing a fair comparison over a range of possible application spaces,
from low characteristic plaintext spaces through to large characteristic ones, from low
depth circuits through to high depth ones. The schemes we have studied are BGV, whose
details can be found in [3, 8, 9], and its scale-invariant version [6] (called FV in what
follows), the basic NTRU scheme [5, 14], and its scale-invariant version YASHE [1]. A
previous study [12] only compared FV and YASHE, restricted to small plaintext spaces
(in particular characteristic two), and did not consider the various variants in relation
to key switching and modulus switching which we consider. Our results are broadly in
line with [12] (where we have a direct comparison) for YASHE, but our estimates for
FV appear slightly better.

On the face of it one expects that YASHE should be the most efficient, since it
is scale invariant (which often leads to smaller parameters) and a ciphertext consists
of only a single ring element, as opposed to two for the BGV style schemes. Yet this
initial impression hides a number of details, wherein one can find a number of devils.
It turns out that which is the most efficient scheme depends on the context (message
characteristic and depth of admissible circuits).

To compare all four schemes fairly we apply the same API to all schemes, and the
same optimizations. In particular we also investigate applying modulus switching to the
scale invariant schemes (where its use is often discounted as not being needed). The use
of modulus switching can be beneficial as it means ciphertexts become smaller as the
function evaluation proceeds, resulting in increased performance. We also examine two
forms of key switching (one based on the traditional decomposition technique and one
based on raising the modulus to a larger value). For the decomposition technique we
also examine the most efficient modulus to take in the modular decomposition, which
turns out not to the two often seen in many treatments.

To compare the schemes we use the average distributional analysis first introduced
in [9], which measures the noise in terms of the expected size in the canonical embed-
ding norm. The use of the canonical embedding norm also deviates from some other
treatments. For general rings the canonical embedding norm provides a more accurate
measure of noise growth, over norms in the polynomial embedding, when analysed over
a number of homomorphic operations. The noise growth of all of our schemes is anal-
ysed in the same way, and this is the first time (to our knowledge) that all schemes have
been analysed on an equal footing.

The first question when performing such a comparison is how to compare security
of differing schemes. On one hand one could take the standpoint of an exact security
analysis and derive parameter sizes from the security theorems. However, even this
is tricky when comparing schemes as the theorems may reduce security of different
schemes to different hard problems. So instead we side-step this issue and select pa-
rameters according to an analysis of the best known attack on each scheme; which is
luckily the same in all four cases. Thus we select parameters according to the Lindner-



Peikert analysis [13]. To also afford a fair comparison we use similar distributions for
the various parameters for each scheme; e.g. small Hamming weight for the secret key
distributions etc.

The next question is how to measure what is “better”. In the context of a given spe-
cific scheme we consider one set of parameters to be better than another, for a given
plaintext modulus, level bound and security parameter, if the number of bits to repre-
sent a ring element is minimized. After all this corresponds directly to the computational
overhead when implementing the scheme. When comparing schemes one has to be a
little more careful, as ciphertexts in the BGV family consist of two ring elements and in
the NTRU family they consist of one element, but still ciphertext size is a good crude
measure of overall performance. In addition, the operations needed for the scale invari-
ant schemes are not directly compatible with the efficient double-CRT representation
of ring elements introduced in [9], thus even if ciphertext sizes for the scale invariant
schemes are smaller than for the non-scale invariant schemes, the actual computation
times might be much larger.

As one can appreciate much of the analysis is an intricate following through of
various inequalities. The full derivations can be found in the Appendice of this paper.
We find that the BGV scheme appears to be more efficient for large plaintext moduli,
whilst YASHE seems more efficient for small plaintext moduli (although the benefit is
not as great as one would have expected).

2 Preliminaries

In this section we outline the basic mathematical background which forms the basis of
our four ring-based SHE schemes. Much of what follows can be found in [8, 9], we
recap on it here for convenience of the reader. We utilize rings defined by cyclotomic
polynomials, A = Z[X]/®,,(X). We let A, denote the set of elements of this ring re-
duced modulo various (possibly composite) moduli g. The ring A is the ring of integers
of the mth cyclotomic number field K’ = Q((,, ). We let [a], for an element a € A de-
note the reduction of a modulo ¢, with the set of representatives of coefficients lying in
(—q/2,...,q/2], hence [a], € A,. Assignment of variables will be denoted by a <+ b,
with equality being denoted by = or =.

Plaintext Slots: We will always use p for the plaintext modulus, and thus plaintexts
will be elements of A, and the polynomial &,,,(X) factors modulo p into ¢ irreducible
factors, @,,,(X) = F1(X) - Fo(X) - Fp(X) (mod p), all of degree d = ¢(m)/XL.
Just as in [3, 8, 17,9] each factor corresponds to a “plaintext slot”. That is, we view a
polynomial ¢ € A, as representing an {-vector (a mod F;)¢_,. We assume that p does
not divide m so as to enable the slots to exist. In a number of applications p is likely to
split completely in A, i.e. p = 1 (mod m). This is especially true in applications not
requiring bootstrapping, and hence only requiring evaluation of low depth arithmetic
circuits.

Canonical Embedding Norm: Following the work in [15], we use as the “size” of a
polynomial a € A the I, norm of its canonical embedding. Recall that the canonical



embedding of a € A into C?("™) is the ¢(m)-vector of complex numbers o(a) =
(a(CE,)): where (,, is a complex primitive m-th root of unity and the indexes i range
over all of (Z/mZ)*. We call the norm of o(a) the canonical embedding norm of a,

and denote it by ||a|| " = [#(a)]| . We will make use of the following properties of
- 112
— Forall a,b € A we have Ha . bH::n < HaHZZn . Hb”:;n

— For all a € A we have HaHZn < HaHl.

— There is a ring constant ¢, (depending only on m) such that HaHOO <cpm - ||a||::>n
forall a € A.

where HaHOo and HaH L refer to the relevant norms on the coefficient vectors of a in the

power basis. The ring constant c¢,, is defined by ¢,,, = HCRT;1 HOO where CRT,,, is the
CRT matrix for m, i.e. the Vandermonde matrix over the complex primitive m-th roots
of unity. Asymptotically the value ¢, can grow super-polynomially with m, but for the
“small” values of m one would use in practice values of ¢, can be evaluated directly.
See [4] for a discussion of ¢,,.

Sampling From A,: At various points we will need to sample from A, with different
distributions, as described below. We denote choosing the element a € A according
to distribution D by a < D. The distributions below are described as over ¢(m)-
vectors, but we always consider them as distributions over the ring A, by identifying a
polynomial a € A with its coefficient vector.

The uniform distribution {,: This is just the uniform distribution over (Z/ qZ)¢(m),
which we identify with (Z N (—q/2, ¢/2])?(™).

The “rounded Gaussian” DG, (c?): Let N'(0, o%) denote the normal (Gaussian) distri-
2

bution on real numbers with zero-mean and variance o2, we use drawing from A/ (0, 02)
and rounding to the nearest integer as an approximation to the discrete Gaussian dis-
tribution. The distribution DG, (¢2) draws a real ¢-vector according to N'(0, a2)#(™),
rounds it to the nearest integer vector, and outputs that integer vector reduced modulo ¢
(into the interval (—q/2, ¢/2]).

Sampling small polynomials, ZO(p) and HWT (h): These distributions produce vec-
tors in {0, +1}¢(m),

— For areal parameter p € [0, 1], ZO(p) draws each entry in the vector from {0, £1},
with probability p/2 for each of —1 and +1, and probability of being zero 1 — p.

— For an integer parameter h < ¢(m), the distribution HWT (h) chooses a vector
uniformly at random from {0, i1}¢(m) , subject to the condition that it has exactly
h nonzero entries.

Canonical embedding norm of random polynomials: In the coming sections we will
need to bound the canonical embedding norm of polynomials that are produced by the



distributions above, as well as products of such polynomials. Following the work in [9]
we use a heuristic approach, which we now recap on.

Let a € A be a polynomial that was chosen by one of the distributions above,
hence all the (nonzero) coefficients in a are independently identically distributed. For
a complex primitive m-th root of unity (,,, the evaluation a((,,,) is the inner product
between the coefficient vector of a and the fixed vector z,, = (1,(n, (2, - - ), which
has Euclidean norm exactly 1/¢(m). Hence the random variable a((,,) has variance
V = JQQS(m), where o2 is the variance of each coefficient of a. Specifically, when
a + U, then each coefficient has variance (¢ — 1)2/12 ~ ¢*/12, so we get variance
Vi = ¢* - ¢(m)/12. When a + DG, (0?) we get variance Vi ~ o2 - ¢(m), and when
a < Z0(p) we get variance Vz = p - ¢(m). When choosing a < HWT (h) we get a
variance of Viz = h (but not ¢(m), since a has only h nonzero coefficients).

Moreover, the random variable a((,,,) is a sum of many independent identically dis-
tributed random variables, hence by the law of large numbers it is distributed similarly
to a complex Gaussian random variable of the specified variance.! We therefore use
6vV (i.e. six standard deviations) as a high-probability bound on the size of a(Cm)-
Since the evaluation of a at all the roots of unity obeys the same bound, we use six
standard deviations as our bound on the canonical embedding norm of a. (We chose
six standard deviations since erfc(6) ~ 2755, which is good enough for us even when
using the union bound and multiplying it by ¢(m) ~ 216.)

In this paper we model all canonical embedding norms as if from a random distribu-
tion. In [9] the messages were always given a norm of HmHZZn < p-¢p(m)/2,i.e.aworst
case bound. We shall assume that messages, and similar quantities, behave as if selected
uniformly at random and hence estimate Hm”iﬂ <6-p-/o(m)/12=p-+/3- $(m).
This makes our bounds better, and does not materially affect the decryption ability due
to the larger effect of other terms. However, this simplification makes the formulae
somewhat easier to parse.

In many cases we need to bound the canonical embedding norm of a product of two
or more such “random polynomials”. In this case our task is to bound the magnitude
of the product of two random variables, both are distributed close to Gaussians, with
variances 02, ag, respectively. For this case we use 16 - o, - 03, as our bound, since
erfc(4) a~ 2725, so the probability that both variables exceed their standard deviation
by more than a factor of four is roughly 27°°. For a product of three variables we use
40 - 0, - 0y, - 0, since erfc(3.4) ~ 2719, and 3.43 ~ 40.

3 Ring Based SHE Schemes

We refer to our four schemes as BGV, FV, NTRU and YASHE. The various schemes
have been used/defined in various papers: for example one can find BGV in [3,8,
9], FV in [6], NTRU in [5, 14] and YASHE in [1]. In all four schemes we shall use
a chain of moduli for our homomorphic evaluation? by choosing L “small primes”

! The mean of a((,,) is zero, since the coefficients of a are chosen from a zero-mean distribu-
tion.

% This is not strictly needed for the Scale invariant version if modulus switching is not per-
formed.



D0, P1s - - -, pr—1 and the t** modulus in our chain is defined as ¢; = H;ZO p;. A chain
of L primes allows us to perform L — 1 multiplications. The primes p;’s are chosen
so that for all ¢, Z/p;Z contains a primitive m-th root of unity, i.e. p; = 1 (mod m).
Hence we can use the double-CRT representation, see [9], for all A, .

For the BGV and NTRU schemes we additionally assume that p; = 1 (mod p).
This is to enable the Scaling operation to work without having to additionally scale by
p; (mod p), which would result in slightly more noise growth. A disadvantage of this
is that the moduli p; will need to be slightly larger than would otherwise be the case.
The two scale invariant schemes (FV and YASHE) will make use of a scaling factor A,

defined by A, = FJ =4 —¢,, where 0 < ¢, < 1.

P P
3.1 Key Generation

We utilize the following methods for key generation, they sample the secret key in all
cases, from a sparse distribution, this follows the choices made in [9]. This leads to more
efficient homomorphic operations (since noise growth depends on the size of the secret
key in many situations). However, such choices might lead to security weaknesses,
which would need to be considered in any commercial deployment.

KeyGen®®V(): Sample st < HWT (h), a < U,, ,,and e < DG,, ,(c?). Then set
the secret key as s¢ and the public key as pt < (a,b) where b + [a - ¢ + p - €]

qr—1-

KeyGen™(): Sample s¢ < HWT (h), a + U,, ,,and e < DG,, _,(02). Then set
the secret key as st and the public key as pt < (a,b) where b < [a - ¢ + €]

qr—1-

KeyGen"TRY(): Sample f, g < HWT (h). Then set the secret key as st < p - f + 1
and the public key as pt < [p - g/st],, ,. Note, if p - f + 1 is not invertible in A
we repeat the sampling again until it is.

qr—1

KeyGen"HE(): Sample f, g < HWT (h). Then set the secret key as s¢ < p - f + 1
and the public key as pt < [p- g/st],, ,. Again, if p - f + 1 is not invertible in A , |
we repeat the sampling until it is.

3.2 Encryption and Decryption

The encryption algorithms for all four schemes are given in Fig. 1. As for key generation
we select slightly simpler distributions than the theory would imply so as to ensure noise
growth is not as bad as it would otherwise be. The output of each algorithm is a tuple ¢
consisting of the ciphertext data, the current level, plus a bound on the current “noise”
B.,- This bound is on the canonical embedding norm of a particular critical quantity
which comes up in the decryption process; a different critical quantity depending on
which scheme we are using. If the critical quantity has canonical embedding norm less
than a specific value then decryption will work, otherwise decryption will likely fail.
Thus having each ciphertext carry around an upper bound on the norm of this quantity
allows us to analyse noise growth dynamically.



EncEEGV(m): Enchy (m):

- v+ Z0(0.5). - v+« Z0(0.5).

- €p,€1 < 'ngL_l(O'Q). - €p,€e1 < ngL_1(02).

= Co < [b'v+p'60 +m]QL—1’ = Co < [b'v+eU+AQL—1 'm]QL—la

—a+fa-vtp-elq s, -ca<fa-vteq .

- Output ¢ < (co,c1,L — 1, Bflfavn) - Output ¢ < (co,c1,L — 1, Bfl\e/an).
Encpe "V (m): EncI@SHE(m):

- €0,€1 DgQL—l(OQ)' - €0,€1 DgQL—l(OQ)'

—c<lei-pt+p-eo+ mLIL—l’ - [el'pg+60+A4L71 'm]qul’

- Output ¢ + (¢, L — 1, BNTRY), — Output ¢ + (¢, L — 1, BYASHE)

Fig. 1: Encryption Algorithms for BGV, FV, NTRU and YASHE

To understand the critical quantity we have to first look at the decryption procedure
in each case. Then we can apply our heuristic noise analysis to obtain an upper bound
on the canonical embedding norm of the critical quantity for a fresh ciphertext, and so

obtain B}, ,; a process which is done in the Appendix.

DecEf V(c): Decryption of a ciphertext (co,c1,t,v) at level ¢ is performed by setting
m’ < [co — st - c1]q,, and outputting m’ mod p. If we define the critical quantity to
be ¢g — st - ¢; (mod ¢;), then this procedure will work when v is an upper bound on
the canonical embedding norm of this quantity and ¢, - v < ¢;/2. If v satisfies this
inequality then the value of ¢y — st - ¢; (mod ¢;) will be produced exactly with no
wrap-around, and will hence be equal to m+p- v, if cg = s€-¢1 +p-v+m (mod ¢).
Thus we must pick the smallest prime gy = pg large enough to ensure that this always
holds.

Decgg(c): Decryption of a ciphertext (co, c1, t, ) at level ¢ is performed by setting

m' < [3 < [co — st - cl}th,
qt

and outputting m’ mod p. Consider the value of [cy — s - ¢1]4, computed during de-

cryption, suppose this is equal to (over the integers before reduction mod ;) m - A,, +

w + 7 - ¢;. Then another way of looking at decryption is that we perform rounding on

the value

qt

CAL - . P p- (L —¢,) - m .
p qt m+p w+prqt: P qt +p w—|—p-7‘
qt qt qt qt qt
W — €q, - M
t

and then take the result modulo p. Thus the critical quantity in this case is the value
of w — €4, - m. So that the rounding is correct we require that v is an upper bound on




Hw —€q, - mH::. The decryption procedure will then work when ¢,,, - v < A, /2, since
in this case we have

A‘h'p 1
2'% 2

w—eqt~mH < Cmop

can
w = €g,-ml[ 7 <
qt qt

3

Thus again we must pick the smallest prime gy = po large enough, to ensure that
Cm -V < Ay, /2.

Decsg— RU(¢): Decryption of a ciphertext (c, t, ) at level ¢ is performed by setting mn/ <

[c- st],,. and outputting m’ mod p. Much as with BGV the critical quantity is [c - 5€],, .
If v is an upper bound on the canonical embedding norm of c - s¢, and we have ¢ =
a-pt+p- e+ m modulo g, for some values of a and e, then over the integers we have

[c-stly, =m+p-(a-g+e+f-m)+p* e

which will decrypt to m. Thus for decryption to work we require that ¢,, - v < ¢;/2.

Dec:EASHE (¢): Decryption of a ciphertext (c, ¢, v) at level ¢ is performed by setting
m’ <+ {ﬂ : [c-sﬁ]th7
qt

and outputting m’ mod p. Following the same reasoning as for the FV scheme, suppose
c- st is equal to (again over the integers before reduction mod g¢) m - Ay, +w + 17 - g4.
Then for decryption to work we require v to be an upper bound on ||w — €q, ° chan

and ¢, - v < q¢/2.

oo

3.3 Scale

These operations scale a ciphertext, reducing the corresponding level and more impor-
tantly scaling the noise. The syntax is Scale®(c, ¢,,:) Where ¢ is at level ¢, and the
output ciphertext is at level t,,; with t,,; < t;,. The noise is scaled by a factor of
approximately qy,, /qx,,,, however an additive term of B, is added. For each of our
variants see the Appendix for a justification of the proposed method and an estimate on

*
scale*

For use in one of the SwitchKey™ variants we also use a Scale which takes a cipher-
text with respect to modulus @) and produces a ciphertext with respect to modulus g,
where ¢|@. The syntax for this is Scale® (¢, Q); the idea here is that @ is a “temporary”
modulus unrelated to the actual level ¢ of the ciphertext, and we aim to reduce ) down
to ¢¢. The former scale function can be defined in terms of the latter via

Scale™ (¢, tout):

— Write ¢ = (¢, t,v).
— ¢/ < Scale® ((c, tout, ), qt)-
— Output ¢’.



Scale®®V(c, Q): Scale™v (¢, Q):
- = Write ¢ = ((co, 1), t, V). ~ = Write ¢ = ((co, 1), t, V).

- Fix d; such that §; = —¢; (mod P) Fix d; such that §; = —¢; (mod P).
and 6; =0 (mod p). Write ¢ < (c; + 8;)/P.
Write ¢ < (c; + 6;)/P. v «—v/P+ BY..
- v «v/P+ BSSY. Output ((ch, cl),t, V).
Output ((ch, ch),t,v").

Scale™HE (¢ Q):

ScaleM ™V (¢, Q): - Write ¢ = (¢, t,v).
~ = Write ¢ = (¢, t,v). — Fix ¢ such that § = —c (mod P).
- Fix d such that § = —¢ (mod P) and - Write ¢’ + (¢ +6)/P.
§ =0 (mod p). - vV < v/P + BISHE,
- Write ¢’ < (c+4)/P. - Output (¢, t,v").

-V +v/P+ B
— Output (¢, t,v").

Fig. 2: Scale Algorithms for BGV, FV, NTRU and YASHE. In all methods Q) = ¢; - P,
and for the BGV and NTRU schemes we assume that P = 1 (mod p).

The Scale™ function was originally presented in [3] as a form of noise control for
the non-scale invariant schemes. However, the use of such a function within the scale
invariant schemes can also provide more efficient schemes, as alluded to in [6]. This is
due to the modulus one is working with which decreases as homomorphic operations
are applied. It is also needed for our second key switching variant. We thus present a
Scale™ function for all our four schemes in Fig. 2.

3.4 Reduce Level

For all schemes we can define a Reducelevel® operation which reduces a ciphertext
level from level ¢ to level ¢ where ¢’ > t. For the non-scale invariant schemes when
we reduce a level we only perform a scaling (which could be an expensive operation)
if the noise is above some global bound B. This is because for small noise we can
easily reduce the level by just dropping terms off the modulus, since the modulus is a
product of primes. For the scale invariant schemes we actually need to perform a Scale
operation since we need to modify the A,, term. See the Appendix for details. In our
parameter estimation evaluation we examine the case, for FV and YASHE, of applying
modulus switching to reduce levels and not applying it. In the case of not applying it all
ciphertexts remain at level L — 1, and ReducelLevel™ becomes a NOP.

3.5 Switch Key

The switch key operation is needed to relinearize after a multiplication, or after the
application of a Galois automorphism (see [8] for more details on the latter). For all
schemes we present two switch key operations:




— One based on decomposition modulo a general modulus 7. See [11] for this method
explained in the case of the BGV scheme. Unlike prior work we do not take 7' = 2,
as we treat 1" as a parameter to be optimized to achieve the most efficient scheme.
Although to ease parameter search we restrict to 7" being a power of two.

— Our second method is based on the raising the modulus idea from [9], where it
was applied to the BGV scheme. Here we adopt a more complex switching opera-
tion, and a potentially larger parameter set, but we gain by reducing the size of the
switching “matrices”.

For each variant we require algorithms SwitchKeyGen and SwitchKey; the first gener-
ates the public switching “matrix”, whilst the second performs the actual switch key. In
the BGV and FV schemes we perform a general key switch of the underlying decryp-
tion equation of the form dy — st - d; + st - dy — co — st - ¢1. For the NTRU and
YASHE schemes the underlying key switch is of the form c - s¢' — ¢’ - st. In Fig.
3 we present the key switching methods for the BGV algorithm. See the Appendix for
the methods for the other schemes, plus derivations of upper bounds on the constants
Bis,« * (%).

SwitchKeyGen®5<V (st s, T'): SwitchKeyGen5¢V (s’ 5t):

- a4+ Uy ;.

e+ DGg,_,(0%).

-~ b+ a-st+p-e+P-st]q_,.p.
€50 <<« (a,b).

Output £s0.

- Fori=0to [logT(qL,l)—‘ —1do

* a; < Uq, .

x e; + DGy, (7).

*x by a;-st+p-e; +T 58]y,
— ts0 (T, {as, b}/ 8T 921171y,

— Output £52. SwitchKey5®V (50, (0, ¢, v)):
- Cco [P -do+b- dz]qt.P.
SwitchKey%®V (50, (0,1, v)): -+ [P-di+a-ds]g.p.
— Write d> in base 1 as da = -V« P v+ BESG,\Q/(t)-
Eiﬂz"g"’f a1-1 dos - T - Output Scale®®V(((co, 1), t, V), qs -
- co d0+Z£:§T ae]-1 d2,;-b; (mod qt). P).

Cc1 — d1+zlﬂ:ogT arl—1 d2,i~a~; (mod qt).
V v+ By (t).
Output ((co, c1),t,v").

Fig. 3: The two variants of Key Switching for BGV.

In the context of BGV the first method requires us to store log,(gr—1) “encryp-
tions” of s, each of which is an element in Rg . _,- The second method requires us to
store a single “encryption” of P - &', but this time as an element in R, qr_,- The for-
mer will require more space than the latter as soon as logy P < logp(gr—1). In terms
of noise the output noise of the first method is modified by an additive constant of

BGV

Bggi(t) = % “p- IVIOgT Qt—‘ co-p(m)-T.




whilst the output noise of the second method is modified by the additive constant

BReY(t) . 8-p-q-o-¢(m) B
T scale — \/g P + scale*

As the level decreases this becomes closer and closer to BZ,,., as the P in the de-
nominator will wipe out the numerator term. Thus the noise will grow of the order of
O(y/¢(m)) using the second method and as O(¢(m)) using the first method. A sim-
ilar outcomes arises when comparing the two methods with respect to the other three

schemes.

3.6 Addition and Multiplication

We can now turn to presenting the homomorphic addition and multiplication operations.
For reasons of space we give the addition and multiplication methods in the Appendix.
In all methods the input ciphertexts ¢; have level ¢;, and recall our parameters are such
that we can evaluate circuits with multiplicative depth L — 1.

3.7 Security and Parameters

In this section we outline how we select parameters in the case where Reducelevel®
is not a NOP (a no-operation). An analysis, for the FV and YASHE schemes, where
Reducelevel” is a NOP we defer the analysis to the Appendix. We let B denote an
upper bound on v at the output of any Reducelevel® operation. Following [9] we set
B = 2-BZ_,,.. We assume that operations are performed as follows. We encrypt, perform
up to ¢ additions, then do a multiplication, then do ¢ additions, then do a multiplication

and so on, where we assume decryption occurs after a multiplication.

Security: We assume, as a heuristic assumption, that if we set the parameters of the
ring and modulus as per the BGV scheme then the other schemes will also be secure.
We follow the analysis in [9], which itself follows on from the analysis by Lindner
and Peikert [13]3. We therefore have one of two possible lower bounds for ¢(m), for
security parameter k

log(“‘l/?g)'(kﬂlo) If the first variant of SwitchKey is used,

p(m) > (1)

log(P'qL‘;'/;)‘(kHlo) If the second variant of SwitchKey is used.

Note the logs here are natural logarithms.

Bottom Modulus: To ensure decryption correctness at level zero we require that
Po For BGV and NTRU

=2-¢n-B< 2)
{%“J For FV and YASHE.

4-¢y - B

*
scale

3 One could take into account a more elaborate analysis here, for example looking at BKW style
attacks e.g. [10]. But for simplicity we follow the same analysis as in [9].



*

Ylean»> Perform
. We then perform a

Top Modulus: At the top level we take as input a ciphertext with noise B,
(¢ additions to produce a ciphertext with noise B; = ¢ - B},
multiplication to produce something with noise

F*(B1, B1) + Big (L — 1) If the first variant of SwitchKey is used,
By =
. By, ,(L—1) . . , .
F*(By, By) + —*%5— 4 B}, If the second variant of SwitchKey is used.

We then scale down a level to obtain something at the next level down. Thus we obtain
something with noise bounded by Bs = pffl + B ,.- We require, for our invariant,
Bs < B=2-B;_.. Thus we require,

scale*

B
PL—1 2> 2
B*

scale

3)

Middle Moduli: A similar argument applies for the middle moduli, but now we start
off with a ciphertext with bound B = 2 - BZ  _ as opposed to B,_. . Thus we form

scale clean*

F*(¢- B,( " B) + Bgg (1) First variant of SwitchKey,

B(t) = *
F*((-B,(-B)+ BKS’F?(t) + B Second variant of SwitchKey.

scale

after which a Scale operation is performed. Hence, the modulus p; for ¢t # 0,L — 1
needs to be selected so that

“)

Note, in practice we can do a bit better in the second variant of SwitchKey by merging
the final two final scalings into one.

Putting It All Together: We are looking for parameters which satisfy equations (1),
(2), (3) and (4), and which also minimize the size of data being processed, which is

L1
p(m) - (Z pt) .
t=0

To do this we iterate through all possible values of log, qr,—1 and logy T' (resp. log, P).
We then determine ¢(m), as the smallest value which satisfies equation (1). Here, we
might need to take a larger value than the right hand side of equation (1) due to appli-
cation requirements on p or the amount of packing required.

We then determine the size of py, 1 from equation (3), via

5

scale

P11~ [



We can now iterate downwards for ¢ = L — 2, ..., 1 by determining the size of log, ¢,
via

logy g1 = 1ogy g1 — logg pri1-

If we obtain log, ¢; < 0 then we abort, and pass to the next pair of (log, gr,—1,T") (resp.
(logy qr—1,logy P)) values. The value of p; being determined by equation (4), via

s

scale

Pt%[

Finally we check whether a prime py the size of log, qo, will satisify equation (2), if so
we accept this set of values as a valid set of parameters, otherwise we pass to the next

pair of (logy qr,—1,T) (resp. (logy qr,—1,logy P)) values.

——BGV,KS=1 -+- BGV,KS=2 —e—FV,KS=1 -eo- FV,KS=2
NTRU, KS=1 NTRU, KS=2 - —- YASHE, KS=1 - —- YASHE, KS=2

6.5 1

61

log,(|c|) kBytes
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log, (p) log, (p)

Fig. 4: Size of required ciphertext for various sizes of plaintext modulus when L = 5.
The graph on the left zooms into the portion of the right graph for small values of log, p.

4 Results

In the Appendix one can find a full set of parameters for each scheme, and variant of
key switching, for various values of the plaintext modulus p and the number of levels
L. In this section we summarize the overall conclusion. As a measure of efficiency
we examine the size of a ciphertext in kBytes; this is a very crude measure but it will
capture both the size of any data needed to be transmitted as well as the computational
cost of dealing with a single ciphertext element within a calculation. In the Appendix we
also examine the size of the associated key switching matrices, which is significantly
smaller for the case of our second key switching method. In a given application this
additional cost of holding key switching data may impact on the overall choices, but for
this section we ignore this fact.
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Fig. 5: Size of required ciphertext for various sizes of plaintext modulus when L = 30.
The graph on the left zooms into the portion of the right graph for small values of log, p.

For all schemes we used a Hamming weight of A = 64 to generate the secret key
data, we used a security level of k& = 80 bits of security, a standard deviation of o = 3.2
for the rounded Gaussians, a tolerance factor of ( = 8 and a ring constant of ¢,,, = 1.3.
These are all consistent with the prior estimates for parameters given in [9]. The use of
a small ring constant can be justified by either selecting ¢(m) to be a power of two, or
selecting m to be prime, as explained in [4]. As a general conclusion we find that for
FV and YASHE the use of modulus switching to lower levels results in slightly bigger
parameters to start for large values of L; approximately a factor of two for L = 20 or 30.
But as a homomorphic calculation progresses this benefit will drop away, leaving, for
most calculations, the variant in which modulus switching is applied the most efficient.
Thus in what follows we assume that modulus switching is applied in all schemes.

Firstly examine the graphs in Figures 4 and 5. We see that for a fixed number of
levels and very small plaintext moduli the most efficient scheme seems to be YASHE.
However, quite rapidly, as the plaintext modulus increases the BGV scheme quickly
outperforms all other schemes. In particular for the important case of the SPDZ MPC
system [4] which requires an SHE scheme supporting circuits of multiplicative depth
one, i.e. L = 2, for a large plaintext modulus p, the BGV scheme is seen to be the most
efficient.

Examining Fig. 6 we see that if we fix the prime and just increase the number of
levels then the choice of which is the better scheme is be very consistent. Thus one is
led to conclude that the main choice of which scheme to adopt depends on the plaintext
modulus, where one selects YASHE for very small plaintext moduli and BGV for larger
plaintext moduli.
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A Estimating B,

clean

BESY: The initial value of v for a fresh ciphertext is BEG .,

is an upper bound on the canonical embedding norm of the value ¢y — st-¢; (mod ¢;).
We have, using our above estimates for bounding the norm of random variables, for a
fresh ciphertext,

where our invariant is that v

Hco—sk ClHCBn_ H a'3+p'€)'U+p'€o+m—(a-v+p-el)-EEH§n
‘can

—Hm—f—p (e-v+ey—eq- 5{3)‘

< &+ p- (Jle - o2+ fleoll S+ [lea - st|5")
p-( 3¢Ww+“*i;Wﬂ
+6-0-\/o(m)+16-0- h-¢(m))
_ BBG&V

clean*

Bclean For a fresh ciphertext we need to upperbound the canonnical embedding of

W — €g, -m,namely v-e+eg+ ey -5t —¢,, , - m. We have

Hcan can Hcan can can

p-lml[ S+ [lv
Sp-\/3-¢m)

+(mﬁ¢(m+6-a-\/m+16"" D)

lw = gz, -m + [leoll e+ flex - s#llS



200 (B s otm) 8- /Aatm)

Note, compared to the Bg(favn we do not have a dependence on p in the latter terms, but
we still have a dependence on p in the first term.

BL\feTa'EU: For a fresh ciphertext we have, assuming p¢ is distributed as a uniformly ran-
dom element in A,

can

||c-5EHOO = H61 -pt-st+ (p-eg+m)- (1+p~f)”
<p-llev-all +ofleoll + [Imll
+07 leo - £+ 2 [lm- £

<16-p- o /Fg0m) +6-p -0 /5 +p- /3 g0m)
+16-p? -0 - V/h-d(m) +16-p* - \/h-p(m)/12

_ (16~p~(1+p)-o+5§-p2>-m
+p-(6-0+V3)-Vé(m)

can
oo
can

can

_ nNTRU
- Bclean :

BYASHE: For a fresh ciphertext we have that

w—¢€q,_, -m=(er-pltteg) -st—¢; ,-m
=e -p-gtey-st—eq_, -m.
Hence, we have

[l = g - mlIZ" < (Il + 2 [lex - gl

oo T

can

+leo (1+p- P
<p-V3-¢(m)+p-16-0-\/h-d(m)
+leol|Z" + 2+ [leo - 112

<p/3:0(m) +16-p o/ d(m)
+6-0-vo(m)+16-p-0-+/h-p(m)
=(6-0+p-V3)-\/o(m)+32-p-o-\/h-p(m)

__ pYASHE
_Bclean :

can



B Estimating B

scale

ScaIeBGV(c, Q): For correctness of the method presented we appeal to the proof of
Lemma 13 in the full version of [8]. Basically the idea is that we have that c) —s€-c; =
m+p-v+ Q- u. Now adding on §y — st - 61 to both sides makes no difference modulo
p, since §; = 0 (mod p). In addition it makes the left hand side divisible exactly by
P over the integers. When dividing by P we do not affect the output modulo p, since
P =1 (mod p).

If we let (79, 71) denote the rounding error ; = ¢, — ¢;/P = §;/P, then the
coefficients of 7; will behave as if they are drawn from a uniform distribution modulo
p. We then have that

o =st- 2 = |- (o —stocn a0 —st-a) [
o0
< g+ lm—st-n|
< 5+ [l + flst-m ]2

Thus we set

BESL =6-p-/d(m)/12 416 -p- \/¢(m) - h/12
—p- (V3 6(m) +8-/6(m) - h/3).

ScaIeFV(c7 Q): We assume that QQ = ¢; - P, note we make no assumption on P. To show
correctness we suppose ¢ decrypts correctly modulo @, i.e. if ¢ = ((co, ¢1),t,v) then
co—st-cio=m-Ag+w+r-Q

where

Q| Q g - P

and
Hw —€Q mH(C:;n <v.

The output ciphertext satisfies

ch—st-cf = ~(co+(5o—sﬁ-cl—5{%-61)

1
P
1
F~(m-AQ—l—w—&—r-qt-P—&—éo—s{%-(Sl)

1
:Aqt-m—&—r-qt—i—eqt~m+ﬁ(—eQ-m+w+5o—5E-61)
=A, m+r-qg+uw



As the left hand side is exactly divisible by P, and hence so must the right hand side
be. To bound the noise of the output ciphertext we need to bound

r can l _ _ _ can
|w eqt-m||oo—‘eqt~m+P( €g-m+w+do 5?-51> €q * M
1
:F-HU)—6Q~m+50—SE-51)HZZn
1 n n
< 5 (v 411002+ st 0 [)
g%-(u—i—P-\/3-¢(m)—|—16-P-\/h~¢(m)/12).
Thus

BEYe =/3-d(m) +8-\/h-¢(m)/3.

ScaleNTRY (¢, Q): For showing correctness we note that we have c-s¢ = m+p-v+Q-u.
Adding ¢ - st to both sides make no difference to the value modulo p, as § = 0 (mod p)
and in addition it makes the left hand side divisible by P. When dividing by P we do
not affect m (mod p) since P =1 (mod P).

All that remains is to establish the value of BNTRU. We let 7 denote the round-
ing error 7 = ¢ — ¢/P = 6/P. The coefficients of 7 will act like they are drawn
from a uniform distribution modulo p, since the coefficients of § are in the range
[-p-P/2,...,p- P/2]. We then have that

can can

F
© P
14

<
- P

14
F+||T~(1+p~f)||

o e A2
< 2460 VO(m)/12+ 167 /- 6(m) /12
%+p~ 3.¢(m)+%'p2'm

14
_ NTRU
- F + Bscale .

|- st (c-st+0-st)

o
||can

+||T’EE -

can

o0

can

IN

14
Yl

Scale™SME (¢, Q): To show correctness we assume that ¢ = (¢, ¢, /) decrypts correctly
modulo ), i.e. we have ¢ - st = m - Ag +w + 7 - ), where Ag is as above and

lw = eq-m| T <v.

‘We then have that

/

dst=—-(c-st+9-st)

ol -~



1
:F-(m-AQ—&—w—i-r-Q—&-&-s{’)

1
:m-Aqt+T~qt+m~eqt+F~(w+6-5{?—m-eQ)

=m-A, +7-q¢+uw.

To bound the noise of the output ciphertext we need to bound

can

1
||w’—m~ethc;n§ Hm-eqt—l—F(w—l-é-s{’—me)—m-eqt

S%-Hw+5~5é—m-eQ Zn
< o+ [t
< -l D))
<L o p o 1)
S%(VJFP-\/WJAG-P-;@W)
— 2 (VEom + S Vot )
= 5 + BUSLE,
on letting BYAYME = /3 ¢(m) + % p- /- g(m).

C Reduce Level

The Reducelevel” operations for our four schemes are presented in Fig. 7.

D Switch Key

D.1 BGV

In each of the variants we switch from a key s’ to a key st. The input ciphertext will
involve both keys; thus we aim a switch of the form

do — st - dq —I—SE/'dg—)Co—ﬁf'Cl.

For ease of reference we recap on the algorithms in Fig. 8.

SwitchKey First Variant: This is the bit-decomposition method generalised for an ar-
bitrary decomposition modulus 7". We first establish that the output ciphertext encrypts
the same message as the input ciphertext.

[ogr g+ 11 [logr g+ 11
co—stocr=do+ | D> dyibi| —di-st—st-| > dyi-a
=0 i=0



Reducelevel®V (((ch, c}),t', v), t): ReduceLevelN™RV((¢/, ¥/, 1), t):

— Ift’ < t then abort. — Ift’ < t then abort.
- If v > B then - If v > B then
% ¢ + Scale®®V(((cp, ch), t',v),t) % ¢+ Scale"TRY((¢/ ', v), 1)
— Else — Else
* co ¢ ¢y (mod gt). * ¢+ ¢ (mod qt).
* c1 + ci (mod q). * ¢+ (¢, t,v).
* ¢+ ((co,c1),t,v). - Return c.
— Return ¢.

Reducelevel™"E((¢/, ', 1), t):

Reducelevel™ (((ch,c)),t', v),t): — Ift’ < t then abort.
— If ¢’ < ¢ then abort. — ¢« Scale™SHE((¢/ ¢/ 1), 1)
— ¢+ Scale™ (((cy, ch), t',v),t) - Return c.
- Return c.

Fig. 7: The Reducelevel” Operations for BGV, FV, NTRU and YASHE.

SwitchKeyGen®%Y (st’, s¢, T'): SwitchKeyGen5®V (¢, 5¢):
. -—a+U .
— Fori=0to |l ] -14d @<= Uqp_,
or i 0 [ogT(qL 1)—‘ ) . ),

* a; Uy, .

x e + DGy, ,(0?).

x byt Ja;-st+p-e +T -s]q,_,.
— 50 ¢« (T, {as, by} g 117,

-b+a-st+p-e+ P -st]q ,.p.
€50 < (a,b).
Output £50.

— Output £s0. SwitchKeyBY (¢s, (0, ¢, 1)):
— Co [P -do+0b- dz]q,rp.
SwitchKeyB¢V (50, (0, ¢, v)): - ¢« [P-di+a-dog.p.
—Wiite d; in base 7 as do = - v « P-v+BEY(t).
Z{fg’T Wl T — Output Scale®®V (((co, 1), t, V'), gs -
- co do+2£:§T at]-1 d2,i-b; (mod gq¢). P).

c1 d1+Z£:§T o] -1 d2,:-a; (mod gqy).
V v+ BREY(t).
Output ((co, 1), t,v").

Fig. 8: The two variants of Key Switching for BGV.




[logr gt ]—1
=dy—dy-st+ > (do-bi—do-a;-st)

=0
[logr q:1—1 _
Zdo—dl'ﬁf-F Z (p-ei+TZ-5E/)-d27i
1=0
[ogr qi1—1
:do—d1'5E+d2'5E/+p' Z d2,i'ei-
=0

So assuming no wrap around the two ciphertexts encrypt the same value. We also have,
for the noise term, that

[logr q:]—1
leo — -ster]|" < [ldo — i -st+do- st 4p- S [da- e
1=0
16
< V—l-ﬁ'p' [IOgTQt—‘ 'J'(b(m)'T'

So we set
BGV

8
By (t) = 7 P ’VIOgT Qt-‘ co-p(m)-T.
Note, that the size of this term depends on the size of the current modulus ¢; as well as
T.

SwitchKey Second Variant: Our second variant uses the raising the modulus idea. A
large prime P is selected which is congruent to one modulo p. Note that unlike [9] the
keyswitch constant BE_S;’ (t) is the addition before the scaling takes place, thus it will
look larger than in [9].

Again, we establish that the output ciphertext encrypts the same message as the

input ciphertext. We look at the ciphertext before the scaling operation.

cofﬁf'cl:P~(d075E~d1)+b-d2—a-d2's{’
:P-(d0—53~d1)—|—d2-(p-e—i—P-sE/)
:P-(do—ﬁ?-dl+53,~d2)+p'€'d2.

So we will encrypt the same thing as long as the noise term p - e - do does not create
wrap around modulo P - ¢;. The large P is to cater for the large value of d3. We have

can

Jeo —st-cr]| T < Peldo —st-dy+st' - dof|S +p- e daf

oo

16
<P-v+—-p-q-0-¢p(m).

So we set

BESY (1) = % g d(m).



D.2 FV

In each of the variants we switch from a key s¢’ to a key s€. The input ciphertext will

involve both keys; thus we aim a switch of the form

do — st - dy +5E/-d2 —cog—s5t-cq.

The two variants are described in Fig. 9.

SwitchKeyGen® (st’, s¢, T):

— Fori=0to [logT(qul)—‘ —1do

* a; Uy, .

x e + DGy, _,(0?).

* by ai-stte + T st .
_ {’50<—(T7{a1, }UO%TQL 11— 1)
— Output £s0.

Switch Keyfv({’sb, (0,t,v)):

— Write do in base T as do =

Z[logT al=1 g i

V' v+ Bida(t).
Output ((co, c1),t, V).

SwitchKeyGen} (st/, s¢):

a+— Uy .

e+ DGy, (o o?).

b« [a-st+e+ P -st]q _,.p.
€50 < (a,b).

Output £50.

SwitchKeybY (((st, st') — s€), (0,¢,)):

co do+ZZ“°ffT 211 d2,:-b; (mod gq¢).
01 — d1+2“0gT ] -1 d2,i-a; (mod gy).

co < P-do +b-ds (mod q; - P).
¢ < P-di+a-d2 (mod g - P).
vV P V+BK5 2( )

Output ScaIeBGV(((co7 c1), V'), q -

P).

Fig.9: The two variants of Key Switching for FV.

SwitchKey First Variant: This is the bit-decomposition method generalised for an ar-
bitrary decomposition modulus ¢. Note that the (a;, b;) do not even “look like” encryp-
tions of T - s’ in the FV scheme. As before, we first establish that the output ciphertext
encrypts the same message as the input ciphertext. We write dy — d; - s¢ + dy - 5¢' =

m-Ag, Fw+r-q

[logr q:]—1
CO_5E'01:d0+ Z d2,i'bi
=0
[logy qe]—1

=do—dy-st+ D (dai-bs

i=0
[logr g:]1—1

[logr g:]—1
—d; - st —st- Z do; - a;
1=0
— dgﬂ‘ c Qg SE)

=dy—dy-st+ > (e +T -st') dy,

=0




[logp qe]—1
=dy—dy-st+dy-st + Z dai- e
i=0
[logr qr]1—1
=m- Ay +wtr-g+ Y dyi-e
i=0
=m-Ay +w' +7r-q.

So assuming no wrap around the two ciphertexts encrypt the same value. We also have,
for the noise term, that

[logr g:]—1

’ can _ can d can
[ = €q - ml < flw = ml 4 3 flda e
=0

<ot 25 fioga] -o- o)

So we set

BRA0) = - [logr 4] -0 o(m) - T

Note, that the size of this term depends on the size of the current modulus ¢; as well as
T.

SwitchKey Second Variant: Our second variant uses the raising the modulus idea
from [9], hence a large prime P is selected. Note as we are using a scale invariant
version we do not require P = 1 (mod p), and again note that (a,b) does not “look
like” an encryption of P - s, To establish that the output ciphertext encrypts the same
message as the input ciphertext, we write dg — dy - €+ d2 - 58 =m- Ay, +w+7 - q.
We look at the ciphertext before the scaling operation.

co—st-c;=P-(dp—st-dy)+b-dy—a-dy- st

(do —st-dy) +dy-(e+ P-st)

(do —st-dy + 5t -do) +e-da

(m-Ag, +w+r-q)te-do
=m-P-Ay, +P - w+P-r-qg+e-do

m-(Ap.g, +€g—P-€,)+P-w+P-r-q+e-dy
m-Ap.g, +w +1r" ¢

We have
w =(eg—P-e,) m+P-w+e-d,

and we know by our invariant that Hw —€q, - mHZ‘:n < v. This leads us to consider the
inequalities

can can

Hw’—ep‘qt -mHoo = HP-w—P-eqt -m+e~d2HOO



can

S P lw—eq-m|3 +le-daf ]
16
<Pp. a5 )
< v+ v gt - o - p(m)
So we set .
Brz/,z(t) = 7 Q-0 - p(m).
D.3 NTRU

Let ¢/ be a ciphertext with respect to the secret key s¢’. In both variants, we want to
obtain a ciphertext ¢ with respect to another secret key st such that both decrypt to the
same message. The two variants are described in Fig. 10.

SwitchKeyGen) TR (s¢', s¢): SwitchKeyGen) TRV (s¢’, s¢):
- Fori=0to [logT(qL,l)—‘ —1do - §',¢ < DG, (o).
) —a< [pt-s'+p-e + P-st],
* €0,i,€1,i < 'ngt(U ) . , — 50 «— a.
* b-(—[eu pE—i—p 601+T '5?]%. _ Output?sa.

— b0 « (T, {b;} [ c8m o111y
— Output £s0.
SwitchKeyYTRY (¢s, (¢, t, v)):
-d+a-c
SwitchKey)' ™V (£s0, (¢, t, )): - v Pyt BAE(0).
— Write cinbase T"as ¢ = Z!:(%T(q”ﬂ_l cit — Output Scale(c, t,').
T°.
- > bic
-V 1/+BQST1RU( t).
- Output (¢, t, V).

Fig. 10: The two variants of Key Switching for NTRU.

SwitchKey First Variant: Recall we have pt = [p- g/st],, (see KeyGen"V™RY) and c,
st’ are such that ¢ - 58 = m + p- e (mod ¢). we then see that

5E'C/ZZ(el,i'P?-l-p'eo,H-Ti-ﬁE/) ¢y - st

%

:c~s{3/-5{?+p-(Zel,i-g-ci—&-zeo,i'ci-s{?)
=(m+p-e)-1+p-f)+p- (Ze“ g- clJrZeoZ Ci- 5E>



=m+p- <€+f'(m+P'€)+Z€1,i'9'0i+260,i'0i'59)-
i i

Thus assuming Hs? el Hfon is suitably small we will obtain m upon decryption. All that
remains is to bound v/, by deriving an estimate for BRI RV (t),

Hsf-c’“izn: Hc-sé/-sﬂ—p- <Zel,i~g-ci+Zeo7i~ci~sé>

can

can

oo

< Hc-s{f’—l—p~c~sﬁ’-f

+Hp- (Zeu-g-cﬁZew-cﬁp-ZeM-ci-f)
<vtp- (G-V-Z\/fb+40- [mg;(qt)] -T-a-gb(r:z)-\/w
+16- [logT(qt)W T -0-¢(m)-/1/12
+40-p- [logr(a) | - 7o~ 6(m) - \/h/12)
+ 22 (140) [logg@)| T+ 6m) - v
+ = [torr(a)] - T om)).

can

o0

Sv+p~(6-y-\/ﬁ

So we let

B0 =p- (60 Vit T (1) [lozg(a)] - T-a-o(m)- VF

+ % : [IOgT(Qtﬂ T-o- ¢(m))~

Note that BV (t) depends on v, which is not the case for the BGV and FV schemes.

SwitchKey Second Variant: Since c decrypts under s, let c - s¢' = m +p-e. We
look at the ciphertext before the scaling operation, and see

dst=(pt-s'+p-e+P-st') c-st
=pt-s'-st-ct(p-e€+P-st')-c-(1+p-f)
:P.EE/.c+p.g.8/.c+p.e/.c+p2.e/.c.f_‘_p.P.sE/.c.f

Thus we will obtain, assuming no wrap around, the “message” P - m = m modulo p.
can
To guarantee no wrap around we need to bound Hc’ . 5?”

HC/‘5E’|ZZn:HP-ﬁE/-C_f_p.g.s/.c+p.e/.c+p2.e/.c.f_i_p.P.gE/.C.f
<SPcst|Z +p-lg-s S +

oo o0

o}

can

oo
‘can

o el e fIT

oo

p. ‘e/.c



can

fpepe et e g
<P-v+40-p-q -0-dp(m)-\/h/12
8
+%-p-qt-o-¢(m)
+40-p* g -0 - ¢(m) - /h/12
+6-p-P-v-vVh
=P-v+40-p-(1+p)-q -0 p(m)-/h/12
+i-p-qt-a-¢>(m)
V3
+6-p-P-v-Vh.

Thus we set

BRiso(t) = 40-p-(1+p>-qt-a-¢<m>-\/h/12+%-p~qt‘a-¢<m>+6~p-P~u-¢E.

Note again that B, X" (t) depends on v.

D4 YASHE

Again let ¢ be a ciphertext with respect to the secret key s¢’. In both variants, we want
to obtain a ciphertext ¢ with respect to another secret key s€ such that both decrypt to
the same message. The two variants are described in Fig. 11.

SwitchKeyGenYASHE (5t 5t): SwitchKeyGeny SHE (st 5¢):

. - DG, (o).
— Fori=0t [1 _ W—ld €0, €1 <= DG
ore o |logr(gz-1) © - a<+ [pt-e1+eo+ P-st'lo.
* €0,i,€1,5 (—ngt(oj).

S — €50 < a.
* by« [e1;-pt+eo1 + T st]y,. — Output £sD.
— t80 + (T, {b;} oo 011y
— Output £50.
P SwitchKey YA (50, (¢, t, 1/)):
-V v+ BISHE

SwitchKeyAS"E(¢50, ¢, t, v): —d+a-c

-V v+ BEE®). ' - ¢/ « Scale(d, P, ;).

— Write cin base T' as Z!:(%T(q”ﬂ_l ci-T". - Output ¢ = (', /', t).

- Setd = ZZ b; - ¢;.
— Output ¢ = (¢, t,0).

Fig. 11: The two variants of Key Switching for YASHE.




SwitchKey First variant: Since we start with a ciphertext ¢ which decrypts under s¢’,
letc- st = A, -m+w+r - g. Then notice that

stoc = (er;-pttegi+ T st))-c;-st
:pZ~Zel,i-g-ci+Zeo,i-ci-5?—1—6-5?'-5?
i i
:p~Zel,i-g-ci—l—Zeo,i-ci-sk—kc-sﬁ'-(l—&-p-f)
:p~Zeu~g~ci+Zeo,i~Ci~EE+(Aqt~m+w+r~qt)

+p-f (g -mFw+r-q)
:p'zel,i'g'ci+zeo,i'Ci'ﬁé"_(AQt'm+w+r'qt)

_p.f.m.eqt_p.f.m.eqt_'_p.f.(w_i'_r.qt)
=4, m+uw +7r" - q,

where we have w’ =p-> . e1;-g-c;+Y ;e0;-¢i-st—p-f-m-eq, +w-(1+p-f)
andr =r-(1+p-f)+p-f-m. We therefore want to bound

Hw/_E(It 'mHZZn < Hp'zeu'g'CH'ZGO,i'Ci'EE—P'f‘m'EQnH(C:
[

?
can

+lw- (Lt f) = eq ml ]

can
S ||w - qu« ’ m”oo

+p- Hzel,i'g'cinzn
i

+ Hzeo,i'ci : (1+pf)HZn

£ mllZ
D €q, mi|

+p | f w3

can
S ||’lU - EQi ’ m”oo

+p- H Zel,i 'g'CiH:in
i
D eoi-eall S

1
+p- HZf'eo,i 'CiHZn
i

||CEIFI

+p-Hf~m
+p- Hf'(w_eth +€Qt)||(;:>n
<v+40-p-[logp(q)]-T -0 -¢(m)-/h/12

o0



+16 - [logr(q:)] - @ 1/12

+40-p- [logr(q)] T -0 - ¢m) Vh/12

+16 - p* - Vh - ¢(m)/12

e |[f - (w—eg)]|

- |1feall

gw%p-ﬂogﬂqtﬂ-T-o—-aﬁ(m)W

8
\/§
8
\/g p” - /h-p(m)

+6-p-v-vVh
+6'p'\/ﬁ

vt S (1459 VE) - [logr ()] - T+ (m)

8 2
+ﬁ'p “Vh-g(m)
+6-p-(v+1)-Vh

Let BYAHE(t) = S5+ (1459 VR) - [logr(an)]- T+ 6(m) + 35 -7+ /B 6(m) +

6-p- (v+ 1) - vh. Note that as in the previous section, this depends on v.

[logr(q)] - T -0 - ¢p(m)

SwitchKey Second Variant: Here again we use the idea of raising the modulus to

some large P, then use the Scale function at the end of the operation. We let Q = ¢; - P
iP

and recall that Ag = L%J = % —eq == —eq =P (A +e,) —€g. We

first check that the output decrypts correctly. Since ¢ decrypts under s’, we have that

c-st'=A, mt+w+r-q.

d-st=a-c-st
=st-(pt-e;+eg+P-st)-c
=P-st-st' -c+(st-eg+p-ea-g)-c
=P-st- (A, m+w+r-q)+(st-eg+p-e2-g)-c
=P-st- A, -m+P-st-(w+r-q)+(st-eg+p-ex-g)-c
=P-st-m-A,, +P-st-(w+r-q)+(st-eg+p-ex-g)-c
=Q+p-f) m-P-Ay,+P -st-(w+r-q)+(st-eg+p-e2-g)-c
=Ag-m+m-(eg—P-€g,)+p-f-m-P-A,

+P-st-(w+r-q)+(st-eg+p-ex-g)-c

=Ag-m+m-(eg—P-€,)+p-f-m-P-A,



+P-1+p-f) - (w+r-q)+(st-eg+p-ea-g)-c
=Ag mtm (cq=Preg)tpefome P ()

+P-(wHr-qg)+p-f-(wt+r-g)+(st-e+p-ex-g)-c
=Ag-m+m-(eg—P-€,)+f-m-Q—p-f-m-P-¢,
+P-(wHr-qg)+p-f-(w+r-q)+(st-eg+p-e2-g)-c
=Ag-m+uw +1r-Q,
where w’ =m-(eg—P-¢,,)—p-P-€g,- [f-m+P-w+p-f-w+(st-eg+p-ez-g)-c
and v = r+r-p-f+ f-m. Thus we indeed have a ciphertext modulo @) which

correctly decrypts to the initial message m, so long as the noise is not too big. We know
that ||w —m - eg, Hc;n < v and so we consider

[ = -l < =p P fomtpe fowt (ot cotpeang) el

can

+||Prw+m-(eg—P-eg)—eq-m||

oo
<llp-Peeq - fm||
o fo(w =g mteq - m)|[ T
+ @ +p-f) el
+p-flex-g e
—I—HP-w—I—m-eQ—P-qut—eQ-mHZn

S Hp.P.eq .f.m”can

o f(w—eq-m)|2

o f e m)||S

+|A+p-f)-eo-c|

+pflez-g-el

+ P lw—mee, |
<Pp-|lfom|

can

+pov- | f][ 2
+p7 || f-m)[| 2

can
+[leo -]
o0

can

oo

- [feo el
can

+p-lea-g-cl|
+ P v

<16-P-p* - \/h-¢(m)/12

+6-p-v-vVh

+16-p% - /R - g(m)/12



+16-q -0 - ¢(m)/V12
+40-p-q -o-¢p(m)-/h/12
+40-p-q-0o-d(m)-+/h/12
+P-v

-P-p*-\/h-¢(m)
+6-p-1/-\/ﬁ

8 2
o5t Vi am)

8
+%-qt~a~¢(m)

<8
V3

Therefore, we set BiasE(t) = % P-p*-\V/h-d(m)+6-p-v-Vh+ % p*-
h - ¢(m) + % qi -0 p(m) + % -p-q; - 0 - ¢(m) - Vh. Again note this depends
on the previous noise bound v.

E Addition and Multiplication

The homomorphic addition method for all schemes is given in Fig. 12, whilst those for
multiplication are given in Fig. 13.

E1 BGV

These methods are standard. The fact that the output ciphertext satisfies ||co — st -
1 szn < v in both cases is obvious.

E2 FV

To see that the output v is correct for the addition operation, we write ¢; o — s¢ - ¢; 1 =
Ay -my+w;+r;-qrandcy —st-cp = Ay, -m+w+r- g, where m; € Ay, and
write m = [mg + m1], = mo + mq + p - 7. Then, decrypting ¢ results in the taking
the value (modulo ¢;)
Ag, - (mo+mi)+wo+wi =4y, - (m—p-re) +wo+wr  (mod g¢)
=Ay -mAwyF+wi —p-re- Ay,

:AQt'm+w0+w1_p'ra'(%_qus>

=Ay, -m4wy+w+p-rq-€, (modgq)



AddBY (¢o, ¢1): Add™Y (co, ¢1):

— t = min to,t1). — t = min to,h).

- ReduceLeveIBGV(ci,t) for ¢ = - ReduceLeveIFV(ci,t) for ¢ =
1,2. 1,2.

— Write ¢; = (Ci’o, ci1,t, l/i). — Write ¢; = (Cz‘ﬁo, ci1,t, l/i).

— ¢o ¢ ¢o,0 + c1,0 (mod g¢). - ¢o ¢ ¢o,0 + c1,0 (mod g¢).

- c1 4 co1+c11 (mod gy). - c1 4 co1+c11 (mod g).

A X o S - Vv v+

— Output ((co, c1),t,v). — Output ¢ = ((co, c1),t, V).

Add"TRY(¢q, ¢1): Add"ASME (¢, ¢1):

— t = min to,tl). — t = min to,tl).

- ¢ + ReducelevelN™Y(¢;, t) for i = - ¢; + Reducelevel™E(¢; t) fori =
1,2. 1,2.

— Write ¢; = (Ci7 t, l/i). — Write ¢; = (Ci7 t, l/i).

- c+co+ e (mod g). - c+co+ e (mod g).

- V<<Vt - V<<Vt

— Output (¢, t, v). - Output ¢ = (¢, t,v).

Fig. 12: The Addition Methods for BGV, FV, NTRU and YASHE.

=4, m+w

multiplying the result by p/g, and rounding. Thus w = wo + w1 +p- rq - €, and so the
v value on ¢ is an upper bound on

can ’can

Hw—eqt-mHoo :Hwo—&—wl—&—p-ra~eqt—eqt-(mo—i—ml—&—p-ra)’oo

can can

< o — e - |+ [an g, -

oo oo

<vy+ 1.

For the multiplication operation the triple 0 = (dg, d1, d2) decrypts via the equation
[3 [do — st dy + st2 - dg]th
qt
which is why we need the SwitchKey operation. To establish correctness, and the bound
on v, we write [¢; 0 —5¢-¢; 1], = Aq, - mi+w;+7;-¢;. Recall that Hwi—eqt~mi’|zn <y,
which means that
can can can
lwill &7 < Nlwi = €q, - mill 7+ lleq - mall S
<vi+p- V3¢(m):Bw1
Note that this means that

can

1
|2 = H; (cio —st-cin — Ag, - mi —wy) .




Mult® (¢o, ¢1):
— t = min t07t1).
- ¢; + Reducelevel®®V(c;,t) for i =
1,2.
— Write ¢; = (Ciyo,CiJ,t,l/i).
- dp €0,0 * C1,0-
— dy < co0-c1,1+ o1 Ci0-
- do +— Co,1 * C1,1-
- 0« (do,dl,dz).
- U FBGV(VO, V) =vp- 1.
- ¢ + SwitchKey®¢Y (¢s0, (0, t,v)).
— ¢ + Reducelevel®V(c,t — 1).

MultNTRY (¢o, ¢1):
~ = t = min(to, t1).
- ¢ + ReducelevelN™RY(¢;, t) for i =
1,2.
Write ¢; = (¢, ¢, v5).
—d<co-c.
-V FNTRU(VO,Vl) =19 V1.
¢ < SwitchKey"TRY(¢s0, (d, t, v)).
— ¢+ Reducelevel"™®V (¢, ¢t — 1).

MU|tFV(Co,Cl)Z
— t = min t07t1).
- ¢; + Reducelevel™ (¢;,t) fori =1, 2.
— Write ¢; = (Ci’o,ciyl,t,lji).
- d{{ < q% . (Co}o . Cl,O)-
- di « L (co0 11 +coa-cio)
- d/g/ < q% . (00,1 . 01,1).
- do [y | b [a] dy  [a).
- do [d6]Qt:d1 <~ [dll]qmdQ <~ [dIQ]qr
- 0+ (do,dl,dg).
-V FFV(VO,Vl).
— ¢ + SwitchKey"V (¢s0, (0,t,1)).
- ¢ + Reducelevel™ (c,t — 1).

Mult"™ S (¢o, ¢1):
— t = min t07t1).
- ¢; < ReducelLevel™HE (¢, ) fori = 1,2.
— Write ¢; = (s, ¢, 5).
- d’ q% . (Co . 01).
—d <« |d"].
- d<+ [d/]Qt'
— v FYSHE( ).
- ¢ + SwitchKey!**"E(¢52), (d, t, v)).
— ¢ < ReduceLevel™HE(¢ ¢ — 1),

Fig. 13: The Multiplication Methods for BGV, FV, NTRU and YASHE.




< HCzOHcan/qt + HﬁE ciall 2 /ae + mall 2o+ lwi — eq, -ma| /e
3 o(m +— Vo(m h+\/3-¢(m)+g—
t
8 v
=2-4/3 — h+ —
¢(m)+\/§ d(m) ”
— B,,.

We also write d; = d/ + ¢;. Note that

Hao-al-se+-52-532H“" < \/3-¢(Tn)+—12-\/¢(nl)-h/12—%40-]1-\/¢(nw/12
=/3-6(m)+2-/3-¢(m)-h+20-h-/¢(

— B;.

We set r, = (69 — s€ - &1 + s¢% . d2) and [m], = [mo - m1lp = mo - mq — p- 1y We
can take ||, || < 16-p- p(m)/12=4-p- $(m)/3.

We now need to examine the value of dy — s€ - dq + 582 - dy. We note that as we
only take the result modulo ¢; we might as well examine dj, — st - d} + 5t - d},. We then
have that,

d(] — st - dll +5€2 . d/2 = qg . (CO,O +C1,0 — st - (Co’o “C1,1 + Co,1 - C1’0) +5€2 +Co,1 01’1>
t

+(50—5E-61+5{?2-52),

= qﬁ : (Co,o *5’3'00,1) : (01,0 *53‘01,1> + Tas
t
qu'(ﬂqt'mo-f'wo-f'?"o%]t) : (Aqt'm1+w1+7"1'%s>
t
+ Tq,
:B'(A§t~mo-m1
qt
+ Ag, - (Mo - (w1 + 71+ g) +ma - (wo + 70 qt))
+ (wo + 70 - qt) - (w1 471 - )) +rq,
:B.(Aqt.@.mo.ml_Aqt.eqt.mo.ml
qt p

+ (% _eq) . (mo (wi 471 q)

+m1~(wo+ro-qt))
+ (wo + 70 - q¢) - (w1 +7"1'(Jt)) + 7ra,
p
:Aqt'[m]p"‘Aqt 'p'Tm_a'Aqt 'eqt'[m]p

p
—_ . Aqt . eqt . p . T‘m
qt



+(mo-(w1+r1~qt)+m1~(wo+ro-qt))
Gt'

—qu'(mO'(w1+7“1'Qt)+m1‘(wo+7"0'%)>
t

+q£~w0ow1+p~(ro~w1+r1~wg)
t

+pq 0T+ Te

Et t
=Aq, - [mlp+ Ag, - p- (Tm_q'[m}p_'p'rm>
at at

+qt'(m0'7“1+m1'r0+p'7“0'7“1)
+mg - w1 +my - wo +p-(ro-wy + 11 - wo)

p
—|—;~(wo~w1—eqt~(m0-w1—|—m1-wo)>
t

_fqt'(P'm0'ﬁ+p'ml'7"o>+7’a

= Ayl (o= ea) (1 = Sl

qt qt
+qt-(mo-r1+m1-ro+p-ro~r1)

+mo w1 +my-wo+p-(ro-wi 471 wo)

+q£-(wo~w1—eqt~(mo~w1+m1-wo))
t

—eqt-(p-mo-r1+p-m1-r0>+ra
=Ay, - [mlp+qe-Tm —€q - [Mlp =2 €4, P

p 2 p
+ =€ - mlp+ —
a " iy qt

+Qt'(m0'7’1+m1'7’0+p'7‘0'7“1)

2
‘D eqt *Tm

+mo - w1 +my - wo +p- (o w1+ 71 wWo)
p

+q—~(wO'wl—eqt'(m0~w1+m1owo)>
t

—th'p'(mo-ﬁ-&-ml-ro)-&-ra.

We know the expression on the right hand side is integral, and we can take the expres-
sion on the left modulo ¢;. Thus we are interested in bounding the canonical norm of
the term

p p
'[m]p:_Q'efh'[m]p_2'efh'p'rm+7'€3t'[m]p+7.p.6§t'rm

w— €
! qt qt

t

+mg-wy +my-we+p-(ro-wy + 11 - wp)

+q£~(wo-w1—6qt-(mo-w1+m1-wo))
t



_eq.p.(mo.rl+m1.r0>+ra

We obtain a bound of, recalling ¢, < 1,

ca

can can

n
S

oo

Hw_eih'[m]? oo +2pHTmH00

p p?
T A

can
)

+S+p«T+q£(Bwo~Bw1+p~5)+p2~U+H7’aH
t

<2p /B o0m) + 5 9 olm)
P P’
Jra‘ 3'¢(m)+3_7qt'¢(m)

+S+p.T+q£~(BwO.Bwl+p~S)+p2~U+B5
t
:FFV(Z/Q,Vl).
where
HmO swy +my 'w0||(;zn < (Bwl +sz) D \/W: S,
||7"0 SwWp A+ wOHZZn < Bwl 'Bro + 'Bwo 'B7'1 = T:
HTO M1+ 'mOH(;Zn < (BT'O +B7'1) P m: U.

Notice that this new value of v grows as vg - 11 /¢, in terms of the input noise values.

E.3 NTRU

Recall for NTRU that our invariant on v is ||c . 5{’”2" < wv. It is immediate that the
output noise level satisfies the requied inequality for the addition and multiplication
operations, and that both operations will be correct if the noise remains within the de-
cryption bound.

E4 YASHE

To see that v is correct for addition, write ¢; - s¢ = Ay, - m; +w; +7; - ¢ and ¢ - s€ =
Ag, -m+w+7-q, where m; € A, and write m = [mg +m1], = mo+mi +p-r,.
Then, decrypting ¢ results in the taking the value (modulo ¢;) of

Ag, - (mo +ma) +wo +wy =Ag, - (M —p-re) +wo+wr  (mod g¢)
=A, -mAwyF+wi —p-re- Qg

:Aqt-m—kvo—&—vl—p-ra-(%—eqt> (mod ¢¢)

=A, -m4wo+wi+p-Te- €,



=24, -m+w,

multiplying the result by p/g¢;, and rounding. Thus w = wg + w1 + p - 74 - €, and so
the v value on ¢ is a correct upper bound since

Hcan

|lw = €q, -m |lwo + w1 +p-7a-€q —€q - (Mg +my+p- ra)Hc;n

can can

< Jlwo = g, -mo| 5"+ flwn = eq, - mal|

<vg+uvs =v.

We now turn to multiplication for YASHE. We write st - ¢; = Ag, - my + w; + 15 - ¢4
Recall that le — €q " My ||:;n < v;, which means that

il < vi+p /3 6(m) = Bu,.

Note that this means that

can
—H* 5? le ,~mifwi)
oo
< st cill 27/ ae + [[mal |2 /0 + [Jwi = e, - mal| /g
< el /o +p ||CL me/Qt+||mi||ca"/P+||wz'— cmil| 2 /a

3~¢(m)+ﬁ-p-\/¢ )-h++/3-¢ +7
8 V;
3'¢(m)+ﬁ'p'\/¢(m)'h+;
= B,,.
We write d’ = d" + §, and note that
8- 5|27 < [l +2-p- ||5 I 228 2
40
3-¢(m) +ﬁ'p'\/ m)-h+ﬁ-p2~h~\/¢(m)
16 20
= VEBm) + e Nalm) B+ b /3]

— B;.

We set 7, = & - s¢% and [m], = [mg - m1], = [mol, - [m1]p — P - 7m, Where we can
assume that ||r,, ||~ < 16 - p - ¢(m)/12. We now examine the value of st - d, as we
take the result modulo ¢, we might as well restrict to examining s¢* - d’.

562 . d’—q (ge co~cl)+592-6
t

:%-(5E~co)-<5?'01)+7“a



:*‘(Aqt'mO‘i‘wO“l‘TO'Qt)'(Aqt'm0+w0+TO'Qt)+Ta

The analysis now continues exactly as for the case of the FV scheme, bar the different
definitions for B,, and Bs. Hence we obtain

can can

can
o=t <2+ Il 2+ 22 [l |

g. can ﬁ can
T O e

oo

+S+p~T+§(BwO~Bwl+p~S)+p2~U+||raHZZn7

<2:-p- 3~¢>(m)+?p2~¢(m)
p? P’
T 3‘¢(m)+3.7qt‘¢(m)

+S+p~T+§~(BwO-Bw1+p~S)+p2~U+B(;

_ FYASHE(Vo, V1)7

where

[[mo - wy +my - wo|| T < (Buy + Buy) -p- /3 ¢(m) = S,
HTO “wy+ Ty wOH(;Zn < Bw1 : Bro + 'Bwo ) Brl = T7

|ro - m1 + 11 -mOHZaon < (Bry + Br,) - p-+/3-¢(m) =U.

Again, notice that this new value of v grows as v - /1 /¢y, in terms of the input noise
values.

E.5 To Scale or Not to Scale

In this section we examine parameter setting for the scale invariant schemes FV and
YASHE in the situation where we do not perform a scale operation, and hence do not
have a chain of moduli qq, ..., qr—1. The ciphertexts are always defined with respect
to a single modulus ¢qr,,, which may of course be a product of primes as before for
implementation reasons.

At the start of an encryption we have as input a ciphertext with noise By = B,
we perform ( additions to produce a ciphertext with noise ( - By. We then perform a
multiplication to produce something with noise

F*(¢ - Bo,C - Bo) + Bgg (L — 1) First variant of SwitchKey,

B, =
F*(¢- By,( - Bo) + M + B! Second variant of SwitchKey.

scale



Then for the next L —2 levels we repeat the procedure; we add ¢ times and then perform
a multiplication, so that at a bound on the noise after performing a multiplication at
multiplicative depth i is

F*(¢ - Bi,¢ - Bi) + Bpg (L — 1) First variant of SwitchKey,

B; =
« Bieo(L-1) % : .
F*(¢- B, (- By) + —*—+B Second variant of SwitchKey.

scale

At this point we need to be able to still decrypt the ciphertext, hence we require

2-¢p-Brp_1 < {qL*lJ-

p

Combined with the equations for security in the main body, this gives us a search space
for determining parameters.

E.6 Example Parameters

We outline our example parameters in the following tables; all figures are to be taken
as approximate values in any implementation. For the FV and YASHE schemes the
line denoted FV-NOP and YASHE-NOP is for the case where ReducelLevel is a NOP
command, and hence we keep all ciphertexts at the top level, and make no use of a chain
of levels with modulus switching between them.

L=2,p=2,h =64,k =80,( =8,¢,, =1.3,0 =1.3

Key log, T Sizes (kBytes)

Switch |¢(m)|== log, primes or Extended
Scheme |Variant| =~ |pop; pr-1 |log,qr—1 log, P|Ciphertext Key Key
BGV 1 793 |14 - 31 45 26 8 8 23
BGV 2 |1159(15 - 30 45 20 12 12 31
FV 1 610 (14 - 21 35 14 5 5 18
FV-NOP 1 592 | - - - 35 15 5 5 17
FV 2 |1067(14 - 21 35 25 9 9 24
FV-NOP 2 976 | - - - 35 20 8 8 21
NTRU 1 884 |15 - 35 50 25 5 5 16
NTRU 2 |1342{15 - 35 50 25 8 8 32
YASHE 1 793 |15 - 30 45 19 4 4 14
YASHE-NOP| 1 793 | - - - 45 20 4 4 14
YASHE 2 |1159(15 - 25 40 25 5 5 24
YASHE-NOP| 2 [1159|- - - 40 25 5 5 24

L=2,p=101,h =64,k =80,( =8,¢,, =1.3,0 =1.3



Key log, T Sizes (kBytes)

Switch |¢p(m)|~ log, primes or Extended
Scheme |Variant| =~ |po p; pr—1 [|log,qr—1 log, P|Ciphertext Key Key
BGV 1 976 120 - 34 55 29 13 13 37
BGV 2 |1525{20 - 35 55 30 20 20 52
FV 1 884 120 - 30 50 17 10 10 42
FV-NOP 1 884 | - - - 50 18 10 10 40
FV 2 |1525)21 - 29 50 35 18 18 50
FV-NOP 2 |1525) - - - 50 35 18 18 50
NTRU 1 |1433]27 - 53 80 43 13 13 40
NTRU 2 ]2165]29 - 51 80 40 21 21 84
YASHE 1 1342127 - 48 75 37 12 12 37
YASHE-NOP| 1 [1342|- - - 75 38 12 12 36
YASHE 2 1799|127 - 33 60 40 13 13 57
YASHE-NOP| 2 [1799|- - - 60 40 13 13 57

L=2p~2%2 h=64k=80,(=8cn=130=1.3

Key logy T Sizes (kBytes)
Switch |¢(m)|== log, primes or Extended

Scheme |Variant| =~ |pop; pr-1 |log,qr—1 log, P|Ciphertext Key Key
BGV 1 |1982]46 - 64 110 58 53 53 154
BGV 2 |2988148 - 62 110 55 80 80 200
FV 1 |2714|46 - 104 150 64 99 99 332
FV-NOP 1 |2714] - - - 150 65 99 99 328
FvV 2 1436046 - 104 150 90 159 159 415
FV-NOP 2 |4268| - - - 150 85 156 156 401
NTRU 1 |3720(78 - 127 205 116 93 93 257
NTRU 2 |5549|78 - 127 205 100 138 138 552
YASHE 1 [3994|78 - 142 220 129 107 107 290
YASHE-NOP| 1 [3994|- - - 220 130 107 107 288
YASHE 2 |5000(79 - 106 185 90 112 112 448
YASHE-NOP| 2 |5000| - - - 185 90 112 112 448

L=2p~2% h=64,k=80,(=8,¢,, =1.3,0 =1.3




Key logy T’ Sizes (kBytes)

Switch | ¢(m) |~ log, primes or Extended
Scheme |Variant| ~ |po p; pr—1 |logy qr—1 logy P|Ciphertext Key Key
BGV 1 3171 |78 - 97 175 91 135 135 396
BGV 2 |4726|79 - 96 175 85 201 201 501
FV 1 509178 - 202 280 131 348 348 1091
FV-NOP 1 5091 - - - 280 131 348 348 1091
FV 2 |7835]79 - 201 280 150 535 535 1358
FV-NOP 2 |7835) - - - 280 150 535 535 1358
NTRU 1 | 6646 (142 - 223 365 211 296 296 808
NTRU 2 |10122(147 - 223 370 185 457 457 1828
YASHE 1 7561 (143 - 272 415 260 383 383 994
YASHE-NOP| 1 7561 | - - - 415 261 383 383 992
YASHE 2 19390 (144 - 201 345 170 395 395 1576
YASHE-NOP| 2 (9390| - - - 345 170 395 395 1576

L=2p~228 h=64,k=280,(=8,c,=130c=13

Key logy T’ Sizes (kBytes)

Switch | ¢(m) |~ log, primes or Extended
Scheme |Variant| =~ |py p; pr—1 |logy qr—1 logy P|Ciphertext Key Key
BGV 1 |5549 (142 - 163 305 157 413 413 1215
BGV 2 8292|144 - 161 305 150 617 617 1538
FV 1 9847 143 - 397 540 262 1298 1298 3973
FV-NOP 1 9756 | - - - 535 255 1274 1274 3947
FvV 2 14969145 - 395 540 280 1973 1973 4970
FV-NOP 2 (14969 - - - 540 280 1973 1973 4970
NTRU 1 |12591(271 - 419 690 408 1060 1060 2854
NTRU 2 |18901(274 - 416 690 345 1592 1592 6368
YASHE 1 [14603]271 - 529 800 516 1426 1426 3637
YASHE-NOP| 1 [14603| - - - 800 517 1426 1426 3632
YASHE 2 |18170(272 - 393 665 330 1474 1474 5888
YASHE-NOP| 2 |18170| - - - 665 330 1474 1474 5888

L=2p~2%% h=64,k=80,(=8,¢c,, =1.3,0 =1.3




Key logy T’ Sizes (kBytes)
Switch | ¢(m) |~ log, primes or Extended

Scheme |Variant| ~ |po p; pr—1 |logy qr—1 logy P|Ciphertext Key Key
BGV 1 |10213]271 - 289 560 282 1396 1396 4169
BGV 2 |15335271 - 289 560 280 2096 2096 5241
FV 1 |19176]271 - 779 1050 515 4915 4915 14938
FV-NOP 1 |19176| - - - 1050 515 4915 4915 14938
FV 2 |29053|272 778 1050 540 7447 7447 18725
FV-NOP 2 |28962| - - - 1050 535 7424 7424 18631
NTRU 1 |24297|527 - 803 1330 791 3944 3944 10577
NTRU 2 |36461|530 - 800 1330 665 5919 5919 23678
YASHE 1 |28687|527 - 1043 1570 1030 | 5497 5497 13878
YASHE-NOP| 1 |28687| - - - 1570 1030 | 5497 5497 13878
YASHE 2 |35912(532 - 778 1310 655 5742 5742 22971
YASHE-NOP| 2 [35729| - - - 1305 650 5691 5691 22744

L=5p=2h=64,k =280, =8,¢m = 1.3,0 = 1.3

Key logy T’ Sizes (kBytes)

Switch [¢(m)| = log, primes or Extended
Scheme |Variant| =~ |p9 p; pr—1|logsqr_1 logy P|Ciphertext Key Key
BGV 1 |1890(15 20 30 105 10 48 48 557
BGV 2 |3537|16 21 31 110 85 94 94 263
FV 1 161614 18 22 90 9 35 35 390
FV-NOP 11525 - - - 85 16 31 31 199
FV 2 |3079(15 18 26 95 75 71 71 199
FV-NOP 2 |2896| - - - 85 75 60 60 173
NTRU 1 |2439(17 28 34 135 14 40 40 427
NTRU 2 |4543|16 28 35 135 115 74 74 352
YASHE 1 |2165(1625,26 28 120 11 31 31 377
YASHE-NOP| 1 |2073|- - - 115 16 29 29 238
YASHE 2 |3262(16 19 22 95 85 37 37 181
YASHE-NOP| 2 [3079| - - - 90 80 33 33 161

L=5p=101,h =64,k =80,( =8,¢,, =1.3,0 =1.3




Key log, T Sizes (kBytes)

Switch |¢p(m)|~ log, primes or Extended
Scheme |Variant| =~ |po p; pr—1 |log,qr—1 log, P|Ciphertext Key Key
BGV 1 |2439]2126 36 135 17 80 80 718
BGV 2 |4451(2226 40 140 105 152 152 418
FV 1 |2439(2228 29 135 12 80 80 984
FV-NOP 1 |2073| - - - 115 16 58 58 476
FV 2 |4634|2128 30 135 120 152 152 441
FV-NOP 2 13994 - - - 120 100 117 117 331
NTRU 1 |3902(2746 50 215 33 102 102 769
NTRU 2 |7286|3146 51 220 180 195 195 907
YASHE 1 |3720(2744 46 205 31 93 93 708
YASHE-NOP| 1 [3537|- - - 195 33 84 84 581
YASHE 2 5274|2831 34 155 135 99 99 473
YASHE-NOP| 2 |5000| - - - 150 125 91 91 427

L=5p~23 h=

64,k = 80,( = 8,¢;m = 1.3,0 = 1.3

Key logy T' Sizes (kBytes)

Switch|¢(m) | = log, primes or Extended
Scheme |Variant| =~ |pg p; pr—1|logs qr—1 log, P|Ciphertext Key Key
BGV 1 |4817 |47 52 62 265 43 311 311 2232
BGV 2 | 8750 48 52 66 270 210 576 576 1602
FV 1 8567 |48 105,106 106 | 470 64 983 983 8202
FV-NOP 1 |5366] - - - 295 66 386 386 2113
FvV 2 |15883147 105 108 470 400 1822 1822 5196
FV-NOP 2 19664 | - - - 295 235 696 696 1946
NTRU 1 (1048779 123 127 575 110 736 736 4583
NTRU 2 |18901(81 122 128 575 460 1326 1326 6102
YASHE 1 |11951(80 143, 144 144 655 130 955 955 5770
YASHE-NOP| 1 |10487| - - - 575 130 736 736 3991
YASHE 2 |16615[80 105 105 500 410 1014 1014 4705
YASHE-NOP| 2 |13871] - - - 425 335 719 719 3293

L=5p~2% h=64,k=80,(=8,¢,, =1.3,0 =1.3




Key log, T Sizes (kBytes)
Switch|¢(m)| = log, primes or Extended

Scheme |Variant| =~ | pg pi  pr—1|log, qr—1 logy P|Ciphertext Key Key
BGV 1 |7835]79 85,86 95 430 77 822 822 5415
BGV 2 |14146]79 85 101 435 340 1502 1502 4178
FV 1 |16158] 79 201,202 202 885 126 3491 3491 28012
FV-NOP 1 |9481 ] - - - 520 129 1203 1203 6055
FV 2 |30151182 202 202 890 760 6551 6551 18697
FV-NOP 2 |16706] - - - 525 390 2141 2141 5873
NTRU 1 |18718(144 219 224 | 1025 206 2342 2342 13995
NTRU 2 |33626(144 219 224 | 1025 815 4207 4207 19312
YASHE 1 [22468|144 271,272 272 | 1230 256 3373 3373 19582
YASHE-NOP| 1 [19267| - - - 1055 252 2481 2481 12869
YASHE 2 |31431(146 202 203 955 765 3664 3664 16862
YASHE-NOP| 2 [25029| - - - 780 590 2383 2383 10754

L=5p= 2128 h =64,k

= 80,( =8,¢ = 1.3,0 = 1.3

Key log, T Sizes (kBytes)
Switch|¢(m) | = log, primes or Extended
Scheme |Variant| ~ | pg pi  pr—illogs qr—1 logs P|Ciphertext Key Key

BGV 1 |13688(143 149 160 | 750 140 2506 2506 15933
BGV 2 [24755(145 149 163 755 600 4562 4562 12752
FV 1 |31431(144 394 394 | 1720 255 13198 13198 102224
FV-NOP 1 |17712] - - - 970 257 4194 4194 20025
FvV 2 |58228|144 394 394 | 1720 1465 | 24451 24451 69728
FV-NOP 2 [30882| - - - 975 715 7351 7351 20092
NTRU 1 |35181(272 412,413 416 | 1925 399 8267 8267 48151
NTRU 2 |62984[275 411 417 1925 1520 | 14800 14800 67773
YASHE 1 43595(272 528 529 | 2385 513 12692 12692 71699
YASHE-NOP| 1 (36918 - - - 2020 515 9103 9103 44809
YASHE 2 |60697(273 394 395 | 1850 1470 | 13707 13707 62904
YASHE-NOP| 2 |47344| - - - 1485 1105 | 8582 8582 38519

L=5p~2%% h=64,k=80,(=8,¢c,, =1.3,0 =1.3




Key logy T’ Sizes (kBytes)
Switch| ¢(m) ~ log, primes or Extended
Scheme |Variant| =~ | pg i pr—1|logy qr—1 log, P|Ciphertext Key Key
BGV 1 | 25486 (271 278 290 | 1395 269 8679 8679 53692
BGV 2 |45973 (274 278 292 | 1400 1115 | 15713 15713 43941
FV 1 61886 (273 778 778 | 3385 509 | 51143 51143 391263
FV-NOP 1 34175 | - - - 1870 515 15602 15602 72255
FV 2 |114565273 779 780 | 3390 2875 | 94818 94818 270050
FV-NOP 2 |59051] - - - 1870 1360 | 26959 26959 73525
NTRU 1 | 67922528 795,796 801 | 3715 779 | 30802 30802 177694
NTRU 2 |121608(529 796 803 | 3720 2930 | 55222 55222 252657
YASHE 1 85756 (528 1040, 1041 1041| 4690 1024 | 49096 49096 273960
YASHE-NOP| 1 72038 | - - - 3940 1023 | 34647 34647 168087
YASHE 2 |119321(529 779 779 | 3645 2880 | 53091 53091 243171
YASHE-NOP| 2 |91884 | - - - 2895 2130 | 32471 32471 145195
L=10,p=2h =64,k =80,( = 8,¢;m = 1.3,0 = 1.3
Key logy T’ Sizes (kBytes)
Switch [¢(m)| = log, primes or Extended
Scheme |Variant| =~ |p9 p; pr—1|logsqr_1 logy P|Ciphertext Key Key
BGV 1 [3902{16 21 31 215 11 204 204 4208
BGV 2 |7469(16 21 36 220 190 401 401 1148
FV 1 |3354(16 18,19 23 185 7 151 151 4155
FV-NOP 1 |3079|- - - 170 17 127 127 1405
FV 2 |6463(17 18 24 185 170 291 291 852
FV-NOP 2 |6006| - - - 175 155 256 256 740
NTRU 1 |5000({16 28 35 275 6 167 167 7860
NTRU 2 19939(17 29 36 285 260 345 345 1668
YASHE 1 |4451(16 25 29 245 2 133 133 16439
YASHE-NOP| 1 [4360| - - - 240 18 127 127 1830
YASHE 2 16829(17 19 26 195 180 162 162 787
YASHE-NOP| 2 [6372|- - - 180 170 140 140 684

L =10,p=101,h = 64,k = 80,( = 8,¢,, = 1.3,0 = 1.3




Key log, T’ Sizes (kBytes)

Switch| ¢(m) | ~ log, primes or Extended
Scheme |Variant| ~ |py p; pr—1l|log,qr—1 log, P|Ciphertext Key Key
BGV 1 1500022 27 37 275 17 335 335 5766
BGV 2 |9573 121 27 38 275 250 642 642 1869
FV 1 5183123 29 30 285 12 360 360 8925
FV-NOP 1 |4177 |- - - 230 18 234 234 3231
FV 2 (10122122 29 31 285 270 704 704 2075
FV-NOP 2 |8201)- - - 235 215 470 470 1371
NTRU 1 8201 |28 46,47 51 450 32 450 450 6785
NTRU 2 |15700{30 46 52 450 410 862 862 4158
YASHE 1 7652 29 43,44 46 420 27 392 392 6494
YASHE-NOP| 1 7378 | - - - 405 34 364 364 4709
YASHE 2 10945128 31 34 310 290 414 414 2017
YASHE-NOP| 2 [10396| - - - 295 275 374 374 1821

L=10,p~ 2%, h =64,k =80, =8,cm = 1.3,0 = 1.3

Key logy T’ Sizes (kBytes)
Switch | ¢(m) |~ log, primes or Extended

Scheme |Variant| =~ |pg p; pr-1 |logs qr—1 logy P|Ciphertext Key Key
BGV 1 9664 |50 52 64 530 39 1250 1250 18244
BGV 2 [18627|49 53 67 540 480 2455 2455 7094
FV 1 |18170(48 105 106 995 59 4413 4413 78850
FV-NOP 1 |9756 |- - - 535 59 1274 1274 12829
FvV 2 |35455/48 106 109 1005 935 8699 8699 25491
FV-NOP 2 |18536|- - - 540 475 2443 2443 7036
NTRU 1 |21645|81 122 128 1185 100 3131 3131 40233
NTRU 2 |41941(80 123 131 1195 1075 | 6052 6052 29046
YASHE 1 ]25029(82 143 144 1370 126 4185 4185 49697
YASHE-NOP| 1 |21371|- - - 1170 132 3052 3052 30106
YASHE 2 |36187/81 106 106 1035 945 4571 4571 22064
YASHE-NOP| 2 |28687| - - - 830 740 2906 2906 13902

L=10,p~ 2% h =64,k =80,( =8,¢,, =1.3,0 = 1.3




Key log, T Sizes (kBytes)
Switch|¢(m)| = log, primes or Extended
Scheme |Variant| =~ | pg Di  pr—i1|logy qr—1 logy P|Ciphertext Key Key
BGV 1 [15700| 81 85,86 97 860 75 3296 3296 41094
BGV 2 |29785/82 85 98 860 770 6253 6253 18106
FV 1 [34723182 202 202 | 1900 126 16106 16106 258988
FV-NOP 1 |16889] - - - 925 129 3814 3814 31162
FV 2 167099/ 81 202 203 | 1900 1770 | 31125 31125 91245
FV-NOP 2 |31614| - - - 930 800 7177 7177 20530
NTRU 1 |38748(144 219 224 | 2120 203 10027 10027 114748
NTRU 2 |73776|146 219 227 | 2125 1910 | 19137 19137 91814
YASHE 1 |47436|144 272,273 273 | 2595 256 15026 15026 167344
YASHE-NOP| 1 (38930| - - - 2130 254 10122 10122 95005
YASHE 2 168380(146 202 203 | 1965 1775 | 16402 16402 78839
YASHE-NOP| 2 |51734] - - - 1510 1320 | 9535 9535 45279
L=10,p~ 22, h =64,k = 80,( = 8,¢,, = 1.3,0 = 1.3
Key log, T Sizes (kBytes)
Switch| ¢(m) |~ log, primes or Extended
Scheme |Variant| =~ |py p; pr-1l|log, qr—1 log, P|Ciphertext Key Key
BGV 1 |27407 [146 149 162 | 1500 137 10036 10036 119928
BGV 2 |52375|146 150 164 | 1510 1355 | 19308 19308 55942
FV 1 | 67465 (144 394 394 | 3690 251 60777 60777 954284
FV-NOP 1 31065 - - - 1700 261 12893 12893 96871
FvV 2 |130662(144 395 395 | 3700 3445 | 118029 118029 345954
FV-NOP 2 |[57496 | - - - 1700 1445 | 23863 23863 68009
NTRU 1 |72770 (275411 417 | 3980 393 | 35354 35354 393398
NTRU 2 |138527(276 412 418 | 3990 3585 | 67471 67471 323658
YASHE 1 191884 (273 528 528 | 5025 510 | 56361 56361 611692
YASHE-NOP| 1 |74141| - - - 4055 511 36699 36699 327924
YASHE 2 |133131]275395 395 | 3830 3450 | 62242 62242 298862
YASHE-NOP| 2 97463 | - - - 2855 2475 | 33966 33966 160792

L =10,p ~ 226, h = 64,k = 80,( = 8,¢,, = 1.3,0 = 1.3




Key logy T’ Sizes (kBytes)
Switch| ¢(m) ~ log, primes or Extended
Scheme |Variant| =~ | pg i pr—1|logy qr—1 logy P|Ciphertext Key Key
BGV 1 51003 275 278 291 | 2790 267 | 34740 34740 397762
BGV 2 196823 (273 278 293 | 2790 2505 | 65951 65951 191116
FV 1 (1332231274 779 779 | 7285 510 | 236945 236945 0.362 - 107
FV-NOP 1 159234 - - - 3240 516 | 46855 46855 341060
FV 2 |257055(273 779 780 | 7285 6770 | 457188 457188 0.133-107
FV-NOP 2 |109261] - - - 3245 2730 | 86560 86560 245943
NTRU 1 |140813|529 796,797 801 | 7700 780 | 132355 132355 0.143 - 107
NTRU 2 |267207(529 796 803 | 7700 6910 | 251158 251158 0.120 - 107
YASHE 1 [181055[529 1041, 1042 1042] 9900 1024 | 218804 218804 0.233 - 107
YASHE-NOP| 1 [144472| - - - 7900 1024 | 139322 139322 0.121 - 107
YASHE 2 ]261902(529 779 779 | 7540 6780 | 241057 241057 0.115-107
YASHE-NOP| 2 |189011]| - - - 5550 4785 | 128053 128053 604964

L=20,p=2h=64,k =80, =8,¢m, = 1.3,0 = 1.3

Key log, T’ Sizes (kBytes)
Switch| ¢(m) | ~ log, primes or Extended
Scheme |Variant| ~ |p9 p; pr—1|log,qr—1 log, P|Ciphertext Key Key
BGV 1 |7835(1621,22 32 430 8 822 822 45033
BGV 2 |15883[18 22 36 450 420 1744 1744 5118
FV 1 6738 |19 18,19 24 370 2 608 608 113210
FV-NOP 1 6189 |- - - 340 13 513 513 13949
FV 2 |13688|16 19 27 385 365 1286 1286 3792
FV-NOP 2 |12499| - - - 350 335 1068 1068 3158
NTRU 1 |10487{18 29 35 575 11 736 736 39213
NTRU 2 |21279(18 30 37 595 570 1545 1545 7597
YASHE 1 1939017 26 30 515 7 590 590 44020
YASHE-NOP| 1 8933 |- - - 490 17 534 534 15935
YASHE 2 1451117 20 23 400 395 708 708 3525
YASHE-NOP| 2 [13231|- - - 370 355 597 597 2939

L =20,p=101,h =64,k =80,( =8,¢,, =1.3,0 = 1.3



Key logy T’ Sizes (kBytes)
Switch | ¢(m) |~ log, primes or Extended
Scheme |Variant| ~ |po p; pr—1 |logy qr—1 logy P|Ciphertext Key Key
BGV 1 19939 (2127 38 545 14 1322 1322 52803
BGV 2 |20182(2428 42 570 535 2808 2808 8253
FV 1 104872229 31 575 9 1472 1472 95527
FV-NOP 1 8384 | - - - 460 16 941 941 28011
FV 2 |21371{2230 33 595 575 3104 3104 9208
FV-NOP 2 |16798| - - - 470 450 1927 1927 5700
NTRU 1 [16615]3146 51 910 28 1845 1845 61829
NTRU 2 |33260(3147 53 930 890 3775 3775 18554
YASHE 1 [15883|3044 47 870 27 1686 1686 56039
YASHE-NOP| 1 [15060| - - - 825 30 1516 1516 43224
YASHE 2 |23017]2932 35 640 620 1798 1798 8878
YASHE-NOP| 2 [21462|- - - 600 575 1571 1571 7728
L=20,p~ 232, h =64,k =80,( =8,¢,p, =1.3,0 = 1.3
Key logy T’ Sizes (kBytes)
Switch | ¢(m) |~ log, primes or Extended
Scheme |Variant| =~ |po p; pr-1 |logs qr—1 log, P|Ciphertext Key Key
BGV 1 |19542]51 53 65 1070 41 5104 5104 138332
BGV 2 |38016/48 53 68 1070 1010 | 9930 9930 29235
FV 1 |37742]51 106 106 2065 61 19027 19027 663160
FV-NOP 1 |18718] - - - 1025 61 4684 4684 83391
FvV 2 |74233]48 106 109 2065 1995 | 37424 37424 111005
FV-NOP 2 |36644| - - - 1035 970 9259 9259 27196
NTRU 1 |44326(83 123 128 2425 106 | 13121 13121 313304
NTRU 2 |86580(82 123 129 2425 2310 | 25629 25629 125716
YASHE 1 |51552(84 144 144 2820 126 17746 17746 414922
YASHE-NOP| 1 43137 - - - 2360 131 12427 12427 239305
YASHE 2 |74964/81 106 106 2095 2005 | 19171 19171 94208
YASHE-NOP| 2 |58594| - - - 1650 1555 | 11801 11801 57649

L=20,p~2% h=64,k=80,(=8,¢c,, =1.3,0 = 1.3




Key log, T’ Sizes (kBytes)
Switch| ¢(m) | = log, primes or Extended
Scheme |Variant| =~ |po9 p; pr—1|logsqr—1 logy P|Ciphertext Key Key
BGV 1 31248 | 80 85,86 98 1710 72 13045 13045 322874
BGV 2 |61520(80 86 102 | 1730 1635 | 25983 25983 76524
FV 1 71672182 202 202 | 3920 122 | 68592 68592 0.227-107
FV-NOP 1 31797 | - - - 1740 131 13507 13507 192920
FV 2 |141728]83 203 203 | 3940 3810 | 136330 136330 404492
FV-NOP 2 |61520] - - - 1750 1615 | 26284 26284 76824
NTRU 1 | 78897 (148 219 225 | 4315 199 | 41557 41557 942670
NTRU 2 |154532{145 220 225| 4330 4120 | 81680 81680 400477
YASHE 1 97189 |146 272 273 | 5315 253 | 63056 63056 0.138-107
YASHE-NOP| 1 78348 | - - - 4285 255 | 40981 40981 729663
YASHE 2 |143008{147 203 204 | 4005 3815 | 69915 69915 342943
YASHE-NOP| 2 |105145| - - - 2980 2780 | 38120 38120 185723

L =20,p=~ 228 h=64,k=280,( =8,¢,=130=1.3

Key log, T’ Sizes (kBytes)
Switch| ¢(m) | = log, primes or Extended
Scheme |Variant| =~ | pg pi  pr—1|logs qr—1 logy P|Ciphertext Key Key
BGV 1 | 55027 [146 150, 151 163 | 3010 138 | 40437 40437 922439
BGV 2 |107249(145 150 165 | 3010 2855 | 78813 78813 232381
FV 1 [139899]145 395 395| 7650 253 | 261285 261285 0.816 - 108
FV-NOP 1 |57679 ] - - - 3155 257 | 44428 44428 589838
FvV 2 [275164[145 395 395| 7650 7395 | 513917 513917 0.152- 107
FV-NOP 2 [110999| - - - 3165 2905 | 85769 85769 250262
NTRU 1 |148313]277 412 417 | 8110 394 | 146828 146828 0.316 - 107
NTRU 2 [289248(275 412 419| 8110 7705 | 286352 286352 0.140 - 107
YASHE 1 [188828[274 529 529 | 10325 519 | 237994 237994 0.505 - 107
YASHE-NOP| 1 |148770| - - - 8135 512 | 147734 147734 0.249 - 107
YASHE 2 [277633[274 395 395| 7780 7400 | 263670 263670 0.129 - 107
YASHE-NOP| 2 |197883| - - - 5600 5220 | 135271 135271 657999

L =20,p~ 226 h =64,k =80,( =8,¢c,, =1.3,0 = 1.3




Key log, T’ Sizes (kBytes)
Switch| ¢(m) | ~ log, primes or Extended
Scheme |Variant| =~ |po p; pr—1|log, qr—1 logy P|Ciphertext Key Key
BGV 1 [101853]273 278 293 | 5570 264 | 138506 138506 0.306 - 107
BGV 2 |199254(273 279 295| 5590 5305 | 271931 271931 801929
FV 1 [275712[274 779 779 | 15075 506 [0.101-107 0.101-107 0.312- 108
FV-NOP 1 10952 - - - 5980 513 | 159649 159649 0.202 - 107
FV 2 |542767(274 780 781 | 15095 14580(0.200 - 107 0.200 - 107 0.593 - 107
FV-NOP 2 |209681] - - - 5990 5475 | 306637 306637 893550
NTRU 1 [286413[530 796 802 | 15660 776 | 547513 547513 0.115- 108
NTRU 2 |559137(530 797 804 | 15680 14890(0.107 - 107 0.107 - 107 0.524 - 107
YASHE 1 |371468|531 1041 1041| 20310 1021 | 920961 920961 0.192 - 108
YASHE-NOP| 1 [289431] - - - 15825 1025 | 559112 559112 0.919- 107
YASHE 2 |547522(530 780 780 | 15350 14585|0.102-107 0.102- 107 0.502 - 107
YASHE-NOP| 2 |383266| - - - 10860 10095| 508089 508089 0.246 - 107
L=30,p=2h=64,k =80, =8,¢m, = 1.3,0 = 1.3
Key logy T’ Sizes (kBytes)
Switch | ¢(m) |~ log, primes or Extended
Scheme |Variant| ~ |po p; pr—1 |logy qr—1 logy P|Ciphertext Key Key
BGV 1 |12134{1622 33 665 9 1969 1969 211970
BGV 2 |23877(11622 35 667 640 3888 3888 11507
FV 1 |10487|1919 24 575 4 1472 1472 213097
FV-NOP 1 19390 |- - - 515 8 1180 1180 77183
FV 2 |20731{18 19 25 575 560 2910 2910 8654
FV-NOP 1 |19176] - - - 535 515 2504 2504 7420
NTRU 1 |15792]1729 36 865 8 1667 1667 261781
NTRU 2 |32327(1830 36 894 875 3527 3527 17489
YASHE 1 |14146]1726 30 775 4 1338 1338 260629
YASHE-NOP| 1 [13505|- - - 740 12 1219 1219 76449
YASHE 2 |21828(1720 23 600 595 1598 1598 7967
YASHE-NOP| 2 [20182| - - - 560 545 1379 1379 6824

L=30,p=101,h =64,k =80,( =8,¢c,, =1.3,0 = 1.3




Key logy T’ Sizes (kBytes)
Switch | ¢(m) |~ log, primes or Extended
Scheme |Variant| ~ |po p; pr—1 |logy qr—1 logy P|Ciphertext Key Key
BGV 1 |14914]2227 39 817 12 2974 2974 295168
BGV 2 |30370(2228 41 847 815 6280 6280 18603
FV 1 [15792(2229 31 865 6 3334 3334 484127
FV-NOP 1 ]12682] - - - 695 16 2151 2151 95622
FV 2 |3243712330 32 895 880 7087 7087 21144
FV-NOP 2 |25578| - - - 710 690 4443 4443 13176
NTRU 1 ]2552312947 52 1397 30 4352 4352 296759
NTRU 2 150399(2947 52 1397 1360 | 8594 8594 42518
YASHE 1 (23932|3144 47 1310 25 3827 3827 204362
YASHE-NOP| 1 [22834|- - - 1250 27 3484 3484 164789
YASHE 2 |34723]2932 35 960 940 4069 4069 20175
YASHE-NOP| 2 [32711|- - - 905 885 3613 3613 17908
L=30,p~ 232, h =64,k =80,( =8,¢,, = 1.3,0 = 1.3
Key log, T Sizes (kBytes)
Switch| ¢(m) |~ log, primes or Extended
Scheme |Variant| =~ |pg p; pr—1 |logy qr—1 log, P|Ciphertext Key Key
BGV 1 129199 |48 53 66 1598 39 11391 11391 684789
BGV 2 | 58539 |48 54 67 1627 1575 | 23252 23252 69014
FV 1 |57130 (51 106 106 3125 59 43586 43586 0.235-107
FV-NOP 1 |27773 |- - - 1520 64 10306 10306 255083
FvV 2 |114108]49 107 110 3155 3085 | 87893 87893 261729
FV-NOP 2 54935 - - - 1535 1470 | 20587 20587 60889
NTRU 1 | 66770 (80 123 128 3652 103 | 29766 29766 0.155-107
NTRU 2 |132619(81 124 129 3682 3570 | 59607 59607 294410
YASHE 1 | 77891 (83144 145 4260 125 | 40504 40504 0.142-107
YASHE-NOP| 1 [64904 |- - - 3550 126 | 28126 28126 82068
YASHE 2 |114748(81 107 108 3185 3090 | 44613 44613 220405
YASHE-NOP| 2 88592 |- - - 2470 2375 | 26711 267113 131503

L =30,p~ 2% h=64,k=280,( =8,¢;p, =1.3,0 =1.3




Key log, T Sizes (kBytes)
Switch| ¢(m) |~ log, primes or Extended
Scheme |Variant| =~ |p9 p; pr—1|logyqr—1 log, P|Ciphertext Key Key
BGV 1 |47290 |80 86 99 2587 73 29867 29867 1556920
BGV 2 19303680 86 100 | 2588 2500 | 58783 58783 174351
FV 1 |109169] 83 203 203 | 5970 125 | 159115 159115 0.775- 107
FV-NOP 1 |46704| - - - 2555 128 | 29132 29132 610654
FV 2 |215991] 82 203 204 | 5970 5840 | 314811 314811 937578
FV-NOP 2 |91610| - - - 2570 2440 | 57479 57479 169532
NTRU 1 |119413]145220 225 | 6530 202 | 95186 95186 0.453-107
NTRU 2 |235106(145 220 225 | 6530 6325 | 187407 187407 925270
YASHE 1 |146941(147 272 272 | 8035 249 | 144124 144124 0.479 - 107
YASHE-NOP| 1 |117858| - - - 6445 257 | 92723 92723 0.241-107
YASHE 2 |217271(147 203 204 | 6035 5845 | 160062 160062 790233
YASHE-NOP| 2 |158739| - - - 4435 4245 | 85938 85938 422328

L =30,p~~2'28 h=64,k=280,( =8,¢,=130=1.3

Key log, T Sizes (kBytes)
Switch| ¢(m) |~ log, primes or Extended
Scheme |Variant| =~ |py p; pr-1l|log,qr—1 log, P|Ciphertext Key Key

BGV 1 82427 |144 150 164 | 4508 136 90717 90717  0.442-107

BGV 2 [162141(145 150 166 | 4511 4355 | 178568 178568 529531
FV 1 [212150[145395 395 [ 11600 251 | 600815 600815 0.283-10%
FV-NOP 1 84385 | - - - 4615 254 95077 95077  0.182-107
FvV 2 |420672(145396 397 | 11630 11370|0.119-107 0.119 - 107 0.355 - 107

FV-NOP 2 (164592 - - - 4630 4370 | 186050 186050 547702
NTRU 1 [223673[274 412 417 | 12230 393 | 333925 333925 0.107- 108
NTRU 2 |440975[273 413 418 | 12255 11855| 659686 659686 0.325 - 107
YASHE 1 [285590(274 529 529 [ 15615 509 | 544371 544371 0.172-10%
YASHE-NOP| 1 |223491| - - - 12220 515 | 333381 333381 0.824-107
YASHE 2 |423141[273396 399 | 11760 11375 607438 607438 0.299 - 107
YASHE-NOP| 2 |298485| - - - 8350 7970 | 304241 304241 0.149 - 107

L =30,p~ 226 h =64,k =80, =8,¢,, = 1.3,0 = 1.3




Key log, T’ Sizes (kBytes)

Switch| ¢(m) | ~ log, primes or Extended

Scheme |Variant| =~ |po p; pr—1|log, qr—1 logy P|Ciphertext Key Key
BGV 1 [152703|273 278 293 | 8350 262 | 311296 311296 0.102- 108
BGV 2 [301320(273 279 295| 8380 8095 | 616470 616470 0.182-107
FV 1 [418751]275 780 780 | 22895 509 [0.234-107 0.234-107 0.107 - 10°
FV-NOP 1 |159562| - - - 8725 511 | 339887 339887 0.614-107
FV 2 [828112(274 780 781 | 22895 223800.462-107 0.462-107 0.137 - 10®
FV-NOP 2 1310283| - - - 8740 8225 | 662078 662078 0.194-107
NTRU 1 [432506[529 797 802 | 23647 527 [0.124-107 0.124 - 107 0.166 - 10°
NTRU 2 |850757|530 797 802 | 23648 22865|0.245-107 0.245-107 0.121 - 10%
YASHE 1 [561881|531 1041 1041| 30720 1018 [0.210- 107 0.210 - 107 0.656 - 10°
YASHE-NOP| 1 (434482 - - - 23755 1027 [0.125- 107 0.125 - 107 0.304 - 108
YASHE 2 |834057|532 781 785 | 23185 22415|0.236-107 0.236 - 107 0.116 - 10®
YASHE-NOP| 2 |577612] - - - 16175 15405|0.114 - 107 0.114 - 107 0.559 - 107




