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Abstract. We formally define the primitive of encryption switching protocol (ESP), allowing to switch
between two encryption schemes. Intuitively, this two-party protocol converts given ciphertexts from one
scheme into ciphertexts of the same messages under the other scheme, for any polynomial number of
switches, in any direction. Although ESP is a special kind of two-party computation protocol, it turns
out that ESP implies general two-party computation (2-PC) under natural conditions. In particular, our
new paradigm is tailored to the evaluation of functions over rings. Indeed, assuming the compatibility
of two additively and multiplicatively homomorphic encryption schemes, switching ciphertexts makes it
possible to efficiently reconcile the two internal laws. Since no such pair of public-key encryption schemes
appeared in the literature, except for the non-interactive case of fully homomorphic encryption which still
remains prohibitive in practice, we build the first multiplicatively homomorphic ElGamal-like encryption
scheme over (Zn,×) as a complement to the Paillier encryption scheme over (Zn,+), where n is a strong
RSA modulus. Eventually, we also instantiate secure ESPs between the two schemes, in front of malicious
adversaries. This enhancement relies on a new technique called refreshable twin ciphertext pool, which we
show being of independent interest. We additionally prove this is enough to argue the security of our
general 2-PC protocol against malicious adversaries.

1 Introduction

The development of the Internet witnessed the explosive growth of the amount of available data. We
now live in an era of big data in which there is an always increasing need for efficient tools to store
and manipulate huge quantities of information. While most companies now outsource their data to
get an arbitrarily large storage capacity with efficient access, manipulating data in the Cloud raises
many security issues. Secure multi-party computation (MPC) has thus gained tremendous importance
by providing privacy-preserving tools allowing manipulations of sensitive inputs.

Secure Two-Party and Multiparty Computation. Secure two-party computation (2-PC) targets
the following problem: Alice and Bob, modeled as probabilistic polynomial-time algorithms, wish to
jointly compute a public function f of their respective inputs x and y, while keeping them private. We
will focus on the case where Alice only gets the final result f(x, y), while Bob should learn nothing, but
this is not really a loss of generality. To this end, they perform an interactive protocol, that is expected
to be correct (i.e., the final output of the protocol is indeed f(x, y)) and private (i.e., no one can learn
from his own view any information that he could not have deduced from his input, and the outcome
f(x, y) for Alice). Secure multiparty computation is the natural extension of this problem to more
than two players. Two kinds of adversarial behaviors are usually considered: semi-honest adversaries
(a.k.a. honest-but-curious) follow the specifications of the protocol and try to get as much information
as possible from the transcript, while malicious adversaries might deviate from these specifications in
any way to gain more information.

Starting with the seminal work of Yao [Yao86], there have been a vast amount of publications target-
ing secure two-party and multiparty computation. Today’s most efficient schemes are based on various
paradigms, such as secret sharing with preprocessing (e.g. TinyOT [NNOB12], SPDZ [DPSZ12], Mini-
Mac [DZ13]), oblivious transfers [ALSZ15], garbled circuits [LP11], or homomorphic encryption [DN03].
In addition, there are several hybrid constructions which combine various approaches (e.g. garbled cir-
cuit and homomorphic encryption in [HKS+10], secret sharing and garbled circuits in [DSZ15]). Most
of those schemes are very efficient when the circuit to be computed is of low depth. However, when
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high-depth circuits are involved, the efficiency drops down: protocols based on secret sharing, oblivious
transfers, partially homomorphic encryption, or garbled circuits have a communication proportional
to the depth of the circuit. At the exception of the latter one, they also have a round complexity
proportional to the depth of the circuit. This can be avoided with somewhat homomorphic encryption,
but as soon as the circuit has a high depth, the players will have to rely on prohibitively expensive
bootstrapping procedures. In the honest-but-curious setting, hybrid protocols might provide efficient
solutions in some particular cases (although they will still suffer from comparable downsides in general,
as they combine approaches which do all have such downsides). However, enhancing hybrid protocols
efficiently to security against malicious adversaries is highly non-trivial, due to the lack of a common
structure between the various elements manipulated in those protocols; in fact, [HKS+10] and [DSZ15]
do only consider the honest-but curious setting.

Switching Between Homomorphic Schemes. The existence of very efficient MPC protocols for
circuits containing a large number of additions, and few multiplications, suggests that multiplications
might be way more expensive than additions. However, there exist encryption schemes which are multi-
plicatively homomorphic, the most famous one being the ElGamal encryption scheme [ElG85]. In such
cryptosystems, multiplications come essentially for free, but additions cannot be performed (unless
a fully homomorphic scheme is used). Therefore, a natural way to design a MPC protocol in which
multiplications would not incur a significant overhead compared to additions would be to combine a
multiplicative cryptosystem with an additive cryptosystem: multiplications would be performed homo-
morphically on multiplicative ciphertexts, and additions on additive ciphertexts. The missing ingredient
in such a protocol is a procedure to convert a multiplicative (resp. additive) ciphertext into an additive
(resp. multiplicative) ciphertext encrypting the same plaintext: an encryption switching protocol.

To our knowledge, three papers have considered switching between ciphertexts under different
homomorphic schemes in the past. The concept was initially introduced in [GM09], where the authors
propose a variant of the ElGamal encryption scheme to work over Z∗n, together with a protocol to
switch between this scheme and the Paillier scheme. In [TSCS13], a trusted software is used to switch
between various homomorphic schemes. In a recent unpublished paper [LTSC14], the authors propose
methods to switch from the ElGamal scheme to the Paillier scheme, to evaluate DNF formulae.

As [TSCS13] relies on a trusted software, it cannot be compared to our work, which does not make
this assumption. Moreover, we found both [GM09] and [LTSC14] to be flawed: in [GM09], a variant of
the ElGamal encryption scheme is proposed; however, the public key of the scheme contains a square
root β of unity with Jacobi symbol −1. But then, computing gcd(β − 1, n) gives a non-trivial factor
of n. Hence, the scheme leaks the factorization of the modulus. In [LTSC14], the following variant
of the ElGamal scheme is proposed: to encrypt m ∈ Z∗n, pick a random scalar r in Z∗n and output
(gr mod n,mhr mod n), where g is a square (g = 16 in the article) and h is gx for some secret key x.
Given a ciphertext (c0, c1), any player can compute the Jacobi symbol of c0 and c1, and check whether
they are equal or different. The former case corresponds to the Jacobi symbol of m being 1, while the
latter case corresponds to the Jacobi symbol of m being −1: the scheme leaks the Jacobi symbol of
the plaintext, which contradicts the semantic security, at least in Z∗n.

Indeed, constructing a multiplicatively homomorphic variant of the ElGamal encryption scheme
that is still semantically secure over Z∗n (and a fortiori over Zn) turns out to be a non-trivial task.

Our Contribution. In this work, we formally define encryption switching protocol (ESP), which allows
two players to interactively and obliviously convert an encryption of a message m with a cryptosystem
Π1 to an encryption of the same message with a cryptosystem Π2, provided that m lies in the inter-
section of the plaintext spaces of the cryptosystems. To instantiate this primitive, we introduce (and
formally prove the security of) a new multiplicatively homomorphic variant of the ElGamal encryption
scheme whose plaintext space is Z∗n. To our knowledge, our scheme is the first secure construction
of a multiplicatively homomorphic IND-CPA encryption scheme over Z∗n and might be of independent
interest. We extend our variant of the ElGamal cryptosystem to a space which is “nearly” equal to Zn,
in a sense that we formally define. We then construct encryption switching protocols between our new
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scheme and the Paillier encryption scheme. Our ESPs (between the two encryption schemes, in both
directions) have a constant communication (counted as a number of group elements), and their security
relies on standard assumptions (the decisional composite residuosity, the decisional Diffie-Hellman, and
the quadratic residuosity assumptions). In addition to its application to two-party computation, which
will be outlined afterward, we believe that the primitive of ESP is of theoretical interest on its own.

To demonstrate the generality of our approach, we construct a generic two-party computation
protocol over a ring (R,⊕,⊗) assuming the existence of homomorphic cryptosystems for each law, ⊕
and ⊗, and encryption switching protocols. We formally prove that our generic protocol achieves the
standard security notions for two-party computation. Our new paradigm is particularly suited for high
depth circuits.

We then turn our attention to the malicious setting. The natural way to provide security against
malicious adversaries is to ask each player to prove, using a zero-knowledge proof, that he behaved
honestly. However, ESPs can be seen as hybrid protocols, as they combine primitives with very different
structures (in our case, the ElGamal scheme and the Paillier scheme). As is often the case in hybrid
schemes, the lack of a common algebraic structure between the schemes prevents us from using standard
zero-knowledge proofs. We tackle this issue by introducing a new technique for zero-knowledge, which
we call a refreshable twin-ciphertext pool. In addition to providing an efficient way to enhance the
security of ESPs to the malicious setting, we show that our new technique allows us to improve over
several classical zero-knowledge proofs, such as proofs of knowledge of a double logarithm, or proof of
primality of a committed value, which is of independent interest.

A nice feature of our two-party computation paradigm is that it is in fact sufficient to instantiate
it with an ESP secure against malicious adversaries for the full generic two-party computation protocol
to be secure against malicious adversaries.

Related Work. We already mentioned (and argued the insecurity of) [GM09,LTSC14] which design
methods for switching between homomorphic schemes, and [TSCS13], which relies on a trusted software
to achieve a comparable goal. Fully homomorphic encryption (FHE), gathering both additive and
multiplicative homomorphic properties in a single encryption scheme, has been a long standing open
problem until the seminal work of Gentry [Gen09]. It relies on a somewhat homomorphic encryption
scheme, that allows to perform a bounded number of operations, and a technique called bootstrapping
to remove this bound. Our work can be seen as a similar line of work, using homomorphic encryption
schemes (HEs) to perform an unlimited number of specific operations, and then relying on a switching
technique to replace one HE by another one to get access to other specific operations. However, a
fundamental difference is that the bootstrapping is a non-interactive technique, while our encryption
switching protocols are interactive.

We stress that our ESP primitive makes use of shared decryption keys to obliviously decrypt and
re-encrypt under the other encryption scheme, with a similar public key. This is totally different
from proxy re-encryption, where the proxy knows a key to convert a ciphertext under one key into
a ciphertext under another independent key. For instance, disclosure of secret key of one encryption
scheme in our realization breaks the semantic security of the other one too.

Preliminaries. Because of lack of space, basics on classical tools are postponed to Appendix A
(as well as the optimizations and detailed proofs), and the reader is recommended to refer to it
for more details. But in short, a public-key encryption scheme Π is defined by the four algorithms
(Setup,KeyGen,Enc,Dec), where the two first generate the global parameters and the keys, and the
two others encrypt and decrypt. If nothing else is specified we assume that a correctly encrypted
message is always returned back by the decryption algorithm. We denote M the message space.

Throughout this paper, κ denotes the security parameter. The notation x $← S indicates that x is
sampled uniformly at random from the finite set S. We write a = b mod n to specify that a = b in Zn
and we write a← [b mod n] to affect the smallest non-negative integer to a so that a = b mod n.
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2 Two-Party Computation from ESPs

We introduce a theoretical framework for alternating between different encryption schemes: the new
primitive of encryption switching protocol (ESP) allows to switch a ciphertext under an encryption
scheme into a ciphertext of the same message under the other encryption scheme without damaging
their semantic security. We define this primitive as a 2-party protocol and we show that secure ESP
implies secure general 2-party computation under natural conditions. This is the first main contribution
of the paper.

2.1 Definitions

Definition 1 (Twin-Ciphertext Pair). For i = 1, 2, let Πi be an encryption scheme (Setupi,
KeyGeni,Enci,Deci) with plaintext space Mi. A twin-ciphertext pair (c1, c2) is a pair of ciphertexts
so that:

1. c1 is an encryption of m1 ∈M1 under Π1;
2. c2 is an encryption of m2 ∈M2 under Π2;
3. m1 = m2 (which in turn belongs to M1 ∩M2).

Given an encryption c of a message m ∈ M1 ∩M2, under one of the two above encryption schemes,
we will say that any ciphertext c′ which does encrypt m under the other encryption scheme is a twin
ciphertext of c.

On the other hand, if c and c′ encrypt the same m under the same encryption scheme, they are
said equivalent. Informally, given a ciphertext c of a plaintext m under one of the two above encryption
schemes, an encryption switching protocol (ESP) describes how users A and B, sharing the decryption
key, can interact to construct a twin ciphertext of c. This is of course under the restriction that the
plaintext m lies in the intersection of the two message spaces. We focus on two encryption schemes
that use common Setup and KeyGen algorithms for generating the global parameters and the keys1.

Definition 2 (Encryption Switching Protocol). For i = 1, 2, let Πi be an encryption scheme
(Setup,KeyGen,Enci,Deci). An encryption switching protocol (ESP) between Π1 and Π2, noted Π1 

Π2, is a tuple (Share,Switch):

Share(pk, sk) given the common keys sk and pk of both schemes, it outputs a secret sharing (skA, skB)
of sk and updates pk if necessary. The party A (resp. B) is intended to be given skA (resp. skB);

Switchpar((pk, skA, c), (pk, skB, c)) is an interactive protocol in the direction par ∈ {1→2, 2→1} which,
from a ciphertext c under the source encryption scheme, jointly computes a twin ciphertext c′

of c under the target encryption scheme or outputs ⊥ (in case of problems during the protocol
execution).

Correctness. An ESP Π1 
 Π2 = (Share,Switch) is correct if both Π1 and Π2 are correct encryption
schemes, and for any pp← Setup(1κ), any keys (pk, sk)← KeyGen(pp), any key shares (pk, skA, skB)←
Share(pk, sk), any message m ∈M1 ∩M2, and any ci ← Enci(pki,m) for i = 1, 2,

Dec2(sk,Switch1→2 ((pk, skA, c1), (pk, skB, c1))) = m,

Dec1(sk,Switch2→1 ((pk, skA, c2), (pk, skB, c2))) = m,

always hold. Ciphertexts on messages in the intersection of the two plaintext spaces are called switch-
able.
1 In any case, we could just take the concatenation of the outputs of the algorithms of the two schemes.
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2.2 Security Notions

We expect ESP not to break the IND-CPA security of the encryption schemes, even in front of malicious
adversaries: the adversary A is given pk, but since it plays against Alice or Bob it can choose either
skB or skA, respectively. Then, even interacting with an oracle that emulates the other party as an
honest player, A should not be able to break IND-CPA security of neither Π1 nor Π2. Let us more
formally define this security notion.

Definition 3 (OA and OB Oracles). For appropriate keys (pk, skA, skB), we denote the stateful
oracle OA(i→j, c,Flow) that emulates the honest player A: it provides the answers A would send back
upon receiving the flow Flow when running the protocol Switchi→j((pk, skA, c), (pk, skB, c)). We similarly
define the oracle OB that emulates the honest player B. A special flow ‘Start’ is used to initialize the
protocol.

In our target application of 2-PC, these oracles will not be available on any input, but on controlled
ciphertexts only. Hence our following security notion.

Definition 4 (ESP Security). An encryption switching protocol Π1 
 Π2 is secure if it is strongly
sound and zero-knowledge (see below).

The soundness property guarantees that no malicious player can successfully force the outcome of
Switch not to be a twin ciphertext of the input, when the input is indeed a switchable ciphertext. The
strong requirement means that the soundness holds even if the adversary is also given the whole secret
key sk (or both skA and skB), instead of just one of the two shares.

Definition 5 (Strong Soundness). An encryption switching protocol Π1 
 Π2 is strongly sound,
if it is strongly sound for A and strongly sound for B. The scheme is strongly sound for B, if for any
pp← Setup(1κ), any keys (pk, sk)← KeyGen(pp), any secret key shares (pk, skA, skB)← Share(pk, sk),
for all PPT adversary A playing the role of A, the success

Succesp-sound
B (A ) = Pr[BadSwitch|A OB(·,·,·)(pk, skA, sk)]

is negligible, where the event BadSwitch is raised when a full protocol execution of Switch with OB on a
switchable input ciphertext c successfully outputs c? which is not a twin ciphertext of c. (In a non-strong
version of soundness the adversary is only given (pk, skA).) We denote Succesp-sound(κ, t) the maximal
success an adversary can get against A or B within time t.

The zero-knowledge property guarantees that no information leaks about the secret key shares to
a malicious player when switches are performed on switchable ciphertexts: its view can be simulated
without any additional information than its own secret share.

Definition 6 (Zero-Knowledge). An encryption switching protocol Π1 
 Π2 is zero-knowledge,
if it is zero-knowledge for A and zero-knowledge for B. The scheme is zero-knowledge for B if there
exist two efficient simulators, Simshare

B and SimESP
B of Share and the oracle OB respectively, with

the following property: for any pp ← Setup(1κ), any keys (pk, sk) ← KeyGen(pp), any secret key
shares (pk, skA, skB) ← Share(pk, sk) or simulated shares (pk′, sk′A) ← Simshare

B (pk), and for any PPT
adversary A playing the role of A, the advantage

Advesp-zk
B (A ) =

∣∣ Pr[1← A O′B(·,·,·,·)(pk, skA)]− Pr[1← A SimB(·,·,·,·)(pk′, sk′A)]
∣∣

is negligible, where the adversary A is given unbounded access to either the simulator SimB or the
stateful oracle O ′B described below, with the restriction that input ciphertexts (c, c̄) to SimB or O ′B are
twin ciphertexts:

Oracle O ′B(i→j, c, c̄,Flow): on input a direction i→j, a ciphertext c under the encryption scheme Πi,
a ciphertext c̄ under the encryption scheme Πj, and a message flow Flow, ignores c̄ and runs
OB(i→j, c,Flow);
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Simulator SimB(i→j, c, c̄,Flow): on the same inputs as above, emulates the output an honest player
B would answer upon receiving the flow Flow when running the protocol Switchi→j((pk, skA, c),
(pk, skB, c)), without skB but possibly with skA, and forcing the output to be a ciphertext c̄′ equivalent
to c̄ ( i.e., a ciphertext c̄′ such that Dec(sk, c̄) = Dec(sk, c̄′)).

If the adversary A can be unbounded, Π1 
 Π2 is statistically zero-knowledge. We denote Advesp-zk(κ, t)
the maximal advantage an adversary can get against A or B within time t.

At a high level, Definition 4 says that (misbehaving) players A and B separately gain no infor-
mation on the plaintexts even if they can switch the ciphertexts between Π1 and Π2. In that sense,
switching ciphertexts is a special kind of two-party computation. It is pretty clear that a secure ESP
on appropriate encryption schemes allows to build two-party protocols in M1 ∩M2.

2.3 Computational Equality

Let us consider an adversary A which can efficiently sample messages in both the intersection of the
message spaces M1∩M2 and their symmetric difference M1⊕M2 = (M1∪M2)\(M1∩M2). A simple
observation shows that a secure ESP could not be safe to use inside a larger protocol, even in front
of a passive adversary, since the switching protocol does not provide any guarantee on non-switchable
ciphertexts, that encrypt messages outside M1∩M2. They could help to distinguish ciphertexts. More
generally, we would like Switch not to help for distinguishing switchable ciphertexts from non-switchable
ciphertexts, which would break the IND-CPA security with the Switch oracle.

A solution could be a restriction on the choice of the ciphertexts asked to the Switch oracles, so
that the plaintexts lie in M1 ∩M2. But this would not be strong enough for practical purpose, since
there is no reason that it cannot happen during a complex evaluation. We thus define the following
additional property, to be satisfied by the message spaces, with the common public key pk as auxiliary
input:

Definition 7 (Computational Equality). Let (M1,M2, aux) be two sets and some additional in-
formation. M1 and M2 are computationally equal given auxiliary input aux if, for any adversary
A , its success probability for outputting a message in the symmetric difference M1 ⊕M2, denoted
Succcomp-eq(A ) = Pr[m← A (M1,M2, aux) : m ∈M1 ⊕M2], is negligible.

We have defined the security of ESP for switchable inputs and, informally, the computational
equality will guarantee that non-switchable inputs are quite unlikely during the execution of a protocol
involving ESPs.

2.4 Ring-Homomorphic Encryption Schemes

Toward our aim of getting two-party computation protocols from ESP, our goal is to design two
encryption schemes on a ring structure (R,⊕,⊗), where the encryption algorithms are homomorphic
on the plaintexts (under either ⊕ or ⊗) and on the random coins (with an appropriate group law �
over the randomness space R which may differ in every case), using the combinations � and � of the
ciphertexts:

E⊕(m1; r1) � E⊕(m2; r2) = E⊕(m1 ⊕m2; r1 � r2)
E⊗(m1; r1) � E⊗(m2; r2) = E⊗(m1 ⊗m2; r1 � r2)

(1)

In particular, this implies that we can maul any ciphertext of m into a ciphertext of R⊗m, for a known
R, with an appropriate operation • in each case (and the appropriate operation · on the random coins)
on the ciphertexts:

R • E⊕(m; r) = E⊕(R⊗m;R · r) R • E⊗(m; r) = E⊗(R⊗m;R · r). (2)

Note that we explicitly choose �, � and • to be deterministic functions, so that any local homomorphic
evaluation on ciphertexts leads to the same ciphertext result. Note also that the existence of � and �
implies the stability of the plaintexts spaces of E⊕() and E⊗(), under ⊕ and ⊗ respectively.
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2.5 General Secure Two-Party Computation

The reason of designing ESP is to take advantage of the nice (homomorphic) properties of the two
schemes which may not be available in a single efficient encryption scheme. When additions ⊕ are
required, we use ciphertexts under the additively homomorphic encryption scheme w.r.t. �, and when
multiplications ⊗ and exponentiations are needed, we convert the operands into the other multiplica-
tively homomorphic encryption scheme w.r.t. �. In other words, ESP aims at reconciling additively
and multiplicatively homomorphic schemes, to jointly compute the encryption of f(x, y), for any public
function f over (R,⊕,⊗), on encryptions of x and y. Below, we consider two-party computation which
reveals the result to a single party only (Alice).

Secure 2-PC. More formally, assuming only Alice gets the outcome, the security game of such a
privacy-preserving evaluation is the following one: The adversary against Bob chooses its input x and
the possible inputs y0, y1 for Bob, with the additional restriction that f(x, y0) = f(x, y1) (otherwise
the outcome would reveal Bob’s actual input value); It gets the encryption of x and the encryption of
yb for a random bit b $← {0, 1}; At the end of the joint evaluation with Bob, it should try to guess b,
and thus Bob’s actual input value. If the adversary plays the role of Bob against Alice, then it chooses
its input y and the possible inputs x0, x1 for Alice but without any additional restriction. When no
adversary can guess b in any of the two games (against Alice or Bob), with non-negligible advantage,
we say that the 2-PC protocol is input-indistinguishable. This is formally defined in Appendix B.

Since we assume that Alice receives the outcome of the 2-PC in our design we also assume that Alice
and Bob are able to decrypt ciphertexts from their shares. Without loss of generality, we assume that
Π2 admits a 2-party decryption (as detailed in Appendix A.3) so that only Alice gets the plaintexts.
A rigorous construction Π2PC is proposed in Appendix B, using a secure ESP between homomorphic
encryption schemes over computationally-equal message spaces, following the above intuition, leads to
the next result.

Theorem 8. Let Π1 and Π2 be IND-CPA (complementary) homomorphic encryption schemes over a
ring (R,⊕,⊗), whose message spaces are computationally equal, equipped with a secure ESP, Π1 

Π2 = (Share,Switch), so that Π2 admits a 2-party decryption for A from the same key shares output
by Share and which is statistically sound and zero-knowledge, then the Π2PC protocol is an input-
indistinguishable 2-PC for any function f over (R,⊕,⊗).

We stress that this theorem is for the malicious setting: if the ESP protocols (and the 2-party
decryption) are secure against malicious adversaries, the Π2PC protocol is secure against malicious
adversaries, without any additional zero-knowledge proofs.

Intuition. Our approach for Π2PC consists in starting from ciphertexts of x and y, and to switch to
the appropriate encryption scheme in order to be able to make operations through the homomorphic
property, until the encryption of the result is reached. The rationale of the computational-equality prop-
erty for the message spaces, with the public key as auxiliary input, is the following one: on encryptions
of valid inputs x and yb, the evaluation of the encryption of f(x, yb) follows a deterministic path of
switches and public homomorphic operations on the ciphertexts. In the honest-but-curious setting, the
sequences of involved plaintexts is indeed determined by x and yb, and in the malicious setting, the
soundness property ensures that the same happens. Then, if all the ciphertexts are switchable, using
the simulators from the zero-knowledge property of the ESP leads to the privacy of the computation:
no information leaks on b. If a ciphertext happens to be non-switchable with non-negligible prob-
ability during the computation, simply generating the sequences of plaintexts from (x, y0) and from
(x, y1) would efficiently generate an element in the symmetric difference: we need this to be intractable.
Eventually, the outcome of the protocol is recovered by performing 2-party decryption.

Sketch of the Proof. The structure of the proof follows a sequence of indistinguishable games from the
real game with (x, y0), between the adversary and a simulator emulating the challenger using b = 0
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with all the secret information to the real game with (x, y1), and so using b = 1. We consider the output
guess b′, which should remain the same. The first games consist of a preparation for replacing y0 by
y1. We indeed cannot apply the semantic security of the encryption schemes yet since the decryption
keys are known to the simulator. But first, with the computational-equality property, we can guarantee
that all the input ciphertexts of the ESPs are switchable. Then, with the soundness of the ESPs, we
know that the outputs of the ESPs are twin ciphertexts. Actually, we need here the strong flavor
of soundness since the secret key is still known. Again we apply the soundness of the final 2-party
decryption to guarantee the correct decryption (since the decryption key is still known, we require the
statistical soundness, but a strong flavor would be enough too). Now that we know all the input-output
pairs of the internal primitives (ESPs and decryption) are correct, we can safely replace the honest
emulation using the secret key by the simulators without the secret key, thanks to the zero-knowledge
property. So, the secret key is not required anymore, and we can replace y0 by y1, applying the IND-CPA
security game to the first encryption scheme. We also have to propagate to the outputs of the ESPs,
using again the IND-CPA security game of the other encryption scheme. This is done sequentially, with
hybrid games, to end with a game where the input is (x, y1) and all the intermediate ciphertexts are
consistent. We can then move back to the honest emulation (and not the simulators for the ESPs and
the decryption) using the secret key. The full construction is described and formally proven secure in
Appendix B.

Our Next Goal. Three properties must be satisfied to securely evaluate functions over a ring: the
homomorphism of the encryption schemes, the security of the ESPs and the computational equality of
the messages spaces. Instantiating these building blocks would allow us to achieve our second objective:
building an efficient two-party computation over a ring as a realistic alternative to standard methods,
particularly for arithmetic functions with a high multiplicative depth. After discussing some applica-
tions of ESPs, we provide a first step toward our goal by designing a secure ESP to switch between two
homomorphic encryption schemes over Z∗n.

3 Applications

In this section, we motivate our paradigm for two-party computation with some concrete examples
involving high-depth circuits.

Private Disjointness Testing (PDT). Two players, Alice and Bob, holding respective databases
A = (ai)i≤a and B = (bi)i≤b, wish to know whether their databases have at least one common element
or not, and nothing more. The state-of-the-art solution to PDT is [YWPZ08], which solves the problem
with complexity O

(
(a+ b)2

)
(counting group elements).

A natural way to solve the PDT is to view the items of A as the roots of a polynomial P (X) =∑a
i=0 αiX

i. Alice and Bob perform an interactive protocol which outputs u = r
∏b
i=1 P (bi) to Alice,

where r is a uniformly random value picked by Bob. If this value is 0, then one of the P (bi)’s is zero,
which means that one of the bi’s is in A. However, the circuit computing u is of depth O(log b), hence
most 2-PC protocols computing this circuit are not constant round. Using carefully constructed circuits
such as the sort-compare-shuffle circuit of [HEK12] (adapted to the case of PDT), the (constant-round)
garbled circuit approach transmits O(κ`(a + b) log(a + b) + κbM(κ)) bits, where ` is the size of the
items in A and B and M(κ) the circuit size of modular multiplication (multiplications are performed
modulo a κ-bit value to avoid integer multiplication while maintaining statistical correctness).

Our framework allows us to design a linear-communication constant-round protocol for the private
disjointness test:

1. Alice builds the polynomial P =
∑
αiX

i so that P (ai) = 0 for i ≤ a, and sends (Ci = E⊕(αi))i;
2. Bob computes and sends Di ← �jb

j
i • Ci = E⊕(P (bi)) for i ≤ b;

3. They perform b ESPs in parallel to get (D′i = E⊗(P (bi)))i≤b;
4. Bob picks r $← Zn and computes E ← r •�iD

′
i = E⊗(r ×

∏
P (bi)).
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5. Alice and Bob jointly decrypt the ciphertext, Bob gets the result and checks whether the plaintext
is zero or not.

The total communication complexity of this protocol is a+ b+ 2 ciphertexts and b parallel ESPs. With
constant size ESPs (as we will construct in the following), this gives a total communication of O(a+ b)
in constant round. We want to stress that this does not mean that, for concrete parameters, this
approach will necessarily beat the best super-linear garbled circuits for PDT; however, garbled circuits
have enjoyed decades of optimizations, and given its asymptomatic complexity, our new approach seems
worth considering for further investigations and could benefit from numerous optimizations. Note also
that hybrid frameworks (such as [HKS+10]) can also provide linear-communication constant-round
solutions, but unlike these protocols, our approach is easily enhanced to the malicious setting: in a
high level, items 1 and 2 are secure from [DMRY09] and the next items are secure against malicious
adversaries if so are the ESPs performing the switches (and Section 6 provides an efficient technique
to achieve this security).

Oblivious Multivariate Polynomial Evaluation (OMPE). This is the natural extension of obliv-
ious polynomial evaluation [NP06] over multivariate polynomials [TJB13]. Once an ESP is available,
constructing an OMPE protocol is straightforward (we use the notations of [TJB13]). Unlike previous
solutions, it keeps the degree d of P hidden.

– Alice holds an N -variate polynomial P of degree d with M monomials;
– Bob holds (x1, · · · , xN ) and sends (E⊗(xi))i≤N ;
– Alice computes all the M monomials of P (x1, · · · , xN ) encrypted under Z∗n-EG, due to the multi-

plicativity;
– Alice and Bob perform M parallel ESPs on the encrypted monomials to get the M additively

encrypted monomials, and then get E⊕(P (x1, · · · , xN ));
– Alice and Bob jointly decrypt it, so that Bob (or both) gets P (x1, · · · , xN ).

Our OMPE protocol transmits O((N +M) log n) bits, to be compared with O(Ndκ2) for [TJB13].
In addition, our protocol can be adapted to the case of multivariate polynomials whose most compact
representation is not their canonical form; for example, if the polynomial is of the form

∏
i

∑
j X

δij
j ,

extending it to its canonical form would result in an expression with exponentially many terms. In-
stead, the polynomial can be directly evaluated from this compact form: first using the multiplicative
homomorphism to evaluate the Xδij

i ’s, they switch to perform the sums, and then switch again to
perform the final product. Several applications of OMPE are discussed in [TJB13], such as testing
whether the union of two sets of vectors are of full rank which has applications in linear secret sharing
schemes, where the secret can be recovered when a full rank set of vectors is known; the players can
determine whether they could recover the secret together without revealing their set. We get a more
efficient Full-Rank Test protocol.

4 An Encryption Switching Protocol over Z∗
n

For the internal laws on the plaintexts in Zn we keep the usual notations + and × (or · and even
nothing), but we still use the notations of the Section 2.4 for the external operations on the ciphertexts
and the relations on the random coins.

In order to complete the Paillier encryption scheme, that is additively homomorphic in Zn, we build
an ElGamal variant that is multiplicatively homomorphic in Z∗n, both for the same RSA modulus n.
The security of our new variant relies on the DDH assumption in Jn, the (maximal) cyclic subgroup of
Z∗n whose elements have a Jacobi symbol equal to +1, and the QR assumption in Z∗n (see Appendix A.1
for more details about the structure of the ring Zn). In order to build a secure encryption switching
protocol, we need an additional property from the two encryption schemes: they can be randomized.
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An encryption scheme E is randomizable if there exists an efficient algorithm Rand such that for every
message m and every random coins r ∈ R:

{E (m; r′) | r′ $← R} ≡ {Rand(E (m; r), r′) | r′ $← R} (3)

where ≡ denotes the computational/statistical/perfect indistinguishability of the two distributions.
For the sake of simplicity, we will denote Rand(C) the probabilistic algorithm which picks r uniformly
at random and returns Rand(C; r).

We now recall basic computational assumptions and an implication to Jn, then we review the
Paillier encryption which also admits a verifiable 2-party decryption algorithm (where either the two
players, or one player only, get the result) and we introduce our new ElGamal encryption schemes.
Finally, we show how to switch between these schemes from encryptions over Z∗n.

4.1 Computational Assumptions

The security of our protocols will rely on the following standard assumptions:

– The DDH (Decisional Diffie-Hellman) assumption in a cyclic group G = 〈g〉 of order q states that,
given (ga, gb) for a, b $← Zq, gab is indistinguishable from a random element in G.

– The QR (Quadratic Residuosity) assumption in Z∗n, for an RSA modulus n, states that a random
element in QRn (square in Z∗n) is indistinguishable from a random element in Jn (element of Z∗n
with Jacobi symbol +1).

– The DCR (Decisional Composite Residuosity) assumption in Z∗n2 , for an RSA modulus n, states
that a random n-th power in Z∗n2 is indistinguishable from a random element in Z∗n2 .

The DDH assumption is usually assumed to hold in large prime-order subgroups of Z∗p. In the following,
n = pq is a strong RSA modulus if p = 2p′ + 1 and q = 2q′ + 1 are safe primes (with both p′ and
q′ also prime). With such a modulus n, DDH is also a reasonable assumption in QRn, since the order
is p′q′ (see Appendix A.1 for more details). Adding the QR assumption in Z∗n, this makes the DDH
assumption in Jn (of order 2p′q′) reasonable too:

Theorem 9. When n = pq is a strong RSA modulus, the DDH assumption in Jn is implied by the
DDH assumption in both the large prime-order subgroups of Z∗p and Z∗q and the QR assumption in Z∗n.
(The proof is in Appendix A.1.)

However, given m ∈ Z∗n, computing Jacobi symbol Jn(m) is easy and then the DDH assumption
does not hold in Z∗n which, in addition, is non cyclic.

4.2 Zn-P: The Paillier Encryption Scheme on Zn

For the Paillier encryption scheme (denoted Zn-P), we will use the notation E⊕(·) since this will be our
additively homomorphic encryption scheme. It implicitly uses the strong RSA modulus n = pq, and
we denote λ = λ(n) = (p − 1)(q − 1)/2, the maximal order of an element of Z∗n. One can note that
λ = (n − 1)/2 + (2 − (p + q))/2 is statistically close to (n − 1)/2 or n/2 if we consider the Euclidean
division (we will abuse this notation n/2 in the following).

The Paillier Cryptosystem. In [Pai99], Paillier proposed an encryption scheme Zn-P for a modulus
pk = n as public key, and sk = d ← [λ−1 mod n]× λ mod nλ as secret key: Zn-P.Enc(pk,m; r), for a
message m ∈ Zn and random coins r in Z∗n, outputs c = (1 + n)m · rn mod n2; Zn-P.Dec(sk, c) returns
m = ([cd mod n2] − 1)/n. (See details in Appendix A.2). This scheme is IND-CPA under the DCR
assumption over Z∗n2 , and it is additively homomorphic in Zn. It satisfies equation (1), � being the
multiplication in Z∗n2 . The randomization algorithm Rand is given by Zn-P.Rand(c; r) = c · rn mod n2,
for any random coins r in Z∗n.
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2-Party Paillier Decryption. In this section, we briefly recall the semi-honest case where players
are honest-but-curious. The reader can refer to Appendix A.3 for more details and a description in the
malicious case which makes use of classical zero-knowledge proofs.

We assume that a trusted dealer generates the key shares for the two parties, Alice and Bob
(distributed key generation can be found in [HMRT12]). The dealer generates random dA, dB ∈ Znλ
subject to dA + dB = d mod nλ defined above. Then, Alice gets dA and Bob gets dB.

In order to allow Bob to decrypt the ciphertext C, Alice computes and sends CA ← CdA mod n2,
which allows Bob to get the plaintext m← ([CA×CdB mod n2]− 1)/n. Note that we do intentionally
not disclose m to Alice in general. But this is perfectly symmetric if one wants Alice to get the result
instead of Bob.

The correctness of this protocol is straightforward. Let us show that it is statistically zero-
knowledge: To emulate Alice in front of a curious Bob, we first pick dB in Zn2/2 instead of Znλ
(since n/2 is statistically close to λ) and we give it to Bob. The simulator with input (m, dB) sends
CA ← (1 + n ·m)×C−dB , which enforces the decryption to m for Bob. This simulation is statistically
indistinguishable from a real execution when C does indeed encrypt m. No emulation of Bob is needed
as he does not send any message.

4.3 Z∗
n-EG: An ElGamal Variant in Z∗

n

The ElGamal Cryptosystem. In [ElG85], ElGamal proposed the famous encryption scheme that
applies in any cyclic group G = 〈g〉 of order q, in which the DDH assumption holds: for a secret scalar
sk = x

$← Zq, the public key is pk = h ← gx: Enc(pk,m; r), for a message m ∈ G and random coins r
in Zq, outputs c = (c0 = gr, c1 = hr ·m); Dec(sk, c) returns m = c1/c

x
0 .

This scheme is IND-CPA under the DDH assumption over G, and it is multiplicatively homomorphic
in G. ElGamal encryption scheme satisfies equation (1), � being the component-wise multiplication in
G2. The randomization algorithm Rand is given by Rand(c; r) = (c0 · gr, c1 · hr), for any random coins
r in Zq. The 2-party decryption protocol is quite similar to the above Paillier one.

In the following, we will essentially use QRn-EG and Jn-EG, the ElGamal encryption schemes in
QRn and Jn respectively.

Extension to Z∗
n. However, our main goal is to extend the ElGamal encryption scheme to Z∗n. The

global parameters contain the strong RSA modulus n, with a generator g of Jn. The global setup and
the algorithms are described on Figure 1.

Description. Since the larger space that ElGamal can securely encrypt is Jn, in order to encrypt a
message m ∈ Z∗n, we have to split m into two parts, m1,m2 ∈ Jn: given χ ∈ Z∗n \Jn, a natural encoding
is m1 = Jn(m) = (−1)a and m2 = χam, with an appropriate integer a. But, even if {±1} could be
seen as a subgroup of Jn, ψ : Z2× Jn 7→ Z∗n, ψ(a,m) = χ−am is not an homomorphism when the order
of χ is not 2. But we cannot leave in the clear2 a square root of 1 lying in Z∗n \ Jn (as done in [GM09]).
However, for a generator g of Jn, we can instead encode m with m1 = ga and m2 = χ−am for any
integer a such that Jn(m) = (−1)a, and encrypt m2 into (C0, C1) using Jn-EG, and appending m1 in
clear. The intricate point in the decryption phase will be to reconstruct χa from m1 = ga: if one defines
v = [p−1 mod q] · p mod n and χ← (1− v) · gtp + v · gtq mod n, for even tp and odd tq randomly drawn
in Zλ, then χ ∈ Z∗n \ Jn. In addition, from m1 = ga, one gets χa as (1 − v)m

tp
1 + vm

tq
1 mod n. The

complete description of the scheme is described on Figure 1.

Properties. The correctness follows from the Chinese Remainder Theorem: by construction, χ ←
(1−v) ·gtp +v ·gtq mod n, with v such that v = 0 mod p and v = 1 mod q, then, χ = gtp mod p (so that
χ ∈ QRp) and χ = gtq mod q (so that χ 6∈ QRq). Then, from m0 ← (1− v)m

tp
1 + vm

tq
1 mod n, we also

have m0 = gatp = χa mod p and m0 = gatq = χa mod q, and so m0 = χa mod n. Hence, m0 ·m2 mod n
is indeed the plaintext m in Z∗n.
2 Given two square roots of the same element with distinct Jacobi symbols allows efficiently factoring n.
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Setup and Key Generation
– The main strong RSA modulus n:

• p, q two safe primes, n← pq;
• g0

$← Z∗n, g ← −g20 (a generator of Jn, of order λ);
• d← [λ−1 mod n] · λ mod nλ: d = 0 mod λ and d = 1 mod n;
• v ← [p−1 mod q] · p mod n: v = 0 mod p and v = 1 mod q;
• an even tp

$← Zλ and an odd tq
$← Zλ: χ← (1− v) · gtp + v · gtq mod n;

• s
$← Zλ, and set g1 ← gs mod n (for Jn-EG).

– The additional modulus N :
• P,Q two strong primes, N ← PQ (such that N > (2 + 2κ+1)n2);
• D ← [Λ−1 mod N ] · Λ mod NΛ, where Λ is the order of JN .

– Keys: pk← (n, g, χ, g1, N) and sk← (d, v, tp, tq, s,D).
– Partial keys: (dA, vA, tpA, tqA, sA, DA)

$← Znλ × Zn × Z3
λ × ZNΛ,

and dB ← d−dA mod nλ, vB ← v−vA mod n, tpB ← tp− tpA mod λ, tqB ← tq− tqA mod λ, sB ← s−sA mod λ,
and DB ← D −DA mod NΛ.

E⊗(·) = Z∗n-EG: ElGamal Encryption Scheme in Z∗n
Enc(pk,m) : On input m ∈ Z∗n, compute (m1,m2)← (ga, χ−am) ∈ Jn2 for a $← Zn/2, so that Jn(m) = (−1)a. Then,

choose r $← Zn/2 and compute C ← Jn-EG.Enc(m2; r) = (c0 = gr, c1 = m2g
r
1).

Return the ciphertext c← E⊗(m; r) = (C = (c0, c1),m1).
Rand(pk, c) : Parse c = (C = (c0, c1),m1), choose r1

$← Zn/2 and r2
$← Zn/4, output c′ ← (C′ = (gr1 · c0, χ−2r2gr11 ·

c1), g
2r2 ·m1).

Dec(sk, c) : Parse c = (C = (c0, c1),m1) and check whether Jn(c1) = 1. If not, return ⊥, otherwise compute m2 ←
Jn-EG.Dec(C) = c1/c

s
0 in Z∗n and then m0 ← (1− v) ·mtp

1 + v ·mtq
1 mod n.

Return m← m0m2 mod n.

E⊕(·) = Zn-P: Paillier Encryption Scheme on Zn
Enc(pk,m) : given m ∈ Zn, for a random r

$← Z∗n, output c← (1 + n)m · rn mod n2.
Rand(pk, c) : choose r $← Z∗n, output c′ ← rn · c mod n2.
Dec(sk, c) : return m← ([cd mod n2]− 1)/n.

Fig. 1: Setup and Encryption Schemes in Z∗n
The multiplicative homomorphism comes from the fact that a does not need to be in Z2, but

just has to satisfy (−1)a = Jn(m) to make both m1 and m2 in Jn. If one multiplies two ciphertexts c
and c′, of m and m′ respectively, one gets (gr+r

′
, χ−a−a

′
mm′ · gr+r′1 , ga+a

′
) = (gr

′′
, χ−a

′′
mm′ · gr′′1 , ga

′′
),

which is statistically indistinguishable from a direct encryption of mm′ since Zn/2 is statistically close
to Zλ.

As usual, the randomization just consists in multiplying by a ciphertext of m = 1, and so with
any random encoding of 1: (m1 = g2a,m2 = χ−2a). Hence, on input a ciphertext C = (C0, C1, α) and
two random integers (r1, r2), Rand(C; r1, r2) outputs C ′ ← (gr1 ·C0, χ

−2r2 · gr11 ·C1, g
2r2 ·α). Note that

this algorithm returns a ciphertext in which both the random coins and the encoding of the plaintext
are uniform, hence this is a perfect randomization algorithm.

Security. A ciphertext c = (C = (c0, c1),m1) contains m1 in clear but m2 is encrypted using Jn-EG.
While m1 encodes the Jacobi symbol of the plaintext m (if m1 is a square, m ∈ Jn and if m1 is not
a square, m ∈ Z∗n \ Jn), under the QR assumption in Z∗n, it is infeasible to distinguish squares from
non-squares in Jn: m1 does not leak anything. The choice of χ is completely independent from the
Jn-EG decryption key. This means that the IND-CPA security of the scheme just relies on the DDH
assumption in Jn (Theorem 9) and the QR assumption in Z∗n.

4.4 Z∗
n-ESP: Encryption Switching Protocols on Z∗

n

For an ESP, the general approach consists of four steps: Alice first randomizes the ciphertext, Bob
gets the decryption and then re-encrypts it under the second encryption scheme, and Alice eventually
de-randomizes it. Figure 2 contains the full description of the two protocols, from Zn-P to Z∗n-EG and
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2-Party ESP×+ from C = E⊕(m) into C′ = E⊗(m)

RA
$← Z∗n, C′A ← E⊗(R

−1
A )

CA← Zn-P.Rand(RA • C)

C1← CdAA mod n2 C′A, CA, C1−−−−−−−−→ x← ([C1 × CdBA mod n2]− 1)/n

C′←−−−−−−−−C′← Z∗n-EG.Rand(x • C′A)

2-Party ESP+
× from C = E⊗(m) into C′ = E⊕(m)

RA
$← Z∗n, C′A ← E⊕(R

−1
A )

CA← Z∗n-EG.Rand(RA • C)
= (C0, C1, α)

C2← CsA0
C′A, CA, C2−−−−−−−−→ C3← CsB0 , β ← C1/C2C3

r1
$← Zn/2, B ← αgr1 , B′ ← χ−r1

(u1, u2)← ([vBB
′ mod n], [B′ mod n])

B,B1, B2←−−−−−−−− (B1, B2)← (BtpB , BtqB )

A1← (1− vA)BtpA
A2← vAB

tqA

A3← −BtpAB1 +BtqAB2

A4← A1B1 +A2B2

(r3, r4, k)
$← Z∗N 2 × Z2κ+1n

E3← ZN -P.Enc(A3; r3)

E4← ZN -P.Enc(A4; r4)
E3, E4−−−−−−−−→ r5

$← Z∗N
E6← ZN -P.Rand(kn� E5)

E5←−−−−−−−− E5← Eu1
3 Eu2

4 × rN5 mod N2

F6← EDA6 mod N2 E6, F6−−−−−−−−→ m6← ([F6E
DB
6 mod N2]− 1)/N

x← β[m6 mod n] mod n

C′←−−−−−−−− C′← Zn-P.Rand(x • C′A)

Fig. 2: Interactive Protocols for Encryption Switching in Z∗n
from Z∗n-EG to Zn-P. The former is easy because of the simple 2-party Zn-P decryption. The latter
requires a more intricate 2-party Z∗n-EG decryption, that needs to interactively compute χa from ga.
It requires a second Paillier encryption scheme in Z∗N2 for a larger modulus N > (2 + 2κ+1)n2 to make
the computations in Z but masking the number of loops in the reduction modulo n.

Proof of Security of Z∗
n-ESP. About the correctness, C encrypts m, C ′A encrypts R−1A , and

CA encrypts x = RA · m, in both directions. Then x • C ′A is a ciphertext of m under the second
encryption scheme. In the multiplicative to additive direction, this is a bit more intricate, but A3 =
−BtpAB1 + BtqAB2 = −Btp + Btq and A4 = A1B1 + A2B2 = (1− vA)Btp + vAB

tq , hence E5 and E6

contain encryption of B′×(vB(Btq−Btp)+((1−vA)Btp +vAB
tq +kn)) = B′×((1−v)Btp +vBtp). But

as already remarked, (1− v)Btp + vBtp = χa+r1 mod n if α = ga. Hence, the plaintext m6 = χa, and
x is the expected value. (The blinding factor kn added in E6, which masks the number of reductions
modulo n, disappears in the end.)

About the zero-knowledge, the full and detailed proof in the honest-but-curious setting of The-
orem 10 can be found in Appendix C. But in short, the proof is done in two steps, for Alice and for
Bob. For each player, we exhibit a simulator which, essentially, generates the key share of its opponent
from the public key without having any information on the key of the player it emulates, and is given
for each switch a target output of the protocol. The simulator forces the output of the switch to be
a re-randomization of its target output. He does so by sending random ciphertexts instead of correct
ciphertexts and computing some intermediate values using either its input or its target output (both
being a twin-ciphertext pair). The Paillier scheme with a second larger modulus N is necessary to hide
some redundancy in the flows sent by the player that a simulator could not have sampled without
the knowledge of the keys. The full proof involves several subtleties (typically, ensuring that indistin-
guishability between two situations involving values over Jn is implied by the DDH assumption over
QRn).
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Theorem 10. When instantiated with the Paillier encryption scheme and the Z∗n-EG encryption scheme,
both over Z∗n, the Z∗n−ESP are zero-knowledge under the DDH assumption in QRn, the QR assumption
in Z∗n, the DCR assumption over Z∗n, and the DCR assumption over Z∗N .

Using our two complementary homomorphic schemes and Z∗n−ESP allows to evaluate functions
over Z∗n, but no information leaks only if no intermediate computation will evaluate to 0 during the
protocol. This is the goal of the next section to extend the message space of our ElGamal variant to
Z∗n ∪ {0}, which can be shown to be computationally equal to Zn.

5 An Encryption Switching Protocol over the Ring Zn

In order to allow computations over encrypted data in the full ring (Zn,+,×), we need to extend
Z∗n-EG to a message space that is computationally equal to Zn. To this aim, we just have to handle
zero. This will indeed make the two sets M1 = Zn and M2 = Z∗n ∪ {0} computationally equal: finding
an element in the symmetric difference provides a non-trivial non-invertible element, which breaks the
factorization of n.

In the following, we use the notation E⊗(·) for our above Z∗n-EG, and still E⊕(·) for the Paillier
encryption scheme Zn-P, both homomorphic on (Z∗n,×) and (Zn,+) respectively, with the same strong
RSA modulus n. We will also denote QRn-EG and QRn-EG′, two ElGamal encryption schemes over
QRn, and so with additional secret keys s2, s3, and g2 = g2s2 , g3 = g2s3 . QRn-EG and QRn-EG′ are
clearly homomorphic in (QRn,×), and the IND-CPA security just relies on the DDH assumption in
QRn, which is independent of the factorization of n. Note however that QRn-EG′ will be used as an
extractable commitment and not an encryption scheme: the secret key s3 is not kept by anybody
(excepted the simulator in the security proof).

5.1 Zn-EG: Zero-Handling ElGamal Encryption Scheme in Zn

The global setup and the algorithms are represented in Figure 3, but our Zn-EG encryption scheme
essentially uses Z∗n-EG to encrypt m+b, where b = 0 if m 6= 0 and b = 1 otherwise, in C1 ← E⊗(m+b),
and is completed with two ciphertexts of b: C2 ← QRn-EG.Enc(T b) and C3 ← QRn-EG′.Enc(T ′b), with
two random squares T and T ′.

The decryption algorithm is in two steps: one first decrypts C2 to check whether the plaintext is 1,
in which case b = 0 and so C1 can be decrypted to get m, otherwise b = 1 and so one does not need to
decrypt C1 since m = 0. The purpose of C3 will be for the simulation of the ESP (and namely of the
encrypted zero-test, see below, in which the simulator is given a twin-ciphertext pair). This is reason
why the decryption key s3 will just be known to the simulator.

Properties. This scheme is correct, although the decryption is only statistically correct since the ran-
dom square T can be equal to 1 with negligible probability. Since this is a combination of ElGamal
encryption schemes, the resulting scheme is also IND-CPA. The 2-party decryption algorithms of Z∗n-EG
and QRn-EG immediately give rise to a 2-party decryption algorithm for Zn-EG: this is in two steps,
as above, since the decryption of C2 leads to either 1 or a random value.

Homomorphism. The multiplicativity of Z∗n-EG makes this scheme homomorphic until a zero is in-
volved. And thanks to the absorbing property of random values T , it also captures the absorbing
property of the zero value in the ring Zn: the multiplication is thus performed component-wise. In Fig-
ure 3, we propose a randomization algorithm. One could note that C1 will keep track of the operations
performed on the ciphertexts when the global ciphertext encrypts zero, even after randomization. We
will limit the decryption of C1 only if C2 contains 1, and then C1 contains the plaintext, independent
of the previous steps.
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Setup and Key Generation
– The main strong RSA modulus n:

• p, q two safe primes, n← pq;
• g0

$← Z∗n, g ← −g20 (a generator of Jn, of order λ);
• d← [λ−1 mod n] · λ mod nλ: d = 0 mod λ and d = 1 mod n;
• v ← [p−1 mod q] · p mod n: v = 0 mod p and v = 1 mod q;
• an even tp

$← Zλ and an odd tq
$← Zλ: χ← (1− v) · gtp + v · gtq mod n;

• s
$← Zλ, and set g1 ← gs mod n (for Jn-EG).

• s2, s3
$← Z2

λ/2, and set g2 ← g2s2 mod n (for QRn-EG) and g3 ← g2s3 mod n (for QRn-EG′).
– The additional modulus N :

• P,Q two strong primes, N ← PQ (such that N > (2 + 2κ+1)n2);
• D ← [Λ−1 mod N ] · Λ mod NΛ, where Λ is the order of JN .

– Keys: pk← (n, g, χ, g1, g2, g3, N) and sk← (d, v, tp, tq, s, s2, D).
– Partial keys: (dA, vA, tpA, tqA, sA, s2A, DA)

$← Znλ × Zn × Z3
λ × Zλ/2 × ZNΛ,

and dB ← d− dA mod nλ, vB ← v− vA mod n, tpB ← tp− tpA mod λ, tqB ← tq − tqA mod λ, sB ← s− sA mod λ,
s2B ← s2 − s2A mod λ/2, and DB ← D −DA mod NΛ.

E 0
⊗(·) = Zn-EG: ElGamal Encryption Scheme in Zn

Enc(pk,m) : On input m ∈ Zn, if m = 0, then set b = 1 else set b = 0. Then, choose T, T ′ $← QRn and compute
C1 ← E⊗(m+ b), C2 ← QRn-EG.Enc(T b), C3 ← QRn-EG′.Enc(T ′b).
Return the ciphertext C = E 0

⊗(m) = (C1, C2, C3).
Rand(pk, C = (C1, C2, C3)) : Choose random r2, r3

$← Zn/4, and compute C′1 ← Z∗n-EG.Rand(C1), C′2 ←
QRn-EG.Rand(Cr22 ), and C′3 ← QRn-EG′.Rand(Cr33 ). Output C′ ← (C′1, C

′
2, C

′
3).

Dec(sk, C) : Parse C = (C1, C2, C3) and first decrypt T ′′ ← QRn-EG.Dec(C2). If T ′′ = ⊥, return ⊥; if T ′′ = 1, return
0; otherwise compute m← D⊗(C1) and return m.

E⊕(·) = Zn-P: Paillier Encryption Scheme on Zn
Enc(pk,m) : given m ∈ Zn, for a random r

$← Z∗n, compute c← (1 + n)m · rn mod n2. Output c ∈ Z∗n2 ;

Rand(pk, c) : choose r $← Z∗n, output c′ ← rn · c mod n2.
Dec(sk, c) : return m← ([cd mod n2]− 1)/n.

Fig. 3: Setup and Encryption Schemes in Zn
Computational Equality of Message Spaces. The message space of Zn-EG is now Z∗n ∪ {0}, which is
computationally equal to Zn, the message space of the Paillier encryption scheme: elements in the
symmetric difference are non-trivial multiples of p or q, which lead to the factorization of the modulus
n.

5.2 Encrypted Zero Test

To switch between encryption schemes over Zn, we have to obliviously detect the zeroes during the
switch; this will be done by a sub-protocol, the encrypted zero-test (EZT). An EZT is a protocol in
which two players share a decryption key, with an encryption C of a message m as input, and wish
to get an encryption C ′ of a bit b as output, where b = 1 if m = 0, and b = 0 otherwise. An EZT
is zero-knowledge if there is an efficient simulator for each player which is indistinguishable from an
honest player, and runs on input (C,C ′), where C ′ is a twin ciphertext of C, without the knowledge
of the share of the secret key of the player it emulates, but just the share of the other player.

We stress that the EZT takes as input a Paillier ciphertext C of a message m and outputs a Paillier
ciphertext of b, that is 1 if m = 0 and 0 otherwise. However, for our ESP protocols, the simulators
of the ESP are given twin-ciphertext pairs (the input C of the ESP and an expected output C ′), the
simulator of the EZT can also take advantage of such a pair: thanks to C3 in C ′ and the trapdoor s3,
the simulator can learn the value of b.

Various protocols have been proposed for this functionality (or closely related functionalities), such
as [YY12,LT13,GHJR14]. Garbled circuits for testing the equality of strings, as proposed in [KS08],
can also be used to construct an EZT with a better communication: given a ciphertext C encrypting
a plaintext m,
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– Alice picks x $← Zn and sends CA
$← Rand(C�x) = Enc(mx) to Bob. Both players jointly decrypt

CA; Bob gets the result y. Let x′ ← x mod 2κ (that Alice computes) and y′ ← y mod 2κ (that Bob
computes).

– Let f(u, v) be the function which returns 1 if u = v, and 0 else. Alice picks bA
$← {0, 1} and builds

a garbled circuit computing bA xor f(x′, y′). Using [KS08], the resulting circuit has 2κ gates.
– Bob gets a bit bB from evaluating the garbled circuit with Yao’s protocol. He sends an encryption
CB of bB to Alice.

– Alice outputs C ′ ← Rand(bA � CB � (2bA) • CB) = Enc(bA + bB − 2bAbB) = Enc(bA ⊕ bB) =
Enc(f(x′, y′)).

The correctness follows from the fact that x′ = y′ implies, with overwhelming probability, that x−y =
m = 0, which is the plaintext of C.

Figure 4 sums up the efficiency the protocol of [KS08], and of the protocol of [LT13], which is
the most efficient solution based on homomorphic encryption. Both protocols involve three rounds of
on-line communication.

5.3 Encryption Switching Protocols on Zn

Our ESP on Zn is described on Figure 5, where the double arrows indicate an execution of an interactive
sub-protocol, either a Z∗n-ESP or an EZT, and com is any extractable commitment (for the simulation).
In Appendix C, we prove:

Theorem 11. When instantiated with the Zn-P and Zn-EG encryption schemes, both over Zn, if both
Z∗n−ESP and EZT are zero-knowledge and if com is hiding, then the Zn−ESP given in Figure 5 is
zero-knowledge under the DDH assumption in QRn, the QR assumption in Z∗n and the DCR assumption
over Z∗n.

Instantiating the Z∗n−ESP with our construction of Section 4, we additionally require the DCR
assumption over Z∗N .

6 Security Against Malicious Adversaries

In the previous sections, we built two homomorphic encryption schemes with zero-knowledge ESPs that
achieve our goal of secure two-party computation from ESP: namely, at the end of the ESP executions,
the semi-honest users do not know more than before about the input plaintexts. To prevent malicious
behaviors, and move from the semi-honest setting to the malicious setting, additional validity checks
are required. They are performed with zero-knowledge proofs.

Indeed, the last step toward secure ESPs is to ensure its soundness, so that malicious adversaries
will not gain more information than an honest adversary would do. Moreover, the use of the simulators
of the additional proofs will preserve the zero-knowledge of our ESPs. In this section, we provide this
final building block.

Unfortunately, ESPs are essentially non-arithmetic protocols, and namely the internal decryp-
tions and re-encryptions. Hence, ensuring honest behavior might require garbled circuits-based zero-
knowledge proofs such as [JKO13,FNO14,RTZ14], or cut-and-choose techniques, both at a very high
computational cost, but also from the communication point of view, which we cannot afford.

In this section, we present a more efficient technique for such zero-knowledge proofs, based on a
particular pre-processing phase. We first explain how a pool of random twin-ciphertext pairs allows
designing efficient (amortized) proofs of honest behavior in our ESPs.

Authors Preprocessing Communication Assumptions
[LT13] 2κ ciphertexts 3 ciphertexts DCR
[KS08] 8κ2 bits κ2 bits + κ oblivious transfers Oblivious transfers

Fig. 4: Comparison of two EZT protocols
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2-Party ESP×+ from C = E⊕(m) into (C1×, C2×, C3×) = E 0
⊗(m)

Alice gets CEZT = E⊕(b)
CEZT ← EZT(C)

←−−−−−−−−−−−−−−−−−−−→ Bob gets nothing

C1+← C � CEZT
C1+−−−−−−−−−−−−−−−−−−−−→

Alice gets C1×
C1× ← Z∗n-ESP(C1+)

←−−−−−−−−−−−−−−−−−−−→ Bob gets C1×

T, T ′, R2, R3, k
$← QRn

c← com(k)
C2+← E⊕(1) � (T − 1) • CEZT
C3+← E⊕(1) � (T ′ − 1) • CEZT
C2← Zn-P.Rand(R2 • C2+)

C′2← QRn-EG.Enc(R−1
2 )

C3← Zn-P.Rand(k ·R3 • C3+)

C′3← QRn-EG′.Enc(R−1
3 )

D2← C
dA
2 mod n2

D3← C
dA
3 mod n2

c, C2, C
′
2, D2, C3, C

′
3, D3−−−−−−−−−−−−−−−−−−−−→ x2← ([C

dB
2 D2 mod n2]− 1)/n

x3← ([C
dB
3 D3 mod n2]− 1)/n

C2×← QRn-EG.Rand(x2 • C′2)

C′′3×← k−1 • C′3×
C2×, C

′
3×←−−−−−−−−−−−−−−−−−−−− C′3×← QRn-EG′.Rand(x3 • C′3)

k′
$← Zn/4

C3×← QRn-EG′.Rand(C′′3×
k′ )

C3×−−−−−−−−−−−−−−−−−−−−→

2-Party ESP+
× from (C1×, C2×, C3×) = E 0

⊗(m) into C′ = E⊕(m)

Alice gets C1+
C1+ ← Z∗n-ESP(C1×)←−−−−−−−−−−−−−−−−−−−→ Bob gets C1+

R2
$← QRn,

k′
$← Zn/4

C2← QRn-EG.Rand(R2 • Ck
′

2×)
= (c0, c1)

C′2← E⊕(R
−1
2 )

d1← c
s2A
0

C2, C
′
2, d1−−−−−−−−−−−−−−−−−−−−→ x2← c1/d1c

s2B
0

k
$← Z∗n

C′2+←−−−−−−−−−−−−−−−−−−−− C′2+← k • (x2 • C′2 � E⊕(1))

Alice gets nothing
CEZT ← EZT(C′2+)

←−−−−−−−−−−−−−−−−−−−→ Bob gets CEZT = E⊕(b′)

(ρ0, ρ1)
$← Z2

n
B1← C1+ � E⊕(ρ0)
B2← E⊕(ρ1) � CEZT
B3← ρ0 • CEZT
B4← ρ1 • C1+

B5← E⊕(ρ0ρ1)
B6← B3 �B4 �B5

A′1← B
dB
1 mod n2

A1← ([B
dA
1 A′1 mod n2]− 1)/n

B1, B2, A
′
1, A
′
2, B6←−−−−−−−−−−−−−−−−−−−− A′2← B

dB
2 mod n2

A2← ([B
dA
2 A′2 mod n2]− 1)/n

C′← E⊕(A1 ·A2) �B6
C′−−−−−−−−−−−−−−−−−−−−→

Fig. 5: Interactive Encryption Switching in Zn
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6.1 Refreshable Twin-Ciphertext Pool

First, we set up a perfectly hiding commitment scheme com⊕ over a group of order n: let k be a small
integer such that t ← 2kn + 1 is prime. Let (gt, ht) be two generators of the subgroup of Z∗t of order
n. On input m ∈ Zn and a randomness r ∈ Zn, the scheme outputs com⊕(m; r) = gmt h

r
t .

Pre-processing Random Twin-Ciphertext Pairs. Our starting point is a protocol that allows a
prover to convince a verifier that two ciphertexts, from two different cryptosystems, do indeed encrypt
the same value. This means they form a twin-ciphertext pair. Such a proof will be denoted TCP, for
Twin-Ciphertext Proof. It comes at a cost of the cut-and-choose technique and thus requires O(κ)
communication. However, we show in Appendix D how to amortize ` TCPs using only a single cut-
and-choose protocol, for any arbitrarily large `. It relies on the techniques developed by Groth and
Bayer on generalized Pedersen commitments [Ped92,BG12]. But we use a new zero-knowledge proof on
multi-exponentiation with committed base, of independent interest: we can create a pool of ` proven
twin-ciphertext pairs in O(`+κ). We then show several applications to speed-up various zero-knowledge
arguments.

In order to generate an arbitrary number of twin-ciphertext pairs (Ci, C
′
i)i = (E⊕(mi),E⊗(mi))i of

random plaintexts mi, under two homomorphic encryption schemes, we first show how to generate a
first pair: Alice has a pair of ciphertexts (C,C ′) = (E⊕(m, r),E⊗(m′, s)) for which she knows both the
plaintexts and the random coins. She wants to prove that m = m′ to Bob:

– Alice generates κ twin-ciphertext pairs (Ci, C
′
i)i = (E⊕(µi; ri),E⊗(µi; si))i, for values µi picked at

random over Zn, and commits to those pairs (using any commitment scheme);
– Bob sends a challenge c = c1 · · · cκ

$← {0, 1}κ;
– Alice opens the κ commitments on the twin-ciphertext pairs, and for each i ≤ κ, she sends
• the plaintext µi and the random coins (ri, si), if ci = 0;
• the ratio Ri = m/µi and the random coins ρi ← (Ri · ri)� ((−1) · r) according to the additive

case, and σi ← (Ri · si)� ((−1) · s) according to the multiplicative case — using the notations
from Section 2.4;

– Bob checks the openings of commitments and
• either checks the validity of (Ci, C

′
i) with µi and the random coins;

• or computes Di = Ri•Ci�(−1)•C and D′i = Ri•C ′i�(−1)•C ′, according to the relations (1)
and (2). Bod then checks whether both Di = E⊕(0; ρi) and D′i = E⊗(1;σi) hold.

We prove the security of TCP in Appendix D.

Using com⊕ Instead of Paillier. The Paillier encryption scheme E⊕() in the twin-ciphertext proof can
be replaced by the above perfectly hiding commitment scheme com⊕ : (m; r) 7→ gmt h

r
t , that is also

additively homomorphic. But then the proofs become arguments. Alice generates κ pairs, each pair
consisting of an additive commitment and a Z∗n-EG ciphertext, and the rest of the proof is exactly the
same. We keep using the notation E⊕() below.

Efficient Online TCP. Let us assume that we have already proven that a random twin-ciphertext
pair Pi = (E⊕(mi; ri),E⊗(mi; si)) is correct. When one wants to perform a TCP during a protocol on a
new twin-ciphertext pair P = (E⊕(m; r),E⊗(m; s)), it is enough to reveal some relations between the
random coins of the pairs P and Pi, in order to show that the plaintexts are co-linear: if one of them
is correct, so is the other. And this can be done without disclosing m (as mi is random, disclosing
m/mi will not reveal m). Thereby, all our protocols are described in the following model: first, in a
pre-processing phase, a large pool of random twin-ciphertext pairs are generated and proven correct
with a batch argument. Then, in the on-line phase, each time a TCP is required, a twin-ciphertext pair
from the pool is used and the player performs a cheap co-linearity proof. This proof consumes Pi and
ensures the correctness of the switch.
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Refreshing the Twin-Ciphertext Pool. The expected number of TCPs might not be known to
the players; however, once a pool of twin-ciphertext pairs has been set up, the same batch technique
that we describe in Appendix D can be used to generate ` new random twin-ciphertext pairs, while
consuming a single pair of the pool. The batch argument transmits O(`+ κ) group elements but does
not rely on cut-and-choose, hence cut-and-choose in only needed once, when generating the very first
element of the pool.

6.2 Zero-Knowledge Proofs

The pool of twin-ciphertext pairs allows the players to perform TCPs efficiently. Apart from TCPs, the
zero-knowledge proofs needed to enhance ESPs to the malicious setting are classical protocols. For zero-
knowledge proofs involving the decryption keys, we have to add the corresponding verification keys in
the public key: first, we pick h0, r0

$← Z∗n, R0
$← Z∗N and set h← −h20, then we add (hp, hq) = (htp , htq)

and (u, U)← ((1+n) ·r2n0 mod n2, (1+N) ·R2N
0 mod N2) ∈ QRn2×QRN2 to the public key. The latter

pair satisfies ud = 1 +n mod n2 and UD = 1 +N mod N2. Second, we set up the commitment scheme
com⊕ previously described. Each time a player performs computations, he commits to the operands
if they are not already encrypted, and proves his honest behavior, with a zero-knowledge proof, using
the above elements in the public key. Note that in our generic 2-PC from ESP, the switches run either
sequentially or in parallel, but they are never intertwined; hence, we do not need to use zero-knowledge
proofs secure in the concurrent setting (which would be less efficient).

Range Proofs. In the multiplicative to additive direction, a second Paillier encryption scheme is
used, with a different modulus N . The plaintext space of this scheme is large enough to ensure that no
modular reduction occurs during computations over input ciphertexts encrypting values in {0, · · · , n−
1}. Thereby, it is necessary to prove that these values are indeed in that range, which is handled by
range proofs. The method of [Bou00] provides an efficient (constant-communication) proof. Hence, we
first have to commit to the encrypted value, using a generator of a space with a different modulus n′ > n
whose factorization is unknown as in [FO97,DF02]: the plaintext is thus committed over Zλ(n′), a space
of unknown order. Then, equality between the encrypted value (over ZN ) and the committed value
(over Zλ(n′), whose order is unknown) can be proven using [DJ02], and the range proof is performed on
the committed value. The soundness of this proof relies on the strong RSA assumption [BP97,FO97]
modulo n′ > n. We stress that it is necessary that the factorization of n′ is not known by anyone nor
shared between the parties, as the strong soundness requirement of our proof of 2-PC states that the
adversary is given the full secret key; hence, unlike [DJ02], we cannot use n′ = N . Note also that n′ can
be taken way smaller than N (which has to be large enough to allow for some multiplications without
overflow).

We stress that the need of the strong RSA assumption in the security of our constant-size on-line
ESP comes from the range proof, only. To date, there is no constant-size range proof over Zn in the
literature whose soundness does not rely on this assumption.

Classical Zero-Knowledge Proofs. Appart from TCP and range proofs, all the proofs are classical
zero-knowledge proofs à la Schnorr [Sch90]: Proof of re-randomization of ciphertexts and proof of
correct computation of R • C given com⊕(R) are just proofs of exponentiations to the same power
either in the same groups or in two groups which one order (Jn) is unknown. It is also easy to generate
E⊗(m−1) from E⊗(m), just inverting all the components in Jn.

6.3 Ensuring Honest Behavior in ESP Protocols

Let us illustrate how TCP are used on the Z∗n-ESP from Paillier to Z∗n-EG (see Figure 2): Alice sends
(CA, C

′
A) and commits to RA: c← com⊕(RA). She makes a TCP on the pair (c, C ′A

−1), and a classical
proof of product to show that CA encrypts the product of the value committed in c and the value en-
crypted in C; combined together, those proofs are enough to ensure Alice’s honest behavior. Additional
proofs (including range proofs) are needed in the other direction as it is a more complex case.
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Sketch of the Proof of Security. In our full proof of security of the semi-honest protocols, we
have already included the generation of the verification keys by the simulator. Hence, the enhanced
protocol only adds zero-knowledge proofs and perfectly hiding commitments to the semi-honest proof.
The zero-knowledge property of these proofs states that a simulator can fake them, i.e. convince a
verifier of the truth of the associated statement, even if the statement is not true. Thereby, we add the
two following games to our game-based proof of security in the semi-honest model, right after the very
first game (in which the simulator plays honestly, using the secret keys):

1. from this game, each time the simulator is asked to perform a zero-knowledge proof, it fakes it
instead. This game is indistinguishable from the honest game due to the zero-knowledge property
of the proofs;

2. from this game, each time the simulator has to commit, the simulator sends a uniformly random
commitment. As com⊕ is perfectly hiding, this game is perfectly indistinguishable from the previous
one.

The rest of the game-based proof is exactly the same as the semi-honest proof.

6.4 From Secure ESP to Secure 2-PC

We stress that our 2-PC protocol is made fully secure as soon as ESPs is secure against malicious
adversaries (as well as the 2-party decryption procedure at the end of the protocol). This comes from
the fact, that apart from ESPs and the final decryption, all the operations are local homomorphic
evaluations of public functions on ciphertexts known by both players. The homomorphic operations
themselves are deterministic and performed by both players.

A sequence of public operations is followed by either an ESP or, at the very end of the protocol,
a 2-party decryption. From the strong soundness of the ESP, any honest player is guaranteed that his
output of the ESP is necessarily a twin ciphertext of his input, or an abort is triggered. Similarly, in
the 2-party decryption protocol, an honest player is guaranteed that the output is the plaintext of his
input ciphertext, unless an error is raised.

Therefore, an honest player that correctly performs his (local) homomorphic evaluations is also
guaranteed of the correct evaluation of the switches and of the decryption: the final answer is necessarily
correct, or an error is raised in case of a misbehaving partner.

6.5 Exponential Relations among Committed Values

We describe several applications of our preprocessing technique. In the following applications, we use
a commitment scheme com(·) we assume to be additively homomorphic. This can either be E⊕(·)
(perfectly binding) or the previous com⊕(·) (perfectly hiding).

Proof of Knowledge of an Exponential Relation over Committed Values. A prover has sent
a tuple (Ca = com(a), Cb = com(b), d) and wishes to prove that b = ad. Let C ′a and C ′b be twin
ciphertexts under E⊗() of Ca and Cb; the prover sends them and proves them with two TCPs. Both
players can compute D ← �dC ′a = E⊗(ad). She then proves that D encrypts the same value as C ′b,
which can be done since she knows all the random coins.

Extension to the Case of a Committed Exponent. Let us now suppose d has also been committed
in Cd = com(d). The prover sends C ′a = (C ′a0, C

′
a1, α), C ′b, and C ′d, twin ciphertexts of Ca and Cd

respectively, and proves them with two TCPs. The prover computes D = (D0, D1, D2) ← �dC ′a =
E⊗(ad), and proves its knowledge of (b, r) such that Cb = com(b; r), D0 = (C ′a0)

d, D1 = (C ′a1)
d, and

D2 = αd. She then proves that C ′b and D encrypt the same plaintext.
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Proof of Knowledge of a Double Logarithm (or Double Decker Exponentiation). In this
case, the prover wants to prove her knowledge of x that satisfies X = g(h

x), for public values (g, h,X).
Such proofs are required for example in some publicly verifiable secret sharing schemes [Sta96], in
group signature or group encryption [KTY07]. Let n = pq be an RSA modulus such that π = 2n + 1
is a prime. Let g be a generator of a subgroup of Z∗π of order n. Let h be a generator of Jn and x
be an element of Zλ. The prover computes H ← hx, C ← Zn-P.Enc(H), and C ′ ← Jn-EG.Enc(H).
She sends (C,C ′), proves that she knows the discrete log of this encrypted value in C ′ (a classical
Schnorr-like proof), and makes a TCP on (C,C ′). She then proves her knowledge of H and r such that
X = gH mod π and C = Zn-P.Enc(H; r) (again a Schnorr-like proof).

Proof that a Committed Value is Prime. In [CM99], the authors design a zero-knowledge proof
that a committed value is a product of two safe primes, which has applications in numerous RSA-based
protocols. The idea is the following: to prove that a committed number π is a prime, one proves that
it passed each step of the Lehmann’s primality test [SS77,Kra86], i.e. commit to κ random numbers
(in an interactive way to ensure they are random) and for each of the κ random committed a, prove
that a(π−1)/2 = ±1 mod π by committing to each bit of (π−1)/2, and by using a zero-knowledge proof
for each step of the square-and-multiply algorithm. This can be done way more efficiently with our
above proof of knowledge of an exponential relation over a committed exponent, enhanced using the
technique from [Lip03] to work modulo a committed value. Overall, we improve [CM99] by a factor of
O(log(π)). In typical applications, π will be 1024 to 2048 bit-long.
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A Preliminaries

An algorithm is efficient when it runs in polynomial time in the (implicit) security parameter κ. A
positive function f is negligible if for any polynomial p ∈ poly there exists a bound B > 0 such that, for
any integers k ≥ B, f(k) ≤ 1/|p(k)|. It holds that a function f is negligible if and only if there exists a
negligible function ε verifying f(κ) ≤ ε(κ) beyond some bound. An event depending on κ occurs with
overwhelming probability when its probability is at least 1− ε(κ) for a negligible function ε.
Given a finite set S, the notation x $← S means a uniformly random affectation of an element of S to
the variable x, then for any s ∈ S we have PrS [x = s] = Pr[x = s |x $← S] = Pr[x

$← S : x = s] = 1/|S|
where |S| denotes the cardinality of S. When an element s is represented by an integer, |s| is the bit-
length of the integer. The integer range [a..b] stands for {x ∈ Z | a ≤ x ≤ b}. For any integers a = a(κ)
and b = b(κ) such that a ≤ b, the statistical distance between two uniform distributions over Ua = [1..a]
and Ub = [1..b], is given by

∑b
i=1 |PrUa [x = i]−PrUb [x = i]| =

∑a
i=1 1/a−1/b+

∑b
i=a+1 1/b ≤ 2(b−a)/b.

Hence, we will say that a = a(κ) and b = b(κ) are statistically closed if (b− a)/b is negligible.

A.1 Some Facts on the Ring Zn

The notation (Zn,+,×) refers to the ring of integers modulo n. More precisely, Zn is the quotient
set Z/≡n for the relation induced by a ≡n b if a = b mod n. Operations in Z are carried into Zn by
reduction modulo n and these are well-defined. In this paper we only focus on Zn for a strong RSA
modulus n = pq where p, q are distinct safe primes. That means that p = 2p′ + 1 and q = 2q′ + 1
for two other primes so that p, p′, q, q′ are all distinct. One can note that in such a case, p and q
are Blum primes: p = q = 3 mod 4. Some facts arise from this specific choice of n. The Charmichael
number λ(n) = lcm(ϕ(p), ϕ(q)) = ϕ(n)/2 = 2p′q′, where ϕ is the Euler totient, gives the order of
the maximal cyclic subgroup of (Z∗n,×) (consequently, for any a ∈ Z∗n, its order is among the set
{1, 2, p′, q′, 2p′, 2q′, p′q′, 2p′q′}). Such a multiplicative subgroup of maximal order is given by Jn = {a ∈
Zn | Jn(a) = 1}, the set of invertible elements a whose Jacobi symbol Jn(a) = (a|n) = (a|p) · (a|q) is
equal to 1. Furthermore, if we let QRn = {a ∈ Z∗n | ∃b ∈ Z∗n, a = b2} = {a ∈ Z∗n | (a|p) = 1 = (a|q)} be
set of the quadratic residues modulo n, QRn is a cyclic subgroup of Jn of order ϕ(n)/4 = p′q′ and we
have −1 ∈ Jn \ QRn —since both p and q are Blum primes—. Finally, any a ∈ QRn has four square
roots with exactly one in QRn, one in Jn \ QRn and two in Z∗n \ Jn. We also remind that two square
roots with distinct Jacobi symbol values (one in Jn and one in Z∗n \ Jn) allows efficiently factoring n.

By GenMod(κ), we denote a probabilistic efficient algorithm that, given the security parameter
κ, generates public parameters (n, g) and secret parameters (p, q) of at least κ bits each with the
specification that n = pq is a strong RSA modulus and that g is a random generator of Jn. The
generator g can be defined by setting g = −g20 for an efficiently samplable g0

$← Z∗n since the order of
g0 is p′q′ or 2p′q′ with overwhelming probability. In the following, we write ((n, g), (p, q))← GenMod(κ).

Theorem 9. The DDH assumption in Jn is implied by the DDH assumption in large prime order
subgroups of Z∗n and the QR assumption in Z∗n.

With the first hybrid sequence of games, on the left in Figure 6, we essentially show that the DDH
assumption in Jn is implied by the DDH assumption in QRn and the QR assumption. Each of these
distributions generates a generator of either QRn or Jn, two scalars taken uniformly in [1..2p′q′] or
[1..n/2] and finally either set c = ab in the integers or take c at random in the same range as a and b.
Most of the gaps being statistically indistinguishable (≈stat.).

In the second hybrid sequence of games, on the right in Figure 6, if one defines G1 as the q′-powers
in QRn and G2 as the p′-powers in QRn, while the factorization of n is known, this shows that the
DDH assumption in QRn is implied by the DDH assumptions in both G1 and G2. One can note that,
given two generators g1 and g2, of G1 and G2 respectively, g ← g1g2 is a generator of QRn. Then,
a tuple (A ← ga1 , B ← gb1, C ← gc1) in G1, where either c = ab mod p′ or not, can be converted into
(A′ ← Agα2 , B

′ ← Bgβ2 , C
′ ← Cgαβ2 ), which is either a Diffie-Hellman tuple in QRn or not. Which

explains the gap between D2 and D3. A similar analysis leads to the gap between D5 and D6.
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Fig. 6: Hybrid Sequence of Games

A.2 Encryption Scheme

A common setup may be used to generate different key pairs. Then, we split the Setup from the KeyGen
algorithms.

Definition 12 (Encryption Scheme). An encryption scheme Π consists of four algorithms (Setup,
KeyGen,Enc,Dec):

– Setup(κ) generates the public parameters pp;
– KeyGen(pp) outputs a public key pk and a secret key sk, pk specifies the message space M , the

ciphertext space C , and the random source R;
– Enc(pk,m; r), given the message m, outputs a ciphertext c, under the encryption key pk with the

randomness r. When there is no ambiguity, we use the notation Enc(m), where the coins r are
chosen uniformly at random;

– Dec(sk, c), outputs a plaintext m, encrypted in the ciphertext c using the decryption key sk, or ⊥
in case of failure. Similarly as above, when there is no ambiguity on the decryption key, we use the
notation Dec(c).

Encryption schemes are assumed to satisfy the following properties:

Correctness. An encryption scheme Π is correct if for any pair of keys (pk, sk) generated by KeyGen
from pp← Setup(κ) and any message m ∈M , we always have Dec(Enc(m)) = m.

Semantic Security (IND-CPA). The classical security notion for encryption is the indistinguishability
of ciphertexts: no adversary can distinguish the encryptions of the plaintexts m0 and m1 of its choice,
given just access to the public parameters.

Homomorphic Encryptions. An encryption scheme Π is homomorphic if, for an internal law ⊕ in M ,
it further provides an algorithm Eval such that, for any m1,m2 ∈ M , Dec(sk,Eval(pk,Enc(pk,m1),
Enc(pk,m2))) = m1 ⊕ m2, and the two distributions D0 = {Eval(pk,Enc(pk,m1),Enc(pk,m2))} and
D1 = {Enc(pk,m1 ⊕m2)} are computationally/statistically/perfectly indistinguishable over C .

Examples. The classical examples of homomorphic encryption schemes are the famous ElGamal
encryption scheme [ElG85] which is multiplicatively homomorphic in any subgroup where the DDH
assumption holds, and the Paillier encryption scheme [Pai99], which is additively homomorphic in Zn,
where n is an RSA modulus.
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The Paillier Cryptosystem. The Paillier’s encryption scheme [Pai99] is usually defined as follows:

– KeyGen(κ): run ((n, g), (p, q))
$← GenMod(κ) and compute δ ← n−1 mod λ (n and λ = λ(n) are

relatively prime). Return pk = n and sk = δ;
– Enc(pk,m; r): given m ∈ Zn, for a random r

$← Z∗n, compute and output c← (1 +n)m · rn mod n2;
– Dec(sk, c): compute r ← csk mod n and then c0 ← [c · r−n mod n2]. Return m← (c0 − 1)/n.

Alternatively, KeyGen′(κ) outputs pk = n and sk = d where d← [λ−1 mod n]·λ mod nλ, and Dec′(sk, c)
outputs m = ([cd mod n2]− 1)/n, which is the Paillier variant we will use in this paper. This scheme
is IND-CPA under the DCR assumption, and it is additively homomorphic in Zn. All along this paper,
this encryption scheme is called the Paillier encryption scheme, and the encryption algorithm is usually
denoted Zn-P, or E⊕(·), when the public key n can be omitted.

The ElGamal Cryptosystem. Let G be a group of order M and T be a public integer statistically close
to M . Given T , the ElGamal’s encryption scheme [ElG85] over G is defined as follows:

KeyGen(κ): choose a random x
$← ZM , set and return sk = x and pk = y = gx;

Enc(pk,m; r): given m ∈ G, for a random r
$← ZT , compute and output c← (c1 ← gr, c2 ← yr ·m);

Dec(sk, c): compute and output m = c2/c
x
1 .

This scheme is IND-CPA under the DDH assumption in G, and it is (multiplicatively) homomorphic
in G. All along this paper, for a strong RSA modulus n = pq, this encryption scheme in G = QRn
is called the QRn-EG encryption scheme and this encryption scheme in G = Jn is called the Jn-EG
encryption scheme. Over QRn, writing λ ← λ(n), one can set T = M = λ/2, in which case the
ElGamal is performed over a group of known order (and in particular, the factorization of n is known).
Alternatively, if one wants to keep secret the factorization of the modulus (as we do in this paper), we
set T = (n− 1)/4 = M + (p+ q− 2)/4 (which is statistically close to M). Over Jn, with M = λ, as the
security of the DDH assumption relies on the quadratic residuosity assumption (hence the factorization
must be kept hidden), we set T = (n − 1)/2. Our goal is to extend the ElGamal scheme to Z∗n and
even Zn (or most of it).

A.3 2-Party Encryption Scheme

Two-party encryption scheme is a special case of (L, T )-threshold encryption scheme: L users are able
to decrypt ciphertexts as long as at least T of them collaborate; nobody gets information on the
plaintexts if the threshold T is not reached. Most of the threshold encryption schemes in the literature
are designed from an ordinary encryption scheme, with a secret sharing of the decryption key. Here
we explicitly follows this constructive approach, with L = T = 2, since we define the key generation
as a secret sharing of a pre-existing secret key, and the decryption algorithm is replaced by a 2-party
interactive decryption protocol.

Definition 13 (2-party Encryption Scheme). A 2-party encryption scheme Π consists of four
algorithms (Setup,KeyGen,Enc,Dec):
– Setup(κ) generates the public parameters pp;
– KeyGen(pp) gets (pk, sk) from the key generation of the ordinary encryption scheme and outputs

(pk, skA, skB) ← Share(pk, sk) where pk is the updated public key pk and (skA, skB) are the two
shares of the secret key sk. The party A (resp. B) is intended to be given skA (resp. skB). The
message space M , the ciphertext space C and the random source R are specified by pk;

– Enc(pk,m; r), given the message m, outputs a ciphertext c, under the encryption key pk with the
randomness r as done by the encryption algorithm of the ordinary scheme (but we might write
c← Enc(pk,m) or even c← Enc(m), when there is no ambiguity);

– Dec((pk, skA, c), (pk, skB, c)) is a 2-party interactive protocol that outputs either a plaintext m =
Dec(sk, c) with an implicit use of the decryption key sk or ⊥ in case of failure.

At the end of the 2-party decryption protocol, only one party or both could get the plaintext.
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Correctness. A 2-party encryption scheme Π is correct if for any tuple of keys (pk, skA, skB) generated
by KeyGen(pp) from pp ← Setup(κ) and any message m ∈ M , with c ← Enc(m) we always have
Dec((pk, skA, c), (pk, skB, c)) = m.

The following security notions consist of the usual guarantees we can expect for a 2-party encryption
scheme. Only informal descriptions of these notions are given below since we will rely on sufficient
conditions (i.e. stronger properties) which are formally defined afterward.

Verifiable Decryption. In the malicious setting, an adversary can play the role of at most one of the
two parties and try to deviate from the specification of Dec. If indeed the adversary is trying to cheat
we want to detect it with overwhelming probability.

Semantic Security (IND-CPA). The semantic security of a 2-party encryption scheme corresponds to
the usual IND-CPA security notion of ordinary encryption schemes except that the adversary may have
access to one of the both secret key shares. Moreover, the adversary also has access to an additional
decryption-share oracle (modeling the other honest party which supposedly holds the other secret-
key share). The oracle indistinguishably emulates the flow of the execution of the interactive protocol
Dec (depending on the adversarial setting) but with the restriction that it must only be invoked on
ciphertexts of known plaintexts. A formal definition follows from [FP01].

Example: Semi-Honest 2-Party Paillier Scheme. Let pk = n and sk = d be the output of the
key generation algorithm of the variant of the Paillier encryption (Setup,KeyGen′,Enc,Dec′) described
above in Appendix A.2. The setup algorithm and the encryption algorithm of the 2-party variant in
the semi-honest case are Setup and Enc. The other algorithms are given by

– KeyGen(pp): From n = pq and d = [λ−1 mod n] ·λ mod nλ, a trusted dealer runs Share to generate
a secret sharing of sk = d. It picks dA

$← Znλ and sets skA ← dA, skB ← d−dA mod nλ. It outputs
(n, skA, skB);

– Dec((n, skA, c), (n, skB, c)): To decrypt a ciphertext c ∈ Z∗n2 , Alice sends MA = cskA mod n2 to
Bob, and Bob computes MB = cskB mod n2 and then the value M = [MAMB mod n2] equal to
[cd mod n2]. Finally, Bob recovers m← (M − 1)/n.

The ElGamal encryption scheme also allows 2-party decryption with an additive secret sharing of
x, with CDH proofs (in the group G, that is with an order that is either known or unknown) for valid
partial decryption.

Sufficient Security Notions. The usual way to show the IND-CPA security of the threshold encryption
scheme is to show that the interactive decryption protocol does not degrade the IND-CPA security of
the ordinary scheme, when the plaintext is already known [FP01]. Then, in the 2-party case and as in
the switching protocols defined in Section 2, the adversary playing one of the both parties is allowed
to query an oracle playing the other party during the interactive run of the protocols, here in the case
of decryption. Let us formally define the partial decryption oracle.

Definition 14 (ODec
A and ODec

B Oracles). For appropriate keys (pk, skA, skB), we denote the stateful
oracle ODec

A (c,Flow) that emulates the honest player A: it provides the answers A would send back upon
receiving the flow Flow when running the protocol Dec((pk, skA, c), (pk, skB, c)). We similarly define the
oracle ODec

B that emulates the honest player B. A special flow ‘Start’ is used to initialize to the protocol.

The soundness property guarantees that no malicious player can make the decryption protocol
output a plaintext that is not encrypted in the input ciphertext. In some extent, it states that the
correctness is preserved in front of any single dishonest party. Here we make a stronger requirement
with respect to some usual notions of soundness since we allow the adversary to get the whole secret key
sk instead of only one secret shares. This strengthening is motivated by our generic 2-party computation.
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Definition 15 (Strong Soundness). A 2-party encryption scheme satisfies the strong soundness,
if it is strongly sound for A and strongly sound for B. The scheme is strongly sound for B, if for
any pp← Setup(1κ), any keys (pk, sk)← KeyGen, any secret key shares (skA, skB)← Share(pk, sk), for
all PPT adversary A playing the role of A, the success

Succdec-sound
B (A ) = Pr[ BadDec |A ODec

B (·,··· )(pk, sk)]

is negligible, where the event BadDec is raised when a full protocol execution of Dec with ODec
B on input

ciphertext c, for which it exists m such that c = Enc(pk,m), successfully outputs m? 6= m. We denote
Succdec-sound(κ, t) the maximal success an adversary can get against A or B in time t.

The zero-knowledge property guarantees that no information leaks about the decryption keys to a
malicious player: its view can be simulated without any additional information than its own secret key
share.

Definition 16 (Zero-Knowledge). A 2-party encryption scheme is said zero-knowledge, if it is
zero-knowledge for A and zero-knowledge for B. The scheme is zero-knowledge for B if there exists
an efficient simulator SimDec

B of the oracle ODec
B with the following property: for any pp← Setup(1κ),

any keys (pk, sk) ← KeyGen, any secret key shares (pk, skA, skB) ← Share(pk, sk), and for any PPT
adversary A playing the role of A, the advantage Advdec-zk

B (A ) defined as∣∣Pr[1← A ÕDec
B (·,·,·)(pk, skA)]− Pr[1← A SimDec

B (·,·,·)(pk, skA) = 1]
∣∣

is negligible, where the adversary A is given unbounded access to either the simulator SimDec
B or the

stateful oracle ÕDec
B described below, and when the input tuples (c,m,Flow) are consistent i.e. if c is an

encryption of m:

Oracle ÕDec
B (c,m,Flow): on input a ciphertext c, a plaintext m, and a message flow Flow, ignores m

and runs ODec
B (c,Flow);

Simulator SimDec
B (c,m,Flow): on the same inputs as above, emulates the output an honest player B

would answer upon receiving the flow Flow when running the protocol Dec((pk, skA, c), (pk, skB, c)),
without skB but possibly with skA, and forcing the output to be m.

When the adversary A is unbounded, the scheme is statistically zero-knowledge. We denote Succdec-zk(κ, t)
the maximal advantage an adversary can get against A or B in time t.

It is worth noticing that the Zero-Knowledge property here only guarantees that a curious party
cannot get more information on the other secret share that it could not derived from its share and its
output of the 2-party decryption. For instance a 2-party encryption with a secret share (skA, skB) =
(sk,⊥) of sk could be zero-knowledge but not IND-CPA. The last property we need is the simulatability
of the key shares: from the public key only, a simulator can indistinguishably output each secret share
separately.

2-Party Paillier Scheme Secure Against Malicious Adversaries. We enhance the security of our
previously described 2-party Paillier encryption scheme so that it can withstand malicious adversaries:

– For ((n, g), (p, q))← GenMod(κ), where n = pq and p = 2p′ + 1, q = 2q′ + 1 > 2κ, a trusted dealer
generates λ = 2p′q′, d ← [λ−1 mod n] · λ mod nλ, z $← QRn2 and dA

$← Znλ. He sets skA ← dA,
skB ← d − dA mod nλ as well as vkA ← zskA , vkB ← zskB . The public verification keys consist of
(z, vkA, vkB).

– To decrypt a ciphertext c ∈ Z∗n2 ,
• Alice picks r $← Z2κn2 and sends H = zr, C = cr and MA = cskA mod n2.
• Bob sends a random κ′-bit string x as challenge, where κ′ + 4 = κ.
• Alice sends D = skAx+ r; Bob checks that zD = HvxA and c2D = C2M2x

A .
• If the verifications succeed, Bob computesMB = c2skB mod n2, which gives himM = M2

AMB =
c2d mod n2. Then, Bob recovers m2 ← (M − 1)/n and sets m← m2/2 mod n.
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Strong Soundness. First, let us note that the proof involved in this protocol is a CDH proof over
(z, c2, vkA,M

2
A), and z is a square. Working over the squares allows us to ensure the existence of a

unique witness so that this tuple is a Diffie-Hellman tuple: let us suppose that Alice was able to answer
two distinct challenges x, x′; then Bob can check that zD−D′ = vx−x

′

A and M
2(x−x′)
A = c2(D−D

′). By
working over the squares, we ensure that (x− x′) < p′, q′ is invertible over Zλ/2, hence there is indeed
a unique witness w = (D −D′)(x− x′)−1 mod nλ/2 so that zw = vA and M2w

A = c2.
We now argue that working over QRn2 is sufficient to get a secure 2-party decryption even in face of

adversary who knows the factorization of n. Indeed, even if some malicious adversaries could have sent
some M ′A such that M ′A 6= MA but M ′A

2 = M2
A, he cannot force an incorrect decryption by doing so:

the proof ensures that computing M = M2
AMB and then m2 ← (M −1)/n is indeed a valid decryption

of c2, which, by the homomorphism of the Paillier scheme, is an encryption of 2m: m2 = 2m, hence
Bob recovers m by computing m← m2/2 mod n: the protocol is statistically sound for A (hence, it is
also strongly sound for A); the soundness is independent of sk = (p, q).

As Bob does not interact at all with Alice in the decryption procedure (he sends a challenge which
is part of the proof, but not of the decryption itself), he cannot force the decryption of an incorrect
value, hence the protocol is trivially (statistically) sound for B.

Zero-Knowledge. For the simulation of Alice, the verification key can be generated at random: u as
above, uA ← uskA mod n2, for skA

$← Zn2/2, and uB ← (n + 1)/uA mod n2. During the decryption,
Sim sends M ′ · c−skB to force the decryption of m′ = (1 + nM ′). Together with the zero-knowledge
property of the CDH proof, this shows that the protocol is zero-knowledge for Alice. Note that the
CDH proof we described here is only honest-verifier zero-knowledge, and can be made zero-knowledge
against malicious adversaries via standard techniques (such as committing to the challenge before the
first flow with an extractable commitment scheme).

A.4 Commitment Scheme

Informally, a commitment scheme is a tool that prevents the owner of the value to change the value he
should be using in a protocol, without revealing the value: in a first phase, he commits to this value with
a scheme that ensures that the value remains hidden, and in a second phase, he opens the commitment
to the original value, in a way that anyone can check it. A classical way involves two non-interactive
algorithms: c ← com(m; r) is the commitment algorithm, that generates the commitment c on the
value m with some randomness r. In order to open c, one just reveals m and r, so that anybody can
check whether c = com(m; r). Such a commitment scheme should then satisfy the following properties:

– Perfectly (resp. statistically, computationally) hiding: given (m,m′) ∈ S 2, the two distributions
{com(m; r)}r∈R and {com(m′; r)}r∈R are perfectly (resp. statistically, computationally) indistin-
guishable.

– Perfectly (resp. computationally) binding: given a commitment c, it is infeasible (resp. computa-
tionally infeasible) to output (m; r) and (m′; r′) with m′ 6= m such that com(m′; r′) = com(m; r).

An encryption scheme that is IND-CPA is a computationally hiding and perfectly binding commitment.
Some additional properties are sometimes required, like equivocality and extractability.

B Two-Party Computation from ESP

After recalling a two-party computation model, this section proposes a framework to instantiate a
two-party computation protocol from a secure encryption switching protocol on two complementary
homomorphic encryption schemes. Assuming the computational equality of the underlying plaintext
spaces, we show the security of our methodology in front of any malicious adversary, as stated in
Theorem 8, Section 2. As already explained, we will also assume that one of the two encryption
schemes admits a 2-party decryption protocol that is both strongly sound and zero-knowledge (in a
similar meaning than for ESP, see Section A.3).
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B.1 Definition

A two-party computation, 2-PC for short, consists of an interactive protocol between two players
allowing them to jointly compute an evaluation of a given function f on their private inputs. A setup
might first define additional private inputs to the players or additional common inputs, but they will
be defined by the model later. We consider a fonction f ∈ F , f : X × Y → Z .

Definition 17 (Two-Party Computation). A two-party f -computation is an interactive protocol
Evalf (A(x), B(y)) between A and B so that A eventually receives z = f(x, y) but B does not learn
anything (the convention could have been in the other way).

The correctness ensures that A ends with the correct value z = f(x, y) if both players behave
honestly.

A 2-PC is secure if it is input-indistinguishable: no party can extract additional information of the
other party’s private input from those deriving from the received output (either the result f(x, y) or
nothing) and its own input. In order to ease the reading, we choose a game-based definition.

Definition 18 (Input-Indistinguishability). A two-party computation protocol is input-indist-
inguishable if it is simultaneously input-indistinguishable to B and input-indistinguishable to A. A
2-PC is input-indistinguishable to A if for all active adversary A playing the role of A in the game:

1. The adversary A chooses x ∈ X and y0, y1 ∈ Y , under the restriction that f(x, y0) = f(x, y1)
(since the party A is supposed to eventually obtain the output of f), and outputs the triple (x, y0, y1);

2. The challenger C picks b $← {0, 1};
3. A and C run the interactive protocol Evalf (A (x),C (yb)), where C honestly plays the role of B

with private input y = yb;
4. Eventually, A outputs its guess b′;

its advantage Advinput-ind(A ) = 2× Pr[b′ = b]− 1 is negligible.
A similar game is defined for the other case, against A, but without any restriction on the choice

of (x, y0, y1), since the party B should not learn anything at the end of the protocol execution.

In the following, we consider a specific scenario, with a setup that runs pp← Setup(1κ), (pk, sk)←
KeyGen, and (pk, skA, skB)← Share(pk, sk). The pairs (pk, skA) and (pk, skB) are respectively given to
A and B, in a trustfully way.

Then, to be sure that the malicious adversary A engages the evaluation correctly with input x
in the above input-indistinguishability game, the challenger gives it the initial Cx ← E (x; r) and the
random coins r, and of course Cy ← E (yb; s), but then without the random coins s.

We stress that the generation and the distribution of the keys are performed by a third-trusted party.
Stronger requirements allow leaving the adversary to be part of a distributed parameter generation.
Here, we do not consider this case as it can be handled separately to our design.

B.2 Design

We now present our framework for building a 2-PC protocol for a set F of functions which can
be evaluated by any sequence of ⊕ and ⊗ operations, two binary laws on R. More precisely, given
complementary homomorphic encryption schemes Π1 and Π2, on respective computationally-equal
plaintext spaces (M1,⊕) and (M2,⊗), we build a secure 2-PC for f ∈ F assuming that R = M1∪M2.
Without loss of generality, we suppose that f : R`A ×R`B → R` describes a deterministic order for
these operations so that Evalf can also specify when and which Switch has to be performed: on the
inputs x = (xi)i and y = (yj)j , that we can unify as (mi)i, for i = 1, . . . `A + `B, we assume the
evaluation of f can be iteratively performed, for k = `A + `B + 1, . . . , n, with two already computed
elements i, j < k,

Op′⊕(i, j; k) : mk ← mi ⊕mj ; Op′⊗(i, j; k) : mk ← mi ⊗mj .
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Now, given the ciphertexts (ci)i of the inputs (mi)i ∈ R`A ×R`B , under the encryption scheme Π1,
each new step consists, for k > i, j

– Op⊕(i, j; k): ck ← ci � cj , with the deterministic homomorphism of Π1, computing first ci and cj ,
using Sw⊕ below, if needed;

– Op⊗(i, j; k): c′k ← c′i � c′j , with the deterministic homomorphism of Π2, computing first c′i and c
′
j ,

using Sw⊗ below, if needed;
– Sw⊗(i): c′i ← Switch1→2(ci);
– Sw⊕(i): ci ← Switch2→1(c

′
i).

This construction of the 2-PC thus starts with encryptions of x ∈ R`A and y ∈ R`B and ends with an
encryption of z = f(x, y) ∈ R`. Hence a 2-party decryption provides the result to A only.

Construction Π2PC. We assume that we have Π1 
 Π2 = (Share, Switch) an ESP on (R,⊕,⊗) for
appropriate homomorphic public-key encryption schemes Πi = (Setup,KeyGen,Enci,Deci), for i = 1, 2.
Furthermore, we assume that one of the two encryption schemes admits an efficient 2-party decryption
protocol that gives the result to one party only, where the shares of the decryption key are the same
as for the ESP. Finally, let f be a function described by a sequence of operations among Op⊕(i, j; k),
Op⊗(i, j; k), Sw⊗(i), and Sw⊕(i).

To initialize the process, we run pp ← Setup(1κ), (pk, sk) ← KeyGen(pp), and (pk, skA, skB) ←
Share(pk, sk). The evaluation of f(x = (xi)i, y = (yj)j) ∈ R` proceeds as follows:

1. A runs ci ← Enc1(pk, xi), for i = 1, . . . , `A;
2. B runs cj+`A ← Enc1(pk, yj), for j = 1, . . . , `B;
3. for Op⊕ and Op⊗ operations, A and B use the deterministic homomorphic properties of the cor-

responding Π1 and Π2;
4. for Sw⊗ and Sw⊕ operations, to switch between Enc1 and Enc2 in the appropriate direction par =

1→2 or par = 2→1, they run Switchpar((pk, skA, c), (pk, skB, c)) on the appropriate ciphertext c;
5. the final 2-party decryptions Dec((skA, c), (skB, c)) are performed on the `-block ciphertext that

contains the final plaintext z ∈ R`, so that A only gets the result.

The 2-PC correctness of Π2PC follows from homomorphisms of the two encryption schemes and the
correctness of both the encryption switching protocols and the 2-party decryption.

We note that if M1⊕M2 would have a non-negligible size relatively to M1∩M2, a random sample
in R = M1 ∪M2 would have a non-negligible chance to pick a message in the former set, which would
contradict the computational-equality assumption. However, inputs are not chosen at random, hence
the additional computational assumption. We show below this assumption is enough, together with
the ESP security and the IND-CPA security of the two encryption schemes, as well as the security
(soundness and simulatability) of the final 2-party decryption.

Theorem 8. Let Π1 and Π2 be IND-CPA (complementary) homomorphic encryption schemes over a
ring (R,⊕,⊗), whose message spaces are computationally equal, equipped with a secure ESP, Π1 

Π2 = (Share,Switch), so that Π2 admits a 2-party decryption for A from the same key shares output
by Share and which is statistically sound and zero-knowledge, then the Π2PC protocol is an input-
indistinguishable 2-PC for any function f over (R,⊕,⊗).

Proof. The challenger C is given the public-key pk of the ESP which can be used to encrypt any
m ∈ R by running the encryption algorithm of Π1. It can also compute the homomorphic operations
on ciphertexts of C1 or C2. From f ∈ F , one derives the sequence of operations to be performed to
evaluate f(x, yb).

We now assume that A chooses to play the role of A, and thus gets skA (including A’s decryption
key share), in order to show that 2-PC is input-indistinguishable to A —a simpler argument works
for the choice of B. Then, the adversary chooses the private inputs x ∈ R`A , y0, y1 ∈ R`B satisfying
f(x, y0) = f(x, y1). In the following, we will denote (πb1, . . . , π

b
qS

) the sequence of plaintexts of the
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ordered ciphertexts involved in the switching protocols during an honest execution to evaluate f(x, yb),
where qS is the number of switches. We will also denote (y

(1)
b , . . . , y

(`B)
b ) the sequence of individual

plaintexts in yb.
Hereunder, we describe a sequence of games to show the indistinguishability of the execution on

(x, y0) and the execution on (x, y1) while A still believes it is playing with the first input pair. In
each game Gj , let S be the success event: the bit b′ output by the adversary is equal to 0. We will
also denote t, the overall time of the games, including the execution time of the adversary and the
execution time of the simulation.

Game G0: This is the real game where the 2-PC game is run on the internal bit b = 0: the simulator
Sim emulates the challenger, by first generating all the keys, then the adversary A chooses
(x, y0, y1) and Sim chooses b = 0. It honestly runs the interactive protocol with A on (x, y0),
using all the private informations. We have S the event in which A wins the 2-PC game by
returning b′ = b = 0.

Game G1: In this game, we just introduce a failure event F which causes the simulator to abort
with output 1 if, among the sequences (y

(1)
0 , . . . , y

(`B)
0 ) and (π01, . . . , π

0
qS

) of plaintexts, one message
falls outside M1 ∩M2. We thus have

|Pr
G1

[S]− Pr
G0

[S]| ≤ Pr
G1

[F ],

but we cannot evaluate yet PrG1 [F ]. We will be able to do it later, when we will be able to apply
the computationally equality between M1 and M2, without the knowledge of the secret keys.

Game G2: In this game, the simulator aborts and outputs 1 if at some point in the execution the
output of a switch does not encrypt the expected plaintext in the sequence (π01, . . . , π

0
qS

). Since the
simulation knows the secret keys, it can check that. But then, this would mean that the adversary
has broken the soundness of the ESP, which does not rely one any problem that becomes easy
when the secret keys are known:

|Pr
G2

[S]− Pr
G1

[S]| ≤ Succesp-sound(κ, t)

(as well as for the event F ).
Game G3: In this game, the simulator aborts and outputs 1 if the last `-block ciphertext does not

decrypt to the appropriate result z ∈ R`. Note that the simulator can again check the validity with
the secret keys. But then, as above, this would mean that the adversary has broken the soundness
of the 2-party decryption, which is assumed to be statistically sound:

|Pr
G3

[S]− Pr
G2

[S]| ≤ Succdec-sound(κ, t)

(as well as for the event F ).
Game G4: Here, we bring another modification by replacing the honest run of the 2-party decryption

on the last `-block ciphertext with the decrypting simulator SimDec
B using the expected output

z = f(x, y0) = f(x, y1). Any noticeable difference would break the statistical zero-knowledge
property of this decryption protocol:

|Pr
G4

[S]− Pr
G3

[S]| ≤ Advdec-zk(κ, t)

(as well as for the event F ).
Game G5: In this game, we do as above, but for the ESPs: we use the pair of simulators (Simshare

B ,
SimESP

B ) using the expected output that Switch would do as in the previous game. Note that these
outputs can be computed from the known sequence of plaintexts (π01, . . . , π

0
qS

). Any noticeable
difference would break the zero-knowledge property of the ESP:

|Pr
G5

[S]− Pr
G4

[S]| ≤ Advesp-zk(κ, t)
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(as well as for the event F ).
Note that now, because of the ESP simulation, no secret keys are known anymore since the simulator
just receives as input an appropriate pk. Hence, we can evaluate the event F , since the bad plaintext
would break the computational equality: PrG5 [F ] ≤ Succcomp-eq(κ, t). Since |PrG5 [F ]−PrG1 [F ]| ≤
Succesp-sound(κ, t) + Succdec-sound(κ, t) + Advdec-zk(κ, t) + Advesp-zk(κ, t), we get:

Pr
G1

[F ] ≤ Succesp-sound(κ, t) + Succdec-sound(κ, t)

+ Advdec-zk(κ, t) + Advesp-zk(κ, t) + Succcomp-eq(κ, t)

and then

|Pr
G5

[S]− Pr
G0

[S]| ≤ 2× Succesp-sound(κ, t) + 2× Succdec-sound(κ, t)

+ 2× Advdec-zk(κ, t) + 2× Advesp-zk(κ, t) + Succcomp-eq(κ, t).

Game G6: Now, we just replace the input y0 by y1, as input to Π1 during the initial phase of the
protocol, but we still use the sequence of plaintexts (π01, . . . , π

0
qS

) to generate the additional inputs
(to force the output) of the ESP simulators. That means that the additional input ciphertexts
of SimESP

B computed by Sim remain the same as in the previous game. In order to show the
indistinguishability with the previous game, we use an hybrid argument on the `B entries of y0
where one can apply the IND-CPA game of Π1 on the message pair (y

(i)
0 , y

(i)
1 ), but under the

condition they both lie in the intersection M1 ∩M2, otherwise one breaks the computational
equality. This can be checked once on the sequence (y

(1)
1 , . . . , y

(`B)
1 ):

|Pr
G6

[S]− Pr
G5

[S]| ≤ `B × Advind-cpa
Π1

(κ, t) + Succcomp-eq(κ, t).

Game G7: For i = 1 to qS , we gradually replace the ith plaintext π0i , in the sequence of plaintexts,
by π1i to generate the ciphertext for the output of the ith ESP simulation. This leads to qS hybrid
games, where one can apply the IND-CPA game of either Π1 or Π2 on the message pair (π0i , π

1
i ),

but under the condition they both lie in the intersection M1 ∩M2, otherwise one breaks the
computational equality. This can be checked once on the sequence (π11, . . . , π

1
qS

):

|Pr
G7

[S]− Pr
G6

[S]| ≤ qS ×max{Advind-cpa
Π1

(κ, t),Advind-cpa
Π2

(κ, t)}

+ Succcomp-eq(κ, t).

Game G8: In this game, the simulator is given again the secret keys, and runs honestly the ESPs.
Since the input-output ciphertexts were consistent, any noticeable difference would break the zero-
knowledge property of the ESP, as in the Game G5:

|Pr
G8

[S]− Pr
G7

[S]| ≤ Advesp-zk(κ, t).

Game G9: Here, we remove the modification brought inG4, i.e. honestly run the decryption protocol:

|Pr
G9

[S]− Pr
G8

[S]| ≤ Advdec-zk(κ, t).

Game G10: We now remove the early aborts that led to a success for the adversary:

Pr
G10

[S] ≤ Pr
G9

[S].

This game is now exactly the real game with b = 1: PrG0 [S] = Pr[b′ = 0|b = 0] and PrG10 [S] =
Pr[b′ = 0|b = 1].
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Hence, this shows that

Advinput-ind
Π2PC

(κ, t) ≤ 2× Succesp-sound(κ, t) + 2× Succdec-sound(κ, t)

+ 2× Advdec-zk(κ, t) + 2× Advesp-zk(κ, t) + Succcomp-eq(κ, t)

+ `B × Advind-cpa
Π1

(κ, t) + Succcomp-eq(κ, t)

+ qS ×max{Advind-cpa
Π1

(κ, t),Advind-cpa
Π2

(κ, t)}

+ Succcomp-eq(κ, t) + Advesp-zk(κ, t) + Advdec-zk(κ, t).

It simplifies to

Advinput-ind
Π2PC

(κ, t) ≤ 2× Succesp-sound(κ, t) + 2× Succdec-sound(κ, t)

+ 3× Advdec-zk(κ, t) + 3× Advesp-zk(κ, t) + 3× Succcomp-eq(κ, t)

+ (`B + qS)×max{Advind-cpa
Π1

(κ, t),Advind-cpa
Π2

(κ, t)}

B.3 Evaluating Any Function on a Ring Structure

Any function f can be expressed as a circuit composed of NAND gates only. On a ring structure, a
NAND gate can be evaluated by using the identity element for the law ⊗ as 1, the identity element
for the law ⊕ as 0, and the following relation: for all (b, b′) ∈ {0, 1}2, b NAND b′ ← 1 ⊕ (−b ⊗ b′).
Nevertheless, ESPs are tailored to get more efficient two-party computation protocols of any sequence of
operations ⊕ and ⊗ over a ring structure (R,⊕,⊗) whereas other cryptographic primitives like garbled
circuits are tailored to get efficient two-party protocols computation evaluating boolean functions.

C Security of the Encryption Switching Protocols

In this Appendix, we provide the full proofs of Theorems 10 and 11 that claim the zero-knowledge
property for our encryption switching protocols on both Z∗n and Zn.

C.1 Encryption Switching Protocols on Z∗
n

Let us recall Theorem 10:

Theorem 10. When instantiated with the Paillier encryption scheme and the Z∗n-EG encryption
scheme, both over Z∗n, the Z∗n−ESP are zero-knowledge under the DDH assumption in QRn, the QR
assumption in Z∗n, the DCR assumption over Z∗n, and the DCR assumption over Z∗N .

The proof is done in two parts: first we show how to simulate Alice in front of an adversarial
(honest-but-curious) Bob, which will prove the zero-knowledge property for Alice, and then how to
simulate Bob in front of an adversarial (honest-but-curious) Alice, which will prove the zero-knowledge
property for Bob.

Note that in order to anticipate the security proof in the malicious setting, we will incorporate
(h, hp = htp , hq = htq) in the public key. It will indeed later be used to prove the honest behavior with
additional zero-knowledge proofs.

Z∗n−ESP is Zero-Knowledge for Alice. Let us first exhibit the simulator, we then prove that the behavior
of the simulator is indistinguishable from Alice’s behavior.

Sim first receives as input two strong RSA moduli n and N with N > (2 + 2κ+1)n2. It picks
g, g1

$← Jn and χ $← Z∗n \ Jn. It also picks h, hp, hq
$← Jn. It then sets pk← (n, g, χ, g1, N, h, hp, hq). It

picks (dB, vB, tpB, tqB, sB, DB)
$← Zn2/2 × Zn × Z3

n/2 × ZN2/2 and sends them to the adversarial Bob,
together with pk.

Each time Sim is asked to participate to an instance of a Z∗n−ESP on an input C, it additionally
receives a target ciphertext C̄, and the expected output is C̄ or an equivalent ciphertext:
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Setup and Key Generation
– The main strong RSA modulus n:

• p, q two safe primes, n← pq;
• g0

$← Z∗n, g ← −g20 (a generator of Jn, of order λ);
• d← [λ−1 mod n] · λ mod nλ: d = 0 mod λ and d = 1 mod n;
• v ← [p−1 mod q] · p mod n: v = 0 mod p and v = 1 mod q;
• an even tp

$← Zλ and an odd tq
$← Zλ: χ← (1− v) · gtp + v · gtq mod n;

• s
$← Zλ, and set g1 ← gs mod n (for Jn-EG).

– The additional modulus N :
• P,Q two strong primes, N ← PQ (such that N > (2 + 2κ+1)n2);
• D ← [Λ−1 mod N ] · Λ mod NΛ, where Λ is the order of JN .

– Keys: pk← (n, g, χ, g1, N) and sk← (d, v, tp, tq, s,D).
– Partial keys: (dA, vA, tpA, tqA, sA, DA)

$← Znλ × Zn × Z3
λ × ZNΛ,

and dB ← d−dA mod nλ, vB ← v−vA mod n, tpB ← tp− tpA mod λ, tqB ← tq− tqA mod λ, sB ← s−sA mod λ,
and DB ← D −DA mod NΛ.

E⊗(·) = Z∗n-EG: ElGamal Encryption Scheme in Z∗n
Enc(pk,m) : On input m ∈ Z∗n, compute (m1,m2)← (ga, χ−am) ∈ Jn2 for a $← Zn/2, so that Jn(m) = (−1)a. Then,

choose r $← Zn/2 and compute C ← Jn-EG.Enc(m2; r) = (c0 = gr, c1 = m2g
r
1).

Return the ciphertext c← E⊗(m; r) = (C = (c0, c1),m1).
Rand(pk, c) : Parse c = (C = (c0, c1),m1), choose r1

$← Zn/2 and r2
$← Zn/4, output c′ ← (C′ = (gr1 · c0, χ−2r2gr11 ·

c1), g
2r2 ·m1).

Dec(sk, c) : Parse c = (C = (c0, c1),m1) and check whether Jn(c1) = 1. If not, return ⊥, otherwise compute m2 ←
Jn-EG.Dec(C) = c1/c

s
0 in Z∗n and then m0 ← (1− v) ·mtp

1 + v ·mtq
1 mod n.

Return m← m0m2 mod n.

E⊕(·) = Zn-P: Paillier Encryption Scheme on Zn
Enc(pk,m) : given m ∈ Zn, for a random r

$← Z∗n, output c← (1 + n)m · rn mod n2.
Rand(pk, c) : choose r $← Z∗n, output c′ ← rn · c mod n2.
Dec(sk, c) : return m← ([cd mod n2]− 1)/n.

Fig. 1: Setup and Encryption Schemes in Z∗n (repeated from page 12)
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2-Party ESP×+ from C = E⊕(m) into C′ = E⊗(m)

RA
$← Z∗n, C′A ← E⊗(R

−1
A )

CA← Zn-P.Rand(RA • C)

C1← CdAA mod n2 C′A, CA, C1−−−−−−−−→ x← ([C1 × CdBA mod n2]− 1)/n

C′←−−−−−−−−C′← Z∗n-EG.Rand(x • C′A)

2-Party ESP+
× from C = E⊗(m) into C′ = E⊕(m)

RA
$← Z∗n, C′A ← E⊕(R

−1
A )

CA← Z∗n-EG.Rand(RA • C)
= (C0, C1, α)

C2← CsA0
C′A, CA, C2−−−−−−−−→ C3← CsB0 , β ← C1/C2C3

r1
$← Zn/2, B ← αgr1 , B′ ← χ−r1

(u1, u2)← ([vBB
′ mod n], [B′ mod n])

B,B1, B2←−−−−−−−− (B1, B2)← (BtpB , BtqB )

A1← (1− vA)BtpA
A2← vAB

tqA

A3← −BtpAB1 +BtqAB2

A4← A1B1 +A2B2

(r3, r4, k)
$← Z∗N 2 × Z2κ+1n

E3← ZN -P.Enc(A3; r3)

E4← ZN -P.Enc(A4; r4)
E3, E4−−−−−−−−→ r5

$← Z∗N
E6← ZN -P.Rand(kn� E5)

E5←−−−−−−−− E5← Eu1
3 Eu2

4 × rN5 mod N2

F6← EDA6 mod N2 E6, F6−−−−−−−−→ m6← ([F6E
DB
6 mod N2]− 1)/N

x← β[m6 mod n] mod n

C′←−−−−−−−− C′← Zn-P.Rand(x • C′A)

Fig. 2: Interactive Protocols for Decryption and Encryption Switching in Z∗n (repeated from page 13)

– If the direction is from additive to multiplicative,
• Sim picks x $← Z∗n and CA

$← Z∗n2 , and sends (C ′A ← x−1•C̄, CA, C1 ← (1+nx)×CA−dB mod
n2) to Bob.

– If the direction is from multiplicative to additive,
• Sim picks x $← Z∗n, CA

$← J3n, and β
$← Jn, and sends (C ′A ← x−1 • C̄, CA, C2 ← C1C

−sB
0 /β)

to Bob;
• Sim picks and sends E3, E4

$← Z∗N2 ;
• Sim picks (k′, ρ)

$← Z2κ+1n × ZN ; he sends E6 ← ZN -P.Enc(x/β + k′n; ρ) and F6 ← (1 +
N(x/β + k′n)) · E−DB6 mod N2.

With the following sequence of games, we show that the simulator Sim has the same behavior as Alice,
even for many instances. The simulators will be constructed step by step, starting from a simulator
that knows all the secrets, and then behaves exactly as Alice.

Sketch of the Proof. The proof is done by exhibiting a sequence of games, so that in the end, the
actual simulation does not use any secret information, but the expected output C̄. First, Sim replaces
the flow (CA = E (RA ·m), C ′A = Ē (R−1A )) by (CA = E (x), C ′A = x • C̄) for a random x. This allows it
to know the plaintext x to be decrypted in CA, and that is necessary to simulate the decryption phase.
The simulation is perfect as there is some RA such that x = RA ·m and if C̄ encrypts m, then x−1 • C̄
encrypts R−1A .

The additive to multiplicative direction is then simple, thanks to the zero-knowledge property of
the 2-party Paillier decryption. For the multiplicative to additive direction, during the 2-party Z∗n-EG
decryption, the output is reconstructed by using the homomorphic properties of another Paillier scheme
(in Z∗N2), so that the IND-CPA security of the Paillier scheme ensures that no intermediate information
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is leaked, even when knowing the factorization of n. These intermediate ciphertexts will thereafter
be replaced by random ciphertexts and the output will be computed from x. Sim will also generate
the public values at random, in particular χ = (1 − v) · gtp + v · gtq . Thus, we need an additional
lemma which shows that if DDH holds over QRn, then taking these values independently at random is
indistinguishable from an honest generation from the keys, even knowing the factorization of n. A last
crucial detail of the proof is that we know the parity of tp and tq (to make χ ∈ Z∗n \ Jn). The simulator
manipulates elements of Jn but relies on the security of DDH over QRn, and elements of Jn can be seen
as elements of the form (−1)bS with S ∈ QRn. When constructing αtp and αtq from a DDH challenge
over QRn, it is necessary to know the parity of the exponent to generate an element of Jn with the
correct sign bit. In the end, when the factorization of n is unknown, under the QR assumption, we can
take all the random elements in Jn instead of QRn.

Game G0: This is the real game.
Input. In this game, Sim knows the factorization of both n and N , with two generators g, h of
Jn.
Setup. Sim generates all the secret keys for both Alice and Bob in an honest way, gives his secret
key to Bob.
Switches. Each time it is asked to participate to an instance of the switching protocol on an input
(C, C̄), Sim plays honestly the real game with the secret key of Alice.

Game G1: We start by modifying the simulation in the additive to multiplicative direction.
Input and Setup. As in the previous game.
Switches. For each ESP×+(C, C̄), from additive to multiplicative, Sim generates x $← Z∗n, sets and
sends (C ′A, CA)← (x−1 • C̄,E⊕(x)) to Bob. It then honestly plays the rest of the protocol.
When (C, C̄) are twin ciphertexts, with a random C̄, this game is perfectly indistinguishable from
the previous one, since this corresponds to use RA = x/m mod n, where m is the plaintext in C,
and x follows a uniform distribution in Z∗n. In addition, the actual value of RA is not required in
the rest of the protocol.

Game G2: We continue by modifying the simulation of the decryption of the Paillier ciphertext.
Input and Setup. As in the previous game.
Switches. For each ESP×+(C, C̄), Sim generates x and (C ′A, CA) as above. For the Paillier decryp-
tion, it sends C1 ← (1 + nx)× C−dBA to Bob.
We should have C1 = CdA mod n2, so that C1 × CdBA = CdA = (1 + nx) mod n2. Hence, C1 =

(1 +nx)/CdBA mod n2, which shows that this game is perfectly indistinguishable from the previous
one.

Game G3: We now start to address the multiplicative to additive direction.
Input and Setup. As in the previous game.
Switches. For each ESP+

×(C, C̄), from multiplicative to additive, Sim picks a random encoding
(α = ga, β), for a $← Zn/2 and β $← Jn, which defines x = β ·χa to be used to generate (C ′A, CA)←
(x−1 • C̄,E⊗(x)) to Bob. It then honestly plays the rest of the protocol.
When (C, C̄) are twin ciphertexts, this game is perfectly indistinguishable from the previous one,
since this corresponds to use RA = x/m mod n, where m is the plaintext in C, and x follows a
(statistically) uniform distribution in Z∗n, with a random encoding for the encryptions. In addition,
the actual value of RA is not required in the rest of the protocol.

Game G4: We continue by modifying the simulation of the decryption of the ElGamal ciphertext.
Input and Setup. As in the previous game.
Switches. For each ESP+

×(C, C̄), Sim generates x as above with (α, β), computes C2 ← C1C
−sB
0 /β

for the first flow, and plays honestly the rest of the protocol.
We should have β = C1/C2C3 where C3 = CsB0 , hence this game is perfectly indistinguishable
from the previous one. Thus we do not need to know sA anymore.

Game G5: We alter the simulation of E6.
Input and Setup. As in the previous game.
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Switches. For each ESP+
×(C, C̄), Sim does as above until the generation of E6: he picks (k′, ρ)

$←
Z2κ+1n × ZN . Then, he sets E6 ← ZN -P.Enc(x/β + k′n; ρ) and F6 ← EDA6 mod N2.
E6 should be an encryption of A3u1 +A4u2 +kn = x/β+k′′n for some k′′ ≥ k. As A3u1 +A4u2 ≤
2n2, the spaces {x/β + k′n | k′ ∈ Z2κ+1n} and {A3u1 + A4u2 + kn | k ∈ Z2κ+1n} are statistically
close: computing E6 as E6 ← ZN -P.Enc(x/β + k′n; ρ) is statistically indistinguishable from the
honest generation of E6, hence this game is statistically indistinguishable from the previous one.

Game G6: We alter the simulation of the decryption of E6.
Input and Setup. As in the previous game.
Switches. For each ESP+

×(C, C̄), Sim does as above until the generation of F6: he sets F6 ←
(1 + (x/β + k′n)N)× E−DB6 mod N2.
We should have EDA6 = ED6 E

−DB
6 and ED6 = (1 + (x/β + k′n)N) mod N2, hence this game is

perfectly indistinguishable from the previous one. One can note that Sim does not need anymore
the factorization of N .

Game G7: We continue with the second flow of Alice.
Input. As above, excepted that Sim does not know anymore the factorization of N .
Setup. As above, excepted DB

$← ZN2/2 (note that DA is not needed since the previous game).
Switches. For each ESP+

×(C, C̄), Sim does as above until the generation of A3 and A4: A3 ←
Btq −Btp and A4 ← (1− vA)Btp + vAB

tq .
We should have A3 = B2B

tqA − B1B
tpA = BtqBBtqA − BtpBBtpA) = Btq − Btp and A4 = B1(1 −

vA)BtpA +B2vAB
tqA = BtpB (1− vA)BtpA +BtqBvAB

tqA = (1− vA)Btp + vAB
tq , hence this game

is statistically indistinguishable from the previous one, because of DB
$← ZN2/2 instead of ZNΛ.

Game G8: We remplace the ciphertexts E3, E4 and E6 with random contents.
Input and Setup. As in the previous game.
Switches. For each ESP+

×(C, C̄), Sim does as above until the generation of E3, E4 and E6:
E3, E4, E6 ← Z∗N2 .
Under the IND-CPA security of the Paillier encryption scheme modulo N2 (thanks to the DCR
assumption over Z∗N ), this game is indistinguishable from the previous one. One can note that DB

follows a distribution that is statistically close to the previous one. Note that we do not need to
generate A3 and A4, and thus we do not need to know tp nor tq anymore.

Game G9: We simulate the public parameters in a random way.
Input. Sim still knows the factorization of n, but not of N .
Setup. Sim randomly chooses χ ← Z∗n \ Jn, and this virtually defines p such that χ is a square
modulo p. Sim picks at random g0

$← Z∗n to set g ← −g20 mod n, a generator of Jn. It also picks
g1 ∈ Jn.
Sim picks at random h0

$← Z∗n to set h ← −h20 mod n, another generator of Jn, as well as
vp, vq

$← Z∗n to set hp ← v2p and hq ← −v2q .
Most of the secret keys are not known anymore, but no needed anyway, so Bob’s secret key is
generated randomly for (tpB, tqB, sB, DB)

$← Z3
λ × ZNΛ.

The rest of the game is unchanged.
This corresponds to choose up, uq

$← Z∗n, to set gp ← u2p ∈ QRn and gq ← −u2q ∈ Jn \ QRn, and
χ← (1− v)gp + vgq as before, but without knowing them nor the secret keys, but just the partial
secret keys. Lemma 19 shows that this game is indistinguishable from the previous one under the
DDH assumption in QRn.

Game G10: We can now choose random partial secret keys.
Input. Sim does not need to know the factorization of n, nor of N .
Setup. Sim randomly chooses χ ← Z∗n \ Jn, and this virtually defines p such that χ is a square
modulo p. Sim chooses (dB, vB, tpB, tqB, sB, DB)

$← Zn2/2 × Zn × Z3
n/2 × ZN2/2. Sim picks at

random g0
$← Z∗n to set g ← −g20 mod n, a generator of Jn. It also picks g1 ∈ Jn.

Sim picks at random h0
$← Z∗n to set h ← −h20 mod n, another generator of Jn, as well as

vp, vq
$← Z∗n to set hp ← v2p and hq ← −v2q .
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The rest of the game is unchanged.
Since the distributions of the partial keys are statistically close to the original ones, this game is
statistically indistinguishable from the previous one.

Game G11: We can now choose random public parameters in Jn.
Input. Sim receives two strong RSA moduli n and N with N > 2n2.
Setup. Sim randomly chooses χ ← Z∗n \ Jn, as well as g, g1

$← Jn. It then picks at random
h, hp, hq

$← Jn.
The rest of the game is unchanged.
Under the QR assumption in Z∗n, this game is indistinguishable from the previous one.

Game G12: Without the secret keys, we can replace the ciphertexts by random ciphertexts in the
additive to multiplicative direction.
Input and Setup. As in the previous game.
Switches. For each ESP×+(C, C̄), Sim picks CA

$← Z∗n2 and plays as before.
Under the IND-CPA security of the Paillier encryption scheme modulo n for CA (thanks to the
DCR assumption over Z∗n), this game is indistinguishable from the previous one.

Game G13: Without the secret keys, we can replace the ciphertexts by random ciphertexts in the
multiplicative to additive direction.
Input and Setup. As in the previous game.
Switches. For each ESP+

×(C, C̄), Sim picks CA
$← J3n and plays as before.

Under the IND-CPA security of the Z∗n-EG encryption scheme for CA (thanks to the DDH assump-
tion over Jn), this game is indistinguishable from the previous one.

Lemma 19. For a strong RSA modulus n, with known factorization n = qp, choosing g0, h0
$← Z∗n

to set g ← −g20 as well as h ← −h20 mod n, and two random scalars tp, tq
$← Zλ, respectively

even and odd to set gp ← gtp , hp ← htp , gq ← gtq , hq ← htq is indistinguishable from choosing
G0, H0, Up, Vp, Uq, Vq

$← QRn and setting g ← −G0, h ← −H0, as well as gp ← Up, hp ← Vp, and
gq ← −Uq, hq ← −Vq.

Game G0: In the real setup, we are given a strong RSA modulus n, and we choose g0, h0
$← Z∗n to

set g ← −g20 as well as h ← −h20 mod n. We choose two random scalars ap, aq
$← Zλ/2, to define

tp ← 2ap and tq ← 2aq + 1: gp ← g2ap = (g20)2ap , hp ← h2ap = (h20)
2ap , gq ← g2aq+1 = −(g20)2aq+1

and hq ← h2aq+1 = −(h20)
2aq+1.

Game G1: We still choose g0, h0
$← Z∗n to set g ← −g20 as well as h← −h20 mod n. But we choose two

random scalars ap, aq
$← Zλ/2, to define gp ← (g20)ap , hp ← (h20)

ap , gq ← −(g20)aq and hq ← −(h20)
aq .

Since λ/2 = p′q′ is odd, the distribution of 2ap modulo λ/2 is uniform in Zλ/2, and this is the
same for 2bq + 1.

Game G2: We simulate the public parameters with a multi-Diffie-Hellman tuple (A,B,C,D,C ′, D′)
in the squares QRn: (g, h, gp, hp, gq, hq)← (−A,−B,C,D,−C ′,−D′). With ap = logAC = logB D
and aq = logAC

′ = logBD
′, we have exactly the same setting as in the previous game.

Game G3: We simulate the multi-Diffie-Hellman tuple (A,B,C,D,C ′, D′) in QRn from a single
Diffie-Hellman tuple (A,B,C,D) in QRn: we choose random scalars u, v $← Zλ/2 and set C ′ ←
AuCv and D′ ← BuDv. We have exactly the same setting as in the previous game, since with
ap ← logAC = logBD, we have and C ′ = Au+apv and D′ = Bu+apv, hence aq = u+ apv.

Game G4: We do as above, but with a random D
$← QRn. This game is computationally indistin-

guishable from the previous one, under the DDH assumption in QRn.
Game G5: We do as above with random tuple (A,B,C,D,C ′, D′) in QRn. Since in the previous game

we had ap = logAC 6= bp = logB D, we have and C ′ = Au+apv and D′ = Bu+aqv: bp ← u+ ap + v
and bq ← u + aqv are independent random scalars. Hence, this game provides exactly the same
setting as the previous game.
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Z∗n−ESP is Zero-Knowledge for Bob. As above, we first exhibit the simulator, and then prove that the
behavior of the simulator is indistinguishable from Bob’s behavior.

Sim first receives as input two strong RSA moduli n and N with N > (2 + 2κ+1)n2. It picks
g, g1

$← Jn and χ $← Z∗n \ Jn. It also picks h, hp, hq
$← Jn. It then sets pk← (n, g, χ, g1, N, h, hp, hq). It

picks (dB, vB, tpB, tqB, sB, DB)
$← Zn2/2 ×Zn ×Z3

n/2 ×ZN2/2 and sends them to the adversarial Alice,
together with pk.

Each time Sim is asked to participate to an instance of a Z∗n−ESP on an input C, it additionally
receives a target ciphertext C̄, and the expected output is C̄ or an equivalent ciphertext:

– If the direction is from additive to multiplicative, Sim does not interact at all with Alice.
– If the direction is from multiplicative to additive,
• Sim picks and sends B,B1, B2

$← Jn;
• Sim sends a random E5

$← Z∗N2 .

Eventually, Sim sends C̄ to Alice as the output of the protocol.

Sketch of the Proof. The proof of Bob’s simulation is similar to Alice’s proof on several aspects.
We provide here an intuition of the main differences. First, unlike for Alice, Bob’s simulator Sim
cannot force the value x = RA ·m, and in particular, the first element α of its decomposition, in the
multiplicative to additive direction. But as the construction of x/β from α is somehow “linear in the
exponent”, Bob proceed as follows: he first hides α with a random r1, to make the computations on
α · gr1 instead of α, and then Bob simply multiply the output by B′ = χ−r1 . As for any value B ∈ Jn,
there is a r1 such that B = αgr1 , Sim can send a random B ∈ Jn instead of α · gr, and thus does not
have to control the value of α. Then, an additional lemma is required to show that generating public
values at random is indistinguishable from constructing them honestly, if the DDH assumption holds
in QRn (the lemma is not the same as in the simulation of Alice). The proof of the lemma relies in
part on the fact that from a DDH challenge, any number of random-looking DDH challenge with the
same answer (DDH tuple or random) than the original challenge can be generated.

Game G0: This is the real game.
Input. In this game, Sim knows the factorization of both n and N , with two generators g, h of
Jn.
Setup. Sim generates all the secret keys for both Alice and Bob in an honest way, gives his secret
key to Alice.
Switches. Each time it is asked to participate to an instance of the switching protocol on an input
(C, C̄), Sim plays honestly the real game with the secret key of Bob.

Game G1: We first address the additive to multiplicative direction, with the final flow.
Input and Setup. As in the real game.
Switches. For each ESP×+(C, C̄), in the last flow, Sim sends C ′ ← C̄.
When (C, C̄) are twin ciphertexts, with a random C̄, this game is perfectly indistinguishable from
the previous one, since C̄ contains the same plaintext as C.

Game G2: We now address the multiplicative to additive direction, with the final flow.
Input and Setup. As in the real game.
Switches. For each ESP+

×(C, C̄), in the last flow, Sim sends C ′ ← C̄.
When (C, C̄) are twin ciphertexts, with a random C̄, as above, this game is perfectly indistinguish-
able from the previous one, since C̄ contains the same plaintext as C.

Game G3: We continue with the Paillier ciphertext E5.
Input and Setup. As in the real game.
Switches. For each ESP+

×(C, C̄), when Sim receives CA, it computes A← (1− v)αtp + vαtq, and
generates a fresh Paillier ciphertext E5 of A.
Since E5 should contain the encryption of A′ = (vBA3 +A4)B

′ = ((1− v)Btp + vBtq)χ−r1 , where
we also know that χ−r1 = (1 − v)B

−tp
0 + vB

−tq
0 , where B0 = gr1 , and so α = B/B0, we indeed

have A′ = (1− v)(B/B0)
tp + v(B/B0)

tq = (1− v)αtp + vαtq = A.
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Game G4: We replace E5 by a random ciphertext.
Input. As above, excepted that Sim does not know anymore the factorization of N .
Setup. As above, excepted DA

$← ZN2/2.
Switches. For each ESP+

×(C, C̄), when Sim receives CA, it replaces E5 by a random ciphertext:
E5 ← Z∗N2 .
Under the IND-CPA security of the Paillier encryption scheme modulo N2 (thanks to the DCR
assumption over ZN ), this game is indistinguishable from the previous one. One can note that DA

follows a distribution that is statistically close to the previous one. We note that we do not need
to know r1 anymore, nor B′.

Game G5: We replace B by a random element.
Input and Setup. As in the previous game, with the explicit values gp ← gtp and gq ← gtq .
Switches. For each ESP+

×(C, C̄), when Sim receives CA, it chooses a randomB ← ga for a $← Zn/2,
and compute B1 ← gap/B

tpA and B2 ← gaq/B
tqA .

This corresponds to take gr1 = ga/α, which is statistically indistinguishable from the previous
game. In addition, B1 should be BtpB = Btp−tpA = Btp/BtpA = (ga)tp/BtpA = (gtp)a/BtpA =
gap/B

tpA , and the same for B2.
Game G6: We simulate the public parameters in a random way.

Input. Sim still knows the factorization of n, but not of N .
Setup. Sim randomly chooses χ ← Z∗n \ Jn, and this virtually defines p such that χ is a square
modulo p. Sim picks at random g0

$← Z∗n to set g ← −g20 mod n, a generator of Jn. It also picks
g1 ∈ Jn.
Sim picks at random h0

$← Z∗n to set h ← −h20 mod n, another generator of Jn, as well as
vp, vq

$← Z∗n to set hp ← v2p and hq ← −v2q .
Most of the secret keys are not known anymore, but no needed anyway, so Alice’s secret key is
generated randomly for (tpA, tqA, sA, DA)

$← ×Z3
λ × ZNΛ.

The rest of the game is unchanged.
This corresponds to choose up, uq

$← Z∗n, to set gp ← u2p ∈ QRn and gq ← −u2q ∈ Jn \ QRn, and
χ← (1− v)gp + vgq as before, but without knowing them nor the secret keys, but just the partial
secret keys. Lemma 19 (from the previous simulation) shows that this game is indistinguishable
from the previous one under the DDH assumption in QRn.

Game G7: We continue with a random simulation of B1 and B2.
Input and Setup. As in the previous game.
Switches. For each ESP+

×(C, C̄), when Sim receives CA, it chooses a random bit b $← {0, 1},
and three random squares W,U ′, V ′ $← QRn, and sets B ← (−1)bW , B1 ← U ′/BtpA , and
B2 ← (−1)bV ′/BtpA .
Lemma 20 shows that this game is indistinguishable from the previous one under the DDH as-
sumption in QRn. The elements gp and gq are not needed anymore by the simulator.

Game G8: We can now choose random partial secret keys.
Input. Sim does not need to know the factorization of n, nor of N .
Setup. Sim randomly chooses χ ← Z∗n \ Jn, and this virtually defines p such that χ is a square
modulo p. Sim chooses (dA, vA, tpA, tqA, sA, DA)

$← Zn2/2 × Zn × Z3
n/2 × ZN2/2. Sim picks at

random g0
$← Z∗n to set g ← −g20 mod n, a generator of Jn. It also picks g1 ∈ Jn.

Sim picks at random h0
$← Z∗n to set h ← −h20 mod n, another generator of Jn, as well as

vp, vq
$← Z∗n to set hp ← v2p and hq ← −v2q .

The rest of the game is unchanged.
Since the distributions of the partial keys are statistically close to the original ones, this game is
statistically indistinguishable from the previous one.

Game G9: We can now choose random public parameters in Jn.
Input. Sim receives two strong RSA moduli n and N with N > 2n2.
Setup. Sim randomly chooses χ ← Z∗n \ Jn, as well as g, g1

$← Jn. It then picks at random
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h, hp, hq
$← Jn.

The rest of the game is unchanged.
Under the QR assumption in Z∗n, this game is indistinguishable from the previous one.

Game G10: We can now randomly choose the Bi’s in Jn.
Input and Setup. As in the previous game.
Switches. For each ESP+

×(C, C̄), when Sim receives CA, it randomly picks B,B1, B2
$← Jn.

This does not change anything for B, but for B1 and B2, this corresponds to randomly take
U ′, V ′

$← Jn instead of QRn, which is indistinguishable under the QR assumption in Z∗n.

Lemma 20. For a generator g of Jn, and gp = gtp (for even tp), gq = gtq (for odd tq), choosing multiple
Bi ← gai for ai

$← Zλ, and setting Ui ← gaip , and Vi ← gaiq , or choosing bi
$← {0, 1}, Wi, U

′
i , V

′
i

$← QRn,
and setting Bi ← (−1)biWi, Ui ← U ′i , and Vi ← (−1)biV ′i are indistinguishable.

Game G0: We simulate (g, gp, gq, {Bi, Ui, Vi}i) with a random Diffie-Hellman tuple (A,B,C, {Wi, Si, Ti})
in QRn, where for all i, γi = logAWi = logB Si = logC Ti ∈ Zλ/2. We can indeed set (g, gp, gq) ←
(−A,B,−C), and for all i, (Bi, Ui, Vi) ← ((−1)biWi, Si, (−1)biTi). Since the group QRn of the
squares in Z∗n is of odd order δ ← λ/2 = p′q′, with overwhelming probability, A is a generator,
and so we can denote up ← logAB and uq ← logAC. Then gp = B = Aup = (−A)δup(−1)upAup =
(−A)(δ+1)up = gtp , with tp ← (δ+1)up (that is even), and gq = −C = −Auq = (−A)δ(−A)(δ+1)uq =
gtq , as just before, with tq ← δ + (δ + 1)uq (that is odd).
Then Bi = (−1)biAγi = (−A)δbi(−A)δγi(−A)γi = gγi+δ(bi+γi) = gai , for ai = γi + δ(bi +γi) mod λ.
But in addition, Ui = Si = Bγi = gaip since gp = B is a square, of order δ, and Vi = (−1)biTi =

(−1)biCγi = gaiq , as above for Bi.
Game G1: We do as above, but generating the multi-Diffie-Hellman tuple (A,B,C, {Wi, Si, Ti}) from

a simpler one (A,B, {Wi, Si}i) over QRn, by choosing a random uq
$← Zλ/2, and setting C ← Auq ,

and Ti ←W
uq
i for all i. This game is perfectly indistinguishable from the previous one.

Game G2: We do as above, but with a unique random Diffie-Hellman tuple (A,B,W, S), by choosing
random ui, vi

$← Zλ/2 to set Wi ← AuiW vi and Si ← BuiSvi . This game is perfectly indistinguish-
able from the previous one.

Game G3: We do as above, but with a random S. This game is computationally indistinguishable
from the previous one, under the DDH assumption in QRn.

Game G4: We do as above, but generating the tuple (A,B,C, {Wi, Si, Ti}) from a simpler one
(A,C, {Wi, Ti}i) over QRn, by choosing a random B

$← QRn and random Si
$← QRn for all i.

Since B and the Si were random and independent in the previous game, this game remains per-
fectly indistinguishable.

Game G5: We do as above, but with a unique random Diffie-Hellman tuple (A,C,W, T ), by choosing
random ui, vi

$← Zλ/2 to set Wi ← AuiW vi and Ti ← CuiT vi . This game is perfectly indistinguish-
able from the previous one.

Game G6: We do as above, but with a random T . This game is computationally indistinguishable
from the previous one, under the DDH assumption in QRn.

Game G7: We do as above, but generating the tuple (A,B,C, {Wi, Si, Ti}) totally at random, which
is exactly the second distribution of the setting, which concludes the proof of the lemma.

C.2 Encryption Switching Protocols on Zn

Let us recall Theorem 11:

Theorem 11. When instantiated with the Paillier encryption scheme and the Zn-EG encryption
scheme, both over Zn, if the Z∗n−ESP and the EZT are both zero-knowledge and if com is hiding, then
the Zn−ESP given Figure 5 is zero-knowledge under the DDH assumption in QRn, the QR assumption
in Z∗n and the DCR assumption over Z∗n.

Theorem 21. Zn − ESP+
× is computationally zero-knowledge.
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Setup and Key Generation
– The main strong RSA modulus n:

• p, q two safe primes, n← pq;
• g0

$← Z∗n, g ← −g20 (a generator of Jn, of order λ);
• d← [λ−1 mod n] · λ mod nλ: d = 0 mod λ and d = 1 mod n;
• v ← [p−1 mod q] · p mod n: v = 0 mod p and v = 1 mod q;
• an even tp

$← Zλ and an odd tq
$← Zλ: χ← (1− v) · gtp + v · gtq mod n;

• s
$← Zλ, and set g1 ← gs mod n (for Jn-EG).

• s2, s3
$← Z2

λ/2, and set g2 ← g2s2 mod n (for QRn-EG) and g3 ← g2s3 mod n (for QRn-EG′).
– The additional modulus N :

• P,Q two strong primes, N ← PQ (such that N > (2 + 2κ+1)n2);
• D ← [Λ−1 mod N ] · Λ mod NΛ, where Λ is the order of JN .

– Keys: pk← (n, g, χ, g1, g2, g3, N) and sk← (d, v, tp, tq, s, s2, D).
– Partial keys: (dA, vA, tpA, tqA, sA, s2A, DA)

$← Znλ × Zn × Z3
λ × Zλ/2 × ZNΛ,

and dB ← d− dA mod nλ, vB ← v− vA mod n, tpB ← tp− tpA mod λ, tqB ← tq − tqA mod λ, sB ← s− sA mod λ,
s2B ← s2 − s2A mod λ/2, and DB ← D −DA mod NΛ.

E 0
⊗(·) = Zn-EG: ElGamal Encryption Scheme in Zn

Enc(pk,m) : On input m ∈ Zn, if m = 0, then set b = 1 else set b = 0. Then, choose T, T ′ $← QRn and compute
C1 ← E⊗(m+ b), C2 ← QRn-EG.Enc(T b), C3 ← QRn-EG′.Enc(T ′b).
Return the ciphertext C = E 0

⊗(m) = (C1, C2, C3).
Rand(pk, C = (C1, C2, C3)) : Choose random r2, r3

$← Zn/4, and compute C′1 ← Z∗n-EG.Rand(C1), C′2 ←
QRn-EG.Rand(Cr22 ), and C′3 ← QRn-EG′.Rand(Cr33 ). Output C′ ← (C′1, C

′
2, C

′
3).

Dec(sk, C) : Parse C = (C1, C2, C3) and first decrypt T ′′ ← QRn-EG.Dec(C2). If T ′′ = ⊥, return ⊥; if T ′′ = 1, return
0; otherwise compute m← D⊗(C1) and return m.

E⊕(·) = Zn-P: Paillier Encryption Scheme on Zn
Enc(pk,m) : given m ∈ Zn, for a random r

$← Z∗n, compute c← (1 + n)m · rn mod n2. Output c ∈ Z∗n2 ;

Rand(pk, c) : choose r $← Z∗n, output c′ ← rn · c mod n2.
Dec(sk, c) : return m← ([cd mod n2]− 1)/n.

Fig. 3: Setup and Encryption Schemes in Zn (repeated from page 15)



43

2-Party ESP×+ from C = E⊕(m) into (C1×, C2×, C3×) = E 0
⊗(m)

Alice gets CEZT = E⊕(b)
CEZT ← EZT(C)

←−−−−−−−−−−−−−−−−−−−→ Bob gets nothing

C1+← C � CEZT
C1+−−−−−−−−−−−−−−−−−−−−→

Alice gets C1×
C1× ← Z∗n-ESP(C1+)

←−−−−−−−−−−−−−−−−−−−→ Bob gets C1×

T, T ′, R2, R3, k
$← QRn

c← com(k)
C2+← E⊕(1) � (T − 1) • CEZT
C3+← E⊕(1) � (T ′ − 1) • CEZT
C2← Zn-P.Rand(R2 • C2+)

C′2← QRn-EG.Enc(R−1
2 )

C3← Zn-P.Rand(k ·R3 • C3+)

C′3← QRn-EG′.Enc(R−1
3 )

D2← C
dA
2 mod n2

D3← C
dA
3 mod n2

c, C2, C
′
2, D2, C3, C

′
3, D3−−−−−−−−−−−−−−−−−−−−→ x2← ([C

dB
2 D2 mod n2]− 1)/n

x3← ([C
dB
3 D3 mod n2]− 1)/n

C2×← QRn-EG.Rand(x2 • C′2)

C′′3×← k−1 • C′3×
C2×, C

′
3×←−−−−−−−−−−−−−−−−−−−− C′3×← QRn-EG′.Rand(x3 • C′3)

k′
$← Zn/4

C3×← QRn-EG′.Rand(C′′3×
k′ )

C3×−−−−−−−−−−−−−−−−−−−−→

2-Party ESP+
× from (C1×, C2×, C3×) = E 0

⊗(m) into C′ = E⊕(m)

Alice gets C1+
C1+ ← Z∗n-ESP(C1×)←−−−−−−−−−−−−−−−−−−−→ Bob gets C1+

R2
$← QRn,

k′
$← Zn/4

C2← QRn-EG.Rand(R2 • Ck
′

2×)
= (c0, c1)

C′2← E⊕(R
−1
2 )

d1← c
s2A
0

C2, C
′
2, d1−−−−−−−−−−−−−−−−−−−−→ x2← c1/d1c

s2B
0

k
$← Z∗n

C′2+←−−−−−−−−−−−−−−−−−−−− C′2+← k • (x2 • C′2 � E⊕(1))

Alice gets nothing
CEZT ← EZT(C′2+)

←−−−−−−−−−−−−−−−−−−−→ Bob gets CEZT = E⊕(b′)

(ρ0, ρ1)
$← Z2

n
B1← C1+ � E⊕(ρ0)
B2← E⊕(ρ1) � CEZT
B3← ρ0 • CEZT
B4← ρ1 • C1+

B5← E⊕(ρ0ρ1)
B6← B3 �B4 �B5

A′1← B
dB
1 mod n2

A1← ([B
dA
1 A′1 mod n2]− 1)/n

B1, B2, A
′
1, A
′
2, B6←−−−−−−−−−−−−−−−−−−−− A′2← B

dB
2 mod n2

A2← ([B
dA
2 A′2 mod n2]− 1)/n

C′← E⊕(A1 ·A2) �B6
C′−−−−−−−−−−−−−−−−−−−−→

Fig. 5: Interactive Encryption Switching in Zn (repeated from page 17)



44

Zn−ESP is Zero-Knowledge for Alice. Let us first exhibit the simulator, we then prove that the behavior
of the simulator is indistinguishable from Alice’s behavior.

Sim first receives as input two strong RSA moduli n and N with N > (2 + 2κ+1)n2. It picks
g, g1, g2, g3

$← Jn and χ $← Z∗n\Jn. It then sets pk← (n, g, χ, g1, g2, g3, N). It also picks (dB, vB, tpB, tqB,

sB, s2B, DB)
$← Zn2/2 × Zn × Z3

n/2 × Zn/4 × ZN2/2 and sends them to the adversarial Bob, together
with pk.

Each time Sim is asked to participate to an instance of a Zn−ESP on an input C, it additionally
receives a target ciphertext C̄, and the expected output is a randomization of C̄:

– If the direction is from additive to multiplicative,
• Sim runs the simulation of EZT on (C,C ′

$← Z∗n2);
• Sim randomly chooses C1+

$← Z∗n2 , and sends it to Bob;
• Sim parses C̄ = (C̄1×, C̄2×, C̄3×), and runs the simulation of the ESP protocol on the input

(C1+, C̄1×);
• Sim randomly picks k,R2

$← Jn and generates c ← Com(k) and C ′2 ← R−12 • C̄2×, as well
as D2 ← (1 + R2 · n)/CdB2 . It also randomly picks C2, C3

$← Z∗n2 , C ′3, D3
$← Jn, and sends

(c, C2, C
′
2, D2, C3, C

′
3, D3) to Bob;

• Sim eventually sends C̄3× to Bob;
– If the direction is from multiplicative to additive,
• Sim randomly picks C1+

$← Z∗n2 , and runs the simulation of the ESP protocol on the inputs
(C1×, C1+);
• Sim randomly picks C2

$← J2n, C ′2
$← Z∗n2 , d1

$← Jn, and sends the tuple (C2, C
′
2, d1) to Bob;

• Sim runs the simulation of EZT on (C ′2+, C
′ $← Z∗n2);

• Sim eventually sends C̄.

With the following sequence of games, we show that the simulator Sim has the same behavior as Alice,
even for many instances. The simulators will be constructed step by step, starting from a simulator
that knows all the secrets, and then behaves exactly as Alice.

Game G0: This is the real game.
Input. In this game, Sim knows the factorization of both n and N , with two generators g, h of
Jn.
Setup. Sim generates all the secret keys for both Alice and Bob in an honest way, gives his secret
key to Bob.
Switches. Each time it is asked to participate to an instance of the switching protocol on an input
(C, C̄), Sim plays honestly the real game with the secret key of Alice.

Game G1: This simulator uses the trapdoor s3.
Input and Setup. As in the previous game, excepted that Sim keeps the secret s3.
Switches. For each ESP+

×(C, C̄) or ESP×+(C, C̄), either C or C̄ is E 0
⊗(m), and then it uses s3 to

extract b from the third part: if the plaintext is 1, then b is set to 0, otherwise it is set it 1. Since
no modification is done, this game is perfectly indistinguishable from the previous one.

Game G2: We start to modify the simulation in the multiplicative to additive direction, by
altering C2 and C ′2.
Input and Setup. As in the previous game.
Switches. For each ESP+

×(C, C̄), Sim chooses two random squares R,R′ $← QRn, and then gen-
erates two fresh ciphertexts C2 ← QRn-EG.Enc(R′), and C ′2 ← E⊕(Rb/R′), with the extracted b.
C2 contains R2 · Rb, for R = T k

′ , and C ′2 contains R−12 . Since n is a strong RSA modulus, the
order of QRn is λ/2 = p′q′, and so any square is likely a generator. Hence a random R follows a
distribution that is statistically close to the distribution of T k′ . By setting R2 ← R′/Rb, we are
exactly as in the previous game: This game is statistically indistinguishable from the previous one.
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Game G3: We now alter the decryption of C2.
Input and Setup. As in the previous game.
Switches. For each ESP+

×(C, C̄), Sim sends d1 ← c1c
−s2B
0 /R′.

Since C2 encrypts R′, this should be the value of x2 = c1c
−s2B
0 /d1: This game is perfectly indistin-

guishable from the previous one.
Game G4: We can now modify the simulation of the EZT.

Input and Setup. As in the previous game.
Switches. For each ESP+

×(C, C̄), Sim simulates the EZT protocol on the input (C ′2+,E⊕(1− b)),
from the extracted b.
From the previous games, C ′2+ contains a Paillier encryption of Rb− 1 mod n: if b = 0, this is 0, if
b = 1, this is non-zero. So the EZT output should be a ciphertext of b′ = 1−b. Under the (statistical)
zero-knowledge property of the EZT protocol, this game is (statistically) indistinguishable from
the previous one.

Game G5: We end by modifying the final flow.
Input and Setup. As in the previous game.
Switches. For each ESP+

×(C, C̄), in the last flow, Sim sends C ′ ← C̄.
When (C, C̄) are twin ciphertexts, this flow is indistinguishable from the previous game since C ′

should look like a fresh encryption of m, because of the fresh encryption of A1 · A2: This game is
statistically indistinguishable from the previous one.

Game G6: We now modify the simulation in the additive to multiplicative direction.
Input and Setup. As in the previous game.
Switches. For each ESP×+(C, C̄), Sim chooses a random k

$← QRn, but sends a commitment c on
a random value.
Under the hiding property of the commitment scheme, this game is indistinguishable from the
previous one. However, now, C3 and C ′3 contains independent values.

Game G7: We now modify the simulation of the EZT.
Input and Setup. As in the previous game.
Switches. For each ESP×+(C, C̄), Sim simulates the EZT protocol on the input (C,E⊕(b)), from
the extracted b.
When (C, C̄) are twin ciphertexts, the third part of C̄ contains a QRn-EG′ encryption of T̄ ′b,
where b = 1 if the message is 0, and b = 0 otherwise. This is the bit b we’ve extracted above, and
that should be encrypted in the result of the honest EZT protocol on C. Under the (statistical)
zero-knowledge property of the EZT protocol, this game is (statistically) indistinguishable from
the previous one.

Game G8: We now alter the ciphertexts C1+, C2+, and C3+.
Input and Setup. As in the previous game.
Switches. For each ESP×+(C, C̄), Sim simulates C1+ ← C � E⊕(b), C2+ ← E⊕(T b), and C3+ ←
E⊕(T ′b).
Since CEZT = E⊕(b), this game is perfectly indistinguishable from the previous one.

Game G9: We continue by altering C2, C ′2 and C3, C ′3.
Input and Setup. As in the previous game.
Switches. For each ESP×+(C, C̄), Sim chooses two random squares R2, R3

$← QRn, and then
generates C2 ← E⊕(R2) and C ′2 ← R2

−1 • C̄2×, as well as C3 ← E⊕(k ·R3) and C ′3 ← (k ·R3)
−1 •

C̄3×.
When (C, C̄) are twin ciphertexts, C̄2× should contain a QRn-EG encryption of T̄ b, and C̄3×
should contain a QRn-EG′ encryption of T̄ ′b, hence this game is perfectly indistinguishable from
the previous one.

Game G10: We now alter the decryption of C2 and C3.
Input and Setup. As in the previous game.
Switches. For each ESP×+(C, C̄), Sim sends D2 ← (1 +R2n)/CdB2 and D3 ← (1 + k ·R3n)/CdB3 .
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Since C2 encrypts R2, this should be the value of x2 = R2 = ([CdB2 D2 mod n2]−1)/n, and similarly
for C3, with x3 = k ·R3: This game is perfectly indistinguishable from the previous one.

Game G11: We then modify the final flow.
Input and Setup. As in the previous game.
Switches. For each ESP×+(C, C̄), Sim sends C3× ← C̄3.
When (C, C̄) are twin ciphertexts, this flow is indistinguishable from the previous game since C3×
should look like a fresh encryption T ′b for some random square T ′, as explained in G2: This game
is statistically indistinguishable from the previous one.

Game G12: We continue by simulating the Z∗n−ESP all in parallel in both directions.
Input. Sim does not know the factorization of n, nor of N .
Setup. Sim randomly generates the public keys without knowing the secret keys, excepted s3.
Switches. For each instance of the switching protocol, we run the simulators for the Z∗n−ESP:
– from additive to multiplicative, on an input (C, C̄), where one can parse C̄ = (C̄1×, C̄2×, C̄3×),

Sim simulates the Z∗n−ESP protocol on the inputs (C1+, C̄1×).
When (C, C̄) are twin ciphertexts, in C̄ = (C̄1×, C̄2×, C̄3×), C̄1× should be E⊗(m+ b).

– from multiplicative to additive, on an input (C, C̄), Sim simulates the Z∗n−ESP protocol on
the inputs (C1×, C̄ � E⊕(b)).
When (C, C̄) are twin ciphertexts, C̄ = E⊕(m), so C̄ � E⊕(b) contains m+ b.

Under the zero-knowledge property of the ESP protocols, thanks to the DDH assumption in QRn,
the QR assumption in Z∗n, the DCR assumption over Z∗n, and the DCR assumption over Z∗N , this
game is indistinguishable from the previous one. This corresponds to inline the games from the
proof of Theorem 10. One can note that our simulator does not need to know any secret excepted
s3.

Game G13: We now start to remove the need of b.
Input and Setup. As in the previous game (no more secret excepted s3).
Switches. For each EZT protocol, a random ciphertext C ′ $← Z∗n2 is given as second input.
Under the IND-CPA security of the Paillier encryption scheme modulo n (thanks to the DCR
assumption over Zn), this game is indistinguishable from the previous one.

Game G14: We simulate the Z∗n−ESP from additive to multiplicative at random.
Input and Setup. As in the previous game.
Switches. For each Z∗n−ESP from additive to multiplicative, Sim simulates it on the inputs
(C1×, C1+), for a random C1+

$← Z∗n2 .
Under the IND-CPA security of the Paillier encryption scheme modulo n (thanks to the DCR
assumption over Zn), this game is indistinguishable from the previous one.

Game G15: We alter again the ciphertexts C2, C ′2 in the multiplicative to additive direction.
Input and Setup. As in the previous game.
Switches. For each ESP+

×(C, C̄), Sim simulates C2 and C ′2 at random.
Under the IND-CPA security of the Paillier encryption scheme modulo n (thanks to the DCR
assumption over Zn) and the IND-CPA security of QRn-EG (thanks to the DDH assumption in
QRn), this game is indistinguishable from the previous one.

Game G16: We alter again the decryption of C3 in the additive to multiplicative direction.
Input and Setup. As in the previous game.
Switches. For each ESP×+(C, C̄), Sim sends D3

$← Z∗n2 .
Under the IND-CPA security of the Paillier encryption scheme modulo n (thanks to the DCR
assumption over Zn), this game is indistinguishable from the previous one.

Game G17: We also alter the ciphertext C ′3.
Input and Setup. As in the previous game.
Switches. For each ESP×+(C, C̄), Sim simulates C ′3

$← QR2
n.

C ′3 should contain T̄ ′b/R for a random square R = k ·R3, that is never revealed anymore: whatever
the value of b is, this is a random square: This game is perfectly indistinguishable from the previous
one. Note that we do not need to extract b anymore.
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Game G18: We can now choose random partial secret keys.
Input. Sim does not know the factorization of n, nor of N .
Setup. Sim randomly chooses χ ← Z∗n \ Jn, and this virtually defines p such that χ is a square
modulo p. Sim chooses (dB, vB, tpB, tqB, sB, DB)

$← Zn2/2 × Zn × Z3
n/2 × ZN2/2. Sim picks at

random g0
$← Z∗n to set g ← −g20 mod n, a generator of Jn. It also picks g1

$← Jn, as well as
g2, g3

$← QRn. It then sets pk ← (n, g, χ, g1, g2, g3, N). It picks (dB, vB, tpB, tqB, sB, s2B, DB)
$←

Zn2/2 × Zn × Z3
n/2 × Zn/4 × ZN2/2 and sends them to the adversarial Bob, together with pk.

Since the distributions of the partial keys are statistically close to the original ones, this game is
statistically indistinguishable from the previous one.

Game G19: We can now choose random public parameters in Jn.
Input. Sim receives two strong RSA moduli n and N with N > 2n2.
Setup. Sim randomly chooses χ← Z∗n \ Jn, as well as g, g1, g2, g3

$← Jn. The rest of the game is
unchanged.
Under the QR assumption in Z∗n, this game is indistinguishable from the previous one.

Game G20: We can now choose random ciphertexts in Jn.
Input and Setup. As in the previous game. Switches. All the ciphertexts with random plaintexts
in QRn are replaced with random plaintexts in Jn.
Under the QR assumption in Z∗n, this game is indistinguishable from the previous one.

Zn−ESP is Zero-Knowledge for Bob. Let us first exhibit the simulator, we then prove that the behavior
of the simulator is indistinguishable from Bob’s behavior.

Sim first receives as input two strong RSA moduli n and N with N > (2 + 2κ+1)n2. It picks
g, g1, g2, g3

$← Jn and χ $← Z∗n\Jn. It then sets pk← (n, g, χ, g1, g2, g3, N). It also picks (dA, vA, tpA, tqA,

sA, s2A, DA)
$← Zn2/2 × Zn × Z3

n/2 × Zn/4 × ZN2/2 and sends them to the adversarial Alice, together
with pk.

Each time Sim is asked to participate to an instance of a Zn−ESP on an input C, it additionally
receives a target ciphertext C̄, and the expected output is a randomization of C̄:

– If the direction is from additive to multiplicative,
• Sim runs the simulation of EZT on (C,C ′

$← Z∗n2);
• Sim parses C̄ = (C̄1×, C̄2×, C̄3×), and runs the simulation of the ESP protocol on the input

(C1+, C̄1×);
• Sim extracts k from the commitment c and sends C2× ← C̄2× and C3× ← k • C̄3× to Alice.

– If the direction is from multiplicative to additive,
• Sim randomly picks C1+

$← Z∗n2 , and runs the simulation of the ESP protocol on the inputs
(C1×, C1+);
• Sim sends C ′2+

$← Z∗n2 to Alice;
• Sim runs the simulation of EZT on (C ′2+, C

′ $← Z∗n2);
• Sim randomly picks A1, A2

$← Zn, B1, B2
$← Z∗n2 , sets A′1 ← (1 + A1n)/BdA

1 mod n2, A′2 ←
(1 +A2n)/BdA

2 mod n2, and B6 ← C̄ � E⊕(A1 ·A2). It sends the tuple (B1, B2, A
′
1, A

′
2, B6) to

Alice.

With the following sequence of games, we show that the simulator Sim has the same behavior as Bob,
even for many instances. The simulators will be constructed step by step, starting from a simulator
that knows all the secrets, and then behaves exactly as Bob.

Game G0: This is the real game.
Input. In this game, Sim knows the factorization of both n and N , with two generators g, h of
Jn, as well as the extraction key for the commitement scheme.
Setup. Sim generates all the secret keys for both Alice and Bob in an honest way, gives his secret
key to Alice.
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Switches. Each time it is asked to participate to an instance of the switching protocol on an input
(C, C̄), Sim plays honestly the real game with the secret key of Bob.

Game G1: This simulator uses the trapdoor s3.
Input and Setup. As in the previous game, excepted that Sim keeps the secret s3.
Switches. For each ESP+

×(C, C̄) or ESP×+(C, C̄), either C or C̄ is E 0
⊗(m), and then it uses s3 to

extract b from the third part: if the plaintext is 1, then b is set to 0, otherwise it is set it 1. Since
no modification is done, this game is perfectly indistinguishable from the previous one.

Game G2: We start to modify the simulation in the multiplicative to additive direction, by
altering C ′2+.
Input and Setup. As in the previous game.
Switches. For each ESP+

×(C, C̄), Sim chooses a random element R $← Z∗n, and generates a fresh
ciphertext C ′2+ ← E⊕(b ·R), with the extracted b.
C2× contains T b, so C2 contains x2 = R2 · T bk

′ , while C ′2 contains R−12 : C ′2× contains k(T bk
′ −

1) mod n. As a consequence, if b = 0 this is 0, otherwise T bk′ 6= 1 mod n, and so C ′2× likely contains
a random element in Z∗n: This game is statistically indistinguishable from the previous one.

Game G3: We can now modify the simulation of the EZT.
Input and Setup. As in the previous game.
Switches. For each ESP+

×(C, C̄), Sim simulates the EZT protocol on the input (C ′2+,E⊕(1− b)),
from the extracted b.
From the previous games, C ′2+ contains a Paillier encryption of b×R for a random R

$← Z∗n. So the
EZT output should be a ciphertext of b′ = 1− b. Under the (statistical) zero-knowledge property
of the EZT protocol, this game is (statistically) indistinguishable from the previous one.

Game G4: We now alter the generation of B6.
Input and Setup. As in the previous game.
Switches. For each ESP+

×(C, C̄), Sim generates B6 ← C̄ � E⊕(A1 · A2), where A1 ← m + b +
ρ0 mod n and A2 ← ρ+ 1− b mod n, with the extracted b and the extracted message m.
By construction, C1× contains an encryption of m + b, and so do is for C1+, then B1 contains
A1 = m + b + ρ0, B2 contains an encryption of ρ + 1 − b. In addition, when (C, C̄) are twin
ciphertexts, C ′ should be equivalent to C̄, hence this game is perfectly indistinguishable from the
previous one.

Game G5: We now alter the generation of B1, B2 and A′1, A′2.
Input and Setup. As in the previous game.
Switches. For each ESP+

×(C, C̄), Sim generates fresh ciphertexts B1
$← E⊕(A1) and B2

$← E⊕(A2)

for random A1, A2
$← Zn, as well as A′1 ← (1 +A1n)/BdA

1 and A′2 ← (1 +A2n)/BdA
2 .

This corresponds to choose ρ0 ← A1 − m − b and ρ1 ← A2 + b − 1: This game is perfectly
indistinguishable from the previous one.

Game G6: We now modify the simulation in the additive to multiplicative direction, with the
EZT.
Input and Setup. As in the previous game.
Switches. For each ESP×+(C, C̄), Sim simulates the EZT protocol on the input (C,E⊕(b)), from
the extracted b.
When (C, C̄) are twin ciphertexts, the third part of C̄ contains a QRn-EG′ encryption of T̄ ′b,
where b = 1 if the message is 0, and b = 0 otherwise. This is the bit b we’ve extracted above, and
that should be encrypted in the result of the honest EZT protocol on C. Under the (statistical)
zero-knowledge property of the EZT protocol, this game is (statistically) indistinguishable from
the previous one.

Game G7: We now alter the ciphertext C2×.
Input and Setup. As in the previous game.
Switches. For each ESP×+(C, C̄), Sim sends C2× ← C̄2.
When (C, C̄) are twin ciphertexts, this flow is indistinguishable from the previous game since C2×
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should look like a fresh encryption of T b for some random square T : This game is statistically
indistinguishable from the previous one.

Game G8: We now alter the ciphertext C ′3×.
Input and Setup. As in the previous game.
Switches. For each ESP×+(C, C̄), Sim first extracts k from the commitment c, and sends C ′3× ←
k • C̄3.
When (C, C̄) are twin ciphertexts, this flow is indistinguishable from the previous game since C3×
should look like a fresh encryption of k·T ′b for some random square T ′, because of the multiplication
by k in C3: This game is statistically indistinguishable from the previous one.

Game G9: We continue by simulating the Z∗n−ESP all in parallel in both directions.
Input. Sim does not know the factorization of n, nor of N .
Setup. Sim randomly generates the public keys without knowing the secret keys, excepted s3.
Switches. For each instance of the switching protocol, we run the simulators for the Z∗n−ESP:
– from additive to multiplicative, on an input (C, C̄), where one can parse C̄ = (C̄1×, C̄2×, C̄3×),

Sim simulates the Z∗n−ESP protocol on the inputs (C1+, C̄1×).
When (C, C̄) are twin ciphertexts, in C̄ = (C̄1×, C̄2×, C̄3×), C̄1× should be E⊗(m+ b).

– from multiplicative to additive, on an input (C, C̄), Sim simulates the Z∗n−ESP protocol on
the inputs (C1×, C̄ � E⊕(b)).
When (C, C̄) are twin ciphertexts, C̄ = E⊕(m), so C̄ � E⊕(b) contains m+ b.

Under the zero-knowledge property of the ESP protocols, thanks to the DDH assumption in QRn,
the QR assumption in Z∗n, the DCR assumption over Z∗n, and the DCR assumption over Z∗N , this
game is indistinguishable from the previous one. This corresponds to inline the games from the
proof of Theorem 10. One can note that our simulator does not need to know any secret excepted
s3.

Game G10: We now start to remove the need of b.
Input and Setup. As in the previous game (no more secret excepted s3).
Switches. For each EZT protocol, a random ciphertext C ′ $← Z∗n2 is given as second input.
Under the IND-CPA security of the Paillier encryption scheme modulo n (thanks to the DCR
assumption over Zn), this game is indistinguishable from the previous one.

Game G11: We simulate the Z∗n−ESP from additive to multiplicative at random.
Input and Setup. As in the previous game.
Switches. For each Z∗n−ESP from additive to multiplicative, Sim simulates it on the inputs
(C1×, C1+), for a random C1+

$← Z∗n2 .
Under the IND-CPA security of the Paillier encryption scheme modulo n (thanks to the DCR
assumption over Zn), this game is indistinguishable from the previous one.

Game G12: We alter again the ciphertext C ′2+ in the multiplicative to additive direction.
Input and Setup. As in the previous game.
Switches. For each ESP+

×(C, C̄), Sim simulates C ′2+
$← Z∗n2 .

Under the IND-CPA security of the Paillier encryption scheme modulo n (thanks to the DCR
assumption over Zn), this game is indistinguishable from the previous one. Note that we do not
need to extract b anymore.

Game G13: We alter again the ciphertexts B1 and B2.
Input and Setup. As in the previous game.
Switches. For each ESP+

×(C, C̄), Sim simulates B1, B2
$← Z∗n2 .

Under the IND-CPA security of the Paillier encryption scheme modulo n (thanks to the DCR
assumption over Zn), this game is indistinguishable from the previous one.

Game G14: We can now choose random partial secret keys.
Input. Sim does not know the factorization of n, nor of N .
Setup. Sim randomly chooses χ ← Z∗n \ Jn, and this virtually defines p such that χ is a square
modulo p. Sim chooses (dB, vB, tpB, tqB, sB, DB)

$← Zn2/2 × Zn × Z3
n/2 × ZN2/2. Sim picks at

random g0
$← Z∗n to set g ← −g20 mod n, a generator of Jn. It also picks g1

$← Jn, as well as
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g2, g3
$← QRn. It then sets pk ← (n, g, χ, g1, g2, g3, N). It picks (dA, vA, tpA, tqA, sA, s2A, DA)

$←
Zn2/2 × Zn × Z3

n/2 × Zn/4 × ZN2/2 and sends them to the adversarial Alice, together with pk.
Since the distributions of the partial keys are statistically close to the original ones, this game is
statistically indistinguishable from the previous one.

Game G15: We can now choose random public parameters in Jn.
Input. Sim receives two strong RSA moduli n and N with N > 2n2.
Setup. Sim randomly chooses χ← Z∗n \ Jn, as well as g, g1, g2, g3

$← Jn. The rest of the game is
unchanged.
Under the QR assumption in Z∗n, this game is indistinguishable from the previous one.

D Details on our Twin-Ciphertext Techniques

D.1 Security Analysis of TCP’s

In Section 6, we proposed a zero-knowledge proof that two ciphertexts from two different cryptosys-
tems do indeed encrypt the same value. The TCP described in Section 6 is only honest-verifier zero-
knowledge: this is a Σ-protocol, with a typical 3-flow structure. There are two classical ways to enhance
the security of such protocols against malicious verifiers, in a sequential or parallel use:

1. By adding a first flow in which the verifier commits to its challenge using an IND-CCA extractable
commitment scheme (such constructions are called Ω-protocols), or

2. By letting the prover use an equivocal commitment scheme (see [Bea96]) in its first flow.

We will focus on the second technique in our security proof. Note that 3-flow concurrent zero-knowledge
cannot exist, hence if one wants concurrent zero-knowledge, the first method shall be used instead. In
the setting of ESP, however, it offers a sufficient security: in all the TCP involved, Alice will always act
as the prover and Bob as the verifier. (Even if their roles were to be exchanged, though, one could still
use two equivocal schemes, with two different keys, one held by Alice and one by Bob. Then, even if one
of the keys could be compromised when a player sees simulated proofs because simulation-soundness
is not guaranteed, this key would provide no advantage in proving false statements later).

Equivocal Commitment Scheme. The simplest way to commit to all the pairs of ciphertexts in an
equivocal way is to use the following construction:

Setup: Pick a hash function H : {0, 1}∗ 7→ {0, 1}κ and ge
$← G, in a group of public order n. Pick

xe
$← Zn; set he ← gxee . (H, ge, he) is the public key; xe is the trapdoor.

Commit: come : (m; r) 7→ hreg
H(m)
e .

Equivocate: Return (m′, r + x−1e (H(m)−H(m′)) mod n).

Enhanced TCP. Alice has a pair of ciphertexts (C,C ′) = (E⊕(m, r),E⊗(m′, s)) for which she knows
both the plaintexts and the random coins. She wants to prove that m = m′ to Bob:

– Alice picks ρ. She generates κ twin-ciphertext pairs (Ci, C
′
i)i = (E⊕(µi; ri),E⊗(µi; si))i, and sends

ce ← come((Ci, C
′
i)i; ρ).

– Bob sends a challenge c = c1 · · · cκ
$← {0, 1}κ;

– Alice opens ce, and for each i ≤ κ, she sends
• the plaintext µi and the random coins (ri, si), if ci = 0;
• the ratio Ri = m/µi and the random coins ρi ← (Ri · ri)� ((−1) · r) according to the additive

case from the relations (2), and σi ← (Ri · si)� ((−1) · s) according to the multiplicative case,
otherwise;

– Bob checks the openings of commitments and
• either checks the validity of (Ci, C

′
i) with µi and the random coins;

• or computes Di = Ri•Ci�(−1)•C and D′i = Ri•C ′i�(−1)•C ′, according to the relations (1)
and (2). Bod then checks whether both Di = E⊕(0; ρi) and D′i = E⊗(1;σi) hold.

The security of the enhanced TCP directly deals with malicious verifiers.
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Security. The correctness is straightforward and follows directly from a careful analysis of the
protocol.

The zero-knowledge relies on the equivocality on the commitment scheme used in the first flow:
the simulator (who knows the trapdoor) use Equivocate to open the commitment to a vector of cipher-
text pairs such that for each i ≤ κ, the pair is

– a twin-ciphertext pair if ci = 0,
– a ciphertext pair colinear to (C,C ′) otherwise.

The soundness relies on the binding property of the commitment scheme used in the first flow:
let us suppose that (C,C ′) is not a twin-ciphertext pair. For each i ≤ κ, let us show that an adversary,
who does not know the trapdoor, cannot answer both the challenge 0 and 1:

– If the adversary opens his commitment to the same pair (Ci, C
′
i) for both challenge, then we can

check simultaneously check that (Ci, C
′
i) is a twin-ciphertext pair and that it is colinear to (C,C ′).

But as (C,C ′) is not a twin-ciphertext pair, it is impossible: the probability of this event is 0.
– Else, if the adversary open his commitment in two different ways, he breaks the biding property

of the Pedersen commitment scheme, which is equivalent to the discrete logarithm problem.

This ensures that if the discrete logarithm is a hard problem, no polynomially bounded adversary can
answer more than one challenge, either 0 or 1. Hence, for each i, the probability for any polynomially
bounded adversary to answer correctly to a randomly chosen challenge ci is at best 1/2. Thereby, The
probability for such an adversary to answer correctly κ challenges is bounded by 1/2κ.

Even if the TCPs are crucial to show the security of our ESPs against malicious adversaries their
use is very expensive as it relies on cut-and-choose, which implies a multiplicative dependence in the
security parameter κ. It seems unlikely that there exists a simple way to avoid this parameter, due to
the non-algebraic structure of our statement. If a given protocol contains ` switches from one encryption
scheme to the other one in total, then the communication complexity of the protocol could naturally
be dominated by the large factor O(`κ) for the TCPs. Fortunately, we mentioned in Section 6 that the
heaviest part of the computation can be done in a pre-processing phase. Moreover, a single TCP can
be used to generate several other fresh TCPs resulting in a thrifty batch technique, itself relying on the
next argument.

D.2 New Argument for Multi-Exponentiation with Encrypted Basis

Our batch TCP relies on a new argument, the multi-exponentiation with encrypted basis (MEB) argu-
ment.

Setup. We describe the setup for our new zero-knowledge arguments, the MEB argument and the
batch TCP. An MEB argument between a prover P and a verifier V has the following characteristics:
for any integer ` polynomially bounded by the security parameter κ and a strong RSA modulus n for
the Paillier encryption,

Word: (λi)i≤κ ∈ ({0, 1}κ)`, and `+ 1 Paillier ciphertexts C, (ci)i≤`.
Statement: There are some values r and (mi, ri)i≤` such that for all i ≤ `, ci = E⊕(mi, ri), and

C = E⊕(
∏`
i=1m

λi
i ; r).

Witness: r, (mi, ri)i≤`

The argument assumes the generation of G, a subgroup of order n of a group of prime order 2kn+1

for some reasonably small k; we can expect k = O(log(n)). For each i ≤ `, com(i)
⊕ : (x, ρ) 7→ gxi h

ρ
t is a

perfectly hiding and additively homomorphic commitment scheme as described Section 6. (note that
all the com(i)

⊕ use the same ht). We denote by comG : (x1, · · · , x`; ρ) 7→
∏`
i=1 g

xi
i · h

ρ
t a generalized

Pedersen commitment scheme (see [Ped92,BG12]) over size-` vectors of elements of G.
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Subroutines. we overview some zero-knowledge arguments contained in the description of our MEB
argument.

Argument of Equality of a Committed Value and a Plaintext. For i ≤ `, let γ be an element of G,
and let Γ be a Paillier ciphertext. In the following, we will call an equality argument a zero-knowledge
argument proving knowledge of x ∈ Zn such that γ = gxi h

rx
t and Γ = (1 + n)xρnx. Such an argument is

folklore, and can be found for example in [CDN01].

Bayer and Groth Product Arguments. In [BG12], Bayer and Groth described two zero-knowledge
arguments, namely, the Hadamard product argument and the single value product argument. Let A be
a matrix of size κ×`, and b be some element of Zn. On input κ generalized Pedersen commitments, each
one committing to a row of A (which is a size-` vector), and a commitment cb to b, the combination of
the two arguments, the full product argument, allows the prover to show that b is the product of all the
entries of A. The full argument has a size O(`+κ) and seven rounds of interaction. It is honest-verifier
zero-knowledge, and can be made zero-knowledge against malicious adversaries at the cost of a small
additive overhead.

– The Hadamard product argument is a batch argument which allows to prove that O(κ) proofs of the
form “this generalized Pedersen commitment commits to the term-by-term product of two other
generalized Pedersen commitments” are simultaneously true; the argument has a size O(`+ κ).

– The single value product argument shows that some committed value commits to the product of
all components of a vector committed in a given generalized Pedersen commitment.

Description. We now proceed with the description of our MEB argument. It relies on the equality
argument and Bayer and Groth products arguments [BG12].

1. P picks ρ, (ρi)i≤` and sends for all i ≤ `, ai ← com(i)
⊕ (mi, ρi) and a ← com(1)

⊕ (
∏
im

λi
i ; ρ) (the

choice of com(1)
⊕ is arbitrary). Using equalirt arguments, she proves for each i her knowledge of

(mi, ri, ρi) such that ci = (1 + n)mirni and ai = gmii hρit and her knowledge of (ρ, r) such that

C = (1 + n)
∏
im

λi
i rn and a = g

∏
im

λi
i

1 hρt .
2. For each i, let (λij)j≤κ be the bit decomposition of λi. Both players locally compute for all j ∈
{0, · · · , κ− 1}

cGj ← comG

(
(m

λij
i )i≤`;

∑
λijρi

)
3. For all j ∈ {0, · · · , κ− 1}, P picks ρ′j and sends

c′Gj ← comG

(
(m

∑κ−1
k=j 2

k−jλik
i )i≤`; ρ

′
j

)
4. For all j ∈ {1, · · · , κ− 1}, P picks ρ′′j and sends

c′′Gj ← comG

(
(m

∑κ−1
k=j 2

k−j+1λik
i )i≤`; ρ

′
j

)
5. P and V engage in a Hadamard product argument to prove that for all j ∈ {0, · · · , κ − 1}, c′′Gj

commits to the term-by-term square of the vector committed in c′Gj (which is a Hadamard product
of the vector with itself).

6. Let c′′Gκ ← comG(1, · · · , 1; 0). P and V engage in a Hadamard product argument to prove that for
all j ∈ {0, · · · , κ− 1}, c′Gj commits to the Hadamard product of the vectors committed in c′′G(j+1)
and cGj .

7. P and V engage in a single value product argument to prove that c commits to the product of
the components of the vector committed in c′G0.
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Security. About the correctness, note that the two Hadamard product arguments and the single
value product argument ensure that the cGi, c′Gi and c

′′
Gi commit to the intermediate values at each

step of the following square-and-multiply algorithm:
function square-and-multiply((mi)i ∈ Z∗n`, (λi)i≤κ ∈ ({0, 1}κ)`)

Let •` denote the Hadamard product between size-` vectors
For each i let (λij)j be the bit-decomposition of λi
M = (M1, · · · ,M`)← (1, · · · , 1)
for j = κ− 1 to 0 do
M ←M •`M •` (m

λij
i )i≤`

m←
∏
iMi

return m

Hence the correctness follows from the correctness of this algorithm. About the soundness, it follows
from the soundness of classical zero-knowledge proofs (in particular, a simulator can extract the witness
((mi, ri)i, r) from P by calling `+ 1 times the simulator extracting the witness from an equality argu-
ment) and the soundness of Bayer and Groth’s product arguments. Computational zero-knowledge
follows directly from the (perfect) hiding property of the commitment schemes and the (computational)
zero-knowledge property of the underlying arguments (a simulator can emulate P by sending random
group elements instead of the correct commitments and faking the underlying arguments).

A Note on the Argument. It is important to note that the use of κ distinct Pedersen commitment
scheme with the same ht is at the core of our argument. Indeed, if the prover had to commit to all
the cGj for j ≤ κ and prove that each of them commit to the vector (m

λij
i )i, we would not be able to

avoid a O(`κ) cost. instead, each mi is committed separately, and only ` proofs are required for the
correctness of these commitments; then, each player can compute locally and in a verifiable way the
commitments cGj . Then, all the other commitments are proven correct by proving the correctness of
their relation to the cGj .

D.3 Batch TCP and its Security

As a pre-processing and batching technique, we explained in Section 6 that we can pre-process a TCP:
Alice and Bob execute a TCP on a twin-ciphertext pair (Cr, C

′
r) = (E⊕(R; r),E⊗(R; r′)) randomly

chosen by Alice before the inputs are revealed. Then, in the on-line phase, Alice performs a cheap
colinearity proof between the random pair and her target pair (C,C ′) = (E⊕(m; ρ),E⊗(m; ρ′)), by
revealing some relations between m,R and the random coins. As R is random, m remains completely
hidden (however, a preprocessed twin-ciphertext pair can obviously not be used twice). This means
that Alice can preprocess as many TCP as she wants, simultaneously.

In this section, we show how Alice can perform a batch zero-knowledge argument, allowing her to
prove that ` ciphertext pairs are twin-ciphertext pairs using a single TCP and an additional argument
of size O(`+ κ). In the following section, we always assume that the plaintext are elements of Z∗n.

Let us construct a batch argument for TCP: Alice wants to prove to Bob that ` ciphertext pairs
(ci, c

′
i) = (E⊕(mi; ri),E⊗(m′i; r

′
i)) are twin-ciphertext pairs, i.e. that for all i ≤ ` mi = m′i. This

argument relies on our MEB argument and has the same setup. Additionally, the CRS contains the
description of a pseudo-random generator (PRG).

1. Bob sends λ $← {0, 1}κ. Both players generate (λi)i≤`, using λ as a seed for the PRG.
2. Alice picks ρ and sends C ← E⊕(

∏
im

λi
i ; ρ). Both players compute C ′ ←

∏
i E⊗(m′i; r

′
i)
λi =

E⊗(
∏
im
′λi
i ;
∑

i riλi).
3. Alice and Bob perform an MEB argument on ((λi)i≤`, C, (ci)i≤`).
4. Alice and Bob perform a TCP on (C,C ′).
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Reloading the Pool of Twin-Ciphertext Pairs. Note that in the fourth phase of our batch
TCP, the TCP on (C,C ′) can be performed with a colinearity proof between (C,C ′) and a random
twin-ciphertext pair previously proven. This means that once a single TCP was performed, the pool of
twin-ciphertext pairs can by dynamically recharged by “consuming” a pair to prove ` new pairs, without
ever having to perfom a full TCP again; hence, the original overhead implied by the cut-and-choose in
the first TCP vanishes. As we shown in Section 3 how twin-ciphertext pairs can be used to perform
efficiently several zero-knowledge proofs (and not only TCP), this means that two players who have
set up and proven a pool of twin-ciphertext pairs can later efficiently recharge the pool to perform
new protocols, without having to agree in advance on the protocols they might wish to perform in the
future.

Security. The MEB argument shows that C does indeed encrypt
∏
im

λi
i , the mi being the plaintexts

of the ci. C ′ can be computed publicly and encrypts
∏
im
′λi
i . Hence, the final TCP shows that

∏
im

λi
i =∏

im
′λi
i . As C, (ci)i≤` were generated before Bob sent λ to Alice, this shows that with overwhelming

probability, for each i ≤ ` mi = m′i. The soundness and the zero-knowledge directly follow from that
of the underlying MEB and TCP.
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