
Incremental Program Obfuscation

Sanjam Garg∗

University of California, Berkeley
Omkant Pandey

Stony Brook University, New York

Abstract

Recent advances in program obfuscation suggest that it is possible to create software that
can provably safeguard secret information. However, software systems usually contain large
executable code that is updated multiple times and sometimes very frequently. Freshly obfus-
cating the program for every small update will lead to a considerable efficiency loss. Thus, an
extremely desirable property for obfuscation algorithms is incrementality: small changes to the
underlying program translate into small changes to the corresponding obfuscated program.

We initiate a thorough investigation of incremental program obfuscation. We show that the
strong simulation-based notions of program obfuscation, such as “virtual black-box” and “virtual
grey-box” obfuscation, cannot be incremental (according to our efficiency requirements) even
for very simple functions such as point functions. We then turn to the indistinguishability-
based notions, and present two security definitions of varying strength — namely, a weak one
and a strong one. To understand the overall strength of our definitions, we formulate the
notion of incremental best-possible obfuscation and show that it is equivalent to our strong
indistinguishability-based notion.

Finally, we present constructions for incremental program obfuscation satisfying both our
security notions. We first give a construction achieving the weaker security notion based on the
existence of general purpose indistinguishability obfuscation. Next, we present a generic trans-
formation using oblivious RAM to amplify security from weaker to stronger, while maintaining
the incrementality property.

1 Introduction

Program obfuscation is the process of transforming a computer program into an “unintelligible”
one while preserving its functionality. Barak et al. [BGI+12] formulated several notions for
program obfuscation, and demonstrated that the strongest form of obfuscation, called virtual black-
box (VBB) obfuscation, is impossible in general. The recent work of Garg et al. [GGH+13b] presents
an obfuscation mechanism for general programs that achieves the notion of indistinguishability
obfuscation based on assumptions on multilinear maps [GGH13a]. Indistinguishability obfuscation,
or IO, is a weaker form of obfuscation than VBB; nevertheless, it results in best possible obfuscation
[GR07].

The feasibility of general purpose obfuscation, in principle, allows the creation of software that
can provably safeguard secret information, e.g., cryptographic keys, proprietary algorithms, and so

∗Research supported in part from AFOSR YIP Award, DARPA/ARL SAFEWARE Award W911NF15C0210,
AFOSR Award FA9550-15-1-0274, NSF CRII Award 1464397, research grants by the Okawa Foundation, Visa Inc.,
and Center for Long-Term Cybersecurity (CLTC, UC Berkeley). The views expressed are those of the author and do
not reflect the official policy or position of the funding agencies.

1

on. A typical software, however, can be quite complex with millions of lines of executable code
[IB]. Once installed, it may go through frequent updates, e.g., when new features are added or
security vulnerabilities are discovered. If cryptographic obfuscation is used to protect the software,
it must be possible to quickly update the obfuscated software when new updates become available.
In particular, if the original program is large, the obfuscating it from scratch for every new update
would be prohibitive. Furthermore, in various client-server settings, where the obfuscated software
resides on a networked machine, transmitting the entire (updated) software would be a bottleneck.
Ideally, the effort to update the obfuscated program should only be proportional to the changes
made to the the original unobfuscated program.

These issues are not unique to program obfuscation and analogous problems have been consid-
ered in several other settings. Bellare, Goldreich and Goldwasser [BGG94] introduced and developed
the notion of incremental cryptography, first in the context of hashing and digital signatures. The
idea is that, once we have signed a document D, signing new versions of D should be rather quick.
For example, if we only flip a single bit of D, we should be able to update the signature in time
polynomial in log |D| (instead of |D|) and the security parameter λ. Incrementality is an attractive
feature to have for many cryptographic primitive such as encryption, signatures, hash functions,
and so on [BGG95, Mic97, Fis97a, BM97, BKY01, MPRS12].

If we want to obfuscate large programs that are frequently updated, then it is crucial to have in-
cremental program obfuscation. Although, current program obfuscation methods are prohibitively
slow for application to large programs. However as it becomes more efficient, it is clear that
incrementality will be essential for deployment of obfuscation of large programs. This line of in-
vestigation is particularly important because of its relevance to the deployment (as opposed to
security) of obfuscated software.

1.1 Our Contributions

In this work, we initiate the study of incremental program obfuscation. Here we ask what is the
right security definition for incremental program obfuscation and if it can be realized. In this work,
we show that enhancing obfuscation with incrementality must come at the some degradation in
security. In contrast on the positive side, we realize the best possible incremental obfuscation. More
specifically, our incremental obfuscation method hides as much about the original program as any
other incremental obfuscation of a given size. Our results are generic in the sense that starting with
a general purpose obfuscation method for circuit, Turing Machines or RAM programs, we obtain
general purpose incremental obfuscation for the same class of programs. Next we provide more
details.

Modeling incremental obfuscation. We model an incremental obfuscation method by an ob-
fuscation procedure and an Update procedure. In this setting, a large program P is obfuscated and
placed on a remote machine in the obfuscated form P̃ . Update can query any bit of the obfuscated
program P̃ . The input to Update is a set S of indices, indicating which bits of P should be “up-
dated.” For every index i ∈ S, there is an associated update operation fi : {0, 1} → {0, 1} to be
performed on the ith bit of P ; the set of these operations is denoted by FS = {fi}i∈S . The output
of Update consists of a set S̃ indicating the bits of P̃ to be updated; for every i ∈ S̃ there is an
associated bit bi indicating the updated value.

The incrementality of an obfuscation scheme, denoted ∆, is defined to be the running time of
Update in the worst case with respect to singleton sets S. This is a robust measure since it tells us

2

how bad Update can be when we just want to update one bit.1

An important observation is that the Update cannot be a public algorithm, since otherwise, one
can “tamper” with the P̃ and potentially recover the entire P . Therefore, Update must require a
secret key, generated at the time of obfuscation of P , to be able to make updates.

In this work, we require that the size of the updated obfuscated program should be the same
as the fresh obfuscation of the new (updated) program. Further strengthening this requirement:
we require that an updated obfuscation of a program should look computationally indistinguishable
from a freshly generated obfuscation of the new program. We actually achieve statistical indis-
tinguishability, and refer to this property as pristine updates. These requirements are crucial for
various applications.

Lower bound for incremental VBB and VGB obfuscation. We show that incrementality
significantly interferes with the security an obfuscation method can offer. More specifically, we
show that for the family of point functions, every incremental VBB obfuscation scheme must have
incrementality ∆ ∈ Ω(n/ log n) where n is the size of the point function program. In fact, our result
holds also for the weaker notion of virtual grey box (VGB) obfuscation, introduced by Bitanksy and
Canetti [BC10]. VGB obfuscation, like VBB, is a simulation-based notion of security but it allows
the simulator to be unbounded; it only requires that the number of queries made by the simulator
to the black-box program should be polynomial. This further strengthens our result.

Our lower bound proceeds by proving that every incremental VGB (and hence VBB) scheme
must “leak” the Hamming distance between the obfuscated and updated programs. Therefore, no
generic compiler can preserve obfuscation quality and provide low incrementality at the same time.

Interestingly, our negative result holds even if only one update is made to the obfuscated point
function. This is somewhat surprising since point-functions are inherently related to deterministic
encryption [BS16] for which incremental schemes are known for single updates [MPRS12].

Positive results for indistinguishability obfuscation. Our lower bound motivates us to look
more deeply into the definitions for incremental indistinguishability obfuscation, or IIO. We aim to
obtain high flexibility in addition to as strong security as possible.

With this goal, we consider an obfuscated program P̃ which is continually updated over time, by
applying the Update algorithm to the previous obfuscation. This results in a sequence of obfuscated
programs P̃ , P̃ 1, . . . , P̃ t where P̃ i is obtained from P̃ i−1 using Update. Since the adversary can view
the entire sequence of obfuscated programs, this suggests the following natural definition: for every
pair of programs (P0, P1) and every sequence of increments (or updates) I = (S1, . . . , St) of arbitrary
polynomial size sets Si and for arbitrary polynomial t, the distributions X0 := (P̃0, P̃

1
0 , . . . , P̃

t
0) and

X1 := (P̃1, P̃
1
0 , . . . , P̃

t
1) should be computationally indistinguishable provided that P i0 and P i1 are

functionally equivalent for every i where P ib is the program corresponding to P̃ ib for every b ∈ {0, 1}.
We use this definition as the default definition of IIO. We present an IIO scheme for the class

of all circuits with incrementality poly(λ, log |P |), assuming the existence of IO for the same class.

1Another natural way to define incrementality is the running time of Update for S, divided by |S| in the worst case,
taken over all (S, FS). For our constructions, the single bit measure obtains the same parameters for this alternative
definition. Because for larger sets S, one can simply apply Update one by one for each index in S, and still achieve
same incrementality. Therefore, for simplicity, we use the simpler single bit measure. We note that for correctness
and security the intermediate one bit changes may not make sense and this definitional notion is just to simplify how
we measure efficiency.

3

Increment-privacy and “best possible” incremental obfuscation. The IIO definition does
not necessarily hide the sequence I of increments. Indeed, by looking at the sequence of updated
programs, an adversary might be able to recover which bits were updated at each time step. For
many application this could be a serious issue. For example, if P̃ is updated to fix a security
vulnerability in P , by looking at which bits were updated, a hacker might be able to discover the
vulnerability; it can then exploit other machines where the program is still awaiting update.

Even more importantly, since IIO may leak the sequence I, it is unlikely to achieve our desired
“best possible” incremental obfuscation. We therefore consider a strengthened definition which
hides the sequence I, and call it increment-private IIO. More specifically, we consider two sequences
I0, I1 where I0 is applied to P̃0 and I1 to P̃1. As before, we require that the resulting obfuscation
sequences should look indistinguishable provided that the underlying programs are functionally
equivalent at every time step.

With the goal of realizing obfuscation satisfying this security notion, we show a transformation
which converts any IIO scheme into increment-private IIO scheme without affecting its incremen-
tality too much. Our transformation is obtained by combining IIO with oblivious RAM (ORAM)
programs [GO96].

Finally, in an effort to better understand what is the strongest possible incremental obfuscation,
we define the notion of best possible incremental obfuscation, or IBPO. For example, our lower
bound for VGB/VBB obfuscations demonstrates that any incremental scheme must leak the size of
incremental updates that take place. It is important to understand if this is all that is leaked. Our
IBPO notion essentially captures all the information that can leak by an incremental obfuscation.
Interestingly, we are able to show that increment-private IIO and IBPO are equivalent! That is,
hiding the sequence suffices for best possible obfuscation. This is further evidence that increment-
private IIO is the right notion to target.

In all of our constructions we work with the sequential and non-adaptive model of updates —
i.e., the updates are not adversarially chosen based on the previously provided obfuscations. In
most settings for software updates, the updates are not adversarial since they come from the the
software provider. The non-adaptive definition suffices for such applications. However, the adaptive
definition might be desirable in other settings, for example if the adversary can influence the choice
of updates, e.g., through insider attacks. We do not consider this notion in this work. Our results,
however, easily extend to non-sequential setting which will be discussed towards the end.

Other applications. Besides being interesting in its own right, incremental obfuscation can be
seen as a natural tool to enhance applications of obfuscation with incrementality properties. For
example, one can very easily enhance the functional encryption scheme of Garg et al. [GGH+13b] in
a way such that secret keys have incrementality properties. In functional encryption an encrypter
can encrypt a message m in such a way that a a secret key skC , parameterized by the circuit C, can
be used to learn C(m). Using our incremental obfuscation we can realize incremental functional
encryption, where given a secret key for skC one can quickly provide new secret keys for incremental
changes in C.

1.2 An Overview of Our Approach

In this section we provide an overview of our constructions. We begin with a systematic exploration,
and show how to achieve the basic IIO definition first. We then show how to compile this construc-

4

tion with ORAM to obtain increment-privacy without sacrificing incrementality. For concreteness,
we view the program P as a boolean circuit C.

A common approach for obfuscating a general circuit C relies on the Naor-Yung “two-key
paradigm” [NY90]: C is encrypted twice to get ciphertexts (e1, e2) which are then “hardwired”
into a low-depth circuit for which candidate obfuscation is known.

Suppose that we are given IO for the class of all circuits. We will follow the two-key paradigm
to obtain IIO. Specifically, we will obfuscate a special circuit C∗ using IO which will internally
evaluate C. However, we cannot hardwire either C or the value (e1, e2) in C∗ since even if the
values (e1, e2) support incrementality, the IO may not.

One option is to provide e = (e1, e2) as an explicit input to C∗. C∗ can obtain C by decrypting,
say e1, and evaluate it as required. If e1, e2 are bitwise encryptions of C, the scheme is also
incremental: changing any bit only requires changing the corresponding ciphertexts in e.

In order to make sure that the scheme is secure, C∗ must only accept “authorized” values of
e. This can be accomplished, for example, by signing e entirely after every update. C∗ will verify
the signature on the updated e before performing the computation. This is indeed a promising
approach, however, observe that now the signature must also be incremental since it would be
a part of the obfuscation. Unfortunately, this is a big problem since incremental signatures are
usually not injective. Consequently, there can exist multiples messages corresponding to the same
signature; the existence of such messages is not quite compatible with IO techniques.

Nevertheless, it is a promising approach and it is possible to make it work based on the existence
of (public-coin) differing-inputs obfuscation (pc-dIO) [ABG+13, BCP14, IPS15]. Our goal is to
obtain a feasibility result based on the existence of IO alone, since pc-dIO, due to its extractability
flavor, is viewed as a very strong assumption [GGHW14, BP15b].

SSB hash and Merkle trees. A powerful technique to avoid the pc-dIO in many settings is
the somewhere statistically binding (SSB) hash technique based on Merkle trees. It was introduced
by Hubaceck and Wichs [HW15], and is very similar in spirit to the positional accumulators of
Koppula, Lewko, and Waters [KLW15].

At a high level, the approach considers hash functions which can be generated to be statistically
binding at a chosen location. These functions are collisions-resistant, and functions generated for
different locations are computationally indistinguishable. Such functions can be constructed from
a variety of assumptions, including IO [HW15, KLW15, OPWW15].

Coming back to our construction, we will use the SSB hash functions based on Merkle trees
presented in [HW15]. This hash has incrementality property, and consists of two values (h, T)
where T is the Merkle tree and h is the root of T . Unfortunately, the SSB hash technique cannot
be applied in a black-box manner to all settings. It has to be properly adapted to every setting.

We show how to apply this technique in our setting. More specifically, we take the following
high level steps:

1. We encrypt the circuit twice, bit-by-bit, as before to obtain e = (e1, e2). We then apply a
quickly updatable SSB Hash to e to obtain (h, T). The value h is then “signed.”

2. In fact, ordinary signatures are too rigid for our needs. Instead, we use non-interactive zero-
knowledge (NIZK) proofs to give proofs that h does not have some special structure.

3. The full obfuscation will include IO of a circuit C∗ which has a secret-key sk1 hardwired for
decrypting e1 and evaluating the resulting circuit on inputs of interest if all NIZK proofs

5

verify.

4. As new updates arrive, values e, h, T are easily updated, as well as the proofs since they only
depend on h and not e, T .

5. We then rely on the combined power of SSB-hash functions and NIZK proofs to design a
sequence of hybrids such that the signatures exist only for the specified sequence in question.
We further use NIZK proofs, SSB hash, and the power of IO to slowly reach a point in hybrid
experiments where there is exactly one value e∗ that will be accepted by the obfuscated
program. At this point, we will able to encrypt the circuits from the other sequence—again,
this step is performed one-by-one for each location in the sequence.

We note that executing this strategy is rather involved, and we heavily rely on manipulations via
NIZK proofs to complete the security proof.

Increment-privacy via ORAM. To amplify security to increment-private IIO, we rely on two
techniques: ORAM programs and the two-key paradigm [NY90]. In more detail, to obfuscate a
circuit C, we first apply a statistically-secure ORAM scheme to C twice, to obtain two independent
encodings of C, say C∗1 , C

∗
2 . Next we generate a circuit P that has (C∗1 , C

∗
2), and secret information

to decode one of them hardcoded in it. The program P , on input x, decodes one of the encoded
circuits and outputs the evaluation of the decoded circuit on input x. Having defined P , we
now obfuscate P using any IIO scheme (which only satisfies the weaker definition). The resulting
obfuscation is our increment-private IIO.

At a high level, this works because incremental changes in C can be reduced to corresponding
changes in the ORAM encodings of C, and hence the program P . However, since P is encoded
using our IIO scheme, this preserves incrementality up to logarithmic factors. At the same time,
the use of ORAM ensures the privacy of incremental updates.

We remark that, although the underlying ideas behind this transformation are simple, the proof
is not as simple as one would hope for. In particular, to be able to successfully rely on the security of
IIO, the obfuscated program needs a little more “guidance” to perform its task so that the hybrids
will go through.

1.3 Related Work

Patchable Obfuscation. An interesting variant of IIO–called Patachable Obfuscation (PO)—
was considered in [AJS17]. In PO, one aims to release a “short patch” which can update a previously
obfuscated program. There are several fundamental differences between these two works. A crucial
difference between IIO and PO is that in PO, the “patch” is allowed to take linear time (i.e.,
proportional to the size of the obfuscated program) even if the actual change is only a single bit in
the underlying program. Indeed this is the case with the constructions of [AJS17]. In contrast, IIO
requires that the time to update the obfuscated program must only depend on the time to update
the plain, unobfuscated program. Our constructions achieve this form of efficiency. On the flip
side, PO can maintain a short concise description of the patch even if the final change will be large;
IIO does not require concise description and depends on the final change.

The primary reason for this difference is the fundamental difference in how the two works
formulate the updates: while our work views them as a small set of bit positions that need to be
updated, [AJS17] views them as a small program that updates the bits as it processes the entire

6

obfuscated code. Due this fundamental difference in problem formulation, the two works employ
completely different methods. Our IIO constructions are obtained by relying only on standard,
polynomially-hard assumptions but achieve only non-adaptive security. In contrast, the results
of [AJS17] require the underlying primitives to be sub-exponentially secure but achieve adaptive
security.

Finally, the stringent requirement on running time of updates in our work sheds light on the
lower bounds for other notions of obfuscations such as VBB/VGB-obfuscation. We additionally
develop the notion of best possible incremental obfuscation and develop generic tools using ORAM
to achieve this notion. [AJS17] do not consider these issues or rely on ORAM techniques in any way.
On the flip side, the method in [AJS17] can expand the input length of the obfuscated program
which is not considered in our work.

Other related work. The concept of incremental cryptography was put forward by Bellare,
Goldreich, and Goldwasser [BGG94], as a different type of efficiency measure for cryptographic
schemes. They considered the case of hashing and signing, and presented discrete-logarithm based
constructions for incremental collision-resistant hash functions and signatures, that support block
replacement operation. Soon after, Bellare et al. [BGG95] also developed constructions for block
insertion and deletion, and further issues such as tamper-proof updates, privacy of updates, and
incrementality in symmetric encryption were also considered.

Subsequently, Fischlin [Fis97a] presented an incremental signature schemes supporting inser-
tion/deletion of blocks, and tamper-proof updates, and proved a Ω(

√
n) lower bound in [Fis97b]

on the signature size of schemes that support substitution and replacement operations (the bound
can be improved to Ω(n) in certain special cases). The case of hashing was revisited by Bellare and
Micciancio [BM97] who provided new constructions for the same based on discrete logarithms and
lattices. Buonanno, Katz, and Yung [BKY01] considered the issue of incrementality in symmetric
unforgeable encryption and suggested three modes of operations for AES achieving this notion.

Mironov, Pandey, Reingold, and Segev [MPRS12] study incrementality in the context of deter-
ministic public-key encryption. They prove a similar lower bound on the incrementality of such
schemes, and present constructions with optimal incrementality.

The task of constructing cryptographic primitives in the complexity class NC0 can be viewed
as a dual of incremental cryptography where the focus is on output locality instead of input locality.
Applebaum, Ishai, and Kushilevitz [AIK06] resolved this question in the affirmative for public-key
encryption, and argue impossibility of the same for constant input locality [AIK06, Section C.1].

Barak et al. [BGI+12] formulated the notion of program obfuscation and proved strong negative
results for VBB obfuscation. The connection between zero-knowledge and code obfuscation was
first observed and studied by Hada [Had00]. VBB obfuscation for special classes of functions
such as point functions were first considered by Wee [Wee05] (and Canetti [Can97]); subsequently,
constructions for more functions were achieved such as proxy re-encryption, encrypted signatures,
hyperplanes, conjunctions, and so on [LPS04, HRSV07, Had10, CRV10, BR13]. Goldwasser and
Kalai extended the negative results for VBB obfuscation in the presence of auxiliary inputs [GK05]
which were further extended by Bitansky et al. [BCC+14].

The notion of best possible obfuscation was put forward by Goldwasser and Rothblum [GR07],
who also prove its equivalence to indistinguishability obfuscation (for efficient obfusactors). Bitan-
sky and Canetti [BC10] formulated the notion of virtual grey box (VGB) obfuscation which is a

7

simulation based notion; it was further explored in [BCKP14].
The first positive result for indistinguishability obfuscation was first achieved in the break-

through work of [GGH+13b], and further improved in [BGK+14]. In the idealized “generic en-
codings” model VBB-obfuscation for all circuits were presented in [CV13, BR14, BGK+14, AB15].
These results often involve a “bootstrapping step” which was improved by Applebaum [App14].
Further complexity-theoretic results appear in recent works of Barak et. al. [BBC+14] and Ko-
margodski et al. [KMN+14]. Obfuscation in alternative models such as the hardware token model
were considered in [GIS+10, BCG+11].

Sahai and Waters [SW14] developed powerful techniques for using indistinguishability obfusca-
tion to construct several (old and new) cryptographic primitives. Since then, IO has been success-
fully applied to achieve several new results, e.g., [HSW14, BZ14, MO14, PPS15, CLP15, HW15,
BP15a, BPW16, AS16]. The equivalence of IO and functional encryption [BSW11, O’N10] was
recently established by Ananth and Jain [AJ15] and Bitanksy and Vaikuntanathan [BV15].

Differing input obfuscation (diO) was studied by Ananth et. al. [ABG+13] and Boyle et al.
[BCP14], and subsequently used to construct obfuscation for Turing machines. After various im-
plausibility results [GGHW14, BP15b], Ishai, Pandey, and Sahai put forward the improved notion
of public-coin differing-inputs obfuscation and recovered several original applications of diO. Indis-
tinguishability obfuscation for bounded-input Turing machines and RAM programs were presented
in [BGL+15, CHJV15] and for bounded-space programs in [KLW15].

The notion of oblivious RAM programs was put forward by Goldreich and Ostrovsky [Gol87,
Ost90, GO96]. Several improved constructions and variations of ORAM programs are now known
[SCSL11, SvDS+13, LO13, CLP14, BCP16].

2 Definitions and Preliminaries

In this section we recall the definitions of some standard cryptographic schemes which will be used
in our constructions. For concreteness, we adopt the family of polynomial-sized circuits are model
of computation for describing programs. Our definitions, constructions, and results apply to Turing
machines and RAM programs as well. We will bring up these models when appropriate.

From here on, unless specified otherwise, λ always denotes the security parameter. We assume
familiarity with standard cryptographic primitives, specifically public-key encryption (PKE), non-
interactive zero-knowledge proofs (NIZK, recalled in Section 2.4), perfectly binding commitments,
and computational indistinguishability.

2.1 Indistinguishability Obfuscators

Definition 2.1 (Indistinguishability Obfuscator (IO)) A uniform PPT machine O is called
an indistinguishability obfuscator for a circuit class {Cλ} if the following conditions are satisfied:

• Correctness: For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have that

Pr[C̃(x) = C(x) : C̃ ← O(λ,C)] = 1.

• Indistinguishability: For any (not necessarily uniform) PPT distinguisher D, there exists a
negligible function α such that the following holds: For all security parameters λ ∈ N, for all

8

pairs of circuits C0, C1 ∈ Cλ, we have that if C0(x) = C1(x) for all inputs x, then∣∣∣Pr
[
D(O(λ,C0)) = 1

]
− Pr

[
D(O(λ,C1)) = 1

]∣∣∣ ≤ α(λ).

2.2 Somewhere Statistically Binding Hash

We recall the definition of somewhere statistically binding (SSB) hash from [HW15, OPWW15].

Definition 2.2 (SSB Hash) A somewhere statistically binding (SSB) hash consists of PPT algo-
rithms (Gen, H) and a polynomial `(·, ·) denoting the output length.

• hk ← Gen(1λ, 1s, L, i): Takes as input a security parameter λ, a block-length s, an input-
length L ≤ 2λ and an index i ∈ [L] (in binary) and outputs a public hashing key hk. We let
Σ = {0, 1}s denote the block alphabet. The output size is ` = `(λ, s) and is independent of the
input-length L.

• Hhk : ΣL → {0, 1}`: A deterministic poly-time algorithm that takes as input x = (x[0], . . . , x[L−
1]) ∈ ΣL and outputs Hhk(x) ∈ {0, 1}`.

We require the following properties:

Index Hiding: We consider the following game between an attacker A and a challenger:

• The attacker A(1λ) chooses parameters 1s, L and two indices i0, i1 ∈ [L].

• The challenger chooses a bit b← {0, 1} and sets hk ← Gen(1λ, 1s, L, i).

• The attacker A gets hk and outputs a bit b′. We require that for any PPT attacker A
we have that |Pr[b = b′]− 1

2 | ≤ negl(λ) in the above game.

Somewhere Statistically Binding: We say that hk is statistically binding for an index i ∈ [L]
if there do not exist any values x, x′ ∈ ΣL where x[i] 6= x′[i] such that Hhk(x) = Hhk(x

′). We
require that for any parameters s, L and any integer i ∈ [L] we have:

Pr[hk is statistically binding for index i : hk ← Gen(1λ, 1s, L, i)] ≥ 1− negl(λ).

We say the hash is perfectly binding if the above probability is 1.

Merkle SSB Hash. For concreteness, we work with a specific instantiation of SSB Hash based
on Merkle trees (and fully homomorphic encryption) given in [HW15]. The has values from this
construction have the form (h, T) where T is the Merkle tree and h is the root of T . This con-
struction has the incrementality or “quick update” property: small changes to the underlying value
only require poly(λ, log n) changes to (h, T) where n is the length of the string. Constructions with
same properties can be based on a variety of assumptions including IO alone [OPWW15, KLW15].

2.3 Oblivious RAM

We review the notion of ORAM programs from [Gol87, Ost90, GO96]. Constructions of ORAM
are provided by the same papers as well. ORAM can be thought of as a compiler that encodes
the memory into a special format such that the sequence of read and write operations into this
memory do not reveal the actual access pattern. We recall basic definitions here and refer the
reader to [GO96] for more details.

9

Syntax. A Oblivious RAM scheme consists of two procedures (OData,OAccess) with syntax:

• (D∗, s) ← OData(1λ, D): Given a security parameter λ and memory D ∈ {0, 1}m as input,
OData outputs the encoded memory D∗ and the encoding key s.

• d← OAccessD
∗
(1λ, s, `, v): OAccess takes as input the security parameter λ and the encoding

key s. Additionally, it takes as input a location ` ∈ [m] and a value v ∈ {⊥, 0, 1}. If v = ⊥
then this procedure outputs d, the value stored at location ` in D. If v ∈ {0, 1} the the
procedure writes the value v to location ` in D. OAccess has oracle access (read and write)
to D∗ and changes made to it are preserved from one execution of OAccess to another.

Efficiency. We require that the run-time of OData should be m · polylog(m) · poly(λ), and the
run-time of OAccess should be poly(λ) · polylog(m).

Correctness. Let `1, . . . , `t be locations accessed on memory D of size m and let v1, . . . , vt ∈
{0, 1,⊥}. Then we require that on sequential executions of di = OAccessD

∗
(1λ, s, `i, vi) we have

that for each i ∈ {1, . . . t} such that vi 6= ⊥ output di the correct and the latest value stored in
location `i of D.

Security. For security, we require that for any sequence of access locations `1, . . . , `t and `′1, . . . , `
′
t,

in D ∈ {0, 1}m, we have that:
MemAccess ≈ MemAccess′

where MemAccess and MemAccess′ correspond to the access pattern on D∗ during the sequential
execution of the OAccessD

∗
on input locations `1, . . . , `t and `′1, . . . , `

′
t respectively and ≈ denotes

computational indistinguishability.

2.4 Non-Interactive Zero-Knowledge Proofs

We recall the definitions of non-interactive zero-knowledge proofs, taken verbatim from [GOS06].
Let R be an efficiently computable binary relation. For pairs (x,w) ∈ R we call x the statement

and w the witness. Let L be the language consisting of statements in R.
A non-interactive proof system [BFM88, FLS99, GOS06] for a relation R consists of a common

reference string generation algorithm K, a prover P and a verifier V . We require that they all
be probabilistic polynomial time algorithms, i.e., we are looking at efficient prover proofs. The
common reference string generation algorithm produces a common reference string σ of length Ω(λ).
The prover takes as input (σ, x, w) and produces a proof π. The verifier takes as input (σ, x, π)
and outputs 1 if the proof is acceptable and 0 otherwise. We call (K,P, V) a non-interactive proof
system for R if it has the completeness and statistical-soundness properties described below.

Perfect completeness. A proof system is complete if an honest prover with a valid witness can
convince an honest verifier. Formally we require that for all (x,w) ∈ R, for all σ ← K(1λ) and
π ← P (σ, x, w) we have that V (σ, x, π) = 1.

Statistical soundness. A proof system is sound if it is infeasible to convince an honest verifier
when the statement is false. For all (even unbounded) adversaries A we have

Pr
[
σ ← K(1λ); (x, π)← A(σ) : V (σ, x, π) = 1 : x 6∈ L

]
= negl(λ).

10

Computational zero-knowledge [FLS99]. A proof system is computational zero-knowledge
if the proofs do not reveal any information about the witnesses to a bounded adversary. We say a
non-interactive proof (K,P, V) is computational zero-knowledge if there exists a polynomial time
simulator S = (S1,S2), such that for all non-uniform polynomial time adversaries A with oracle
access to the prover or the simulator for queries (x,w) ∈ R. Simulator is not provided with the
witness w.

Pr
[
σ ← K(1λ) : AP (σ,·,·)(σ) = 1

]
≈ Pr

[
(σ, τ)← S1(1λ) : AS2(τ,·)(σ) = 1

]
.

3 Modeling Incremental Obfuscation

In this section, we provide the definitions for incremental program obfuscation. As noted before, for
concreteness, we describe our definitions for circuits. The definitions for Turing machines (TM) and
RAM programs are obtained by simply replacing circuits with TM/RAMs. We start by providing
indistinguishability-based definitions. Let us first set up some notation.

There are four operations we can perform on a bit b: set(b) = 1, reset(b) = 0, flip(b) = 1− b and
id(b) = b; denote by OP = {set, reset, flip, id} the set of these operations. An incremental change to
a string x of length n consists of specifying an (ordered) subset S ⊆ [n] of indices of x along with
an (ordered) set of corresponding changes FS = {fi}i∈S (where fi ∈ OP, ∀i ∈ S). When we want
to be explicit about FS , we denote the incremental change by (S, FS).

For a string x, FS(x) denotes the string x′ such that x′[i] = fi(x[i]) for every i ∈ S and
x′[i] = x[i] otherwise. A sequence I of many updates is an ordered sequence of updates I =
((S1, FS1), . . . , (St, FSt)) When dealing with a sequence, we write FI(x) to denote the sequence of
strings (x1, . . . , xt) where xj is defined recursively as xj := FSj (x

j−1) for all j ∈ [t] and x0 = x.
If C is a circuit, represented as a binary string, I is a sequence of t updates to C, and x is an input

string, we write FI(C)(x) to denote the sequence (C1(x), . . . , Ct(x)) where (C1, . . . , Ct)
def
= FI(C)

3.1 Incremental Indistinguishability Obfuscation

As discussed earlier, our first definition, called IIO, simply requires that for every sequence of
updates I, if I produces two functionally equivalent circuit sequences, then the updated sequence
of obfuscated circuits corresponding to I should look indistinguishable. This is the weaker definition.

Definition 3.1 (Incremental Indistinguishability Obfuscator (IIO)) A pair of uniform PPT
machines (O,Update) is called an incremental indistinguishability obfuscator for a circuit class
{Cλ} if the following conditions are satisfied:

• Syntax: O takes as input a security parameter λ and a circuit C ∈ Cλ; it outputs an obfuscated
circuit C̃ and a secret key sk (for making updates). Update takes as input the secret-key sk,
an incremental change (S, FS), and oracle access to C̃; it outputs an incremental change
(S̃, F

S̃
) for the circuit C̃.

• Correctness: For all security parameters λ ∈ N, for all C0 ∈ Cλ, for all t ∈ N, for all sequences
of incremental changes I = (S1, . . . , St) defining the circuit sequence FI(C) = (C1, . . . , Ct),
and for all inputs x, we have that

11

Pr

 t∧
j=0

(
C̃j(x) = Cj(x)

)
:

(C̃0, sk)← O(λ,C0)

(C̃1, . . . , C̃t)← UpdateC̃
0
(sk, I)

 = 1.

where UpdateC̃
0
(sk, I) denotes the (recursively computed) sequence (C̃1, . . . , C̃t) as follows:

for every j ∈ [t] define (S̃j , FS̃j
)← UpdateC̃

j−1
(sk, Sj) and then C̃j = F

S̃j

(
C̃j−1

)
.

• Incrementality: There is a fixed polynomial poly(·, ·), independent of the class Cλ, such that

the running time of UpdateC̃
(
sk,
(
{i}, F{i}

))
over all possible values of

(
λ, C̃,

(
{i}, F{i}

)
, sk
)

is at most ∆(λ) = poly(λ, lg |C̃|). The incrementality of the scheme is defined to be ∆(λ).

• Indistinguishability: For any (not necessarily uniform) PPT distinguisher D, there exists a
negligible function α such that the following holds: For all security parameters λ ∈ N, for all
pairs of circuits C0, C1 ∈ Cλ, for every polynomial t and for every sequence I of t updates we
have that if C0(x) = C1(x) and FI(C0)(x) = FI(C1)(x) for all inputs x, then∣∣∣Pr

[
D(Expt(λ,C0, C1, I, 0)) = 1

]
− Pr

[
D(Expt(λ,C0, C1, I, 1)) = 1

]∣∣∣ ≤ α(λ).

where distribution Expt(λ,C0, C1, I, b) outputs as follows: sample (C̃b, sk)← O(λ,Cb), sample

sequence (C̃1
b , . . . , C̃

t
b)← UpdateC̃b(sk, I), and output (I, C0, C1, C̃b, C̃

1
b , . . . , C̃

t
b).

The above definition does not necessarily hide the sequence I from the adversary. Our next defini-
tion, called increment-private IIO hides the sequence of updates as well. Informally, it states that
if update sequences I0, I1 produce functionally equivalent circuit sequences, then the sequence of
updated obfuscations hides whether I0 or I1 was used for making updates.

Definition 3.2 (Increment-private IIO) A pair of uniform PPT machines (O,Update) is called
a sequence hiding incremental indistinguishability obfuscator for a circuit class {Cλ} if it satisfies
the syntax, correctness and incrementality properties (as in definition 3.1) and the following sequence-
hiding indistinguishability property:

• Increment-private indistinguishability: For any (not necessarily uniform) PPT distinguisher D,
there exists a negligible function α such that the following holds: For all security parameters
λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ, for every polynomial t and for all pairs of update
sequences I0, I1 of length t we have that if C0(x) = C1(x) and FI0(C0)(x) = FI1(C1)(x) for
all inputs x, then∣∣∣Pr

[
D(Expt(λ,C0, C1, I0, I1, 0)) = 1

]
− Pr

[
D(Expt(λ,C0, C1, I0, I1, 1)) = 1

]∣∣∣ ≤ α(λ).

where distribution Expt(λ,C0, C1, I0, I1, b) outputs as follows: sample (C̃b, sk) ← O(λ,Cb),

sample sequence (C̃1
b , . . . , C̃

t
b)← UpdateC̃b(sk, Ib), and output (I0, I1, C0, C1, C̃b, C̃

1
b , . . . , C̃

t
b).

Finally, we define the following pristine updates property which is desirable but not implied by above
definitions: updated obfuscation of a circuit should be statistically close to its fresh obfuscation.

Definition 3.3 (Pristine updates) An incremental indistinguishability obfuscator (O,Update)
for a circuit class {Cλ} has pristine updates if there exists a negligible function α such that ∀λ ∈ N,
∀C ∈ Cλ, and ∀(S, FS), the statistical distance between distributions {C̃ : (C̃, sk) ← O(λ,C)} and

{C̃ ′ : (C̃, sk)← O(λ,C), (S̃, F
S̃

)← UpdateC̃(sk, (S, FS)), C̃ ′ = F
S̃

(C̃) is at most α(λ).

12

3.2 Incremental VGB and VBB Obfuscation

The simulation based definitions are defined analogously, but require the existence of a simulator.

Definition 3.4 (Incremental VGB/VBB Obfuscator) A pair of uniform PPT machines (O,Update)
is called an incremental VGB obfuscator for a circuit class {Cλ} if it satisfies the syntax, correctness
and incrementality properties (as in definition 3.1) and the following VGB security property:

For any (not necessarily uniform) PPT (single bit) adversary A, there exists a simulator S, a
polynomial q, and a negligible function α, such that the following holds: For all security parameters
λ ∈ N, for all circuits C ∈ Cλ, for every polynomial t and for every sequence I of t updates, we
have that, ∣∣∣Pr

[
A(C̃, C̃1, . . . , C̃t) = 1

]
− Pr

[
SC[q(λ)],FI(C)[q(λ)](1λ, 1|C|) = 1

]∣∣∣ ≤ α(λ).

where (C̃, sk)← O(λ,C), (C̃1, . . . , C̃t)← UpdateC̃(sk, I), and notation C[q(λ)] (resp., FI(C)[q(λ)])
represents at most q oracle calls to C (resp., every circuit in (C,FI(C))).

If S is polynomial time in λ, we say that (O,Update) is incremental VBB obfuscator for {Cλ}.

4 Our Construction

In this section, we present our basic construction which satisfies IIO notion. Let:

• (G,E,D) be a PKE scheme for bits with ciphertext length `e,

• (Gen, H) be an SSB hash with alphabet Σ = {0, 1}`e and output length `,

• O be an IO scheme for all circuits,

• (K,P, V) be a NIZK proof system for NP

• com be a non-interactive perfectly binding string commitment scheme

The component algorithms of our IIO scheme (IncO,Update) are described in figures (1, 3).

Theorem 4.1 Scheme (IncO,Update) is an IIO scheme for all circuits.

Proof: It is easy to verify the correctness and incrementality of this scheme. It is also easy to
see that the scheme satisfies the pristine updates property.

We show that it satisfies the indistinguishability property. Fix any two circuits (C0, C1), and
any sequence I of any polynomial many incremental updates, say t updates. We need to show that
Expt(λ,C0, C1, I, 0) ≡c Expt(λ,C0, C1, I, 0).

H1: Same as Expt(λ,C0, C1, I, 0). For convenience, let us define C0
0 = C0 and C0

1 = C1.

Recall that the output of this experiment is (I, C0
0 , C

0
1 , C̃

0
0 , C̃

1
0 , . . . , C̃

t
0) where C̃i0 is of the

form (ei, hi, T i, ri, πhi , P̃hk,σ,c1,c2,c3,sk1) and ei = (ei1, e
i
2) represents two (bitwise) encryptions

of Ci0 under keys pk1 and pk2 respectively.

H1.5: Same as H1 except that the CRS σ and all NIZK proofs are obtained from the simulator, i.e.,
values (σ, πh1 , . . . , πht) are sampled using the simulator. The distinguishing advantage from
H1 is at most tδnizk.

13

Algorithm IncO(1λ, C) proceeds as follows:

1. Sample (pk1, sk1)← K(1λ) and (pk2, sk2)← G(1λ).

2. Generate e = (e1, e2) where e1, e2 are bit-wise encryptions of C, i.e., e1 = (e1,1, . . . , e1,|C|) and
e2 = (e2,1, . . . , e2,|C|) where e1,i ← E(pk1, C[i]), e2,i ← E(pk2, C[i]), for every i ∈ [|C|].

3. Sample hk ← Gen(1λ, 1`e , |e|, 0) and σ ← K(1λ)

4. Generate c1 ← com(1`;ω1), c2 ← com(1`;ω2), c3 ← com(0`‖1`;ω3)

5. Compute (h, T) = Hhk(e), where h is the root node of the (Merkle) tree T .

6. Choose a random r and compute the proof πh ← P (σ, (h, r, c1, c2, c3), w) for relation R using
witness w = (1`, 1`, 0`‖1`, ω1, ω2, ω3) where ((h, r, c1, c2, c3), (h

′, u, t1‖t2, ω1, ω2, ω3)) ∈ R iff:

(a) c1 = com(h′;ω1), c2 = com(u;ω2), c3 = com(t1‖t2;ω3), t1 ≤ r ≤ t2, and
(b) either

(
h 6= h′ ∧ r 6= u

)
or
(
h = h′ ∧ r = u

)
7. Compute obfuscation P̃hk,σ,c1,c2,c3,sk1 ← O

(
1λ, Phk,σ,c1,c2,c3,sk1

)
where Phk,σ,c1,c2,c3,sk1 is de-

scribed in figure 2. The size of Phk,σ,c1,c2,c3,sk1 is padded to a value Q defined later.

8. Let C̃ :=
(
e, h, T, r, πh, P̃hk,σ,c1,c2,c3,sk1

)
and uk := (pk1, hk, c1, c2, c3, σ, w); output (C̃, uk).

Evaluation of C̃ on input x is obtained by evaluating P̃hk,σ,c1,c2,c3,sk1 on input (e, r, πh, x).

Figure 1: Description of IncO

Circuit Phk,σ,c1,c2,c3,sk1 computes as follows on input (e, v, π, x):

1. Compute (h, T) = Hhk(e) and verify that V (σ, (h, v, c1, c2, c3), π) = 1.
Output ⊥ if verification fails.

2. Otherwise, parse e as (e1, e2), compute C = D(sk1, e1), and output C(x).

Figure 2: Description of Phk,σ,c1,c2,c3,sk1

14

Algorithm UpdateC,C̃(uk, S) computes (oracle access to C is made via C̃) as follows:

Parse the update key as uk = (pk1, hk, c1, c2, c3, σ, w) where w = (1`, 1`, 1`, ω1, ω2, ω3).
For every index i ∈ S do the following:

1. Access the bit C[i], and corresponding ciphertexts e1,i and e2,i from e (which is part of C̃).

2. Generate updated ciphertexts e′1,i ← E(pk1, 1− C[i]) and e′2,i ← E(pk2, 1− C[i]).
Let e′ denote the string e when e1,i is replaced with e′1,i and e2,i is replaced with e′2,i.

3. Define (h′, T ′) = Hhk(e
′), and let S′ be the set of indices where e, e′ differ.

Run the (incremental) update algorithm to get S′′ ← HashUpdatee,h,T (S′).

4. Access h and compute h′ using the knowledge of S′′. Access v and set v′ = v + 1.
Compute the new proof πh′ ← P (σ, (h′, v′, c1, c2, c3), w).

5. Output the set of indices where (e′, h′, T ′, v′, πh′) differ from (e, h, T, v, πh).

Figure 3: Description of Update.

H2: This hybrid tests |r+t| ≤ ` (i.e., r+t ≤ 2`−1), and if so, it sets c3 to be a commitment to t1‖t2
for t1 = r and t2 = r + t, instead of 0`‖1`, and continues as H2. If the test fails, it aborts.

The advantage in distinguishing H2 and H3 is at most δcom + t2−` where δcom is the distin-
guishing advantage for com. This is because of the following: value r+ t > 2` for a randomly
chosen r if and only if r ∈ [2`−t, 2`] which happens with probability t2−`; if the test succeeds,
the hybrids differ only in commitment c3.

This hybrid ensures that there are no valid proofs other than the t+ 1 proofs that are given
as part of the obfuscation and the updates.

H2.5: Same as H2 except that the CRS σ and all NIZK proofs (πh1 , . . . , πht) are now generated nor-
mally using the appropriate witness (instead of being simulated). Note that the hybrid indeed
does have the appropriate witnesses to complete this step normally, and the distinguishing
advantage from H2 is at most tδnizk.

H3: This hybrid is identical to H2.5 except that it generates the components {ei2} by (bitwise)
encrypting the sequence of circuits corresponding C1, namely {Ci1} (instead of {Ci0}) for every

i ∈ [t]. That is, for ever i ∈ [t], it computes C̃i0 to be of the form (ei, hi, T i, πhi , P̃hk,σ,c1,c2,c3,sk1)
as before where ei = (ei1, e

i
2) and ei1 is a bitwise encryption of Ci0 under pk1 obtained via

updates but ei2 is a bitwise encryption of Ci1 under pk2 (also obtained via updates).

The advantage in distinguishing H2.5 and H3 is at most t · |C0| · δpke where δpke denotes the
advantage in breaking the security of PKE scheme. This claim is straightforward.

H4: Identical to H3 except that instead of obfuscating circuit Phk,σ,c1,c2,c3,sk1 , it obfuscates the
following circuit P2hk,σ,c1,c2,c3,sk2

2, padded to the size Q:

Circuit P2hk,σ,c1,c2,c3,sk2(e, v, π, x):

1. Compute (h, T) = Hhk(e) and verify that V (σ, (h, v, c1, c2, c3), π) = 1.
Output ⊥ if verification fails.

2See step 7, figure 1. Note that this obfuscation is generated only once and never changes during the updates.

15

2. Otherwise, parse e as (e1, e2), compute C = D(sk2, e2), and output C(x).

Let δ4 denote the distinguishing advantage of any polynomial time distinguisher between H4

and H3. From lemma 4.1, δ4 ≤ 4t2|C0| · (δssb + δnizk + δcom + δIO) where quantities δssb, δnizk,
and δIO denote the distinguishing advantage for SSB hash, NIZK proofs, and IO respectively.

H5: Same as H4 except that it generates ciphertexts ei1 to now encrypt Ci1 (instead of Ci0) ∀i ∈ [t].

That is, for every i ∈ [t], it computes C̃i0 to be of the form (ei, hi, T i, πhi , P̃2hk,σ,c1,c2,c3,sk2)
where ei = (ei1, e

i
2) and ei1, e

i
2 are (bitwise) encryptions of Ci1 under pk1, pk2 respectively. Note

that these encryptions are actually obtained via updates.

The distinguishing advantage betweenH5 andH4 is at most t|C0|δpke. This is straightforward.

H6: Same as H5 except that it obfuscates circuit Phk,σ,c1,c2,c3,sk1 (which uses sk1 and decrypts
from e1, see figure 2) instead of P2hk,σ,c1,c2,c3,sk2 .

Let δ6 denote the distinguishing advantage between H6 and H5. We claim that δ6 ≤ 4t2|C0| ·
(δssb + δnizk + δcom + δIO). The proof is identical to that of lemma 4.1 and omitted.

H7: Same as H6 but now c3 is switched back to a commitment of 0`‖1` instead of t1‖t2. Recall
that t1 = r, t2 = r + t.

The distinguishing advantage between H7 and H6 is at most δcom + t2−` (as argued in H2).

Observe that H7 is the same as experiment Expt(λ,C0, C1, I, 1). The total distinguishing advantage
is thus bounded by O

(
t2 · |C0| ·

(
δpke + δnizk + δssb + δcom + 2−`

))
which is negligible.

�

Lemma 4.1 δ4 ≤ 4t2|C0| · (δssb + δnizk + δcom + δIO).

Proof: The lemma is proven by focusing on one of the t locations in the sequence at a time,
and use the properties of SSB hash, to slowly reach a point where there is a unique value of e
corresponding to the hash value at this location. All values prior to this location will use sk2 and
e2, whereas those after it will use sk1, e1.

More precisely, we describe t hybrids G1, . . . ,Gt where hybrid Gj will use sk2 on inputs with
value v if r ≤ v < r + j, and sk1 if r + j ≤ v ≤ r + t. Note that v is always in the range [r, r + t]
in this hybrid. To prove that Gj−1 and Gj are indistinguishable, we will design another 4 + 2|C0|
hybrids where we will first ensure the uniqueness of (j, hj) and then perform SSB hash translation
to move to Gj .

Formally, define G0 to be the same as H3, and for j ∈ [t] define hybrid Gj as follows: it is
identical to Gj−1 except that it obfuscates the circuit Phk,σ,c1,c2,c3,r,sk1,sk2,j described in figure 4
(instead of Phk,σ,c1,c2,c3,r,sk1,sk2,j−1).

3

Note that r was chosen uniformly in step 6 of the construction and the size of Phk,σ,c1,c2,c3,r,sk1,sk2,j
is padded to the value Q before obfuscation.

Let εj denote the distinguishing advantage between Gj and Gj−1. Observe that Gt is the same
as H4 and δ4 ≤

∑
j εj . We now prove that εj ≤ 4t|C0| · (δssb + δnizk + δcom + δIO).

Consider the following hybrids:

3Note that the only difference between these two circuits are values j and j− 1, and this obfuscation is performed
only once throughout the whole sequence.

16

Circuit Phk,σ,c1,c2,c3,r,sk1,sk2,j(e, v, π, x):

1. Compute (h, T) = Hhk(e) and verify that V (σ, (h, v, c1, c2, c3), π) = 1.
Output ⊥ if verification fails.

2. Otherwise, parse e as (e1, e2) and compute C as follows:
If r ≤ v ≤ r + j, set C = D(sk2, e2);
If r + j < v ≤ r + t, set C = D(sk1, e1).

3. Output C(x).

Figure 4: Description of Phk,σ,c1,c2,c3,sk1,j

Gj:1: Same as Gj−1 except that the CRS σ and all NIZK proofs are obtained from the simulator,
i.e., values (σ, πh1 , . . . , πht) are sampled using the simulator. The distinguishing advantage
from Gj−1 is at most tδnizk.

Gj:2: Same as Gj:1 except that commitments c1 and c2 are changed as follows. Let ej denote the
encryptions corresponding to the j-th update in the sequence, and let hj = Hhk(e

j). Then,
c1 is set to be a commitment to hj and c2 a commitment to r + j: c1 = com(hj ;ω1), c2 =
com(r + j;ω2). The distinguishing advantage from Gj:1 is at most δcom.

Gj:3: Same as Gj:2 except that the CRS σ and all NIZK proofs (πh1 , . . . , πht) are now generated nor-
mally using the appropriate witness (instead of being simulated). Note that the hybrid indeed
does have the appropriate witnesses to complete this step normally, and the distinguishing
advantage from Gj:2 is at most tδnizk.

At this point, for location j, there exists only one value of hj that can produce convincing proofs
(from the soundness of NIZK). Next, we will use the SSB hash to reach a point where only the
string ej will be accepted by the obfuscated circuit as the valid input corresponding to hash hj . We
do this in a series of 2|C0| hybrids corresponding to the 2|C0| encryptions occurring in ej = (ej1, e

j
2).

Formally, for every m = 1, . . . , 2|C0|, we define two hybrids Gm:1
j:3 ,Gm:2

j:3 below. Let e∗m denote the

string which identical to ej in the first m blocks, each of length `e, and 0 everywhere else. For
convention, let G0:2j:3 be the same as Gj:3. Then:

Gm:1
j:3 : Same as Gm−1:2j:3 except that it makes hk to be binding at m, i.e., hk ← Gen(1λ, 1`e , |e|,m).

Gm:2
j:3 : Let us recall that we started with hybrid Gj−1 which obfuscates the circuit Phk,σ,c1,c2,c3,sk1,sk2,j−1.

This hybrid proceeds just like Gm:1
j:3 except that it obfuscates the circuit P

m,e∗m
hk,σ,c1,c2,c3,sk1,sk2,j−1

described below.

Circuit P
m,e∗m
hk,σ,c1,c2,c3,sk1,sk2,j−1(e, v, π, x):

1. If the first m blocks of e and e∗m are not the same, output ⊥.
2. Otherwise output Phk,σ,c1,c2,c3,sk1,sk2,j−1(e, v, π, x) (see figure 4).

The distinguishing advantage between Gm−1:2j:3 and Gm:1
j:3 is at most δssb, and between Gm:1

j:3 and Gm:2
j:3

is at most δIO.

17

When m = 2|C0|, the circuit P
m,e∗m
hk,σ,c1,c2,c3,sk1,sk2,j

accepts only e∗2|C0| = ej as the input for location
j in the sequence and all other inputs are rejected. We can now safely change this program to use
sk2 to decrypt ej2 at location j (instead of ej1). More precisely, we consider the hybrid:

Gj:4 Same as G2|C0|:2
j:3 except that it obfuscates a circuit which, in location j, decrypts from ej2.

More precisely, it obfuscates the following circuit:

Circuit P e
j

hk,σ,c1,c2,c3,sk1,sk2,j−1(e, v, π, x):

1. If e 6= ej , output ⊥.
2. Otherwise output Phk,σ,c1,c2,c3,sk1,sk2,j(e, v, π, x) (see figure 4).

The distinguishing advantage from previous hybrid is at most δIO.
Our goal is now to get rid of the first condition, so that we switch back to only obfuscating

Phk,σ,c1,c2,c3,sk1,sk2,j . This is performed by simply reversing the steps in m hybrids. Furthermore,
we also reverse the changes made in the commitment in a sequence of 3 hybrids by considering the
reverse of hybrids Gj:3,Gj:2,Gj:1. The resulting hybrid would essentially be identical to Gj . We omit
these details.

The total distinguishing advantage between Gj and Gj−1 is bounded by the sum of all advantages,
which is at most 4t|C0| (δcom + δnizk + δssb + δIO). This completes the proof.

Size Q: The value of Q is defined to be the size of the program P e
j

hk,σ,c1,c2,c3,sk1,sk2,j−1 described
above (for any value of j, say j = 1). �

Construction for Turing machines and RAM programs. As mentioned earlier, our con-
structions are quite independent of the underlying model of computation. For example, to obtain
construction for the class of bounded-input Turing machines, we use the same construction as in
figure 1 except that the obfuscator O for circuits in (step 7) will now be an obfuscator for the
class of bounded-input Turing machines since the program in figure 2 will now be a bounded-input
Turing machine. Likewise, we also obtain constructions for RAM programs and unbounded-input
Turing machines assuming the existence of IO for the same. This gives us the following theorem.

Theorem 4.2 If there exists indistinguishability obfuscation for a class of programs P = {Pλ}
modeled as either boolean circuits, or (bounded/unbounded input) Turing machines, or RAM pro-
grams, then there exists incremental indistinguishability obfuscation (IIO, definition 3.1) for P.

5 Amplifying Security to Increment-private IIO

In this section, we present our (black-box) transformation which transform an IIO scheme (defi-
nition 3.1) into an increment-private IIO scheme (definition 3.2). As before, for concreteness, we
present our transformation for circuits, but it works for Turing machines and RAM programs as
well. Our transformation preserves the pristine updates property as well (definition 3.3).

As discussed in the overview, the construction consists of applying the ORAM encoding on
the given circuit twice. These encodings are then hardwired into a program, along with the secret
information for decoding only one of the two ORAM encodings. This is essentially the two-key
paradigm [NY90] implemented with ORAM. The resulting program is then obfuscated using the

18

Algorithm O′(1λ, C) proceeds as follows:

1. Sample (C∗1 , s1)← OData(1λ, C) and (C∗2 , s2)← OData(1λ, C). Let m = |C|.

2. Obtain (C̃, uk) ← O(PC∗1 ,C∗2 ,1,s1) where PC∗1 ,C∗2 ,b,s for b ∈ {1, 2} is a circuit that on input x
proceeds as follows:

(a) For every i ∈ [m] compute di := OAccessC
∗
b (1λ, s, i,⊥).

(b) Output D(x) where D = d1‖ . . . ‖dm.

3. Output (C̃, uk′) where the update key uk′ := (s1, s2, uk).

Algorithm Update′
C̃

(uk′, S′) computes as follows:

1. Parse the update key as uk′ = (s1, s2, uk) and let FS′ be the changes corresponding to S′.
For each i ∈ S′ proceed as follows:

(a) Let di := OAccessC
∗
1 (1λ, s, i,⊥) and execute OAccessC

∗
1 (1λ, s, i, fi(di)).

(b) Similarly, let d′i := OAccessC
∗
2 (1λ, s, i,⊥) and execute OAccessC

∗
2 (1λ, s, i, fi(d

′
i)).

a

where fi is the update operation in FS′ corresponding to i ∈ S′.
2. Let S be the set of locations where PC∗1 ,C∗2 ,1,s1 is touched as C∗1 and C∗2 are processed as

aboveb and FS be the corresponding changes.

3. Output UpdateC̃(uk, S).

aWe assume oracle access to C∗1 and C∗2 . This information can be accessed via C̃.
bNote that the size of S is polynomial in |S′|, λ, logm.

Figure 5: Description of O′ and Update′.

given IIO scheme. In addition to the encodings and secret information, the program is also provided
with a bit b as well as some more information which tells the program which ORAM encoding to
pick for evaluation. This is helpful in designing the hybrid experiments.

Our construction. Let (O,Update) be an IIO scheme for the class of all circuits. Let (OData,OAccess)
be an oblivious RAM scheme as described in Section 2.3. Our new scheme consists of algorithms
(O′,Update′) described in figure 5.4

Theorem 5.1 Scheme (O′,Update′) is increment-private IIO for all circuits (definition 3.2).

Proof: The correctness and the pristine updates property of our construction follows directly
from the correctness and the pristine updates property of the underlying IIO scheme. We argue the
increment-private indistinguishability property of our construction.

We have to show that for any (not necessarily uniform) PPT distinguisher D, there exists a
negligible function α such that the following holds: For all security parameters λ ∈ N, for all pairs

4We emphasize that even though our scheme uses ORAM, program PC∗
1 ,C∗

2 ,s,b in figure 5 is still only a circuit and
not a “RAM” program.

19

of circuits C0, C1 ∈ Cλ, for every polynomial t and for all pairs of update sequences I0, I1 of length
t we have that if C0(x) = C1(x) and FI0(C0)(x) = FI1(C1)(x) for all inputs x, then∣∣∣Pr

[
D(Expt(λ,C0, C1, I0, I1, 0)) = 1

]
− Pr

[
D(Expt(λ,C0, C1, I0, I1, 1)) = 1

]∣∣∣ ≤ α(λ).

where distribution Expt(λ,C0, C1, I0, I1, b) outputs as follows: (1) Sample (C∗1 , s1)← OData(1λ, Cb)

and (C∗2 , s2)← OData(1λ, Cb). (2) Sample (C̃, sk)← O(λ, PC∗1 ,C∗2 ,1,s1) and the sequence (C̃1, . . . , C̃t)←
UpdateC̃(sk, J), and output (I0, I1, C0, C1, C̃, C̃

1, . . . , C̃t). Here J = (S1, . . . , St) is obtained from
Ib = (S′b,1, . . . S

′
b,t) as follows (also described in figure 5). For each j ∈ {1, . . . t}, set S′b = S′b,j and

proceed as follows.

1. FS′b be the changes corresponding to S′b. For each i ∈ S′b proceed as follows:

(a) Let di := OAccessC
∗
1 (1λ, s, i,⊥) and execute OAccessC

∗
1 (1λ, s, i, fi(di)).

(b) Similarly, let d′i := OAccessC
∗
2 (1λ, s, i,⊥) and execute OAccessC

∗
2 (1λ, s, i, fi(d

′
i)).

2. Let S be the set of locations where PC∗1 ,C∗2 ,1,s1 is touched as C∗1 and C∗2 are processed as
above5 and FS be the corresponding changes.

3. Output UpdateC̃(uk, S) as Sj .

To prove the claim, consider the following sequence of hybrids:

H1: This hybrid corresponds to the output of the experiment Expt(λ,C0, C1, I0, I1, 0) as above.

H2: In this hybrid we change Step 1b in the experiment above. In particular we instead of changing
stored value to fi(di) we always set it to zero. More formally, the procedure is changed as
follows.

(a) FS′b be the changes corresponding to S′b. For each i ∈ S′0 proceed as follows:

i. Let di := OAccessC
∗
1 (1λ, s, i,⊥) and execute OAccessC

∗
1 (1λ, s, i, fi(di)).

ii. Similarly, let d′i := OAccessC
∗
2 (1λ, s, i,⊥) and execute OAccessC

∗
2 (1λ, s, i, 0).

(b) Let S be the set of locations where PC∗1 ,C∗2 ,1,s1 is touched as C∗1 and C∗2 are processed as
above and FS be the corresponding changes.

(c) Output UpdateC̃(uk, S) as Sj .

Indistinguishability follows from the security of the IIO scheme. Here we use the property
that any changes made to C∗2 do not affect the functionality of the program PC∗1 ,C∗2 ,1,s1 .

H3: In this hybrid we again change Step 1b in the experiment above. In particular, we make
changes to C∗2 at locations S′1 instead of S′0. As in H1 we still set these locations to zero when
the change is made. More formally:

(a) FS′b be the changes corresponding to S′b. For each i ∈ S′0 and k ∈ S′1 proceed as follows:

i. Let di := OAccessC
∗
1 (1λ, s, i,⊥) and execute OAccessC

∗
1 (1λ, s, i, fi(di)).

5Note that the size of S is polynomial in |S′|, λ, logm.

20

ii. Similarly, let d′k := OAccessC
∗
2 (1λ, s, k,⊥) and execute OAccessC

∗
2 (1λ, s, k, 0).

(b) Let S be the set of locations where PC∗1 ,C∗2 ,1,s1 is touched as C∗1 and C∗2 are processed as
above and FS be the corresponding changes.

(c) Output UpdateC̃(uk, S) as Sj .

Indistinguishability follows from the security of the oblivious RAM scheme (as in Section 2.3).

H4: In this hybrid we change how C∗2 is generated and the changes that are made while the
increments are performed. More formally:

We generate (C∗2 , s2) by executing OData(1λ, C1). Additionally the increments are not set
using I1 instead of I0 as follows:

(a) FS′b be the changes corresponding to S′b. For each i ∈ S′0 and k ∈ S′1 proceed as follows:

i. Let di := OAccessC
∗
1 (1λ, s, i,⊥) and execute OAccessC

∗
1 (1λ, s, i, fi(di)).

ii. Similarly, let d′k := OAccessC
∗
2 (1λ, s, k,⊥) and execute OAccessC

∗
2 (1λ, s, k, fk(d

′
k)).

(b) Let S be the set of locations where PC∗1 ,C∗2 ,1,s1 is touched as C∗1 and C∗2 are processed as
above and FS be the corresponding changes.

(c) Output UpdateC̃(uk, S) as Sj .

Indistinguishability follows from the security of the IIO scheme. Here we use the property
that any changes made to C∗2 do not affect the functionality of the program PC∗1 ,C∗2 ,1,s1 .

H5: In this hybrid instead of outputting an obfuscation of PC∗1 ,C∗2 ,1,s1 we output and obfuscation
of PC∗1 ,C∗2 ,2,s2 .

Indistinguishability follows from the security of the IIO scheme. Here we use the property
that for all x we have that C0(x) = C1(x) and FI0(C0)(x) = FI1(C1)(x). This in particular
implies that PC∗1 ,C∗2 ,1,s1(x) = PC∗1 ,C∗2 ,2,s2(x) and FJ(PC∗1 ,C∗2 ,1,s1)(x) = FJ(PC∗1 ,C∗2 ,2,s2)(x) where
J = (S1, . . . St) as obtained in the previous hybrid.

Observe that at this point we can reverse the hybrids presented above and obtain the distribution
Expt(λ,C0, C1, I0, I1, 1). This proves our claim. �
As before, this transformation is not specific to circuits. In particular, if (O,Update) is a scheme
for Turing machines or RAM programs, then (O′,Update′) is increment-private IIO for the same
model. Thus, our transformation, together with theorem 4.2, gives the following result.

Theorem 5.2 If there exists indistinguishability obfuscation for a class of programs P = {Pλ}
modeled as either boolean circuits, or (bounded/unbounded input) Turing machines, or RAM pro-
grams, then there exists increment-private indistinguishability obfuscation (definition 3.2) for P.

6 The Lower Bound

Point functions. Let In = {Ix}x∈{0,1}n denote the family of point functions for points in {0, 1}n
where n is a (potentially large) polynomial in λ. Function Ix takes as input y ∈ {0, 1}n and outputs
1 if y = x and 0 otherwise.

21

VBB obfuscation schemes for In are known to exist [Wee05, Can97, BS16] under standard
assumptions such as variants of one-way permutation or DDH. We show that even for a family
as simple as In, incremental VBB obfuscation (corresponding to our efficiency requirements) does
not exist. In fact, we rule this out even for VGB obfuscation, which is weaker than VBB; this
strengthens our result.

More specifically, we show that the update algorithm of every incremental VGB obfuscation
for In must change Ω(n/ log n) bits for a large fraction of functions Ix ∈ In even if only one bit
changes in x.

Theorem 6.1 Every VGB obfuscation scheme for In must have incrementality ∆ ∈ Ω(n/ log n).

Proof: Let (O,Update) be a VGB obfuscation scheme for In with incrementality ∆. Let λ be
the security parameter so that n = n(λ) ≥ λ is a polynomial determining the length of points in
In, and ∆ is a function of λ.

The proof proceeds by showing that incrementality “leaks” Hamming distance between updated
obfuscations, which, by definition, cannot be leaked by VGB obfuscation. Formally, define the
following two distributions:

• D1 : Obtain obfuscations for programs Ix and Ix′ for a random x by obfuscating Ix and
updating it for Ix′ where x, x′ differ in only one position, say first. I.e., sample x ← {0, 1}n,

Ĩx ← O(Ix), Ĩx′ ← UpdateĨx(1λ, uk, {1, flip}), and output (Ĩx, Ĩx′).

• D2 : Return obfuscations of two random points y1, y2 through update. I.e., sample y1, y2
uniformly, and obtain Ĩy1 ← O(Iy1). Let δ denote the set of locations where y1, y2 differ

corresponding to the function flip. Then, obtain Ĩy2 ← UpdateĨy1 (1λ, δ).

Next, define the following adversarial algorithm:

Algorithm A: on input two strings (Ĩ1, Ĩ2), A outputs 1 if the Hamming distance between Ĩ1, Ĩ2
is at most ∆; otherwise A outputs 0.

By definition of VGB security, there exists a simulator S, a polynomial q, and a negligible function
α such that S can simulate the output of A (on any two obfuscated circuits) by making at most q
queries to the corresponding circuits. Note that this simulator S cannot distinguish the two cases
above as it is only give oracle access to the programs.

Let us consider the output of A on input (Ĩx, Ĩx′) sampled from D1. Due to the incrementality
of the scheme, these inputs differ in at most ∆ locations, and hence A outputs 1 with probability
1.

Next, consider the output of A on input (Ĩy1 , Ĩy2) sampled from D2. We note that for any

choice of randomness of the obfuscator the Hamming distance between Ĩy1 , Ĩy2 cannot be less than
than the Ω(n/ log n). More formally, for a choice of random coins, the obfuscator is an injective
function from 2n points to an obfuscation of m bits were m = nc for constant c. Then we claim
that the two obfuscations (for random y1 and y2) differ by at least Ω(n/ log n) bits. If this was not
the case then we could encode the two random points x1, x2 in o(2n) bits which is impossible. In
particular, we could perform the encoding by giving x1 and the update of obfuscation from x1 to
x2. If the hamming distance between the obfuscations of x1 and x2 is t = o(n/ log n) then we have
that this change can be encoded in log

(
m
t

)
which is at most log((nc)t) < c.o(n/ log n). log n < o(n).

Therefore, we conclude that ∆ ∈ Ω(n/ log n).
�

22

7 Best Possible Incremental Obfuscation

Our lower bound on the incrementality of VGB/VBB obfuscations demonstrates that any incremen-
tal scheme must leak the size of incremental updates that take place. An interesting question is if
this is all that is leaked. In particular, we investigate the possibility of realizing weaker simulation-
based notions which allow for leakage of the size of the incremental updates.

However, a notion along these lines leaves a lot unexplained. For example, it is not clear if
such an effort would yield a meaningful notion for general programs. Motivated by such issues and
inspired by the notion of “best possible obfuscation” [GR07] for the single use setting, we define
the notion of “best possible incremental obfuscation” or IBPO.

Definition 7.1 (Incremental Best Possible Obfuscator (IBPO)) A pair of uniform PPT ma-
chines (O,Update) is called an incremental BPO obfuscator for a circuit class {Cλ} if it satisfies
the syntax, correctness and incrementality properties (as in definition 3.1) and the following best
possible obfuscation property:

For any (not necessarily uniform) PPT adversaries A, there exists a simulator S and a negligible
function α, such that the following holds: For all security parameters λ ∈ N, for all pairs of
circuits C1, C2 ∈ Cλ (with |C1| = |C2|), for every polynomial t and for all pairs of update sequences
I0, I1 (with S0,i = S1,i for each i ∈ {1, . . . , t}) of length t we have that if C0(x) = C1(x) and
FI0(C0)(x) = FI1(C1)(x) for all inputs x, then∣∣∣Pr

[
A(C̃0, C̃

1
0 , . . . , C̃

t
0) = 1

]
− Pr

[
S(C1, I1) = 1

]∣∣∣ ≤ α(λ)

where (C̃0, sk)← O(λ,C0), and (C̃1
0 , . . . , C̃

t
0)← UpdateC̃0(sk, I0).

Informally, this definition guarantees that any information that can be efficiently obtained from the
obfuscation C̃0 along with the obfuscation increments C̃1

0 , . . . , C̃
t
0, can also be extracted efficiently

(i.e., simulated) from any equivalent circuit of a similar size C1 and corresponding equivalent
updates I1 of similar size. We now prove the following theorem.

Theorem 7.1 (O,Update) is incremental BPO obfuscator for a circuit class {Cλ} if and only if it
is increment-private IIO obfuscator for {Cλ}.

Proof Sketch: We need to prove that an IBPO scheme is also a increment-private IIO scheme
and the other way around. We start with the first direction.

By the definition of best possible obfuscation we have that the distributions A(C̃0, C̃
1
0 , . . . , C̃

t
0)

and S(C1, I1) are close. Similarly the distributions A(C̃1, C̃
1
1 , . . . , C̃

t
1) and S(C1, I1) are close. In

the above expressions for b ∈ {0, 1}, (C̃b, skb) ← O(λ,Cb), and (C̃1
b , . . . , C̃

t
b) ← UpdateC̃b(skb, Ib).

These two facts together imply that the distributions A(C̃0, C̃
1
0 , . . . , C̃

t
0) and A(C̃1, C̃

1
1 , . . . , C̃

t
1) are

close, implying that (O,Update) is a increment-private incremental indistinguishability obfuscator.
Next we sketch the argument for the other direction. Our simulator S on input C1, I1 computes

(C̃1, sk1) ← O(λ,C1), and (C̃1
1 , . . . , C̃

t
1) ← UpdateC̃1(sk1, I1) and outputs (C̃1, C̃

1
1 , . . . , C̃

t
1). The

indistinguishability of this from obfuscation of C0 and obfuscation increments for I0 follows directly
from the security of increment-private incremental indistinguishability. �

23

8 Extensions and Future Work

We discuss three possible extensions of our results: non-sequential model of updates, adaptive
updates, and new types of update operations and other refinements.

Non-sequential updates. In our current model, an update at time step i is applied to the
obfuscation at time step i − 1. A more flexible approach would be to allow the update to any
obfuscation that is previously present in the history. This results in a “tree like” structure for
updates instead of the “line” for sequential updates. This model is interesting for situations where
the copies of software reside on several remote machines and may be updated at different times.

Our constructions can be easily adapted for this setting as well. Specifically, in our basic IIO
construction, instead of choosing r at random, let it be an encryption of a random value. The
update algorithm will simply encrypt a fresh value each time (instead of adding 1 to the previous
value). All other operations are performed as before.

The key observation is that, since the values are now encrypted, sequential values look indis-
tinguishable from random. Therefore, in the security proof, we will first change the random values
to sequential, and then proceed exactly as before. Note that the the obfuscated program does not
need to know the values in the encryption, and hence does not need the secret key. Only the update
algorithm needs the secret key. The proof now additionally uses the semantic security of encryption
(along with NIZK proofs as before) to switch to sequential values.

Adaptive updates. As mentioned earlier, our constructions do not achieve adaptive security
where future updates are chosen adversarially based on previous obfuscations. We leave this as an
interesting open problem.

More general updates, and other refinements. We did not consider updates which may
increase the size of the underlying programs. In many settings, the size of the program would
likely increase after updates. Likewise, we also did not explore other refinements such as tamper-
proof security (where the obfuscation to be updated may not be “correct” due to tampering by the
adversary). It would be interesting to explore these directions in future.

9 Acknowledgements

We are thankful to the anonymous reviewers of CRYPTO 2017 for their helpful comments.

References

[AB15] Benny Applebaum and Zvika Brakerski. Obfuscating Circuits via Composite-Order
Graded Encoding. In TCC, pages 528–556, 2015.

[ABG+13] Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark Zhandry.
Differing-Inputs Obfuscation and Applications, 2013. IACR Cryptology ePrint
Archive: http://eprint.iacr.org/2013/689.pdf.

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. SIAM
J. Comput., 36(4):845–888, 2006.

24

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability Obfuscation from Com-
pact Functional Encryption. In CRYPTO, pages 308–326, 2015.

[AJS17] Prabhanjan Ananth, Abhishek Jain, and Ananth Sahai. Patchable obfuscation: io
for evolving software. In Eurocrypt, pages 244–256, 2017. Preliminary Eprint Report
2015/1084: eprint.iacr.org/2015/1084.

[App14] Benny Applebaum. Bootstrapping Obfuscators via Fast Pseudorandom Functions. In
ASIACRYPT, 2014.

[AS16] Prabhanjan Ananth and Amit Sahai. Functional Encryption for Turing Machines. In
TCC, 2016.

[BBC+14] Boaz Barak, Nir Bitansky, Ran Canetti, Yael Tauman Kalai, Omer Paneth, and Amit
Sahai. Obfuscation for Evasive Functions. In TCC, 2014. Preliminary version on
Eprint 2013: http://eprint.iacr.org/2013/668.pdf.

[BC10] Nir Bitansky and Ran Canetti. On Strong Simulation and Composable Point Obfus-
cation. In CRYPTO, pages 520–537, 2010.

[BCC+14] Nir Bitansky, Ran Canetti, Henry Cohn, Shafi Goldwasser, Yael Tauman Kalai, Omer
Paneth, and Alon Rosen. The Impossibility of Obfuscation with Auxiliary Input or a
Universal Simulator. In CRYPTO, 2014.

[BCG+11] Nir Bitansky, Ran Canetti, Shafi Goldwasser, Shai Halevi, Yael Tauman Kalai, and
Guy N. Rothblum. Program Obfuscation with Leaky Hardware. In ASIACRYPT,
pages 722–739, 2011.

[BCKP14] Nir Bitansky, Ran Canetti, Yael Tauman Kalai, and Omer Paneth. On Virtual Grey
Box Obfuscation for General Circuits. In CRYPTO, pages 108–125, 2014.

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. On Extractability (a.k.a. Differing-
Inputs) Obfuscation. In TCC, 2014. Preliminary version on Eprint 2013: http:

//eprint.iacr.org/2013/650.pdf.

[BCP16] Elette Boyle, Kai-Min Chung, and Rafael Pass. Oblivious Parallel RAM. In TCC,
2016.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-Interactive Zero-Knowledge and
Its Applications (Extended Abstract). In STOC, pages 103–112, 1988.

[BGG94] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental Cryptography: The
Case of Hashing and Signing. In CRYPTO, pages 216–233, 1994.

[BGG95] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental Cryptography and
Application to Virus Protection. In STOC, pages 45–56, 1995.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM,
59(2):6, 2012.

25

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Pro-
tecting Obfuscation against Algebraic Attacks. In EUROCRYPT, 2014.

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang. Succinct
Randomized Encodings and their Applications. In STOC, pages 439–448, 2015.

[BKY01] Enrico Buonanno, Jonathan Katz, and Moti Yung. Incremental Unforgeable Encryp-
tion. In FSE, pages 109–124, 2001.

[BM97] Mihir Bellare and Daniele Micciancio. A New Paradigm for Collision-Free Hashing:
Incrementality at Reduced Cost. In EUROCRYPT, pages 163–192, 1997.

[BP15a] Nir Bitansky and Omer Paneth. ZAPs and Non-Interactive Witness Indistinguisha-
bility from Indistinguishability Obfuscation. In TCC, pages 401–427, 2015.

[BP15b] Elette Boyle and Rafael Pass. Limits of Extractability Assumptions with Distributional
Auxiliary Input, 2015. Preliminary version: http://eprint.iacr.org/2013/703.

pdf.

[BPW16] Nir Bitansky, Omer Paneth, and Daniel Wichs. Perfect Structure on the Edge of
Chaos. In TCC, 2016.

[BR13] Zvika Brakerski and Guy N. Rothblum. Obfuscating Conjunctions. In CRYPTO,
pages 416–434, 2013.

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual Black-Box Obfuscation for All Circuits
via Generic Graded Encoding. In TCC, 2014. Preliminary version on Eprint at http:
//eprint.iacr.org/2013/563.pdf.

[BS16] Mihir Bellare and Igors Stepanovs. Point-Function Obfuscation: A Framework and
Generic Constructions. In TCC, 2016. Preliminary version at IACR Eprint Report
2015/703: http://eprint.iacr.org/2015/703.pdf.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: definitions and
challenges. In TCC, pages 253–273, 2011.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability Obfuscation from Func-
tional Encryption. In FOCS, 2015.

[BZ14] Dan Boneh and Mark Zhandry. Multiparty Key Exchange, Efficient Traitor Tracing,
and More from Indistinguishability Obfuscation. In CRYPTO, pages 480–499, 2014.

[Can97] Ran Canetti. Towards Realizing Random Oracles: Hash Functions That Hide All
Partial Information. In CRYPTO, pages 455–469, 1997.

[CHJV15] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Indistin-
guishability Obfuscation of Iterated Circuits and RAM Programs. In STOC, 2015.

[CLP14] Kai-Min Chung, Zhenming Liu, and Rafael Pass. Statistically-secure ORAM with

õ(log2 n) overhead. In ASIACRYPT, pages 62–81, 2014.

26

[CLP15] Kai-Min Chung, Huijia Lin, and Rafael Pass. Constant-Round Concurrent Zero-
Knowledge from Indistinguishability Obfuscation. In CRYPTO, pages 287–307, 2015.

[CRV10] Ran Canetti, Guy N. Rothblum, and Mayank Varia. Obfuscation of Hyperplane Mem-
bership. In TCC, pages 72–89, 2010.

[CV13] Ran Canetti and Vinod Vaikuntanathan. Obfuscating branching programs using black-
box pseudo-free groups. IACR Cryptology ePrint Archive, 2013:500, 2013.

[Fis97a] Marc Fischlin. Incremental Cryptography and Memory Checkers. In EUROCRYPT,
pages 293–408, 1997.

[Fis97b] Marc Fischlin. Lower Bounds for the Signature Size of Incremental Schemes. In FOCS,
pages 438–447, 1997.

[FLS99] Feige, Lapidot, and Shamir. Multiple noninteractive zero knowledge proofs under
general assumptions. SIAM Journal on Computing, 29, 1999.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In EUROCRYPT, pages 1–17, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In FOCS, pages 40–49, 2013.

[GGHW14] Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs. On the Implausibility
of Differing-Inputs Obfuscation and Extractable Witness Encryption with Auxiliary
Input. In CRYPTO, pages 518–535, 2014.

[GIS+10] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay Wadia.
Founding cryptography on tamper-proof hardware tokens. In TCC, pages 308–326,
2010.

[GK05] Shafi Goldwasser and Yael Tauman Kalai. On the Impossibility of Obfuscation with
Auxiliary Input. In FOCS, pages 553–562, 2005.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious
RAMs. Journal of the ACM, 43(3):431–473, 1996.

[Gol87] Oded Goldreich. Towards a Theory of Software Protection and Simulation by Oblivious
RAMs. In STOC, pages 182–194, 1987.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect Non Interactive Zero Knowledge
for NP. In EUROCRYPT, pages 339–358, 2006.

[GR07] Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. In TCC, pages
194–213, 2007.

[Had00] Satoshi Hada. Zero-Knowledge and Code Obfuscation. In ASIACRYPT, pages 443–
457, 2000.

27

[Had10] Satoshi Hada. Secure obfuscation for encrypted signatures. In EUROCRYPT, pages
92–112, 2010.

[HRSV07] Susan Hohenberger, Guy N. Rothblum, Abhi Shelat, and Vinod Vaikuntanathan. Se-
curely obfuscating re-encryption. In TCC, pages 233–252, 2007.

[HSW14] Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a Random Oracle:
Full Domain Hash from Indistinguishability Obfuscation. In EUROCRYPT, pages
201–220, 2014.

[HW15] Pavel Hubacek and Daniel Wichs. On the Communication Complexity of Secure Func-
tion Evaluation with Long Output. In ITCS, pages 163–172, 2015.

[IB] Information is Beautiful. http://www.informationisbeautiful.net/

visualizations/million-lines-of-code.

[IPS15] Yuval Ishai, Omkant Pandey, and Amit Sahai. Public-Coin Differing-Inputs Obfusca-
tion and Its Applications. In TCC, pages 668–697, 2015.

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability Ob-
fuscation for Turing Machines with Unbounded Memory. In STOC, 2015.

[KMN+14] Ilan Komargodski, Tal Moran, Moni Naor, Rafael Pass, Alon Rosen, and Eylon Yogev.
One-way functions and (im)perfect obfuscation. In FOCS, pages 374–383, 2014.

[LO13] Steve Lu and Rafail Ostrovsky. Distributed oblivious RAM for secure two-party com-
putation. In TCC, pages 377–396, 2013.

[LPS04] Ben Lynn, Manoj Prabhakaran, and Amit Sahai. Positive results and techniques for
obfuscation. In EUROCRYPT, pages 20–39, 2004.

[Mic97] Daniele Micciancio. Oblivious Data Structures: Applications to Cryptography. In
STOC, pages 456–464, 1997.

[MO14] Antonio Marcedone and Claudio Orlandi. Obfuscation ⇒ (IND-CPA security !⇒
circular security). In Security and Cryptography for Networks - 9th International
Conference, SCN 2014, Amalfi, Italy, September 3-5, 2014. Proceedings, pages 77–90,
2014.

[MPRS12] Ilya Mironov, Omkant Pandey, Omer Reingold, and Gil Segev. Incremental Determin-
istic Public-Key Encryption. In EUROCRYPT, pages 628–644, 2012.

[NY90] Moni Naor and Moti Yung. Public-key Cryptosystems Provably Secure against Chosen
Ciphertext Attacks. In STOC, pages 427–437, 1990.

[O’N10] Adam O’Neill. Definitional Issues in Functional Encryption. Cryptology ePrint
Archive, Report 2010/556, 2010.

[OPWW15] Tatsuaki Okamoto, Krzysztof Pietrzak, Brent Waters, and Daniel Wichs. New Real-
izations of Somewhere Statistically Binding Hashing and Positional Accumulators. In
ASIACRYPT, 2015.

28

[Ost90] Rafail Ostrovsky. Efficient Computation on Oblivious RAMs. In STOC, pages 514–
523, 1990.

[PPS15] Omkant Pandey, Manoj Prabhakaran, and Amit Sahai. Obfuscation-based Non-black-
box Simulation and Four Message Concurrent Zero Knowledge for NP. In TCC, 2015.

[SCSL11] Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious RAM with
O((logN)3) Worst-Case Cost. In ASIACRYPT, pages 197–214, 2011.

[SvDS+13] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren,
Xiangyao Yu, and Srinivas Devadas. Path ORAM: an extremely simple oblivious
RAM protocol. In ACM CCS, pages 299–310, 2013.

[SW14] Amit Sahai and Brent Waters. How to Use Indistinguishability Obfuscation: Deniable
Encryption, and More. In STOC, pages 475–484, 2014.

[Wee05] Hoeteck Wee. On obfuscating point functions. In STOC, pages 523–532, 2005.

29

