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Abstract

Field inversion in F2m dominates the cost of modern software implementations of certain el-
liptic curve cryptographic operations, such as point encoding/hashing into elliptic curves. [7, 6, 2]
Itoh–Tsujii inversion using a polynomial basis and precomputed table-based multi-squaring has
been demonstrated to be highly effective for software implementations [19, 14, 2], but the per-
formance and memory use depend critically on the choice of addition chain and multi-squaring
tables, which in prior work have been determined only by suboptimal ad-hoc methods and man-
ual selection. We thoroughly investigated the performance/memory tradeoff for table-based
linear transforms used for efficient multi-squaring. Based upon the results of that investigation,
we devised a comprehensive cost model for Itoh–Tsujii inversion and a corresponding optimiza-
tion procedure that is empirically fast and provably finds globally-optimal solutions. We tested
this method on 8 binary fields commonly used for elliptic curve cryptography; our method found
lower-cost solutions than the ad-hoc methods used previously, and for the first time enables a
principled exploration of the time/memory tradeoff of inversion implementations.

1 Introduction
Field inversion in F2m is a key primitive required by elliptic curve cryptographic operations over
binary elliptic curves. On older CPU architectures, the total cost of field multiplications typically
dominates the cost of all other operations due to the inefficiency of performing polynomial
multiplication without native instruction support, with the cost of field inversion only about
3–8 times the cost of field multiplication. [8, 19] The fast carry-less multiplication in modern
CPU architectures, such as the PCLMULDQ instruction supported by Intel’s Westmere and later
processors, the ARMv7 VMULL.P8 instruction, and the ARMv8 PMUL/PMULL/PMULL2 instructions,
reduces the cost of multiplication by a factor of 20 to 40, but does not significantly reduce the
cost of inversion. Consequently, for applications such as point encoding/hashing into elliptic
curves [7, 6, 2], field inversion can account for more than half of the total computational cost in
a software implementation on modern hardware, particularly when using binary fields of large
degree. A reduction in the cost of field inversion can, therefore, have a significant effect on
the overall cost. For this reason, we investigated the optimal software implementation of field
inversion for arbitrary binary fields F2m .

Our contribution: Based on the Itoh–Tsujii polynomial-basis method [19, 9], apparently
the fastest method for binary field inversion in software, we developed an empirically-fast algo-
rithm for searching over the space of field inversion implementations in order to provably min-
imize computational cost subject to an arbitrary bound on, or cost function for, memory use.
This algorithm, based on a CPU architecture-specific cost model estimated from performance
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benchmarks, allows us to compute a time/memory Pareto frontier of inversion implementations
for a given binary field and CPU architecture, and has allowed us to find lower-cost implemen-
tations for commonly-used binary fields than were obtained by the ad-hoc methods [19, 14]
employed previously.

2 Itoh–Tsujii inversion
The inverse x−1 of an element x ∈ F×2m can be computed using the Itoh–Tsujii method [11] as
follows: by Lagrange’s theorem, x2

m−1 = 1, which implies that x2
m−2 = x−1. To perform this

field exponentiation efficiently, an addition chain is used.

Definition 1. A sequence 〈a1, b1〉, . . . , 〈ak, bk〉 is said to be an addition chain for p if ak = p
and {bi, ai − bi} ⊆ {aj | j ≤ i} ∪ {1}.

Given a valid addition chain 〈ai, bi〉i∈[1,k] for m − 1, the Itoh–Tsujii method iteratively
computes

x2
ai−1 = (x2

ai−bi−1)2
bi · x2

bi−1 for i = 1, . . . , k; (1)

x−1 = x2
m−2 = (x2

m−1−1)2. (2)

The two operations required by eq. (1) are the raising of the previously-computed term x2
ai−bi−1

to the power 2bi , which is called multi-squaring [19] orm-squaring [1, 5], and the multiplication of
the newly computed (x2

ai−bi−1)2
bi term by the previously computed x2

bi−1 term. Equation (2)
requires only a single squaring operation.

When using a polynomial basis [19, 9], multi-squaring to the power 2b can be performed in
one of two ways:

1. directly as a sequence of b repeated squarings;

2. using a lookup table, as described in section 4, by taking advantage of the fact that
squaring, and therefore multi-squaring to any fixed power, is linear in the binary coef-
ficients. [5, 19, 14, 2] This can be faster than b repeated squarings for sufficiently large
values of b.

Note that any addition chain 〈ai, bi〉i∈[1,k] has a complementary addition chain 〈ai, ai−bi〉i∈[1,k];
while for some purposes no distinction need be made between these two chains, in the case of
Itoh–Tsujii inversion the distinction is necessary because the two chains lead to a different
sequence of operations.

3 Optimal addition chains
Prior work has demonstrated software implementations of Itoh–Tsujii inversion with multi-
squaring tables to be highly efficient.[19, 14, 2] The cost depends critically, however, on the
choice of addition chain and multi-squaring tables. The key problem we investigated is the
optimization of the choice of addition chain and multi-squaring tables to minimize this cost, for
arbitrary binary fields F2m .

In the case that only direct squaring is used (no precomputed multi-squaring tables), Itoh–
Tsujii inversion using an addition chain of length k requires exactly k field multiplications and m
squarings. Minimizing the cost is simply a matter of finding a minimum-length addition chain
for m − 1, and does not depend on the actual cost of multiplication and squaring. (There are
typically many minimum-length chains for a given value of m.) There is no known polynomial-
time algorithm for finding minimum-length addition chains, but there are search algorithms
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based on various pruning criteria [20, 3] that are very effective in practice for reasonable values
of m.1

The use of precomputed multi-squaring tables, crucial to achieving good performance, as
shown in section 7, greatly complicates the optimization problem: because we may use either
direct squaring or table-based multi-squaring for each step of the addition chain, we must con-
sider the combined cost of the multiplications, squarings, and table lookups required; minimizing
the length of the chain only minimizes the multiplication cost, which is typically less than half
of the total cost. We must also consider that the table lookup cost is not fixed but indirectly de-
pends on the total number of multi-squaring tables used, as described in section 4. Furthermore,
we must consider not only the computational cost but also the memory use of the precomputed
tables; it may be desirable to trade off some performance for a reduced memory footprint. The
optimal solution clearly does depend on the actual costs of multiplication, squaring, and ta-
ble lookups, which depend on the CPU architecture and their particular implementation. Our
measurement of the computational costs of these operations is described in section 5.

We devised a comprehensive architecture-specific cost model based on these measurements;
we also developed an A* search procedure for efficiently optimizing this cost model, as described
in section 6. As the prior work on pruning criteria for finding minimum-length addition chains
is not directly applicable to our more complicated cost model, we defined a novel efficiently-
computable search heuristic that does not sacrifice optimality under our cost model.

4 Table-based linear field operations
Several key operations for F2m , such as squaring, multi-squaring, square root, and half-trace,
are linear in the binary coefficients. For multi-squaring (useful for inversion) and half-trace, an
implementation based on a lookup table can be significantly faster than direct computation.[5,
19, 14, 2] The coefficients are split into dm/Be blocks of B bits, and a separate table of 2B entries
is precomputed for each block position, using a total of sm,B = dm/Be · 2B · dm/W e ·W/8 bytes
of memory, where W is the word size in bits. The linear transform can then be computed from
the precomputed tables with k = dm/B · dm/W e memory accesses and k − 1 XOR operations.

Reasonable values of B range from 4 to 16, with larger values reducing the number of memory
accesses required per transform at the cost of greater memory use. Due to the nature of the
cache/memory hierarchy, however, memory access latency and throughput depend significantly
on the extent to which the target is cached; this effect can be sufficiently large to outweigh the
reduction in memory accesses required with larger values of B. To optimize table use we must
consider, therefore, the amount of cache memory expected to be available, which depends in
particular on the total size of all lookup tables required concurrently.

5 Performance evaluation
In order to measure the costs of low-level field operations (namely multiplication, squaring, and
multi-squaring), and also to evaluate field inversion implementations, we developed an optimized
implementation of binary field operations as an open-source C++ library. [12] Through the use
of C++ templates, we were able to write much of the code generically to support different
field sizes without sacrificing runtime performance; only for modular reduction was a custom
implementation required for each supported field. We incorporated existing fast x86/x86-64
polynomial multiplication, squaring, and modular reduction routines for F2163 , F2193 , F2233 ,
F2239 , F2283 , F2409 , F2571 [4] and for F2127 [14]. These fields are sufficient for implementing

1As we are primarily concerned with elliptic curve cryptography, binary field sizes of interest range from about
m = 127 to about m = 571.
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elliptic curve operations for all NIST-recommended binary elliptic curves [13] as well as several
other SEC 2-recommended binary elliptic curves [16]. F2127 is needed to implement the record-
breaking GLS254 curve [14] (based on the quadratic extension field F2254).

As our test platforms we used an Intel Westmere i7-970 3.2GHz CPU (with 12MiB L3 cache)
and an Intel Haswell i7-4790K 4.0GHz CPU (with 8MiB L3 cache). Both of these processors
support the PCLMUL instruction for carry-less multiplication, Westmere being the first Intel
architecture to support it; on the much more recent Haswell architecture, where this instruction
has significantly lower cost, alternative modular reduction routines based on it are used for F2163 ,
F2283 , and F2571 for a modest gain in performance.[4] All code was compiled separately for each
architecture using version 3.5 of the Clang compiler at the highest optimization level.

5.1 Robust timing
Wemeasured the execution time of all operations in CPU cycles, using the combination of RDTSC,
RDTSCP, and CPUID instructions recommended by Intel. [15] To improve accuracy and reduce
variance, we disabled turbo boost, frequency scaling, and hyper-threading, and ensured that a
single non-boot CPU core was used for all benchmarks on each machine. For each operation, we
estimated the benchmarking overhead and subtracted it from the measured number of cycles.
Additionally, we automatically determined a per-measurement repeat count for each operation
that ensured the benchmarking overhead was less than 10%.

The execution time was computed as the median of the cycle measurements; the number
of cycle measurements for each operation from which the median was computed was at least
1000 and chosen automatically to ensure a sufficiently small 99% confidence interval on the
median estimate (less than the larger of 1/1000 of the estimated median or 1/10 of a cycle). For
consistency, we ensured warm-cache conditions for all estimates by discarding the first 2000
measurements.

5.2 Multiplication and squaring performance
We initially measured the execution times of field multiplication and squaring individually, but
found that for small-degree fields, the measurements did not coincide with timings of sequences
of repeated squarings and multiplications, as are required by field inversion. Attributing this
discrepancy to compiler instruction reordering and pipelined and out-of-order execution by the
CPU, we jointly estimated the cost of multiplication and squaring using linear regression on
execution time measurements of b repeated squarings followed by a single multiply, for b ∈ [1, 10],
and used these estimates instead of the direct measurements for the field inversion cost model.
The actual measurements and estimates are shown in table 1.

5.3 Table-based operation performance
Since table-based multi-squaring, and field inversion routines based on it, induce data-dependent
memory accesses, we measured the aggregate execution time for a set of inputs guaranteed to
induce a uniform memory access pattern (and then divided by the number of inputs), in order to
obtain worst-case warm-cache estimates. Failure to do so would result in a large underestimate
of execution time due to caching.

We also observed the performance characteristics of table operations to be significantly af-
fected by the size of the virtual memory pages backing the tables; in particular, on the x86-64
test machines, both the base level performance and the scaling of execution times with increas-
ing table size were significantly better with 2MiB (huge) pages than with 4KiB pages, as shown
in fig. 1, due to the cost of translation lookaside buffer (TLB) misses. The Linux transparent
huge page support (introduced in Linux version 2.6.38) results in some, but not all, memory
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Table 1: Multiplication and squaring performance for F2m . Performance was measured indepen-
dently (ind.) for each operation, and also estimated jointly by linear regression from measurements
of repeated squarings followed by a single multiply.

Westmere cycles Haswell cycles

Multiply Square Multiply Square
Field Ind./Joint Ind./Joint Ind./Joint Ind./Joint

F2127 34 / 45 6 / 11 12 / 23 4 / 9
F2163 83 / 83 29 / 33 36 / 46 17 / 26
F2193 108/ 113 22 / 25 41 / 45 16 / 22
F2233 108/ 114 24 / 29 41 / 45 18 / 26
F2239 120/ 123 39 / 33 55 / 54 30 / 33
F2283 152/ 149 36 / 37 56 / 59 24 / 30
F2409 276/ 272 36 / 35 97 / 96 29 / 32
F2571 418/ 426 67 / 66 152/ 175 41 / 41

regions being backed automatically by huge pages, depending on a number of factors including
region alignment and physical memory fragmentation; when not taken into account, this signif-
icantly reduced the reliability of our performance measurements. For consistent performance,
we therefore ensured that all lookup tables were backed by huge pages.

We estimated the cost of table-based multi-squaring for each block sizeB ∈ {4, 6, 8, 10, 12, 16}
and for varying values n ∈ [1, 6] of the number of concurrent lookup tables in use by timing
n successive table-based linear transforms (using n separate tables), and then dividing by n.
Pareto-optimal points with respect to execution time and memory use are shown in fig. 2. Our
implementation used a word size of W = 128 bits.

6 A* search procedure
Recall that in order to invert an element x ∈ F2m , Itoh–Tsujii inversion requires an addition
chain 〈a1, b1〉, . . . , 〈ak, bk〉 where {bi, ai − bi} ⊆ {aj | j ≤ i} ∪ {1}, and ak = m− 1. We modeled
the cost based on the following assumptions:

1. Each step of the addition chain incurs a fixed cost of cmul for the required multiplication.

2. There is a cost of bi · csq for each direct multi-squaring to the power 2bi .

3. If table-based multi-squaring is used in place of direct multi-squaring, there is a cost τB,n
that depends on the table block size B and the number of distinct multi-squaring tables
n = |T | (where T is the set of distinct values bi for which a multi-squaring table is used).

We impose the minor restriction that the same block size B is used for all multi-squaring
tables. In addition to the computational costs cmul, csq, and τB,n, we assume that there is a
non-decreasing cost cmem(s) of consuming s bytes of memory with multi-squaring tables, which
specifies a trade-off between computation time and memory use. Note that a hard memory
constraint can be obtained by defining cmem(s) to be a step function to infinity.

6.1 Search formulation
To compute an optimal addition chain for m − 1, we use as a search space the set S of valid
addition chains A = 〈ai, bi, oi〉i∈[1,k] summing to values ak ≤ m − 1, where the extra variable
oi ∈ {δ, τ} specifies whether direct (δ) or table-based (τ) multi-squaring is used. The successors
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Figure 1: Effect of virtual memory page size on table-based linear field operation (i.e. multi-square)
performance, for varying values of n, the total number of lookup tables used concurrently. Results
are shown for a fixed block size of B = 8 bits. The lighter-color bar extensions show the overhead
introduced by the use of 4KiB pages, as discussed in section 5.3.

of a state are the valid extensions of that addition chain. Without loss of generality, we consider
only addition chains in which a1, . . . , ak are monotonically increasing.

Given an addition chain A = 〈ai, bi, oi〉i∈[1,k], let Tj(A) := {bi | i ∈ [1, j], oi = τ} be the set
of distinct multi-squaring tables used by the first j steps of the chain, and let Uoj (A) := {i |
i ∈ [1, j], oi = o} for o = τ and o = δ be the subsets of the first j steps for which table-based
and direct multi-squaring are used, respectively. Restating our cost model formally, the cost of
the j-step prefix A1...j of the chain A, depending on n = |Tj(A)|, is given by

cost(A1...j) := costn(A1...j)

:= j · cmul + cmem(n · sm,B) + |Uτj (A)| · τB,n +
∑

i∈Uδj (A)

bi · csq.

Recall that sm,B is the size in bytes of a single multi-squaring table with block size B, defined
in section 4. Note that the effective marginal cost ck of the last action 〈ak, bk, ok〉 is given by

ck := cost(A1...k)− cost(A1...k−1)

= cmul +


bk · csq if ok = δ;
τB,|Tk| if ok = τ and Tk = Tk−1;
τB,|Tk| + cmem(|Tk| · sm,B)− cmem(|Tk−1| · sm,B)

+(τB,|Tk| − τB,|Tk−1|) · |Uτk−1| if |Tk| = |Tk−1|+ 1.

Table-based multi-squaring to the power 2ai is never advantageous relative to direct multi-
squaring if bi · csq ≤ τB,|T |, and therefore we exclude such sub-optimal cases from the search
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Figure 2: Table-based linear field operation (i.e. multi-square) time/memory Pareto frontiers for
varying values of n, the total number of lookup tables used concurrently. Different choices of block
size B lead to different trade-offs between CPU cycles per linear transform, shown on the vertical
axis, and total memory required by n tables, shown on the horizontal axis. 2MiB (huge) pages were
used in all cases. No Pareto-optimal points with block size B = 16 were found.

space. Furthermore, in an optimal addition chain, if a multi-squaring table for the power 2bi

is used at one step of the chain, i.e. oi = τ , then it must be the case that csq · bi > τB,|T |, and
thus there is no advantage in using direct multi-squaring for the same power at another step;
therefore we also exclude this case from the search space.

6.2 Search algorithm
While the search space S is acyclic as defined, we can consider two equal-length addition chains
A = 〈ai, bi, oi〉i∈[1,k] and A′ = 〈a′i, b′i, o′i〉i∈[1,k] to be equivalent if the following conditions hold:

{ai | i ∈ [1, k]} = {a′i | i ∈ [1, k]},
{(bi, oi) | i ∈ [1, k]} = {(b′i, o′i) | i ∈ [1, k]},

|Uτk (A)| = |Uτk (A′)|.

We use A* graph search over the quotient set2 of equivalence classes of S (each represented by
the triplet 〈{ai}, {(bi, oi)}, |Uτk |〉) to find an optimal path;3 note that we still unambiguously
specify paths through the quotient set as full addition chains 〈a1, b1, o1〉, . . . , 〈ak, bk, ok〉. The
initial state 〈∅,∅, 0〉 corresponds to an empty addition chain.

2It is straightforward to verify that this equivalence relation respects all search operations.
3Concretely, we do not expand a state during the search if we have already expanded an equivalent state.
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Each search state is implicitly associated with a multi-squaring table block size B which is
fixed after the initial state. The search priority queue is seeded with a separate initial state for
each possible block size B.

For any given addition chain A = 〈ai, bi, oi〉i∈[1,k] ∈ S, A* search requires a heuristic lower
bound h(A) on the cost to reach the goal. We specify this based on a relaxation of the problem:

Definition 2. A sequence 〈ai, bi, oi〉i∈[1,k] is said to be a relaxed addition chain for p if

1. ak ≥ p, in place of the requirement that ak = p;

2. max{bi, ai−bi} ≤ max ({aj | j < i} ∪ {1}) for all i ∈ [1, k], in place of the requirement that
{bi, ai − bi} ⊆ {aj | j < i} ∪ {1}.

Definition 3. Let Rp(A) to be the set of relaxed addition chains 〈a1, b1, o1〉, . . . , 〈ak, bk, ok〉, . . . ,
〈ak′ , bk′ , ok′〉 for p that extend A = 〈ai, bi, oi〉i∈[1,k]. We define the heuristic

h(A) := min
A′∈Rm−1(A)

cost(A′)− cost(A)

to be the minimum additional cost of a relaxed addition chain for m− 1 that extends A.

Since h(A) is defined as the additional cost of the optimal solution to a relaxation of the
problem, it is necessarily a consistent heuristic. This justifies our use of A* graph search rather
than tree search.[17, p. 95]

6.3 Derivation of heuristic cost h(A)

The following lemma shows that we need only consider a restricted subset of Rm−1(A) to
compute the heuristic cost h(A).

Definition 4. Define R′p(A) to be the set of relaxed addition chains A′ = 〈ai, bi, oi〉i∈[1,k′] ∈
Rp(A) that satisfy the following conditions:

∀i ∈ [k + 1, k′] : ai = bi + ai−1; (3)

∀i ∈ [k + 1, k′] : oi = τ =⇒ bi =

{
maxTi−1 if Ti = Ti−1,
ai−1 if Ti 6= Ti−1;

(4)

∀i ∈ [k + 2, k′] : oi−1 = τ ∧ Ti−1 6= Tk =⇒ oi = τ . (5)

Lemma 1. minA′∈Rp(A) cost(A
′) = minA′∈R′p(A) cost(A

′).

Proof. Given any relaxed addition chain A′ ∈ Rp(A), for each successive value of i for which
either eq. (3) or (4) is not satisfied, we can simply set bi and then ai as required by the equa-
tions without changing the cost or invalidating the relaxed addition chain requirements. We
can, therefore, uniquely represent any A′ ∈ Rp(A) satisfying eqs. (3) and (4) by a sequence
ck+1, . . . , ck′ of values from the set [1,m] ∪ {τ , τ ′} where

ci =


bi if oi = δ;
τ if oi = τ and bi = maxTi−1;
τ ′ otherwise.

Suppose that eqs. (3) and (4) hold for A′ but eq. (5) is violated. Let i∗ be the first value
for which eq. (5) does not hold, i.e. oi∗−1 = τ and Ti∗−1 6= Tk but oi∗ = δ. Let j = max{i ∈
[k + 1, i∗ − 1] |Tk = Ti}. It follows from eq. (4) and from the assumption of eq. (5) holding for
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i ∈ [k + 2, i∗ − 1] that cj+1 = τ ′ and {cj′ | j′ ∈ [j + 2, i∗ − 1]} ⊆ {τ, τ ′}. Define the modified
relaxed addition chain A′′ by the sequence

ck+1, . . . , cj ,min(bi∗ , aj), cj+1, . . . , ci∗−1, ci∗+1, . . . , ck′ .

Note that A′′ is a valid relaxed addition chain that satisfies eqs. (3) and (4) and has one fewer
violation of eq. (5) than A′. Since bi∗ ≤ ai∗−1, the modified chain A′′ reaches a final value at
least as high as A′. Furthermore, cost(A′′) ≤ cost(A′). We can therefore repeatedly apply this
procedure in order to satisfy eq. (5).

Given A′ = 〈ai, bi, oi〉i∈[1,k′] ∈ R′m−1(A), let w = max{i ∈ [k, k′] |Tk = Tk′} be the maximum
value reached in A′ without the use of any additional multi-squaring tables. For fixed values
w and n = |Tk′(A′)|, lemma 1 implies we can compute the minimum cost of a relaxed addition
chain extension as the sum of two independent terms:

1. h1w,n(A), the minimum additional costn value of a relaxed addition chain extension A′′ ∈
R′w(A) for w that uses no additional multi-square tables;

2. h2w,n(A), the cost of a minimum-length relaxed addition sequence that reaches m − 1
starting from w using only additional multi-squaring tables. Note that since we have fixed
n, the cost depends only on the length of the sequence.

To derive h1w,n(A), note that to reach a value ≥ w with no additional multi-squaring tables,
we can either use direct multi-squaring exclusively, with a cost of

gδ(w, ak) := dlog2 w/ake · cmul + (w − ak) · csq,

or for non-empty Tk(A), repeatedly use the largest table maxTk(A) except for a possible last
step of direct multi-squaring, with a cost of

gτ (w, n, ak, t) := u · (τB,n + cmul) + 1r>0 · (cmul +min(τB,n, r · csq)) ,

where u = b(w − ak)/tc, r = w mod t, and t = maxTk(A). Since we restrict the search space
such that t · csq > τB,n for all t ∈ Tk, the latter cost is necessarily lower whenever Tk(A) is
non-empty, and hence:

h1w,n(A) := costn(A)− cost(A) +

{
gτ (w, n, ak,maxTk(A)) if Tk 6= ∅;
gδ(w, ak) otherwise.

Note that costn(A)− cost(A) = cmem(n · sm,B)− cmem(|Tk| · sm,B) + |Uτk | · (τB,n − τB,|Tk|).
To derive h2w,n(A), note that by lemma 1, we need only consider sequences of the form

〈2w,w, τ〉, . . . , 〈q1w,w, τ〉,
〈2q1w, q1w, τ〉, . . . , 〈q1q2w, q1w, τ〉,

〈2q1q2w, q1q2a2, τ〉, . . . ,
〈
w
∏`
i=1 qi, w

∏`
i=1 qi, τ

〉
,

where ` = n− |Tk(A)|, with q1 − 1 steps using a table for w, q2 − 1 steps using a table for q1w,
up to q` − 1 steps using a table for w

∏`−1
i=1 qi. The final value reached is w

∏`
i=1 qi. The total

number of steps is
∑`
i=1(qi−1), with each step costing cmul+ τB,n. For a given number of steps

(and cost), the final value is maximized if min`i=1 qi ≥ max`i=1 qi − 1. Hence,

h2w,n(A) = (cmul + τB,n) · g2(w,m− 1, n− |Tk(A)|),

where g2(w, p, `) = min
{∑`

i=1(qi − 1)
∣∣∣ q ∈ Z`≥2 ∧ w

∏`
i=1 qi ≥ p

}
.
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The final heuristic value h(A) is equal to minw,n h
1
w,n(A) + h2w,n(A). Note that h1w,n(A)

is monotonically non-decreasing with w and n, and h2w,n(A) is monotonically non-increasing
with w. The heuristic cost h(A) depends only ak, |Tk|, |Uτk |, and maxTk, which respects the
equivalence relation on addition chains that we defined.

6.4 Efficient computation of h(A)
We can compute h(A) more efficiently using some precomputation. For the fixed value p = m−1
and each value of ` ∈ [0, dlog2 pe], we precompute a minimal set of pairs

Gp0 := {〈p, 0〉};

Gp` :=

{
〈w, g2(w, p, `)〉

∣∣∣∣∣w = argmin
w′∈[1,p]

g2(w
′, p, `)

}
.

Then to compute h(A), for n ∈ [|Tk|, |Tk|+ dlog2 p/ake], we compute

min
〈w,x〉∈Gp

n−|Tk|

(τB,n + cmul) · x+ h1w,n(A).

We maintain the lowest total cost α found for the current and previous values of n. We iterate
over pairs 〈w, x〉 in order of increasing w and h1w,n(A) (and decreasing x), pruning the initial
sequence of pairs containing all but the highest value of w ≤ ak, and all values x ≥ α−costn(A)+
cost(A). We stop iterating over 〈w, x〉 pairs once h1w,n(A) ≥ α.

Because h(A) depends on only part of the state information, namely ak, |Tk|, |Uτk |, and
maxTk, the computational cost of computing the heuristic can be reduced significantly through
memoization.

7 Inversion performance evaluation
We implemented the A* search procedure in Python and computed optimal Itoh–Tsujii inversion
addition chains (for each binary field) for the Intel Westmere and Intel Haswell test platforms,
estimating csq, cmul, and τB,n separately for each platform as described in section 5. We varied
cmem in order to obtain all Pareto-optimal solutions (with respect to memory use and the model-
predicted computational cost). We used a simple program to generate the C++ inversion code
and appropriate multi-squaring tables for each addition chain computed by the search procedure,
in order to evaluate the performance. The results are shown in fig. 3.

In addition to using the full cost model (referred to as the variable table cost (VT) model in
the result figures and tables), we also computed optimal addition chains (using the same search
algorithm) under several restricted models in order to evaluate the utility of each component of
our model:

1. A table-free (TF) model in which τB,n =∞, such that only direct multi-squaring is used,
and the search is reduced to merely finding a minimum-length addition chain. A table-free
implementation, as used by Bluhm and Gueron [4], has the advantage of being constant
time with respect to the input, which is necessary for the security of some applications
though is often unnecessary in the hashing setting.

2. A minimum-length (ML) model in which table-based multi-squaring is used but not ac-
counted for by the addition chain search. As in the table-free case, the search is reduced
to merely finding a minimum-length addition chain, but multi-squaring tables are used for
any value bi in the chain for which csq · bi > τ, for some threshold τ. Choosing τ = τB,1
roughly corresponds to the approach taken by prior work [14, 19] using multi-squaring
tables.

10
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Figure 3: Inversion time/memory Pareto frontiers, showing the trade-off between memory use and
CPU cycles per field inversion. All Pareto-optimal points obtained by varying cmem and jointly
optimizing over both the addition chain and the multi-square table block size B are shown; the
corresponding block size for each point is indicated by the marker. The execution times predicted
by the full variable table cost model are shown with dashed lines in lighter shades. The points on
the left with zero memory use correspond to table-free (TF) addition chains. No Pareto-optimal
points using a block size B ∈ {10, 12, 16} were found.

3. A single table cost (ST) model in which we fix τB,n = τB,1, the cost of table-based multi-
squaring estimated from a single-table benchmark.

Detailed results are given in appendix A.

8 Discussion
Reliable fine-grained performance measurement can be challenging due to compiler instruction
reordering and optimization, processor branch prediction and out-of-order execution, and oper-
ating system jitter, among other factors, and these effects are magnified in our estimation of the
cost of field inversion implementations as the sum of the costs of many individual operations. By
carefully controlling for other sources of variance, including virtual page table size, the number
of concurrent tables, and operation-specific benchmarking overhead, our cost model achieved a
very low median error rate of 1.50% (fig. 4) in spite of these challenges.

Our A* search procedure proved to be highly effective in computing optimal addition chains
for any desired performance/memory tradeoff. Even with an unoptimized Python search imple-
mentation, our relaxation-based heuristic made the computation of complete Pareto frontiers
(requiring many independent searches) take only a few CPU minutes (appendix B), a negli-
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Figure 4: Field inversion cost model relative errors (box plot). The error was calculated as the
absolute value of the difference of the predicted cost and the measured cost, divided by the measured
cost. The results were aggregated over all distinct optimal addition chains for all multi-square block
sizes B and all values of cmem. The overall median relative error was 1.50%.

gible amount of precomputation time for most elliptic curve cryptographic applications. In
comparison, without a heuristic the search is completely intractable even for small field degrees.

The accuracy of our cost model allowed our search procedure to find addition chains that
significantly reduced computational and memory costs compared to addition chains found by
the ad-hoc criteria used by prior work (appendix A). Comparisons to simplified models confirm
the utility of our full model: performance is improved by accounting for the cost of table-based
multi-squaring in the addition chain optimization, and the performance is further improved by
modeling the dependence of this cost on the number of concurrent multi-squaring tables in use.
Compared to choosing the best possible set of multi-square tables for a fixed minimum-length
addition chain, the joint model-based optimization over both addition chain and multi-square
tables performed by our search procedure results in significantly better performance.

We imposed several limitations on our model, in the interest of keeping the complexity of the
cost model and search procedure manageable: (a) inversion implementations are restricted to
using a single block size B for all multi-squaring tables; and (b) other methods of multi-squaring
are not considered, such as using a combination of one or more lookup tables and direct squaring.
We expect, however, that any improvement in performance or memory use from lifting these
restrictions would be small.

The use of multi-squaring tables introduces susceptibility to side channel attacks. However,
blinding can be used to effectively prevent any information leak from memory access patterns,
at the cost of just two additional field multiplications (and m random bits).

In the case that multiple independent field inversions must be computed, a speedup or-
thogonal to our investigation of optimal addition chains is also possible. Using Montgomery’s
trick, n independent elements can be inverted simultaneously at the cost of just 1 field inversion
and 3(n − 1) field multiplications. [18] Unless the batch size n is very large, however, it is still
advantageous to reduce the cost of the single inversion required.

Alternative inversion methods exist, but are less efficient for software implementations on
modern CPUs. Itoh–Tsujii inversion was originally proposed for use with a normal basis rather
than polynomial basis representation of field elements. Under a normal basis {β2i | i ∈ [0,m−1]},
multi-squaring is just a cyclic shift, with negligible computational cost. However, software-

12



implemented multiplication is typically much slower with a normal basis than with a polynomial
basis,[10, p. 72] and in practice this outweighs the speedup of multi-squaring. Inversion can also
be performed using the Extended Euclidean Algorithm, but due to the large number of branching
operations and shifts by arbitrary numbers of bits required, the performance is not competitive
with polynomial basis Itoh–Tsujii inversion on modern CPU architectures. [19]
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A Cost model comparison
For a fixed block size of B = 8 and a fixed cost cmem = 0, the addition chains that resulted from
each of the four cost model variants are compared in table 2. The optimal addition chains and
multi-square table sets under each cost model for each CPU architecture are shown, along with
the measured execution time, and the execution time predicted by our complete cost model.4

Relative to the table-free implementation, the use of multi-square tables with the same
addition chain (the minimum-length model) provides a large improvement, reducing the com-
putational cost by a factor of 2–4. Optimizing the addition chain as well, using the single table

4The predicted execution times shown are based on the complete cost model in all cases, even for entries corre-
sponding to addition chosen computed based on one of the restricted models.
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cost model, provided on average an additional moderate reduction in cost. The full variable
table cost model further reduced the computational cost for some of the fields. While in some
cases, such as for F2409 , the same addition chain was optimal under multiple cost models, the
full model never resulted in worse performance.

To compare the cost models under broader conditions, we generated inversion implementa-
tions using the same minimum length (ML) addition chains shown in table 2 for each possible
threshold τ and block size B. We measured the performance of each implementation, and com-
puted an empirical time/memory Pareto frontier. We compared this to the actual performance
along the Pareto frontier obtained based on the estimated costs of optimal points under our
complete model. The results are shown in fig. 5. Averaging over all Pareto-optimal minimum
length implementations (and both the Westmere and Haswell CPU architectures), the optimal
addition chains under our cost model required 15.3% less memory at the same performance level,
or 6.7% less computation time at the same level of memory use. Using the minimum length cri-
teria alone to select the addition chain essentially leaves the performance up to chance: different
minimum-length addition chains, when used with multi-squaring tables, can have very different
computational cost.

B Search efficiency
Run times and other statistics for the search procedure itself, summed over all of the independent
searches required to compute the time/memory Pareto frontiers for each field degree, are given
in table 3. The run times measure the single-core CPU time of our Python implementation run
on the Westmere test machine, which was used for all searches. As our focus was on algorithmic
efficiency rather than low-level optimization of the search procedure, the reported run times
should be seen only as a general guide. Even for a fixed field degree, the number of search states
expanded, and therefore the run time, is highly dependent on the particular ratios of csq, τB,n,
and cmem to cmul.

Given that a shortest path search over addition chains without the use of a heuristic would
be completely intractable, it is clear from the run times and numbers of states expanded that
our relaxed addition chain heuristic is highly effective. The large ratio of total heuristic calls to
unique tuples 〈ak, |Tk|, |Uτk |,maxTk〉 demonstrates the utility of memoizing heuristic values.
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Table 2: F2m inversion addition chain cost model comparison. The optimal addition chains com-
puted for the Intel Westmere (W) and Intel Haswell (H) machines under the table-free (TF), min-
imum length (ML), single table cost (ST), and the full variable table cost (VT) models are shown,
along with the associated actual execution time in CPU cycles and predicted execution time (pre-
dict.) under the full variable table cost model. A fixed block size of B = 8 and cmem = 0 were
used. The addition chains were optimized independently for each test machine and cost model, but
in some cases the same optimal chain was found for multiple machines/cost models.

Westmere Haswell
Model Addition chain (bi) Tables Actual/Predict. Actual/Predict.

F 2
1
2
7

TF 1 1 1 3 7 7 21 21 63 – 1761 / 1848 1397 / 1460
ML 1 1 1 3 7 7 21 21 63 7 21 63 721 / 774 515 / 490
ST 1 1 2 5 1 11 21 21 63 5 11 21 63 726 / 783 485 / 495
VT 1 2 2 4 1 11 21 21 63 11 21 63 701 / 764 465 / 489

F 2
1
6
3 TF 1 1 2 5 10 20 1 40 81 – 6102 / 6160 4742 / 4732

ML/ST/VT(H) 1 1 2 5 10 20 1 40 81 5 10 20 40 81 1853 / 1920 1206 / 1111
VT(W) 1 2 2 4 10 20 1 41 81 10 20 41 81 1808 / 1890

F 2
1
9
3 TF 1 1 3 6 12 24 48 96 – 5996 / 5875 4673 / 4595

ML/ST 1 1 3 6 12 24 48 96 6 12 24 48 96 2091 / 2105 1231 / 1291
VT 1 2 4 4 12 24 48 96 12 24 48 96 2018 / 2044 1190 / 1258

F 2
2
3
3

TF 1 1 1 3 4 7 11 29 58 116 – 8127 / 8071 6598 / 6696
ML 1 1 1 3 4 7 11 29 58 116 7 11 29 58 116 2682 / 2744 1611 / 1681
ST 1 1 1 3 7 1 15 29 58 116 7 15 29 58 116 2578 / 2654 1515 / 1601
VT 1 1 3 2 6 1 15 29 58 116 15 29 58 116 2524 / 2584 1506 / 1600

F 2
2
3
9 TF 1 1 1 3 7 14 28 7 56 119 – 9382 / 9271 8741 / 8402

ML/ST/VT(H) 1 1 1 3 7 14 28 7 56 119 7 14 28 56 119 2912 / 3006 1783 / 1937
VT(W) 1 1 3 2 6 14 28 56 14 126 14 28 56 126 2885 / 2977

F 2
2
8
3

TF 1 1 1 3 3 7 17 34 68 10 136 – 12071 / 12090 9174 / 9101
ML(W) 1 1 1 3 3 7 17 34 68 10 136 17 34 68 136 4452 / 4540
ML(H) 1 1 1 3 3 7 17 34 68 10 136 10 17 34 68 136 2648 / 2650
ST/VT 1 2 4 1 8 1 18 35 1 71 141 18 35 71 141 4145 / 4244 2317 / 2398

F 2
4
0
9 TF 1 1 3 6 12 3 24 51 102 204 – 16993 / 17210 14375 / 14373

ML/ST/VT 1 1 3 6 12 3 24 51 102 204 24 51 102 204 6676 / 6666 3631 / 3664

F 2
5
7
1 TF 1 1 1 3 4 11 22 7 44 95 95 285 – 44828 / 43235 26063 / 25492

ML 1 1 1 3 4 11 22 7 44 95 95 285 22 44 95 285 14568 / 13469 7301 / 7212
ST/VT 1 1 2 2 7 7 14 35 70 5 145 285 35 70 145 285 13646 / 12922 6962 / 6883
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Table 3: A* search performance for Pareto frontier computation. For each field and block size
B, a set of Pareto-optimal addition chains were computed using several independent searches with
successively lower memory bounds. An optimal table-free addition chain was also computed for
each field. The total number (#) of searches performed, the total time required by all searches,
the number of search states expanded (successors computed), and the number of heuristic calls are
shown. Due to the use of memoization, the heuristic was only computed once (per search) for each
unique tuple 〈ak, |Tk|, |U τk |,maxTk〉, as described in section 6.4.

Westmere model Haswell model

Time States Heuristic calls Time States Heuristic calls
Field # (s) expanded Total /Uniq. # (s) expanded Total /Uniq.

F2127 11 1.04 4 881 48 144/ 3 518 15 1.21 5 805 56 196/ 4 200
F2163 20 0.56 2 640 25 285/ 4 872 21 0.51 2 317 22 456/ 5 015
F2193 19 0.10 598 3 803/ 1 311 19 0.12 691 4 774/ 1 520
F2233 19 2.09 8 877 98 210/ 9 067 18 8.48 25 895 408 592/10 143
F2239 19 51.35 161 499 2 401 801/55 121 19 83.85 227 070 3 871 342/48 086
F2283 18 13.10 51 094 588 551/24 589 17 9.39 36 464 425 197/13 807
F2409 15 0.58 2 883 24 642/ 2 932 15 1.24 5 301 55 089/ 5 204
F2571 16 115.97 352 675 4 861 047/57 307 16 157.53 471 921 6 478 492/51 543
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