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ABSTRACT
Bitcoin is the first decentralized crypto-currency that is cur-
rently by far the most popular one in use. The bitcoin trans-
action syntax is expressive enough to setup digital contracts
whose fund transfer can be enforced automatically.

In this paper, we design protocols for the bitcoin voting
problem, in which there are n voters, each of which wishes
to fund exactly one of two candidates A and B. The win-
ning candidate is determined by majority voting, while the
privacy of individual vote is preserved. Moreover, the de-
cision is irrevocable in the sense that once the outcome is
revealed, the winning candidate is guaranteed to have the
funding from all n voters.

As in previous works, each voter is incentivized to follow
the protocol by being required to put a deposit in the sys-
tem, which will be used as compensation if he deviates from
the protocol. Our solution is similar to previous protocols
used for lottery, but needs an additional phase to distribute
secret random numbers via zero-knowledge-proofs. More-
over, we have resolved a security issue in previous protocols
that could prevent compensation from being paid.

1. INTRODUCTION
Private e-voting is a special case of secure multi-party

(MPC) computation [13] which allows a group of people to
jointly make a decision such that individual opinion can be
kept private. Researchers have worked on designing voting
protocols that do not rely on trusted third parties, while
still provide, among other features, anonymity and verifia-
bility [26].

However, the MPC framework can only guarantee that
the outcome is received by everyone, whose privacy is also
protected. However, when the decision is financially related,
it is not obvious how to ensure that the outcome is respected.
For instance, a dishonest party may simply run away with
his money.

Bitcoin [23] provides new tools for tackling this problem.
Although it was originally intended for money transfer, sur-
prisingly it can also be used to enforce a contract such that
money transfer is guaranteed once the outcome is known,
without the need of a trusted third party.

Developing protocols based on bitcoin has been consid-
ered by many researchers. For instance, a lottery proto-
col [7] using bitcoin was proposed, in which a group of gam-
blers transfer all their money to a randomly selected user
among them. General secure multi-party computation pro-
tocols [11, 20] were considered, in which bitcoin provides a
way to penalize dishonest users.
Our Problem. We study the bitcoin voting problem. There
are n voters P1, P2, . . . , Pn, each of which wishes to fund ex-

∗The University of Hong Kong

actly one of two candidates A and B with 1B1. The winning
candidate is determined by majority voting (assuming n is
odd) and receives the total prize nB. The voting protocol
should satisfy the following basic properties:
• Privacy and Verifiability. Only the number of votes

received by each candidate is known, while individual
votes are kept private. However, each voter can still
prove that he follows the protocol. For instance, no
voter can vote for the same candidate twice.
• Irrevocability. Once the final outcome of the voting is

revealed, the winner is guaranteed to receive the total
sum nB. No voter can withdraw his funding even if
the candidate he voted for does not win.

In order to incentivize voters to follow the protocol, each
voter needs to put extra bitcoins in the system as deposit,
which will be refunded if he follows the protocol, but will
be used as compensation (for other voters and/or the can-
didates) if he deviates from the protocol. The candidates A
and B also need to participate in the bitcoin system such
that the winner can collect the prize, but each of them just
needs a bitcoin address without the need to own bitcoins
initially.

1.1 Our Contributions
In this paper, we design protocols for the bitcoin voting

problem described above. The design of our protocols have
similar aspects with the lottery protocols [7, 11], in which
each party generate a random integer Ri (mod n), and the
winner is simply

∑
iRi (mod n) (whose distribution is uni-

form, as long as at least one party generate his randomness
correctly). In the voting problem, each voter Pi has a pri-
vate vote Oi ∈ {0, 1} (where 0 means candidate A and 1
means B), and the sum

∑
iOi reveals the winning candi-

date. However, we cannot directly use the lottery protocols
to reveal the sum of votes, because the random integer Ri
will be finally revealed to everyone. In the voting problem,
we wish to protect the privacy of individual voters. Our first
contribution is to design a protocol for the voters to commit
to their masked votes.
Vote Commitment. This part of the protocol does not
use the bitcoin network. On a high level, the n voters par-
ticipate in a distributed protocol (without a trusted third
party) to generate n random numbers Ri’s summing to 0
(mod N , for some large enough N > n) such that for each i,
Ri is known only by voter Pi, who commits to both Ri and

the masked vote Ôi := Oi +Ri. Zero-knowledge-proofs [10]
are used to guarantee that each voter follows the protocol

without revealing Ri and Ôi. In particular, each Pi proves

to everyone that Ôi −Ri ∈ {0, 1} to prevent double voting.
The protocol ensures that as long as at least one voter gen-

1We use the latex code from [6] to generate the bitcoin sym-
bol B.



erates his randomness properly, the Ri’s will be uniformly
random numbers summing to 0. Hence, revealing all the

voters’ masked votes Ôi can determine the number of votes
for each candidate without compromising the privacy of in-
dividual voters.

The next part of the protocol utilizes the existing bitcoin

system for the voters to reveal their Ôi’s. Moreover, the
bitcoin system also guarantees that the winner can receive
the prize and any voter that does not reveal his masked vote
is penalized.
Vote Casting. In Section 3.2, as a warm up, we use the
claim-or-refund technique as in [11] to design a protocol in
which the voters reveal their masked votes sequentially in
the order P1, P2, . . . , Pn. If every voter reveals his masked
vote, the winner is determined, and can collect his prize.
Moreover, the first voter that does not reveal his masked
vote before some specified deadline will cause the protocol
to be terminated, but needs to pay a compensation to each
voter that has already revealed his masked vote. However,
this protocol takes Θ(n) rounds in the bitcoin system, and
all the transactions can be described in Θ(n2) bytes.

In Section 3.3, we use the idea of a joint transaction as
in [7, 20] to let voters reveal their masked votes together.
Hence, only a constant number of bitcoin rounds are needed,
and all the transactions can be described in O(n) bytes.
Moreover, the timed-commitment technique also allows more
flexible compensation rules. For instance, if a voter Pi does
not reveal his masked vote, his deposit can be used to com-
pensate both candidates and/or all other voters.
Previous Security Issue. However, as pointed out in [7],
the way timed-commitment is used presents a serious secu-
rity flaw because the compensation is paid with a transaction
whose creation depends on the hash of a joint transaction
that has not been confirmed yet. In the protocol described
in [7], an adversarial party could create an alternate joint
transaction with a different hash by re-signing it with a dif-
ferent (valid) signature. If this alternate joint transaction is
confirmed on the blockchain instead of the original version,
the transaction used for compensation will become invalid.
Resolving Issue with Threshold Signature Scheme.
The previous issue is that the joint transaction is signed by
each voter individually, and hence any voter can produce
another joint transaction with a different hash by re-signing
with a different signature. Another major contribution of
the paper is that we resolve this issue by using a threshold
signature scheme [15] in which a valid signature can only be
produced by all n voters together. In particular, a differ-
ent signature cannot be efficiently produced for a previously
signed transaction, unless all n voters agree to re-sign it.
Hence, an adversary can no longer perform the previous at-
tack.

1.2 Related Work
Researchers have designed e-voting protocols [26, 21], which

make use of cryptographic tools. Efficiency, verifiability and
privacy are the most important concerns in such protocols.
Other features have also been considered, such as deniablil-
ity and receipt-freeness, which prevents vote-buying.

The bitcoin protocol [23] has inspired many lines of re-
search since its introduction in 2008. Some researchers have
worked on identifying the protocol’s weakness [8]. Other re-
searchers have designed new crypto-currency with more fea-
tures. For instance, zero-knowledge proofs and accumulators

have been used to improve the currency’s anonymity [22, 9].
In [9], a new system is designed such that the proof-of-work
to mine new coins is achieved by storage consumption, as
opposed to computation power in bitcoin.

Another line of research, including this paper, is to de-
sign protocols that are compatible with the existing bitcoin
system. Since bitcoin is still by far the most popular crypto-
currency, protocols that can be deployed in the current bit-
coin system have the most practical impact.

Basic functionalities can be implemented in the bitcoin
system that can serve as building blocks for more compli-
cated protocols. In [11], the claim-or-refund mechanism
is designed to enforce the promise made by party P that
that he will pay party Q a certain amount, provided that Q
(publicly) reveals a certain secret before a certain time. As
utilized in this paper, this mechanism allows a protocol in
which parties reveal their secrets sequentially such that the
first party that deviates from the protocol has to compensate
the parties that have already revealed their secrets.

In [7], the timed-commitment mechanism is designed to
enforce the promise made by party P that he will pay party
Q a certain amount, unless he (publicly) reveals a certain
secret before a certain time. In [20], the timed-commitment
mechanism is extended for multiple-parties to reveal their
secrets together. However, as mentioned in [7], their imple-
mentation of the timed-commitment mechanism has a secu-
rity issue such that an adversary could prevent the compen-
sation from being paid even when a party does not reveal
his secret before the deadline. This issue and the way we
resolve it are explained in details in Section 3.3.

In this paper, we also use zero-knowledge-proofs which,
loosely speaking, allows one party to prove the correctness
of a statement to another party, without revealing additional
information. It is known [18] that any statement that can be
represented by a boolean circuit can be proved efficiently by
zero-knowledge-proof. Moreover, zero-knowledge-proof can
be made non-interactive [24, 12, 10].

2. PRELIMINARIES

2.1 Bitcoin
Bitcoin [23] is a peer-to-peer digital currency system pro-

posed in 2008. We summarize features of bitcoin as in [7].
The system consists of transactions, which are stored in
blocks. Each peer maintains a chain of blocks known as
the blockchain. The longest chain is accepted by all peers,
which we assume to be publicly known without any delay.
The process of extending the blockchain is called mining,
which requires an enormous amount of computing power.
The miner is incentivized by receiving profit from the spe-
cial coinbase transaction.
Transaction. A bitcoin transaction consists of (possibly)
multiple inputs, outputs and an optional locktime. The trans-
action id txid is the hash of all the transaction’s contents.
Each input contains a reference to a previous transaction
in the form of its hash and index (indicating which out-
put of the previous transaction), and an input-script. Each
output contains a value (indicating the amount of bitcoin)
and an output-script. Input and output scripts are used for
validation of transactions. An output script serves as a vali-
dation program. An input-script serves as parameters (e.g.,
signature of the current transaction) for the program of the
output script in the previous transaction. The optional lock-



time specifies the earliest time at which the transaction can
be put on the blockchain. A simplified transaction is a trans-
action excluding the input script. For a transaction T , we
denote its simplified transaction by [T ].
Validation. The output of a transaction can serve as only
one input in a future transaction on the blockchain. If an
output is referred (as input) in another transaction on the
blockchain, we call it spent, otherwise we call it unspent. To
validate a transaction Tx, a miner checks that all its inputs
are unspent, and the total input value is at least the to-
tal output value. Any difference is collected by the miner
as transaction fee, after he performs intensive computation
to include the transaction on the blockchain. However, for
simplicity, we assume in this paper that all transaction fees
are zero. Then, for each input-script σ and the correspond-
ing referred output script π, the miner runs the validation
program π(σ). In the simplest case σ is a signature on
hash([Tx]), while π verifies its validity. For a detailed de-
scription of bitcoin script and its power, please refer to the
bitcoin wiki on contracts [3]. For simplicity of description,
we treat π as a function that returns boolean values {0, 1}.

When we say a user owns a bitcoin, we mean that he
knows a private key corresponding to an unspent output.
When we talk about address, we mean some (hash of a)
public key. We pay to an address by making a transaction
with an output-script requiring the corresponding private
key.
Example. We use the diagram notation from [7] to denote
bitcoin transactions. In Figure 1, there is some user A asso-
ciated with the public-private key pair (pk, sk). Transaction
X essentially transfers 5B to user A. In the output-script of
X, Verifypk(σ) means that the following transaction referring
to X needs to be verified with a signature corresponding to
the public key pk. Note that Verifypk implicitly takes an-
other input which is the hash of the following transaction
to be verified, e.g., hash([Y ]). This is done automatically
by the bitcoin script system, and hence we omit it from the
parameters.

Suppose user A wishes to use the 5B from Transaction X
and another 5B from a different source. User A creates
Transaction Y with two input transactions, each of which
contributes 5B. In order for transaction Y to be accepted
in the blockchain, in the input-script referring to Transac-
tion X, user A needs to provide a signature for Transaction
Y signing with the private key sk. The ownership of the 10B
is specified in the output-script, and the locktime t means
that this transaction cannot be placed on the blockchain be-
fore time t. If user A spends the 5B from Transaction X with
another transaction that appears on the blockchain before
time t, Transaction Y will not be accepted afterwards.

We use arrows with solid lines to indicate the normal
flow of bitcoin between transactions when parties follow the
planned protocol. We use dashed lines to indicate the flow
of bitcoin between transactions when some party deviates
from the planned protocol, in which case the transactions
could represent penalty payment.

2.2 Security Model
In this paper, we assume that the blockchain is unique

(no branching) and one block is grown at a fixed time in-
terval known as round. The only ways to interact with the
blockchain are submitting transactions and reading trans-
action histories. No one can affect the blockchain by other

Transaction X
in-script1:
...
output-script(σ):
Verifypk(σ)

value: 5B

Transaction Y
in-script1: in-script2:
Signsk([Y ]) ...
output-script: ...
value: 10B
locktime: t

5B

5B

Figure 1: Example Transactions.

“nonstandard” ways. We assume that the blockchain is al-
ways publicly accessible. However, we do not assume such
access is private. At the time a transaction is submitted,
it is publicly known. A submitted transaction may or may
not appear on the blockchain, depending on its validity. If
a transaction is valid, it will be confirmed one round later,
otherwise it will be rejected. If conflicting transactions are
submitted in the same round, only one of them will be con-
firmed. Hence, if an adversary is able to create a different
input-script for a (newly submitted) unconfirmed transac-
tion. He could submit another transaction with the modi-
fied input-script within the same round. In such case, either
transaction could appear in the final blockchain.

One major threat to the bitcoin network is caused by sig-
nature malleability [5]. It means that one (users and min-
ers) has the ability to alter a transaction’s signature in a
way such that: (1) it is still valid, and (2) the hash of the
transaction changes. Note that malleability is not a seri-
ous problem for normal users but a problem for (1) bitcoin
trading companies; and (2) designing bitcoin contracts. The
former may use hash of transactions (txid) to trace the sta-
tus of a transaction, using a computer program. Failing to
do so may result in incorrect accounting. In the design of
bitcoin transactions [7, 11], one might rely on the hash of
an unconfirmed transaction.

There are two major sources of malleability: (1) adding an
extra operator in the input-script. (2) changing the signa-
ture of a message directly. The former is a design weakness
of the original bitcoin protocol, and is being fixed by BIP
62 [25]. While the latter weakness is due to the particu-
lar signature scheme. E.g., given a valid ECDSA signature
(r, s), (r,−s) is also a valid signature. BIP 62 also fixed this
kind of malleability by having a rule to accept only one of
them. These fixes are gradually being implemented in the
bitcoin network, and will be forced with the block version 4
[1]. Hence, we assume that without the corresponding pri-
vate key, one cannot produce modify a signed transaction
with a different input-script. Note that with the correct pri-
vate key, one can always sign the message again and get a
different signature.

Another way to deal with malleability is to assume that
the hash of a transaction is calculated from its simplified
transaction only, instead of the complete signed transac-
tion. For example, [20] made this assumption. However,
they argue that their protocol can still be implemented in
the current bitcoin network by using secure multi-party com-
putation. However, as pointed out in [7], it has the weakness
that, even with BIP 62 deployed, a participant can change
the hash of a joint transaction (with multiple inputs and out-
puts) to broadcast a different version of the transaction, and
as a result, all parties might lose their coins. Such method is
not secure and should not be used. We propose new proto-



cols that are realizable on the current bitcoin network with-
out any modification. The details are in Section 3.1.

Peers (voters and candidates) need to communicate in the
protocol. We assume there exists a secure private channel
between any pair of participants. We also assume there ex-
ists a public broadcast channel among all participants.

2.3 Cryptographic Primitives
Zero-knowledge proof. We utilize the zero-knowledge
Succinct Non-interactive ARgument of Knowledge (zk-SNARKs) [10].
On a high level, it proves a statement without revealing
the corresponding witness such as “I know an x such that
sha256(x) = y”. The use of zk-SNARKs is to guarantee that
the voters cannot deviate from the protocol. We use the
definition for zk-SNARKS from [10].

Given a boolean circuit C : {0, 1}n × {0, 1}h → {0, 1},
a binary relation is defined as RC = {(x,w) ∈ {0, 1}n ×
{0, 1}h : C(x,w) = 1}, and its language is LC = {x ∈
{0, 1}n : ∃w,C(x,w) = 1}. Here, for every x ∈ LC , a witness
for x is a w such that C(x,w) = 1. Zero-knowledge proof
allows a party to convince others that he knows a secret
witness w such that C(x,w) = 1, where x is known by all
parties. Note that this is also a proof that x ∈ LC .

Informally, zk-SNARKs is a triple of (randomized) algo-
rithms (G,P, V ):
• Generator G : (1λ, C) 7→ (pk, vk). Taking as inputs

a security parameter 1λ and a boolean circuit C, it
outputs a proving key pk and a verification key vk.
Both keys are publicly known and can be used any
number of times.
• Prover P : (pk, x, w) 7→ η. Taking as inputs a proving

key pk, x ∈ LC and a corresponding witness w, it
outputs a proof η.
• Verifier V : (vk, x, η) 7→ {0, 1}. Taking as inputs a

verification key vk, x and a proof η, it outputs 1 if it
is convinced that x ∈ LC .

We informally summarize the properties satisfied by zk-
SNARKs. For the formal description, please refer to [10].
• Completeness. Given (x,w) ∈ RC , the prover P can

produce a proof η such that the verifier V accepts (x, η)
with probability 1.
• Soundness. No polynomial-time adversary can gen-

erate a proof η for x /∈ LC such that the verifier V
accepts (x, η) with non-negligible probability.
• Efficiency. The randomized algorithms G, P and V

all run in time polynomial in the sizes of their inputs
and some given security parameter.
• Zero-knowledge. There exists a (randomized) polyno-

mial simulator S, who first generates key pairs (pk, vk),
such that for any x ∈ LC chosen by a polynomial ad-
versary, S generates a proof for x. The proof (and
key pairs) generated by S is computationally indistin-
guishable from honestly generated ones.
• Proof of knowledge. There exists a polynomial-time

extractor E such that if a polynomial-time prover P̃
convinces the verifier V to accept some x ∈ LC with
non-negligible probability, then given oracle access to

P̃ , the extractor can produce a witness w such that
(x,w) ∈ RC with non-negligible probability.

Commitment Scheme. A commitment scheme [16] is a
two-party protocol between a sender and a receiver. A com-
mitment scheme consists of (randomized) algorithms Commit
and Open, and involves two phases, a committing phase and

an opening phase.
• In the committing phase, the sender commits to a se-

cret value m by generating (c, k)← Commit(m), where
c is the commitment and k is the opening key. The
commitment c is sent to the receiver, while m and k
are secret.
• In the opening phase, the sender reveals k to the re-

ceiver, who gets the original secret valuem← Open(c, k).
Open(c, k) returns ⊥, if the pair (c, k) is considered to
be invalid.

We informally summarize the properties of a commitment
scheme. Please refer to [14] and [16] for formal description.
• Correctness. An honestly generated (c, k)← Commit(m)

can always reveal the secret m← Open(c, k).
• Binding. No polynomial-time adversary can generate a

commitment c and two opening keys k and k′ such that
both (c, k) and (c, k′) are opened by Open to different
valid messages with non-negligible probability.
• Hiding. For any messages m and m′, the distributions

of the corresponding commitments c and c′ generated
by Commit are computationally indistinguishable.

Compatibility with Bitcoin Protocol. As mentioned in [7],
the current implementation of bitcoin protocol forbids some
functions in the scripting language. In particular, calcu-
lating hashes, verifying signatures and simple arithmetic
operations are the only supported operations. We follow
their method and define commitment schemes using hash
functions. Suppose λ is a publicly known security parame-
ter. To commit to a non-negative integer m, Commit(m) =
(hash(y), y), where y is a random string of length (λ + m).
Here, hash can be any hash function supported by the bitcoin
protocol; in this paper, we use sha256. Moreover, hash(y) is
the commitment and y is the opening key. Then, Open(h, y)
returns |y| − λ if h = hash(y), and ⊥ otherwise.

3. OUR PROTOCOLS
We present our protocol for bitcoin voting. Apart from a

one-time setup using zk-SNARKs [10], our protocol works
in a peer-to-peer fashion without a centralized server. The
setup is run only once, and can be used for multiple vot-
ings. Suppose N is the least power of 2 that is greater than
the number n of voters. We use ZN to denote the group
of integers modulo N equipped with modulo addition. We
choose N to be a power of 2 to simplify the implementation
of modulo arithmetic.

On a high level, our protocol consists of two components.
• Vote Commitment. In this phase, each voter Pi has

a private vote Oi ∈ {0, 1}, where 0 indicates candidate
A and 1 indicates candidate B. Each voter Pi receives
a secret random number Ri, which is constructed in a
distributed fashion such that

∑
j Rj = 0.

At the end of this phase, each voter Pi makes commit-

ment Ci to Ri, and commitment Ĉi to his masked vote

Ôi := Oi+Ri. The commitments Ci and Ĉi are broad-
cast publicly, while the underlying values and opening
keys remain secret.
Every participant convinces others that he follows the
protocol using zero-knowledge proofs. In particular,
everyone is convinced that for each i, the underlying

value of the commitment Ĉi minus that of Ci is either
0 or 1, and the sum of the underlying values of Ci over

i is 0. Hence, the sum of the underlying values of Ĉi



over i is the number of votes candidate B receives.
The details are in Section 3.1.
• Vote Casting. In this phase, the votes are cast us-

ing transactions in the bitcoin protocol, which are re-
sponsible for revealing the outcome and guarantee-
ing money transfer to the winning candidate. After

each voter Pi reveals his masked vote Ôi, the outcome∑
i Ôi (the number votes supporting candidate B) is

known, and the winning candidate is guaranteed to
receive nB.
Moreover, parties that deviate from the protocol are
penalized. We have two versions for vote casting, which
have different consequences for the penalty and the
funding outcome for the candidates when a voter de-
viates from the protocol.
(a) The first version is based on the lottery proto-

col in [11] using a claim-or-refund functionality.
The voters reveal their masked votes in the order:
P1, P2, . . . , Pn. If voter Pi is the first to deviate
from the protocol, he pays a penalty to each voter
that has already revealed his masked vote. Every-
one else gets his deposit back, and the protocol
terminates while neither candidate A nor B gets
any money.

(b) The second version is an improvement over other
protocols [7, 20] using joint transaction to incen-
tivize fair computation via the bitcoin system.
Each voter Pi places (1+d)B into the bitcoin sys-
tem, where 1B is for paying the winning candidate
and dB is for deposit. If a voter reveals his masked

vote Ôi, he can get back the deposit dB. For each
voter that does not reveal his masked vote within
some time period, his deposit dB will be used as
compensation. For instance, with d = 2n, the
deposit can be shared between the candidates A
and B. Observe that if at least one voter does not
reveal his masked vote, the nB for the supposedly
winning candidate will be locked into the bitcoin
system.

The details for the two versions are in Sections 3.2
and 3.3.

3.1 Vote Commitment
Recall that we wish to uniformly generate random num-

bers Ri’s that sum to 0 such that for each i, only voter Pi
receives Ri. Moreover, the commitments to Ri and Ôi =
(Ri + Oi) are public. We first give a high level idea of the
procedure.

We imagine that there is an n×nmatrix [rij ] whose entries
contain elements from ZN . The protocol can be described
in terms of the matrix as follows.

1. For each i, voter Pi generates the i-th row whose sum∑
j rij is zero. This can be done by generating n −

1 random numbers in Zn and setting the last one to
be the additive inverse of the sum of the first n − 1
numbers.

2. For each i and j, voter Pi sends the number rij to Pj
via the secret channel.

3. For each i, voter Pi knows the i-th column of the ma-
trix. Hence, he computes and commits both Ri :=∑
j rji and the masked vote Ôi := Oi +Ri.

This idea is standard in the literature (for instance, used

recently in [19][Section IV.A]). The twist here is that com-
mitment schemes and zero-knowledge proofs are used to en-
sure that every party follows the protocol, while maintaining
the secrecy of the random numbers. The details are given
in Figure 2.

Vote Commitment Protocol

This protocol runs among n voters, where for i ∈ [n],
party Pi has secret vote Oi ∈ {0, 1}. We assume the
proving and verification keys for zk-SNARKs are al-
ready generated and distributed to all voters. For each
i ∈ [n], the procedure for Pi is as follows.

1. Generate n secret random numbers rij ∈ ZN , for
j ∈ [n], such that they sum to 0.

For j ∈ [n], commit (cij , kij) ← Commit(rij),
where kij is the opening key to the commitment
cij .

2. Generate zero-knowledge proofs that shows∑
j ri,j = 0. Specifically, the circuit C takes two

components. The input component is the n com-
mitments, while the witness component is the n
corresponding opening keys. The circuit C eval-
uates to 1 if the opened values sum to 0.

Broadcast the commitments and zero-knowledge
proofs to all voters.

3. Receive commitments and verify the zero-
knowledge proofs from all other parties generated
in Step 2.

4. For all j ∈ [n] \ {i}, send to Pj the opening key
kij .

For j ∈ [n]\{i}, wait for the opening key kji from
Pj , and check that rji = Open(cji, kji) 6= ⊥.

5. Compute Ri ←
∑
j rji and Ôi ← Ri + Oi, and

commit (Ci,Ki) ← Commit(Ri) and (Ĉi, K̂i) ←
Commit(Ôi), where Ki,K̂i are the opening keys.

Broadcast the commitment Ci and Ĉi publicly.

6. Generate and broadcast publicly the zero-
knowledge proofs for the following:

(a) “Ri =
∑
j rji”. This is similar to Step 2.

(b) “The committed value in Ĉi minus that in
Ci is either 0 or 1.” The input part of the

circuit is the two commitments Ci and Ĉi,
and the witness part is their opening keys.
The circuit evaluates to 1 if the opened val-
ues differ by 0 or 1 as required.

7. Receive and verify all proofs from other parties
generated in Step 6. The protocol terminates.

Figure 2: Vote Commitment Protocol

Security analysis. The security of the vote commitment
protocol follows readily from the security of commitment
schemes [16] and zero-knowledge proofs from zk-SNARKs [10].
Observe that our zero-knowledge-proofs ensure that each Pi



generate n numbers that sum to 0, but do not ensure that
they are generated uniformly at random. However, as long
as at least one party generate his random numbers uniformly
at random, the resulting Ri’s will still be n uniformly ran-
dom numbers summing to 0. From the definition of commit-
ment schemes and zero-knowledge-proofs, each Pi commits

to both Ri and the masked vote Ôi := Ri + Oi, and con-

vinces everyone that Ôi − Ri ∈ {0, 1}, while keeping both
values secret.

3.2 Vote Casting via Claim-or-Refund
This version of the vote casting protocol is based on the

lottery protocol in [11] that makes use of bitcoin transactions
to guarantee money transfer. The protocol is not symmetric
among the voters, and the voters are supposed to reveal
their masked votes in the order: P1, P2, . . . , Pn. In order to
participate in the protocol, for i ∈ [n− 1], voter Pi needs to
place (i+ 1)B into the system, and voter Pn needs to place
(3n − 1)B into the system. This protocol requires a linear
number of bitcoin rounds, as opposed to constant number
of rounds in the protocol that is given in Section 3.3. The
protocol in this section guarantees the following:
• If every voter reveals his masked vote, the net effect is

that each voter pays 1B to the winning candidate.
• If voter Pi is the first that does not reveal his masked

vote, the net effect is that he pays 1B to each voter
that has already revealed his masked vote. Observe
that neither candidate receives any money in this case.

Claim-or-refund. As in [11], we use the claim-or-refund
(COR) functionality. Suppose π is some boolean function.
Informally, COR consists of several bitcoin transactions, whose
effect is to allow a sender P to guarantee that if the receiver
Q reveals some secret w such that π(w) = 1 before some
specified time τ , P will transfer a certain amount qB to Q.
Note that the revealed secret is publicly known afterwards.

The claim-or-refund functionality consists of (potentially)
three phases.

(a) Deposit Phase. Sender P creates a deposit transaction
whose output value is qB. In the output script, it
requires either (i) signatures from both P and Q, or (ii)
Q’s signature and a value w such that π(w) = 1. The
deposit transaction is kept secret for the time being.
Sender P also creates a (simplified) refund transaction
with a timelock τ whose input is the deposit transac-
tion just created. The simplified refund transaction is
sent to receiver Q, who provides his signature. Sender
P also appends his own signature to complete the cre-
ation of the refund transaction.
The deposit phase is completed, when sender P broad-
cast the deposit transaction, and it appears on the
blockchain.

(b) Claim Phase. Receiver Q can create a claim transac-
tion to claim the amount qB from the deposit transac-
tion by providing his signature and some w such that
π(w) = 1 in the input-script before time τ .

(c) Refund Phase. If Q does not broadcast a valid claim
transaction by time τ , P can get back the amount
qB from the deposit transaction by broadcasting the
refund transaction created in (a).

We use following notation to indicate the claim-or-refund
protocol as described above: P

π−−→
q,τ

Q.

Example. In our application, we need a claim-or-refund

protocol such that P sends Q an amount of qB, if Q reveals

the opening key K̂ to the commitment Ĉ of some secret Ô

before time τ . We use the notation P
Ô−−→
q,τ

Q to indicate

such a protocol. Recall that we use hashing as the commit-
ment scheme in Section 2.3. When we say Q reveals the

secret Ô, we mean Q submits to the bitcoin network a claim

transaction whose input-script contains the opening key K̂.
The function π in the deposit transaction takes the opening

key K̂ and accepts if hash(K̂) = Ĉ. Observe that the secret

is revealed as Ô = |K̂| − λ, where |K̂| is the length of the
key and λ is some publicly known security parameter.

We can also have more complicated claiming condition

such as Q needs to provide the opening keys to reveal Ô1

and Ô2 such that Ô1 + Ô2 = 0. This is denoted as:

P
Ô1,Ô2:Ô1+Ô2=0−−−−−−−−−−−→

q,τ
Q.

Vote Casting via COR. We show how the vote casting
protocol can be implemented with a sequence of COR in-
stances in Figures 3 and 4. The idea is similar to that
in [20]. For n voters, there are 2n COR instances. The
deposit transactions of the COR instances are placed in the
reversed order as the claim transactions are broadcast to
reveal the masked votes.
Correctness. The correctness of the protocol is analyzed in
the same way as [20]. The voters are supposed to reveal their
masked votes in the order: P1, P2, . . . , Pn. At the moment
just after voters P1, P2, . . . , Pi have revealed their masked
votes in the corresponding claim transactions, the net ef-
fect is that Pi+1 has paid each of the previous voters 1B.
Hence, if Pi+1 does not reveal his masked vote, eventually
all outstanding COR instances will expire and the protocol
terminates.

On the other hand, if everyone follows the protocol, then
at the end all the masked votes can be summed up to deter-
mine the winner, who can collect nB from Pn.

3.3 Vote Casting via Joint Transaction
The protocol in Section 3.2 requires a linear number of

bitcoin rounds. In this section, we give an alternative pro-
tocol that only needs constant number of bitcoin rounds.
Also, our protocol has the advantage of small total trans-
action size. The total size of the transactions in the proto-
col is Θ(n) bytes, instead of Θ(n2) from previous protocol.
Loosely speaking, we achieve this by locking all bitcoins in-
volved in a transaction that is jointly signed by all voters.
The protocol is symmetric among the n voters. To partici-
pate in the protocol, each voter Pi needs (1 + d)B, of which
1B is to be paid to the winning candidate if everyone reveals
his masked vote and the remaining dB is for deposit that will
be used for compensation if Pi does not reveal his masked
vote. The timed-commitment technique in [7] can be used
to handle the deposit and compensation.

The protocol guarantees the following:
• If a voter reveals his masked vote, he can get back the

deposit dB.

• If every voter reveals his masked vote, the sum
∑
i Ôi

determines the winner who receives nB.
• If at least one voter does not reveal his masked vote,

the nB originally intended for the winner will be locked.
For each voter that does not reveal his masked vote,
his deposit will be used for compensation. Here are
several options:



Vote Casting: Deposit Phase

Assume that the commitments Ĉi’s to the masked
votes Ôi’s are publicly known, and each Pi knows the

opening key K̂i for Ĉi. Assuming that n is odd, the

winner is B if
∑
i Ôi >

n
2

.
Assume that the times τ1 < τ2 < . . . < τn < τn+1 are
spaced sufficiently wide apart, for they will be used as
locktimes.
The protocol runs as follows.

1. Pn submits the deposit transactions of the fol-
lowing COR instances to the bitcoin network:

Pn
Ô1,...,Ôn:A wins−−−−−−−−−−−→

n,τn+1

A

Pn
Ô1,...,Ôn:B wins−−−−−−−−−−−→

n,τn+1

B

2. Simultaneously for each i 6= n, Pi verifies that
the deposit transactions broadcast in the previ-
ous step are on the block chain, and broadcasts
the deposit transaction of the following COR in-
stance to the bitcoin system:

Pi
Ô1,...,Ôn−−−−−−→

2,τn
Pn

3. Sequentially for i from n down to 2:

Pi verifies that all deposit transactions broadcast
previously have appeared in the blockchain, and
broadcasts the deposit transaction of the follow-
ing COR instance to the bitcoin system:

Pi
Ô1,...,Ôi−1−−−−−−−→
i−1,τi−1

Pi−1

Figure 3: Deposit Phase of Vote Casting

(a) For d = 2n, the deposit can be shared between
candidates A and B. We shall concentrate on this
option in this section.

(b) For d = n, the deposit can be distributed among
all voters in a similar way.

Problems with Joint Transaction in Previous Ap-
proach. In [7, 20], a joint transaction is used to temporar-
ily lock down deposits from n parties such that if a party
does not reveal his secret before some time, others can get
compensated from his deposit. The idea is to use a joint
transaction T , whose n inputs are the sources of the n par-
ties’ deposits. Each output i of T can be redeemed by one
of two ways: (1) a transaction signed by party i revealing
his secret, or (2) a transaction signed by everyone.

However, before transaction T is broadcast to the bitcoin
network, for each i, a transaction PAYi signed by everyone
that can redeem the i-th output (as compensation after some
locktime) needs to be created first. The issue is that to cre-
ate the transaction PAYi, hash(T ) of the signed transaction
T is required in the current bitcoin protocol. One way to
resolve the issue is to modify the current bitcoin protocol

Vote Casting: Claim/Refund Phase

• For i 6= n, if before time τi, all previous secrets

Ô1, . . . , Ôi−1 are revealed, then Pi reveals his se-

cret Ôi and use the claim transaction to receive
iB from Pi+1.

• If before time τn, all secrets Ôi for i 6= n are

revealed, Pn reveals his secret Ôn and use the
claim transactions to receive 2B from each Pi for
i 6= n.
• If before time τn+1 all secrets are revealed, the

winner is determined and he can use the corre-
sponding claim transaction to receive nB from
Pn.
• At any time when the locktime of a COR in-

stance has passed, the sender can immediately
use the corresponding refund transaction to get
his amount back.

Figure 4: Vote Casting: Claim/Refund Phase

such that hash([T ]) of the simplified (unsigned) transaction
T is used instead.

Another way to resolve the issue is that hash(T ) is com-
puted via secure multi-party computation. After all the
transactions PAYi’s are created, then all parties can com-
plete the creation of the transaction T by signing it (in ex-
actly the same way as they compute hash(T ) in the secure
multi-party computation). However, in [7], it is mentioned
that there is a serious security issue with this approach. An
adversarial party can replace his signature with a different
valid one to create another version T ′ of the transaction,
whose hash is different from that of T . If he broadcasts this
alternate version T ′ and it appears on the blockchain be-
fore the original T , then all the transactions PAYi’s become
useless. Hence, the compensation will not be paid even if
a party does not reveal his secret before the deadline, but
could still claim back his deposit by revealing his secret even-
tually after a very long time.

We resolve this issue by using an (n, n)-threshold signa-
ture scheme [15] for a group of parties to sign a message
together, such that no adversary can re-sign the same mes-
sage again without all parties’ permissions.

Description of Vote Casting Protocol.
Key Setup. We use the threshold signature scheme [15] for
Elliptic Curve Digital Signature Algorithm (ECDSA). The
n voters jointly generate a group address such that voter

Pi learns the group public key p̂k and his share ŝki of the
private key. Observe that no party knows the underlying

secret key ŝk, which could be reconstructed from all parties’
secret shares. We use (pki, ski) to denote the address of Pi
in the bitcoin system.
Coin Lock. Eventually, the n voters will sign some trans-
action JOIN together, whose inputs are contributed by the n
voters. We introduce a protocol that locks the contribution
from each voter in a state such that only with all voters’
permission can it be redeemed. This ensures that only one
version of the JOIN transaction can use these coins later.
On the other hand, if the protocol ends prematurely and
the JOIN transaction is not created successfully, we wish to



let each voter Pi get back his contribution with the transac-
tion BACKi. The coin lock protocol is described in Figure 5.

Coin Lock Protocol

Each voter locks (1 +d)B into the system, where 1B is
to fund the winner, and dB is for deposit; here, we set
d := 2n. Each voter Pi does the following:

1. Pi creates a (secret) transaction LOCKi. Its input
is (1 + d)B owned by Pi, and its output is the

address of the group public key p̂k.

Pi also creates a simplified transaction BACKi
that transfers the money from LOCKi back to an
address pki owned by Pi. Note that hash(LOCKi)
is embedded in BACKi, but LOCKi remains se-
cret.

Pi broadcasts (simplified) BACKi to all other vot-
ers.

2. On receiving BACKj for j ∈ [n] \ {i}, Pi checks
that the hash value referred to by its input is
not hash(LOCKi). At this point, Pi has only

contributed coins to p̂k through the transaction
LOCKi, and hence, he can sign anything else us-

ing ŝki without losing money.

3. For each j ∈ [n], Pi participates in the threshold
signature scheme to sign BACKj using his secret

key share ŝki.

4. On receiving the correct signature for BACKi, Pi
is ready to submit LOCKi to the bitcoin network
later.

LOCKi
in-script:
...
output-script(σ):
Verifyp̂k(σ)

value: (1 + d)B

(1+d)B
BACKi

in-script:
Signŝk(body)
output-script(σ):
Verifypki(σ)

value: (1 + d)B

(1+d)B

Figure 5: Coin Lock Protocol

Joint Transaction. In the next step, the n voters shall
jointly sign a transaction JOIN using the threshold signa-

ture scheme, each with his private key share ŝki. The JOIN
transaction has n inputs referring to the LOCKi’s, each of
which contributes (1 + d)B. It has (n+ 1) outputs, of which
out-prize delivers nB to the winning candidate, while each
out-depositi of the remaining n outputs handles the deposit
dB of each voter.

Using the timed-commitment technique as in [7], the out-
put out-depositi can be redeemed by a transaction that either

(1) reveals the masked vote Ôi and is signed with the key
associated with Pi, or (2) is signed with the group signature.
Hence, before JOIN takes effect (by appearing in the block-
chain), a transaction PAYi with some timelock that can re-
deem out-depositi needs to be created and signed under the
threshold signature scheme, in case Pi does not reveal his
masked vote and his deposit is used for compensation. The
details are in Figure 6.

Joint Transaction Protocol

Assume that the Coin Lock Protocol has been run, and
each Pi has created the (secret) transaction LOCKi,
whose hash is publicly known. Suppose t1 < t2 are
times far enough in the future. Each voter runs the
following protocol.

1. Each voter generates the same simplified trans-
action JOIN as follows.

• It has n inputs, each of which refers to
LOCKi that contributes (1 + d)B.
• It has n+ 1 outputs:

out-depositi, i ∈ [n]: each has value dB, and

requires either (1) the opening key K̂i (re-

vealing Ôi) and a signature verifiable with
Pi’s public key pki, or (2) a valid signature

verifiable with the group’s public key p̂k.
out-prize: has value nB, and requires all

opening keys K̂i’s (revealing the masked

votes Ôi’s) and a signature from the winning
candidate (which can be determined from

the sum
∑
i Ôi).

2. The voters jointly sign JOIN using the threshold
signature scheme, each with his private key share

ŝki. Observe that JOIN has n inputs, each of
which requires its own group signature. (See [2]
for details.) The signed JOIN is ready to be sub-
mitted.

3. Each voter generates, for each i ∈ [n], the same
simplified transaction PAYi with timelock t2
whose input refers to out-depositi. The output
handles the compensation dB if voter Pi does not
reveal his masked vote by time t2. For instance,
with d = 2n, the compensation can be shared be-
tween candidates A and B. The n voters jointly
sign PAYi using the threshold signature scheme.

4. Each voter Pi verifies that the above steps have
been completed, and submit LOCKi to the bit-
coin system.

5. After all LOCKi’s have appeared on the block-
chain, JOIN is submitted to the blockchain.

6. As long as JOIN has not appeared on the block-
chain, say by time t1, any voter Pi can terminate
the whole protocol by submitting BACKi to get
back (1 + d)B.

Figure 6: Joint Transaction

Outcome Revealing Phase. After JOIN appears on the
blockchain, each voter Pi can collect his deposit dB (from
the output out-depositi of JOIN) by submitting a CLAIMi

transaction that provides the opening key K̂i to reveal his

masked vote Ôi. If all voters have submitted their trans-
actions CLAIMi’s, the winning candidate is determined and
can redeem nB from out-prize with his signature.



JOIN
...

in-scripti: Signŝk([JOIN])
...

out-depositi (K̂i, σ):

(Open(Ĉi, K̂i) 6= ⊥ ∧ Verifypki(σ)) ∨
Verifyp̂k(σ)

2nB

...

out-prize({K̂i}i∈[n], σ):

∀i,Open(Ĉi, K̂i) 6= ⊥∧
((VerifypkA(σ)∧

∑
Open(Ĉi, K̂i) ≤ n

2
)∨

(VerifypkB(σ) ∧
∑

Open(Ĉi, K̂i) >
n
2

))

nB

...

Winner

nB

LOCKi(1+2n)B

CLAIMi

in-script:

K̂i, Signski([CLAIMi])

out-script: ...

PAYi
input-script: ⊥, Signŝk([PAYi])

out-scriptA(σ): out-scriptB(σ):
VerifypkA(σ) VerifypkB (σ)

locktime: t2

2nB

2nB

On the other hand, if some voter i does not reveal his
masked vote, then the nB from out-prize cannot be accessed
anymore. However, since PAYi is publicly known, after time
t2, the dB from out-depositi can be redeemed by PAYi as
compensation.
Correctness. After the coin lock protocol, all the trans-
actions LOCKi’s remain secret, while their hashes and the
BACKi’s are publicly known. Observe that before the trans-
action JOIN appears on the blockchain, any voter can termi-
nate the whole protocol without losing any money by sub-
mitting BACKi to the bitcoin system. On the other hand,
once JOIN has appeared on the block chain, no voter can
terminate the protocol without either revealing his masked
vote or losing his deposit dB.

4. EXPERIMENT
We describe our implementation of the protocols in Sec-

tion 3.
Vote Commitment. We have implemented the zero-knowledge-
proofs described in Section 3.1. For zk-SNARKs [10], we
choose snarkfront [17], which is available online. We use
snarkfront to implement the required zero-knowledge proofs.
We run the program using a computer with 4G RAM and
Intel Core i5-3570 CPU. The key generator typically takes
5 times longer than the time to generate proofs. However,
since it only needs to be run once globally, we omit its run-
ning time here as it is not a serious performance concern.
In Figure 7, we report the time to generate proofs for dif-

ferent number of users. We consider three kinds of proofs:
(1) to prove n numbers sum to 0, (2) to prove n numbers
sum to the (n + 1)-st number, (3) to prove the subtraction
of a number from another is either 0 or 1.
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1 Open(Ĉi, K̂i) = Open(Ĉn+1, K̂n+1)

Open(Ĉ1, K̂1)− Open(Ĉ2, K̂2) ∈ {0, 1}

Figure 7: Performance of zk-SNARKS

In zk-SNARKS, the time for verification is only linear in
the size of the input (and the security parameter). Typically,
it takes less than 0.1 second.
Vote Casting. As a proof of concept, we have executed the
protocols in bitcoin (testnet) network [4]. We use bitcoinj
Java library to create and send the transactions.

Below we present txid of the transactions. There are 9
voters in our protocol. One may read the full transaction
data on chain.so website.

For the protocol using claim-or-refund in Section 3.2, we
first create a transaction with multiple outputs, each of
which acts as the source address of each claim-or-refund
transaction. The source of each claim-or-refund transaction
can be found with index 0− 18 at:

d3f62d6dfd9722699938a3d7457e23ba786a3e8d14615d128847ad7ca56b7a1a.
All following transactions can be found following the out-

puts. Another execution in which an adversary terminated
the protocol and was punished is here:

8d4031dfa71bf9b1a296b6f67c3cb1d801e899d4ff7d1ee6dd6751622032b60f .
For the protocol using joint transaction in Section 3.3, the

JOIN transaction of a successful execution is here:
ca42f58d2a7eadc4360029ea31e6f2224c9b7f47c18ef985a9b477ac869822c7.
All claim transactions can be found by following the out-

puts.
A JOIN transaction of an unsuccessful (terminated by ad-

versary) execution is here:
6506857a75b1f25b930a923e6bd8274cbccb42339425e21f29cf5ba2ce389738.
All CLAIMi and PAYi transactions can be found by fol-

lowing the outputs.
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